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ABSTRACT
This paper presents new non-intrusive measurement techniques to
detect sharing of upstream congestion and discover bottleneck router
link speeds. Our techniques are completely passive and require
only arrival times of packets and flow identifiers. Our technique for
detecting shared congestion is based upon the observation that an
aggregated arrival trace from flows that share a bottleneck has very
different statistics from those that do not share a bottleneck. In par-
ticular the entropy of the inter-arrival times is much lower for ag-
gregated traffic sharing a bottleneck. Additionally this paper identi-
fies mode structure in the inter-arrival distribution that enables dis-
covery of the link bandwidths of multiple upstream routers.

We validate these ideas with extensive experiments on a wide-scale
Internet testbed and with multiple rate controlling routers. We find
that the method can detect any bottleneck sharing among hundreds
of flows. The classification errors decrease exponentially in the
number of traced packets. Further, the method copes well with
heavy cross-traffic and the errors decrease exponentially as the frac-
tion of cross traffic at the bottleneck decreases. Unlike prior pro-
posals, our technique does not inject any new probe traffic, does
not require any sender cooperation, and works with any type of
traffic (UDP, TCP, or multicast), and a wide variety of queuing dis-
ciplines. The method is simple and fast enough to be real-time for
rates beyond 10,000 packets per second.

1. INTRODUCTION
In this report,1 we show that the passive collection of packet inter-
arrival times can reveal substantial information about the conges-
tion state along upstream paths. We address two particular prob-
lems: single-flow bottleneck capacities and multi-flow bottleneck
sharing. The necessary measurements can be collected completely
at endpoints. The appeal of endpoint measurements is that they
require no additional infrastructure and are accessible to a large
population of users.

End-to-end measurements can be active or passive. Active methods
inject new traffic (e.g., probes) into the network to induce a certain
response, which is then used to infer a performance metric while
passive methods observe traffic already present. Despite their use-
fulness, active methods have some drawbacks. Probes increase the
load on the network by some additional traffic which could be on
the order of hundreds of kilobytes per experiment [4, 10, 30, 23].
1D. Katabi was supported by ARPA Agreement J958100, under
contract F30602-00-20553. C. Blake was supported under DARPA
contract N66001-00-1-8933. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policy or endorsements, either
express or implied of DARPA or the US government.

Moreover, the active traffic may perturb the network, bias the ensu-
ing results, and complicate the analysis [26]. Our work focuses on
deducing as much as possible from passive measurements alone.

First, we devise methods that enable an end receiver to discover the
capacities of potentially multiple bottlenecks traversed by a flow
and their traversal order from the arrival times of the packets in the
flow. In particular, we show that the distribution of the packet inter-
arrival times in a flow shows a few common patterns, which we an-
alyze and relate to the bottlenecks along the path. Our results con-
firm that the common practices for estimating the bottleneck band-
width using the minimum inter-arrivals of two consecutive packets
in a flow [4, 10, 30] or the global mode in the distribution of its
packet inter-arrivals [23] can make significant errors. Nonetheless,
we show how to adjust the use of the inter-arrival PDF so that the
minimum capacity along the path still can be extracted. Since this
method relies solely on processing of network-level traces which
are easily producible at any receiver, it provides a general, non-
intrusive, and resource efficient approach to learning Internet path
characteristics.

Second, we develop a novel passive technique that exploits the in-
formation embedded in packet inter-arrival distributions to detect
flows that share the same bottleneck.

Detecting shared bottlenecks using end-to-end measurements is use-
ful for sharing congestion information [12, 18], constructing the
topology [28], and monitoring and debugging the network. Per-
forming this detection using a passive approach is highly desirable
because it is resource efficient (i.e., it does not generate probe traf-
fic) and is extremely general (i.e., it makes no assumptions about
the transport protocols or the queuing discipline).

Our approach relies on the observation that by clocking (i.e., pac-
ing) the packets, a bottleneck imposes some structure on the prob-
ability distribution of the inter-arrival times of packets that traverse
it. This structure is lost when packets that do not share a bottle-
neck get mixed together. The loss of structure shows up as more
randomness in the inter-arrivals of the aggregate. Using entropy
as our measure of randomness (the lack of structure), we develop a
passive technique that enables an end receiver or a passive observer
to detect flows that share bottlenecks by minimizing the Rènyi en-
tropy of the packet inter-arrivals.2

The paper shows that the developed passive technique can detect
any bottleneck sharing among hundreds of flows and is efficient
and practical for use over the Internet. In particular, using the RON

2Rènyi entropy is a generalized form of Shannon entropy. The ex-
act definition is in Section 3.2



testbed [5], we show that our bottleneck detection method gives
correct results in extensive Internet experiments run between 17
different Internet sites.

The method requires a relatively small numbers of packets per flow.
In all cases, we find that errors decrease exponentially in the num-
ber of packets. The exact number of per-flow packets varies be-
tween 10 and 100 packets depending on the number of bottlenecks,
classified flows, and the type of errors that matter. TCP connections
in the Internet are often short-lived. However, depending on the ap-
plication, the source for a “flow” may be defined as an aggregate.
For example, if the focus is wide-area congestion analysis, it may
be acceptable to define a source to be the entire LAN of the sender.

Further, the technique is robust in the presence of heavy cross-
traffic, though more packets may be required. The method can be
applied in real-time. On a commodity PC our implementation can
classify samples with thousands of packets in less than a second.

The structure of this paper is as follows. In Section 2 we describe
the properties of inter-arrival distributions for single flows and dis-
cuss the congestion and bandwidth implications. In Section 3 we
exhibit the properties of multi-flow inter-arrival distributions and
describe our bottleneck detection algorithm. In Section 4 we eval-
uate this algorithm in realistic experimental environments. Section
5 discusses possible future avenues and Section 6 concludes.

2. INTERARRIVAL TIME STATISTICS
In this section, we study the time between arrivals of consecutive
packets in a TCP flow and plot its probability distribution function
(PDF). Our objective is to relate the characteristics of the inter-
arrival PDF to the congestion characteristics of the path traversed
by the flow. In particular, we show how to interpret the PDF to
discover the capacities of potentially two traversed bottlenecks, to
discern their relative location, to assess their degree of congestion,
and to probe the distribution of traffic burst sizes.

Before proceeding to analyze the PDF of the packet inter-arrivals,
we clarify three terms. We use “Minimum capacity link” to refer to
the link that has the minimum absolute capacity along a path. We
use “Bottleneck” for a link/router where a flow experiences signif-
icant queuing. A bottleneck is a congested link; it is not necessar-
ily the minimum capacity link along a path. Finally, the “Nominal
Transmission Time (NTT)” of a link is the time it takes to transmit a
1500 byte packet over the link. For example, the nominal transmis-
sion time of a T1 is around 8 msec, while the nominal transmission
time of a 10 Mbps Ethernet is 1.2 msec. (See Table 1 for a reference
on the NTT of various link technologies.)

2.1 Measurement Methodology
We conducted our measurements over the RON testbed [5]. Ta-
ble 1 provides a complete list of the RON nodes their locations and
their access links. Note the heterogeneity in the measurement envi-
ronment, which was chosen to reflect the heterogeneity of Internet
paths. Five machines are located at US universities, three are at
European or Asian Universities, three are broadband home Internet
hosts connected by Cable or DSL, one is located at a US ISP and
five are at various US corporations. The length of the measured
paths is between 11 and 30 hops and the minimum capacity along
a path varies between 0.384 Mbps and 100 Mbps.

Each experiment involved a 5 minute TCP download from one

Name Description Access Link BW NTT
MS Residence, CA DSL 0.384 31
Sightpath .COM in MA T1 1.544 8
Mazu .COM in MA T1 1.544 8
NC Residence, NC Cable Modem 2 31
M1MA Residence, MA Cable Modem 10 1.2
Aros ISP in UT Fractional T3 12 1.0
CCI .COM in UT Ethernet 100 .12
PDI .COM in CA Ethernet 3..100 N/A
CMU Pittsburg, PA Ethernet 10 1.2
Cornell Ithaca, NY Ethernet 100 .12
MIT Cambridge, MA Ethernet 100 .12
NYU Manhattan, NY Ethernet 100 .12
ACIRI ACIRI, CA Ethernet 10 1.2
Utah U. of Utah,SLC Ethernet 100 .12
NL Vrije U,Holland Ethernet 100 .12
Lulea Sweden Ethernet 100 .12
Korea Korea Ethernet 100 .12

Table 1: The RON testbed. Bandwidths are in Mbps. NTTs are
in msec. The top block are ordinary Internet hosts. The bottom
block have additional Internet2 connectivity.

RON node to another.3 The RON machines run FreeBSD 4.4 and
the TCP stack uses an MTU of 1500 bytes. The receiver ran tcp-
dump [2] to log microsecond precision arrival times of the packets
at the Ethernet card. We computed the time difference between
successive arrivals and histogrammed them to plot the PDF of the
packet inter-arrival in the flow. We repeated these experiments to
cover periods of congestion (e.g., peak hours on weekdays) and pe-
riods of low traffic (e.g., weekends). In all, we conducted over a
hundred experiments over several months.

Below we present a summary result of our findings. The appendix
presents more graphs that show the persistence of our findings over
various Internet paths that differ in their link technologies, path
length, and whether the end nodes are at universities or corpora-
tions.

2.2 PDF of Packet Inter-Arrival in a TCP Flow
A few common patterns appear in the inter-arrival PDFs for TCP
flows. These patterns are illustrated in Figure 1. In particular, note
the multiple spikes of various heights, widths, locations, and spac-
ings. The PDF might show a single spike such as Figure 1a, a spike
bump such as Figure 1b, a spike train such as Figure 1c, or a train
of spike bumps such as Figure 1d. The roughly equal spacing be-
tween the spikes in a spike train and or a spike bump is the spike
gap. The roughly equal spacing between the bumps in a train of
spike bumps and is the bump gap. In the following subsections, we
show how to interpret these PDF patterns in terms of the congestion
characteristics along the path the packets took.

Below, we interpret the patterns in Figure 1 and show how a proper
understanding of the PDF allows one to discover bottleneck link
bandwidths for multiple congested routers.

Single Spike: In this case, the flow traverses a bottleneck with no
substantial cross traffic. As such, most of the packets arrive back-
to-back at the receiver. The spike in the PDF corresponds to the

3While our experiments use TCP, these methods only rely upon
large, relatively constant size packet transmissions.
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Figure 1: Common patterns in the PDF of inter-arrival times
in a single TCP flow. (a): a single spike; (b): a spike bump; (c):
a spike train; (d): a train of spike bumps.

NTT of the bottleneck. This situation is depicted in Figure 1a where
the bottleneck is a T1.

Spike Bump: In this case, the flow traverses a low bandwidth bot-
tleneck followed by a high bandwidth bottleneck. The two bot-
tlenecks might be separated by a number of uncongested hops.
We will show that the spike bump is centered at the NTT of the
low bandwidth upstream bottleneck. Further, the gap between the
spikes is the NTT of the high bandwidth downstream bottleneck.
Thus, a spike bump carries information about two traversed bottle-
necks.

We explain the spike bump using the example in Figure 1b. In this
experiment the flow traverses a a T1 bottleneck (the access link
at Sightpath), then a lightly congested 12 Mbps fractional T3 (the
access link at Aros). The packets leave the upstream bottleneck
spaced by its NTT (or some integer multiple of the NTT). In the
experiment in Figure 1b, most of the packets left the upstream T1
with an inter-arrival of 8 msec. When any of these packets hits
the congested downstream high bandwidth bottleneck, the packet
is queued.

There are then 8 msec until our next packet arrives at the down-
stream bottleneck. During this interval a number of cross traffic
packets arrives and is queued before our packet. After 8 msec, our
second packet arrives at the higher bandwidth queue. Thus, the
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Figure 2: (a): The cumulative distribution of packet sizes for
cross traffic at a congested OC3 link. (b): The probability dis-
tribution of cross traffic burst sizes for the same trace above.
Notice the spikes at multiples of 1500 bytes.

burst of cross traffic between any pair of packets in the traced flow
depends on the number of cross traffic packets arriving in 8 msec
at the downstream bottleneck. When all these bytes are transmitted
on the output link, our packets have now been re-spaced. The time
between the arrival of a pair of packets from the traced flow at the
receiver is the time taken to transmit the first packet in the traced
pair and the potential cross traffic burst at the downstream bottle-
neck. Depending on the size of the cross traffic burst, this time is
sometimes larger than 8 msec and sometimes smaller. That is why
the PDF shows a bump centered at 8 msec.

Next, we consider why the bump is composed of equally spaced
spikes. Close inspection of many collected PDFs (see the appendix
for more) reveals that the spikes are always separated by the NTT
of the high bandwidth bottleneck. Thus, the most common case
was always for a cross traffic burst at the downstream bottleneck to
be a multiple of 1500 bytes. This is somewhat surprising. Though
the traced TCP download used a 1500 byte MTU, the cross traf-
fic packets have various sizes and reflect the variability of packet
sizes in the Internet. (The appendix shows similar graphs in which
the downstream bottlenecks are the access links at big universities
where the cross traffic is fairly representative of cross traffic in the
Internet.) It therefore seems possible that though cross traffic has
various packet sizes, the most common cross traffic bursts are mul-
tiple of 1500 bytes.

To confirm that this is not a peculiarity of the RON sites, we studied
the distribution of the cross traffic burst size from traces collected
by NLANR [1] at various monitored links.4 Since we are inter-
ested in bursts of cross traffic at a bottleneck, we chose traces in
which the average traffic rate exceeds two thirds of the capacity of

4Trace file is from October 2001 and contains over 60,000 flows.
It is at http://pma.nlanr.net/Traces/Traces/daily/20011005/COS-
1002219707-1.tsh.gz



the monitored link. Figure 2a, shows the packet size accumulative
distribution for a typical trace. The distribution looks similar to the
one reported by CAIDA [11]. In particular, it shows that over 50%
of the packets are around 40 bytes; 10% of the packets are about ≈
560 bytes; and 20% of the packets are around 1500 bytes.

Figure 2b shows the cross traffic burst distribution for the same
trace. To compute the burst size, we randomly picked a TCP flow
and recorded the size of all traffic separating each pair of its pack-
ets. This is therefore precisely the traffic which, if subsequently
sent through a bottleneck link, would be clocked and converted to
inter-arrival times. We repeated the procedure over a large num-
ber of active TCP flows and plotted the PDF of the resulting cross
traffic bursts. The PDF reveals the existence of a strong mode at
40 bytes and strong modes at integer multiples of 1500 bytes. The
first mode at 40 bytes would make the traced packets look as if they
arrived back-to-back. The other modes would create inter-arrivals
spaced by one and 2 NTTs.5

Spike Train: This case is similar to the single spike case except
that the traversed bottleneck is shared with a substantial amount
of cross traffic. Consequently, it becomes more likely that a burst
of cross traffic intervenes between any pair of the traced packets.
Similarly to the spike bump case, the gap between the spikes is the
NTT of the bottleneck, as illustrated in Figure 2c. Note though that
a spike train need not always have a decreasing spike length. In a
few of our experiments it was more common for the traced packets
to be separated by a packet of cross traffic than to be back-to-back.

A Train of Bumps: In this case the flow first traverses a low band-
width upstream bottleneck shared with a substantial amount of cross
traffic. As a result the packet inter-arrival at the output of this bot-
tleneck is a decreasing spike train as in Figure 1b. Later, the flow
traverses a lightly congested high bandwidth bottleneck. The queu-
ing at this latter bottleneck transforms every spike in the spike train
into a spike bump creating a train of bumps. The gap between the
spikes in a single bump is a the NTT of the high bandwidth down-
stream bottleneck, while the gap between the bumps is the NTT of
the low bandwidth upstream bottleneck. For example, in Figure 3d,
the upstream congested link is a T1 and the down stream link is a
12 Mbps fractional T3. Packets leave the congested T1 spaced by
multiples of 8 msec, (i.e., the cross traffic burst size is either 0 bytes
or 1500 bytes or 3000 bytes). However, when they reach the down-
stream link each spike is transformed into a spike bump with a gap
of 1 msec (the NTT of a 12 Mbps link).

2.3 Capacity Inference
The Internet literature proposes a few approaches to discovering
the minimum capacity along a path. The most common approach
is to use the minimum inter-arrival of back-to-back packets [10,
21, 4, 27]. Other proposals suggest the most common inter-arrival
(i.e., the global mode in the distribution of packet inter-arrivals).
[23]. Below, we show that both approaches may give wrong results
even in situations where the bottleneck bandwidth can be easily
determined from a simple examination of the inter-arrival PDF.

Figure 3 (Mazu → Aros) shows the inter-arrival PDF of a flow

5A Spike bump need not be symmetric; Figure 11 in the appendix
shows a non-symmetric spike bump. The non symmetry there is
caused by severe congestion and high multiplexing at the down-
stream high bandwidth bottleneck. Hence, it was more likely to
spread a pair of traced packets than to squeeze them.
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Figure 3: The NTT of the minimum capacity link is the gap
between the bumps. It shows the link is a T1. Inferring the
minimum capacity link from the minimum inter-arrival time or
the global mode of the PDF would have yielded wrong results.
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Figure 4: A simple clustering example; Sources S1 and S2
share the bottleneck B1, Sources S3 and S4 and share the bot-
tleneck B2. The observer is co-located with the receiver. It
receives all flows over the same link yet wants to cluster S1 and
S2 together and S3 and S4 together.

where the sender is behind a T1 and the receiver is behind a 12
Mbps fractional T3. The minimum capacity along the path is the
T1 link with an NTT of 8 msec. However the minimum inter-arrival
is 1.7 msec. As such, a minimum capacity estimator based on us-
ing the minimum inter-arrival would mistakenly conclude that the
bottleneck bandwidth in 7 Mbps, much more than a T1 bandwidth.

The same figure shows the global mode of the inter-arrival PDF
does not lead a good estimator of the minimum capacity along the
path. In particular, the global mode in this trace happens at 16 msec,
which would yield a 0.77 Mbps minimum capacity link. However,
one can see from the PDF that the minimum capacity link is a T1
with an NTT of 8 msec. The 16 msec is the result of many of
the traced packets being separated by exactly one 1500 byte cross
traffic packet.

Thus, our analysis of the past few sections shows how to strengthen
previously proposed techniques by computing the bump and spike
gaps and relating them to the traversed bottlenecks.

3. DETECTING SHARED BOTTLENECKS
In the previous section, we have developed an understanding of the
statistics of packet inter-arrivals in the Internet. In this section, we
look at applying this understanding to multiple flows with the goal



Figure 5: Packets inter-arrivals in various clusters of flows in Figure 4. The thick lines represent packets. They are numbered
according to the sender. The dotted lines emphasize the alignment in time. The x-axis is time. (a) and (b) are the outputs of B1 and
B2 respectively, and the correct clusters. (c) is the packet inter-arrivals as seen by the observer, which corresponds to putting all
sources in the same cluster. (d) is an example of an incorrect cluster, namely {S2,S3}.

of detecting bottleneck sharing. Particularly, we demonstrate that
a passive observer watching the arrivals of packets at some link
can use the information embedded in the packet inter-arrivals to
cluster the flows into groups such that all flows in one group share
a common bottleneck.

Before describing our approach to passive bottleneck detection,
we note that detecting shared bottlenecks is a clustering problem,
where the clustered objects are flows. A correct clustering groups
flows that share a bottleneck into the same cluster and produces
one cluster per bottleneck. An incorrect clustering fails to group
flows that share the bottleneck or groups flows that do not share
a bottleneck into the same cluster. We also note that for the pur-
pose of detecting bottleneck sharing, a “flow” is a stream of traced
IP packets with the same source identifier. The source identifier
is defined by the user to fit the application of interest. It is usu-
ally defined as the source IP-address in the packets, because traced
packets with the same sender share the upstream part of their path.
However, when NAT boxes [16] are suspected, the user may define
the source identifier to be the source IP-address and port pair.

Finally, we note that when a flow traverses more than one bottle-
neck, bottleneck sharing is resolved based on the most dominant
bottleneck along the path. For example, consider two flows that
have the same receiver. Each of these flows experiences severe
queuing at its sender access link. However, occasionally, both flows
share a transient queue at the receiver access link. In this case, the
flows do not share the same point of congestion and the clustering
technique should not group them together.

3.1 Basic Idea
We use the simple topology in Figure 4 to describe the intuition un-
derlying our approach to discriminating the sharing of a bottleneck.
In this scenario, four sources send to the same receiver. S1 and S2
are behind the same bottleneck B1, and their total sending rate is
larger than the capacity of B1. S3 and S4 share the bottleneck B2
and their total rate exceeds its capacity. The passive observer is co-
located with the receiver. It receives packets from all four sources
on the same link yet wants to group together the sources that share
the same bottleneck.

Figure 5 shows the packets’ inter-arrivals at different points in our
simple topology. Figures 5a and 5b show the inter-arrival of packets
at the output of B1 and B2 respectively. Furthermore, they repre-
sent the inter-arrivals of packets in the correct clusters ({S1,S2}
and {S3,S4}). Figure 5c shows the packet inter-arrivals at the re-
ceiver. It is the overlay of the output of B1 and B2. Note that 5c
does not show the constant inter-arrival observed in 5a and 5b. If
the receiver succeeds in clustering the flows that share the bottle-
neck, it ends up with two clusters in which the packet inter-arrival
is constant. If the receiver mistakenly groups the flows S2 and S3
together, the resulting incorrect cluster {S2,S3} exhibits more ran-
dom packet inter-arrivals as illustrated in 5d.

Thus, the inter-arrival of interleaved packets from flows that do not
share a bottleneck is more random than the inter-arrival of inter-
leaved packets from flows that do share a bottleneck. We can fur-
ther confirm this intuition via the following experiment. We use an
MIT machine to download simultaneously a file from both MS and
Sightpath. The resulting two TCP flows experience bottlenecks at
the source access links, namely a T1 and a 0.38 Mbps DSL (very
little bandwidth compared to the 100 Mbps Ethernet to which the
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Figure 6: The PDF of the inter-arrivals over the aggregated
trace of unassociated flows. The heavy near-uniform distribu-
tion before the first peak and between the peaks is exactly the
sort of smooth value-diversity measured by entropy.

MIT machine is connected). Thus, they do not share a common
bottleneck. We log the arrival of the packets at MIT and plot the
inter-arrival PDF of the aggregate trace. Figure 6 shows that the
PDF of this incorrect cluster exhibits an area of almost uniform
distribution before the first mode. Consider that since all of the
inter-arrival PDF’s of Section 2 were single flows, they de facto
shared whatever bottlenecks they passed through. Comparing this
new aggregate trace PDF against the PDFs in Figure 1 we see that
the inter-arrival PDF’s for incorrectly clustered flows has substan-
tially more randomness. A quantitative measure of this randomness
should therefore discriminate between combinations of flows shar-
ing bottlenecks and combinations not sharing bottlenecks.

3.2 Generalized Entropy
We start with the definition of Shannon entropy, a traditional mea-
sure of the uncertainty (i.e., randomness) in a random variable. The
Shannon entropy H(x) of a discrete random variable x that takes
on the value vi with probability pi is defined as:

H(x) =
∑

i

pi log2 pi (1)

In [20], the authors propose minimizing the Shannon entropy as
a means for discriminating between bottleneck sharing and non-
sharing flows. They provide simulation results that show the va-
lidity of the approach in environments with low to moderate cross-
traffic. We found this measure to do a reasonably good job of dis-
criminating shared from non-shared flow aggregations. However,
the spiky nature of the inter-arrival distributions causes problems.
Even for correct flow combinations, many new small probability
spikes can arise in the PDF as it simply fills out with more data
points from the larger, combined trace. The Shannon entropy can
increase in this circumstance, even though the small spikes are at a
place that makes them a continuation of existing PDF structure.

To overcome this difficulty we propose the use of Rènyi entropy
[29], a generalization of the Shannon entropy, defined as:

Kq(x) =
1

1 − q
log2

∑

i

pq
i (2)

The parameter q specifies the order of the Rènyi entropy. In the
limit as q → 1 the Rènyi entropy converges to the Shannon entropy

(i.e., limq→1 Kq(x) = H(x)). Rènyi entropy shares many proper-
ties with Shannon entropy. Both entropies achieve their maximum
for uniform distributions. Neither depends upon the value where
the probability occurs. Also, for both entropies, the entropy of two
independent subsets of a data set is the sum of the individual en-
tropies.

The effect of the Rènyi entropy is to weight high probability values
more than the problematic low probability incidental noise caused
by small sample effects. This is because raising probabilities on
(0, 1) to high powers (i.e., large q) spreads them out, lifting peaks
and depressing tiny values. On the other hand, one should not
choose very large q since then only the peaks would matter. We
chose q by assessing the end-to-end classification performance for
a few experiments. We found of q = 4 and q = 5 to yield good
results.

3.3 Practical Issues
The simple scenarios in Figure 4 and Figure 5 are useful for ex-
plaining the intuition underlying passive detection of shared bottle-
necks using entropy minimization, but they do not reveal the full
complexity of the problem. In this section, we discuss the various
complications that arise in practice. Nonetheless we show that the
main idea still holds; namely, that a bottleneck imposes detectable
structure on the inter-arrivals of packets that traverse it. This struc-
ture is lost when the packets get mixed with other packets that have
not crossed the same bottleneck.

A number of issues could potentially confound the passive detec-
tion of shared bottlenecks with entropy metrics. First, many effects
add randomness to the PDF of the inter-arrivals in a correct clus-
ter, e.g. the dynamics of TCP congestion control. For example,
when a relatively small number of TCPs share a Drop-Tail bottle-
neck, the bottleneck link might cycle between periods of severe
congestion with large number of drops followed by periods of un-
derutilization. During the periods of underutilization, packets do
not leave the bottleneck equally spaced. However, these periods of
underutilization are short or absent when the number of competing
flows is large. More importantly, the duration of such periods at a
bottleneck is relatively short compared to the duration of the peri-
ods during which the bottleneck clocks the packets. Consequently,
the structure imposed on the packet arrival times by the bottleneck
clocking should dominate any randomness introduced by TCP dy-
namics. This is supported by our empirical findings.

A second reason for randomness in the inter-arrival of packets in
a correct cluster is the fact that routers downstream from a bottle-
neck might build transient queues without being congested. For
lower capacity routers with very occasional queues the number of
packets and inter-arrivals affected is small (since these routers are
by definition not the bottleneck). For higher capacity routers, single
spike structure may be transformed into a spike bump (or a spike
train may be transformed into a train of bumps), but the overall
entropy remains quite low compared to aggregations of unclocked
flows (see Figure 6).

Another issue that complicates passive detection of shared bottle-
necks is that most of the traffic at the output of a bottleneck may
end up being unobserved by the receiver. For example, in Figure 4,
if the packets sent by S1 do not cross the link monitored by the ob-
server then the correct clustering is {{S2}, {S3 S4}}. In this case,
though the cluster {S2} does not exhibit a constant inter-arrival, the



observer is likely to discover the correct clustering. In particular,
although the cluster {S2} has high entropy, any attempt to put S2
in the same cluster with S3 or S4 (or to put S3 and S4 in different
clusters) is likely to further increase the entropy of the clustering. In
general, cross-traffic plays the role of noise on the signal of interest.
As more of the output traffic at bottlenecks becomes cross-traffic,
the information embedded in the inter-arrival PDF becomes more
immersed in noise. In Section 4.2, we investigate the robustness of
the algorithm against heavy cross-traffic.

Another potential obstacle comes from the fact that packets do not
have the same length; consequently, the time to transmit one packet
over the bottleneck is not constant. In practice, this is not an issue.
To see why, recall that the distribution of packets inter-arrivals in
the single TCP flows of Section 2 showed a considerable amount
of structure despite the fact that cross-traffic packets have various
sizes.

3.4 Iterative Passive Technique for Detecting
Shared Bottlenecks

To develop a clustering technique based on entropy-minimization,
two design issues must be resolved.

The first issue is choosing the function that should be minimized.
Equation 2 shows how to compute the Rènyi entropy of the inter-
arrivals of packets in a cluster. However, it does not indicate how
to combine the entropies of the various clusters into a quantity that
we can minimize. We call the quantity we want to minimize the
‘cost function’, which we define as follows:

Cost =
N∑

c=1

nc Kq(pc) (3)

where nc is the number of packets in cluster c, Kq is the Rènyi
entropy of pc of the inter-arrivals of the aggregate flows in c, and
N is the number of clusters.

Weighting the entropy by the number of packets in the cluster is
important because it prevents the clustering technique from reduc-
ing the cost by collapsing all of the flows into the same cluster.
For example, there might be two correct clusters each having an
entropy of 2 bits. The entropy resulting from combing all flows
together could be 3 bits. Although, this latter entropy is larger than
the entropy of any of the correct clusters, without the weighting
factor the algorithm can reduce the entropy by putting all the flows
in the same cluster, which would produce an incorrect outcome.
In general, a statistical understanding of the packet-weighting of
entropy in a global cost derives from the subsample additivity of
both Shannon and Rènyi entropy. That is, the entropy of two inde-
pendent subsets of a data set is the sum of the individual entropies.
Thus the entropy of a whole aggregated sample of packets is simply
the entropy of the parent distribution multiplied by the number of
packets. This notion also makes it meaningful to sum the entropies
of each cluster to define the total entropy of the entire arrangement.

The second issue is the computational complexity of the optimiza-
tion problem. The search space is exponential in the number of
flows. In particular, there are CF /C! ways to group F flows into
C clusters [15]. When the number of bottlenecks is unknown the
search space is even larger. A brute force search is infeasible for all
but a small number of flows and simple candidate topologies. The
optimization surface is also quite rough. E.g, changing the clus-
ter of a flow of n packets can change up to 2n inter-arrival times

in both its old and new clusters. Simpler distance-based clustering
problems are already NP-complete complexity [17, 7].

To reduce the computational complexity, we use an iterative proce-
dure which starts with an initial random clustering and iterates by
moving a source from one cluster to another to obtain an incremen-
tal reduction in the Rènyi entropy. Despite that this technique is not
guaranteed to find the global minimum, our empirical results show
that it almost always yields the correct clustering, which is after all
the end goal.

The optimization strategy is as follows:
1. Start with each flow in a cluster by itself.
2. Pick a source Si in round-robin fashion.
3. Try moving Si from its cluster to every other cluster.
4. Accept the move that most reduces the total cost.
5. Repeat from step 2 as long as progress can be made.

Finally, a few important points are worth noting. First, our cluster-
ing technique is designed so that the errors decrease as the num-
ber of flows increases. In particular, it is conceptually possible
to cluster the flows that share the same bottleneck based on some
similarity metric defined over a pair of sources’ inter-arrival PDFs.
However, clustering based on similarity would cause the errors to
accumulate as the number of flows increases. In contrast, since
our algorithm computes the entropy of entire clusters (rather than
flows), the more sources there are the more packets we get and the
easier it is to identify the structure resulting from bottleneck clock-
ing. Having the error decreases with the number of flows is an im-
portant feature given that the complexity of the problem increases
with the number of flows. Furthermore, clustering based on sim-
ilarity may not distinguish between two different bottlenecks that
have the same bandwidth. For example, It may not differentiate
between two flows that share the same T1 link and two flows that
cross different T1 links.

A second advantage of the entropy-based technique is its gener-
ality. In particular, the approach does not make any assumptions
about the bandwidth of the bottlenecks nor about their queuing
disciplines. It works when the different bottlenecks have exactly
the same capacities. It also works with Drop-Tail, RED, and other
work-conserving queue disciplines.

4. CLUSTERING EVALUATION
We used extensive Internet measurements to evaluate the effective-
ness of the passive techniques in detecting flows that crossed the
same bottleneck. Although simulation-based evaluation is an op-
tion it does not reflect the variability encountered in the Internet.
By evaluating the technique in the environment it is meant to work
in, we ensure that it works with the different link technologies, real
cross traffic patterns, existing router policies, and various TCP im-
plementations.

4.1 Measurement Methodology
The basic problem in evaluating any bottleneck sharing detection
technique on real Internet traces is to verify that the output of the
algorithm matches bottleneck sharing in the network. In particular,
we must design experiments in which we are confident about which
flows share bottlenecks. We address this problem with two different
approaches that create three classes of sharing topologies.

In the first approach, we exploit our knowledge of the topology of



the RON network to ensure that the flows share congestion at spe-
cific bottlenecks. In particular, we know the capacities of access
links connecting certain RON nodes to the Internet. Thus, we can
create experiments in which the senders are connected to 100 Mbps
Ethernets and the receiver is behind a T1 link. By inspecting aggre-
gate throughput achieved by senders we can verify that the flows all
faced congestion at the T1 link connecting the receiver site to the
broader Internet.

Similarly, we can create experiments in which each of the senders
is behind a low bandwidth link such as a T1, a DSL, or a cable mo-
dem, while the receiver is connected to a 100 Mbps Ethernet and
located at a big university with good connectivity. By checking the
throughput of each sender against the capacity of its access link, we
can ensure that each sender has faced congestion locally. We can
further confirm local outbound congestion by checking that the ag-
gregate throughput of the senders is significantly less than the typ-
ical bandwidth share available on the receiver access links. Thus,
our knowledge of the topology and connectivity of the RON testbed
provide us with a non-intrusive way to construct experiments that
have reasonably unambiguous outcomes.

Our second approach for creating experiments with controlled out-
comes relies on the use of the Click router [22]. Click was de-
signed to allow flexible reconfiguration, packet re-writing, and traf-
fic shaping. In particular, we use IP masquerading and bandwidth
throttling to very closely emulate the behavior of a pair of real
routers with diminished capacity. The IP masquerading re-writes
packets so that TCP connections can be transparently established
between arbitrary RON hosts even though the routes of packets are
pinned to go through the Click routers under our control. This ar-
rangement ensures unambiguous bottleneck sharing.

Using the methodology described above, we conducted hundreds
different Internet experiments. Each one involves a number of TCP
senders streaming data to the same receiver. Using tcpdump, we
record arrival times at the receiver and feed the log files to our clus-
tering program.

4.2 Clustering Accuracy
There is no standard method for evaluating the accuracy of cluster-
ing algorithms[15]. To evaluate our technique, we use three error
metrics that we judge useful to the specific application of the bot-
tleneck detection technique.

The first metric is the probability of any error, which provides the
most conservative view of the accuracy. For any particular bottle-
neck sharing scenario, the probability of any error is computed by
clustering multiple different data sets and taking the percentage of
outcomes that do not completely match the correct answer. The dif-
ficulty with using this metric alone arises from the fact that not all
clustering errors are equivalent. For example, assume that we have
50 flows that share the same bottleneck. A clustering technique that
puts 49 flows in the same cluster and one flow in a different cluster
is definitely better than a technique that puts each of the fifty flows
in its own cluster. Yet, both outputs would be treated the same if
we use the probability of any error as our metric of accuracy.

The second metric is the probability of creating incorrect clusters
where some of the flows do not share the same bottleneck. We
call this metric the probability of false grouping. This metric mea-
sures the correctness of the algorithm. For example, if the user

Send- Bottle- Configuration P[Any Pkts/
ers necks Error] flow
7 1 Shared cong. at M1MA 2% 90
10 1 Shared cong. at MS 0% 90
10 1 Shared cong. at Sightpath 1% 65
10 1 Shared cong. at Mazu 1% 60
11 1 Shared cong. at Aros 0% 50
11 1 Shared cong. at CMU 5% 90
6 6 Separate cong.; Recv at MIT 7% 25
6 6 Separate cong.; Recv at CCI 1% 30
6 6 Separate cong.; Recv at Cornell 2% 35
6 6 Separate cong.; Recv at NYU 0% 10
12 2 Click Bottlenecks 0% 50
24 2 Click Bottlenecks 0% 60
48 2 Click Bottlenecks 1% ≈100
88 2 Click Bottlenecks 0% ≈100
102 2 Click Bottlenecks 2% ≈100
170 2 Click Bottlenecks 2% ≈100
88 2 Click; 50% cross traffic 3% ≈200
40 2 Click; 75% cross traffic 1% ≈800
25 2 Click; 85% cross traffic 8% ≈2000

Table 2: Efficiency of the iterative technique. Summary results
showing that the technique eventually converges to almost per-
fect accuracy even for scenarios with large number of senders
and fairly complex bottleneck sharing.

wants to identify the flows that traverse the same bottleneck to share
their congestion information, then the probability of false grouping
would tell the user how likely the technique is to produce incorrect
results that would lead to the wrong sharing of congestion informa-
tion. For any particular bottleneck sharing scenario, the probability
of false grouping is computed by clustering multiple different data
sets and taking the fraction of clusters that contain flows that do not
share a bottleneck.

The third metric is the probability that the algorithm might fail in
grouping some flows that share the bottleneck, which we call the
probability of false separation. This metric measures the efficiency
of the algorithm. For example, consider a user who is interested in
sharing congestion information between flows that cross the same
bottleneck. Then the better the technique is in collapsing the flows
that share the bottleneck into the same cluster, the more the user
can share their congestion state and the less the total number of
states maintained by the system. To find the probability of false
separation for a particular bottleneck sharing scenario, we run the
clustering technique over multiple different data sets. The prob-
ability of false separation is the difference between the number of
generated clusters and the correct number of clusters divided by the
number of generated clusters.

Table 2 shows the efficiency of the iterative clustering technique
in dealing with large numbers of sources and fairly complex bot-
tleneck sharing. The table has three blocks. Experiments reported
in the first and second blocks do not use the Click router. The
cross traffic in these experiments is uncontrolled. Experiments in
the third and fourth blocks are controlled using two Click routers.
The probability of any error is computed over 100 different sam-
ples. The table shows that although the iterative technique does not
try all possible combinations of sources and bottlenecks, it always
converges to almost perfect result. This convergence happens even
when the number of sources is 170 and the search space is on the
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Figure 7: Probability of any clustering error at all vs. sample
size for two simple topologies: every flow sharing and no flows
sharing. Note that preventing false grouping errors requires
very little data. Preventing false separation is harder, but not
onerous. Trend lines in the bottom graph show the exponential
convergence of error probabilities.

order of 2170/2!. A key observation in Table 2 is that as cross traf-
fic increases or the clustering experiment becomes more complex
(i.e., more flows or more cross traffic) more packets per flow are
needed for correct clustering. Below, we examine these aspects in
more detail.

First, we address the number of packets per flow necessary for cor-
rect clustering. Figure 7a illustrates the probability of any error as
a function of the average number of packets from each flow. The
figure shows two representative graphs: The first graph, labeled
“CMU Shared”, is for the case where all senders share the same
bottleneck; the second graph, “labeled NYU Unshared”, is for the
case where each sender has a separate bottleneck. The probabil-
ity is computed over 500 different samples. The figure shows that
a few dozen packets are enough for correct clustering. Figure 7b
shows trend line on the log scale. It indicates that although the
absolute number of packets required for correct clustering differs
from one type of experiment to the next, the error probability dies
off exponentially.

Note that though the data plotted in Figure 7 is the probability
of any error, the nature of the two types of “natural” experiments
makes the them representative of our two other types of error met-
ric. The upper curve is the probability of any error for the case
where all flows share a bottleneck. In that case the only type of er-
ror is false separation. The lower curve, barely visible on the same
scale, is the probability of any error for the case where no flows
share bottlenecks. In that case the only type of possible error is
false grouping. The extremely fast convergence of false grouping
errors is a highly desirable property of our technique. This is be-
cause grouping senders that do not share the bottleneck together is
a more severe error than failing to recognize senders that share a
bottleneck.

Next, we consider the robustness of the technique against heavy
cross-traffic. The experiments in Table 2 were run during mid-
day. As such, they experienced natural cross traffic along their path.
Given that many of the sites involved in these experiments are large
universities with continuous Internet activity, we argue that the re-
sults in Table 2 are representative of the technique’s behavior under
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Figure 8: Error probabilities vs. observed traffic fraction. The
first graph shows the error rate rapidly vanishes when more
than 15% of the bottleneck traffic is observed. The second is a
log-scale graph which shows the trend is consistent with expo-
nential improvement in traffic fraction. (The scale on the x-axis
is reduced since the error reaches zero for larger fractions of
observed traffic)

common cross traffic situations.

To discover the behavior of both false grouping and false separation
under heavy cross traffic, we funnel a large number of TCP flows
from many senders through a pair of Click routers and back out to
a receiver across the Internet. We considered various cross-traffic
fractions by censoring various subsets of flows from our data set.
This effectively gives the algorithm exactly the data it would have
had if the censored flows had been diverted before reaching the
receiver. We ran the algorithm on many random censorings to get
reasonable failure rate estimates.

Figure 8a shows the clustering error as a function of the fraction
of the bottleneck link traffic seen at the observer. The probabilities
are computed by taking the average of 1000 different measurements
for sample sizes of on average 800 packets/flow. The graph shows
that the clustering technique provides perfect clustering as long as
at least 20% of traffic crossing the bottleneck can be observed. As
observed traffic drops below 20% of the total bottleneck traffic, the
technique begins to make minor false separation errors (i.e., occa-
sionally separating flows that share the same bottleneck but never
grouping flows that do not share the bottleneck). False grouping
errors do not become an issue until over 95% of the traffic goes un-
observed. The straight trend line on the semi-log plot in Figure 8b



0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

P
ro

ba
bi

lit
y 

of
 E

rr
or

(a)  Sample Size (Packets Per Flow)

P(Any Error)
P(False Separation)

P(False Grouping)

0.01

0.1

1

0 100 200 300 400 500

P
ro

ba
bi

lit
y 

of
 E

rr
or

(b)  Sample Size (Packets Per Flow)

P(Any Error)
P(False Separation)

P(False Grouping)

Figure 9: Sample size convergence for 25% cross-traffic. The
first graph shows how false grouping rates are only marginally
worse than when 100% of traffic can be observed. The second
graph shows that substantial amounts of hidden traffic does not
destroy the exponential convergence.

shows that the probability of error decreases exponentially as the
fraction of observed traffic increases.

Figure 9 shows that the number of packets per flow required for cor-
rect clustering when 75% of the bottlenecked traffic is cross traffic.
Note that this number decreases as the fraction of observed bottle-
neck traffic increases. Only a few hundred packets per flow are re-
quired for correct classifications even when 75% of the bottleneck
traffic is unobserved cross traffic.

A final note is that the simplicity of the algorithm lends itself to effi-
cient software or hardware implementations. All the program must
do is iterate over the aggregated arrival time trace of a potential
flow combinations and bin successive differences. While one might
imagine an O(Npacket log Npacket) algorithm based on sorting
the arrival times of potential combinations, it is actually possible
to merge the arrivals in O(Npacket log Nflow) time since the in-
dividual arrival lists can be pre-sorted just once. The histograms
can be kept compact and in fast memory and the entropies can be
computed almost entirely with lookup tables for logarithms since
the range of bin counts is relatively small for reasonable sample
sizes. Our implementation can cluster samples with 1,000 packets
in under 10 msec on commodity PC hardware. This translates to
over 10,000 packets/sec.

The principal scaling issue for large numbers of flows is the larger
number of total packets involved and the much larger number of
combinations that must be tried. Even so, our algorithm success-
fully classifies traces with tens of thousands of packets and 170
flows in under a second of CPU time.

5. FUTURE WORK
This work lends itself to extension in several directions. One open
issue is determining congestion sharing in a multiple bottleneck
scenario. Namely, sharing or not sharing is more than simply a
binary variable. Consider two flows that share congestion at the
access link of their common receiver; yet, one of them crosses a
separate upstream bottleneck. In such a scenario, some kind of
hierarchical congestion classification is desirable.

Another direction for future work is a more detailed investigation
of the shape of the inter-arrival distributions. In particular, the en-
velopes formed by the tips of the spikes in Figure 1 trace out very
regular curves. It would be informative to fit the spike train and
the spike bump to well-known distributions and analyse the shape
of their tails. This may lead to a better understanding of the distri-
bution of the cross traffic burst. Furthermore, finding good models
for the inter-arrival distribution in a flow would improve the ability
to cluster flows that share the bottlenecks. Particularly, if a cata-
log of common shapes is developed then it might be possible to
embed this in a clustering algorithm to improve recognition of cor-
rect clusterings. In principle it should also be possible to improve
recognition of incorrect clusterings. As Figure 6 shows, the noise in
the inter-arrival PDF due to unsynchronized packets does not occur
just anywhere.

6. RELATED WORK
Much prior work has studied learning Internet path characteristics
from endpoint measurements[10, 20, 4, 27, 28, 30, 12, 18, 13, 25,
8, 19, 24]. The objective of these measurements could be bot-
tleneck bandwidth detection[4, 28, 14, 13, 23], topology discov-
ery[28, 12, 18], detecting the state of congestion and the available
bandwidth[9, 12, 18, 25, 8, 19, 24], or simply understanding the
network and the traffic patterns[6].

For example, pathchar and cprobe are useful tools for discovering
the bandwidth available along a path. However, they consume a
large amount of network resources. In particular, pathchar gener-
ates at least 10 Kbytes of probe traffic per hop and cprobe generates
5 Kbytes of probe traffic per hop [30]. The accuracy of these tools
is acceptable for low bandwidth links (less than 10 Mb/s), yet they
become significantly inaccurate for high bandwidth links [14].

The Packet Bunch Mode (PBM) estimates the raw bottleneck band-
width of a connection by looking for modalities in the timing struc-
tures of groups of back-to-back packets. Although more robust than
pathchar, it requires information from both the sender and receiver
sides [27].

Traceroute[3] is a widely used tool for learning the intermediate
routers and the latency along a path. It requires that intermediate
routers reply to ICMP echo messages, a feature that might be dis-
abled due to security concerns.

The authors in [9] propose the use of multicast loss-correlation to
infer the loss rates over individual links along a path. Their simu-
lation shows that the estimator tracks the changes in the loss rate.
However, the proposed approach sends probe packets into the net-
work and requires the existence of a multicast service.

The authors of [28] use loss correlation among the receivers in a
multicast group to infer the logical shape of a multicast tree. Their
approach does not inject probe traffic in the network; however, its
reliance on loss information limits its use to significantly long mul-
ticast sessions. The authors in [25] use loss pairs to infer some
characteristics of input buffering behavior such as RED parame-
ters. While this work used active probes they note that their ap-
proach might be used in a passive context.

Packet pair dispersion and bandwidth histograms have been exam-
ined in [13] toward the end of bandwidth estimation. The focus of
the analysis there was fixed bin-width bandwidth histograms. We



found however that there is also much significant information to be
gleaned from the equal spacings in inter-arrival time distributions.

Recently, there were two proposals for detecting whether pairs of
flows share the same bottleneck [12, 18]. Despite the usefulness
of these proposals in simple circumstances, they have a number of
practical disadvantages that limit applicability. Since they gener-
ate probe traffic, both proposals are non-passive and require sender
cooperation. Additionally they make stronger queuing discipline
assumptions. Also, these proposals do not generalize their tech-
niques to more than two flows while ours handles many. Thus,
the clustering problem that we address in this paper is intrinsically
harder than the problem addressed by these proposals.

7. CONCLUSION
This paper demonstrates effective, efficient, and robust techniques
for inferring interesting properties of networks seen by packet flows.
The only input data required is a completely passive collection of
time stamps of packet arrivals at end nodes or at intermediate mon-
itors.

We demonstrated that correct interpretation of inter-arrival PDFs
allows inference about the bandwidth and degree of multiplexing at
potentially multiple bottleneck links. In the spike bump and spike
train cases we relate inter-arrival distributions to the distributions
of cross traffic burst sizes. Finally we show how to correctly in-
fer bottleneck capacity from the locations and gaps of spikes and
bumps in the inter-arrival PDF.

Higher order statistics defined on the arrival times of combinations
of flows allow sensitive detection of bottleneck sharing. We demon-
strate that this detection can be both fast and reliable given small to
moderate amounts of data even in the face of substantial fractions
of unobserved cross traffic at the bottleneck routers in question.

We validated these techniques with extensive experiments on the
RON testbed and with controlled experiments using a pair of Click
routers. We found that the method can detect any bottleneck shar-
ing among hundreds of flows. Near perfect sharing detection effi-
ciency required on the order of 100 packets per flow. The classifi-
cation errors decrease exponentially in the number of traced pack-
ets. Further, the method copes well with heavy cross-traffic and the
errors decrease exponentially as the fraction of cross traffic at the
bottleneck decreases.
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Figure 12: Here we compare our classification performance us-
ing Shannon and fifth order Rènyi entropy for 25% cross traffic
with a pair of Click routers. The y-axis is a log scale. Note the
improved statistical efficiency at small sample sizes.
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A Mazu <-> CMU Experiment
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Mazu -> CMU
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A Sightpath <-> Aros Experiment
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Sightpath -> Aros
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(c)  Inter-arrival (msec) { 0.008 msec bins }

A CMU <-> CCI Experiment

CCI -> CMU
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CMU -> CCI
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An MIT <-> CMU Experiment

MIT -> CMU
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CMU -> MIT

Figure 10: Several additional experiments. In each experiment, we choose a pair of RON nodes and send a TCP flow from the
first node to the second, record the arrival times and construct the inter-arrival PDF of the forward path. Then, we start a second
TCP flow from the second node to the first one, log the arrival times and construct the inter-arrival PDF of the reverse path. Using
the reverse path is a device to construct a comparison case where it is likely that a bottleneck whose bandwidth is the same as the
access link of the forward path. In all experiments the inter-arrival PDF of flows traversing a high bandwidth access link then a low
bandwidth access link shows a single spike at the NTT of the low bandwidth link. On the other hand, the inter-arrival PDF of flows
that first traverse a low bandwidth access link then a high bandwidth access link shows a bump of spikes whose local mode (tallest
spike in the bump) coincides with the NTT of the low bandwidth link and with gap that coincide with the NTT of the high bandwidth
link.
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Downstream Congestion
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Figure 11: Here we exhibit the effect of congestion at the downstream high bandwidth bottleneck.


