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Abstract– Network coding has been shown to improve
throughput and reliability in a variety of theoretical and prac-
tical settings. But it has had limited success in areas like sen-
sor networks due to it’s two limitations. First, network codes
are ”all-or-nothing” codes; the sink cannot decode any in-
formation unless it receives as many coded packets as the
original number of packets. Second, sensor networks often
measure physical signals which show a high degree of spa-
tial correlation; present network coding techniques cannot
perform in-network lossy compression to take advantage of
the spatial correlation.

This paper presents ”Real” Network Codes that are linear
over real fields. We build on recent results from Compressed
Sensing to develop new codes which can be decoded to get
progressively more accurate approximations as more coded
packets are received at the sink. Further, they can compress
distributed correlated data inside the network without requir-
ing that the nodes know how the data is correlated. Thus,
Real Network Codes combine two exciting but hitherto sep-
arate areas, Network Coding and Compressed Sensing, al-
lowing them to keep the advantages of network coding, but
also make them capable of finding low distortion approxima-
tions with partial information and perform distributed com-
pression of correlated data.

1 INTRODUCTION

Network Coding breaks with the traditional assumption
and allows nodes to mix packets inside the network. The-
oretically this has been shown to achieve the multicast ca-
pacity of the network. Recent work [17, 6] has shown that
significant gains are also realized in practice. Specifically in
wireless networks large throughput gains are obtained due
to network coding’s ability to exploit wireless broadcast and
take advantage of opportunistic receptions. Perhaps the most
important reason for its success is its simplicity, simple ran-
dom linear codes inside the network suffice to achieve the
above mentioned gains.

But network coding still leaves a lot to be desired. Network
Coding combines packets over finite fields inside the net-
work which gives it a ”All or Nothing” property. If n packets
are combined using network coding, the sink has to receive
atleast n packets in order to be able to recover the n original
packets. Thus if the sink receives n−1, it cannot recover any
information. Real world applications like sensor networks,
video, audio etc cannot tolerate such a hard constraint on

their performance; they want a more graceful degradation.
For example, a sensor network operator would not like to be
left with no information if for some reason the network is
not able to deliver n packets; ideally he would like to recover
as much partial information as possible. Network Coding as
constructed right now cannot deliver such graceful degrada-
tion in its performance, thus limiting its applicability.

This paper introduces Real Network Codes (RNC), a new
code design which keeps the good properties of traditional
network codes while getting rid of the undesirable properties.
RNCs are designed to deliver accurate approximations to the
original data when less than n packets have been received.
Further RNC can perform in network compression on cor-
related distributed data. But it retains the good properties of
traditional network coding, i.e., it can efficiently take advan-
tage of wireless broadcast and maximize multicast through-
put.

The main insight behind RNC is to recognize that prac-
tical signals are described best in the real domain, so one
should perform the network coding in the real field itself.
Thus nodes treat packet contents as finite precision real num-
bers instead of elements of a finite field. They then perform
random linear coding over these finite precision real num-
bers. The destination gets a set of real numbers which are
the result of a real random linear transform applied to the
original information. RNC then uses powerful decoding al-
gorithms from Compressed Sensing [5, 4, 9] to recover ac-
curate approximations to the original data even when it has
received far fewer than n linear combinations. RNC behaves
like standard network codes when n packets are received, it
can decode the original information completely. But RNC
can also construct approximations with low distortion when
fewer than n packets have been received; achieving the de-
sired graceful degradation in its performance.

This paper makes the following contributions

• A new network coding technique, RNC, which delivers
progressively more accurate approximations as more pack-
ets are received at the sink, thus getting rid of the ”All or
Nothing” property of traditional network codes.

• RNC also performs in-network compression of correlated
distributed data while maintaining the nice architectural
separation of traditional network coding. Interior nodes
perform simple random linear coding without even being
aware of the correlation that exists in the data, but the sink
uses sophisticated decoding algorithms which exploit the
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Figure 1—Sensor network measuring temperature. Present approach
organizes them in a tree leading to the sink to deliver measurements.
Network Coding is more efficient because it can take advantage of
opportunistic receptions resulting from wireless broadcast.

correlation to decode accurately using fewer number of
packets. Thus the interior nodes end up compressing the
data inspite of using simple random linear codes.

• We present a low-complexity and practical technique for
minimizing the number of transmissions required in a sen-
sor network while using Real Network Codes. The tech-
nique adapts to network congestion and delivers an ap-
proximation to the sink whose accuracy is commensurate
with the available bandwidth in the network.

2 EXAMPLE

We illustrate RNC through an example from sensor net-
works. Consider a distributed array of sensors shown in Fig. 1
which are measuring a physical signal like temperature. There
is a sink which wishes to collect all the measurements peri-
odically from the sensor network. The sensors are connected
to each other via wireless links. The sensors collaborate in
relaying each other’s measurements back to the sink.

The present approach builds a tree of links leading to the
sink from all the sensors in the network. Sensors transmit
their measurements along this tree to the sink. Each sensor
uses retransmissions to its next hop on the tree to guaran-
tee reliable delivery. This approach has a few nice proper-
ties. First, it is simple and easy to build. Second, even if the
sink fails to get all the measurements from the sensors, it
still gains partial information about the physical signal. Thus
every received packet is useful.

But the above approach ignores the broadcast nature of
wireless links. When a sensor broadcasts its measurement,
several of its neighbor sensors are likely to receive the mea-
surement. But in the current approach only the next hop on
the tree is supposed to relay the measurement. Thus if the
next hop doesn’t receive the broadcast but some other sensor
overhears it, the tree approach cannot take advantage of the
opportunistic reception and has to retransmit. For example,
in Fig. 1, when S2 transmits, if S5 receives it but S6 which is

the next hop on the tree doesn’t, S2 has to retransmit, wasting
S5’s opportunistic reception.

Network Coding can be used to address the above short-
coming. With network coding, a node transmits random lin-
ear combinations of all the measurements it has received.
Opportunistic receptions are therefore not wasted; sensors
re-encode overheard measurements when they transmit their
packets. In Fig. 1, S5 can take advantage of the opportunistic
reception and S2 does not have to retransmit. Network Cod-
ing guarantees that the sink can recover the n sensor mea-
surements once it gets any n random linear combinations of
the measurements. Both theoretical and practical work has
shown that network coding can lead to significant reduction
in the number of transmissions [6, 21]. But network coding
imposes a significant burden on the sensor network. It has
to ensure that the sink receives atleast n linear combinations,
anything less and the sink will not be able to recover any-
thing. This is the well known ”All or Nothing” property of
network coding. But sensor network designers want a grace-
ful degradation in the performance, the sink should be able
to get an estimate of the physical signal even when it does
not receive n packets.

Further, both approaches above share another shortcom-
ing. Sensor networks sense physical signals which show con-
tinuous behavior across space and time, thus colocated sen-
sors are likely to see correlated measurements. Both approaches
ignore this correlation and treat each measurement as an in-
dependent sample. Significant savings could be had if sen-
sors could exploit this spatial correlation by compressing the
measurements as they flow through the network.

Real Network Codes (RNC) keep the good properties of
both approaches while addressing their shortcomings. The
main insight behind RNC is to recognize that source data is
naturally embedded in the real field, thus to get a good dis-
tortion behavior one should also code data in the same real
field. Traditional network coding encodes real data over fi-
nite fields leading to the all or nothing property. But when
data is coded over the real field, the sink can find approxima-
tions to the original physical signal even when it has received
less than n packets. The approximation algorithm is based on
the intuition that the colocated sensor measurements can be
treated as colocated pixels in an image since they display the
same spatial correlation behavior. Due to the spatial correla-
tion, the wavelet transform of an image is sparse, thus using
only the largest wavelet coefficients to represent the image
gives an efficient and accurate approximation to the original
image. Similarly, we can use the largest wavelet coefficients
to approximate the sensor measurements.

RNC leverages algorithms from the recent field of Com-
pressed Sensing [5, 4, 9] to find the largest wavelet coeffi-
cients from random linear combinations of the original data.
The decoding algorithms recover the wavelet coefficients in
descending order of magnitude as more and more packets ar-
rive at the sink. Thus it achieves the same graceful degrada-
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tion of performance as a wavelet representation would have.
Second, since wavelets incorporate the spatial correlation to
compress data, RNC’s ability to recover the largest coeffi-
cients quickly from far fewer than n linear combinations im-
plies that it automatically performs in-network compression
of the data without even knowing the correlation that exists
among the sensors. RNC achieves the above properties while
keeping a clean architectural separation; low complexity sen-
sors do very simple encoding tasks on whatever packets they
receive and do not need to co-ordinate on how to deal with
correlated data; while the more powerful sink can employ
smarter decoding algorithms to take advantage of the spatial
correlation and deliver accurate approximations when fewer
than n packets have been received.

3 RNC ARCHITECTURE

RNC is applicable in a large variety of settings, but for ease
of exposition we describe it is terms of a sensor network.
We focus on the case where there is a single sink wishing to
estimate the distributed physical signal being measured by
the sensor network, but the techniques can be easily extended
to the multicast scenario of multiple sinks. The number of
sensors is n.

3.1 Sensors/Sources

The sensors take measurements periodically in batches which
are indexed by t. We call the original measurement at a sen-
sor a native measurement. The native measurement at sensor
i in batch t is represented by xit and the distributed native
measurement vector is �xt. The sink wants to collect these na-
tive measurements for this batch t.

3.2 Relaying

Sensors listen to all transmissions. When a sensor hears a
transmission, it checks whether it contains new information.
Technically speaking, the received packet contains useful in-
formation if the coded measurement is linearly independent
from the coded measurements the nodes has previously re-
ceived from the batch. If the received coded measurement
contains new information, the sensor keeps it in its buffer.

When the wireless MAC signals an opportunity to send,
the sensor broadcasts a new coded measurement. A coded
measurement is defined as yjt =

∑
i cixit where ci is a random

real number, i.e., it is a random linear combination of native
measurements. The sensor creates a new coded measurement
by randomly combining its native measurement with all the
overheard coded measurements. The random coefficients are
picked from a Bernoulli 1/− 1 distribution. The vector �cj =
(c1, . . . , cn) is called the code vector and is transmitted in the
header of the coded measurement packet being transmitted.

3.3 Sink

For each coded measurement is receives, the sink checks
whether it contains useful information, i.e., it is linearly in-
dependent from previously received measurements. The sink
keeps the useful coded measurements and proceeds to de-
code. The vector of coded measurements received at the sink
can be written efficiently as

�yt = A�xt (1)

where A represents the random linear transform the network
has applied over the native measurements �xt.

If the sink receives n linearly independent coded measure-
ments, i.e., if A is invertible, its job is simple. It decodes
�xt = A−1�yt. This is exactly the same as standard network
coding.

What if the sink receives less than n coded measurements?
The primary goal of RNC is to be able to decode partial infor-
mation about �xt when less than n coded measurements have
been received. It obviously cannot reconstruct the original
measurements exactly, but instead it finds an approximation
which is close to the best lossy representation of the original
signal. We first describe what the best lossy description of a
signal is and then how RNC finds it.

3.3.1 Lossy Representation

How does one efficiently describe signals in a lossy fash-
ion? The answer is to transform the signal into a basis in
which it is sparse and then use the largest coefficients to rep-
resent the signal. For example, suppose you have a multi-
tone audio signal which consists of a few significant fre-
quency components along with noise. Its Fourier transform
will be sparse, there will be significant components at the
frequencies which make up the signal and the rest of the fre-
quency components will be close to zero. A very efficient
but lossy representation of such a signal is to keep the signif-
icant frequency components and throw away the rest. The
same principle is used to represent most practical signals
since they can usually be represented in a sparse fashion in
some basis. For audio it is the Fourier basis, for images it is
the wavelet basis and so on.

Formally, we can fix an orthonormal transform φ ∈ Rn×n

consisting of a set of orthonormal basis vectors {φ1, . . . , φn}.
φ can be, for example, a wavelet or a Fourier transform.
The transform coefficients θ = [φT

1 �xt, . . . , φT
n �xt] of the na-

tive measurement vector can be ordered in magnitude, so
that |θ(1)| ≥ |θ(2)| ≥ . . . ≥ |θ(n)|. The best k-term approx-
imation keeps the k-largest coefficients and discards the re-
maining as zero. The approximation error is ||�xt − �x′t ||22 =
||�θ − �θ′||22 =

∑n
i=k+1 |θ|2(i). The magnitude of the transform

coefficients of real-world signals typically exhibit a power
law decay. That is, the ith largest transform coefficient satis-
fies |θ|(i) ≤ Ri−1/p for each 1 ≤ i ≤ n, where R is a constant
and 0 < p < 1. The approximation error for such signals can
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be shown to be

||�xt − �x′t ||22 = ||�θ − �θ′||22 = αpRk−1/(p+1/2) (2)

To represent the distributed native sensor measurement vec-
tor �xt efficiently, one has to first find the basis φ in which it is
sparse. Image compression provides us the intuition here. If
we think of the sensor network as two-dimensional array, the
readings at each sensor can be thought of as pixels of an im-
age. They have the same properties as typical images, read-
ings are correlated among geographically close sensors. Im-
ages are efficiently compressed by transforming them using
the wavelet transform and keeping the significant wavelet co-
efficients. Similarly an appropriately designed wavelet trans-
form can be used to find a sparse representation of the sensor
measurement vector �xt.

3.3.2 Recovering a lossy representation

How does one recover the significant wavelet coefficients
of the distributed measurement vector �xt from random lin-
ear combinations of the original measurements which RNC
provides? RNC takes advantage of powerful techniques from
Compressed Sensing [5, 4, 9] to find the significant wavelet
coefficients. Compressed Sensing provides algorithms which
can recover a very good approximation to the original signal
if it is sparse in some basis. Specifically, O(k log n) random
linear combinations of the native measurement vector can
produce an approximation with error comparable to the best
k-term approximation error using the k largest transform co-
efficients. In our case, the transform is the wavelet transform
and the approximation error will be that of the wavelet rep-
resentation.

More concretely, consider the following random linear trans-
form ψ ∈ Rk×n containing i.i.d entries

ψij =
{

+1 w. p. 1/2
−1 w. p. 1/2 (3)

Then the k random linear combinations 1√
n
ψ�xt ∈ Rk pro-

duce an approximation �x′t of the native measurement vector
�xt with distortion

||�xt − �x′t ||22 = βpR(k/ log n)−1/(p+1/2) (4)

assuming the power law decay of the wavelet transform co-
efficients as described above and βp is some function of p.

The approximation can be found by using the following
linear program

arg min ||�θ||1 (5)

subject to the constraints

�y = ψ�xt

�θ = φ�xt
(6)

The above problem can be solved using standard linear
programming techniques which has O(n3) complexity. Faster

algorithms based on Orthogonal Matching Pursuit [8] are
available to solve the above problem, but they require slightly
higher number of coded measurements.

The above guarantee is for the specific random linear trans-
form described by ψ. The random linear transform A applied
by the network in RNC in general is arbitrary and depends
on the network structure. In practice, the transform A be-
haves similarly for typical small networks and satisfies the
above guarantees. For larger networks there is information
loss due to finite precision arithmetic, which we discuss fur-
ther in §4.2.

3.3.3 Accurate Approximations and Multicast

RNC ensures that if the sink receives O(k log n) coded
measurements, it can find the top k wavelet coefficients w.h.p.
Thus as the sink receives more measurements, it recovers
more wavelet coefficients, in descending order of their mag-
nitude. Since practical signals exhibit a power law behav-
ior in their sparse representation, the top wavelet coefficients
carry most of the energy of the original signal. As we re-
cover more and more of the top wavelet coefficients the dis-
tortion of our estimate drops similar to a power law distribu-
tion PDF.

Second, RNC decouples the performance of multiple sinks
when the data is being multicast. Traditional network coding
makes all sinks equal to the worst sink, all sinks get data
at the same rate as the one with the lowest capacity. While
RNC cannot increase the rate to sinks with higher capacity;
it ensures that they get better approximations to the original
signal. This is because they get coded measurements faster
than the lower capacity sinks, thus the distortion of their re-
constructed signal drops faster.

3.3.4 Spatial Correlation

RNC automatically does in-network compression of the
correlated sensor measurements. It stems from the fact that
the wavelet representation captures the spatial correlation that
exists in the native measurement vector. Due to the correla-
tion, the wavelet transform vector is sparse, and RNC needs
only a few coefficients to recover the original signal with
high accuracy. For example, if the native measurement vector
�xt can be represented with 99% accuracy using the top l <<
n transform coefficients, RNC needs only O(l log n) << n

coded measurements to recover an approximation with the
same accuracy. The sensors inside are oblivious to the spa-
tial correlation, RNC takes advantage of the spatial correla-
tion directly at the sink.

4 PRACTICAL CHALLENGES

In §3 we have described the general design of RNC. But
for them to be practical, we have to address 2 additional chal-
lenges which we discuss below.
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4.1 Who should transmit and how many?

In the current tree based approach in sensor networks, a
node keeps transmitting a packet until the nexthop receives
it, or the number of transmissions exceeds a particular thresh-
old, at which time the node gives up. However with RNC we
want to exploit opportunistic receptions, all nodes closer to
the sink than the current transmitter are potential next hops
and may participate in forwarding the packet. How many
transmissions are necessary to ensure that at least one node
closer to the sink has received the packet?

We provide a heuristic-based practical solution to the above
problem. Our solution has the following desirable charac-
teristics: 1) It has low complexity. 2) It is distributed. 3) It
is practical, i.e., it makes no assumptions about the channel
conditions in the sensor network and only relies on average
loss measurements.

(a) Approach: Since bandwidth and energy are scarce in
a sensor network, we wish to minimize the number of trans-
missions required inside the network. Let the distance from
a sensor i to the sink d be the number of transmissions nec-
essary to deliver a packet from that sensor to the sink, i.e. the
node’s ETX [7]. We propose the following heuristic to route
a packet to the sink, when a sensor transmits a packet the
sensor closest to the sink in ETX distance among all the sen-
sors that received it should forward that packet. This heuris-
tic reduces the expected number of transmissions needed to
deliver the packet, and thus reduces the overall number of
transmissions.

Formally, let N be the number of sensors in the network.
For any two sensors, i and j, let i < j denote that sensor i

is closer to the sink than sensor j, or said differently, i has
a smaller ETX than j. Let pij denote the loss probability in
sending a packet from i to j. Let zis be the expected number of
transmissions that forwarder i must make to route one packet
from the source, s, to the sink, d, when all sensors follow
the above routing heuristic. In the following, we assume that
wireless receptions at different sensors are independent, an
assumption that is supported by prior measurements [24, 22].

We focus on delivering one packet from a sensor to sink.
Let us calculate the number of packets that a forwarder j must
forward to deliver one packet from sensor, s to sink, d. The
expected number of packets that j receives from sensors with
higher ETX is

∑
i>j zis(1 − pij). For each packet j receives,

j should forward it only if no sensor with lower ETX met-
ric hears the packet. This happens with probability

∏
k<j pik.

Thus, in expectation, the number of packets that j must for-
ward, denoted by Lj, is:

Ljs =
∑
i>j

(zis(1 − pij)
∏
k<j

pik). (7)

Note that Ls = 1 because the sensor generates the packet.
Now, consider the expected number of transmissions a sen-

sor j must make. j should transmit each packet until a sensor

with lower ETX has received it. Thus, the number of trans-
missions that j makes for each packet it forwards is a geomet-
ric random variable with success probability (1 − ∏

k<j pjk).
This is the probability that some sensor with ETX lower than
j receives the packet. Knowing the number of packets that j

has to forward from Eq. (7), the expected number of trans-
missions that j must make is:

zjs =
Ljs

(1 − ∏
k<j pjk)

. (8)

The above calculation was for a single sensor being con-
sidered as the source. But since we want to estimate the en-
tire sensor field, we have to ensure that adequate number of
measurements from all sensors are available at the sink. Thus
the above process is repeated for each sensor as a source and
the total number of transmissions that a sensor i must make
are added up for all sources, i.e. zi =

∑
s zis. The calculations

depend only on the loss probabilities of the links in the sensor
network. Most link state routing protocols already dissemi-
nate these measurements to all the sensors, thus sensors can
compute the number of transmissions easily.

Calculating the number of transmissions a sensor needs to
make is not sufficient, the sensor also needs to know when
to transmit. Further the above calculation is for making sure
the sink receives n coded measurements, but in practice due
to the spatial correlation far fewer measurements may suf-
fice. We need a way to clock transmissions at each sensor.
We do this via two mechanisms; first the sink sends an Ack
when it determines it has a good reconstruction of the origi-
nal signal. Second, we clock the transmissions at each sensor
depending on the number of coded measurements it receives.
Specifically, we assign each node TXCredit for every packet
it receives, this reflects the number of transmissions a node
should make for every reception. For each packet sent from
sensor s to sink, sensor i receives

∑
j>i pjizjs, where zjs is

the number of transmissions made by sensor j for this sensor
source s and pji is the delivery probability from j to i. Thus,
the TX credit of node i is:

TX crediti =
∑

s

zis∑
j>i zjspji

. (9)

Each sensor therefore keeps a credit counter. When
it receives a coded measurement from a node upstream it up-
dates its credit counter by its TXCredit. When it has enough
credit to make one transmission and the wireless MAC sig-
nals an opportunity to send, it sends out a new coded mea-
surement. This ensures that sensors do not transmit useless
coded measurements. Second the Ack from the sink ensures
that nodes do not transmit more than necessary.

4.2 What about finite precision?

RNC does coding over the real field inside the sensor net-
work. But since we can represent reals only with finite preci-
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sion, rounding off errors may accumulate as the coded mea-
surements propagate through the network. We analyze this in
detail in an accompanying paper [25] and show the amount
of information loss that can occur due to finite precision
arithmetic when we are trying to decode the complete origi-
nal information. We show that with random coding the infor-
mation loss is roughly logarithmic in network size. We also
provide insights on designing coding techniques that mini-
mize the loss. But since the native measurements are corre-
lated, the sink needs far fewer coded measurements to get an
accurate representation, further reducing the number of finite
precision operations that occur inside the network. Therefore
in practice the information loss is going to be even smaller.

5 RELATED WORK

Prior work can be divided into two categories: network
coding and compressed sensing. We review each of them be-
low.

5.1 Network Coding

Work on network coding has started with a pioneering pa-
per by Ahlswede et al. that establishes the value of coding in
the routers and provides theoretical bounds on the capacity
of such networks [1]. The combination of [19, 18, 13] shows
that, for multicast traffic, linear codes achieve the maximum
capacity bounds, and coding and decoding can be done in
polynomial time. Additionally, Ho et al. show that the above
is true even when the routers pick random coefficients [11].
Researchers have extended the above results to a variety of
areas including content distribution [10], secrecy [3, 12], and
distributed storage [14].

Of particular relevance is prior work on wireless network
coding [20, 16, 17, 6]. This work can be divided into three
classes. The first is theoretical; it extends known informa-
tion theory bounds from wired to wireless networks [20, 12].
The second is simulation-based; it designs and evaluates net-
work coding protocols using simulations [23, 26]. The third
is implementation-based; it uses implementation and testbed
experiments to demonstrate achievable throughput gains for
sensors and mesh networks [17, 15, 6]. This paper especially
uses insights from [6] to determine how and when sensors
should transmit, but differs from it and other prior work in
two main ways. First, RNC provides a new network coding
technique which can deliver accurate approximations with
partial information, while prior work has an ”All or Noth-
ing” behavior. Second, it performs in-network compression
of correlated data without any knowledge of the correlation
inside the network, while prior work either does not perform
any compression or assumes that the extent of correlation is
known at the sources.

5.2 Compressed Sensing

The idea of obtaining efficient signal representations via
random projections has very recently received a great deal of

attention in the signal processing community, beginning with
the ground breaking papers [5, 4, 9]. There has been work on
using compressed sensing to compress distributed correlated
sources [2] in scenarios like sensor networks. This work dif-
fers from prior work in two important ways. This is the first
work to make the connection between Compressed Sensing
and Network Coding and show how one can exploit the syn-
ergy between these two ideas to get the best of both. Here
the network co-operatively takes the measurement, whereas
in previous work the measurements were taken at the sensors
independently and then the network just acted as a conduit
for these measurements to the sink. The second main differ-
ence is that this allows separation between source compres-
sion and in-network compression. Sensors can employ stan-
dard techniques like MP3 etc to compress their own data, we
can then use RNC on this compressed data to exploit the spa-
tial correlation. This turns out to be an efficient division of
labor since lossy transform-based source coding techniques
are already very efficient and compressed sensing techniques
are worse by a logarithmic factor which is quite expensive
in practice. RNC uses compressed sensing techniques only
to exploit the spatial correlation between distributed sensors
where it is suited, since then the sensors do not need to know
the exact correlation structure and can take advantage of net-
work coding.

6 CONCLUSION AND FUTURE WORK

Network Coding and Compressed Sensing are powerful
ideas which until now have appeared unrelated. Our work
combines them in a natural fashion to provide Real Network
Codes which remove the ”All or Nothing” constraint of tradi-
tional network codes and can perform in-network compres-
sion of correlated data. RNCs can therefore be used in new
applications such as sensor networks, audio streaming etc
to which traditional network coding is ill-suited. RNC also
opens up many avenues of future research. Interesting ques-
tions include designing codes which do not suffer a large
amount of information loss due to finite precision arithmetic,
computing functions on correlated data, investigating itera-
tive decoding techniques and designing sparse network codes.
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