New Constructions of RIP Matrices with Fast Multiplication and Fewer Rows

aka, sparse recovery from Fourier-like measurements with applications to fast Johnson-Lindenstrauss transforms, etc.

Jelani Nelson, Eric Price, and Mary Wootters

February 18, 2013

Compressed Sensing

Given: A few linear measurements of an (approximately) k-sparse vector $x \in \mathbb{R}^{n}$.
Goal: Recover x (approximately).

Algorithms for compressed sensing

- A lot of people use linear programming.
- Also Iterative Hard Thresholding, CoSaMP, OMP, StOMP, ROMP....
- For all of these:
- the time it takes to multiply by Φ or Φ^{*} is the bottleneck.
- the Restricted Isometry Property is a sufficient condition.

Restricted Isometry Property (RIP)

$$
(1-\varepsilon)\|x\|_{2}^{2} \leq\left\|\Phi_{X}\right\|_{2}^{2} \leq(1+\varepsilon)\|x\|_{2}^{2}
$$

for all k-sparse $x \in \mathbb{R}^{n}$.

Goal

Matrices Φ which have the RIP and support fast multiplication.

An open question

If the rows of Φ are random rows from a Fourier matrix, how many measurements do you need to ensure that Φ has the RIP?

- $m=O\left(k \log (n) \log ^{3}(k)\right)$ [CT06, RV08, CGV13].

Ideal:

- $m=O(k \log (n / k))$.
(Related: how about partial circulant matrices?)
- $m=O\left(k \log ^{2}(n) \log ^{2}(k)\right)$ [RRT12, KMR13].

In this work

- Can still multiply by Φ quickly.
- Our result: has the RIP with

$$
m=O\left(k \log (n) \log ^{2}(k)\right) .
$$

Another motivation:

Johnson Lindenstrauss (JL) Transforms

High dimensional data $S \subset \mathbb{R}^{n}$

Φ preserves
the geometry of S

Low dimensional sketch $\Phi(S) \in \mathbb{R}^{m}$

What do we want in a JL matrix?

- Target dimension should be small (like $\log (|S|)$).
- Fast multiplication.
- Approximate numerical algebra problems (e.g., linear regression, low-rank approximation)
- k-means clustering

How do we get a JL matrix?

- Gaussians will do.
- Best way known for fast JL: By [KW11], RIP \Rightarrow JL.*
- So our result also gives fast JL transforms with the fewest rows known.

Our results

- Can still multiply by Φ quickly.
- Our result: has the RIP with

$$
m=O\left(k \log (n) \log ^{2}(k)\right) .
$$

More precisely

Random sign flips

- If A has $m B$ rows, then Φ has m rows.
- The "buckets" of H have size B.

Theorem

If $B \simeq \log ^{2.5}(n), m \simeq k \log (n) \log ^{2}(k)$, and F is a random partial Fourier matrix, then Φ has the RIP with probability at least $2 / 3$.

Previous results

| Construction | Measurements m | Multiplication |
| :--- | :--- | :--- | :--- |
| Time | | |\quad Notes

Approach

Our approach is actually more general:
Random sign flips

General result

If A is a "decent" RIP matrix:

- A has too many ($m B$) rows, but does have the RIP (whp).
- RIP-ness degrades gracefully as number of rows decreases.

Then Φ is a better RIP matrix:

- Φ has the RIP (whp) with fewer (m) rows.
- Time to multiply by $\Phi=$ time to multiply by $A+m B$.

Proof overview

We want

$$
\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|<\varepsilon,
$$

where Σ_{k} is unit-norm k-sparse vectors.

Proof overview I: triangle inequality

$$
\begin{aligned}
& \mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|\Phi x\|_{2}^{2}-\|x\|^{2}\right| \\
& \quad \leq \mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|\Phi x\|_{2}^{2}-\|A x\|_{2}^{2}\right|+\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\|A x\|_{2}^{2}-\|x\|_{2}^{2}\right| \\
& \quad \cdots \\
& \quad \leq \mathbb{E} \sup _{x \in \Sigma_{k}}\left|\left\|X_{x} \xi\right\|_{2}^{2}-\mathbb{E}_{\xi}\left\|X_{x} \xi\right\|_{2}^{2}\right|+(\text { RIP constant of } A),
\end{aligned}
$$

where X_{x} is some matrix depending x and A, and ξ is the vector of random sign flips used in H.

Proof overview I: triangle inequality

$$
\mathbb{E} \sup _{x \in \Sigma_{k}}\left|\left\|X_{x} \xi\right\|_{2}^{2}-\mathbb{E}_{\xi}\left\|X_{A}(x) \xi\right\|_{2}^{2}\right|+(\text { RIP constant of } A)
$$

By assumption, this is small. (Recall A has too many rows)

This is a Rademacher Chaos Process.
We have to do some work to show that it is small.

Proof overview II: probability and geometry

By [KMR13], it suffices to bound

We estimate this by bounding the covering number of Σ_{k} with respect to $\|\cdot\|_{A}$.

Open Questions

(1) How many random fourier measurements do you need for the RIP?
(2) Can you remove the other two log factors from our construction?

- It seems like doing this would remove two log factors from (1) as well.
(3) Can you come up with any ensemble of RIP matrices with $k \log (N / k)$ rows and fast multiplication?
(4) Can you come up with any ensemble JL matrices with $\log (|S|)$ rows supporting fast multiplication?

Thanks!

Nir Ailon and Edo Liberty.
Fast dimension reduction using Rademacher series on dual BCH codes.
Discrete Comput. Geom., 42(4):615-630, 2009.
(N. Ailon and H. Rauhut.
Fast and RIP-optimal transforms.
Preprint, 2013.

- Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Velingker. Restricted isometry of Fourier matrices and list decodability of random linear codes.
In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 432-442, 2013.

Emmanuel J. Candès and Terence Tao.
Near-optimal signal recovery from random projections: universal encoding strategies?
IEEE Trans. Inform. Theory, 52:5406-5425, 2006.
國 F. Krahmer, S. Mendelson, and H. Rauhut.

Suprema of chaos processes and the restricted isometry property.
Comm. Pure Appl. Math., 2013.
(Daniel M. Kane and Jelani Nelson.
Sparser Johnson-Lindenstrauss transforms.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1195-1206. SIAM, 2012.
目 Felix Krahmer and Rachel Ward.
New and improved Johnson-Lindenstrauss embeddings via the Restricted Isometry Property.
SIAM J. Math. Anal., 43(3):1269-1281, 2011.

- Jelani Nelson, Eric Price, and Mary Wootters.

New constructions of rip matrices with fast multiplication and fewer rows.
arXiv preprint arXiv:1211.0986, 2012.
固 Holger Rauhut, Justin Romberg, and Joel A. Tropp.
Restricted isometries for partial random circulant matrices. Appl. and Comput. Harmon. Anal., 32(2):242-254, 2012.

Mark Rudelson and Roman Vershynin.
On sparse reconstruction from Fourier and Gaussian measurements. Communications on Pure and Applied Mathematics, 61(8):1025-1045, 2008.

