Tutorial on Sparse Fourier Transforms

Eric Price

UT Austin
The Fourier Transform
Conversion between time and frequency domains

Time Domain

Frequency Domain

Fourier Transform

Displacement of Air

Concert A
The Fourier Transform is Ubiquitous

Audio

Video

Medical Imaging

Radar

GPS

Oil Exploration
Computing the Discrete Fourier Transform

- How to compute $\hat{x} = Fx$?

Naive multiplication: $O(n^2)$.

Fast Fourier Transform: $O(n \log n)$ time. [Cooley-Tukey, 1965]

The method greatly reduces the tediousness of mechanical calculations. – Carl Friedrich Gauss, 1805

By hand: $22^n \log n$ seconds. [Danielson-Lanczos, 1942]

Can we do better?

When can we compute the Fourier Transform in sublinear time?
Computing the Discrete Fourier Transform

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
Computing the Discrete Fourier Transform

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: $O(n \log n)$ time. [Cooley-Tukey, 1965]

The method greatly reduces the tediousness of mechanical calculations. – Carl Friedrich Gauss, 1805

By hand: $22n \log n$ seconds. [Danielson-Lanczos, 1942]

Can we do better?

When can we compute the Fourier Transform in sublinear time?

Eric Price
Tutorial on Sparse Fourier Transforms
Computing the Discrete Fourier Transform

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: $O(n \log n)$ time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

– Carl Friedrich Gauss, 1805
Computing the Discrete Fourier Transform

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: $O(n \log n)$ time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

– Carl Friedrich Gauss, 1805

- By hand: $22n \log n$ seconds. [Danielson-Lanczos, 1942]
Computing the Discrete Fourier Transform

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: $O(n \log n)$ time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

– Carl Friedrich Gauss, 1805

- By hand: $22n \log n$ seconds. [Danielson-Lanczos, 1942]
- Can we do better?
Computing the Discrete Fourier Transform

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: $O(n \log n)$ time. [Cooley-Tukey, 1965]

> The method greatly reduces the tediousness of mechanical calculations.

– Carl Friedrich Gauss, 1805

- By hand: $22n \log n$ seconds. [Danielson-Lanczos, 1942]
- Can we do much better?
Computing the Discrete Fourier Transform

- How to compute $\hat{x} = Fx$?
- Naive multiplication: $O(n^2)$.
- Fast Fourier Transform: $O(n \log n)$ time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

– Carl Friedrich Gauss, 1805

- By hand: $22n \log n$ seconds. [Danielson-Lanczos, 1942]
- Can we do much better?

When can we compute the Fourier Transform in sublinear time?
Idea: Leverage **Sparsity**

Often the Fourier transform is dominated by a small number of peaks:

- **Time Signal**
- **Frequency** (Exactly sparse)
- **Frequency** (Approximately sparse)
Idea: Leverage **Sparsity**

Often the Fourier transform is dominated by a small number of peaks:

- **Time Signal**
- **Frequency (Exactly sparse)**
- **Frequency (Approximately sparse)**

Sparsity is common:

- Audio
- Video
- Medical Imaging
- Radar
- GPS
- Oil Exploration
Idea: Leverage **Sparsity**

Often the Fourier transform is dominated by a small number of peaks:

- **Time Signal**
- **Frequency** (Exactly sparse)
- **Frequency** (Approximately sparse)

Sparsity is common:

Goal of this workshop: *sparse* Fourier transforms

Faster Fourier Transform on sparse data.
Classes of sparse Fourier transform algorithms

For recovering a k-sparse signal in n dimensions.

- Exact sparsity, deterministic algorithm
Classes of sparse Fourier transform algorithms
For recovering a k-sparse signal in n dimensions.

- Exact sparsity, deterministic algorithm
 - Vandermonde matrix: $2k$ samples sufficient
Classes of sparse Fourier transform algorithms
For recovering a k-sparse signal in n dimensions.

- Exact sparsity, deterministic algorithm
 - Vandermonde matrix: $2k$ samples sufficient
 - Syndrome decoding for Reed-Solomon coding
Classes of sparse Fourier transform algorithms
For recovering a k-sparse signal in n dimensions.

- Exact sparsity, deterministic algorithm
 - Vandermonde matrix: $2k$ samples sufficient
 - Syndrome decoding for Reed-Solomon coding
 - Berlekamp-Massey: $O(k^2 + k(\log \log n)^c)$ time.

Approximate sparsity, 2^{-k} failure probability
- Compressed sensing, using Restricted Isometry Property
- $O(k \log 4^n)$ samples, $O(n \log c n)$ time.

Today: Approximate sparsity, $1/4$ or $1/n^c$ probability.
- Using hashing
- $O(k \log c n)$ samples, $O(k \log c n)$ time.
Classes of sparse Fourier transform algorithms
For recovering a k-sparse signal in n dimensions.

- **Exact sparsity, deterministic algorithm**
 - Vandermonde matrix: $2k$ samples sufficient
 - Syndrome decoding for Reed-Solomon coding
 - Berlekamp-Massey: $O(k^2 + k(\log \log n)^c)$ time.

- **Approximate sparsity, 2^{-k} failure probability**
Classes of sparse Fourier transform algorithms
For recovering a k-sparse signal in n dimensions.

- **Exact sparsity, deterministic algorithm**
 - Vandermonde matrix: $2k$ samples sufficient
 - Syndrome decoding for Reed-Solomon coding
 - Berlekamp-Massey: $O(k^2 + k(\log \log n)^c)$ time.

- **Approximate sparsity, 2^{-k} failure probability**
 - Compressed sensing, using Restricted Isometry Property
Classes of sparse Fourier transform algorithms
For recovering a k-sparse signal in n dimensions.

- Exact sparsity, deterministic algorithm
 - Vandermonde matrix: $2k$ samples sufficient
 - Syndrome decoding for Reed-Solomon coding
 - Berlekamp-Massey: $O(k^2 + k(\log \log n)^c)$ time.

- Approximate sparsity, 2^{-k} failure probability
 - Compressed sensing, using Restricted Isometry Property
 - $O(k \log^4 n)$ samples, $O(n \log^c n)$ time.
Classes of sparse Fourier transform algorithms
For recovering a k-sparse signal in n dimensions.

- **Exact sparsity, deterministic algorithm**
 - Vandermonde matrix: $2k$ samples sufficient
 - Syndrome decoding for Reed-Solomon coding
 - Berlekamp-Massey: $O(k^2 + k(\log \log n)^c)$ time.

- **Approximate sparsity, 2^{-k} failure probability**
 - Compressed sensing, using Restricted Isometry Property
 - $O(k \log^4 n)$ samples, $O(n \log^c n)$ time.

Today: Approximate sparsity, $1/4$ or $1/n^c$ probability.
Classes of sparse Fourier transform algorithms

For recovering a k-sparse signal in n dimensions.

- **Exact sparsity, deterministic algorithm**
 - Vandermonde matrix: $2k$ samples sufficient
 - Syndrome decoding for Reed-Solomon coding
 - Berlekamp-Massey: $O(k^2 + k(\log \log n)^c)$ time.

- **Approximate sparsity, 2^{-k} failure probability**
 - Compressed sensing, using Restricted Isometry Property
 - $O(k \log^4 n)$ samples, $O(n \log^c n)$ time.

Today: Approximate sparsity, $1/4$ or $1/n^c$ probability.
 - Using hashing
Classes of sparse Fourier transform algorithms
For recovering a k-sparse signal in n dimensions.

- **Exact sparsity, deterministic algorithm**
 - Vandermonde matrix: $2k$ samples sufficient
 - Syndrome decoding for Reed-Solomon coding
 - Berlekamp-Massey: $O(k^2 + k(\log \log n)^c)$ time.

- **Approximate sparsity, 2^{-k} failure probability**
 - Compressed sensing, using Restricted Isometry Property
 - $O(k \log^4 n)$ samples, $O(n \log^c n)$ time.

Today: Approximate sparsity, $1/4$ or $1/n^c$ probability.
 - Using hashing
 - $O(k \log^c n)$ samples, $O(k \log^c n)$ time.
Kinds of Fourier transform

- 1d Fourier transform: \(x \in \mathbb{C}^n, \omega = e^{2\pi i/n} \), want

\[
\hat{x}_i = \sum_{j=1}^{n} \omega^{ij} x_j
\]
Kinds of Fourier transform

- 1d Fourier transform: $x \in \mathbb{C}^n$, $\omega = e^{2\pi i/n}$, want

\[
\hat{x}_i = \sum_{j=1}^{n} \omega^{ij} x_j
\]

- 2d Fourier Transform: $x \in \mathbb{C}^{n_1 \times n_2}$, $\omega_i = e^{2\pi i/n_i}$, want

\[
\hat{x}_{i_1,i_2} = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} \omega_1^{i_1 j_1} \omega_2^{i_2 j_2} x_{j_1,j_2}
\]
Kinds of Fourier transform

1d Fourier transform: \(x \in \mathbb{C}^n, \omega = e^{2\pi i/n}, \) want

\[\hat{x}_i = \sum_{j=1}^{n} \omega^{ij} x_j \]

2d Fourier Transform: \(x \in \mathbb{C}^{n_1 \times n_2}, \omega_i = e^{2\pi i/n_i}, \) want

\[\hat{x}_{i_1,i_2} = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} \omega_1^{i_1j_1} \omega_2^{i_2j_2} x_{j_1,j_2} \]
Kinds of Fourier transform

- **1d Fourier transform**: $x \in \mathbb{C}^n$, $\omega = e^{2\pi i/n}$, want
 \[
 \hat{x}_i = \sum_{j=1}^{n} \omega^{ij} x_j
 \]

- **2d Fourier Transform**: $x \in \mathbb{C}^{n_1 \times n_2}$, $\omega_i = e^{2\pi i/n_i}$, want
 \[
 \hat{x}_{i_1,i_2} = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} \omega_1^{i_1j_1} \omega_2^{i_2j_2} x_{j_1,j_2}
 \]
Kinds of Fourier transform

- 1d Fourier transform: \(x \in \mathbb{C}^n, \omega = e^{2\pi i/n} \), want
 \[
 \hat{x}_i = \sum_{j=1}^{n} \omega^{ij} x_j
 \]

- 2d Fourier Transform: \(x \in \mathbb{C}^{n_1 \times n_2}, \omega_i = e^{2\pi i/n_i} \), want
 \[
 \hat{x}_{i_1,i_2} = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} \omega_1^{i_1 j_1} \omega_2^{i_2 j_2} x_{j_1,j_2}
 \]

- If \(n_1, n_2 \) are relatively prime, equivalent to 1d transform of \(\mathbb{C}^{n_1 n_2} \)
Kinds of Fourier transform

- **1d Fourier transform**: \(x \in \mathbb{C}^n, \omega = e^{2\pi i/n}, \) want
 \[
 \hat{x}_i = \sum_{j=1}^{n} \omega^{ij} x_j
 \]

- **2d Fourier Transform**: \(x \in \mathbb{C}^{n_1 \times n_2}, \omega_i = e^{2\pi i/n_i}, \) want
 \[
 \hat{x}_{i_1,i_2} = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} \omega_{1}^{i_1 j_1} \omega_{2}^{i_2 j_2} x_{j_1,j_2}
 \]
 - If \(n_1, n_2 \) are relatively prime, equivalent to 1d transform of \(\mathbb{C}^{n_1 n_2} \)

- **Hadamard transform**: \(x \in \mathbb{C}^{2 \times 2 \times \cdots \times 2} \)
 \[
 \hat{x}_i = \sum_{j}^{n} (-1)^{\langle i, j \rangle} x_j
 \]
Goal: given access to x, compute $\tilde{x} \approx \hat{x}$

- Exact case: \hat{x} is k-sparse, $\tilde{x} = \hat{x}$ (maybe to log n bits of precision)

- Approximate case: $\|x - \hat{x}\|_2 \leq (1 + \epsilon) \min_k \|\hat{x} - \hat{x}_k\|_2$

With "good" probability.

Algorithm for $k = 1$ (exact or approximate)

Method to reduce to $k = 1$ case

- Split \hat{x} into $O(k)$ "random" parts
- Can sample time domain of the parts.
- $\mathcal{O}(k \log k)$ time to get one sample from each of the k parts.

Finds "most" of signal; repeat on residual
Goal: given access to x, compute $\overline{x} \approx \hat{x}$

- Exact case: \hat{x} is k-sparse, $\overline{x} = \hat{x}$ (maybe to log n bits of precision)
- Approximate case:

$$\|\overline{x} - \hat{x}\|_2 \leq (1 + \epsilon) \min_{k\text{-sparse } \hat{x}_k} \|\hat{x} - \hat{x}_k\|_2$$
Goal: given access to x, compute $\bar{x} \approx \hat{x}$

- Exact case: \hat{x} is k-sparse, $\bar{x} = \hat{x}$ (maybe to $\log n$ bits of precision)
- Approximate case:

$$\|\bar{x} - \hat{x}\|_2 \leq (1 + \epsilon) \min_{k\text{-sparse } \hat{x}_k} \|\hat{x} - \hat{x}_k\|_2$$

- With “good” probability.
Goal: given access to x, compute $\bar{x} \approx \hat{x}$

- Exact case: \hat{x} is k-sparse, $\bar{x} = \hat{x}$ (maybe to log n bits of precision)
- Approximate case:

$$\|\bar{x} - \hat{x}\|_2 \leq (1 + \epsilon) \min_{k\text{-sparse } \hat{x}_k} \|\hat{x} - \hat{x}_k\|_2$$

- With “good” probability.

1. Algorithm for $k = 1$ (exact or approximate)
Generic Algorithm Outline

- Goal: given access to x, compute $\bar{x} \approx \hat{x}$
 - Exact case: \hat{x} is k-sparse, $\bar{x} = \hat{x}$ (maybe to log n bits of precision)
 - Approximate case:

 $$\|\bar{x} - \hat{x}\|_2 \leq (1 + \epsilon) \min_{k\text{-sparse } \hat{x}_k} \|\hat{x} - \hat{x}_k\|_2$$

 - With “good” probability.

1. Algorithm for $k = 1$ (exact or approximate)
2. Method to reduce to $k = 1$ case
Generic Algorithm Outline

1. Algorithm for $k = 1$ (exact or approximate)
2. Method to reduce to $k = 1$ case
Generic Algorithm Outline

1. Algorithm for $k = 1$ (exact or approximate)
2. Method to reduce to $k = 1$ case
Generic Algorithm Outline

Algorithm for $k = 1$ (exact or approximate)

Method to reduce to $k = 1$ case
 - Split \hat{x} into $O(k)$ “random” parts
Algorithm for $k = 1$ (exact or approximate)

1. Method to reduce to $k = 1$ case
 - Split \hat{x} into $O(k)$ “random” parts
 - Can sample time domain of the parts.
Generic Algorithm Outline

1. Algorithm for \(k = 1 \) (exact or approximate)
2. Method to reduce to \(k = 1 \) case
 - Split \(\hat{x} \) into \(O(k) \) “random” parts
 - Can sample time domain of the parts.
 - \(O(k \log k) \) time to get one sample from each of the \(k \) parts.
Generic Algorithm Outline

1. Algorithm for $k = 1$ (exact or approximate)
2. Method to reduce to $k = 1$ case
 - Split \hat{x} into $O(k)$ “random” parts
 - Can sample time domain of the parts.
 - $O(k \log k)$ time to get one sample from each of the k parts.
3. Finds “most” of signal; repeat on residual
Talk Outline

1 Algorithm for $k = 1$
Talk Outline

1. Algorithm for $k = 1$

2. Reducing k to 1
Talk Outline

1. Algorithm for $k = 1$
2. Reducing k to 1
3. Putting it together
Talk Outline

1. Algorithm for $k = 1$
2. Reducing k to 1
3. Putting it together
Algorithm for $k = 1$: one dimension, exact case

Lemma

We can compute a 1-sparse \hat{x} in $O(1)$ time.

\[\hat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases} \]
Algorithm for $k = 1$: one dimension, exact case

Lemma

We can compute a 1-sparse \hat{x} in $O(1)$ time.

\[
\hat{x}_i = \begin{cases}
 a & \text{if } i = t \\
 0 & \text{otherwise}
\end{cases}
\]

Then $x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \ldots, a\omega^{(n-1)t})$.

(Related to OFDM, Prony’s method, matrix pencil.)
Algorithm for $k = 1$: one dimension, exact case

Lemma

We can compute a 1-sparse \hat{x} in $O(1)$ time.

$\hat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$

Then $x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \ldots, a\omega^{(n-1)t})$.

$x_0 = a$
Algorithm for $k = 1$: one dimension, exact case

Lemma

We can compute a 1-sparse \hat{x} in $O(1)$ time.

\[\hat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases} \]

Then $x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \ldots, a\omega^{(n-1)t})$.

- $x_0 = a$
- $x_1 = a\omega^t$
Algorithm for $k = 1$: one dimension, exact case

Lemma

We can compute a 1-sparse \hat{x} in $O(1)$ time.

$$\hat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

Then $x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \ldots, a\omega^{(n-1)t})$.

$x_0 = a$ \hspace{1cm} $x_1 = a\omega^t$

$x_1/x_0 = \omega^t \implies t$.

(Related to OFDM, Prony's method, matrix pencil.)
Lemma

We can compute a 1-sparse \(\hat{x} \) *in* \(O(1) \) *time.*

\[
\hat{x}_i = \begin{cases}
 a & \text{if } i = t \\
 0 & \text{otherwise}
\end{cases}
\]

Then \(x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \ldots, a\omega^{(n-1)t}) \).

\[
x_0 = a \quad \quad x_1 = a\omega^t
\]

\(x_1/x_0 = \omega^t \implies t. \)

(Related to OFDM, Prony's method, matrix pencil.)
Algorithm for $k = 1$: one dimension, exact case

Lemma

We can compute a 1-sparse \hat{x} in $O(1)$ time.

$$\hat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

Then $x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \ldots, a\omega^{(n-1)t})$.

$x_0 = a \quad x_1 = a\omega^t$

$x_1/x_0 = \omega^t \implies t$.

(Related to OFDM, Prony’s method, matrix pencil.)
Lemma

Suppose \(\hat{x} \) is approximately 1-sparse:

\[
\left| \hat{x}_t \right| / \| \hat{x} \|_2 \geq 90\%.
\]

Then we can recover it with \(O(\log n) \) samples and \(O(\log^2 n) \) time.

Algorithm for \(k = 1 \): one dimension, approximate case
Algorithm for $k = 1$: one dimension, approximate case

Lemma

Suppose \hat{x} is approximately 1-sparse:

$$|\hat{x}_t|/\|\hat{x}\|_2 \geq 90\%.$$

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- With exact sparsity: $\log n$ bits in a single measurement.
Algorithm for $k = 1$: one dimension, approximate case

Lemma

Suppose \hat{x} is approximately 1-sparse:

$$|\hat{x}_t|/\|\hat{x}\|_2 \geq 90\%.$$

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- With exact sparsity: $\log n$ bits in a single measurement.
- With noise: only constant number of useful bits.
Algorithm for $k = 1$: one dimension, approximate case

Lemma

Suppose \hat{x} is approximately 1-sparse:

$$\frac{|\hat{x}_t|}{\|\hat{x}\|_2} \geq 90\%.$$

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- With exact sparsity: log n bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose $\Theta(\log n)$ time shifts c to recover i.
Algorithm for $k = 1$: one dimension, approximate case

Lemma

Suppose \hat{x} *is approximately 1-sparse:*

$$\frac{|\hat{x}_t|}{\|\hat{x}\|_2} \geq 90\%.$$

Then we can recover it with $O(\log n)$ *samples and* $O(\log^2 n)$ *time.*

- With exact sparsity: $\log n$ bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose $\Theta(\log n)$ time shifts c to recover i.

$$x_{c_2}/x_0 = \omega^{c_2 t} + \text{noise}$$
Algorithm for $k = 1$: one dimension, approximate case

Lemma

Suppose \hat{x} is approximately 1-sparse:

$$|\hat{x}_t|/\|\hat{x}\|_2 \geq 90\%.$$

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- With exact sparsity: log n bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose $\Theta(\log n)$ time shifts c to recover i.
Algorithm for $k = 1$: one dimension, approximate case

Lemma

Suppose \hat{x} is approximately 1-sparse:

$$\frac{|\hat{x}_t|}{\|\hat{x}\|_2} \geq 90\%.$$

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- With exact sparsity: log n bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose $\Theta(\log n)$ time shifts c to recover i.
- Error correcting code with efficient recovery \implies lemma.
Algorithm for $k = 1$: Hadamard setting

Levin ’93, improving upon Goldreich-Levin ’89

$$\hat{x}_i = \sum_j (-1)^{\langle i, j \rangle} x_j$$
Algorithm for $k = 1$: Hadamard setting

Levin ’93, improving upon Goldreich-Levin ’89

$$\hat{x}_i = \sum_j (-1)^{\langle i,j \rangle} x_j$$

Lemma

Suppose \hat{x} is approximately 1-sparse:

$$|\hat{x}_t|/\|\hat{x}\|_2 \geq 90\%.$$

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.
Algorithm for $k = 1$: Hadamard setting

Levin ’93, improving upon Goldreich-Levin ’89

$$\hat{x}_i = \sum_j (-1)^{\langle i, j \rangle} x_j$$

Lemma

Suppose \hat{x} is approximately 1-sparse:

$$|\hat{x}_t| / \|\hat{x}\|_2 \geq 90\%.$$

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- We have $\text{sign}(\hat{x}_r) = \text{sign}((-1)^{\langle r, t \rangle} x_t)$ with 9/10 probability over r.

Algorithm for $k = 1$: Hadamard setting

Levin ’93, improving upon Goldreich-Levin ’89

\[
\hat{x}_i = \sum_j (-1)^{\langle i, j \rangle} x_j
\]

Lemma

Suppose \hat{x} is approximately 1-sparse:

\[
|\hat{x}_t|/\|\hat{x}\|_2 \geq 90%.
\]

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- We have $\text{sign}(\hat{x}_r) = \text{sign}((-1)^{\langle r, t \rangle} x_t)$ with 9/10 probability over r.
- Therefore for any i, with 8/10 probability over r,

\[
\text{sign}(\frac{\hat{x}_{i+r}}{\hat{x}_r}) = \text{sign}((-1)^{\langle i, t \rangle})
\]
Algorithm for $k = 1$: Hadamard setting

Levin ’93, improving upon Goldreich-Levin ’89

\[\hat{x}_i = \sum_j (-1)^{\langle i, j \rangle} x_j \]

Lemma

Suppose \hat{x} is approximately 1-sparse:

\[|\hat{x}_t|/||\hat{x}||_2 \geq 90\% \]

Then we can recover it with $O(\log n)$ samples and $O(\log^2 n)$ time.

- We have \(\text{sign}(\hat{x}_r) = \text{sign}((-1)^{\langle r, t \rangle} x_t) \) with 9/10 probability over r.
- Therefore for any i, with 8/10 probability over r,
 \[\text{sign}(\frac{\hat{x}_{i+r}}{\hat{x}_r}) = \text{sign}((-1)^{\langle i, t \rangle}) \]
- Choose i to be the $O(\log n)$ rows of generator matrix for constant rate and distance binary code.
Talk Outline

1. Algorithm for $k = 1$

2. Reducing k to 1

3. Putting it together
Algorithm for general k

- Reduce general k to $k = 1$.

![Diagram]

$x \xrightarrow{\text{Filters}} O(k) \xrightarrow{\text{1-sparse recovery}} \hat{x}'$

- "Filters": partition frequencies into $O(k)$ buckets.
- Sample from time domain of each bucket with $O(\log n)$ overhead.
- Recovered by $k = 1$ algorithm
- Most frequencies alone in bucket.
- Random permutation
- 1-sparse recovery
- 1-sparse recovery
- 1-sparse recovery
- 1-sparse recovery
- Recovers most of \hat{x}:

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.

![Diagram showing the process of reducing general k to $k = 1$ through filters and 1-sparse recovery.]
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.

\[x \xrightarrow{\text{Filters}} \begin{array}{c} 1\text{-sparse recovery} \\ 1\text{-sparse recovery} \\ \vdots \\ 1\text{-sparse recovery} \end{array} \xrightarrow{O(k)} \hat{x}' \]
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.
 - Sample from time domain of each bucket with $O(\log n)$ overhead.

Diagram:
- Input x to Filters
- $O(k)$ steps
- Output \hat{x}'
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.
 - Sample from time domain of each bucket with $O(\log n)$ overhead.
 - Recovered by $k = 1$ algorithm

\hat{x}'

![Diagram showing the process of filtering and 1-sparse recovery]
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.
 - Sample from time domain of each bucket with $O(\log n)$ overhead.
 - Recovered by $k = 1$ algorithm
- Most frequencies alone in bucket.

![Diagram of the algorithm with filters and 1-sparse recovery steps.]

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.
 - Sample from time domain of each bucket with $O(\log n)$ overhead.
 - Recovered by $k = 1$ algorithm
- Most frequencies alone in bucket.
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.
 - Sample from time domain of each bucket with $O(\log n)$ overhead.
 - Recovered by $k = 1$ algorithm
- Most frequencies alone in bucket.
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.
 - Sample from time domain of each bucket with $O(\log n)$ overhead.
 - Recovered by $k = 1$ algorithm
- Most frequencies alone in bucket.

![Diagram of the algorithm](image)

Filters

1-sparse recovery

$O(k)$

1-sparse recovery

1-sparse recovery

1-sparse recovery

x → Filters → \hat{x}'
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.
 - Sample from time domain of each bucket with $O(\log n)$ overhead.
 - Recovered by $k = 1$ algorithm

- Most frequencies alone in bucket.
- Random permutation

![Diagram of the algorithm](image)
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.
 - Sample from time domain of each bucket with $O(\log n)$ overhead.
 - Recovered by $k = 1$ algorithm
- Most frequencies alone in bucket.
- Random permutation
Algorithm for general \(k \)

- Reduce general \(k \) to \(k = 1 \).
- “Filters”: partition frequencies into \(O(k) \) buckets.
 - Sample from time domain of each bucket with \(O(\log n) \) overhead.
 - Recovered by \(k = 1 \) algorithm
- Most frequencies alone in bucket.
- Random permutation

![Diagram of the algorithm](image)
Algorithm for general k

- Reduce general k to $k = 1$.
- “Filters”: partition frequencies into $O(k)$ buckets.
 - Sample from time domain of each bucket with $O(\log n)$ overhead.
 - Recovered by $k = 1$ algorithm

Most frequencies alone in bucket.

- Random permutation

Recovers most of \hat{x}:

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.
Going from finding most coordinates to finding all

Partial k-sparse recovery

$x \xrightarrow{\text{Permute}} \text{Filters} \xrightarrow{O(k)} \hat{x}'$

Lemma (Partial sparse recovery)

\[\text{In } O(k \log n) \text{ expected time, we can compute an estimate } \hat{x}' \text{ such that } \hat{x} - \hat{x}' \text{ is } k/2\text{-sparse.} \]
Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.
Going from finding most coordinates to finding all \(\hat{x} - \hat{x}' \)

Partial \(k \)-sparse recovery

1-sparse recovery

\(O(k) \)

1-sparse recovery

1-sparse recovery

\(\hat{x}' \)

Lemma (Partial sparse recovery)

In \(O(k \log n) \) expected time, we can compute an estimate \(\hat{x}' \) such that \(\hat{x} - \hat{x}' \) is \(k/2 \)-sparse.

Repeat, \(k \to k/2 \to k/4 \to \ldots \)
Going from finding most coordinates to finding all.

Partial k-sparse recovery

$x \xrightarrow{\text{Permute}} \text{Filters} \xrightarrow{O(k)} \hat{x}'$

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.

Repeat, $k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$
Going from finding most coordinates to finding all

Partial k-sparse recovery

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.

Repeat, $k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$
Going from finding most coordinates to finding all

Partial k-sparse recovery

\[
\begin{align*}
&x \\ &\xrightarrow{\text{Permute}} \\
&\xrightarrow{\text{Filters}} \\
&\xrightarrow{O(k)} \\
&\quad \xrightarrow{\text{1-sparse recovery}} \\
&\quad \xrightarrow{\text{1-sparse recovery}} \\
&\quad \xrightarrow{\text{1-sparse recovery}} \\
&\quad \xrightarrow{\text{1-sparse recovery}} \\
&\xrightarrow{\hat{x}'}
\end{align*}
\]

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.

Repeat, $k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$
Going from finding most coordinates to finding all

Partial k-sparse recovery

Lemma (Partial sparse recovery)

In $O(k \log n)$ expected time, we can compute an estimate \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.

Repeat, $k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$

Theorem

We can compute \hat{x} in $O(k \log n)$ expected time.
Going from finding most coordinates to finding all \(\hat{x} - \hat{x}' \)

Partial \(k \)-sparse recovery

\[x \xrightarrow{\text{Permute}} \text{Filters} \xrightarrow{O(k)} \hat{x}' \]

\[\hat{x} - \hat{x}' \text{ is } k/2\text{-sparse.} \]

Repeat, \(k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots \)

Lemma (Partial sparse recovery)

In \(O(k \log n) \) expected time, we can compute an estimate \(\hat{x}' \) such that \(\hat{x} - \hat{x}' \) is \(k/2 \)-sparse.

Theorem

We can compute \(\hat{x} \) in \(O(k \log n) \) expected time.
How do filters work?

Consider the $\sqrt{n} \times \sqrt{n}$ 2d setting.
How do filters work?

- Consider the $\sqrt{n} \times \sqrt{n}$ 2d setting.
- Get answer by FFT on rows, then FFT on resulting columns.
How do filters work?

- Consider the $\sqrt{n} \times \sqrt{n}$ 2d setting.
- Get answer by FFT on rows, then FFT on resulting columns.
How do filters work?

- Consider the $\sqrt{n} \times \sqrt{n}$ 2d setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT y^r of a random row r?
How do filters work?

- Consider the $\sqrt{n} \times \sqrt{n}$ 2d setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT y^r of a random row r?
- For any column $\hat{z} = \hat{x}_{*,c} \in \mathbb{C}^{\sqrt{n}}$ we have in the corresponding time domain

$$z_r = y^r_c$$
How do filters work?

- Consider the $\sqrt{n} \times \sqrt{n}$ 2d setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT y^r of a random row r?
- For any column $\hat{z} = \hat{x}_{*,c} \in \mathbb{C}^{\sqrt{n}}$ we have in the corresponding time domain

 $$z_r = y^r_c$$

- With $O(\sqrt{n} \log n)$ time, get samples from time domains of all \sqrt{n} columns.
How do filters work?

- Consider the $\sqrt{n} \times \sqrt{n}$ 2d setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT y^r of a random row r?
- For any column $\hat{z} = \hat{x}_{*,c} \in \mathbb{C}^{\sqrt{n}}$ we have in the corresponding time domain
 \[z_r = y_c^r \]
- With $O(\sqrt{n} \log n)$ time, get samples from time domains of all \sqrt{n} columns.
- If column is 1-sparse, recover it with $O(1)$ row FFTs.
How do filters work?

Consider the $\sqrt{n} \times \sqrt{n}$ 2d setting.

Get answer by FFT on rows, then FFT on resulting columns.

What if I just take the FFT y^r of a random row r?

For any column $\hat{z} = \hat{x}_{*,c} \in \mathbb{C}^{\sqrt{n}}$ we have in the corresponding time domain

$$z_r = y_c^r$$

With $O(\sqrt{n} \log n)$ time, get samples from time domains of all \sqrt{n} columns.

If column is 1-sparse, recover it with $O(1)$ row FFTs

- For approximate sparsity, $O(\log n)$ row FFTs.
How do filters work?

- Consider the $\sqrt{n} \times \sqrt{n}$ 2d setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT y^r of a random row r?
- For any column $\hat{z} = \hat{x}_{*,c} \in \mathbb{C}^{\sqrt{n}}$ we have in the corresponding time domain

 $$z_r = y^r_c$$

- With $O(\sqrt{n} \log n)$ time, get samples from time domains of all \sqrt{n} columns.
- If column is 1-sparse, recover it with $O(1)$ row FFTs
 - For approximate sparsity, $O(\log n)$ row FFTs.
- If $k = \sqrt{n}$ random nonzeros, expect to recover most of them.
Filters more generally

- Fourier transform switches multiplication and convolution.

Choose a filter \(F\) so both \(F\) and \(\hat{F}\) are sparse

- \(F\) is \(\tilde{O}(k)\)-sparse and \(\hat{F}\) is (approximately) \(O(n/k)\)-sparse.

Last slide: \(F\) is row, \(\hat{F}\) is column

For various \(r\), compute \(k\)-dimensional Fourier transform of

\[y_i = x_i + rF_i. \]

Gives the \(r\)th time domain sample of \(\hat{x}\) · shift \((\hat{F})\) for \(k\) shifts of \(\hat{F}\).
Filters more generally

- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and \hat{F} are sparse
Filters more generally

- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and \hat{F} are sparse
 - F is $\tilde{O}(k)$-sparse and \hat{F} is (approximately) $O(n/k)$ sparse.
Filters more generally

- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and \hat{F} are sparse
 - F is $\tilde{O}(k)$-sparse and \hat{F} is (approximately) $O(n/k)$ sparse.
 - Last slide: F is row, \hat{F} is column
Filters more generally

- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and \hat{F} are sparse
 - F is $\tilde{O}(k)$-sparse and \hat{F} is (approximately) $O(n/k)$ sparse.
 - Last slide: F is row, \hat{F} is column

| $y_i = x_i + r F_i$ | Gives the rth time domain sample of \hat{x}·shift(\hat{F}) for k shifts of \hat{F} |
Filters more generally

- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and \hat{F} are sparse
 - F is $\tilde{O}(k)$-sparse and \hat{F} is (approximately) $O(n/k)$ sparse.
 - Last slide: F is row, \hat{F} is column
- For various r, compute k-dimensional Fourier transform of $y_i = x_{i+r}F_i$.
Filters more generally

- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and \hat{F} are sparse
 - F is $\tilde{O}(k)$-sparse and \hat{F} is (approximately) $O(n/k)$ sparse.
 - Last slide: F is row, \hat{F} is column
- For various r, compute k-dimensional Fourier transform of $y_i = x_{i+r}F_i$.
- Gives the rth time domain sample of $\hat{x} \cdot \text{shift}(\hat{F})$ for k shifts of \hat{F}.

Hadamard setting: full algorithm

- \(F = \text{span}(A) \) for any \(A \in \mathbb{F}_2^{\log n \times \log B} \)

For any \(r \in \text{span}(A) \), compute Hadamard transform of \(y_i = x_{Ai} + r \).

Gives \(r \)th time domain sample of \(\hat{x} \) restricted to all \(B \) cosets of \(A \).

If \(A \) is chosen randomly, then any two \(i, j \) land in same coset with probability \(1/B \).

Each coordinate is alone with probability \(1 - k/B \).

Take \(\log(n/k) \) different \(r \) to solve the 1-sparse problem on coset.

For \(B = O(k) \), expect to recover "most" coordinates.

Takes \(O(k \log(n/k)) \) samples and \(O(k \log(n/k) \log k) \) time.
Hadamard setting: full algorithm

- $F = \text{span}(A)$ for any $A \in \mathbb{F}_2^{\log n \times \log B}$
- For any $r \in \text{span}(A)^\perp$, compute Hadamard transform of

 $$y_i = x_{Ai+r}$$
Hadamard setting: full algorithm

- $F = \text{span}(A)$ for any $A \in \mathbb{F}_2^{\log n \times \log B}$
- For any $r \in \text{span}(A)^\perp$, compute Hadamard transform of
 $$y_i = x_{ Ai + r}$$
- Gives rth time domain sample of \hat{x} restricted to all B cosets of A^\perp.

Eric Price
Tutorial on Sparse Fourier Transforms
19 / 27
Hadamard setting: full algorithm

- $F = \text{span}(A)$ for any $A \in \mathbb{F}_2^{\log n \times \log B}$
- For any $r \in \text{span}(A)^\perp$, compute Hadamard transform of

$$y_i = x_{A_i + r}$$

- Gives rth time domain sample of \hat{x} restricted to all B cosets of A^\perp.
- If A is chosen randomly, then any two i, j land in same coset with probability $1/B$.
Hadamard setting: full algorithm

- \(F = \text{span}(A) \) for any \(A \in \mathbb{F}_2^{\log n \times \log B} \)
- For any \(r \in \text{span}(A)^\perp \), compute Hadamard transform of

\[
y_i = x_{Ai} + r
\]

- Gives \(r \)th time domain sample of \(\hat{x} \) restricted to all \(B \) cosets of \(A^\perp \).
- If \(A \) is chosen randomly, then any two \(i, j \) land in same coset with probability \(1/B \).
- Each coordinate is alone with probability \(1 - k/B \).
Hadamard setting: full algorithm

- $F = \text{span}(A)$ for any $A \in \mathbb{F}_2^{\log n \times \log B}$
- For any $r \in \text{span}(A)^\perp$, compute Hadamard transform of

$$y_i = x_{Ai} + r$$

- Gives rth time domain sample of \hat{x} restricted to all B cosets of A^\perp.
- If A is chosen randomly, then any two i, j land in same coset with probability $1/B$.
- Each coordinate is alone with probability $1 - k/B$.
- Take $\log(n/k)$ different r to solve the 1-sparse problem on coset.
Hadamard setting: full algorithm

- $F = \text{span}(A)$ for any $A \in \mathbb{F}_2^{\log n \times \log B}$
- For any $r \in \text{span}(A)^\perp$, compute Hadamard transform of

$$y_i = x_{Ai + r}$$

- Gives rth time domain sample of \hat{x} restricted to all B cosets of A^\perp.
- If A is chosen randomly, then any two i, j land in same coset with probability $1/B$.
- Each coordinate is alone with probability $1 - k/B$.
- Take $\log(n/k)$ different r to solve the 1-sparse problem on coset.
- For $B = O(k)$, expect to recover “most” coordinates.
Hadamard setting: full algorithm

- $F = \text{span}(A)$ for any $A \in \mathbb{F}_2^{\log n \times \log B}$
- For any $r \in \text{span}(A)^\perp$, compute Hadamard transform of

 $$y_i = x_{Ai+r}$$

- Gives rth time domain sample of \hat{x} restricted to all B cosets of A^\perp.
- If A is chosen randomly, then any two i, j land in same coset with probability $1/B$.
- Each coordinate is alone with probability $1 - k/B$.
- Take $\log(n/k)$ different r to solve the 1-sparse problem on coset.
- For $B = O(k)$, expect to recover “most” coordinates.
- Takes $O(k \log(n/k))$ samples and $O(k \log(n/k) \log k)$ time
Hadamard setting: full algorithm

- $F = \text{span}(A)$ for any $A \in \mathbb{F}_2^{\log n \times \log B}$
- For any $r \in \text{span}(A)\perp$, compute Hadamard transform of

$$y_i = x_{Ai+r}$$

- Gives rth time domain sample of \hat{x} restricted to all B cosets of $A\perp$.
- If A is chosen randomly, then any two i, j land in same coset with probability $1/B$.
- Each coordinate is alone with probability $1 - k/B$.
- Take $\log(n/k)$ different r to solve the 1-sparse problem on coset.
- For $B = O(k)$, expect to recover “most” coordinates.
- Takes $O(k \log(n/k))$ samples and $O(k \log(n/k) \log k)$ time
- Repeat with $k \rightarrow k/2 \rightarrow k/4 \rightarrow \ldots$
Hadamard setting: full algorithm

- $F = \text{span}(A)$ for any $A \in \mathbb{F}_2^{\log n \times \log B}$
- For any $r \in \text{span}(A)^\perp$, compute Hadamard transform of $y_i = x_{Ai+r}$

Gives rth time domain sample of \hat{x} restricted to all B cosets of A^\perp.

If A is chosen randomly, then any two i, j land in same coset with probability $1/B$.

Each coordinate is alone with probability $1 - k/B$.

Take $\log(n/k)$ different r to solve the 1-sparse problem on coset.

For $B = O(k)$, expect to recover “most” coordinates.

Takes $O(k \log(n/k))$ samples and $O(k \log(n/k) \log k)$ time

Repeat with $k \rightarrow k/2 \rightarrow k/4 \rightarrow \ldots$

Gives $O(k \log(n/k))$ total samples and $O(k \log(n/k) \log k)$ time
Hadamard setting: full algorithm

- \(F = \text{span}(A) \) for any \(A \in \mathbb{F}_2^{\log n \times \log B} \)
- For any \(r \in \text{span}(A)^\perp \), compute Hadamard transform of
 \[
y_i = x_{Ai} + r
 \]
 Gives \(r \)th time domain sample of \(\hat{x} \) restricted to all \(B \) cosets of \(A^\perp \).
 - If \(A \) is chosen randomly, then any two \(i, j \) land in same coset with probability 1/\(B \).
 - Each coordinate is alone with probability 1 − \(k/B \).
 - Take \(\log(n/k) \) different \(r \) to solve the 1-sparse problem on coset.
 - For \(B = O(k) \), expect to recover “most” coordinates.
 - Takes \(O(k \log(n/k)) \) samples and \(O(k \log(n/k) \log k) \) time
 - Repeat with \(k \to k/2 \to k/4 \to \ldots \)
 - Gives \(O(k \log(n/k)) \) total samples and \(O(k \log(n/k) \log k) \) time
Difficulty in other settings

- Not enough filters F that are “perfect” (F and \hat{F} are indicators)
Difficulty in other settings

- Not enough filters F that are “perfect” (F and \hat{F} are indicators)
- Two dimensions:
Difficulty in other settings

- Not enough filters F that are “perfect” (F and \hat{F} are indicators)
- Two dimensions:
 - Can look at the columns or the rows
Difficulty in other settings

- Not enough filters F that are “perfect” (F and \hat{F} are indicators)
- Two dimensions:
 - Can look at the columns or the rows
 - Some inputs will cause collisions for any projection.
Difficulty in other settings

- Not enough filters F that are “perfect” (F and \hat{F} are indicators)
- Two dimensions:
 - Can look at the columns or the rows
 - Some inputs will cause collisions for any projection.
- Works if you assume coordinates randomly distributed [GHIKPS, Pawar-Ramchandran]
Difficulty in other settings

- Not enough filters F that are “perfect” (F and \hat{F} are indicators)
- Two dimensions:
 - Can look at the columns or the rows
 - Some inputs will cause collisions for any projection.
- Works if you assume coordinates randomly distributed [GHIKPS, Pawar-Ramchandran]
 - Peeling procedure
Difficulty in other settings

- Not enough filters F that are “perfect” (F and \hat{F} are indicators)
- Two dimensions:
 - Can look at the columns or the rows
 - Some inputs will cause collisions for any projection.
- Works if you assume coordinates randomly distributed [GHIKPS, Pawar-Ramchandran]
 - Peeling procedure
 - Still doesn’t work for 1 dimension, $n = 2^\ell$.

For worst-case inputs, need other filters
Difficulty in other settings

- Not enough filters F that are “perfect” (F and \hat{F} are indicators)
- Two dimensions:
 - Can look at the columns or the rows
 - Some inputs will cause collisions for any projection.
- Works if you assume coordinates randomly distributed [GHIKPS, Pawar-Ramchandran]
 - Peeling procedure
 - Still doesn’t work for 1 dimension, $n = 2^\ell$.
- For worst-case inputs, need other filters
A different style of filter
GMS05, HIKP12, IKP14, IK14

Filter (time): \(k \) uniformly spaced

Filter (frequency): \(n/k \) uniformly spaced

Previous slides used \textit{comb filter}
A different style of filter
GMS05, HIKP12, IKP14, IK14

- Filter (time): Gaussian \cdot \text{sinc}
- Filter (frequency): Gaussian \ast \text{rectangle}

- Previous slides used *comb filter*
- Instead, make filter so \(\hat{F} \) is large on an *interval.*
A different style of filter
GMS05, HIKP12, IKP14, IK14

Previous slides used *comb filter*
Instead, make filter so \hat{F} is large on an *interval*.
We can permute the frequencies:

$$x'_i = x_{\sigma i} \implies \hat{x}_i = \hat{x}_{\sigma^{-1} i}$$
A different style of filter

GMS05, HIKP12, IKP14, IK14

- Previous slides used *comb filter*
- Instead, make filter so \hat{F} is large on an *interval*.
- We can permute the frequencies:

 $$x_i' = x_{\sigma i} \implies \hat{x}_i = \hat{x}_{\sigma^{-1} i}$$

- This changes the coordinates in an interval (unlike in a comb).
A different style of filter
GMS05, HIKP12, IKP14, IK14

- Previous slides used \textit{comb filter}
- Instead, make filter so \hat{F} is large on an \textit{interval}.
- We can permute the frequencies:

$$x'_i = x_{\sigma i} \implies \hat{x}_i = \hat{x}_{\sigma^{-1} i}$$

- This changes the coordinates in an interval (unlike in a comb).
- Allows us to convert worst case to random case.
1 Algorithm for $k = 1$

2 Reducing k to 1

3 Putting it together
How can you hope for sublinear time?

n-dimensional DFT: $O(n \log n)$

$x \rightarrow \hat{x}$
How can you hope for sublinear time?

n-dimensional DFT: $O(n \log n)$

$x \rightarrow \hat{x}$
How can you hope for sublinear time?

n-dimensional DFT: $O(n \log n)$
$x \rightarrow \hat{x}$

n-dimensional DFT of first k terms: $O(n \log n)$
$x \cdot \text{rect} \rightarrow \hat{x} \ast \text{sinc.}$
How can you hope for sublinear time?

n-dimensional DFT:

$O(n \log n)$

$x \rightarrow \hat{x}$

n-dimensional DFT of first k terms:

$O(B \log B)$

$\ x \cdot \text{rect} \rightarrow \hat{x} \ast \text{sinc.}$
How can you hope for sublinear time?

\[\text{n-dimensional DFT: } O(n \log n) \]
\[x \rightarrow \hat{x} \]

\[\text{n-dimensional DFT of first } k \text{ terms: } O(n \log n) \]
\[x \cdot \text{rect} \rightarrow \hat{x} \ast \text{sinc.} \]

\[\text{k-dimensional DFT of first } k \text{ terms: } O(B \log B) \]
\[\text{alias}(x \cdot \text{rect}) \rightarrow \text{subsample}(\hat{x} \ast \text{sinc}). \]
How can you hope for sublinear time?

n-dimensional DFT: $O(n \log n)$
$x \rightarrow \hat{x}$

n-dimensional DFT of first k terms: $O(n \log n)$
$x \cdot \text{rect} \rightarrow \hat{x} \ast \text{sinc.}$

k-dimensional DFT of first k terms: $O(B \log B)$
alias$(x \cdot \text{rect}) \rightarrow$ subsample$(\hat{x} \ast \text{sinc})$.
Algorithm for exactly sparse signals

Original signal x

Goal \hat{x}

Lemma
If t is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies $b = \hat{x}_t$.

Computing the b for all $O(k \log n)$ buckets takes $O(k \log n)$ time.
Algorithm for exactly sparse signals

Computed $F \cdot x$

Filtered signal $\hat{F} \ast \hat{x}$

Lemma
If t is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies $b = \hat{x}_t$.

Computing the b for all $O(k)$ buckets takes $O(k \log n)$ time.
Algorithm for exactly sparse signals

\[F \cdot x \text{ aliased to } k \text{ terms} \]

Filtered signal \(\hat{F} \ast \hat{x} \)

Lemma

If \(t \) is isolated in its bucket and in the "super-pass" region, the value \(b \) we compute for its bucket satisfies

\[b = \hat{x}_t. \]

Computing the \(b \) for all \(O(k) \) buckets takes \(O(k \log n) \) time.
Algorithm for exactly sparse signals

$F \cdot x$ aliased to k terms

Computed samples of $\hat{F} \ast \hat{x}$

Lemma
If t is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \hat{x}_t.$$

Computing the b for all $O(k)$ buckets takes $O(k \log n)$ time.
Algorithm for exactly sparse signals

$F \cdot x$ aliased to k terms

Computed samples of $\hat{F} \ast \hat{x}$

Lemma

If t is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \hat{x}_t.$$

Computing the b for all $O(k)$ buckets takes $O(k \log n)$ time.
Algorithm for exactly sparse signals

\[F \cdot x \text{ aliased to } k \text{ terms} \]

Knowledge about \(\hat{x} \)
Algorithm for *exactly sparse* signals

\[F \cdot x \] aliased to \(k \) terms

Knowledge about \(\hat{x} \)

Lemma

If \(t \) is isolated in its bucket and in the "super-pass" region, the value \(b \) we compute for its bucket satisfies

\[b = \hat{x}_t. \]

Computing the \(b \) for all \(O(k) \) buckets takes \(O(k \log n) \) time.
Algorithm for exactly sparse signals

$F \cdot x$ aliased to k terms

Knowledge about \hat{x}

Lemma

If t *is isolated in its bucket and in the “super-pass” region, the value* b *we compute for its bucket satisfies*

\[b = \hat{x}_t. \]

Computing the b *for all* $O(k)$ *buckets takes* $O(k \log n)$ *time.*
Algorithm

Lemma

For most t, the value b we compute for its bucket satisfies

$$b = \hat{x}_t.\]

Computing the b for all $O(k)$ buckets takes $O(k \log n)$ time.
Algorithm

Lemma

For most t, the value b we compute for its bucket satisfies

$$b = \hat{x}_t.$$

Computing the b for all $O(k)$ buckets takes $O(k \log n)$ time.

- Time-shift x by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t$.

Algorithm

Lemma

For most t, the value b we compute for its bucket satisfies*

$$ b = \hat{x}_t. $$

Computing the b for all $O(k)$ buckets takes $O(k \log n)$ time.

- Time-shift x by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t \implies$ can compute t.
Lemma

For most t, the value b we compute for its bucket satisfies

$$b = \hat{x}_t.$$

Computing the b for all $O(k)$ buckets takes $O(k \log n)$ time.

- Time-shift x by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t \implies$ can compute t.
 - Just like our 1-sparse recovery algorithm, $x_1/x_0 = \omega^t$.

Eric Price
Tutorial on Sparse Fourier Transforms
25 / 27
Algorithm

Lemma

For most t, the value b we compute for its bucket satisfies

$$b = \hat{x}_t.$$

Computing the b for all $O(k)$ buckets takes $O(k \log n)$ time.

- Time-shift x by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t \implies$ can compute t.
 - Just like our 1-sparse recovery algorithm, $x_1/x_0 = \omega^t$.
- Gives partial sparse recovery: \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.
Algorithm

Lemma

For most t, the value b we compute for its bucket satisfies

$$ b = \hat{x}_t. $$

Computing the b for all $O(k)$ buckets takes $O(k \log n)$ time.

- Time-shift x by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t \implies$ can compute t.
 - Just like our 1-sparse recovery algorithm, $x_1/x_0 = \omega^t$.
- Gives partial sparse recovery: \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.

Repeat $k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$
Algorithm

Lemma

For most t, the value b we compute for its bucket satisfies

$$b = \hat{x}_t.$$

Computing the b for all $O(k)$ buckets takes $O(k \log n)$ time.

- Time-shift x by one and repeat: $b' = \hat{x}_t \omega^t$.
- Divide to get $b'/b = \omega^t \implies$ can compute t.
 - Just like our 1-sparse recovery algorithm, $x_1/x_0 = \omega^t$.
- Gives partial sparse recovery: \hat{x}' such that $\hat{x} - \hat{x}'$ is $k/2$-sparse.

Repeat $k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$

$O(k \log n)$ time sparse Fourier transform.

Eric Price
Tutorial on Sparse Fourier Transforms
State of the Art

- Algorithms based on two kinds of filters:

 ▶ Comb filter works for Hadamard transform in the worst case and \(n = (pq)\ell \), in the average case.

 ▶ Interval filter works for constant dimensional transform in the worst case, where \(n \) has \(\Theta(k) \)-sized factors.

Exactly sparse: “optimal” is \(O(k) \) samples and \(O(k \log k) \) time (and \(\log (n/k) \) factor larger for Hadamard).

▶ Comb filter: optimal when it works

▶ Interval filter: \(O(k \log n) \) samples and time

Approximately sparse: “optimal” is \(O(k \log (n/k)) \) samples and \(O(k \log (n/k) \log n) \) time.
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Interval filter works for

\[n = \left(\frac{pq}{\ell} \right) \]

Exactly sparse: "optimal" is \(O(k) \) samples and \(O(k \log k) \) time

Approximately sparse: "optimal" is \(O(k \log \left(\frac{n}{k} \right)) \) samples and \(O(k \log \left(\frac{n}{k} \right) \log n) \) time

Comb filter: optimal when it works

Interval filter: optimal samples OR optimal time OR \(\log c \log n \)-competitive mixture.
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
 - >1 dimensional transform, or $n = (pq)^\ell$, in the average case.
 - Interval filter works for
 - Constant dimensional transform in the worst case, n has $\Theta(k)$-sized factors.

- Exactly sparse: "optimal" is $O(k)$ samples and $O(k \log k)$ time (and $\log(n/k)$ factor larger for Hadamard).

- Approximately sparse: "optimal" is $O(k \log(n/k))$ samples and $O(k \log(n/k) \log n)$ time.

- Comb filter: optimal when it works

- Interval filter: $O(k \log n)$ samples and $O(k \log(n/k) \log n)$ time (and $\log c \log n$-competitive mixture).
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
 - > 1 dimensional transform, or \(n = (pq)^\ell \), in the average case.
 - Interval filter works for
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
 - \(n > 1 \) dimensional transform, or \(n = (pq)^\ell \), in the average case.
 - Interval filter works for
 - Constant dimensional transform in the worst case, \(n \) has \(\Theta(k) \)-sized factors.
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
 - > 1 dimensional transform, or $n = (pq)^\ell$, in the average case.
 - Interval filter works for
 - Constant dimensional transform in the worst case, n has $\Theta(k)$-sized factors.

- Exactly sparse: “optimal” is $O(k)$ samples and $O(k \log k)$ time (and $\log(n/k)$ factor larger for Hadamard)
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
 - > 1 dimensional transform, or $n = (pq)^\ell$, in the average case.
 - Interval filter works for
 - Constant dimensional transform in the worst case, n has $\Theta(k)$-sized factors.

- Exactly sparse: “optimal” is $O(k)$ samples and $O(k \log k)$ time (and $\log(n/k)$ factor larger for Hadamard)
 - Comb filter: optimal when it works
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
 - > 1 dimensional transform, or $n = (pq)^\ell$, in the average case.
 - Interval filter works for
 - Constant dimensional transform in the worst case, n has $\Theta(k)$-sized factors.

- Exactly sparse: “optimal” is $O(k)$ samples and $O(k \log k)$ time (and $\log(n/k)$ factor larger for Hadamard)
 - Comb filter: optimal when it works
 - Interval filter: $O(k \log n)$ samples and time
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
 - \(\ell \) dimensional transform, or \(n = (pq)^\ell \), in the average case.
 - Interval filter works for
 - Constant dimensional transform in the worst case, \(n \) has \(\Theta(k) \)-sized factors.

Exactly sparse: “optimal” is \(O(k) \) samples and \(O(k \log k) \) time (and \(\log(n/k) \) factor larger for Hadamard)
 - Comb filter: optimal when it works
 - Interval filter: \(O(k \log n) \) samples and time

Approximately sparse: “optimal” is \(O(k \log(n/k)) \) samples and \(O(k \log(n/k) \log n) \) time
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
 - \(n = (pq)^\ell \), in the average case.
 - Interval filter works for
 - Constant dimensional transform in the worst case, \(n \) has \(\Theta(k) \)-sized factors.

- Exactly sparse: “optimal” is \(O(k) \) samples and \(O(k \log k) \) time (and \(\log(n/k) \) factor larger for Hadamard)
 - Comb filter: optimal when it works
 - Interval filter: \(O(k \log n) \) samples and time

- Approximately sparse: “optimal” is \(O(k \log(n/k)) \) samples and \(O(k \log(n/k) \log n) \) time
 - Comb filter: optimal when it works
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
 - > 1 dimensional transform, or \(n = (pq)^\ell \), in the average case.
 - Interval filter works for
 - Constant dimensional transform in the worst case, \(n \) has \(\Theta(k) \)-sized factors.

Exactly sparse: “optimal” is \(O(k) \) samples and \(O(k \log k) \) time (and \(\log(n/k) \) factor larger for Hadamard)
 - Comb filter: optimal when it works
 - Interval filter: \(O(k \log n) \) samples and time

Approximately sparse: “optimal” is \(O(k \log(n/k)) \) samples and \(O(k \log(n/k) \log n) \) time
 - Comb filter: optimal when it works
 - Interval filter: optimal samples OR optimal time OR \(\log^c \log n \)-competitive mixture.
State of the Art

- Algorithms based on two kinds of filters:
 - Comb filter works for
 - Hadamard transform in the worst case
 - > 1 dimensional transform, or $n = (pq)^\ell$, in the average case.
 - Interval filter works for
 - Constant dimensional transform in the worst case, n has $\Theta(k)$-sized factors.

Exactly sparse: “optimal” is $O(k)$ samples and $O(k \log k)$ time (and $\log(n/k)$ factor larger for Hadamard)
 - Comb filter: optimal when it works
 - Interval filter: $O(k \log n)$ samples and time

Approximately sparse: “optimal” is $O(k \log(n/k))$ samples and $O(k \log(n/k) \log n)$ time
 - Comb filter: optimal when it works
 - Interval filter: optimal samples OR optimal time OR $\log^c \log n$-competitive mixture.

Thank You