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The Problem: Quickly Computing Polynomial Expansions

Computing Sparse Chebyshev Expansions

The Problem: Rapidly Recover Ω and aω’s

f (x) =
∑
ω∈Ω

aωTω(x), Ω ⊂ [N], |Ω| = k � N

Tω(x) is the Chebyshev polynomial of degree ω ∈ [N]

Tω(x) := cos (ω arccos(x))

Choosing different samples yields an immediate solution!
I Sample according to cos

(
2πj
N

)
for j ∈ [N] and we get

f
(

cos
(

2πj
N

))
=
∑
ω∈Ω

aωTω

(
cos

(
2πj
N

))
=
∑
ω∈Ω

aω cos
(

2πjω
N

)
=
∑
ω∈Ω

aω
2

(
e

2πijω
N − e

−2πijω
N

)
.

I So ... sample according to cos
(

2πj
N

)
and use an SFT!
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The Problem: Quickly Computing Polynomial Expansions

Sparse Fourier Transforms (SFTs)

SFTs: Rapidly Recover Ω and aω’s for trigonometric polynomials

f (x) =
∑
ω∈Ω

aωe2πiωx , Ω ⊂ [N], |Ω| = k � N

Work by Mansour, Gilbert, Guha, Muthukrishnan, Strauss,
Hassanieh, Indyk, Katabi, Price, Lawlor, Wang, Christlieb, . . .
Fastest variants recover signals w.h.p. in O(k · logc N)-time
Several variants have theoretical error guarantees that mirror
compressive sensing guarantees.

One can recover a sparse vector ~as in O
(

k ·log5 N
ε·log log N

)
-time s.t. w.h.p.

∥∥~a− ~as
∥∥

2 ≤
∥∥~a− ~a opt

k

∥∥
2 +

ε ·
∥∥∥~a− ~a opt

(k/ε)

∥∥∥
1√

k
.
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The Problem: Quickly Computing Polynomial Expansions

A Sublinear-time Sparse Chebyshev Algorithm

The Problem: Rapidly Recover Ω and aω’s

f (x) =
∑
ω∈Ω

aωTω(x), Ω ⊂ [N], |Ω| = k � N

A Solution
Run the SFT of your choice on

g(x) := f (cos x) =
∑
ω∈Ω

aω
2

(
e

2πijω
N − e

−2πijω
N

)
.

Learn
(
ω,

a|ω|
2

)
for all ω ∈ Ω ∪ −Ω.

Discard negative frequencies, and double each Fourier coefficient
for positive frequencies in order to recover f (x).
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The Problem: Quickly Computing Polynomial Expansions

What About Other Polynomial Expansions?

Legendre polynomials are another natural choice that arise in
many applications (spherical harmonics).
Recursive Definition

P0(x) = 1
P1(x) = x

...

Pn+1(x) =
2n + 1
n + 1

· x · Pn(x)− n
n + 1

· Pn−1(x)

Orthogonal on [−1,1]

Can we sample with respect to a different function and then just
apply an SFT again?
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Results: Old and New

Related Work: Sparse Legendre Expansions

The Problem: Recover Ω and aω’s

f (x) =
∑
ω∈Ω

aωPω(x), Ω ⊂ [N], |Ω| = k � N

Prony-Like Approaches: Potts, Tasche, . . .
I O(k) unequally-spaced deterministic samples near zero.
I Uses the SVD/QR of a Hankel/Toeplitz matrix: O(k3)-time.
I Show numerical robustness to noise.

Compressive Sensing Approaches: Rauhut, Ward, . . .

I O(k · log4 N) random samples (i.i.d. from Chebyshev measure).
I Use Basis Pursuit, OMP, . . . , so Ω(N)-time.
I Show theoretical and numerical robustness to noise.

Today we will discuss how SFTs can provide robust recovery with
O(k · logc N)-samples/time.
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Results: Old and New

Related Work: Fast Methods for Standard Legendre

The Standard Problem: Recover a0,a2, . . . ,aN−1

f (x) =
N−1∑
n=0

anPn(x)

Want to solve for Legendre Coefficients in o(N2) time.
Alpert, Rokhlin, Potts, Steidl, Tasche, Iserles, . . .
Iserles reduces problem to FFT calculation + postprocessing

I Sample f at N complex values
I Take the FFT of the N samples
I Apply a fast linear transform to the FFT result to get a0,a2, . . . ,aN−1
I O(N log N)-time method

Can an SFT replace the FFT above in sparse setting?
Is sparsity preserved by this process?
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Results: Old and New

Isreles’ Method: Evaluate on Ellipse in Complex Plane

We take the FFT of the function f evaluated at points on an ellipse
in the complex plane. Get κ0, . . . , κN−1 ∈ C.
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Results: Old and New

Isreles’ Method: Fast Post-processing



a0
a1
a2
...
aN−3
aN−2
aN−1


≈



∗ · · · ∗ 0 0 0 0 0
0 ∗ · · · ∗ 0 0 0 0
0 0 ∗ · · · ∗ 0 0 0
0 0 0 ∗ · · · ∗ 0 0
0 0 0 0 ∗ · · · ∗ 0

...
0 0 0 0 0 0 0 ∗





κ0
κ1
κ2
...
κN−3
κN−2
κN−1


Post processing is equivalent to multiplying ~κ by an upper
triangular banded matrix.
Clearly, ~κ sparse =⇒ ~a is sparse + small errors.
Does ~a sparse =⇒ ~κ compressible? How compressible?
If ~κ ∈ CN is sparse we can use an SFT.
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Sparse Legendre via an SFT

It Works Pretty Well (so far...)

The Problem: Recover Ω and aω’s

f (x) =
∑
ω∈Ω

aωPω(x), Ω ⊂ [N], |Ω| = k � N

~κ does indeed appear to be compressible.
So, we can approximate ~κ with an SFT.
Once we have ~κ we can use Isreles’ Post-processing method, OR
We can find the support of ~κ, and then use Rauhut and Ward’s
RIP-based methods to finish estimating it.
End result: Janice and I have a O(k · logc N)-time method for
recovering Legendre-sparse f .
Preprint in progress...
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Sparse Legendre via an SFT

Runtime: Support Recovery with Probability ≥ 0.7

N = 221 = 2,097,152
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Sparse Legendre via an SFT

Sampling: Support Recovery with Probability ≥ 0.7

N = 221 = 2,097,152
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Sparse Legendre via an SFT

Thank You!

Questions?
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