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The Problem: Quickly Computing Polynomial Expansions

Computing Sparse Chebyshev Expansions

The Problem: Rapidly Recover Q2 and a,’s

=) a,Tu(x), QC[N], [Q=k<N

weN

@ T,(x) is the Chebyshev polynomial of degree w € [N]
T.,(x) := cos (warccos(x))
@ Choosing different samples yields an immediate solution!
» Sample according to cos (2“’) for j € [N] and we get
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» So ... sample according to cos (2’”) and use an SFT!
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The Problem: Quickly Computing Polynomial Expansions

Sparse Fourier Transforms (SFTs)

SFTs: Rapidly Recover Q2 and a,’s for trigonometric polynomials

X)=>Y_a,e®™* QC|N], Q=k<N

weN

@ Work by Mansour, Gilbert, Guha, Muthukrishnan, Strauss,
Hassanieh, Indyk, Katabi, Price, Lawlor, Wang, Christlieb, . ..

@ Fastest variants recover signals w.h.p. in O(k - log® N)-time

@ Several variants have theoretical error guarantees that mirror
compressive sensing guarantees.

@ One can recover a sparse vector &, in O (eﬁ(‘)'g?jgNN)—time s.t. w.h.p.
é —' opt
2z =2 —» opt (k/f)
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The Problem: Quickly Computing Polynomial Expansions

A Sublinear-time Sparse Chebyshev Algorithm

The Problem: Rapidly Recover 2 and a,’s

f(x)=> a,T(x), QC[N], |Q=k<N

weN

| A\

A Solution
@ Run the SFT of your choice on

_ N, Bw [ fmie i
g(x) :=f(cosx)=>_ > (e N e N )
weN
@ Learn (w,%) forallw e QU —Q.

@ Discard negative frequencies, and double each Fourier coefficient
for positive frequencies in order to recover f(x).

v
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The Problem: Quickly Computing Polynomial Expansions

What About Other Polynomial Expansions?

@ Legendre polynomials are another natural choice that arise in
many applications (spherical harmonics).

@ Recursive Definition

Po(x) =1
Pi(x)=x
2n+1 n
Pni1(x) = e - X - Pp(x) — P - Pp_1(x)

@ Orthogonal on [-1,1]

@ Can we sample with respect to a different function and then just
apply an SFT again?
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Related Work: Sparse Legendre Expansions

The Problem: Recover Q2 and a,’s

f(x)=> a,Pu(x), QC[N], |9 =k< N

weN

@ Prony-Like Approaches: Potts, Tasche, ...

» O(k) unequally-spaced deterministic samples near zero.
» Uses the SVD/QR of a Hankel/Toeplitz matrix: O(k®)-time.
» Show numerical robustness to noise.

@ Compressive Sensing Approaches: Rauhut, Ward, . ..

» O(k - log* N) random samples (i.i.d. from Chebyshev measure).
» Use Basis Pursuit, OMP, ..., so Q(N)-time.
» Show theoretical and numerical robustness to noise.

@ Today we will discuss how SFTs can provide robust recovery with
O(k -log® N)-samples/time.
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Related Work: Fast Methods for Standard Legendre

The Standard Problem: Recover ag, &, . . ., ay_1

N—1
f(x) = anPn(x)
n=0

@ Want to solve for Legendre Coefficients in o(N?) time.

@ Alpert, Rokhlin, Potts, Steidl, Tasche, Iserles, ...
@ Iserles reduces problem to FFT calculation + postprocessing

» Sample f at N complex values

» Take the FFT of the N samples

» Apply a fast linear transform to the FFT result to get ap, a», ..., an—1
» O(Nlog N)-time method

@ Can an SFT replace the FFT above in sparse setting?
@ |s sparsity preserved by this process?
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Results: Old and New

Isreles’ Method: Evaluate on Ellipse in Complex Plane

Imaginary

Real

@ We take the FFT of the function f evaluated at points on an ellipse
in the complex plane. Get ko, ...,kny_1 € C.
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Isreles’ Method: Fast Post-processing

ao * * 0 0 00 KQ
ai 0 = * 0 0 00 KA
ao 00 * cee ok 0 00 K2
~]1 00 0 * * 00
00 0 0 =« % 0 )
an-3 _ KN-3
an-2 : KN-2
aN-1 00 0 0 0 0 0 = KN—1

@ Post processing is equivalent to multiplying < by an upper
triangular banded matrix.

@ Clearly, 7 sparse = a s sparse + small errors.

@ Does 4 sparse = & compressible? How compressible?

@ If # ¢ CN is sparse we can use an SFT.
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It Works Pretty Well (so far...)

The Problem: Recover 2 and a,’s

f(x)=> a,P.(x), QC[N], |9 =k< N

weN

@ < does indeed appear to be compressible.
@ So, we can approximate & with an SFT.
@ Once we have R we can use Isreles’ Post-processing method, OR

@ We can find the support of %, and then use Rauhut and Ward’s
RIP-based methods to finish estimating it.

@ End result: Janice and | have a O(k - log® N)-time method for
recovering Legendre-sparse f.

@ Preprint in progress...
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Runtime: Support Recovery with Probability > 0.7

Support Recovery
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Sampling: Support Recovery with Probability > 0.7

Support Recovery -- AAFFT Sampling Complexity
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Sparse Legendre via an SFT

Thank You!

Questions?
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