Rapidly Computing Sparse Chebyshev and Legendre Coefficient Expansions via SFTs

Mark Iwen

Michigan State University

October 18, 2014

Work with Janice (Xianfeng) Hu - Graduating in May!

Computing Sparse Chebyshev Expansions

The Problem: Rapidly Recover Ω and a_{ω} 's

$$
f(x)=\sum_{\omega \in \Omega} a_{\omega} T_{\omega}(x), \quad \Omega \subset[N], \quad|\Omega|=k \ll N
$$

- $T_{\omega}(x)$ is the Chebyshev polynomial of degree $\omega \in[N]$

$$
T_{\omega}(x):=\cos (\omega \arccos (x))
$$

- Choosing different samples yields an immediate solution!
- Sample according to $\cos \left(\frac{2 \pi j}{N}\right)$ for $j \in[N]$ and we get

$$
\begin{aligned}
f\left(\cos \left(\frac{2 \pi j}{N}\right)\right) & =\sum_{\omega \in \Omega} a_{\omega} T_{\omega}\left(\cos \left(\frac{2 \pi j}{N}\right)\right)=\sum_{\omega \in \Omega} a_{\omega} \cos \left(\frac{2 \pi j \omega}{N}\right) \\
& =\sum_{\omega \in \Omega} \frac{a_{\omega}}{2}\left(\mathbb{e}^{\frac{2 \pi i j \omega}{N}}-\mathbb{e}^{\frac{-2 \pi i j \omega}{N}}\right)
\end{aligned}
$$

- So ... sample according to $\cos \left(\frac{2 \pi j}{N}\right)$ and use an SFT!

Sparse Fourier Transforms (SFTs)

SFTs: Rapidly Recover Ω and a_{ω} 's for trigonometric polynomials

$$
f(x)=\sum_{\omega \in \Omega} a_{\omega} \mathbb{e}^{2 \pi \mathrm{i} \omega x}, \Omega \subset[N], \quad|\Omega|=k \ll N
$$

- Work by Mansour, Gilbert, Guha, Muthukrishnan, Strauss, Hassanieh, Indyk, Katabi, Price, Lawlor, Wang, Christlieb, ...
- Fastest variants recover signals w.h.p. in $\mathcal{O}\left(k \cdot \log ^{c} N\right)$-time
- Several variants have theoretical error guarantees that mirror compressive sensing guarantees.
- One can recover a sparse vector \vec{a}_{s} in $\mathcal{O}\left(\frac{k \cdot \log ^{5} N}{\epsilon \cdot \log \log N}\right)$-time s.t. w.h.p.

$$
\left\|\vec{a}-\vec{a}_{\mathrm{s}}\right\|_{2} \leq\left\|\vec{a}-\vec{a}_{k}^{\mathrm{opt}}\right\|_{2}+\frac{\epsilon \cdot\left\|\vec{a}-\vec{a}_{(k / \epsilon)}^{\mathrm{opt}}\right\|_{1}}{\sqrt{k}} .
$$

A Sublinear-time Sparse Chebyshev Algorithm

The Problem: Rapidly Recover Ω and a_{ω} 's

$$
f(x)=\sum_{\omega \in \Omega} a_{\omega} T_{\omega}(x), \Omega \subset[N],|\Omega|=k \ll N
$$

A Solution

- Run the SFT of your choice on

$$
g(x):=f(\cos x)=\sum_{\omega \in \Omega} \frac{a_{\omega}}{2}\left(e^{\frac{2 \pi i j \omega}{N}}-e^{\frac{-2 \pi \mathrm{i} j \omega}{N}}\right) .
$$

- Learn $\left(\omega, \frac{a_{|\omega|}}{2}\right)$ for all $\omega \in \Omega \cup-\Omega$.
- Discard negative frequencies, and double each Fourier coefficient for positive frequencies in order to recover $f(x)$.

What About Other Polynomial Expansions?

- Legendre polynomials are another natural choice that arise in many applications (spherical harmonics).
- Recursive Definition

$$
\begin{aligned}
P_{0}(x) & =1 \\
P_{1}(x) & =x \\
\vdots & \\
P_{n+1}(x) & =\frac{2 n+1}{n+1} \cdot x \cdot P_{n}(x)-\frac{n}{n+1} \cdot P_{n-1}(x)
\end{aligned}
$$

- Orthogonal on $[-1,1]$
- Can we sample with respect to a different function and then just apply an SFT again?

Related Work: Sparse Legendre Expansions

The Problem: Recover Ω and a_{ω} 's

$$
f(x)=\sum_{\omega \in \Omega} a_{\omega} P_{\omega}(x), \Omega \subset[N], \quad|\Omega|=k \ll N
$$

- Prony-Like Approaches: Potts, Tasche, ...
- $\mathcal{O}(k)$ unequally-spaced deterministic samples near zero.
- Uses the SVD/QR of a Hankel/Toeplitz matrix: $\mathcal{O}\left(k^{3}\right)$-time.
- Show numerical robustness to noise.
- Compressive Sensing Approaches: Rauhut, Ward, ...
- $\mathcal{O}\left(k \cdot \log ^{4} N\right)$ random samples (i.i.d. from Chebyshev measure).
- Use Basis Pursuit, OMP, ..., so $\Omega(N)$-time.
- Show theoretical and numerical robustness to noise.
- Today we will discuss how SFTs can provide robust recovery with $\mathcal{O}\left(k \cdot \log ^{c} N\right)$-samples/time.

Related Work: Fast Methods for Standard Legendre

The Standard Problem: Recover $a_{0}, a_{2}, \ldots, a_{N-1}$

$$
f(x)=\sum_{n=0}^{N-1} a_{n} P_{n}(x)
$$

- Want to solve for Legendre Coefficients in o(N^{2}) time.
- Alpert, Rokhlin, Potts, Steidl, Tasche, Iserles, ...
- Iserles reduces problem to FFT calculation + postprocessing
- Sample f at N complex values
- Take the FFT of the N samples
- Apply a fast linear transform to the FFT result to get $a_{0}, a_{2}, \ldots, a_{N-1}$
- $\mathcal{O}(N \log N)$-time method
- Can an SFT replace the FFT above in sparse setting?
- Is sparsity preserved by this process?

Isreles' Method: Evaluate on Ellipse in Complex Plane

- We take the FFT of the function f evaluated at points on an ellipse in the complex plane. Get $\kappa_{0}, \ldots, \kappa_{N-1} \in \mathbb{C}$.

Isreles' Method: Fast Post-processing

$$
\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{N-3} \\
a_{N-2} \\
a_{N-1}
\end{array}\right) \approx\left(\begin{array}{llllllll}
* & \cdots & * & 0 & 0 & 0 & 0 & 0 \\
0 & * & \cdots & * & 0 & 0 & 0 & 0 \\
0 & 0 & * & \cdots & * & 0 & 0 & 0 \\
0 & 0 & 0 & * & \cdots & * & 0 & 0 \\
0 & 0 & 0 & 0 & * & \cdots & * & 0 \\
& & & & \vdots & & & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & *
\end{array}\right)\left(\begin{array}{l}
\kappa_{0} \\
\kappa_{1} \\
\kappa_{2} \\
\vdots \\
\kappa_{N-3} \\
\kappa_{N-2} \\
\kappa_{N-1}
\end{array}\right)
$$

- Post processing is equivalent to multiplying $\vec{\kappa}$ by an upper triangular banded matrix.
- Clearly, $\vec{\kappa}$ sparse $\Longrightarrow \vec{a}$ is sparse + small errors.
- Does ả sparse $\Longrightarrow \vec{\kappa}$ compressible? How compressible?
- If $\vec{\kappa} \in \mathbb{C}^{N}$ is sparse we can use an SFT.

It Works Pretty Well (so far...)

The Problem: Recover Ω and a_{ω} 's

$$
f(x)=\sum_{\omega \in \Omega} a_{\omega} P_{\omega}(x), \quad \Omega \subset[N], \quad|\Omega|=k \ll N
$$

- $\vec{\kappa}$ does indeed appear to be compressible.
- So, we can approximate $\vec{\kappa}$ with an SFT.
- Once we have $\vec{\kappa}$ we can use Isreles' Post-processing method, OR
- We can find the support of $\vec{\kappa}$, and then use Rauhut and Ward's RIP-based methods to finish estimating it.
- End result: Janice and I have a $\mathcal{O}\left(k \cdot \log ^{c} N\right)$-time method for recovering Legendre-sparse f.
- Preprint in progress...

Runtime: Support Recovery with Probability ≥ 0.7

- $N=2^{21}=2,097,152$

Sampling: Support Recovery with Probability ≥ 0.7

- $N=2^{21}=2,097,152$

Thank You!

Questions?

