Overview of Fourier sampling over the Boolean cube

Eric Blais
University of Waterloo

October 18, 2014

Sublinear-time Fourier transform algorithms

The two big questions for this talk:

1. When the spectrum of $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is sparse, can we compute its Fourier transform in sublinear time?
2. Can we test if $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ has a sparse spectrum in sublinear time?
(Spoiler: Yes, and yes.)

Boolean functions

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Boolean functions

$$
f:\{0,1\}^{n} \rightarrow \mathbb{R}
$$

Fourier transform of Boolean functions

Definition (Parity functions)

For any $S \subseteq[n]$, the function $\chi_{S}:\{0,1\}^{n} \rightarrow\{-1,1\}$ is defined by

$$
\chi_{S}(x)=(-1)^{\sum_{i \in S} x_{i}}
$$

- Notation: $[n]:=\{1,2, \ldots, n\}$.
- Parity functions are also known as linear functions or characters.
- The parity functions form an orthonormal basis of functions mapping $\{0,1\}^{n}$ to \mathbb{R} under the inner product

$$
\langle f, g\rangle=\underset{x}{\mathrm{E}}[f(x) g(x)] .
$$

Fourier transform of Boolean functions

Definition (Fourier coefficients)

The Fourier coefficient of $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ corresponding to
$S \subseteq[n]$ is

$$
\hat{f}(S)=\underset{x}{\mathrm{E}}\left[f(x) \chi_{S}(x)\right] .
$$

Theorem (Fourier inversion formula)
Every function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ can be represented as

$$
f(x)=\sum_{S \subseteq[n]} \hat{f}(S) \chi_{S}(x)
$$

Fourier transform of Boolean functions

Theorem (Plancherel's identity)
For every two functions $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$,

$$
\underset{x}{\mathrm{E}}[f(x) g(x)]=\sum_{S \subseteq[n]} \hat{f}(S) \hat{g}(S) .
$$

Corollary (Parseval's identity)
For every function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$,

$$
\underset{x}{\mathrm{E}}\left[f(x)^{2}\right]=\sum_{S \subseteq[n]} \hat{f}(S)^{2} .
$$

Part I: Sparse Fourier transforms for Boolean functions

The question

Algorithm model:

- Can query the value of $f(x)$ at any input $x \in\{0,1\}^{n}$.
- Randomized algorithm, can fail with probability $\leq \delta$.

Input assumptions:

- Consider only bounded functions $f:\{0,1\}^{n} \rightarrow[0,1]$.
- f is s-sparse: it has at most s non-zero Fourier coefficients.

Question: How efficiently can we estimate the
Fourier coefficients of f up to additive error $\pm \epsilon$?

Query-efficient Fourier transform

Theorem

Let \mathcal{F} be a family of subsets of $[n]$ that is given to the algorithm and contains all the non-zero Fourier coefficients of $f:\{0,1\}^{n} \rightarrow[0,1]$. Then the algorithm can approximate its Fourier transform with $q=O\left(\frac{1}{\epsilon^{2}} \log \frac{|\mathcal{F}|}{\delta}\right)$ queries.

Query-efficient Fourier transform

Theorem

Let \mathcal{F} be a family of subsets of $[n]$ that is given to the algorithm and contains all the non-zero Fourier coefficients of $f:\{0,1\}^{n} \rightarrow[0,1]$. Then the algorithm can approximate its Fourier transform with $q=O\left(\frac{1}{\epsilon^{2}} \log \frac{|\mathcal{F}|}{\delta}\right)$ queries.

Proof.

Hoeffding/Chernoff bound + the following simple algorithm:

- Draw q elements $x^{(1)}, \ldots, x^{(q)} \in\{0,1\}^{n}$ independently and uniformly at random.
- Estimate $\tilde{f}(S)=\frac{1}{q} \sum_{i=1}^{q} f\left(x^{(i)}\right) \chi_{S}\left(x^{(i)}\right)$ for each $S \in \mathcal{F}$.

Query-efficient Fourier transform

Theorem

Let \mathcal{F} be a family of subsets of $[n]$ that is given to the algorithm and contains all the non-zero Fourier coefficients of $f:\{0,1\}^{n} \rightarrow[0,1]$. Then the algorithm can approximate its Fourier transform with $q=O\left(\frac{1}{\epsilon^{2}} \log \frac{|\mathcal{F}|}{\delta}\right)$ queries.

- So we can estimate all the Fourier coefficients of $f:\{0,1\}^{n} \rightarrow[0,1]$ with $q=O\left(\frac{n}{\epsilon^{2}}+\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ queries.
- ... but the running time of the simple algorithm is $\Omega(|\mathcal{F}|)=\Omega\left(2^{n}\right)$ in this case.
- Taking $\mathcal{F}=\{S \subseteq[n]:|S| \leq k\}$ yields the Low-Degree Algorithm. [Linial, Mansour, Nisan '93]

Better running time through binary search?

The key lemma

Lemma

Fix $1 \leq k \leq n$ and let $H=\left\{y \in\{0,1\}^{n}: y_{k+1}=\cdots=y_{n}=0\right\}$. For any $T \subseteq[k]$,

$$
\sum_{S \subseteq[n]: S \cap[k]=T} \hat{f}(S)^{2}=\underset{x \in\{0,1\}^{n}, y \in H}{\mathrm{E}}\left[f(x) f(x \oplus y) \chi_{T}(y)\right] .
$$

Proof idea: Let $P_{T} f:\{0,1\}^{n} \rightarrow \mathbb{R}$ be the projection of the function obtained by defining

$$
\widehat{P_{T} f}(S)= \begin{cases}\hat{f}(S) & \text { if } S \cap[k]=T \\ 0 & \text { otherwise }\end{cases}
$$

The key insight is that $P_{T} f(x)=\mathrm{E}_{y \in H}\left[f(x+y) \chi_{T}(y)\right]$. The proof follows from Parseval's identity and elementary rearranging.

The key lemma

Lemma

Fix $1 \leq k \leq n$ and let $H=\left\{y \in\{0,1\}^{n}: y_{k+1}=\cdots=y_{n}=0\right\}$. For any $T \subseteq[k]$,

$$
\sum_{S \subseteq[n]: S \cap[k]=T} \hat{f}(S)^{2}={\underset{x \in\{0,1\}^{n}, y \in H}{\mathrm{E}}\left[f(x) f(x \oplus y) \chi_{T}(y)\right]}
$$

Consequence:

- We can estimate $\sum_{S \subseteq[n]: S \cap[k]=T} \hat{f}(S)^{2}$ to accuracy $\pm \epsilon$ with $q=O\left(\frac{1}{\epsilon^{2}}, \log \frac{1}{\delta}\right)$ queries.

Time-efficient Fourier transform

Theorem (Goldreich-Levin / Kushilevitz-Mansour)

Let $f:\{0,1\}^{n} \rightarrow[0,1]$ have an s-sparse spectrum. There is an algorithm that approximates the Fourier transform of f in time $O\left(\frac{n s}{\epsilon^{4}} \log \frac{1}{\delta}\right)$.

Proof.

1. Initialize $k=0$ and $\mathcal{L}_{0}=\{\emptyset\}$.
2. While $k \leq n$,
3. For each $T \in \mathcal{L}_{k}$,
4. Add T to \mathcal{L}_{k+1} if $\sum_{S: S \cap[k+1]=T} \hat{f}(S)^{2} \geq \frac{\epsilon^{2}}{2}$.
5. Add $T \cup\{k+1\}$ to \mathcal{L}_{k+1} if $\sum_{S: S \cap[k+1]=T \cup\{k+1\}} \hat{f}(S)^{2} \geq \frac{\epsilon^{2}}{2}$.
6. Return the estimates for each Fourier coefficient in \mathcal{L}_{n}.

Applications

The Low-Degree Algorithm can be used to learn

- DNFs
- Decision lists
- k-juntas (Time: $O\left(n^{k}\right)$.)
- AC^{0} circuits (Time: $O\left(n^{\text {polylog(n) }}\right)$.)

The GL/KM Algorithm can be used to learn

- Parity decision trees.
- k-juntas in time $O\left(2^{k}+\operatorname{poly}(n)\right)$.

1. Both the Low-Degree Algorithm and GL/KM Algorithm work in the more general setting where f is only promised to be close to s-sparse.
2. Despite implementing a binary search approach, the GL/KM Algorithm is non-adaptive; all the queries can be selected in advance.
3. Can the GL/KM algorithm be extended/modified to work in settings where there are strong restrictions on the set of allowed queries?

Part II: Testing Fourier sparsity

The question

- The function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is s-sparse if it has at most s non-zero Fourier coefficients.
- The function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is ϵ-far from s-sparse if for every function $g:\{0,1\}^{n} \rightarrow \mathbb{R}$ that is s-sparse,

$$
\operatorname{dist}(f, g):=\underset{x}{\mathrm{E}}\left[(f(x)-g(x))^{2}\right] \geq \epsilon
$$

Question: How efficiently can we test whether $f:\{0,1\}^{n} \rightarrow[0,1]$ is s-sparse or ϵ-far from s-sparse?

Testing with the Fourier transform

Theorem

There is an algorithm for testing whether $f:\{0,1\}^{n} \rightarrow[0,1]$ is s-sparse or ϵ-far from s-sparse with $O\left(\frac{n s^{3}}{\epsilon^{2}}\right)$ queries.

Algorithm:

- Run the Goldreich-Levin algorithm to compute the Fourier coefficients of f with accuracy $\pm \sqrt{\frac{\epsilon}{4 s}}$.
- If the function returned by the GL algorithm is not s-sparse, reject.
- Otherwise, estimate $\mathrm{E}_{x}\left[(f(x)-g(x))^{2}\right]$ with $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ queries and accept iff this distance is less than $\frac{\epsilon}{2}$.

A more efficient test

Theorem (Gopalan, O'Donnell, Servedio, Shpilka, Wimmer)
There is an algorithm for testing whether $f:\{0,1\}^{n} \rightarrow[0,1]$ is s-sparse or ϵ-far from s-sparse with poly $\left(s, \frac{1}{\epsilon}, \log \frac{1}{\delta}\right)$ queries.

Remarks

- Note that the query complexity is independent of n.
- In particular, this implies that the algorithm cannot estimate the Fourier coefficients of f-or even identify which ones are the non-zero coefficients.

Idea for the GOSSW test

Proof components for the GOSSW Theorem

Definition (Random hashing)

Draw $x^{(1)}, \ldots, x^{(t)} \in\{0,1\}^{n}$ uniformly and independently at random. For each string $z \in\{0,1\}^{t}$, define

$$
\mathcal{B}(z)=\left\{S \subseteq[n]: \chi_{S}\left(x^{(i)}\right)=z_{i} \text { for every } i \in[t]\right\} .
$$

Lemma (Key ingredient 1)
For every $z \in\{0,1\}^{t}$ and distinct sets $S, T \subseteq[n]$,

1. $\operatorname{Pr}[S \in \mathcal{B}(z)]=2^{-t}$.
2. $\operatorname{Pr}[S \in \mathcal{B}(z) \mid T \in \mathcal{B}(z)]=2^{-t}$.
3. Fix a family \mathcal{F} of k subsets of $[n]$. If $t \geq 2 \log k+\log \frac{1}{\delta}$, then the sets in \mathcal{F} all land in different buckets except with probability at most δ.

Proof components for the GOSSW Theorem

Lemma (Key ingredient 2)

For any $z \in\{0,1\}^{t}$,

$$
\sum_{S \in \mathcal{B}(z)} \hat{f}(S)^{2}=\underset{x \in\{0,1\}^{n}, y \in H}{\mathrm{E}}\left[f(x) f(x \oplus y) \chi_{T}(y)\right]
$$

where $H=\left\{y \in\{0,1\}^{n}:(-1)^{y \cdot x^{(i)}}=1\right.$ for every $\left.i \in[t]\right\}$ and $x^{(1)}, \ldots, x^{(t)} \in\{0,1\}^{n}$ are the elements drawn in the random hashing process.

Proof sketch of the GOSSW Theorem

Theorem (Gopalan, O'Donnell, Servedio, Shpilka, Wimmer)

There is an algorithm for testing whether $f:\{0,1\}^{n} \rightarrow[0,1]$ is s-sparse or ϵ-far from s-sparse with $\operatorname{poly}\left(s, \frac{1}{\epsilon}, \log \frac{1}{\delta}\right)$ queries.

Algorithm:

- Randomly hash the subsets of $[n]$ into buckets $\mathcal{B}(z)$, $z \in\{0,1\}^{t}$ for $t=O(\log s)$.
- Estimate $\sum_{S \in \mathcal{B}(z)} \hat{f}(S)^{2}$ for each $z \in\{0,1\}^{t}$.
- Accept iff at most s buckets have total weight at least $\frac{\epsilon}{100 \cdot 2^{t}}$.

Proof sketch of the GOSSW Theorem

Algorithm:

- Randomly hash the subsets of $[n]$ into buckets $\mathcal{B}(z)$, $z \in\{0,1\}^{t}$ for $t=O(\log s)$.
- Estimate $\sum_{S \in \mathcal{B}(z)} \hat{f}(S)^{2}$ for each $z \in\{0,1\}^{t}$.
- Accept iff at most s buckets have total weight at least $\frac{\epsilon}{100 \cdot 2^{t}}$.

Analysis:

- If f is s-sparse, the algorithm accepts whenever the estimates are accurate.
- If f is far from s-sparse because it has $s+1>s$ large Fourier coefficients, then with high probability they are separated by the random hash and the test rejects.
- Otherwise, if f is far from s-sparse because it has many small coefficients, then with high probability many of the buckets have weight at least $\frac{\epsilon}{100 \cdot 2^{t}}$.

1. The query complexity of the GOSSW algorithm is roughly $O\left(s^{14}\right)$. Can we do better?
(Spoiler: yes!)
2. The function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ has Fourier dimension d if $f(x)=g\left(\chi_{S_{1}}(x), \chi_{S_{2}}(x), \ldots, \chi_{S_{d}}(x)\right)$ for some function $g:\{0,1\}^{d} \rightarrow \mathbb{R}$ and subsets $S_{1}, \ldots, S_{d} \subseteq[n]$. Gopalan et al. showed that we can test d-dimensionality with $O\left(d 2^{2 d}\right)$ queries.
3. The GOSSW algorithm requires membership query access. Can we still define an efficient Fourier sparsity tester in more restricted query models?

Further reading

RYAN O'DONNELL

Thank you!

