Overview of Fourier sampling over the Boolean cube

> Eric Blais University of Waterloo

> > October 18, 2014

The two big questions for this talk:

- 1. When the spectrum of $f : \{0, 1\}^n \to \mathbb{R}$ is sparse, can we compute its Fourier transform in sublinear time?
- 2. Can we test if $f: \{0,1\}^n \to \mathbb{R}$ has a sparse spectrum in sublinear time?

(Spoiler: Yes, and yes.)

$f: \{0,1\}^n \to \{0,1\}$

$f: \{0,1\}^n \to \mathbb{R}$

Definition (Parity functions)

For any $S \subseteq [n]$, the function $\chi_S : \{0,1\}^n \to \{-1,1\}$ is defined by

$$\chi_S(x) = (-1)^{\sum_{i \in S} x_i}.$$

- Notation: $[n] := \{1, 2, \dots, n\}.$
- ▶ Parity functions are also known as *linear functions* or *characters*.
- ▶ The parity functions form an orthonormal basis of functions mapping $\{0,1\}^n$ to \mathbb{R} under the inner product

$$\langle f, g \rangle = \mathop{\mathrm{E}}_{x} [f(x)g(x)].$$

Definition (Fourier coefficients) The Fourier coefficient of $f : \{0, 1\}^n \to \mathbb{R}$ corresponding to $S \subseteq [n]$ is $\hat{f}(S) = \mathbb{E}\left[f(x)\chi(x)(x)\right]$

$$\tilde{f}(S) = \mathop{\mathrm{E}}_{x} \left[f(x) \chi_{S}(x) \right].$$

Theorem (Fourier inversion formula) Every function $f: \{0,1\}^n \to \mathbb{R}$ can be represented as

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x).$$

Theorem (Plancherel's identity) For every two functions $f, g : \{0, 1\}^n \to \mathbb{R}$, $\mathop{\mathrm{E}}_x \left[f(x)g(x) \right] = \sum_{S \subseteq [n]} \widehat{f}(S)\widehat{g}(S).$

Corollary (Parseval's identity)
For every function
$$f : \{0, 1\}^n \to \mathbb{R}$$
,

$$\mathop{\mathrm{E}}_x[f(x)^2] = \sum_{S \subseteq [n]} \widehat{f}(S)^2.$$

Part I: Sparse Fourier transforms for Boolean functions

Algorithm model:

- Can query the value of f(x) at any input $x \in \{0, 1\}^n$.
- ► Randomized algorithm, can fail with probability $\leq \delta$.

Input assumptions:

- ▶ Consider only **bounded** functions $f : \{0, 1\}^n \to [0, 1]$.
- f is *s*-sparse: it has at most *s* non-zero Fourier coefficients.

Question: How efficiently can we estimate the Fourier coefficients of f up to additive error $\pm \epsilon$?

Let \mathcal{F} be a family of subsets of [n] that is given to the algorithm and contains all the non-zero Fourier coefficients of $f: \{0,1\}^n \to [0,1]$. Then the algorithm can approximate its Fourier transform with $q = O(\frac{1}{\epsilon^2} \log \frac{|\mathcal{F}|}{\delta})$ queries.

Let \mathcal{F} be a family of subsets of [n] that is given to the algorithm and contains all the non-zero Fourier coefficients of $f: \{0,1\}^n \to [0,1]$. Then the algorithm can approximate its Fourier transform with $q = O(\frac{1}{\epsilon^2} \log \frac{|\mathcal{F}|}{\delta})$ queries.

Proof.

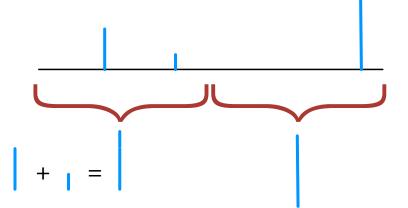
Hoeffding/Chernoff bound + the following simple algorithm:

- ▶ Draw q elements $x^{(1)}, \ldots, x^{(q)} \in \{0, 1\}^n$ independently and uniformly at random.
- Estimate $\tilde{f}(S) = \frac{1}{q} \sum_{i=1}^{q} f(x^{(i)}) \chi_S(x^{(i)})$ for each $S \in \mathcal{F}$.

Let \mathcal{F} be a family of subsets of [n] that is given to the algorithm and contains all the non-zero Fourier coefficients of $f: \{0,1\}^n \to [0,1]$. Then the algorithm can approximate its Fourier transform with $q = O(\frac{1}{\epsilon^2} \log \frac{|\mathcal{F}|}{\delta})$ queries.

- ▶ So we can estimate *all* the Fourier coefficients of $f: \{0,1\}^n \to [0,1]$ with $q = O(\frac{n}{\epsilon^2} + \frac{1}{\epsilon^2} \log \frac{1}{\delta})$ queries. (!)
- ... but the running time of the simple algorithm is $\Omega(|\mathcal{F}|) = \Omega(2^n)$ in this case.
- ▶ Taking $\mathcal{F} = \{S \subseteq [n] : |S| \le k\}$ yields the Low-Degree Algorithm. [Linial, Mansour, Nisan '93]

Better running time through binary search?



Lemma

Fix $1 \le k \le n$ and let $H = \{y \in \{0, 1\}^n : y_{k+1} = \dots = y_n = 0\}$. For any $T \subseteq [k]$,

$$\sum_{S \subseteq [n]: S \cap [k] = T} \hat{f}(S)^2 = \mathop{\mathrm{E}}_{x \in \{0,1\}^n, y \in H} \left[f(x) f(x \oplus y) \chi_T(y) \right].$$

Proof idea: Let $P_T f : \{0, 1\}^n \to \mathbb{R}$ be the projection of the function obtained by defining

$$\widehat{P_T f}(S) = \begin{cases} \widehat{f}(S) & \text{if } S \cap [k] = T \\ 0 & \text{otherwise.} \end{cases}$$

The key insight is that $P_T f(x) = E_{y \in H}[f(x+y)\chi_T(y)]$. The proof follows from Parseval's identity and elementary rearranging.

Lemma

Fix $1 \le k \le n$ and let $H = \{y \in \{0, 1\}^n : y_{k+1} = \dots = y_n = 0\}$. For any $T \subseteq [k]$,

$$\sum_{S \subseteq [n]: S \cap [k] = T} \hat{f}(S)^2 = \mathop{\mathrm{E}}_{x \in \{0,1\}^n, y \in H} \left[f(x) f(x \oplus y) \chi_T(y) \right].$$

Consequence:

▶ We can estimate $\sum_{S \subseteq [n]:S \cap [k]=T} \hat{f}(S)^2$ to accuracy $\pm \epsilon$ with $q = O(\frac{1}{\epsilon^2}, \log \frac{1}{\delta})$ queries.

Theorem (Goldreich-Levin / Kushilevitz-Mansour) Let $f: \{0,1\}^n \to [0,1]$ have an s-sparse spectrum. There is an algorithm that approximates the Fourier transform of f in time $O(\frac{ns}{\epsilon^4} \log \frac{1}{\delta}).$

Proof.

- 1. Initialize k = 0 and $\mathcal{L}_0 = \{\emptyset\}$.
- 2. While $k \leq n$,
- 3. For each $T \in \mathcal{L}_k$,
- 4. Add T to \mathcal{L}_{k+1} if $\sum_{S:S\cap[k+1]=T} \hat{f}(S)^2 \ge \frac{\epsilon^2}{2}$.
- 5. Add $T \cup \{k+1\}$ to \mathcal{L}_{k+1} if $\sum_{S:S \cap [k+1]=T \cup \{k+1\}} \hat{f}(S)^2 \ge \frac{\epsilon^2}{2}$.
- 6. Return the estimates for each Fourier coefficient in \mathcal{L}_n .

The Low-Degree Algorithm can be used to learn

- ► DNFs
- Decision lists
- ▶ k-juntas (Time: $O(n^k)$.)
- AC⁰ circuits (Time: $O(n^{\text{polylog}(n)})$.)

The GL/KM Algorithm can be used to learn

- ▶ Parity decision trees.
- k-juntas in time $O(2^k + \text{poly}(n))$.

- 1. Both the Low-Degree Algorithm and GL/KM Algorithm work in the more general setting where f is only promised to be *close* to *s*-sparse.
- 2. Despite implementing a binary search approach, the GL/KM Algorithm is *non-adaptive*; all the queries can be selected in advance.
- 3. Can the GL/KM algorithm be extended/modified to work in settings where there are strong restrictions on the set of allowed queries?

Part II: Testing Fourier sparsity

- ▶ The function $f : \{0, 1\}^n \to \mathbb{R}$ is *s*-sparse if it has at most *s* non-zero Fourier coefficients.
- ▶ The function $f : \{0, 1\}^n \to \mathbb{R}$ is ϵ -far from s-sparse if for every function $g : \{0, 1\}^n \to \mathbb{R}$ that is s-sparse,

$$\operatorname{dist}(f,g) := \mathop{\mathrm{E}}_{x}[(f(x) - g(x))^{2}] \ge \epsilon.$$

Question: How efficiently can we test whether $f: \{0, 1\}^n \to [0, 1]$ is *s*-sparse or ϵ -far from *s*-sparse?

There is an algorithm for testing whether $f : \{0,1\}^n \to [0,1]$ is s-sparse or ϵ -far from s-sparse with $O(\frac{ns^3}{\epsilon^2})$ queries.

Algorithm:

- ▶ Run the Goldreich-Levin algorithm to compute the Fourier coefficients of f with accuracy $\pm \sqrt{\frac{\epsilon}{4s}}$.
- ▶ If the function returned by the GL algorithm is not *s*-sparse, reject.
- ► Otherwise, estimate $E_x[(f(x) g(x))^2]$ with $O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$ queries and accept iff this distance is less than $\frac{\epsilon}{2}$.

Theorem (Gopalan, O'Donnell, Servedio, Shpilka, Wimmer) There is an algorithm for testing whether $f : \{0, 1\}^n \to [0, 1]$ is s-sparse or ϵ -far from s-sparse with $\operatorname{poly}(s, \frac{1}{\epsilon}, \log \frac{1}{\delta})$ queries.

Remarks

- Note that the query complexity is *independent* of n.
- In particular, this implies that the algorithm cannot estimate the Fourier coefficients of f—or even identify which ones are the non-zero coefficients.

Idea for the GOSSW test

Definition (Random hashing)

Draw $x^{(1)}, \ldots, x^{(t)} \in \{0, 1\}^n$ uniformly and independently at random. For each string $z \in \{0, 1\}^t$, define

 $\mathcal{B}(z) = \{ S \subseteq [n] : \chi_S(x^{(i)}) = z_i \text{ for every } i \in [t] \}.$

Lemma (Key ingredient 1)

For every $z \in \{0,1\}^t$ and distinct sets $S, T \subseteq [n]$,

- 1. $\Pr[S \in \mathcal{B}(z)] = 2^{-t}$.
- 2. $\Pr[S \in \mathcal{B}(z) \mid T \in \mathcal{B}(z)] = 2^{-t}.$
- 3. Fix a family \mathcal{F} of k subsets of [n]. If $t \geq 2\log k + \log \frac{1}{\delta}$, then the sets in \mathcal{F} all land in different buckets except with probability at most δ .

Lemma (Key ingredient 2) For any $z \in \{0, 1\}^t$,

$$\sum_{S \in \mathcal{B}(z)} \hat{f}(S)^2 = \mathop{\mathrm{E}}_{x \in \{0,1\}^n, y \in H} \left[f(x) f(x \oplus y) \chi_T(y) \right],$$

where $H = \{y \in \{0,1\}^n : (-1)^{y \cdot x^{(i)}} = 1 \text{ for every } i \in [t]\}$ and $x^{(1)}, \ldots, x^{(t)} \in \{0,1\}^n$ are the elements drawn in the random hashing process.

Theorem (Gopalan, O'Donnell, Servedio, Shpilka, Wimmer) There is an algorithm for testing whether $f : \{0, 1\}^n \to [0, 1]$ is s-sparse or ϵ -far from s-sparse with $\operatorname{poly}(s, \frac{1}{\epsilon}, \log \frac{1}{\delta})$ queries.

Algorithm:

- ► Randomly hash the subsets of [n] into buckets $\mathcal{B}(z)$, $z \in \{0,1\}^t$ for $t = O(\log s)$.
- Estimate $\sum_{S \in \mathcal{B}(z)} \hat{f}(S)^2$ for each $z \in \{0, 1\}^t$.
- Accept iff at most s buckets have total weight at least $\frac{\epsilon}{100\cdot 2^t}$.

Algorithm:

- ► Randomly hash the subsets of [n] into buckets $\mathcal{B}(z)$, $z \in \{0, 1\}^t$ for $t = O(\log s)$.
- Estimate $\sum_{S \in \mathcal{B}(z)} \hat{f}(S)^2$ for each $z \in \{0, 1\}^t$.
- Accept iff at most s buckets have total weight at least $\frac{\epsilon}{100.2^t}$.

Analysis:

- ▶ If f is *s*-sparse, the algorithm accepts whenever the estimates are accurate.
- If f is far from s-sparse because it has s + 1 > s large Fourier coefficients, then with high probability they are separated by the random hash and the test rejects.
- Otherwise, if f is far from s-sparse because it has many small coefficients, then with high probability many of the buckets have weight at least $\frac{\epsilon}{100\cdot 2^t}$.

- 1. The query complexity of the GOSSW algorithm is roughly $O(s^{14})$. Can we do better? (Spoiler: yes!)
- 2. The function $f : \{0, 1\}^n \to \mathbb{R}$ has Fourier dimension d if $f(x) = g(\chi_{S_1}(x), \chi_{S_2}(x), \dots, \chi_{S_d}(x))$ for some function $g : \{0, 1\}^d \to \mathbb{R}$ and subsets $S_1, \dots, S_d \subseteq [n]$. Gopalan et al. showed that we can test d-dimensionality with $O(d2^{2d})$ queries.
- 3. The GOSSW algorithm requires membership query access. Can we still define an efficient Fourier sparsity tester in more restricted query models?

Further reading

Thank you!