
Overview of Fourier sampling
over the Boolean cube

Eric Blais
University of Waterloo

October 18, 2014

Sublinear-time Fourier transform algorithms

The two big questions for this talk:

1. When the spectrum of f : {0, 1}n → R is
sparse, can we compute its Fourier transform
in sublinear time?

2. Can we test if f : {0, 1}n → R has a sparse
spectrum in sublinear time?

(Spoiler: Yes, and yes.)

1 / 25

Boolean functions

f : {0, 1}n→ {0, 1}

2 / 25

Boolean functions

f : {0, 1}n→ R

3 / 25

Fourier transform of Boolean functions

Definition (Parity functions)

For any S ⊆ [n], the function χS : {0, 1}n → {−1, 1} is defined by

χS(x) = (−1)
∑

i∈S xi .

I Notation: [n] := {1, 2, . . . , n}.
I Parity functions are also known as linear functions or

characters.

I The parity functions form an orthonormal basis of functions
mapping {0, 1}n to R under the inner product

〈f, g〉 = E
x

[f(x)g(x)].

4 / 25

Fourier transform of Boolean functions

Definition (Fourier coefficients)

The Fourier coefficient of f : {0, 1}n → R corresponding to
S ⊆ [n] is

f̂(S) = E
x

[f(x)χS(x)] .

Theorem (Fourier inversion formula)

Every function f : {0, 1}n → R can be represented as

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

5 / 25

Fourier transform of Boolean functions

Theorem (Plancherel’s identity)

For every two functions f, g : {0, 1}n → R,

E
x

[f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S).

Corollary (Parseval’s identity)

For every function f : {0, 1}n → R,

E
x

[f(x)2] =
∑
S⊆[n]

f̂(S)2.

6 / 25

Part I: Sparse Fourier transforms for Boolean
functions

The question

Algorithm model:

I Can query the value of f(x) at any input x ∈ {0, 1}n.

I Randomized algorithm, can fail with probability ≤ δ.

Input assumptions:

I Consider only bounded functions f : {0, 1}n → [0, 1].

I f is s-sparse: it has at most s non-zero Fourier coefficients.

Question: How efficiently can we estimate the
Fourier coefficients of f up to additive error ±ε?

7 / 25

Query-efficient Fourier transform

Theorem

Let F be a family of subsets of [n] that is given to the algorithm
and contains all the non-zero Fourier coefficients of
f : {0, 1}n → [0, 1]. Then the algorithm can approximate its

Fourier transform with q = O(1
ε2

log |F|δ) queries.

Proof.

Hoeffding/Chernoff bound + the following simple algorithm:

I Draw q elements x(1), . . . , x(q) ∈ {0, 1}n independently and
uniformly at random.

I Estimate f̃(S) = 1
q

∑q
i=1 f(x(i))χS(x(i)) for each S ∈ F .

8 / 25

Query-efficient Fourier transform

Theorem

Let F be a family of subsets of [n] that is given to the algorithm
and contains all the non-zero Fourier coefficients of
f : {0, 1}n → [0, 1]. Then the algorithm can approximate its

Fourier transform with q = O(1
ε2

log |F|δ) queries.

Proof.

Hoeffding/Chernoff bound + the following simple algorithm:

I Draw q elements x(1), . . . , x(q) ∈ {0, 1}n independently and
uniformly at random.

I Estimate f̃(S) = 1
q

∑q
i=1 f(x(i))χS(x(i)) for each S ∈ F .

8 / 25

Query-efficient Fourier transform

Theorem

Let F be a family of subsets of [n] that is given to the algorithm
and contains all the non-zero Fourier coefficients of
f : {0, 1}n → [0, 1]. Then the algorithm can approximate its

Fourier transform with q = O(1
ε2

log |F|δ) queries.

I So we can estimate all the Fourier coefficients of
f : {0, 1}n → [0, 1] with q = O(n

ε2
+ 1

ε2
log 1

δ) queries. (!)

I . . . but the running time of the simple algorithm is
Ω(|F|) = Ω(2n) in this case.

I Taking F = {S ⊆ [n] : |S| ≤ k} yields the Low-Degree
Algorithm. [Linial, Mansour, Nisan ’93]

9 / 25

Better running time through binary search?} }
+ =

10 / 25

The key lemma

Lemma

Fix 1 ≤ k ≤ n and let H = {y ∈ {0, 1}n : yk+1 = · · · = yn = 0}.
For any T ⊆ [k],∑

S⊆[n]:S∩[k]=T

f̂(S)2 = E
x∈{0,1}n,y∈H

[f(x)f(x⊕ y)χT (y)] .

Proof idea: Let PT f : {0, 1}n → R be the projection of the
function obtained by defining

P̂T f(S) =

{
f̂(S) if S ∩ [k] = T

0 otherwise.

The key insight is that PT f(x) = Ey∈H [f(x+ y)χT (y)]. The proof
follows from Parseval’s identity and elementary rearranging.

11 / 25

The key lemma

Lemma

Fix 1 ≤ k ≤ n and let H = {y ∈ {0, 1}n : yk+1 = · · · = yn = 0}.
For any T ⊆ [k],∑

S⊆[n]:S∩[k]=T

f̂(S)2 = E
x∈{0,1}n,y∈H

[f(x)f(x⊕ y)χT (y)] .

Consequence:

I We can estimate
∑

S⊆[n]:S∩[k]=T f̂(S)2 to accuracy ±ε with

q = O(1
ε2
, log 1

δ) queries.

12 / 25

Time-efficient Fourier transform

Theorem (Goldreich-Levin / Kushilevitz-Mansour)

Let f : {0, 1}n → [0, 1] have an s-sparse spectrum. There is an
algorithm that approximates the Fourier transform of f in time
O(ns

ε4
log 1

δ).

Proof.

1. Initialize k = 0 and L0 = {∅}.
2. While k ≤ n,

3. For each T ∈ Lk,
4. Add T to Lk+1 if

∑
S:S∩[k+1]=T f̂(S)2 ≥ ε2

2 .

5. Add T ∪{k+ 1} to Lk+1 if
∑

S:S∩[k+1]=T∪{k+1} f̂(S)2 ≥ ε2

2 .

6. Return the estimates for each Fourier coefficient in Ln.

13 / 25

Applications

The Low-Degree Algorithm can be used to learn

I DNFs

I Decision lists

I k-juntas (Time: O(nk).)

I AC0 circuits (Time: O(npolylog(n)).)

The GL/KM Algorithm can be used to learn

I Parity decision trees.

I k-juntas in time O(2k + poly(n)).

14 / 25

Remarks

1. Both the Low-Degree Algorithm and GL/KM Algorithm
work in the more general setting where f is only promised to
be close to s-sparse.

2. Despite implementing a binary search approach, the GL/KM
Algorithm is non-adaptive; all the queries can be selected in
advance.

3. Can the GL/KM algorithm be extended/modified to work in
settings where there are strong restrictions on the set of
allowed queries?

15 / 25

Part II: Testing Fourier sparsity

The question

I The function f : {0, 1}n → R is s-sparse if it has at most s
non-zero Fourier coefficients.

I The function f : {0, 1}n → R is ε-far from s-sparse if for
every function g : {0, 1}n → R that is s-sparse,

dist(f, g) := E
x

[(f(x)− g(x))2] ≥ ε.

Question: How efficiently can we test whether
f : {0, 1}n → [0, 1] is s-sparse or ε-far from
s-sparse?

16 / 25

Testing with the Fourier transform

Theorem

There is an algorithm for testing whether f : {0, 1}n → [0, 1] is

s-sparse or ε-far from s-sparse with O(ns
3

ε2
) queries.

Algorithm:

I Run the Goldreich-Levin algorithm to compute the Fourier
coefficients of f with accuracy ±

√
ε
4s .

I If the function returned by the GL algorithm is not s-sparse,
reject.

I Otherwise, estimate Ex[(f(x)− g(x))2] with O(1
ε2

log 1
δ)

queries and accept iff this distance is less than ε
2 .

17 / 25

A more efficient test

Theorem (Gopalan, O’Donnell, Servedio, Shpilka, Wimmer)

There is an algorithm for testing whether f : {0, 1}n → [0, 1] is
s-sparse or ε-far from s-sparse with poly(s, 1ε , log 1

δ) queries.

Remarks

I Note that the query complexity is independent of n.

I In particular, this implies that the algorithm cannot
estimate the Fourier coefficients of f—or even identify which
ones are the non-zero coefficients.

18 / 25

Idea for the GOSSW test

} } } } } } } }

19 / 25

Proof components for the GOSSW Theorem

Definition (Random hashing)

Draw x(1), . . . , x(t) ∈ {0, 1}n uniformly and independently at
random. For each string z ∈ {0, 1}t, define

B(z) = {S ⊆ [n] : χS(x(i)) = zi for every i ∈ [t]}.

Lemma (Key ingredient 1)

For every z ∈ {0, 1}t and distinct sets S, T ⊆ [n],

1. Pr[S ∈ B(z)] = 2−t.

2. Pr[S ∈ B(z) | T ∈ B(z)] = 2−t.

3. Fix a family F of k subsets of [n]. If t ≥ 2 log k + log 1
δ , then

the sets in F all land in different buckets except with
probability at most δ.

20 / 25

Proof components for the GOSSW Theorem

Lemma (Key ingredient 2)

For any z ∈ {0, 1}t,∑
S∈B(z)

f̂(S)2 = E
x∈{0,1}n,y∈H

[f(x)f(x⊕ y)χT (y)] ,

where H =
{
y ∈ {0, 1}n : (−1)y·x

(i)
= 1 for every i ∈ [t]

}
and

x(1), . . . , x(t) ∈ {0, 1}n are the elements drawn in the random
hashing process.

21 / 25

Proof sketch of the GOSSW Theorem

Theorem (Gopalan, O’Donnell, Servedio, Shpilka, Wimmer)

There is an algorithm for testing whether f : {0, 1}n → [0, 1] is
s-sparse or ε-far from s-sparse with poly(s, 1ε , log 1

δ) queries.

Algorithm:

I Randomly hash the subsets of [n] into buckets B(z),
z ∈ {0, 1}t for t = O(log s).

I Estimate
∑

S∈B(z) f̂(S)2 for each z ∈ {0, 1}t.
I Accept iff at most s buckets have total weight at least ε

100·2t .

22 / 25

Proof sketch of the GOSSW Theorem

Algorithm:

I Randomly hash the subsets of [n] into buckets B(z),
z ∈ {0, 1}t for t = O(log s).

I Estimate
∑

S∈B(z) f̂(S)2 for each z ∈ {0, 1}t.
I Accept iff at most s buckets have total weight at least ε

100·2t .

Analysis:

I If f is s-sparse, the algorithm accepts whenever the
estimates are accurate.

I If f is far from s-sparse because it has s+ 1 > s large
Fourier coefficients, then with high probability they are
separated by the random hash and the test rejects.

I Otherwise, if f is far from s-sparse because it has many
small coefficients, then with high probability many of the
buckets have weight at least ε

100·2t .

23 / 25

Remarks

1. The query complexity of the GOSSW algorithm is roughly
O(s14). Can we do better?

(Spoiler: yes!)

2. The function f : {0, 1}n → R has Fourier dimension d if
f(x) = g(χS1(x), χS2(x), . . . , χSd

(x)) for some function
g : {0, 1}d → R and subsets S1, . . . , Sd ⊆ [n]. Gopalan et al.
showed that we can test d-dimensionality with O(d22d)
queries.

3. The GOSSW algorithm requires membership query access.
Can we still define an efficient Fourier sparsity tester in more
restricted query models?

24 / 25

Further reading

25 / 25

Thank you!

