Overview of Fourier sampling over the Boolean cube

Eric Blais
University of Waterloo

October 18, 2014
Sublinear-time Fourier transform algorithms

The two big questions for this talk:

1. When the spectrum of \(f : \{0, 1\}^n \rightarrow \mathbb{R} \) is sparse, can we compute its Fourier transform in sublinear time?

2. Can we test if \(f : \{0, 1\}^n \rightarrow \mathbb{R} \) has a sparse spectrum in sublinear time?

(Spoiler: Yes, and yes.)
Boolean functions

\[f : \{0, 1\}^n \rightarrow \{0, 1\} \]
Boolean functions

\[f : \{0, 1\}^n \rightarrow \mathbb{R} \]
Fourier transform of Boolean functions

Definition (Parity functions)

For any $S \subseteq [n]$, the function $\chi_S : \{0, 1\}^n \rightarrow \{-1, 1\}$ is defined by

$$\chi_S(x) = (-1)^{\sum_{i \in S} x_i}.$$

- Notation: $[n] := \{1, 2, \ldots, n\}$.
- Parity functions are also known as linear functions or characters.
- The parity functions form an orthonormal basis of functions mapping $\{0, 1\}^n$ to \mathbb{R} under the inner product

$$\langle f, g \rangle = \mathbb{E}_x[f(x)g(x)].$$
Fourier transform of Boolean functions

Definition (Fourier coefficients)
The Fourier coefficient of $f : \{0, 1\}^n \to \mathbb{R}$ corresponding to $S \subseteq [n]$ is

$$\hat{f}(S) = \mathbb{E}_x [f(x)\chi_S(x)].$$

Theorem (Fourier inversion formula)

Every function $f : \{0, 1\}^n \to \mathbb{R}$ can be represented as

$$f(x) = \sum_{S \subseteq [n]} \hat{f}(S)\chi_S(x).$$
Fourier transform of Boolean functions

Theorem (Plancherel’s identity)

For every two functions $f, g : \{0, 1\}^n \to \mathbb{R}$,

$$
\mathbb{E}_x[f(x)g(x)] = \sum_{S \subseteq [n]} \hat{f}(S)\hat{g}(S).
$$

Corollary (Parseval’s identity)

For every function $f : \{0, 1\}^n \to \mathbb{R}$,

$$
\mathbb{E}_x[f(x)^2] = \sum_{S \subseteq [n]} \hat{f}(S)^2.
$$
Part I: Sparse Fourier transforms for Boolean functions
The question

Algorithm model:
- Can query the value of $f(x)$ at any input $x \in \{0, 1\}^n$.
- Randomized algorithm, can fail with probability $\leq \delta$.

Input assumptions:
- Consider only bounded functions $f : \{0, 1\}^n \to [0, 1]$.
- f is s-sparse: it has at most s non-zero Fourier coefficients.

Question: How efficiently can we estimate the Fourier coefficients of f up to additive error $\pm \epsilon$?
Query-efficient Fourier transform

Theorem

Let \mathcal{F} be a family of subsets of $[n]$ that is given to the algorithm and contains all the non-zero Fourier coefficients of $f : \{0, 1\}^n \rightarrow [0, 1]$. Then the algorithm can approximate its Fourier transform with $q = O\left(\frac{1}{\epsilon^2} \log \frac{|\mathcal{F}|}{\delta}\right)$ queries.
Theorem

Let \mathcal{F} be a family of subsets of $[n]$ that is given to the algorithm and contains all the non-zero Fourier coefficients of $f : \{0, 1\}^n \rightarrow [0, 1]$. Then the algorithm can approximate its Fourier transform with $q = O\left(\frac{1}{\epsilon^2} \log \frac{|\mathcal{F}|}{\delta}\right)$ queries.

Proof.

Hoeffding/Chernoff bound + the following simple algorithm:

- Draw q elements $x^{(1)}, \ldots, x^{(q)} \in \{0, 1\}^n$ independently and uniformly at random.
- Estimate $\tilde{f}(S) = \frac{1}{q} \sum_{i=1}^{q} f(x^{(i)}) \chi_S(x^{(i)})$ for each $S \in \mathcal{F}$.

\[\]
Query-efficient Fourier transform

Theorem

Let \mathcal{F} be a family of subsets of $[n]$ that is given to the algorithm and contains all the non-zero Fourier coefficients of $f : \{0, 1\}^n \to [0, 1]$. Then the algorithm can approximate its Fourier transform with $q = O\left(\frac{1}{\epsilon^2} \log \frac{|\mathcal{F}|}{\delta}\right)$ queries.

- So we can estimate all the Fourier coefficients of $f : \{0, 1\}^n \to [0, 1]$ with $q = O\left(\frac{n}{\epsilon^2} + \frac{1}{\epsilon^2} \log \frac{1}{\delta}\right)$ queries. (!)

- ... but the running time of the simple algorithm is $\Omega(|\mathcal{F}|) = \Omega(2^n)$ in this case.

- Taking $\mathcal{F} = \{S \subseteq [n] : |S| \leq k\}$ yields the Low-Degree Algorithm. [Linial, Mansour, Nisan ’93]
Better running time through binary search?
The key lemma

Lemma

Fix $1 \leq k \leq n$ and let $H = \{y \in \{0, 1\}^n : y_{k+1} = \cdots = y_n = 0\}$. For any $T \subseteq [k]$,

$$\sum_{S \subseteq [n] : S \cap [k] = T} \hat{f}(S)^2 = \mathbb{E}_{x \in \{0, 1\}^n, y \in H} [f(x)f(x \oplus y)\chi_T(y)].$$

Proof idea: Let $P_T f : \{0, 1\}^n \to \mathbb{R}$ be the projection of the function obtained by defining

$$\hat{P_T f}(S) = \begin{cases} \hat{f}(S) & \text{if } S \cap [k] = T \\ 0 & \text{otherwise.} \end{cases}$$

The key insight is that $P_T f(x) = \mathbb{E}_{y \in H} [f(x + y)\chi_T(y)]$. The proof follows from Parseval’s identity and elementary rearranging.
The key lemma

Lemma

Fix $1 \leq k \leq n$ and let $H = \{ y \in \{0, 1\}^n : y_{k+1} = \cdots = y_n = 0 \}$. For any $T \subseteq [k]$,

$$\sum_{S \subseteq [n]: S \cap [k] = T} \hat{f}(S)^2 = \mathbb{E}_{x \in \{0, 1\}^n, y \in H} [f(x) f(x \oplus y) \chi_T(y)].$$

Consequence:

- We can estimate $\sum_{S \subseteq [n]: S \cap [k] = T} \hat{f}(S)^2$ to accuracy $\pm \epsilon$ with $q = O\left(\frac{1}{\epsilon^2}, \log \frac{1}{\delta}\right)$ queries.
Time-efficient Fourier transform

Theorem (Goldreich-Levin / Kushilevitz-Mansour)

Let \(f : \{0, 1\}^n \rightarrow [0, 1] \) have an \(s \)-sparse spectrum. There is an algorithm that approximates the Fourier transform of \(f \) in time \(O\left(\frac{ns}{\epsilon^4 \log \frac{1}{\delta}}\right) \).

Proof.

1. Initialize \(k = 0 \) and \(\mathcal{L}_0 = \{\emptyset\} \).
2. While \(k \leq n \),
3. For each \(T \in \mathcal{L}_k \),
4. Add \(T \) to \(\mathcal{L}_{k+1} \) if \(\sum_{S : S \cap [k+1] = T} \hat{f}(S)^2 \geq \frac{\epsilon^2}{2} \).
5. Add \(T \cup \{k + 1\} \) to \(\mathcal{L}_{k+1} \) if \(\sum_{S : S \cap [k+1] = T \cup \{k+1\}} \hat{f}(S)^2 \geq \frac{\epsilon^2}{2} \).
6. Return the estimates for each Fourier coefficient in \(\mathcal{L}_n \).
Applications

The Low-Degree Algorithm can be used to learn

- DNFs
- Decision lists
- k-juntas (Time: $O(n^k)$.)
- AC^0 circuits (Time: $O(n^{\text{polylog}(n)})$.)

The GL/KM Algorithm can be used to learn

- Parity decision trees.
- k-juntas in time $O(2^k + \text{poly}(n))$.
Remarks

1. Both the Low-Degree Algorithm and GL/KM Algorithm work in the more general setting where f is only promised to be close to s-sparse.

2. Despite implementing a binary search approach, the GL/KM Algorithm is non-adaptive; all the queries can be selected in advance.

3. Can the GL/KM algorithm be extended/modified to work in settings where there are strong restrictions on the set of allowed queries?
Part II: Testing Fourier sparsity
The function $f : \{0, 1\}^n \rightarrow \mathbb{R}$ is s-sparse if it has at most s non-zero Fourier coefficients.

The function $f : \{0, 1\}^n \rightarrow \mathbb{R}$ is ϵ-far from s-sparse if for every function $g : \{0, 1\}^n \rightarrow \mathbb{R}$ that is s-sparse,

$$\text{dist}(f, g) := \mathbb{E}_{x}[(f(x) - g(x))^2] \geq \epsilon.$$

Question: How efficiently can we test whether $f : \{0, 1\}^n \rightarrow [0, 1]$ is s-sparse or ϵ-far from s-sparse?
Testing with the Fourier transform

Theorem

There is an algorithm for testing whether $f : \{0, 1\}^n \rightarrow [0, 1]$ is s-sparse or ϵ-far from s-sparse with $O\left(\frac{ns^3}{\epsilon^2}\right)$ queries.

Algorithm:

- Run the Goldreich-Levin algorithm to compute the Fourier coefficients of f with accuracy $\pm \sqrt{\frac{\epsilon}{4s}}$.
- If the function returned by the GL algorithm is not s-sparse, reject.
- Otherwise, estimate $E_x[(f(x) - g(x))^2]$ with $O\left(\frac{1}{\epsilon^2} \log \frac{1}{\delta}\right)$ queries and accept iff this distance is less than $\frac{\epsilon}{2}$.
A more efficient test

Theorem (Gopalan, O’Donnell, Servedio, Shpilka, Wimmer)

There is an algorithm for testing whether \(f : \{0, 1\}^n \rightarrow [0, 1] \) is \(s \)-sparse or \(\epsilon \)-far from \(s \)-sparse with \(\text{poly}(s, \frac{1}{\epsilon}, \log \frac{1}{\delta}) \) queries.

Remarks

- Note that the query complexity is *independent* of \(n \).
- In particular, this implies that the algorithm cannot estimate the Fourier coefficients of \(f \)—or even identify which ones are the non-zero coefficients.
Idea for the GOSSW test
Proof components for the GOSSW Theorem

Definition (Random hashing)

Draw \(x^{(1)}, \ldots, x^{(t)} \in \{0, 1\}^n\) uniformly and independently at random. For each string \(z \in \{0, 1\}^t\), define

\[
\mathcal{B}(z) = \{S \subseteq [n] : \chi_S(x^{(i)}) = z_i \text{ for every } i \in [t]\}.
\]

Lemma (Key ingredient 1)

For every \(z \in \{0, 1\}^t\) and distinct sets \(S, T \subseteq [n]\),

1. \(\Pr[S \in \mathcal{B}(z)] = 2^{-t}\).
2. \(\Pr[S \in \mathcal{B}(z) \mid T \in \mathcal{B}(z)] = 2^{-t}\).
3. Fix a family \(\mathcal{F}\) of \(k\) subsets of \([n]\). If \(t \geq 2 \log k + \log \frac{1}{\delta}\), then the sets in \(\mathcal{F}\) all land in different buckets except with probability at most \(\delta\).
Proof components for the GOSSW Theorem

Lemma (Key ingredient 2)

For any $z \in \{0, 1\}^t$,

$$\sum_{S \in \mathcal{B}(z)} \hat{f}(S)^2 = \mathbb{E}_{x \in \{0,1\}^n, y \in H} [f(x)f(x \oplus y)\chi_T(y)],$$

where $H = \{y \in \{0, 1\}^n : (-1)^y \cdot x^{(i)} = 1 \text{ for every } i \in [t]\}$ and $x^{(1)}, \ldots, x^{(t)} \in \{0, 1\}^n$ are the elements drawn in the random hashing process.
Proof sketch of the GOSSW Theorem

Theorem (Gopalan, O’Donnell, Servedio, Shpilka, Wimmer)

There is an algorithm for testing whether \(f : \{0, 1\}^n \rightarrow [0, 1] \) is \(s \)-sparse or \(\epsilon \)-far from \(s \)-sparse with \(\text{poly}(s, \frac{1}{\epsilon}, \log \frac{1}{\delta}) \) queries.

Algorithm:

1. Randomly hash the subsets of \([n]\) into buckets \(B(z) \), \(z \in \{0, 1\}^t \) for \(t = O(\log s) \).
2. Estimate \(\sum_{S \in B(z)} \hat{f}(S)^2 \) for each \(z \in \{0, 1\}^t \).
3. Accept iff at most \(s \) buckets have total weight at least \(\frac{\epsilon}{100 \cdot 2^t} \).
Proof sketch of the GOSSW Theorem

Algorithm:
- Randomly hash the subsets of $[n]$ into buckets $B(z)$, $z \in \{0, 1\}^t$ for $t = O(\log s)$.
- Estimate $\sum_{S \in B(z)} \hat{f}(S)^2$ for each $z \in \{0, 1\}^t$.
- Accept iff at most s buckets have total weight at least $\frac{\epsilon}{100 \cdot 2^t}$.

Analysis:
- If f is s-sparse, the algorithm accepts whenever the estimates are accurate.
- If f is far from s-sparse because it has $s + 1 > s$ large Fourier coefficients, then with high probability they are separated by the random hash and the test rejects.
- Otherwise, if f is far from s-sparse because it has many small coefficients, then with high probability many of the buckets have weight at least $\frac{\epsilon}{100 \cdot 2^t}$.
Remarks

1. The query complexity of the GOSSW algorithm is roughly $O(s^{14})$. Can we do better? (Spoiler: yes!)

2. The function $f : \{0, 1\}^n \to \mathbb{R}$ has Fourier dimension d if $f(x) = g(\chi_{S_1}(x), \chi_{S_2}(x), \ldots, \chi_{S_d}(x))$ for some function $g : \{0, 1\}^d \to \mathbb{R}$ and subsets $S_1, \ldots, S_d \subseteq [n]$. Gopalan et al. showed that we can test d-dimensionality with $O(d2^{2d})$ queries.

3. The GOSSW algorithm requires membership query access. Can we still define an efficient Fourier sparsity tester in more restricted query models?
Further reading
Thank you!