A Convex Approach for Designing "Good" Linear Embeddings

Chinmay Hegde

Massachusetts Institute of Technology

Redundancy in Images

Image Acquisition

 Can we leverage this fact to build an acquisition system that is **specifically tailored** to such signals?

- Design criteria
 - Linear mapping
 - Reduce dimensionality as much as possible
 - Ensure information
 preservation

$$\left\|\mathcal{P}x_1 - \mathcal{P}x_2\right\| \approx \left\|x_1 - x_2\right\|$$

"Near-isometric embedding"

• Q. Is this possible?

• A. Yes

[**JL**] Suppose #X = Q $M = O\left(\frac{\log(Q)}{\delta^2}\right)$

 $\Phi \sim \operatorname{subGauss}(M, N)$

Then, w.h.p.,

$$1 - \delta \le \frac{\|\Phi(x_1 - x_2)\|^2}{\|x_1 - x_2\|^2} \le 1 + \delta$$

- Q. Can we beat random projections?
- **A.** ...
 - On the one hand: Lower bounds for JL

$$M \ge \Omega\left(\frac{1}{\delta^2 \log(1/\delta)} \log Q\right)$$
 [Alon

'03]

- Q. Can we beat random projections?
- **A.** ...
 - On the one hand: Lower bounds for JL

$$M \ge \Omega\left(\frac{1}{\delta^2 \log(1/\delta)} \log Q\right)$$
 [Alon '03]

- On the other hand: Carefully constructed linear projections can often do better
- This Talk: An optimization based approach for designing "good" linear embeddings

Given: (normalized) pairwise differences

$$v_1, v_2, \ldots, v_Q, \|v_i\|_2 = 1$$

Want: the "shortest" matrix $\Phi\,$, such that

$$1 - \delta \le \|\Phi v_i\|^2 \le 1 + \delta$$
$$i = 1, 2, \dots, Q$$

Given: (normalized) pairwise differences

$$v_1, v_2, \ldots, v_Q, \|v_i\|_2 = 1$$

Want: the "shortest" matrix $\Phi\,$, such that

• Convert quadratic constraints in Φ into *linear* constraints in $P = \Phi^T \Phi$ ("Lifting trick")

$$\mathcal{A}: P \mapsto \{v_i^T P v_i\}_{i=1}^Q$$

• Rank of P = number of rows in Φ

• Convert quadratic constraints in Φ into *linear* constraints in $P = \Phi^T \Phi$ ("Lifting trick")

$$\mathcal{A}: P \mapsto \{v_i^T P v_i\}_{i=1}^Q$$

- Use a *nuclear-norm* relaxation of the rank
- Simplified problem:

 $\begin{array}{ll} \text{minimize } \#\text{rows}(\Phi) & \text{minimize } \|P\|_* \\ \left\| \|\Phi v_i\|_2^2 - 1 \right\| \leq \delta & \Longleftrightarrow & \|\mathcal{A}(P) - \mathbf{1}\|_\infty \leq \delta \\ i = 1, 2, \dots, Q & P \succ 0, \ P = P^T \end{array}$

Semidefinite Formulation

minimize $||P||_*$ $||\mathcal{A}(P) - \mathbf{1}||_{\infty} \leq \delta$ $P \succ 0, \ P = P^T$

- Solvable via standard interior point techniques
- Rank of solution is controlled by δ

Semidefinite Formulation

minimize $||P||_*$ $||\mathcal{A}(P) - \mathbf{1}||_{\infty} \leq \delta$ $P \succ 0, \ P = P^T$

- Solvable via standard interior point techniques
- Rank of solution is controlled by δ
- Practical considerations: N large, Q very large! For a matrix P of size N x N, the computational costs per iteration scale as $O(Q^3 + QN^6 + Q^2N^4)$

Algorithm

minimize $||P||_*$ $||\mathcal{A}(P) - \mathbf{1}||_{\infty} \leq \delta$ $P \succ 0, \ P = P^T$

• Alternating Direction Method of Multipliers (ADMM)

minimize $||P||_*$ $P = L, \ \mathcal{A}(L) = q, \ ||q - \mathbf{1}||_{\infty} \leq \delta$

Algorithm: "NuMax"

minimize $||P||_*$ $||\mathcal{A}(P) - \mathbf{1}||_{\infty} \leq \delta$ $P \succ 0, \ P = P^T$

• Alternating Direction Method of Multipliers (ADMM)

minimize
$$||P||_*$$

 $P = L, \ \mathcal{A}(L) = q, \ ||q - \mathbf{1}||_{\infty} \le \delta$

- solve for P using spectral thresholding
- solve for L using least-squares
- solve for q using "squishing"

Computational costs per iteration: $O(Q^2N^2)$

Ext: Task Adaptivity

Can prune the secants according to the task at hand

$$\mathcal{A}: P \mapsto \{v_i^T P v_i\}_{i=1}^Q$$

- If goal is signal reconstruction, preserve **all** pairwise differences
- If goal is classification, preserve only **inter-class** pairwise differences
- Can preferentially weight the input vectors according to importance (connections with *boosting*)

Ext: Model Adaptivity

 Designing sensing matrices for redundant dictionaries

$$D = [d_1, d_2, \ldots, d_S]$$

Desiderata: the "holographic basis"

 D must be as
 incoherent as possible (in terms of mutual/
 average coherence) for good reconstruction

 [Elad06]

Ext: Model Adaptivity

 Designing sensing matrices for redundant dictionaries

$$D = [d_1, d_2, \ldots, d_S]$$

- Desiderata: the "holographic basis" *ΦD* must be as *incoherent* as possible (in terms of mutual/ average coherence) for good reconstruction [Elad06]
- **Upshot**: coherence \rightarrow pairwise inner products \rightarrow linear constraints: $\langle \Phi d_i, \Phi d_j \rangle = d_i^T P d_j$
- Hence, simple variant of NuMax works $\mathcal{A}: P \mapsto \{d_i^T P d_j\}_{i,j}$

M=40 linear measurements enough to ensure isometry constant of 0.01

Squares: CS Reconstruction

NuMax uniformly beats Random Projections

Circles vs. Squares

NuMax beats Random Projections, PCA

Circles vs. Squares

NuMax beats Random Projections, PCA

Circles vs. Squares

NuMax beats Random Projections, PCA

MNIST Dataset

LabelMe: Image Retrieval

- Goal: preserve neighborhood structure
- N = 512, Q = 4000, M = 45 suffices
- NuMax beats Random, PCA

(Some) Theory

 $\begin{array}{ll} \text{minimize rank}(\Phi) & \text{minimize } \|P\|_* \\ \left\| \|\Phi v_i\|_2^2 - 1 \right\| \leq \delta & \Longleftrightarrow & \|\mathcal{A}(P) - \mathbf{1}\|_{\infty} \leq \delta \\ i = 1, 2, \dots, Q & P \succ 0, \ P = P^T \end{array}$

Can we predict (or bound) the rank of NuMax solution?

(Some) Theory

 $\begin{array}{ll} \text{minimize rank}(\Phi) & \text{minimize } \|P\|_* \\ \left\| \|\Phi v_i\|_2^2 - 1 \right\| \leq \delta & \Longleftrightarrow & \|\mathcal{A}(P) - \mathbf{1}\|_\infty \leq \delta \\ i = 1, 2, \dots, Q & P \succ 0, \ P = P^T \end{array}$

- Can we predict (or bound) the rank of NuMax solution?
- Result:

$$M^* \leq \left\lceil \frac{\sqrt{8Q+1}-1}{2} \right\rceil$$

(easy: count the number of active constraints)

Summary

 Goal: develop a representation for data that is *linear, isometric*

- Can be posed as a rank-minimization problem
 - Semi-definite program (SDP) achieves this
 - NuMax achieves this *very efficiently*

Applications: Compressive sensing, classification, retrieval, ++

[HSYB12] "A Convex Approach for Learning Near-Isometric Linear Embeddings", Nov 2012