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Redundancy in Images 



Image Acquisition 

•  Information content <<< size of signal 

•  Can we leverage this fact to build an acquisition 
system that is specifically tailored to such 
signals?  

 Sensor         



(Linear) Dim. Reduction 

•  Design criteria 

–  Linear mapping 
–  Reduce dimensionality as                                                  

much as possible 
–  Ensure information 

preservation 

 “Near-isometric embedding” 

•  Q. Is this possible? 



(Linear) Dim. Reduction 

•  A. Yes 

   [JL] Suppose 

    Then, w.h.p.,   



(Linear) Dim. Reduction 

•  Q. Can we beat random projections? 

•  A. …      
    - On the one hand: Lower bounds for JL  

                                                                  [Alon 
’03]    



(Linear) Dim. Reduction 

•  Q. Can we beat random projections? 

•  A. …      
    - On the one hand: Lower bounds for JL  

                                                                 [Alon ’03]    

 - On the other hand: Carefully constructed linear    
 projections can often do better 

•  This Talk: An optimization based approach for 
designing “good” linear embeddings    



Designing a “Good” Linear Map 

Given: (normalized) pairwise differences 

Want: the “shortest” matrix     , such that  
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Designing a “Good” Linear Map 

•  Convert quadratic constraints in     into linear 
constraints in               (“Lifting trick”) 

•  Rank of P = number of rows in  



Designing a “Good” Linear Map 

•  Convert quadratic constraints in     into linear 
constraints in               (“Lifting trick”) 

•  Use a nuclear-norm relaxation of the rank 

•  Simplified problem: 

[HSYB12] 



-  Solvable via standard interior point techniques 

-  Rank of solution is controlled by  

Semidefinite Formulation 



-  Solvable via standard interior point techniques 

-  Rank of solution is controlled by  

-  Practical considerations: N large, Q very large! 
 For a matrix P of size N x N, the computational 
costs per iteration scale as  

Semidefinite Formulation 



•  Alternating Direction Method of Multipliers (ADMM)    

    
   

Algorithm 

[HSYB12] 



•  Alternating Direction Method of Multipliers (ADMM)    

    
  - solve for P using spectral thresholding 
  - solve for L using least-squares 

     - solve for q using “squishing” 

   Computational costs per iteration:  

Algorithm: “NuMax” 

[HSYB12] 



Ext: Task Adaptivity 

   Can prune the secants according to the task at hand 

–  If goal is signal reconstruction, preserve all pairwise 
differences 

–  If goal is classification, preserve only inter-class pairwise 
differences 

–  Can preferentially weight the input vectors according to 
importance (connections with boosting) 



Ext: Model Adaptivity 

•  Designing sensing matrices for redundant 
dictionaries 

•  Desiderata: the “holographic basis”        must be as 
incoherent as possible (in terms of mutual/
average coherence) for good reconstruction             
[Elad06] 



Ext: Model Adaptivity 

•  Designing sensing matrices for redundant 
dictionaries 

•  Desiderata: the “holographic basis”        must be as 
incoherent as possible (in terms of mutual/
average coherence) for good reconstruction             
[Elad06] 

•  Upshot: coherence  pairwise inner products  
linear constraints: 

•  Hence, simple variant of NuMax works          



Squares 

M=40 linear measurements enough to ensure  
isometry constant of 0.01 

0 0.2 0.4 0.6 0.80

20

40

60

80

100

Isometry constant δ

Nu
m

be
r o

f m
ea

su
re

m
en

ts 
M

 

 

NuMax
PCA
Random



15 20 25 30 35
0

5

10

15

20

M

M
S

E

 

 

NuMax: 20 dB
NuMax: 6 dB
NuMax: 0 dB
Random: 20 dB
Random: 6 dB
Random: 0 dB

Squares: CS Reconstruction 

NuMax uniformly beats Random Projections 



Circles vs. Squares 
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MNIST Dataset 

M = 10 basis functions 
suffice to achieve    = 0.2 



- Goal: preserve neighborhood structure 

- N = 512, Q = 4000, M = 45 suffices 

- NuMax beats Random, PCA 

LabelMe: Image Retrieval 
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(Some) Theory 

•  Can we predict (or bound) the rank of NuMax 
solution? 



(Some) Theory 

•  Can we predict (or bound) the rank of NuMax 
solution? 

•  Result: 

  (easy: count the number of active constraints) 



Summary 

•  Goal: develop a representation for data that is 
linear, isometric 

•  Can be posed as a rank-minimization problem 
–  Semi-definite program (SDP) achieves this 
–  NuMax achieves this very efficiently 

•  Applications: Compressive sensing, classification, 
retrieval, ++ 

[HSYB12] “A Convex Approach for Learning Near-Isometric Linear 
Embeddings”, Nov 2012 


