Average-Case Sparse Fourier
Transform Algorithms

Ghazi, Hassanieh, Indyk, Katabi, Price, Lixin, “Sample-Optimal Average-Case Sparse Fourier Transform in 2D”

Fourier Transform

60

 Discrete Fourier Transform: ol
— Given: a signal x[1...n] -ZZ:MWM
— Goal: compute the frequency = ﬁ:ﬂ:

vector x" where i o
e Sparse Fourier Transform o4 mf‘"“““
— Only “few” “large” coefficients = Sampled Audio Data (Time)
. GL89, KM90, Mansour;92’ W DFT of Audio Samples (Frequency)
GGIMS’02, AGS’03, GMS’05,
lwen’10, Akavia’10,

HIKP’12,BCGLS’12,LWC’12...

SFFT
[Hassanieh, Indyk, Katabi, Price’12]

* All algorithms randomized, with constant
probability of success, n is a power of 2

* Exactly k-sparse case : O(k log n)
(SFFT 3.0)

* Approximately k-sparse case
— Let Errk, (x*)=min csparse 22 | 1X™-2M |5
— L, /I, guarantee | |x"-y*| |, < CErrk,(x*): O(k log(n) log(n/k))
time
(SFFT 4.0)
— Weaker results for I/, guarantee
(SFFT 1.0 and SFFT 2.0)

Sample complexity?

SFFT 3.0 (exact) O(k logn) O(k logn)

SFFT 4.0 (robust) O(k log(n) log(n/k)) O(k log(n) log(n/k)) klog (n/k)

How Does Sparse FFT Work?

1- Bucketize
Divide spectrum
into a few buckets

2- Estimate
Estimate the large
coefficient
(position and
value) in each non-
empty bucket

f

Bucketization

FFFFFF (time] freq)

0.2
O Y Y Y I
Bin

For F = Sinc x Gaussian, |supp”/n(F)| * | supp>/"(FA)|=nlogn
— This leads to O(k log n) sample complexity

Spike train is better (optimal): |supp(F)|*|supp(F*)|=n (see Mark Iwen’s talk)
However, can’t hash multiple times
— Frequenciesiand j fall into the same bucket iff i=j mod B
— Invariant under affine transform
But what if the coefficients are distributed at random ? E.g., k-non-zeros in random places
— Lawlor-Wang-Christlieb’12: O(k) samples, but sampling at arbitrary points

Bucketization using spike train =

aliasing

* Frequenciesiand jfall into the same bucket iff i=j

mod B

7|\

7|\
/ \
/ \

d
.4:../?\;/ 1

\
[FY\-M_. 12 3
Subsample

r\\nz MNeas,

Time

’T]T;?w>
WIU

Frequency

FFT) -t

FFT>

 What happens if we alias random frequencies ?

Spectral balls and bins

k balls (coefficients), B buckets/bins
— Need B>k? to achieve isolation

— Sample complexity >k?, i.e., bad
Issue: we need more than one way
of aliasing frequencies

This is possible if, e.g., we have

— 2D transform over na n x n grid

— Suppose that k=n

Then we can define buckets to be
either single columns or single rows

12345678910

W/

12345

Alternating rows/columns

HEENEEENE:

¢

nXxngri

PN

Analysis

* Analysis

With good probability (over the input) the
process converges after O(log n) steps for k=n

Each step requires O(n)=0(k) samples

But we can use the same samples in all steps
(no rehashing)

So O(k) samples total
Time: O(k log n)

e Generalizes to
— k<n : O(k) samples

12/12 recovery (Gaussian noise): O(k log n)
samples

= ==

Conclusions

Sparse FFT with running times O(k log n) or O(k log(n)
log(n/k))

— Improves over FFT for k << n

Can improve sample complexity to O(k) or O(k log n) in 2D
average case

— Bonus: the algorithm is really simple

Questions:
— klogn time for approximately sparse signals?
* Not clear: k log(n/k) samples needed, extra log n for FT
— Better sample complexity in the worst case?
— Deterministic ? (best known runtime >k2))
— Model-based (coefficients cluster in blocks) ?

Run Time (sec)

Empirical evaluation: SFFT 3.0

10

o
—

0.01

0.001

0.0001

1e-05

(exact sparsity)

Run Time vs Signal Size (k=50)

sFFT 3.0 (Exact)

FFTW ~—TTTTTTTRRTCLOO e *

L JOC. e
AAFFT 0.9 e
—‘*"’
= 4'*”’
&"‘
"”“
- "*‘ﬁ
¢';"
L ".r"
4"“ i e o - . o o
Ras T I - - o
I T

¢"‘-
- Rkl
- "1‘"¢
98
L 1 1 1 1 1 1 1 1 1 1 1 1 1 1
510 ST 512 H18 514 515 516 517 518 519 520 521 522 523,24

Signal Size (n)

