Average-Case Sparse Fourier Transform Algorithms

Piotr Indyk

MIT

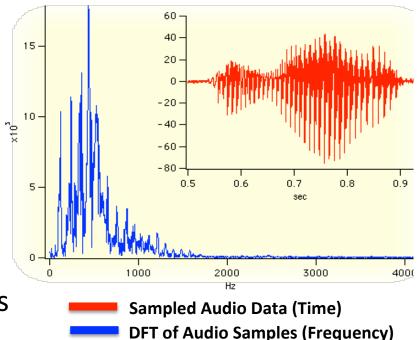
Ghazi, Hassanieh, Indyk, Katabi, Price, Lixin, "Sample-Optimal Average-Case Sparse Fourier Transform in 2D"

Fourier Transform

- Discrete Fourier Transform:
 - Given: a signal x[1...n]
 - Goal: compute the frequency vector x[^] where

$$x_f^{-1} = \sum_t x_t e^{-2\pi i tf/n}$$

- Sparse Fourier Transform
 - Only "few" "large" coefficients
 - GL89, KM90, Mansour'92,
 GGIMS'02, AGS'03, GMS'05,
 Iwen'10, Akavia'10,
 HIKP'12,BCGLS'12,LWC'12...



SFFT

[Hassanieh, Indyk, Katabi, Price'12]

- All algorithms randomized, with constant probability of success, n is a power of 2
- Exactly k-sparse case : O(k log n)
 (SFFT 3.0)
- Approximately k-sparse case
 - Let $\operatorname{Err}_{2}^{k}(x^{\wedge})=\min_{k-\operatorname{sparse} z^{\wedge}}||x^{\wedge}-z^{\wedge}||_{2}$
 - I_2/I_2 guarantee $||x^-y^+||_2 \le C \operatorname{Err}_2^k(x^-)$: O(k log(n) log(n/k)) time (SFFT 4.0)
 - Weaker results for l_∞/l₂ guarantee
 (SFFT 1.0 and SFFT 2.0)

Sample complexity?

Algorithm	Time	Samples	Lower bound
SFFT 3.0 (exact)	O(k log n)	O(k log n)	k
SFFT 4.0 (robust)	O(k log(n) log(n/k))	O(k log(n) log(n/k))	k log (n/k)

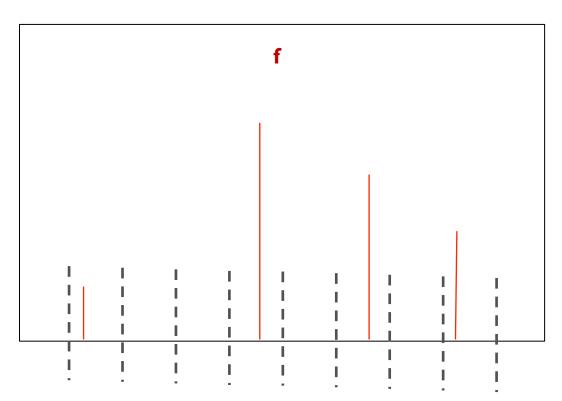
How Does Sparse FFT Work?

1- Bucketize

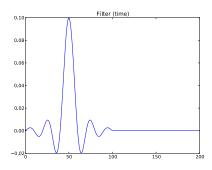
Divide spectrum into a few buckets

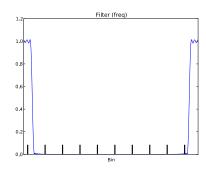
2- Estimate

Estimate the large coefficient (position and value) in each nonempty bucket

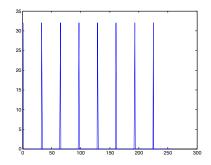


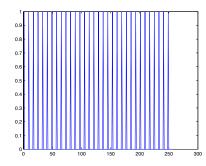
Bucketization





- For F = Sinc x Gaussian, $|supp^{>1/n}(F)| * |supp^{>1/n}(F^{\wedge})| = nlogn$
 - This leads to O(k log n) sample complexity

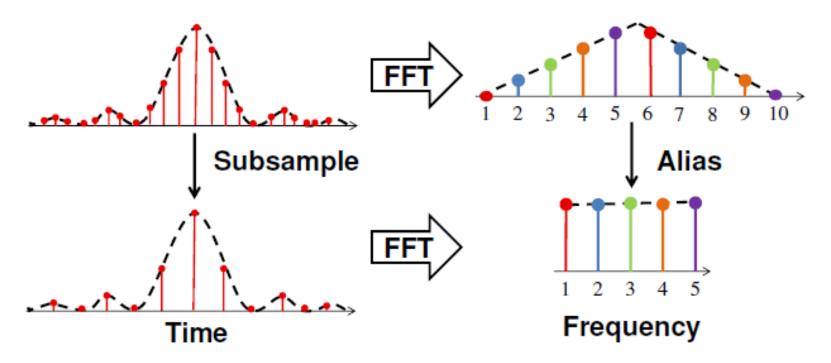




- Spike train is better (optimal): |supp(F)|*|supp(F^)|=n (see Mark Iwen's talk)
- However, can't hash multiple times
 - Frequencies i and j fall into the same bucket iff i=j mod B
 - Invariant under affine transform
- But what if the coefficients are distributed at random? E.g., k-non-zeros in random places
 - Lawlor-Wang-Christlieb'12: O(k) samples, but sampling at arbitrary points

Bucketization using spike train ≈ aliasing

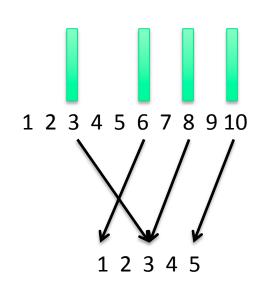
 Frequencies i and j fall into the same bucket iff i=j mod B

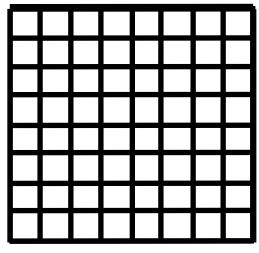


What happens if we alias random frequencies?

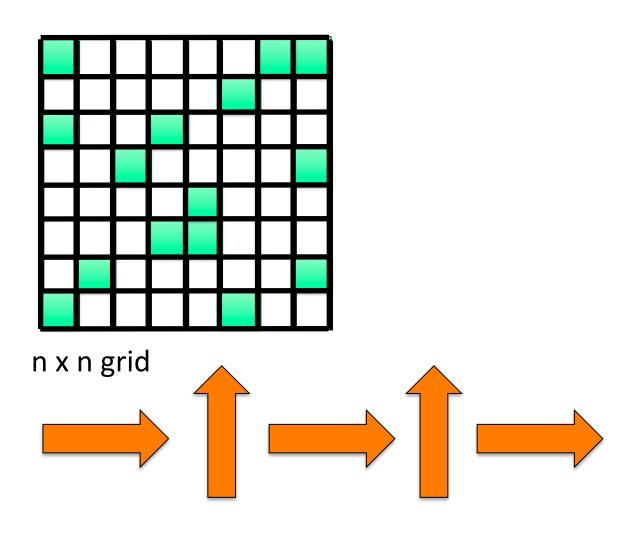
Spectral balls and bins

- k balls (coefficients), B buckets/bins
 - Need B>k² to achieve isolation
 - Sample complexity >k², i.e., bad
- Issue: we need more than one way of aliasing frequencies
- This is possible if, e.g., we have
 - 2D transform over na n x n grid
 - Suppose that k≈n
- Then we can define buckets to be either single columns or single rows





Alternating rows/columns



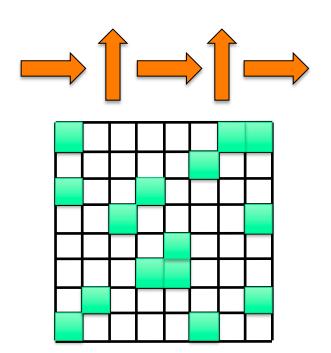
Analysis

Analysis

- With good probability (over the input) the process converges after O(log n) steps for k≈n
- Each step requires O(n)=O(k) samples
- But we can use the same samples in all steps (no rehashing)
- So O(k) samples total
- Time: O(k log n)

Generalizes to

- k < n : O(k) samples
- 12/12 recovery (Gaussian noise): O(k log n) samples



Conclusions

- Sparse FFT with running times O(k log n) or O(k log(n) log(n/k))
 - Improves over FFT for k << n
- Can improve sample complexity to O(k) or O(k log n) in 2D average case
 - Bonus: the algorithm is really simple
- Questions:
 - klogn time for approximately sparse signals?
 - Not clear: k log(n/k) samples needed, extra log n for FT
 - Better sample complexity in the worst case?
 - Deterministic ? (best known runtime >k²))
 - Model-based (coefficients cluster in blocks) ?

- ...

Empirical evaluation: SFFT 3.0 (exact sparsity)

