Average-Case Sparse Fourier
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Fourier Transform
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 Discrete Fourier Transform: ol
— Given: a signal x[1...n] -ZZ:MWM
— Goal: compute the frequency = ﬁ:ﬂ:

vector x" where i o
e Sparse Fourier Transform o4 mf‘"“““
— Only “few” “large” coefficients = Sampled Audio Data (Time)
. GL89, KM90, Mansour;92’ W DFT of Audio Samples (Frequency)
GGIMS’02, AGS’03, GMS’05,
lwen’10, Akavia’10,

HIKP’12,BCGLS’12,LWC’12...



SFFT
[Hassanieh, Indyk, Katabi, Price’12]

* All algorithms randomized, with constant
probability of success, n is a power of 2

* Exactly k-sparse case : O(k log n)
(SFFT 3.0)

* Approximately k-sparse case
— Let Errk, (x*)=min csparse 22 | 1X™-2M |5
— L, /I, guarantee | |x"-y*| |, < CErrk,(x*): O(k log(n) log(n/k))
time
(SFFT 4.0)
— Weaker results for I/, guarantee
(SFFT 1.0 and SFFT 2.0)



Sample complexity?

SFFT 3.0 (exact) O(k logn) O(k logn)

SFFT 4.0 (robust) O(k log(n) log(n/k)) O(k log(n) log(n/k))  klog (n/k)



How Does Sparse FFT Work?

1- Bucketize
Divide spectrum
into a few buckets

2- Estimate
Estimate the large
coefficient
(position and
value) in each non-
empty bucket
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Bucketization
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For F = Sinc x Gaussian, |supp”/n(F)| * | supp>/"(FA)|=nlogn
— This leads to O(k log n) sample complexity

Spike train is better (optimal): |supp(F)|*|supp(F*)|=n (see Mark Iwen’s talk)
However, can’t hash multiple times
— Frequenciesiand j fall into the same bucket iff i=j mod B
— Invariant under affine transform
But what if the coefficients are distributed at random ? E.g., k-non-zeros in random places
— Lawlor-Wang-Christlieb’12: O(k) samples, but sampling at arbitrary points



Bucketization using spike train =

aliasing

* Frequenciesiand jfall into the same bucket iff i=j

mod B
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 What happens if we alias random frequencies ?



Spectral balls and bins

k balls (coefficients), B buckets/bins
— Need B>k? to achieve isolation

— Sample complexity >k?, i.e., bad
Issue: we need more than one way
of aliasing frequencies

This is possible if, e.g., we have

— 2D transform over na n x n grid

— Suppose that k=n

Then we can define buckets to be
either single columns or single rows
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Alternating rows/columns
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Analysis

* Analysis

With good probability (over the input) the
process converges after O(log n) steps for k=n

Each step requires O(n)=0(k) samples

But we can use the same samples in all steps
(no rehashing)

So O(k) samples total
Time: O(k log n)

e Generalizes to
— k<n : O(k) samples

12/12 recovery (Gaussian noise): O(k log n)
samples

= ==




Conclusions

Sparse FFT with running times O(k log n) or O(k log(n)
log(n/k))

— Improves over FFT for k << n

Can improve sample complexity to O(k) or O(k log n) in 2D
average case

— Bonus: the algorithm is really simple

Questions:
— klogn time for approximately sparse signals?
* Not clear: k log(n/k) samples needed, extra log n for FT
— Better sample complexity in the worst case?
— Deterministic ? (best known runtime >k2))
— Model-based (coefficients cluster in blocks) ?



Run Time (sec)

Empirical evaluation: SFFT 3.0
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Run Time vs Signal Size (k=50)

sFFT 3.0 (Exact)
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