Sparse Fourier Transform Algorithms

Eric Price

MIT

2013-2-17

Eric Price (MIT)

Sparse Fourier Transform Algorithms

▲ 王 ▶ 王 = ∽ ۹ (~2013-2-17 1/22

Collaboration with Rest of Session Speakers

Sparse Fourier Transform Algorithms

2013-2-17 2/22

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 3/22

2 Algorithm (exactly sparse case)

Eric Price (MIT)

Sparse Fourier Transform Algorithms

< E> EI= つへの 2013-2-17 3/22

イロト イヨト イヨト イヨト

2 Algorithm (exactly sparse case)

Eric Price (MIT)

Sparse Fourier Transform Algorithms

▲ য় ▶ য় য় ৩ ৭ ৫
2013-2-17 3/22

Algorithm (exactly sparse case)

3 Algorithm (noisy case)

Eric Price (MIT)

Sparse Fourier Transform Algorithms 20

2013-2-17 4/22

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Discrete Fourier Transform (DFT)

• Given $x \in \mathbb{C}^n$, compute Fourier transform \hat{x} :

$$\widehat{x}_i = \sum_j \omega^{ij} x_j$$
 for $\omega = e^{2\pi \mathbf{i}/n}$

5/22

Eric Price (MIT)

Discrete Fourier Transform (DFT)

• Given $x \in \mathbb{C}^n$, compute Fourier transform \hat{x} :

$$\widehat{x}_{j} = \sum_{j} \omega^{ij} x_{j}$$
 for $\omega = e^{2\pi \mathbf{i}/n}$

$$\widehat{x} = Fx$$
 for $F_{ij} = \omega^{ij}$

5/22

Exact Sparsity

• Suppose \hat{x} is *k*-sparse: only *k* non-zero coefficients.

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 6/22

Exact Sparsity

• Suppose \hat{x} is *k*-sparse: only *k* non-zero coefficients.

• How fast can we hope to compute it?

Exact Sparsity

• Suppose \hat{x} is *k*-sparse: only *k* non-zero coefficients.

- How fast can we hope to compute it?
 - Ω(k log k): dense "lower bound."

Our Result: $O(k \log n)$

- Suppose \hat{x} is *k*-sparse: only *k* non-zero coefficients.
- How fast can we hope to compute it?
 - Ω(k log k): dense "lower bound."

Our Result: $O(k \log n)$

- Suppose \hat{x} is *k*-sparse: only *k* non-zero coefficients.
- How fast can we hope to compute it?
 - Ω(k log k): dense "lower bound."
- More generally, \hat{x} is "close" to *k*-sparse vector.

Exact Sparsity

Approximate Sparsity

Our Result: $O(k \log n)$

- Suppose \hat{x} is *k*-sparse: only *k* non-zero coefficients.
- How fast can we hope to compute it?
 - Ω(k log k): dense "lower bound."
- More generally, \hat{x} is "close" to *k*-sparse vector.
 - Sublinear time can't possibly output \hat{x} exactly.

2013-2-17 6/22

Exact Sparsity

Approximate Sparsity

Our Result: $O(k \log n)$

- Suppose \hat{x} is *k*-sparse: only *k* non-zero coefficients.
- How fast can we hope to compute it?
 - Ω(k log k): dense "lower bound."
- More generally, \hat{x} is "close" to *k*-sparse vector.
 - Sublinear time can't possibly output \hat{x} exactly.
 - Best k-sparse approximation has error E.

Exact Sparsity

Approximate Sparsity

Our Result: $O(k \log n)$

- Suppose \hat{x} is *k*-sparse: only *k* non-zero coefficients.
- How fast can we hope to compute it?
 - Ω(k log k): dense "lower bound."
- More generally, \hat{x} is "close" to *k*-sparse vector.
 - Sublinear time can't possibly output \hat{x} exactly.
 - Best k-sparse approximation has error E.
 - Goal: error $(1 + \epsilon)E$.

Exact Sparsity

Approximate Sparsity

Our Result: $O(k \log n)$

 $\frac{1}{M} = \frac{1}{M} = \frac{1}$

- Suppose \hat{x} is *k*-sparse: only *k* non-zero coefficients.
- How fast can we hope to compute it?
 - Ω(k log k): dense "lower bound."
- More generally, \hat{x} is "close" to *k*-sparse vector.
 - Sublinear time can't possibly output \hat{x} exactly.
 - Best k-sparse approximation has error E.
 - Goal: error $(1 + \epsilon)E$.

Exact Sparsity

Approximate Sparsity

Our Result: $O(k \log n)$

- Suppose \hat{x} is *k*-sparse: only *k* non-zero coefficients.
- How fast can we hope to compute it?
 - Ω(k log k): dense "lower bound."
- More generally, \hat{x} is "close" to *k*-sparse vector.
 - Sublinear time can't possibly output \hat{x} exactly.
 - Best k-sparse approximation has error E.
 - Goal: error $(1 + \epsilon)E$.
- Faster than FFT for any $k \ll n$.

6/22

- Boolean cube: [KM92], [GL89]. \mathbb{C}^n : [Mansour '92] $k^c \log^c n$.
- Long line of additional work [GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
- Mark Iwen's tutorial: *k* log^{*c*} *n* time.

- Boolean cube: [KM92], [GL89]. \mathbb{C}^n : [Mansour '92] $k^c \log^c n$.
- Long line of additional work [GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
- Mark Iwen's tutorial: *k* log^{*c*} *n* time.
 - But *c* matters; faster than FFT if $k/n \ll 1/\log^{c-1} n$.

- Boolean cube: [KM92], [GL89]. \mathbb{C}^n : [Mansour '92] $k^c \log^c n$.
- Long line of additional work [GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
- Mark Iwen's tutorial: *k* log^{*c*} *n* time.
 - But *c* matters; faster than FFT if $k/n \ll 1/\log^{c-1} n$.
 - Also yesterday: 4D light fields have $k/n \approx 0.1\%$.

김 권 동 김 권 동 - 권 문

- Boolean cube: [KM92], [GL89]. \mathbb{C}^n : [Mansour '92] $k^c \log^c n$.
- Long line of additional work [GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
- Mark Iwen's tutorial: *k* log^{*c*} *n* time.
 - But *c* matters; faster than FFT if $k/n \ll 1/\log^{c-1} n$.
 - Also yesterday: 4D light fields have $k/n \approx 0.1\%$.
 - If c = 4: *slower* than FFT.

17 7/22

A B N A B N B B N O O

- Boolean cube: [KM92], [GL89]. \mathbb{C}^n : [Mansour '92] $k^c \log^c n$.
- Long line of additional work [GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
- Mark Iwen's tutorial: *k* log^{*c*} *n* time.
 - But *c* matters; faster than FFT if $k/n \ll 1/\log^{c-1} n$.
 - Also yesterday: 4D light fields have $k/n \approx 0.1\%$.
 - If c = 4: *slower* than FFT.
 - Our result: faster than FFT for any $k/n \ll 1$.

7 7/22

A B N A B N B B N O O

- Boolean cube: [KM92], [GL89]. \mathbb{C}^n : [Mansour '92] $k^c \log^c n$.
- Long line of additional work [GGIMS02, AGS03, GMS05, Iwen '10, Akavia '10]
- Mark Iwen's tutorial: *k* log^{*c*} *n* time.
 - But *c* matters; faster than FFT if $k/n \ll 1/\log^{c-1} n$.
 - Also yesterday: 4D light fields have $k/n \approx 0.1\%$.
 - If c = 4: *slower* than FFT.
 - Our result: faster than FFT for any $k/n \ll 1$.
 - If no hidden constants, would be 100x faster at 0.1%.

A B N A B N B B N O O

• *k*-sparse Fourier transform in $O(k \log n)$ time.

2013-2-17 8 / 22

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- *k*-sparse Fourier transform in $O(k \log n)$ time.
- Approximate sparse Fourier transform in $O(\frac{1}{\epsilon}k \log(n/k) \log n)$ time:

$$\|\operatorname{result} - \widehat{x}\|_2 \leqslant (1+\epsilon) \min_{k ext{-sparse}\ \widehat{x}_{(k)}} \|\widehat{x}_{(k)} - \widehat{x}\|_2$$

for $\epsilon > 0$.

Eric Price (MIT)

(本語)》 소문》 소문》 (月日)

- *k*-sparse Fourier transform in $O(k \log n)$ time.
- Approximate sparse Fourier transform in $O(\frac{1}{\epsilon}k \log(n/k) \log n)$ time:

$$\|\operatorname{result} - \widehat{x}\|_2 \leqslant (1+\epsilon) \min_{k ext{-sparse}} \lim_{\widehat{x}_{(k)}} \|\widehat{x}_{(k)} - \widehat{x}\|_2$$

for $\epsilon > 0$.

• Faster than FFT whenever k/n < C for fixed constant *C*.

A = A = A = E < 000</p>

- *k*-sparse Fourier transform in $O(k \log n)$ time.
- Approximate sparse Fourier transform in $O(\frac{1}{\epsilon}k \log(n/k) \log n)$ time:

$$\|\operatorname{result} - \widehat{x}\|_2 \leqslant (1+\epsilon) \min_{k ext{-sparse}} \lim_{\widehat{x}_{(k)}} \|\widehat{x}_{(k)} - \widehat{x}\|_2$$

for $\varepsilon > 0$.

- Faster than FFT whenever k/n < C for fixed constant *C*.
 - Exact case: $C \approx 1\%$.

A = A = A = A = A = A

8/22

- *k*-sparse Fourier transform in $O(k \log n)$ time.
- Approximate sparse Fourier transform in $O(\frac{1}{\epsilon}k \log(n/k) \log n)$ time:

$$\|\operatorname{result} - \widehat{x}\|_2 \leqslant (1+\epsilon) \min_{k ext{-sparse}} \lim_{\widehat{x}_{(k)}} \|\widehat{x}_{(k)} - \widehat{x}\|_2$$

for $\epsilon > 0$.

- Faster than FFT whenever k/n < C for fixed constant C.
 - Exact case: $C \approx 1\%$.
- Caveats:
 - Output \hat{x} has log *n* bit precision.
 - n must be a power of 2 (more generally, n must be smooth).
 - Succeed with 90% probability.

8 / 22

2 Algorithm (exactly sparse case)

3 Algorithm (noisy case)

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 9/22

Algorithm

Suppose \hat{x} is *k*-sparse.

Theorem

We can compute \hat{x} in $O(k \log n)$ time with 90% probability.

Eric Price (MIT)

Sparse Fourier Transform Algorithms

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▲ ■ ▶ ■ ■ ● 의 Q G 2013-2-17 10/22

Algorithm

Suppose \hat{x} is *k*-sparse.

Theorem

We can compute \hat{x} in $O(k \log n)$ time with 90% probability.

Suffices to recover *most* of \hat{x} , so residual is k/2 sparse:

< 6 b

2013-2-17 10/22

Algorithm

Suppose \hat{x} is *k*-sparse.

Theorem

We can compute \hat{x} in $O(k \log n)$ time with 90% probability.

Suffices to recover *most* of \hat{x} , so residual is k/2 sparse:

 Then: repeat on residual, with k → k/2 and decreasing the error probability.

What can you do with Fourier measurements?

n-dimensional DFT: $O(n \log n)$ $x \to \hat{x}$

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 11 / 22

What can you do with Fourier measurements?

n-dimensional DFT: $O(n \log n)$ $x \to \hat{x}$

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 11 / 22

What can you do with Fourier measurements?

Eric Price (MIT)

Sparse Fourier Transform Algorithms
What can you do with Fourier measurements?

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 11 / 22

What can you do with Fourier measurements?

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 11/22

• Time domain is $O(B \log n)$ sparse.

Filter (frequency): Gaussian * boxcar

• Time domain is $O(B \log n)$ sparse.

A (10) A (10) A (10)

12/22

1.2

- Time domain is $O(B \log n)$ sparse.
- "Pass region" of size n/B, outside which filter is negligible δ .

A > + = + + =

> ≣া≣ ৩৭৫ 2-17 12/22

- Time domain is $O(B \log n)$ sparse.
- "Pass region" of size n/B, outside which filter is negligible δ .
- "Super-pass region", where filter \approx 1.

15

12/22

- Time domain is $O(B \log n)$ sparse.
- "Pass region" of size n/B, outside which filter is negligible δ .
- "Super-pass region", where filter \approx 1.
- Small fraction (say 10%) is "bad region" with intermediate value.

ELE NOR

4 3 > 4 3

Eric Price (MIT)

Sparse Fourier Transform Algorithms

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 13/22

ELE OQO

Eric Price (MIT)

Sparse Fourier Transform Algorithms

A (10) A (10) A (10)

Sparse Fourier Transform Algorithms

A (10) A (10) A (10)

Eric Price (MIT)

Sparse Fourier Transform Algorithms

A b

(4) (5) (4) (5)

2013-2-17 13/22

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 13/22

・ 戸 ・ ・ モ ・ ・ 日 ト

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 13/22

・ 戸 ・ ・ モ ・ ・ 日 ト

Lemma

If i is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \widehat{x}_i$$
.

Computing the b for all B buckets takes $O(B \log n)$ time.

Eric Price	

2013-2-17 13/22

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

If i is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \hat{x}_i$$
.

Computing the b for all B buckets takes $O(B \log n)$ time.

2013-2-17 14/22

Lemma

If i is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \hat{x}_i$$
.

Computing the b for all B buckets takes $O(B \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_i \omega^i$.
- Divide to get $b'/b = \omega^i$

14 / 22

Lemma

If i is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \hat{x}_i$$
.

Computing the b for all B buckets takes $O(B \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_i \omega^i$.
- Divide to get $b'/b = \omega^i \implies$ can compute *i* if it is isolated.

3-2-17 14/22

Lemma

If i is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \hat{x}_i$$
.

Computing the b for all B buckets takes $O(B \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_i \omega^i$.
- Divide to get $b'/b = \omega^i \implies$ can compute *i* if it is isolated.
- Dilation in time \implies dilation in frequency; randomizes isolation.

14/22

Lemma

If i is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \hat{x}_i$$
.

Computing the b for all B buckets takes $O(B \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_i \omega^i$.
- Divide to get $b'/b = \omega^i \implies$ can compute *i* if it is isolated.
- Dilation in time \implies dilation in frequency; randomizes isolation.
- Gives weak sparse recovery \hat{x}' such that $\hat{x} \hat{x}'$ is k/2-sparse.

2013-2-17 14/22

Lemma

If i is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \hat{x}_i$$
.

Computing the b for all B buckets takes $O(B \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_i \omega^i$.
- Divide to get $b'/b = \omega^i \implies$ can compute *i* if it is isolated.
- Dilation in time \implies dilation in frequency; randomizes isolation.
- Gives weak sparse recovery \hat{x}' such that $\hat{x} \hat{x}'$ is k/2-sparse.
 - Repeat on residual to recover \hat{x} exactly.

7 14/22

Lemma

If i is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \hat{x}_i$$
.

Computing the b for all B buckets takes $O(B \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_i \omega^i$.
- Divide to get $b'/b = \omega^i \implies$ can compute *i* if it is isolated.
- Dilation in time \implies dilation in frequency; randomizes isolation.
- Gives weak sparse recovery \hat{x}' such that $\hat{x} \hat{x}'$ is k/2-sparse.
 - Repeat on residual to recover \hat{x} exactly.
 - Can't evaluate x' in time domain, but can hash $\widehat{x'}$ directly.

Lemma

If i is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \hat{x}_i$$
.

Computing the b for all B buckets takes $O(B \log n)$ time.

- Time-shift *x* by one and repeat: $b' = \hat{x}_i \omega^i$.
- Divide to get $b'/b = \omega^i \implies$ can compute *i* if it is isolated.
- Dilation in time \implies dilation in frequency; randomizes isolation.
- Gives weak sparse recovery \hat{x}' such that $\hat{x} \hat{x}'$ is k/2-sparse.
 - Repeat on residual to recover \hat{x} exactly.
 - Can't evaluate x' in time domain, but can hash $\hat{x'}$ directly.
- Gives $O(k \log n)$ time sparse Fourier transform.

Outline

Algorithm (exactly sparse case)

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 15/22

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2013-2-17 16 / 22

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

 $O(k \log n)$ Our Result:

• What if there's mass outside top k elements x_k ?

16/22

• What if there's mass outside top k elements x_k?

16/22

- What if there's mass outside top k elements x_k ?
- Error proportional to noise $||x x_k||_2^2$.

- What if there's mass outside top *k* elements *x_k*?
- Error proportional to noise $||x x_k||_2^2$.
- For *all x*, work with 90% probability.

16/22

Our Result: $O(k \log n)$

- What if there's mass outside top *k* elements *x_k*?
- Error proportional to noise $||x x_k||_2^2$.
- For *all x*, work with 90% probability.
- Bridge between the two results?

- What if there's mass outside top *k* elements *x_k*?
- Error proportional to noise $||x x_k||_2^2$.
- For *all x*, work with 90% probability.
- Bridge between the two results?
 - Signal-to-Noise Ratio $||x_k||_2^2/||x-x_k||_2^2$.

Our Result: $O(k \log n)$

- What if there's mass outside top k elements x_k?
- Error proportional to noise $||x x_k||_2^2$.
- For *all x*, work with 90% probability.
- Bridge between the two results?
 - Signal-to-Noise Ratio $||x_k||_2^2/||x x_k||_2^2$.

16/22

- Run same algorithm as for exact sparsity:
 - Compute O(k) buckets in $O(k \log n)$ time, samples.
 - For each bucket with isolated *i*, get $b'/b \approx \omega^i$.

- Run same algorithm as for exact sparsity:
 - Compute O(k) buckets in $O(k \log n)$ time, samples.
 - For each bucket with isolated *i*, get $b'/b \approx \omega^i$.
- Approximately sparse: estimates have noise.

- Run same algorithm as for exact sparsity:
 - Compute O(k) buckets in $O(k \log n)$ time, samples.
 - For each bucket with isolated *i*, get $b'/b \approx \omega^i$.
- Approximately sparse: estimates have noise.
- Only log SNR = O(1) useful bits.

- Run same algorithm as for exact sparsity:
 - Compute O(k) buckets in $O(k \log n)$ time, samples.
 - For each bucket with isolated *i*, get $b'/b \approx \omega^i$.
- Approximately sparse: estimates have noise.
- Only log SNR = O(1) useful bits.
- Goal: choose $\Theta(\log(n/k))$ time shifts *c* to recover *i*.
Algorithm for approximately sparse signals

- Run same algorithm as for exact sparsity:
 - Compute O(k) buckets in $O(k \log n)$ time, samples.
 - For each bucket with isolated *i*, get $b'/b \approx \omega^i$.
- Approximately sparse: estimates have noise.
- Only log SNR = O(1) useful bits.
- Goal: choose $\Theta(\log(n/k))$ time shifts *c* to recover *i*.

Algorithm for approximately sparse signals

- Run same algorithm as for exact sparsity:
 - Compute O(k) buckets in $O(k \log n)$ time, samples.
 - For each bucket with isolated *i*, get $b'/b \approx \omega^i$.
- Approximately sparse: estimates have noise.
- Only log SNR = O(1) useful bits.
- Goal: choose $\Theta(\log(n/k))$ time shifts *c* to recover *i*.

• Choose $\Theta(\log(n/k))$ time shifts *c*, or "measurements".

3 > 4 3

18/22

Recovering *i* from random time shifts *c* $b'/b = \omega^{c_3i} + \text{noise}$

- Choose $\Theta(\log(n/k))$ time shifts *c*, or "measurements".
- Takes $O(k \log n \log(n/k))$ time to compute all measurements.

18/22

- Choose $\Theta(\log(n/k))$ time shifts *c*, or "measurements".
- Takes $O(k \log n \log(n/k))$ time to compute all measurements.
- Random measurements can identify *i* among n/k in bucket:

B 6 4 B 6 B

- Choose $\Theta(\log(n/k))$ time shifts *c*, or "measurements".
- Takes $O(k \log n \log(n/k))$ time to compute all measurements.
- Random measurements can identify *i* among *n*/*k* in bucket:

• If
$$j \neq i$$
, $\omega^{ci} - \omega^{cj}$ is usually "large".

- Choose $\Theta(\log(n/k))$ time shifts *c*, or "measurements".
- Takes $O(k \log n \log(n/k))$ time to compute all measurements.
- Random measurements can identify *i* among *n*/*k* in bucket:
 - If $j \neq i$, $\omega^{ci} \omega^{cj}$ is usually "large".
 - If so, distinguish ω^i + noise from ω^j + noise.

2013-2-17 18/22

B N A B N B

- Choose $\Theta(\log(n/k))$ time shifts *c*, or "measurements".
- Takes $O(k \log n \log(n/k))$ time to compute all measurements.
- Random measurements can identify *i* among n/k in bucket:
 - If $j \neq i$, $\omega^{ci} \omega^{cj}$ is usually "large".
 - If so, distinguish ω^i + noise from ω^j + noise.
- But... time to decode i?

BAR 4 BAR B

18/22

- Choose $\Theta(\log(n/k))$ time shifts *c*, or "measurements".
- Takes $O(k \log n \log(n/k))$ time to compute all measurements.
- Random measurements can identify *i* among n/k in bucket:
 - If $j \neq i$, $\omega^{ci} \omega^{cj}$ is usually "large".
 - If so, distinguish ω^i + noise from ω^j + noise.
- But... time to decode i?
- Decoding k buckets, so need an efficiently decodable "code".

2013-2-17 18/22

- Choose $\Theta(\log(n/k))$ time shifts *c*, or "measurements".
- Takes $O(k \log n \log(n/k))$ time to compute all measurements.
- Random measurements can identify *i* among n/k in bucket:
 - If $j \neq i$, $\omega^{ci} \omega^{cj}$ is usually "large".
 - If so, distinguish ω^i + noise from ω^j + noise.
- But... time to decode i?
- Decoding k buckets, so need an efficiently decodable "code".
 - Constant rate, quadratic decoding time.

2013-2-17 18/22

• Want to find *i* in contiguous region of size R = n/k.

Eric Price (MIT)

Sparse Fourier Transform Algorithms

- Want to find *i* in contiguous region of size R = n/k.
- Choose $c \approx n/R$ so possibilities cover most of circle.

-17 19/22

- Want to find *i* in contiguous region of size R = n/k.
- Choose $c \approx n/R$ so possibilities cover most of circle.

7 19/22

- Want to find *i* in contiguous region of size R = n/k.
- Choose $c \approx n/R$ so possibilities cover most of circle.
- Observation identifies *i* inside constant fraction of region.

- Want to find *i* in contiguous region of size R = n/k.
- Choose $c \approx n/R$ so possibilities cover most of circle.
- Observation identifies *i* inside constant fraction of region.

2013-2-17 19/22

- Want to find *i* in contiguous region of size R = n/k.
- Choose $c \approx n/R$ so possibilities cover most of circle.
- Observation identifies *i* inside constant fraction of region.
- Restrict and repeat, $O(\log(n/k))$ times.

19/22

- Want to find *i* in contiguous region of size R = n/k.
- Choose $c \approx n/R$ so possibilities cover most of circle.
- Observation identifies *i* inside constant fraction of region.
- Restrict and repeat, $O(\log(n/k))$ times.
- Linear decoding time.

19/22

- Want to find *i* in contiguous region of size R = n/k.
- Choose $c \approx n/R$ so possibilities cover most of circle.
- Observation identifies *i* inside constant fraction of region.
- Restrict and repeat, $O(\log(n/k))$ times.
- Linear decoding time.
 - But rate isn't constant, just $1/\log \log(n/k)$...

- Want to find *i* in contiguous region of size R = n/k.
- Choose $c \approx n/R$ so possibilities cover most of circle.
- Observation identifies *i* inside constant fraction of region.
- Restrict and repeat, $O(\log(n/k))$ times.
- Linear decoding time.
 - But rate isn't constant, just 1/log log(n/k)...

- Want to find *i* in contiguous region of size R = n/k.
- Choose $c \approx n/R$ so possibilities cover most of circle.
- Observation identifies *i* inside constant fraction of region.
- Restrict and repeat, $O(\log(n/k))$ times.
- Linear decoding time.
 - But rate isn't constant, just 1/log log(n/k)...

Combining the two approaches

Eric Price (MIT)

Sparse Fourier Transform Algorithms

2013-2-17 20 / 22

Combining the two approaches

Combining the two approaches

 ▲ ■ ▶ ■ ■ ● ● Q (2)

 2013-2-17
 20 / 22

Our Decoding Procedure

 $\log \log(n/k)$ largest bits, sequentially

Eric Price (MIT)

Sparse Fourier Transform Algorithms

A b

(4) (5) (4) (5)

2013-2-17 21/22

Our Decoding Procedure

• $O(\log^2(n/k))$ time to decode each coordinate.

2013-2-17 21/22

Our Decoding Procedure

 $\log \log(n/k)$ largest bits, sequentially

- $O(\log^2(n/k))$ time to decode each coordinate.
- Gives $O(k \log(n/k) \log n)$ time/sample complexity.

2013-2-17 21/22

- $O(k \log n)$ for exactly sparse \hat{x}
- $O(k \log(n/k) \log n)$ for approximation.

A (10) A (10) A (10)

2013-2-17 22 / 22

▶ 크네님

- $O(k \log n)$ for exactly sparse \hat{x}
- $O(k \log(n/k) \log n)$ for approximation.
- Can we do better?

17 22/22

- $O(k \log n)$ for exactly sparse \hat{x}
- $O(k \log(n/k) \log n)$ for approximation.
- Can we do better?
- The log *n* sample complexity loss comes from our filters.

(3)

- $O(k \log n)$ for exactly sparse \hat{x}
- $O(k \log(n/k) \log n)$ for approximation.
- Can we do better?
- The log *n* sample complexity loss comes from our filters.
- Avoidable if domain has enough subgroups.
 - Sparse Hadamard transform: log *n*-dimensional DFT.
 - (Piotr's talk) 2-dimensional DFT on average.
 - Similar results for 1-dimensional DFT if *n* has enough factors.

2013-2-17 22/22

- $O(k \log n)$ for exactly sparse \hat{x}
- $O(k \log(n/k) \log n)$ for approximation.
- Can we do better?
- The log *n* sample complexity loss comes from our filters.
- Avoidable if domain has enough subgroups.
 - Sparse Hadamard transform: log *n*-dimensional DFT.
 - (Piotr's talk) 2-dimensional DFT on average.
 - Similar results for 1-dimensional DFT if *n* has enough factors.
- Can we avoid it in general?

22/22

Sparse Fourier Transform Algorithms 2013-2-17 23 / 22

Eric Price (MIT)