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Discrete Fourier Transform (DFT)

@ Given x € C", compute Fourier transform X:

Xi=>Y wlx for w=e*™"
J

sec
— Sampled Sound Data
— FFT Magnitude
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Discrete Fourier Transform (DFT)

@ Given x € C", compute Fourier transform X:

Xi=>Y wlx for w=e*™"
J

X=Fx for Fj=w!

sec
— Sampled Sound Data
— FFT Magnitude
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Sparse Fourier Transform
Exact Sparsity

@ Suppose X is k-sparse: only k non-zero coefficients.
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Sparse Fourier Transform
Exact Sparsity Approximate Sparsity

Our Result: O(klog n) O(klog(n/k)log n)

@ Suppose X is k-sparse: only k non-zero coefficients.
@ How fast can we hope to compute it?

» Q(klogk): dense “lower bound.”
@ More generally, X is “close” to k-sparse vector.

» Sublinear time can’t possibly output X exactly.
» Best k-sparse approximation has error E.
» Goal: error (1 +¢)E.

@ Faster than FFT for any k < n.
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Previous work on Sparse Fourier Transforms

@ Boolean cube: [KM92], [GL89]. C": [Mansour '92] k€ log® n.

@ Long line of additional work [GGIMS02, AGS03, GMS05, Iwen
’10, Akavia '10]
@ Mark Iwen’s tutorial: k log® n time.
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Previous work on Sparse Fourier Transforms

@ Boolean cube: [KM92], [GL89]. C": [Mansour '92] k€ log® n.

@ Long line of additional work [GGIMS02, AGS03, GMS05, Iwen
’10, Akavia '10]

@ Mark Iwen’s tutorial: k log® n time.

But ¢ matters; faster than FFT if k/n < 1/log® " n.

Also yesterday: 4D light fields have k/n ~ 0.1%.

If ¢ = 4: slowerthan FFT.

Our result: faster than FFT for any k/n < 1.

If no hidden constants, would be 100x faster at 0.1%.
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Formal resulis

@ k-sparse Fourier transform in O(k log n) time.
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Formal resulis

@ k-sparse Fourier transform in O(k log n) time.

@ Approximate sparse Fourier transform in O(%klog(n/k) log n)
time:

||reSU|t—XH2 (1+e€) minA Hy(k) —?Hg
k-sparse X(x)

for e > 0.
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Formal resulis

@ k-sparse Fourier transform in O(k log n) time.
@ Approximate sparse Fourier transform in O(%klog(n/k) log n)

time:

[result — X[l < (1+€) min_ [[X) — X]|2
k-sparse X(x)

for e > 0.

@ Faster than FFT whenever k/n < C for fixed constant C.
» Exact case: C ~ 1%.

@ Caveats:

» Output X has log n bit precision.
» nmust be a power of 2 (more generally, n must be smooth).
» Succeed with 90% probability.
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Algorithm

Suppose X is k-sparse.

Theorem
We can compute X in O(k log n) time with 90% probability. J
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Algorithm

Suppose X is k-sparse.

Theorem
We can compute X in O(k log n) time with 90% probability. J

Suffices to recover most of X, so residual is k/2 sparse:

@ Then: repeat on residual, with k — k/2 and decreasing the error
probability.
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What can you do with Fourier measurements?

Time Frequency

n-dimensional DFT:
O(nlog n)
‘ X =X
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A Better Filter
Filter (time): Gaussian - sinc

@ Time domain is O(Blog n) sparse.
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A Better Filter
Filter (frequency): Gaussian * boxcar

—

@ Time domain is O(Blog n) sparse.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 12/22



A Better Filter
Pass region

s

@ Time domain is O(Blog n) sparse.
@ “Pass region” of size n/B, outside which filter is negligible 6.
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A Better Filter

Super-pass region

@ Time domain is O(Blog n) sparse.

Eric Price (MIT)

@ “Super-pass region”, where filter ~ 1.

@ “Pass region” of size n/B, outside which filter is negligible 5.
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A Better Filter
Bad re

ion

@ Time domain is O(Blog n) sparse.

@ “Pass region” of size n/B, outside which filter is negligible ?.
@ “Super-pass region”, where filter ~ 1.
@ Small fraction (say 10%) is “bad region” with intermediate value.
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Algorithm for exactly sparse signals

Original signal z Original signal &

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 13/22



Algorithm for exactly sparse signals
Computed F-z Filtered signal Fxz

i

]
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Algorithm for exactly sparse signals

F.z aliased to B terms Filtered signal Fxz

i

]
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Algorithm for exactly sparse signals

F.z aliased to B terms Computed samples of F'xz

i

i
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Algorithm for exactly sparse signals

F.z aliased to B terms Knowledge about 2

o 5 =
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Algorithm for exactly sparse signals

F.z aliased to B terms Knowledge about 2

Lemma

If i is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = X;.

Computing the b for all B buckets takes O(Blog n) time.
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Algorithm for exactly sparse signals

Lemma

If i is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = X;.

Computing the b for all B buckets takes O(Blog n) time.

@ Time-shift x by one and repeat: b’ = X;w'.
@ Divide to get b’/b = w’ = can compute i if it is isolated.
@ Dilation in time — dilation in frequency; randomizes isolation.

@ Gives weak sparse recovery X’ such that X — X’ is k/2-sparse.

» Repeat on residual to recover x exactly. R
» Can't evaluate x’ in time domain, but can hash x’ directly.

@ Gives O(klog n) time sparse Fourier transform. O
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Approximate sparsity

Exact Sparsity

Our Result:  O(klog n)
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Approximate sparsity

Exact Sparsity

Our Result:  O(klogn)

@ What if there’s mass outside top k elements x;?
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Approximate sparsity

Exact Sparsity Approximate Sparsity

Our Result:  O(klogn) O*(klogy,gnr(n/k)log n)

@ What if there’s mass outside top k elements x;?
@ Error proportional to noise || x — x||3.

@ For all x, work with 90% probability.
@ Bridge between the two results?
» Signal-to-Noise Ratio || x||3/[/X — X«|[3-
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Algorithm for approximately sparse signals

b'/b=w'

\/

@ Run same algorithm as for exact sparsity:

» Compute O(k) buckets in O(k log n) time, samples.
» For each bucket with isolated /, get b’/b =~ w'.
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Algorithm for approximately sparse signals

A

4

b’'/b = w® + noise

@ Run same algorithm as for exact sparsity:

» Compute O(k) buckets in O(k log n) time, samples.
» For each bucket with isolated i, get b’/b ~ w'.

@ Approximately sparse: estimates have noise.

@ Only log SNR = O(1) useful bits.

@ Goal: choose ©(log(n/k)) time shifts ¢ to recover .
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Algorithm for approximately sparse signals
b'/b = w% + noise

\/

@ Run same algorithm as for exact sparsity:
» Compute O(k) buckets in O(k log n) time, samples.
» For each bucket with isolated i, get b’/b ~ w'.

@ Approximately sparse: estimates have noise.

@ Only log SNR = O(1) useful bits.
@ Goal: choose ©(log(n/k)) time shifts ¢ to recover .
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Recovering / from random time shifts ¢

\/

b'/b = w%' + noise

@ Choose O(log(n/k)) time shifts ¢, or “measurements”.

Eric Price (MIT)
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Recovering / from random time shifts ¢

b'/b = w%' + noise

@ Choose O(log(n/k)) time shifts ¢, or “measurements”.
@ Takes O(klognlog(n/k)) time to compute all measurements.
@ Random measurements can identify i among n/k in bucket:
» Ifj # i, w% — w9 is usually “large”.
» If so, distinguish w’ 4 noise from w/ + noise.
@ But... time to decode i?
@ Decoding k buckets, so need an efficiently decodable “code”.
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Recovering / from random time shifts ¢

b'/b = w%' + noise

@ Choose O(log(n/k)) time shifts ¢, or “measurements”.

@ Takes O(klognlog(n/k)) time to compute all measurements.

@ Random measurements can identify i among n/k in bucket:
» Ifj # i, w% — w9 is usually “large”.
» If so, distinguish w’ + noise from w’ + noise.

@ But... time to decode i?

@ Decoding k buckets, so need an efficiently decodable “code”.
» Constant rate, quadratic decoding time.
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Recover high order bits in sequence

A

(UI

@ Want to find i in contiguous region of size R = n/k.
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Recover high order bits in sequence

A

(UI

@ Want to find i in contiguous region of size R = n/k.

@ Choose ¢ ~ n/R so possibilities cover most of circle.

@ Observation identifies i inside constant fraction of region.
@ Restrict and repeat, O(log(n/k)) times.
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Combining the two approaches

Random Largest bit, sequentially

<. wCi
Constant rate . )
Exponential runtime Linear runtime .
Exponentially small failure Constant failure per bit
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Our Decoding Procedure

loglog(n/k) largest bits, sequentially

R — R/log(n/k)
O(log?(n/k)) runtime
1/log®(n/k) failure
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Our Decoding Procedure

loglog(n/k) largest bits, sequentially

R — R/log(n/k)
O(log?(n/k)) runtime
1/log®(n/k) failure

@ O(log?(n/k)) time to decode each coordinate.
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Our Decoding Procedure

loglog(n/k) largest bits, sequentially

R — R/log(n/k)
O(log?(n/k)) runtime
1/log®(n/k) failure

@ O(log?(n/k)) time to decode each coordinate.
@ Gives O(klog(n/k)log n) time/sample complexity.
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Conclusion

@ O(klog n) for exactly sparse X
@ O(klog(n/k)log n) for approximation.
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@ O(klog(n/k)log n) for approximation.

@ Can we do better?

@ The log n sample complexity loss comes from our filters.
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Conclusion

@ O(klog n) for exactly sparse x
@ O(klog(n/k)log n) for approximation.
@ Can we do better?

@ The log n sample complexity loss comes from our filters.
@ Avoidable if domain has enough subgroups.

» Sparse Hadamard transform: log n-dimensional DFT.
» (Piotr’s talk) 2-dimensional DFT on average.
» Similar results for 1-dimensional DFT if n has enough factors.
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Conclusion

@ O(klog n) for exactly sparse x
@ O(klog(n/k)log n) for approximation.
@ Can we do better?

@ The log n sample complexity loss comes from our filters.
@ Avoidable if domain has enough subgroups.

» Sparse Hadamard transform: log n-dimensional DFT.
» (Piotr’s talk) 2-dimensional DFT on average.
» Similar results for 1-dimensional DFT if n has enough factors.

@ Can we avoid it in general?
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