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Discrete Fourier Transform (DFT)

Given x ∈ Cn, compute Fourier transform x̂ :

x̂i =
∑

j

ωijxj for ω = e2πi/n

x̂ = Fx for Fij = ω
ij
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Sparse Fourier Transform
Exact Sparsity

O(k log n)

Suppose x̂ is k -sparse: only k non-zero coefficients.

How fast can we hope to compute it?

I Ω(k log k): dense “lower bound.”
More generally, x̂ is “close” to k -sparse vector.

I Sublinear time can’t possibly output x̂ exactly.
I Best k -sparse approximation has error E .
I Goal: error (1 + ε)E .

Faster than FFT for any k � n.
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Previous work on Sparse Fourier Transforms

Boolean cube: [KM92], [GL89]. Cn: [Mansour ’92] kc logc n.
Long line of additional work [GGIMS02, AGS03, GMS05, Iwen
’10, Akavia ’10]
Mark Iwen’s tutorial: k logc n time.

I But c matters; faster than FFT if k/n� 1/ logc−1 n.
I Also yesterday: 4D light fields have k/n ≈ 0.1%.
I If c = 4: slower than FFT.
I Our result: faster than FFT for any k/n� 1.
I If no hidden constants, would be 100x faster at 0.1%.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 7 / 22



Previous work on Sparse Fourier Transforms

Boolean cube: [KM92], [GL89]. Cn: [Mansour ’92] kc logc n.
Long line of additional work [GGIMS02, AGS03, GMS05, Iwen
’10, Akavia ’10]
Mark Iwen’s tutorial: k logc n time.

I But c matters; faster than FFT if k/n� 1/ logc−1 n.

I Also yesterday: 4D light fields have k/n ≈ 0.1%.
I If c = 4: slower than FFT.
I Our result: faster than FFT for any k/n� 1.
I If no hidden constants, would be 100x faster at 0.1%.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 7 / 22



Previous work on Sparse Fourier Transforms

Boolean cube: [KM92], [GL89]. Cn: [Mansour ’92] kc logc n.
Long line of additional work [GGIMS02, AGS03, GMS05, Iwen
’10, Akavia ’10]
Mark Iwen’s tutorial: k logc n time.

I But c matters; faster than FFT if k/n� 1/ logc−1 n.
I Also yesterday: 4D light fields have k/n ≈ 0.1%.

I If c = 4: slower than FFT.
I Our result: faster than FFT for any k/n� 1.
I If no hidden constants, would be 100x faster at 0.1%.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 7 / 22



Previous work on Sparse Fourier Transforms

Boolean cube: [KM92], [GL89]. Cn: [Mansour ’92] kc logc n.
Long line of additional work [GGIMS02, AGS03, GMS05, Iwen
’10, Akavia ’10]
Mark Iwen’s tutorial: k logc n time.

I But c matters; faster than FFT if k/n� 1/ logc−1 n.
I Also yesterday: 4D light fields have k/n ≈ 0.1%.
I If c = 4: slower than FFT.

I Our result: faster than FFT for any k/n� 1.
I If no hidden constants, would be 100x faster at 0.1%.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 7 / 22



Previous work on Sparse Fourier Transforms

Boolean cube: [KM92], [GL89]. Cn: [Mansour ’92] kc logc n.
Long line of additional work [GGIMS02, AGS03, GMS05, Iwen
’10, Akavia ’10]
Mark Iwen’s tutorial: k logc n time.

I But c matters; faster than FFT if k/n� 1/ logc−1 n.
I Also yesterday: 4D light fields have k/n ≈ 0.1%.
I If c = 4: slower than FFT.
I Our result: faster than FFT for any k/n� 1.

I If no hidden constants, would be 100x faster at 0.1%.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 7 / 22



Previous work on Sparse Fourier Transforms

Boolean cube: [KM92], [GL89]. Cn: [Mansour ’92] kc logc n.
Long line of additional work [GGIMS02, AGS03, GMS05, Iwen
’10, Akavia ’10]
Mark Iwen’s tutorial: k logc n time.

I But c matters; faster than FFT if k/n� 1/ logc−1 n.
I Also yesterday: 4D light fields have k/n ≈ 0.1%.
I If c = 4: slower than FFT.
I Our result: faster than FFT for any k/n� 1.
I If no hidden constants, would be 100x faster at 0.1%.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 7 / 22



Formal results

k -sparse Fourier transform in O(k log n) time.

Approximate sparse Fourier transform in O( 1
εk log(n/k) log n)

time:
‖result − x̂‖2 6 (1 + ε) min

k -sparse x̂(k)

‖x̂(k) − x̂‖2

for ε > 0.
Faster than FFT whenever k/n < C for fixed constant C.

I Exact case: C ≈ 1%.

Caveats:
I Output x̂ has log n bit precision.
I n must be a power of 2 (more generally, n must be smooth).
I Succeed with 90% probability.
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Algorithm

Suppose x̂ is k -sparse.

Theorem
We can compute x̂ in O(k log n) time with 90% probability.

Suffices to recover most of x̂ , so residual is k/2 sparse:
Then: repeat on residual, with k → k/2 and decreasing the error
probability.
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What can you do with Fourier measurements?
Time Frequency

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 11 / 22

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
B terms: O(n log n)
x · boxcar→ x̂ ∗ sinc.

B-dimensional DFT of
first B terms: O(B log B)
alias(x · boxcar)→
subsample(x̂ ∗ sinc).
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A Better Filter
Filter (time): Gaussian · sinc

Time domain is O(B log n) sparse.

“Pass region” of size n/B, outside which filter is negligible δ.
“Super-pass region”, where filter ≈ 1.
Small fraction (say 10%) is “bad region” with intermediate value.
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A Better Filter

9
10
n
B

Super-pass region

Time domain is O(B log n) sparse.
“Pass region” of size n/B, outside which filter is negligible δ.
“Super-pass region”, where filter ≈ 1.

Small fraction (say 10%) is “bad region” with intermediate value.
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A Better Filter
Bad region

Time domain is O(B log n) sparse.
“Pass region” of size n/B, outside which filter is negligible δ.
“Super-pass region”, where filter ≈ 1.
Small fraction (say 10%) is “bad region” with intermediate value.
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Algorithm for exactly sparse signals
Original signal x Original signal x̂

Lemma
If i is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂i .

Computing the b for all B buckets takes O(B log n) time.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 13 / 22



Algorithm for exactly sparse signals
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Algorithm for exactly sparse signals
F ·x aliased to B terms Computed samples of F̂ ∗x̂

Lemma
If i is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂i .

Computing the b for all B buckets takes O(B log n) time.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 13 / 22



Algorithm for exactly sparse signals
F ·x aliased to B terms Computed samples of F̂ ∗x̂

Lemma
If i is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂i .

Computing the b for all B buckets takes O(B log n) time.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 13 / 22



Algorithm for exactly sparse signals
F ·x aliased to B terms Knowledge about x̂

Lemma
If i is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂i .

Computing the b for all B buckets takes O(B log n) time.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 13 / 22



Algorithm for exactly sparse signals
F ·x aliased to B terms Knowledge about x̂

Lemma
If i is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂i .

Computing the b for all B buckets takes O(B log n) time.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 13 / 22



Algorithm for exactly sparse signals
F ·x aliased to B terms Knowledge about x̂

Lemma
If i is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂i .

Computing the b for all B buckets takes O(B log n) time.

Eric Price (MIT) Sparse Fourier Transform Algorithms 2013-2-17 13 / 22



Algorithm for exactly sparse signals

Lemma
If i is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂i .

Computing the b for all B buckets takes O(B log n) time.

Time-shift x by one and repeat: b ′ = x̂iω
i .

Divide to get b ′/b = ωi

=⇒ can compute i if it is isolated.

Dilation in time =⇒ dilation in frequency; randomizes isolation.
Gives weak sparse recovery x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

I Repeat on residual to recover x̂ exactly.
I Can’t evaluate x ′ in time domain, but can hash x̂ ′ directly.

Gives O(k log n) time sparse Fourier transform.
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Approximate sparsity

Exact Sparsity

O(k log n)Our Result:

What if there’s mass outside top k elements xk?
Error proportional to noise ‖x − xk‖22.
For all x , work with 90% probability.
Bridge between the two results?

I Signal-to-Noise Ratio ‖xk‖2
2/‖x − xk‖2

2.
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Algorithm for approximately sparse signals

b ′/b = ωi

Run same algorithm as for exact sparsity:
I Compute O(k) buckets in O(k log n) time, samples.
I For each bucket with isolated i , get b ′/b ≈ ωi .

Approximately sparse: estimates have noise.
Only log SNR = O(1) useful bits.
Goal: choose Θ(log(n/k)) time shifts c to recover i .
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Recovering i from random time shifts c

b ′/b = ωc3i + noise

Choose Θ(log(n/k)) time shifts c, or “measurements”.

Takes O(k log n log(n/k)) time to compute all measurements.
Random measurements can identify i among n/k in bucket:

I If j 6= i , ωci −ωcj is usually “large”.
I If so, distinguish ωi + noise from ωj + noise.

But... time to decode i?
Decoding k buckets, so need an efficiently decodable “code”.

I Constant rate, quadratic decoding time.
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Recover high order bits in sequence

ωi

Want to find i in contiguous region of size R = n/k .

Choose c ≈ n/R so possibilities cover most of circle.

Observation identifies i inside constant fraction of region.
Restrict and repeat, O(log(n/k)) times.
Linear decoding time.

I But rate isn’t constant, just 1/ log log(n/k)...
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Combining the two approaches

Constant rate
Exponential runtime
Exponentially small failure

Random

ωci

Linear runtime
Constant failure per bit

Largest bit, sequentially
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Our Decoding Procedure

R → R/ log(n/k)
O(log2(n/k)) runtime
1/ logc(n/k) failure

log log(n/k) largest bits, sequentially

O(log2(n/k)) time to decode each coordinate.
Gives O(k log(n/k) log n) time/sample complexity.
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Conclusion

O(k log n) for exactly sparse x̂
O(k log(n/k) log n) for approximation.

Can we do better?
The log n sample complexity loss comes from our filters.
Avoidable if domain has enough subgroups.

I Sparse Hadamard transform: log n-dimensional DFT.
I (Piotr’s talk) 2-dimensional DFT on average.
I Similar results for 1-dimensional DFT if n has enough factors.

Can we avoid it in general?
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