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Problem Setup

Recover f : [0, 27] — C consisting of k trigonometric terms

‘ : N N
f(X)%jZ1Cj-(BX~<.uj~J17 Q= {w1,...,wk} C <—E,E] ﬂZ
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Problem Setup

Recover f : [0, 27] — C consisting of k trigonometric terms

‘ : N N
f(X)%jZ1Cj-(BX~<.uj~J17 Q= {w1,...,wk} C <—E,§] ﬂZ

@ Approximate {(wj, Gj) | 1 <j < k} using only dy
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A Woefully Incomplete History of "Fast" Sparse FFTs

Recover f : [0,27] — C consisting of k trigonometric terms

¢ X-wj-1 N N
f(X)%ZCICB /,Q={w1,...,wk}c —575 ﬂZ

j=1

@ The Fast Fourier Transform (FFT) [CT’65] can approximate
(wj, G), 1 <j < k,in O(Nlog N)-time. Efficient FFT
implementations that minimize the hidden constants have been
developed (e.g., FFTW [FJ’ 05)).

M.A. lwen (Duke) Fast Sparse FFTs February 17, 2013 3/32



A Woefully Incomplete History of "Fast" Sparse FFTs

Recover f : [0,27] — C consisting of k trigonometric terms

d X-wj-1 Ay
X)%ZCI(B /7Q={CL)17...7CUK}C _§7§ mZ

j=1

@ The Fast Fourier Transform (FFT) [CT’65] can approximate
(wj, G), 1 <j < k,in O(Nlog N)-time. Efficient FFT
implementations that minimize the hidden constants have been
developed (e.g., FFTW [FJ’ 05)).

@ Mansour [M'95]; Akavia, Goldwasser, Safra [AGS’ 03]; Gilbert,
Guha, Indyk, Muthukrishnan, Strauss [GGIMS’ 02] & [GMS’ 05]; I.,
Segal [I'13] & [SI 12]; Hassanieh, Indyk, Katabi, Price [HIKPs'12]
& [HIKPst'12]; ... O(k log® N)-time
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Example: cos(5x) + .5cos(400x)

1.5

1] b

0.5 b

1(x)
<

-0.51 b

-1.5 I I I 1 I I

e f(x)= (1/4)®7400x.i1 + (1/2)®75x.ﬁ + (1/2)035,(.]'1 4 (1/4)03400)(.].1
e Q={-400,-5,5,400}
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Four Step Approach

Approximate { wj, Gj) | 1 <j < k} by sampling

" N N
%;Cjex j ,QZ{CU‘],...,CUK}C (—E,E]HZ

A Sparse Fourier Transform will...

@ Try to isolate each frequency, w; € Q, in some
fi(x) = Cj- I + €(x)

@ Q<+ Usef(x)tolearnallwj € Q
@ C; «+ Estimate C; for each w; € Q
@ Repeatonf -3, .4 C; - e, or not...
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Design Decision #1: Pick a Filter

Space Fourier
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Design Decision #1: Pick a Filter

Previous Choices
@ (Indicator function,Dirichlet) Pair: [GGIMS’ 02] & [GMS’ 05]
@ (Spike Train,Spike Train) Pair: [I'13] & [SI'12]

@ (Conv[Gaussian,Indicator],Gaussian x Dirichlet) Pair': [HIKPs’12]
& [HIKPst'12]

'Also consider Dolph-Chebyshev window function. . .
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Design Decision #1: Pick a Filter

Previous Choices
@ (Indicator function,Dirichlet) Pair: [GGIMS’ 02] & [GMS’ 05]
@ (Spike Train,Spike Train) Pair: [I'13] & [SI'12]

@ (Conv[Gaussian,Indicator],Gaussian x Dirichlet) Pair': [HIKPs’12]
& [HIKPst'12]

We'll use a regular Gaussian today

'Also consider Dolph-Chebyshev window function. . .
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Gaussian with “Small Support” in Space

0.8-
AO.G*
\60.47
0.2 J k
00 1‘ é 3 4 é 6 7
@ Supports fast approximate convolutions: Conv|g, f](jAx) is
N—-1 N/2+c
Zg(hAx)f (G—max)~ > ghax)f((j— h)ax).
h=N/2—c

@ Ax =2n/N, c small
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Gaussian has “Large Support” in Fourier

20

—G(w - 370) = Fle” "%*q]

—G(w - 185) = Fle” ' 18%q]
15y —G(w) = Flg]
210 :
5]
5r i
-460 -260 6 : ;
w
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@ Modulating the filter, g, a small number of times allows us to bin
the Fourier spectrum
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Gaussian has “Large Support” in Fourier

-800 -400 -200 0 200 400 600

@ Modulating the filter, g, a small number of times allows us to bin
the Fourier spectrum
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Example: Convolutions Bin Fourier Spectrum

_ 400
£
200 ‘

e F[Conv(g, f](x)] (w) = Flgl(w) * F[f](w)
@ Convolving allows us to select parts of f’s spectrum

IF(w)!
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25
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Example: Convolutions Bin Fourier Spectrum

IF(w)!

—G(w - 370) = Fe” %
—G(w - 185) = Fle ' 1¥%xq]
—G(w)= Flg]

—F(w)= F[f]

ﬁ

Convig, fl(x)
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Binning Summary

@ Large support in Fourier = Need few modulations of g to bin
e 2 g(x), e '¥g(x), g(x). eg(x), ¥ g(x)
© Small Support in Space — Need few samples for convolutions
g—&-c
Convle ', fl(jAx) ~ Y e " Xg(hAx)f ((j — h)Ax), ¢small
h=%-c

© Problem: Two frequencies can be binned in the same bucket

25

—G(w -370) = Fle” 3%
20l —G(w-185)= Fle ' 185~
—G(w) = FI[d]
i —F(@)= F[f]
2
w
=10
5
oo 600
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Shift and Spread the Spectrum of f

° f F[f] (w)
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Frequency Isolation

20 ; .
—G(w -370)= F [e"l37°x*g]
—G(w-185)= Fle ' %]
151 —G(w)= F[g]
_ — Fle' ®™ i(131%)]
Z 10t |
w
5, -
oo -400 200 0 200 400 600

@ We have isolated one of the previously collided frequencies in

Convle 7% g(x), e°1Xf(131x)](x)
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Frequency Isolation Summary

@ Choose filter g with small support in space, large support in
Fourier
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Frequency Isolation Summary

@ Choose filter g with small support in space, large support in
Fourier

@ Randomly select dilation and modulation pairs, (d;, m;) € Z?
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Frequency Isolation Summary

@ Choose filter g with small support in space, large support in
Fourier

@ Randomly select dilation and modulation pairs, (d;, m;) € Z?

© Each energetic frequency in f, w; € Q, will have a proxy isolated in
Conv[e " g(x), ™ f(dx)](x)

for some n, my, d; triple with high probability.
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Frequency Isolation Summary

@ Choose filter g with small support in space, large support in
Fourier

@ Randomly select dilation and modulation pairs, (d;, m;) € Z?

© Each energetic frequency in f, w; € Q, will have a proxy isolated in
Conv[e " g(x), ™ f(dx)](x)

for some n, my, d; triple with high probability.

© Analyzing probability of isolation is akin to considering tossing
balls (frequencies of f) into bins (pass regions of modulated filter)
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Frequency Isolation Summary

@ Choose filter g with small support in space, large support in
Fourier

@ Randomly select dilation and modulation pairs, (d;, m;) € Z?

© Each energetic frequency in f, w; € Q, will have a proxy isolated in
Conv[e " g(x), ™ f(dx)](x)
for some n, my, d; triple with high probability.

© Analyzing probability of isolation is akin to considering tossing
balls (frequencies of f) into bins (pass regions of modulated filter)

© Computing each convolution at a given x of interest is fast since g
has small support in space
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Design Decision #2: Frequency ldentification

Frequency Isolated in a Convolution

fi(x) := Conv[e ¥ g(x), eﬂm’fxf(d/l,x)](x) =Cj- eIt + ¢(x)

@ Compute the phase of

7;(/’11 AX) -
fi(hAx +7) "~

H !
TL-W;
J

© Perform a modified binary search for w]’-. A variety of methods exist
for making decisions about the set of frequencies wj’- belongs to at
each stage of the search...
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Identification Example: One Nonzero Entry

@ M < {0,1}5%8, f ¢ C® contains 1 nonzero entry.
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Identification Example: One Nonzero Entry

@ M < {0,1}5%8, f ¢ C® contains 1 nonzero entry.

=0 mod 2 101010 8
=1 mod 2 0101 0 1 3
=0mod3 1 00100 0
=1mod3 010010 0
=2mod3 0 01O0O0 1 0
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Identification Example: One Nonzero Entry

e M e {0,1}5%8, f ¢ ©° contains 1 nonzero entry.

101010 8 3.5 < Index = 0 mod 2
0101 0 1 35 0
1 00100 0 = 0
01 0010 0 0
001 O0O0 1 0 3.5 < Index =2mod3
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Identification Example: One Nonzero Entry

e M e {0,1}5%8, f ¢ ©° contains 1 nonzero entry.

101010 8 3.5 < Index = 0 mod 2
0101 0 1 35 0
1 00100 0 = 0
01 0010 0 0
001 O0O0 1 0 3.5 < Index =2mod3

@ Reconstruct entry index via Chinese Remainder Theorem
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Identification Example: One Nonzero Entry

e M e {0,1}5%8, f ¢ ©° contains 1 nonzero entry.

101010 8 3.5 < Index = 0 mod 2
0101 0 1 35 0
1 00100 0 = 0
01 0010 0 0
001 O0O0 1 0 3.5 < Index =2mod3

@ Reconstruct entry index via Chinese Remainder Theorem
@ Two estimates of the entry’s value
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Identification Example: One Nonzero Entry

e M e {0,1}5%8, f ¢ ©° contains 1 nonzero entry.

101010 8 3.5 < Index = 0 mod 2
0101 0 1 35 0
1 00100 0 = 0
01 0010 0 0
001 O0O0 1 0 3.5 < Index =2mod3

@ Reconstruct entry index via Chinese Remainder Theorem
@ Two estimates of the entry’s value

SAVED ONE LINEAR TEST!

M.A. lwen (Duke) Fast Sparse FFTs February 17, 2013 18/32



Identification Example: One Fourier Coefficient

1
0
1
0
0
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Identification Example: One Fourier Coefficient

10
0 1
10
0 1
00

M.A. lwen (Duke)
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Identification Example: One Fourier Coefficient

y
0
1
0
0
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Identification Example: One Fourier Coefficient

0

300 5 00 0 35
8300 /200 41 | 35 _8
*x 0 0 % O 6x6 1 0 _0
*x 0 x 0 % O 0 35
x 0 x 0 % 0 0 '
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Identification Example: One Fourier Coefficient

0

500 /3 00 0 3.5
300 /200 41 | 35 _8
* 0 =% 0 x O GXGO _0
*x 0 x 0 % 0 0 35
* 0 x 0 % 0 0 .

@ We only utilize 4 samples
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Identification Example: One Fourier Coefficient

0
100000

ﬁ'f2x2<ooo1oo) -
100000 Foxs | o =

V2 -Faez-( 001 00 0 0
000010 0

@ We only utilize 4 samples
@ Computed Efficiently using 2 FFTs
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Identification Example:

O~ 0 OO

oo o —+ o

_;ooOO

@ We only utilize 4 samples
@ Computed Efficiently using 2 FFTs

@ Reconstruct frequency index via Chinese Remainder Theorem
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Identification Example:

@ We only utilize 4 samples

O~ 0 OO

oo o —+ o

One Fourier Coefficient

_;ooOO

@ Computed Efficiently using 2 FFTs

@ Reconstruct frequency index via Chinese Remainder Theorem
@ Two estimates of nonzero Fourier coefficient
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Identification Example:

@ We only utilize 4 samples

O~ 0 OO

oo o —+ o

One Fourier Coefficient

_;ooOO

@ Computed Efficiently using 2 FFTs

@ Reconstruct frequency index via Chinese Remainder Theorem
@ Two estimates of nonzero Fourier coefficient

M.A. lwen (Duke)
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Design Decision #3: Coefficient Estimation

Frequency Isolated in a Convolution

—1n;ax

f(x) := Conv[e "% g(x), ™ F(dx)](x) = C - &I + ¢(x)

@ Sometimes the procedure for identifying w/’- automatically provides
estimates of ij

@ If not, we can compute C; ~ ¢ X (x) if e(x) small

© Approximate ij via (Monte Carlo) integration techniques, e.g.,

2
C;%/WQ_Xwﬂf(X Z thn
0

h:

=
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What have we got so far?

Approximate { wj, G)) | 1 <j < k} by sampling

y N N
f(X)%;Cj.eX'UJI , Q:{CL)‘],...,WK} C <—E,E:| ﬂZ

@ We can isolate (a proxy for) each w; € , in some
fi(x) = Convle™""g(x), ™ f(dx)](x)
for some n, my, d, triple with high probability (w.h.p.).
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What have we got so far?

Approximate { wj, G)) | 1 <j < k} by sampling

y N N
f(X)%;Cj.eX'UJI , Q:{O.M,...,(,L)k} C <—E,E:| ﬂZ

@ We can isolate (a proxy for) each w; € , in some
fi(x) = Conv[e™"™g(x), "™ f(djx)](x)

for some n, my, d, triple with high probability (w.h.p.).
© We can identify w; by, e.g., doing a binary search on f;
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What have we got so far?

Approximate { wj, G)) | 1 <j < k} by sampling

y N N
f(X)%;Cj.ex'wI , Q:{w1,...,WK} C <—E,E:| mZ

@ We can isolate (a proxy for) each w; € , in some
fi(x) = Conv[e™"™g(x), "™ f(djx)](x)

for some n, my, d, triple with high probability (w.h.p.).
© We can identify w; by, e.g., doing a binary search on f;
© We can get a good estimate of C; from f;(x) once we know w;
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What have we got so far?

Approximate { wj, Gj) | 1 < j < k} by sampling

y N N
f(X)%;Cj.ex'wI , Q:{w1,...,WK} C <—E,E:| ﬂZ

@ We can isolate (a proxy for) each w; € , in some
fi(x) = Conv[e™"™g(x), "™ f(djx)](x)

for some n, my, d, triple with high probability (w.h.p.).
© We can identify w; by, e.g., doing a binary search on f;
© We can get a good estimate of C; from f;(x) once we know w;

We have a lot of estimates, {(d,-, Cj) | 1 <j < ciklog® N}, which
contain the true Fourier frequency/coefficient pairs.
How do we discard the junk?
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Design Decision #4: lteration?

Approximate { wj, G)) | 1 <j < k} by sampling

" N N
%;Cjex j ,QZ{CL)‘],...,(.UK}C (—E,E]HZ

@ Analyzing probability of isolation is akin to considering tossing
balls (frequencies of f) into bins (pass regions of modulated filter)
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No lteration: Identification and Estimation Once

Approximate { wj, Gj) | 1 <j < k} by sampling

] N N
- o Xewj _ A
N;q e /79 {w1,...,wk}C< 2a2:|mZ

@ Tossing the balls (frequencies) into O(k) bins (pass regions)
about T = O(log N)-times guarantees that each ball lands in a bin
“by itself” on the majority of tosses, w.h.p.
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No lteration: Identification and Estimation Once

Approximate { wj, Gj) | 1 <j < k} by sampling

i N N
zzcj.@x-wj , Q={w1,...,wk} C (—E,E]HZ
j:

@ Tossing the balls (frequencies) into O(k) bins (pass regions)
about T = O(log N)-times guarantees that each ball lands in a bin
“by itself” on the majority of tosses, w.h.p.

» Translation: We should identify dominant frequency of

Conv[e "™ g(x), e™*f(dx)](x)
for O(log N) random (my, d)-pairs, Vn € O([—k, K]).
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No lteration: Identification and Estimation Once

Approximate { wj, Gj) | 1 <j < k} by sampling

A N N
%zcj'(BX'w/ ’Q:{(,LH,...,WK}C(—E,E]HZ
j:

@ Tossing the balls (frequencies) into O(k) bins (pass regions)
about T = O(log N)-times guarantees that each ball lands in a bin
“by itself” on the majority of tosses, w.h.p.

» Translation: We should identify dominant frequency of
Conv[e "™ g(x), e™*f(dx)](x)

for O(log N) random (my, d)-pairs, Vn € O([—k, K]).
© Will identify each w; € Q for > T/2 (my, dj)-pairs w.h.p.
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No lteration: Identification and Estimation Once

Approximate { wj, Gj) | 1 <j < k} by sampling

- N N
—~ L Xwjd _ .
Nj; Cj ™, Q {w1,...,wk}C< —2,—2]| | Z

@ Tossing the balls (frequencies) into O(k) bins (pass regions)
about T = O(log N)-times guarantees that each ball lands in a bin
“by itself” on the majority of tosses, w.h.p.

» Translation: We should identify dominant frequency of

Conv[e "™ g(x), e™*f(dx)](x)
for O(log N) random (my, d)-pairs, Vn € O([—k, K]).
© Will identify each w; € Q for > T/2 (my, dj)-pairs w.h.p.
© SO....we can take medians of real/imaginary parts of C;

estimates for each frequency identified by > T/2 (m, d))-pairs as
our final Fourier coefficient estimate for that frequency, and do fine
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Several rounds of Identification and Estimation

Approximate { wj, Gj) | 1 <j < k} by sampling

X) ~ ZC]-(BX~W]~I'1’ Q= {wy,...,wx} C (—g,g] mZ
j=1

@ Tossing the balls (frequencies) into O(k) bins (pass regions)
about O(T)-times guarantees that each ball lands in a bin “by

itself” at least once with probability 1 — 27
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Several rounds of Identification and Estimation

Approximate { wj, Gj) | 1 <j < k} by sampling

X)%ch.@x«uj.ﬁ’ Q:{W1,.. wk} - ( I;I,g] ﬂZ
j=1

@ Tossing the balls (frequencies) into O(k) bins (pass regions)
about O(T)-times guarantees that each ball lands in a bin “by

itself” at least once with probability 1 — 27
» |dea: We should identify dominant frequency of
Convle " g(x), e'™*f(dx)](x)

for O(1) random (my, d))-pairs, Vn € O([—k, k]).
» We can expect to correctly identify a constant fraction of w, ..., wk
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Several rounds of Identification and Estimation

Approximate { wj, Gj) | 1 <j < k} by sampling

X)%ch.@x«u/‘.ﬁ’ Q:{(m,.. wk} - ( I;I,g] mZ
j=1

@ Tossing the balls (frequencies) into O(k) bins (pass regions)
about O(T)-times guarantees that each ball lands in a bin “by

itself” at least once with probability 1 — 27
» |dea: We should identify dominant frequency of

Conv[e "™ g(x), e™*f(dx)](x)
for O(1) random (my, dj)-pairs, Vn € O([—k, K]).
» We can expect to correctly identify a constant fraction of w, ..., wk
@ Accurately estimating the Fourier coefficients of the identified
frequencies is comparatively easy (no binary search required)
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Several rounds of Identification and Estimation

Approximate { wj, Gj) | 1 <j < k} by sampling

X)%ch.@x«u/‘.ﬁ’ Q:{w1,.. wk} - ( I;I,g] mZ
j=1

@ Tossing the balls (frequencies) into O(k) bins (pass regions)
about O(T)-times guarantees that each ball lands in a bin “by

itself” at least once with probability 1 — 27
» |dea: We should identify dominant frequency of

Convle " g(x), e'™*f(dx)](x)
for O(1) random (my, d))-pairs, Vn € O([—k, k]).
» We can expect to correctly identify a constant fraction of w, ..., wk
@ Accurately estimating the Fourier coefficients of the identified
frequencies is comparatively easy (no binary search required)
© As long as we estimate the Fourier coefficients of the energetic
frequencies “well enough”, we’ve made progress
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@ If we made progress the first time, so we should do it again ...

Implicitly Create a “New Signal"
O(k) k/4

) = 1) = G- m Y ¢ e,
J=1 j=1

where (&, Cj) where obtained from the last round

© Sparsity is effectively reduced. Repeat. ..
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@ Tossing the remaining k/4/ balls (frequencies) into O(k/4/) bins
(pass regions) about O(j)-times guarantees that each remaining
ball lands in a bin “by itself” at least once with probability 1 — 2~/
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@ Tossing the remaining k/4/ balls (frequencies) into O(k/4/) bins
(pass regions) about O(j)-times guarantees that each remaining
ball lands in a bin “by itself” at least once with probability 1 — 2~/

» We should identify dominant frequencies of

Convle*"g(x), @™ f(d)x)](x)
for O(j) random (my, dj)-pairs, ¥n € O([—k/4, k/4]).

» We identify a constant fraction of remaining frequencies,
wi,. .. ,w;(/m, with higher probability
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@ Estimating Fourier coefficients of identified frequencies can be
done more accurately (e.g., w/ relative error O(277))
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@ Tossing the remaining k/4/ balls (frequencies) into O(k/4/) bins
(pass regions) about O(j)-times guarantees that each remaining
ball lands in a bin “by itself” at least once with probability 1 — 2~/

» We should identify dominant frequencies of

Conv[e "™ g(x), e™*f(dx)](x)

for O(j) random (my, d))-pairs, Vn € O([—k/4, k /4]]).
» We identify a constant fraction of remaining frequencies,
wi,. .. ,w;(/m, with higher probability
@ Estimating Fourier coefficients of identified frequencies can be
done more accurately (e.g., w/ relative error O(277/))

© We eventually find all of wy, ..., wx with high probability after
O(log k)-rounds. Samples/runtime will be dominated by first round
IE....
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We Can Quickly Sample From Residual Signal

The Residual Signal We Need to Sample
O(k) k)4

fl(x) := f(x) — Zch exwhﬂ~ZC,, &~

where (@p, Ch) where obtained from the previous rounds

@ Subtracting Fourier terms from previous rounds, (&p, Ch), from
each “frequency bin” they fall into

» We know what filter’s pass region each &y, will fall into (e.g., call it
ny). Subtract Cp, from the Fourier transform of

Conv[e 1" g(x), ™*f(dx)](x)
for each (my, dj)-pair during subsequent rounds.

@ Or, we can use nonequispaced FFT ideas (several grids on
arithmetic progressions, frequencies nonequispaced).
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Publicly Available Codes: FFTW, AAFFT, and GFFT

12 Run Time for Sparsity Fixed at 60
10°¢ ; e ; e
£ | ==b== GFFT-Det-Slow
i [ EFCEEERE | g » ]
10 | -=4-- GFFT-Rand-Slow e E
[ | FFTWS Lo
Jof | = AAFFT ____,.y_'
10 GFFT-Rand-Fast | . pas” E

Run Time (ticks)
=)

Signal Size

@ FFTW: http://www.fftw.org
@ AAFFT, GFFT: http://sourceforge.net/projects/gopherfft/
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Publicly Available Codes: SFT 1.0 and 2.0

Run Time vs Signal Size (k=50)

10 ¢ sFFT 1.0
sFFT 2.0
FFTW
1 L FFTWOPT
S AAFFT 0.9
Q
)
o 01 ¢
£
[—
S 001 L
[
0.001 e

214 215 216 217 218 219 220 221 222 223

Signal Size (n)

224 225 226

@ http://groups.csail.mit.edu/netmit/sFFT/code.html
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Extending to Many Dimensions

o Sample f"¥(x) = f(xpﬂ1, o xPﬂD) with N = [T5_, Py > NP

@ Works because Zj, is isomorphic to Zp, x --- X Zp,.
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Questions?

Thank You!
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