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Problem Setup

Recover f : [0,2π] 7→ C consisting of k trigonometric terms

f (x) ≈
k∑

j=1

Cj · ex ·ωj ·i, Ω = {ω1, . . . , ωk} ⊂
(
−N

2
,
N
2

]⋂
Z

Approximate
{

(ωj ,Cj)
∣∣ 1 ≤ j ≤ k

}
using only ~aN
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A Woefully Incomplete History of "Fast" Sparse FFTs

Recover f : [0,2π] 7→ C consisting of k trigonometric terms

f (x) ≈
k∑

j=1

Cj · ex ·ωj ·i, Ω = {ω1, . . . , ωk} ⊂
(
−N

2
,
N
2

]⋂
Z

The Fast Fourier Transform (FFT) [CT’65] can approximate
(ωj ,Cj), 1 ≤ j ≤ k , in O(N log N)-time. Efficient FFT
implementations that minimize the hidden constants have been
developed (e.g., FFTW [FJ’ 05)).

Mansour [M’95]; Akavia, Goldwasser, Safra [AGS’ 03]; Gilbert,
Guha, Indyk, Muthukrishnan, Strauss [GGIMS’ 02] & [GMS’ 05]; I.,
Segal [I’13] & [SI’12]; Hassanieh, Indyk, Katabi, Price [HIKPs’12]
& [HIKPst’12]; . . . O(k logc N)-time
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Example: cos(5x) + .5 cos(400x)

f (x) = (1/4)e−400x ·i + (1/2)e−5x ·i + (1/2)e5x ·i + (1/4)e400x ·i

Ω = {−400,−5,5,400}
C1 = C4 = 1/4, and C2 = C3 = 1/2
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Four Step Approach

Approximate
{
(ωj ,Cj)

∣∣ 1 ≤ j ≤ k
}

by sampling

f (x) ≈
k∑

j=1

Cj · ex ·ωj ·i, Ω = {ω1, . . . , ωk} ⊂
(
−N

2
,
N
2

]⋂
Z

A Sparse Fourier Transform will...

1 Try to isolate each frequency, ωj ∈ Ω, in some

fj(x) = C′j · ex ·ωj ·i + ε(x)

2 Ω̃← Use fj(x) to learn all ωj ∈ Ω

3 C̃j ← Estimate Cj for each ωj ∈ Ω̃

4 Repeat on f −
∑

ωj∈Ω̃ C̃j · ex ·ωj ·i, or not...
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Design Decision #1: Pick a Filter
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Design Decision #1: Pick a Filter

Previous Choices

(Indicator function,Dirichlet) Pair: [GGIMS’ 02] & [GMS’ 05]

(Spike Train,Spike Train) Pair: [I’13] & [SI’12]

(Conv[Gaussian,Indicator],Gaussian×Dirichlet) Pair1: [HIKPs’12]
& [HIKPst’12]

We’ll use a regular Gaussian today

1Also consider Dolph-Chebyshev window function. . .
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Gaussian with “Small Support” in Space

Supports fast approximate convolutions: Conv[g, f ](j∆x) is

N−1∑
h=0

g(h∆x)f ((j − h)∆x) ≈
N/2+c∑

h=N/2−c

g(h∆x)f ((j − h)∆x) .

∆x = 2π/N, c small
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Gaussian has “Large Support” in Fourier

Modulating the filter, g, a small number of times allows us to bin
the Fourier spectrum
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Example: Convolutions Bin Fourier Spectrum

F [Conv [g, f ](x)] (ω) = F [g](ω) ∗ F [f ](ω)
Convolving allows us to select parts of f ’s spectrum
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Example: Convolutions Bin Fourier Spectrum
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Binning Summary

1 Large support in Fourier =⇒ Need few modulations of g to bin

e
−i2axg(x), e−iaxg(x), g(x), eiaxg(x), ei2axg(x)

2 Small Support in Space =⇒ Need few samples for convolutions

Conv[e−iaxg, f ](j∆x) ≈

N
2 +c∑

h= N
2−c

e
−iah∆xg(h∆x)f ((j − h)∆x) , c small

3 Problem: Two frequencies can be binned in the same bucket
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Shift and Spread the Spectrum of f

f F [f ] (ω)

ei451x f (131 ∗ x) F
[
ei451x f (131 ∗ x)

]
(ω)
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Frequency Isolation

We have isolated one of the previously collided frequencies in

Conv[e−i370xg(x), ei451x f (131x)](x)
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Frequency Isolation Summary

1 Choose filter g with small support in space, large support in
Fourier

2 Randomly select dilation and modulation pairs, (dl ,ml) ∈ Z2

3 Each energetic frequency in f , ωj ∈ Ω, will have a proxy isolated in

Conv[e−inaxg(x), eiml x f (dlx)](x)

for some n,ml ,dl triple with high probability.

4 Analyzing probability of isolation is akin to considering tossing
balls (frequencies of f ) into bins (pass regions of modulated filter)

5 Computing each convolution at a given x of interest is fast since g
has small support in space
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Design Decision #2: Frequency Identification

Frequency Isolated in a Convolution

fj(x) := Conv[e−inj axg(x), e
imlj

x f (dlj x)](x) = C′j · e
x ·ω′

j ·i + ε(x)

1 Compute the phase of

fj(h1∆x)

fj(h1∆x + π)
≈ eπi·ω

′
j

2 Perform a modified binary search for ω′j . A variety of methods exist
for making decisions about the set of frequencies ω′j belongs to at
each stage of the search...
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Identification Example: One Nonzero Entry

M ∈ {0,1}5×6, f̂j ∈ C6 contains 1 nonzero entry.

≡ 0 mod 2
≡ 1 mod 2
≡ 0 mod 3
≡ 1 mod 3
≡ 2 mod 3


1 0 1 0 1 0
0 1 0 1 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1





0
0

3.5
0
0
0


Reconstruct entry index via Chinese Remainder Theorem
Two estimates of the entry’s value

SAVED ONE LINEAR TEST!
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Identification Example: One Fourier Coefficient


1 0 1 0 1 0
0 1 0 1 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1





0
0

3.5
0
0
0

 =


3.5
0
0
0

3.5



We only utilize 4 samples
Computed Efficiently using 2 FFTs
Reconstruct frequency index via Chinese Remainder Theorem
Two estimates of nonzero Fourier coefficient

SAVED TWO SAMPLES!
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√
3
2 0 0

√
3
2 0 0√

3
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√
3
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Design Decision #3: Coefficient Estimation

Frequency Isolated in a Convolution

fj(x) := Conv[e−inj axg(x), e
imlj

x f (dlj x)](x) = C′j · e
x ·ω′

j ·i + ε(x)

1 Sometimes the procedure for identifying ω′j automatically provides
estimates of C′j . . .

2 If not, we can compute C′j ≈ e
−x ·ω′

j ·ifj(x) if ε(x) small

3 Approximate C′j via (Monte Carlo) integration techniques, e.g.,

C′j ≈
∫ 2π

0
e
−x ·ω′

j ·i fj(x) dx ≈ 1
K

K∑
h=1

e
−xh·ω′

j ·i fj(xh)
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What have we got so far?

Approximate
{
(ωj ,Cj)

∣∣ 1 ≤ j ≤ k
}

by sampling

f (x) ≈
k∑

j=1

Cj · ex ·ωj ·i, Ω = {ω1, . . . , ωk} ⊂
(
−N

2
,
N
2

]⋂
Z

1 We can isolate (a proxy for) each ωj ∈ Ω, in some

fj(x) = Conv[e−inaxg(x), eiml x f (dlx)](x)

for some n,ml ,dl triple with high probability (w.h.p.).
2 We can identify ωj by, e.g., doing a binary search on f̂j
3 We can get a good estimate of Cj from fj(x) once we know ωj

We have a lot of estimates,
{

(ω̃j , C̃j)
∣∣ 1 ≤ j ≤ c1k logc2 N

}
, which

contain the true Fourier frequency/coefficient pairs.
How do we discard the junk?

M.A. Iwen (Duke) Fast Sparse FFTs February 17, 2013 21 / 32



What have we got so far?

Approximate
{
(ωj ,Cj)

∣∣ 1 ≤ j ≤ k
}

by sampling

f (x) ≈
k∑

j=1

Cj · ex ·ωj ·i, Ω = {ω1, . . . , ωk} ⊂
(
−N

2
,
N
2

]⋂
Z

1 We can isolate (a proxy for) each ωj ∈ Ω, in some

fj(x) = Conv[e−inaxg(x), eiml x f (dlx)](x)

for some n,ml ,dl triple with high probability (w.h.p.).
2 We can identify ωj by, e.g., doing a binary search on f̂j
3 We can get a good estimate of Cj from fj(x) once we know ωj

We have a lot of estimates,
{

(ω̃j , C̃j)
∣∣ 1 ≤ j ≤ c1k logc2 N

}
, which

contain the true Fourier frequency/coefficient pairs.
How do we discard the junk?

M.A. Iwen (Duke) Fast Sparse FFTs February 17, 2013 21 / 32



What have we got so far?

Approximate
{
(ωj ,Cj)

∣∣ 1 ≤ j ≤ k
}

by sampling

f (x) ≈
k∑

j=1

Cj · ex ·ωj ·i, Ω = {ω1, . . . , ωk} ⊂
(
−N

2
,
N
2

]⋂
Z

1 We can isolate (a proxy for) each ωj ∈ Ω, in some

fj(x) = Conv[e−inaxg(x), eiml x f (dlx)](x)

for some n,ml ,dl triple with high probability (w.h.p.).
2 We can identify ωj by, e.g., doing a binary search on f̂j
3 We can get a good estimate of Cj from fj(x) once we know ωj

We have a lot of estimates,
{

(ω̃j , C̃j)
∣∣ 1 ≤ j ≤ c1k logc2 N

}
, which

contain the true Fourier frequency/coefficient pairs.
How do we discard the junk?

M.A. Iwen (Duke) Fast Sparse FFTs February 17, 2013 21 / 32



What have we got so far?

Approximate
{
(ωj ,Cj)

∣∣ 1 ≤ j ≤ k
}

by sampling

f (x) ≈
k∑

j=1

Cj · ex ·ωj ·i, Ω = {ω1, . . . , ωk} ⊂
(
−N

2
,
N
2

]⋂
Z

1 We can isolate (a proxy for) each ωj ∈ Ω, in some

fj(x) = Conv[e−inaxg(x), eiml x f (dlx)](x)

for some n,ml ,dl triple with high probability (w.h.p.).
2 We can identify ωj by, e.g., doing a binary search on f̂j
3 We can get a good estimate of Cj from fj(x) once we know ωj

We have a lot of estimates,
{

(ω̃j , C̃j)
∣∣ 1 ≤ j ≤ c1k logc2 N

}
, which

contain the true Fourier frequency/coefficient pairs.
How do we discard the junk?

M.A. Iwen (Duke) Fast Sparse FFTs February 17, 2013 21 / 32



Design Decision #4: Iteration?

Approximate
{
(ωj ,Cj)

∣∣ 1 ≤ j ≤ k
}

by sampling

f (x) ≈
k∑

j=1

Cj · ex ·ωj ·i, Ω = {ω1, . . . , ωk} ⊂
(
−N

2
,
N
2

]⋂
Z

Analyzing probability of isolation is akin to considering tossing
balls (frequencies of f ) into bins (pass regions of modulated filter)
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No Iteration: Identification and Estimation Once

Approximate
{
(ωj ,Cj)

∣∣ 1 ≤ j ≤ k
}

by sampling

f (x) ≈
k∑

j=1

Cj · ex ·ωj ·i, Ω = {ω1, . . . , ωk} ⊂
(
−N

2
,
N
2

]⋂
Z

1 Tossing the balls (frequencies) into O(k) bins (pass regions)
about T = O(log N)-times guarantees that each ball lands in a bin
“by itself” on the majority of tosses, w.h.p.

I Translation: We should identify dominant frequency of

Conv[e−inaxg(x), eiml x f (dlx)](x)

for O(log N) random (ml ,dl )-pairs, ∀n ∈ O([−k , k ]).
2 Will identify each ωj ∈ Ω for > T/2 (ml ,dl)-pairs w.h.p.
3 SO,. . . we can take medians of real/imaginary parts of Cj

estimates for each frequency identified by > T/2 (ml ,dl)-pairs as
our final Fourier coefficient estimate for that frequency, and do fine
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Several rounds of Identification and Estimation

Approximate
{
(ωj ,Cj)

∣∣ 1 ≤ j ≤ k
}

by sampling

f (x) ≈
k∑

j=1

Cj · ex ·ωj ·i, Ω = {ω1, . . . , ωk} ⊂
(
−N

2
,
N
2

]⋂
Z

1 Tossing the balls (frequencies) into O(k) bins (pass regions)
about O(T )-times guarantees that each ball lands in a bin “by
itself” at least once with probability 1− 2−T

I Idea: We should identify dominant frequency of

Conv[e−inaxg(x), eiml x f (dlx)](x)

for O(1) random (ml ,dl )-pairs, ∀n ∈ O([−k , k ]).
I We can expect to correctly identify a constant fraction of ω1, . . . , ωk

2 Accurately estimating the Fourier coefficients of the identified
frequencies is comparatively easy (no binary search required)

3 As long as we estimate the Fourier coefficients of the energetic
frequencies “well enough”, we’ve made progress
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Round 2

1 If we made progress the first time, so we should do it again . . .

Implicitly Create a “New Signal"

f 2(x) := f (x)−
O(k)∑
j=1

C̃j · ex ·ω̃j ·i ≈
k/4∑
j=1

C′j · e
x ·ω′

j ·i,

where (ω̃j , C̃j) where obtained from the last round

2 Sparsity is effectively reduced. Repeat. . .
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Round j

1 Tossing the remaining k/4j balls (frequencies) into O(k/4j) bins
(pass regions) about O(j)-times guarantees that each remaining
ball lands in a bin “by itself” at least once with probability 1− 2−j

I We should identify dominant frequencies of

Conv[e−inaxg(x), eiml x f (dlx)](x)

for O(j) random (ml ,dl )-pairs, ∀n ∈ O([−k/4j , k/4j ]).
I We identify a constant fraction of remaining frequencies,
ω′1, . . . , ω

′
k/4j , with higher probability

2 Estimating Fourier coefficients of identified frequencies can be
done more accurately (e.g., w/ relative error O(2−j))

...
3 We eventually find all of ω1, . . . , ωk with high probability after

O(log k)-rounds. Samples/runtime will be dominated by first round
IF. . . .
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We Can Quickly Sample From Residual Signal

The Residual Signal We Need to Sample

f j(x) := f (x)−
O(k)∑
h=1

C̃h · ex ·ω̃h·i ≈
k/4j∑
h=1

C′h · ex ·ω′
h·i,

where (ω̃h, C̃h) where obtained from the previous rounds

Subtracting Fourier terms from previous rounds, (ω̃h, C̃h), from
each “frequency bin” they fall into

I We know what filter’s pass region each ω̃h will fall into (e.g., call it
nh). Subtract C̃h from the Fourier transform of

Conv[e−inhaxg(x), eiml x f (dlx)](x)

for each (ml ,dl )-pair during subsequent rounds.

Or, we can use nonequispaced FFT ideas (several grids on
arithmetic progressions, frequencies nonequispaced).
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Publicly Available Codes: FFTW, AAFFT, and GFFT

FFTW: http://www.fftw.org
AAFFT, GFFT: http://sourceforge.net/projects/gopherfft/
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Publicly Available Codes: SFT 1.0 and 2.0

http://groups.csail.mit.edu/netmit/sFFT/code.html
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Extending to Many Dimensions

Sample f new(x) = f
(

x Ñ
P1
, . . . , x Ñ

PD

)
, with Ñ =

∏D
d=1 Pd > ND

Works because ZÑ is isomorphic to ZP1 × · · · × ZPD .

M.A. Iwen (Duke) Fast Sparse FFTs February 17, 2013 30 / 32



Questions?

Thank You!
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