Faster GPS via the Sparse Fourier Transform

Haitham Hassanieh

Fadel Adib

Dina Katabi

Piotr Indyk

GPS Is Widely Used

Faster GPS benefits many applications

How Do We Improve GPS?

Need to Improve GPS Synchronization

GPS Synchronization

Synchronization is locking onto a satellite's signal

 Consumes 30%-75% of GPS receiver's power [ORG447X datasheet, Venus 6 datasheet]

GPS signals are very weak, less than -20dB SNR

100s of millions of multiplications [Team, Kaplan]

Goal

Faster Synchronization Algorithm

Reduce number of operations

Reduction in power consumption and delay

Rest of this Talk

➤ GPS Primer

Our GPS Synchronization Algorithm

Empirical Results

How Does GPS Work?

distance = propagation delay × speed of light

Satellite Transmits CDMA code

Code arrives shifted by propagation delay

Receiver knows the code and when the satellite starts transmitting

Spike determines the delay

GPS Synchronization is a convolution with CDMA code

Convolution in Time

Multiplication in Frequency

$$O(n^2)$$

 $O(n \log n)$

State of the art GPS synchronization algorithm: $O(n \log n)$

Rest of this Talk

➤ GPS Primer

Our GPS Synchronization Algorithm

Empirical Results

QuickSync

- Faster GPS synchronization algorithm
- Complexity:
 - $-O(n\sqrt{\log n})$ for any SNR
 - -O(n) when noise is bounded by $O(n/\log^2 n)$
- Empirical Results:
 - Evaluated on real GPS signals
 - Improves performance by 2.2x

How can we make GPS synchronization faster than FFT-Based synchronization?

FFT-Based GPS Synchronization

FFT-Based GPS Synchronization

Each stage takes $O(n \log n)$

> need to reduce complexity of both stages

FFT-Based GPS Synchronization

IFFT Stage

Sparse IFFT

QuickSync

A Sparse IFFT algorithm for GPS

- Extends to the FFT-stage

QuickSync's Sparse IFFT

1- Bucketize

Divide output into a few buckets

2- Estimate

Estimate the largest coefficient in the largest bucket

Original Output

value of bucket = \sum samples

How to Bucketize Efficiently?

How to Estimate Efficiently?

- Keep largest bucket; ignore all the rest
- Out of the samples in the large bucket,
 which one is the spike?

The spike is the sample that has the maximum correlation

QuickSync's Sparse IFFT

- n is number of samples
- B buckets $\rightarrow n/B$ samples per buckets

Bucketization: $B \log B$

Estimation: $n/B \times B$

$$B = n/\log n \qquad \qquad O(n)$$

$$B = n/\sqrt{\log n} \qquad O(n\sqrt{\log n})$$

Output is not sparse
Cannot Use Sparse FFT

Subsampled FFT

Sparse IFFT

Need only few samples of FFT output

IFFT samples its input

Subsampled FFT

Sparse IFFT

FFT and IFFT are dual of each other

Subsampled FFT

Sparse IFFT

Bucketization FFT

Subsampling IFFT

Bucketization

Theorem:

For any SNR QuickSync achieves the same accuracy as FFT-Based synchronization and has a complexity of $O(n\sqrt{\log n})$ where n is the number of samples in the code

When noise is bounded by $O(n/\log^2 n)$, QuickSync has O(n) complexity.

Rest of this Talk

> GPS Primer

Our GPS Synchronization Algorithm

Empirical Results

Setup

SciGe GN3S Sampler

USRP Software radios

- Traces are collected both US and Europe
- Different locations: urban suburban
- Different weather conditions: cloudy clear

Compared Schemes

- QuickSync Synchronization
- FFT-Based Synchronization

Metrics

• Multiplication Gain = $\frac{\text{Multiplications of baseline}}{\text{Multiplications of QuickSync}}$

• FLOPS Gain = $\frac{\text{FLOPS of baseline}}{\text{FLOPS of QuickSync}}$

Multiplication Gain

Multiplication Gain

Multiplication Gain

QuickSync provides an average gain of 2.1x

FLOPS Gain

FLOPS Gain

QuickSync provides an average gain of 2.2 ×

Related Work

- Past work on GPS [NC91, SA08, RZL11]
 - QuickSync presents the faster algorithm
- Sparse FFT Algorithms [Man02, GMS05, HKIP12a, HKIP12b]
 - QuickSync's bucketization leverages duality
 - > reduces the complexity of both stages in GPS

Conclusion

- Fastest GPS synchronization algorithm
 - $-O(n\sqrt{\log n})$ for any SNR
 - -O(n) for moderately low SNR
- Empirical results show an average 2x gain
- Can we do better?
 - $-O(n^{2/3})$ for constant noise