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GPS Is Widely Used

Faster GPS benefits many applications




How Do We Improve GPS?
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Need to Improve GPS Synchronization



GPS Synchronization

Synchronization is locking onto a satellite’s signal

e Consumes 30%-75% of GPS receiver’s power
[ORG447X datasheet, Venus 6 datasheet]

GPS signals are very weak, less than -20dB SNR
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100s of millions of multiplications

[Team, Kaplan]




Goal

Faster Synchronization Algorithm
Reduce number of operations
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Reduction in power consumption and delay
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How Does GPS Work?___._________
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Compute the distance to
the GPS satellites

distance = propagation delay X speed of light



How to Compute the Propagation Delay?

p CDMA code
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Satellite Transmits CDMA code



How to Compute the Propagation Delay?

p CDMA code
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Code arrives shifted by propagation delay



How to Compute the Propagation Delay?

p CDMA code
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Receiver knows the code and when the satellite
starts transmitting



How to Compute the Propagation Delay?

Spike determines the delay



GPS Synchronization is a convolution with CDMA code
Convolution “ Multiplication
in Time in Frequency

0 (n?%) 0 (nlogn)

State of the art GPS synchronization

algorithm: O(nlogn)
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QuickSync
e Faster GPS synchronization algorithm

e Complexity:

—O(n,/logn ) for any SNR

—0(n) when noise is bounded by 0(n/log? n)

 Empirical Results:
— Evaluated on real GPS signals
—Improves performance by 2.2x



How can we make GPS synchronization
faster than FFT-Based synchronization?
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FFT-Based GPS Synchronization

correct shift

/
Received Signal .
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Output

FFT of
Code

FFT Stage IFFT Stage

Each stage takes O(nlogn)

— need to reduce complexity of both stages




FFT-Based GPS Synchronization

correct shift

® — IFFT

IFFT Stage

Sparse IFFT
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QuickSync
A Sparse IFFT algorithm for GPS

e Exactly One Spike =» Simpler algorithm

e Extends to the FFT-stage



QuickSync’s Sparse IFFT

1- Bucketize

Divide output into a
few buckets

2- Estimate

Estimate the largest
coefficient in the
largest bucket

Original Output
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How to Bucketize Efficiently?

input samples output samples

<€ > <€ >
Subsamples Buckets



How to Estimate Efficiently?

 Keep largest bucket; ignore all the rest

e Out of the samples in the large bucket,
which one is the spike? Largest bucket

@ P

The spike is the sample that has

the maximum correlation «—>
Buckets



QuickSync’s Sparse IFFT

e nisnumber of samples

* B buckets 2 n/B samples per buckets

Bucketization: B log B

Estimation: n/B X B

B=n/logn => O(n)
B =n/,/logn — 0(n,/logn)




QuickSync Synchronization
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QuickSync Synchronization

Input — FFT — & .

in Freq. I B
FFT of p
Code
FFT Stage

Output is not sparse
Cannot Use Sparse FFT



QuickSync Synchronization
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Input to next stage



QuickSync Synchronization

correct shift
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Subsampled FFT Sparse IFFT

Need only few em |FFT samples its
samples of FFT output input



QuickSync Synchronization

Input — FFT —

Signal
in Freq.

Subsampled FFT
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FFT and IFFT are dual of each other



QuickSync Synchronization
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Subsampled FFT

-— IFFT

|

FFT of
Code

correct shift

1

Output

Sparse IFFT

Bucketization | FFT = Subsampling IFFT = Bucketization



QuickSync Synchronization

nput Subsampled s Sparse | correct
FFT I IFFT delay

Subsampled
FFT of Code




Theorem:

For any SNR QuickSync achieves the same accuracy as

FFT-Based synchronization and has a complexity of

O (n./logn) where n is the number of samples in the code

When noise is bounded by O (n/log? n), QuickSync has
0 (n) complexity.
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Setup

eceeoe N 4T }

SciGe GN3S Sampler USRP Software radios

* Traces are collected both US and Europe

e Different locations: urban — suburban

e Different weather conditions: cloudy — clear



Compared Schemes

 QuickSync Synchronization

* FFT-Based Synchronization



Metrics

Multiplications of baseline

. Itiplication Gain =
Multiplication Ga Multiplications of QuickSync

FLOPS of baseline

 FLOPS Gain FLOPS of QuickSync
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Multiplication Gain
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QuickSync provides an average gain of 2.1x
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FLOPS Gain
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QuickSync provides an average gain of 2.2 x




Related Work

e Past work on GPS [NC91, SA08, RZL11]
— QuickSync presents the faster algorithm

e Sparse FFT Algorithms [Man02, GMS05, HKIP12a, HKIP12b]
— QuickSync’s bucketization leverages duality
- reduces the complexity of both stages in GPS



Conclusion

e Fastest GPS synchronization algorithm

—O(n,/logn ) for any SNR

—0(n) for moderately low SNR
 Empirical results show an average 2x gain

e Can we do better?

— 0(n2/3) for constant noise



