Faster GPS via the Sparse Fourier Transform

Haitham Hassanieh
Fadel Adib
Dina Katabi
Piotr Indyk

H B Massachusetts
I I Institute of
Technology

GPS Is Widely Used

Faster GPS benefits many applications

How Do We Improve GPS?

4

Need to Improve GPS Synchronization

GPS Synchronization

Synchronization is locking onto a satellite’s signal

e Consumes 30%-75% of GPS receiver’s power
[ORG447X datasheet, Venus 6 datasheet]

GPS signals are very weak, less than -20dB SNR

4

100s of millions of multiplications

[Team, Kaplan]

Goal

Faster Synchronization Algorithm
Reduce number of operations

4

Reduction in power consumption and delay

Rest of this Talk

» GPS Primer

» Our GPS Synchronization Algorithm

» Empirical Results

How Does GPS Work?___._________

.
N,
‘e
.
.
.
‘e
.

Compute the distance to
the GPS satellites

distance = propagation delay X speed of light

How to Compute the Propagation Delay?

p CDMA code
2 | \

N\

Satellite Transmits CDMA code

How to Compute the Propagation Delay?

p CDMA code
= ’ < >

N\

éWWWW\WWWWMHHHWMMWWWNMHWNWMWWWMHHWWMWHMMWHMWWWW

) delay

Code arrives shifted by propagation delay

How to Compute the Propagation Delay?

p CDMA code
2 | \
XS

(LT (TR R

éWWWWMMWMMWNHWHHHNMWWW | TWHHNMMWNHWHHHNMWWW | TWHWTMWWHW

H P >

) delay

Receiver knows the code and when the satellite
starts transmitting

How to Compute the Propagation Delay?

Spike determines the delay

GPS Synchronization is a convolution with CDMA code
Convolution “ Multiplication
in Time in Frequency

0 (n?%) 0 (nlogn)

State of the art GPS synchronization

algorithm: O(nlogn)

Rest of this Talk

» GPS Primer

» Our GPS Synchronization Algorithm

» Empirical Results

QuickSync
e Faster GPS synchronization algorithm

e Complexity:

—O(n,/logn) for any SNR

—0(n) when noise is bounded by 0(n/log? n)

 Empirical Results:
— Evaluated on real GPS signals
—Improves performance by 2.2x

How can we make GPS synchronization
faster than FFT-Based synchronization?

Received
Signal

FFT-Based GPS Synchronization

— FFT —

Signal QD —>

in Freq. [

FFT of
Code

IFFT

correct shift

—

Output

FFT-Based GPS Synchronization

correct shift

/
Received Signal .
Signal — FFT _>in Freq. _><§f> — IFFT L“L.‘...J

Output

FFT of
Code

FFT Stage IFFT Stage

Each stage takes O(nlogn)

— need to reduce complexity of both stages

FFT-Based GPS Synchronization

correct shift

® — IFFT

IFFT Stage

Sparse IFFT

3

QuickSync
A Sparse IFFT algorithm for GPS

e Exactly One Spike =» Simpler algorithm

e Extends to the FFT-stage

QuickSync’s Sparse IFFT

1- Bucketize

Divide output into a
few buckets

2- Estimate

Estimate the largest
coefficient in the
largest bucket

Original Output

\ |
.HVWM’LIM”Ilm 'rr ‘lhﬂ‘ ”"I-‘l" J | |
|

| I | | I I ,
' I | | I I ,
| |
o bt o
I | | | | |
o

value of bucket =) samples

|
|

il ”W !
|

How to Bucketize Efficiently?

input samples output samples

<€ > <€ >
Subsamples Buckets

How to Estimate Efficiently?

 Keep largest bucket; ignore all the rest

e Out of the samples in the large bucket,
which one is the spike? Largest bucket

@ P

The spike is the sample that has

the maximum correlation «—>
Buckets

QuickSync’s Sparse IFFT

e nisnumber of samples

* B buckets 2 n/B samples per buckets

Bucketization: B log B

Estimation: n/B X B

B=n/logn => O(n)
B =n/,/logn — 0(n,/logn)

QuickSync Synchronization

&

|

FFT of
Code

N
7

IFFT

correct shift

1

Output

Sparse IFFT

QuickSync Synchronization

Input — FFT — & .

in Freq. I B
FFT of p
Code
FFT Stage

Output is not sparse
Cannot Use Sparse FFT

QuickSync Synchronization

Input —

FFT

Signal
in Freq.

FFT Stage

-— IFFT

|

FFT of
Code

correct shift

1

Output

Sparse IFFT

/

Input to next stage

QuickSync Synchronization

correct shift

| /
input — FFT — &2 @/ |FFT—_|
I Output
FFT of
Code
Subsampled FFT Sparse IFFT

Need only few em |FFT samples its
samples of FFT output input

QuickSync Synchronization

Input — FFT —

Signal
in Freq.

Subsampled FFT

>® >

|

FFT of
Code

IFFT

correct shift

—1

Output

Sparse IFFT

FFT and IFFT are dual of each other

QuickSync Synchronization

Input — FFT —

Signal
in Freq.

Subsampled FFT

-— IFFT

|

FFT of
Code

correct shift

1

Output

Sparse IFFT

Bucketization | FFT = Subsampling IFFT = Bucketization

QuickSync Synchronization

nput Subsampled s Sparse | correct
FFT I IFFT delay

Subsampled
FFT of Code

Theorem:

For any SNR QuickSync achieves the same accuracy as

FFT-Based synchronization and has a complexity of

O (n./logn) where n is the number of samples in the code

When noise is bounded by O (n/log? n), QuickSync has
0 (n) complexity.

Rest of this Talk

> GPS Primer

» Our GPS Synchronization Algorithm

» Empirical Results

Setup

eceeoe N 4T }

SciGe GN3S Sampler USRP Software radios

* Traces are collected both US and Europe

e Different locations: urban — suburban

e Different weather conditions: cloudy — clear

Compared Schemes

 QuickSync Synchronization

* FFT-Based Synchronization

Metrics

Multiplications of baseline

. Itiplication Gain =
Multiplication Ga Multiplications of QuickSync

FLOPS of baseline

 FLOPS Gain FLOPS of QuickSync

CDF

0.8 |
0.6 |
0.4 |
0.2 |

Multiplication Gain

0.5

1D

GAIN

2.0

3.9

CDF

Multiplication Gain

g
G

US Traces -

0.8 1

0.6 1 /
"""""""""""" by

0.4 ¢ v 2.1x

0.2 t i

0 . S . 1

0 .5 1 1.5 2 2.5 3 9.5

Multiplication Gain

US Traces
0.8 r EU Traces
LL 06 i
0O e e __ &
O 04}
0.2
0 1 !
0 0.5 1 3.5 4

QuickSync provides an average gain of 2.1x

CDF

08

0.6 1

0.4

0.2 |

FLOPS Gain

0.5

1 15

GAIN

2.9

3.5

FLOPS Gain

US Traces
0.8 + EU Traces
b 06 i
o T R r
O 04}
0.2 }
0 1)
0 0.5 1 4

QuickSync provides an average gain of 2.2 x

Related Work

e Past work on GPS [NC91, SA08, RZL11]
— QuickSync presents the faster algorithm

e Sparse FFT Algorithms [Man02, GMS05, HKIP12a, HKIP12b]
— QuickSync’s bucketization leverages duality
- reduces the complexity of both stages in GPS

Conclusion

e Fastest GPS synchronization algorithm

—O(n,/logn) for any SNR

—0(n) for moderately low SNR
 Empirical results show an average 2x gain

e Can we do better?

— 0(n2/3) for constant noise

