Alias Codes for Sparse Fourier Transforms

Kannan Ramchandran

Joint Work with Sameer Pawar and Xiao (Simon) Li
UC Berkeley
FOCS 2014 Workshop on The Sparse Fourier Transform
Theory and Applications, Pennsylvania

Acknowledgements

- Frank Ong
- Quentin Byron
- Thibault Derousseaux
- Orhan Ocal

Acknowledgements

Piotr Indyk and Dina Katabi

MRI

Images

Cognitive Radio

Speech \& audio

Astronomy

Radar

Ultrasound

GPS

Outline

- Part I: Noiseless Recovery
- Sparse-Graph Alias Codes
- Part II: Noisy Recovery
- Sample-Optimal Recovery with Near Linear Run-time
- Near Sample-Optimal Recovery with Sub-linear Run-time

PART I:
 Noiseless Recovery

Computing Sparse DFT | Problem Formulation

- Compute the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^{N}$ with $K \ll N$:

$$
\begin{aligned}
x[n] & =\frac{1}{\sqrt{N}} \sum_{k \in \mathcal{K}} X[k] e^{\mathrm{i} \frac{2 \pi k}{N} n} \quad n=0, \cdots, N-1 \\
\mathcal{K} & =\text { chosen from }[N] \text { uniformly at random }
\end{aligned}
$$

- Classical solution: FFT algorithm
- Sample cost $=N$
- Computational cost $=\mathcal{O}(N \log N)$
- With sparsity, what are the fundamental bounds for
- Sample cost?
- Computational cost?

Computing Sparse DFT | Numerical Phantoms for Cardiovascular MR

E—【 http://www.biomed.ee.ethz.ch/research/bioimaging/cardiac/mrxcat
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

$$
\begin{aligned}
& 336=16 \times 21 \\
& 323=17 \times 19
\end{aligned}
$$

temporal difference across different frames of the phantom

Computing Sparse DFT | Numerical Phantoms for Cardiovascular MR

Computing Sparse DFT | Problem Formulation

- Compute the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^{N}$ with $K \ll N$:

$$
\begin{aligned}
x[n] & =\frac{1}{\sqrt{N}} \sum_{k \in \mathcal{K}} X[k] e^{\mathrm{i} \frac{2 \pi k}{N} n}+w[n], \quad n=0, \cdots, N-1 \\
\mathcal{K} & =\text { chosen from }[N] \text { uniformly at random }
\end{aligned}
$$

Assumptions and caveats:

- $X[k]$ is from a finite constellation.
- Sparsity $K=|\mathcal{K}|=\mathcal{O}\left(N^{\delta}\right)$ is sub-linear for some $\delta \in(0,1)$.
- Noise $w[n]$ is independent complex Gaussian $\mathcal{C N}\left(0, \sigma^{2}\right)$
- Recovery guarantees are probabilistic.

Computing Sparse DFT | Problem Formulation

- Compute the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^{N}$ with $K \ll N$:

$$
x[n]=\frac{1}{\sqrt{N}} \sum_{k \in \mathcal{K}} X[k] e^{\mathrm{i} \frac{2 \pi k}{N} n}+w[n], \quad n=0, \cdots, N-1
$$

$$
\mathcal{K}=\text { chosen from }[N] \text { uniformly at random }
$$

Theorem: FFAST algorithm computes the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^{N}$,

- using $M=O(K)$ samples,
- in $O(K \log K)$ computations,
- with probability at least $1-O(1 / M)$.

Computing Sparse DFT \| Related Worlk

Statistical Signal Processing

- Frequency estimation
- Prony [1795]
- Pisarenko ['73]
- Vetterli et al. ['02]
- more ...
- Subspace methods ['86]
- MUSIC, ESPRIT etc.

Compressed Sensing

- Feng and Bresler [1996]
- Candes et. al [2006]
- Rauhut [2008]
- Wainwright [2009]
- Tang et. al [2012]
- more ...

Sparse DFT

- Gilbert et. al [2002-2008]
- Mishali and Eldar [2010]
- Iwen [2010]
- Indyk et al. [2012]
- more ...

Computing Sparse DFT \| Related Work

- More recent work on computing sparse DFT
- http://groups.csail.mit.edu/netmit/sFFT/paper.html
- Recent advances in compressed sensing and sketching methods
- Our method:
- targets support recovery instead of ℓ_{2} / ℓ_{1} approximation
- uses the design and analysis of sparse-graph codes
- leverages harmonic retrieval methods in statistical signal processing

Computing Sparse DFT | Insights

- Computes an exactly K-sparse N-length DFT using $\mathcal{O}(K)$ samples with $\mathcal{O}(K \log K)$ computations.
- A common framework for noiseless and noisy observations.

Computing Sparse DFT | Insights

sub-sampling
below Nyquist rate
clever sub-sampling (for sparse case)

Chinese-Remainder-Theorem guided subsampling

 guided subsampling

Aliasing in the frequency domain
good "alias code"?

Sparse graph codes

Computing Sparse DFT |
 Insights

sub-sampling
below Nyquist rate
clever sub-sampling (for sparse case)

Chinese-Remainder-Theorem guided subsampling

good "alias code"?

Sparse graph codes

Coding-theoretic tools
> Design:

- Randomized constructions of good sparse-graph codes.
> Analysis:
- Density evolution
- Martingale

E Expander graph theory

Computing Sparse DFT | Main Idea

time-domain $x[n]$ length $N=20$
frequency-domain $X[k]$ sparsity $K=5$

Computing Sparse DFT | Main Idea

time-domain $x[n]$ length $N=20$
frequency-domain $X[k]$ sparsity $K=5$

Computing Sparse DFT | Main Idea

```
time-domain }x[n] length N=2
```

frequency-domain $X[k]$ sparsity $K=5$

Computing Sparse DFT | Main Idea

```
time-domain }x[n] length N=2
```

frequency-domain $X[k]$ sparsity $K=5$

Computing Sparse DFT | Main Idea

time-domain $x[n]$ length $N=20$
frequency-domain $X[k]$ sparsity $K=5$

Computing Sparse DFT | Main Idea

```
time-domain \(x[n]\) length \(N=20\)
```

frequency-domain $X[k]$ sparsity $K=5$

Computing Sparse DFT | Main Idea

```
time-domain \(x[n]\) length \(N=20\)
```

frequency-domain $X[k]$ sparsity $K=5$

Computing Sparse DFT | Main Idea

```
time-domain \(x[n]\) length \(N=20\)
```

frequency-domain $X[k]$ sparsity $K=5$


```
\downarrow 5
```

subsample by 5

Computing Sparse DFT | Main Idea

time-domain $x[n]$ length $N=20$
frequency-domain $X[k]$ sparsity $K=5$

Computing Sparse DFT | Main Idea

time-domain $x[n]$ length $N=20$
frequency-domain $X[k]$ sparsity $K=5$

Computing Sparse DFT | Main Idea

time-domain $x[n]$ length $N=20$
frequency-domain $X[k]$ sparsity $K=5$


```
\downarrow
```

subsample by 5

Computing Sparse DFT | Main Idea

```
time-domain \(x[n]\) length \(N=20\)
```

frequency-domain $X[k]$ sparsity $K=5$

$X[1]=1$

Computing Sparse DFT | Main Idea

```
time-domain x[n] length N=20
```

frequency-domain $X[k]$ sparsity $K=5$

$\downarrow 5$
subsample by 5

$=$ DFT

Computing Sparse DFT \| Main Idea

```
time-domain }x[n] length N=2
```

frequency-domain $X[k]$ sparsity $K=5$


```
\downarrow 5
```

shift \& subsample by 5

Computing Sparse DFT | Main Idea

```
time-domain }x[n] length N=2
```

frequency-domain $X[k]$ sparsity $K=5$

$X[1] \quad X[3] \quad X[5] \quad X[10] \quad X[13]$
shift \& subsample by 5

Our Measurements

$$
U_{S}[0] \quad U_{S}[1] \quad U_{S}[2] \quad U_{S}[3]
$$

Computing Sparse DFT | Main Idea

```
time-domain }x[n] length N=2
```

frequency-domain $X[k]$ sparsity $K=5$


```
\downarrow 5
```

shift \& subsample by 5

zero-ton multi-ton single-ton single-ton

Computing Sparse DFT | Main Idea

 subsample by 5

zero-ton multi-ton single-ton single-ton

$$
\downarrow 5
$$

shift \& subsample by 5

zero-ton multi-ton single-ton single-ton

zero-ton multi-ton single-ton single-ton

Kay, Steven. "A fast and accurate single frequency estimator." Acoustics, Speech and Signal Processing, IEEE Transactions on 37.12 (1989): 1987-1990.

Computing Sparse DFT | Main Idea

Computing Sparse DFT | Main Idea

Computing Sparse DFT | Main Idea

Computing Sparse DFT | Main Idea

Stage 1
downsample by 5

peeling decoder

Computing Sparse DFT | Main Idea

Stage 1 downsample by 5

Stage 2
downsample by 4

Sparse DFT Computation = Decoding over Sparse Graphs

- Explicit graph: design well-understood.
- $(N-K)$ correctly received packets.
- K erased packets.
- Peeling decoder recovers values.

non-zero DFT Coefficients
aliased frequency bins
- Implicit graph induced by careful sub-sampling
- $(N-K)$ zero DFT coefficients.
- K unknown non-zero DFT coefficients.
- Peeling decoder recovers values \& locations.

CRT-guided Subsampling Induces Good Graphs

> Chinese-Remainder-Theorem:
A number between 0-19 is uniquely represented by its remainders modulo $(4,5)$.
> Two graph ensembles are equivalent.

More on Subsampling | Choosing Sulb-sampling Patterns

Chinese Remainder Theorem

$49 \times 50 \times 51$

Signal sparsity $K=N^{\delta}$ with $N=124950$

- $\delta=1 / 3$ such that $K \approx 50$
- Stage 1: subsample by 50×51, keep 49
- Stage 2:
- Stage 3:

More on Subsampling | Choosing Sulb-sampling Patterns

Chinese Remainder Theorem

$49 \times 50 \times 51$

Signal sparsity $K=N^{\delta}$ with $N=124950$

- $\delta=1 / 3$ such that $K \approx 50$
- Stage 1: subsample by 50×51, keep 49
- Stage 2: subsample by 49×51, keep 50
- Stage 3:

51

More on Subsampling | Choosing Sulb-sampling Patterns

Chinese Remainder Theorem

$49 \times 50 \times 51$

Signal sparsity $K=N^{\delta}$ with $N=124950$

- $\delta=1 / 3$ such that $K \approx 50$
- Stage 1: subsample by 50×51, keep 49
- Stage 2: subsample by 49×51, keep 50
- Stage 3: subsample by 49×50, keep 51

51

More on Subsampling | Choosing Sulb-sampling Patterns

Chinese Remainder Theorem

$49 \times 50 \times 51$

Signal sparsity $K=N^{\delta}$ with $N=124950$

- $\delta=1 / 3$ such that $K \approx 50$
- Stage 1: subsample by 50×51, keep 49
- Stage 2: subsample by 49×51, keep 50
- Stage 3: subsample by 49×50, keep 51
- $\delta=2 / 3$ such that $K \approx 2500$

More on Subsampling | Choosing Sulb-sampling Patterns

Chinese Remainder Theorem

$49 \times 50 \times 51$

Signal sparsity $K=N^{\delta}$ with $N=124950$

- $\delta=1 / 3$ such that $K \approx 50$
- Stage 1: subsample by 50×51, keep 49
- Stage 2: subsample by 49×51, keep 50
- Stage 3: subsample by 49×50, keep 51
- $\delta=2 / 3$ such that $K \approx 2500$

More on Subsampling | Choosing Sulb-sampling Patterns

Chinese Remainder Theorem

$49 \times 50 \times 51$

Signal sparsity $K=N^{\delta}$ with $N=124950$

- $\delta=1 / 3$ such that $K \approx 50$
- Stage 1: subsample by 50×51, keep 49
- Stage 2: subsample by 49×51, keep 50
- Stage 3: subsample by 49×50, keep 51
- $\delta=2 / 3$ such that $K \approx 2500$
- Stage 1: subsample by 49 , keep 50×51
- Stage 2:
- Stage 3:

$$
51
$$

More on Subsampling | Choosing Sulb-sampling Patterns

Chinese Remainder Theorem

$49 \times 50 \times 51$

Signal sparsity $K=N^{\delta}$ with $N=124950$

- $\delta=1 / 3$ such that $K \approx 50$
- Stage 1: subsample by 50×51, keep 49
- Stage 2: subsample by 49×51, keep 50
- Stage 3: subsample by 49×50, keep 51
- $\delta=2 / 3$ such that $K \approx 2500$
- Stage 1: subsample by 49 , keep 50×51
- Stage 2: subsample by 50 , keep 49×51
- Stage 3:

51

More on Subsampling | Choosing Sulb-sampling Patterns

Chinese Remainder Theorem

$$
49 \times 50 \times 51
$$

Signal sparsity $K=N^{\delta}$ with $N=124950$

- $\delta=1 / 3$ such that $K \approx 50$
- Stage 1: subsample by 50×51, keep 49
- Stage 2: subsample by 49×51, keep 50
- Stage 3: subsample by 49×50, keep 51

50

This can be generalized to any sparsity index between 0 and 1

- Stage 3: subsample by 51, keep 49×50

Algorithm Analysis | A Hitchhilker's Guide

Goal: prove that the algorithm finishes $K d$ steps
$K d$ edges to be removed

Algorithm Analysis | A Hitchhilker's Guide

- Pick an arbitrary edge in the graph (c, v).

Algorithm Analysis | A Hitchhilker's Guide

- Examine its directed neighborhood at depth- 2ℓ

Algorithm Analysis | A Hitchhilker's Guide

- Examine its directed neighborhood at depth-2l

Density Evolution | A Hitchhilker's Guide

$p_{\ell}=$ probability of being present at depth- 2ℓ

Density Evolution | A Hitchhilker's Guide

$$
p_{\ell}=\left[1-\left(1-p_{\ell-1}\right)^{3}\right] \times\left[1-\left(1-p_{\ell-1}\right)^{2}\right] \times\left[1-\left(1-p_{\ell-1}\right)^{2}\right]
$$

Density Evolution | A Hitchhilker's Guide

$$
p_{\ell}=\left[1-\left(1-p_{\ell-1}\right)^{3}\right] \times\left[1-\left(1-p_{\ell-1}\right)^{2}\right] \times\left[1-\left(1-p_{\ell-1}\right)^{2}\right]
$$

- It generalizes to d stages:

Density Evolution | A Hitchhilker's Guide

$$
p_{\ell}=\left[1-\left(1-p_{\ell-1}\right)^{3}\right] \times\left[1-\left(1-p_{\ell-1}\right)^{2}\right] \times\left[1-\left(1-p_{\ell-1}\right)^{2}\right]
$$

- It generalizes to d stages:

$$
p_{\ell}=\left(1-e^{-\frac{2 K d}{M} p_{\ell-1}}\right)^{d-1}
$$

- $K=$ sparsity
- $M=\#$ of samples
- $d=\#$ of stages

Density Evolution | A Hitchhilker's Guide

d	2	3	4	5	6
$M / 2 K$	2.0000	1.2219	1.2948	1.4250	1.5696

$$
p_{\ell}=\left(1-e^{-\frac{2 K d}{M} p_{\ell-1}}\right)^{d-1}
$$

- $K=$ sparsity
- $M=\#$ of samples
- $d=\#$ of stages

Sampling Rate | Noiseless Setting: Theory versus Practice

- $N=7.7$ million
- $K=400$
- $d=3$ stages
- $M=1248$ samples

Density Evolution

$$
p_{\ell}=\left(1-e^{-\frac{2 K d}{M} p_{\ell-1}}\right)^{d-1}
$$

Algorithm Analysis | A Hitchhilker's Guide

- Density Evolution

- assumes that the directed neighborhood is a tree
- tree-based average analysis

$$
p_{\ell}=\left(1-e^{-\frac{2 d K}{M} p_{\ell-1}}\right)^{d-1}
$$

p_{ℓ} can be made arbitrarily small

Algorithm Analysis | A Hitchhilker's Guide

- Density Evolution

- assumes that the directed neighborhood is a tree
- tree-based average analysis
$p_{\ell}=\left(1-e^{-\frac{2 d K}{M} p_{\ell-1}}\right)^{d-1}$
p_{ℓ} can be made arbitrarily small

Algorithm Analysis | A Hitchhilker's Guide

- Performance Concentration

- overall average analysis p_{ℓ}^{\star} without tree assumption

$$
\left|p_{\ell}^{\star}-p_{\ell}\right|<\epsilon_{1}, \forall \epsilon_{1}>0
$$

- actual performance concentrates around overall average analysis $\mathbb{P}\left(\mid \#\right.$ of actual remaining edges $\left.-K d p_{\ell}^{\star} \mid>\epsilon_{2}\right) \rightarrow 0, \quad \forall \epsilon_{2}>0$

$K d\left(1-p_{\ell}\right)$ edges removed

Algorithm Analysis | A Hitchhilker's Guide

Algorithm Analysis | A Hitchhilker's Guide

- Expander Graph

- the remaining $K d p_{\ell}$ edges form an expander graph
- expander graphs guarantee steady supplies of single-tons
success with high probability!

Peeling Performance |Numerical Examples

600×493

Peeling Performance |Numerical Examples

- $N=600 \times 493 \approx 300$ (thousand)
- $K \approx 25$ (thousand)
- $M \approx 65$ (thousand)

remaining image

remaining image

remaining image

remaining image

remaining image

remaining image

remaining image

remaining image

PART II:
 Noisy Recovery

Noisy Setting: R-FFAST | Signall Model

- $y[n]=x[n]+w[n]$, where $w[n] \in \mathcal{C N}\left(0, \sigma^{2}\right)$.
- There are K non-zero $X[k]$, where $X[k]$ is from a finite constellation
- SNR is $\mathbb{E}|x[n]|^{2} / \mathbb{E}|w[n]|^{2}$ (e.g., $\mathrm{SNR}=0 \mathrm{~dB}$)

Noisy Setting: R-FFAST | From Noiseless to Noisy Noiseless - FFAST

Noisy Setting: R-FFAST \| From Noiseless to Noisy

Noiseless - FFAST

Noisy - R-FFAST

Noisy Setting: R-FFAST | From Noiseless to Noisy
 Noisy - R-FFAST

Two schemes to choose shifts:

Noisy Setting: R-FFAST | From Noiseless to Noisy
 Noisy - R-FFAST

Two schemes to choose shifts:

- scheme 1:
- sample-optimal recovery $M=O(K \log N)$
- near-linear run-time $T=O(N \log N)$

Noisy Setting: R-FFAST | From Noiseless to Noisy

Noisy - R-FFAST
Two schemes to choose shifts:

- scheme 1 :
- sample-optimal recovery $M=O(K \log N)$
- near-linear run-time

$$
T=O(N \log N)
$$

- scheme 2 :
- near sample-optimal recovery

$$
M=O\left(K \log ^{1 . \dot{3}} N\right)
$$

- sub-linear run-time

$$
M=O\left(K \log ^{2 . \dot{3}} N\right)
$$

Architecture | Recap on FFAST Sampling

each DFT coefficient
represents a distinct frequency

Architecture | Recap on FFAST Sampling

- The key is to pinpoint single-tons in terms of
- location
- value
- Equivalent to the parameters of a discrete sinusoid
- frequency
- amplitude
$\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^{2} & \cdots & W^{19} \\ 1 & W^{2} & W^{4} & \cdots & W^{2 \times 19} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{19} & W^{19 \times 2} & \cdots & W^{19 \times 19}\end{array}\right]$
$N \times N \mathrm{DFT}$ matrix
$W=e^{-\mathrm{i} \frac{2 \pi}{N}}$ with $N=20$

Architecture | From Noiseless to Noisy

Noiseless

Noisy
matching 2 points of a noiseless sinusoid
$\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^{2} & \cdots & W^{19} \\ \hline 1 & W^{2} & W^{4} & \cdots & W^{2 \times 19} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{19} & W^{19 \times 2} & \cdots & W^{19 \times 19}\end{array}\right]$

Architecture | From Noiseless to Noisy

Noiseless
matching 2 points of a noiseless sinusoid
$\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^{2} & \cdots & W^{19} \\ \hline 1 & W^{2} & W^{4} & \cdots & W^{2 \times 19} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{19} & W^{19 \times 2} & \cdots & W^{19 \times 19}\end{array}\right]$

Noisy
matching $O(\log N)$ random points of a noisy sinusoid
$\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^{2} & \cdots & W^{19} \\ \hline 1 & W^{2} & W^{4} & \cdots & W^{2 \times 19} \\ 1 & W^{3} & W^{6} & \cdots & W^{3 \times 19} \\ \hline \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{k} & W^{2 k} & \cdots & W^{k \times 19} \\ \hline \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{19} & W^{19 \times 2} & \ldots & W^{19 \times 19}\end{array}\right]$

Noisy Setting: R-FFAST | Sample-Optimal Recovery with Near Linear Time

Theorem: R-FFAST algorithm computes the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^{N}$,

- using M noisy samples, where $M=O(K \log N)$, (order optimal)
- with probability at least $1-O(1 / M)$,
- in $O(N \log N)$ computations.
- for a finite SNR.

Theorem: FFAST algorithm computes the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^{N}$,

- using $M=O(K)$ samples,
- in $O(K \log K)$ computations,
- with probability at least $1-O(1 / M)$.

Noisy Setting: R-FFAST | Sample-Optimal Recovery with Near Linear Time

- $K=20$ and 40
- $N=0.124$ million
- Sample cost $M=2940$

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

Theorem: R-FFAST algorithm computes the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^{N}$,

- using M noisy samples, where $M=O\left(K \log ^{1.33} N\right)$,
- with probability at least $1-O(1 / M)$,
- in $O\left(K \log ^{2.33} N\right)$ computations,
- for a finite and sufficiently high SNR.

Noiseless

matching 2 points of a noiseless sinusoid
Noisy
$\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^{2} & \cdots & W^{19} \\ 1 & W^{2} & W^{4} & \cdots & W^{2 \times 19} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{19} & W^{19 \times 2} & \cdots & W^{19 \times 19}\end{array}\right]$
matching $O(\log N)$ random points of a noisy sinusoid
$\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^{2} & \cdots & W^{19} \\ \hline 1 & W^{2} & W^{4} & \cdots & W^{2 \times 19} \\ 1 & W^{3} & W^{6} & \cdots & W^{3 \times 19} \\ \hline \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{k} & W^{2 k} & \cdots & W^{k \times 19} \\ \hline \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{19} & W^{19 \times 2} & \cdots & W^{19 \times 19}\end{array}\right]$

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

Noisy

Noisy (sub-linear)

matching $O(\log N)$ random points of a noisy sinusoid
$\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^{2} & \cdots & W^{19} \\ \hline 1 & W^{2} & W^{4} & \cdots & W^{2 \times 19} \\ 1 & W^{3} & W^{6} & \cdots & W^{3 \times 19} \\ \hline \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{k} & W^{2 k} & \cdots & W^{k \times 19} \\ \hline \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{19} & W^{19 \times 2} & \ldots & W^{19 \times 19}\end{array}\right]$
$\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^{2} & \cdots & W^{19} \\ \hline 1 & W^{2} & W^{4} & \cdots & W^{2 \times 19} \\ 1 & W^{3} & W^{6} & \cdots & W^{3 \times 19} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{k} & W^{2 k} & \cdots & W^{k \times 19} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & W^{19} & W^{19 \times 2} & \cdots & W^{19 \times 19}\end{array}\right]$
each piece is of length $O\left(\log ^{0 . \dot{3}} \mathrm{~N}\right)$

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

1234

- For each random start, take consecutive delays spaced by 2^{i}

Noisy

$\mathrm{O}(\log \mathrm{N})$ random starts

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

- For each random start, take consecutive delays spaced by 2^{i}
- [1989'Kay] provides an unbiased and efficient estimate of $2^{i} \omega$

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

- For each random start, take consecutive delays spaced by 2^{i}
- [1989'Kay] provides an unbiased and efficient estimate of $2^{i} \omega$
- $O\left(\log ^{1 / 3} N\right)$ consecutive rows are sufficient for matching each piece

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

- Piece 1: estimates ω with no ambiguity

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

- Piece 1: estimates ω with no ambiguity
- Piece 2: estimates $2 \omega \Longrightarrow$ unwrapping leads to 2 ambiguities

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

- Piece 1: estimates ω with no ambiguity
- Piece 2: estimates $2 \omega \Longrightarrow$ unwrapping leads to 2 ambiguities
- Piece i : estimates $2^{i} \omega \Longrightarrow$ unwrapping leads to 2^{i} ambiguities

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

- accuracy improves dyadically 2^{i}
- each piece provides 1 information bit
- $\log N$ pieces $\Longrightarrow N$ locations

Computing Sparse DFT | Some Concrete Examples of FFAST

Original Brain image

Fourier domain of the Brain Image

Brain image reconstructed by FFAST

Computing Sparse DFT | Numerical Comparisons

Sub-linear time performance:

- Signal length increased 15 fold.
- Processing time less than 3 fold.

Sample Complexity:

- This verifies the sample overhead of fast search over the slow search

Discussions:

- Sparse WHT
- Compressed Sensing

Walsh-Hadamard Transform | What is it?

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993

The Poorman's Transform: Approximating the Fourier Transform without Multiplication

Michael P. Lamoureux

Walsh-Hadamard Transform |

- Noiseless results [2013'Scheibler et al] Scheibler, R., Haghighatshoar, S., Vetterli, M., 2013 51st Annual Allerton Conf. on Communication, Control, and Computing (pp. 1250-1257).

Walsh-Hadamard Transform

- Noiseless results [2013'Scheibler et al] Scheibler, R., Haghighatshoar, S., Vetterli, M., 2013 51st Annual Allerton Conf. on Communication, Control, and Computing (pp. 1250-1257).
- Noisy results [2014'Li et al] Xiao Li; Bradley, J.K.; Pawar, S.; Ramchandran, K., "The SPRIGHT algorithm for robust sparse Hadamard Transforms," Information Theory (ISIT), 2014 IEEE International Symposium on , vol., no., pp.1857,1861, June 29 2014-July 42014.

Sparse Iterative Graph-based Hadamard Transform (SPRIGHT)

Conclusion

- FFAST algorithm for computing K-sparse DFTs

C + + code available!

- exploits coding-theory principle (i.e., sparse-graph alias codes)
- Noiseless:
* $M=O(K)$ samples and $T=O(K \log K)$ run-time
- Noisy:
* sample-optimal recovery $M=O(K \log N)$ with near-linear run-time $T=O(N \log N)$
* near sample-optimal recovery $M=O\left(K \log ^{1.3} N\right)$ with sub-linear run-time $T=O\left(K \log ^{2.3} N\right)$
- Extensions to sparse WHT and compressed sensing
- Sparse WHT
https://www.eecs.berkeley.edu/~ kannanr/assets/project_ffft/WHT_noisy.pdf
- Compressed sensing using sparse-graph codes http://www.eecs.berkeley.edu/~xiaoli/FR_CS_SGC.pdf

Future Directions

- More general sparsity and signal models
- Off-grid frequency estimation
- Practical applications in
- MRI
- Optical imaging such as Fourier Ptychography
- Phase retrieval \Longrightarrow "PhaseCode" design http://arxiv.org/abs/1408.0034

