Alias Codes for **Sparse Fourier Transforms**

Kannan Ramchandran

Joint Work with Sameer Pawar and Xiao (Simon) Li UC Berkeley FOCS 2014 Workshop on The Sparse Fourier Transform Theory and Applications, Pennsylvania

Acknowledgements

- Frank Ong
- Quentin Byron
- Thibault Derousseaux
- Orhan Ocal

Acknowledgements

Piotr Indyk and Dina Katabi

Cognitive Radio

Radar

way and a way the way the address of the

Speech & audio

Astronomy

Ultrasound

GPS

Images

Outline

- Part I: Noiseless Recovery
 - Sparse-Graph Alias Codes
- Part II: Noisy Recovery
 - Sample-Optimal Recovery with Near Linear Run-time
 - Near Sample-Optimal Recovery with Sub-linear Run-time

PART I: Noiseless Recovery

Computing Sparse DFT | **Problem Formulation**

• Compute the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^N$ with $K \ll N$:

$$x[n] = \frac{1}{\sqrt{N}} \sum_{k \in \mathcal{K}} X[k] e^{i\frac{2\pi k}{N}n} \qquad n = 0, \cdots, N-1$$

 $\mathcal{K} =$ chosen from [N] uniformly at random

- Classical solution: FFT algorithm
 - Sample cost = N
 - Computational cost = $\mathcal{O}(N \log N)$
- With sparsity, what are the fundamental bounds for support recovery ?
 - Sample cost?
 - Computational cost?

Computing Sparse DFT | **Numerical Phantoms for Cardiovascular MR**

http://www.biomed.ee.ethz.ch/research/bioimaging/cardiac/mrxcat

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

 $336 = 16 \times 21$ $323 = 17 \times 19$

Computing Sparse DFT | **Numerical Phantoms for Cardiovascular MR**

temporal difference across different frames of the phantom

Computing Sparse DFT | **Numerical Phantoms for Cardiovascular MR**

Computing Sparse DFT | **Problem Formulation**

• Compute the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^N$ with $K \ll N$:

$$x[n] = \frac{1}{\sqrt{N}} \sum_{k \in \mathcal{K}} X[k] e^{i\frac{2\pi k}{N}n} + w[n], \quad n = 0, \cdots, N-1$$

 $\mathcal{K} =$ chosen from [N] uniformly at random

Assumptions and caveats:

- X[k] is from a finite constellation.
- Sparsity $K = |\mathcal{K}| = \mathcal{O}(N^{\delta})$ is sub-linear for some $\delta \in (0, 1)$.
- Noise w[n] is independent complex Gaussian $\mathcal{CN}(0, \sigma^2)$
- Recovery guarantees are probabilistic.

Computing Sparse DFT | **Problem Formulation**

• Compute the K-sparse DFT of $x \in \mathbb{C}^N$ with $K \ll N$:

$$x[n] = \frac{1}{\sqrt{N}} \sum_{k \in \mathcal{K}} X[k] e^{i\frac{2\pi k}{N}n} + w[n], \quad n = 0, \cdots, N-1$$

 $\mathcal{K} =$ chosen from [N] uniformly at random

Theorem: FFAST algorithm computes the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^N$,

- using M = O(K) samples,
- in $O(K \log K)$ computations,
- with probability at least 1 O(1/M).

Computing Sparse DFT | Related Work

Statistical Signal Processing

- Frequency estimation
 - Prony [1795]
 - Pisarenko ['73]
 - Vetterli et al. ['02]
 - more \cdots
- Subspace methods ['86]
 - MUSIC, ESPRIT etc.

Compressed Sensing

- Feng and Bresler [1996]
- Candes et. al [2006]
- Rauhut [2008]
- Wainwright [2009]
- Tang et. al [2012]
- more \cdots

Sparse DFT

- Gilbert et. al [2002-2008]
- Mishali and Eldar [2010]
- Iwen [2010]
- Indyk et al. [2012]
- more \cdots

SPECTRAL ANALYSIS OF SIGNALS PETRE STOICA RANDOLPH MOSES

 $N imes \mathbf{1}$

SFFT: Sparse Fast Fourier Transform

Sparse Fast Fourier Transform (DFT) is one of the most important and widely used

The Faster-than-Fast Fourie Transform

Computing Sparse DFT | Related Work

- More recent work on computing sparse DFT
 - http://groups.csail.mit.edu/netmit/sFFT/paper.html
- Recent advances in compressed sensing and sketching methods
- Our method:
 - targets support recovery instead of ℓ_2/ℓ_1 approximation
 - uses the design and analysis of sparse-graph codes
 - leverages harmonic retrieval methods in statistical signal processing

Computing Sparse DFT | Insights

- Computes an exactly K-sparse N-length DFT using $\mathcal{O}(K)$ samples with $\mathcal{O}(K \log K)$ computations.
- A common framework for noiseless and noisy observations.

Computing Sparse DFT | Insights

sub-sampling below Nyquist rate

clever sub-sampling (for **sparse** case)

Chinese-Remainder-Theorem guided subsampling

Aliasing in the frequency domain

good "alias code"?

Sparse graph codes

Computing Sparse DFT | Insights

sub-sampling below Nyquist rate

clever sub-sampling (for **sparse** case)

Chinese-Remainder-Theorem guided subsampling

Coding-theoretic tools

□ Randomized constructions of good sparse-graph codes.

> Analysis:

- Density evolution
- Martingale
- □ Expander graph theory

Aliasing in the frequency domain

good "alias code"?

Sparse graph codes

10/2014 | FOCS 2014, Pennsylvania 30

 $\downarrow 5$

shift & subsample by 5

10/2014 | FOCS 2014, Pennsylvania 43

Sparse DFT Computation = Decoding over Sparse Graphs

- Explicit graph: design well-understood.
- (N-K) correctly received packets.
- K erased packets.
- Peeling decoder recovers values.

- Implicit graph induced by careful sub-sampling
- (N K) zero DFT coefficients.
- K unknown non-zero DFT coefficients.
- Peeling decoder recovers values & locations.

CRT-guided Subsampling Induces Good Graphs

A number between 0-19 is uniquely represented by its remainders modulo (4,5).

> Two graph ensembles are equivalent.

Chinese Remainder Theorem

Signal sparsity $K = N^{\delta}$ with N = 124950

- $\delta = 1/3$ such that $K \approx 50$
 - Stage 1: subsample by 50×51 , keep 49
 - Stage 2:
 - Stage 3:

51

Chinese Remainder Theorem

Signal sparsity $K = N^{\delta}$ with N = 124950

- $\delta = 1/3$ such that $K \approx 50$
 - Stage 1: subsample by 50×51 , keep 49
 - Stage 2: subsample by 49×51 , keep 50
 - Stage 3:

 $49 \times 50 \times 51$

Chinese Remainder Theorem

- $\delta = 1/3$ such that $K \approx 50$
 - Stage 1: subsample by 50×51 , keep 49
 - Stage 2: subsample by 49×51 , keep 50
 - Stage 3: subsample by 49×50 , keep 51

Chinese Remainder Theorem

- $\delta = 1/3$ such that $K \approx 50$
 - Stage 1: subsample by 50×51 , keep 49
 - Stage 2: subsample by 49×51 , keep 50
 - Stage 3: subsample by $49\times 50\,,\,\mathrm{keep}\,\,51$
- $\delta = 2/3$ such that $K \approx 2500$

Chinese Remainder Theorem

- $\delta = 1/3$ such that $K \approx 50$
 - Stage 1: subsample by 50×51 , keep 49
 - Stage 2: subsample by 49×51 , keep 50
 - Stage 3: subsample by 49×50 , keep 51
- $\delta = 2/3$ such that $K \approx 2500$
 - Stage 1:
 - Stage 2:
 - Stage 3:

Chinese Remainder Theorem

- $\delta = 1/3$ such that $K \approx 50$
 - Stage 1: subsample by 50×51 , keep 49
 - Stage 2: subsample by 49×51 , keep 50
 - Stage 3: subsample by 49×50 , keep 51
- $\delta = 2/3$ such that $K \approx 2500$
 - Stage 1: subsample by 49, keep 50×51
 - Stage 2:
 - Stage 3:

Chinese Remainder Theorem

- $\delta = 1/3$ such that $K \approx 50$
 - Stage 1: subsample by 50×51 , keep 49
 - Stage 2: subsample by 49×51 , keep 50
 - Stage 3: subsample by 49×50 , keep 51
- $\delta = 2/3$ such that $K \approx 2500$
 - Stage 1: subsample by 49, keep 50×51
 - Stage 2: subsample by 50, keep 49×51
 - Stage 3:

Algorithm Analysis | A Hitchhiker's Guide

Goal: prove that the algorithm finishes Kd steps

• Pick an arbitrary edge in the graph (c, v).

• Examine its directed neighborhood at depth- 2ℓ

Algorithm Analysis | A Hitchhiker's Guide

• Examine its directed neighborhood at depth- 2ℓ

1

2

mod 4

mod 5

 $p_{\ell} = \text{probability of being present at depth-}2\ell$

 $p_{\ell} =$

Density Evolution | **A Hitchhiker's Guide**

[•] It generalizes to d stages:

• It generalizes to *d* stages:

$$\mathbf{p}_{\ell} = \left(1 - e^{-\frac{2Kd}{M}\mathbf{p}_{\ell-1}}\right)^{d-1}$$

- K =sparsity
- M = # of samples
- d = # of stages

Sampling Rate | Noiseless Setting: Theory versus Practice

Algorithm Analysis | A Hitchhiker's Guide

• Density Evolution

- assumes that the directed neighborhood is a tree
- tree-based average analysis

$$p_{\ell} = \left(1 - e^{-\frac{2dK}{M}p_{\ell-1}}\right)^{d-1}$$

 p_ℓ can be made arbitrarily small

Algorithm Analysis | A Hitchhiker's Guide

• Density Evolution

- assumes that the directed neighborhood is a tree
- tree-based average analysis

$$\boldsymbol{p}_{\boldsymbol{\ell}} = \left(1 - e^{-\frac{2dK}{M}\boldsymbol{p}_{\boldsymbol{\ell}-1}}\right)^{d-1}$$

 p_ℓ can be made arbitrarily small

Algorithm Analysis | A Hitchhiker's Guide

• Performance Concentration

- overall average analysis p_{ℓ}^{\star} without tree assumption

$$|\boldsymbol{p}_{\boldsymbol{\ell}}^{\star} - \boldsymbol{p}_{\boldsymbol{\ell}}| < \epsilon_1, \ \forall \epsilon_1 > 0$$

- actual performance concentrates around overall average analysis

 $\mathbb{P}\left(\left|\# \text{ of actual remaining edges} - Kdp_{\ell}^{\star}\right| > \epsilon_2\right) \to 0, \quad \forall \epsilon_2 > 0$

Algorithm Analysis | A Hitchhiker's Guide

Algorithm Analysis | A Hitchhiker's Guide

• Expander Graph

- the remaining Kdp_{ℓ} edges form an **expander graph**
- expander graphs guarantee steady supplies of **single-tons**

success with high probability!

 $Kd(1-p_{\ell})$ edges removed

Kd edges to be removed

 Kdp_{ℓ} edges remain

Peeling Performance | Numerical Examples

600×493

Peeling Performance | Numerical Examples

- $N = 600 \times 493 \approx 300$ (thousand)
- $K \approx 25$ (thousand)
- $M \approx 65$ (thousand)

PART II: Noisy Recovery

Noisy Setting: R-FFAST | Signal Model

• y[n] = x[n] + w[n], where $w[n] \in \mathcal{CN}(0, \sigma^2)$.

- There are K non-zero X[k], where X[k] is from a finite constellation
- SNR is $\mathbb{E}|x[n]|^2/\mathbb{E}|w[n]|^2$ (e.g., SNR=0 dB)

Noiseless - FFAST

Noiseless - FFAST

Noisy - R-FFAST

Noisy - R-FFAST

Two schemes to choose **shifts**:

Two schemes to choose **shifts**:

- scheme 1:
 - sample-optimal recovery $M = O(K \log N)$
 - near-linear run-time $T = O(N \log N)$

Noisy - R-FFAST

Two schemes to choose **shifts**:

- scheme 1:
 - **sample-optimal** recovery $M = O(K \log N)$
 - near-linear run-time $T = O(N \log N)$
- scheme 2:
 - near sample-optimal recovery $M = O(K \log^{1.3} N)$
 - sub-linear run-time $M = O(K \log^{2.3} N)$

Noisy - R-FFAST

Architecture | Recap on FFAST Sampling

each DFT coefficient represents a distinct **frequency**

Architecture | Recap on FFAST Sampling

• The key is to pinpoint **single-tons** in terms of

- location
- value
- Equivalent to the parameters of a discrete sinusoid
 - frequency
 - amplitude

1	1	1	• • •	1
1	W	W^2	•••	W^{19}
1	W^2	W^4	•••	$W^{2 \times 19}$
• •	•••	•	••••	•
1	W^{19}	$W^{19 imes 2}$	•••	$W^{19 \times 19}$

 $N \times N$ DFT matrix $W = e^{-i\frac{2\pi}{N}}$ with N = 20

Architecture | From Noiseless to Noisy

matching 2 points of a noiseless sinusoid

1	1	1	• • •	1
1	W	W^2	• • •	W^{19}
1	W^2	W^4	•••	$W^{2 \times 19}$
•	••••	••••	••••	:
1	W^{19}	$W^{19 \times 2}$	•••	$W^{19 \times 19}$

Architecture | From Noiseless to Noisy

Noiseless

matching $O(\log N)$ random points of a noisy sinusoid

[1	1	1	•••	1
1	W	W^2	•••	W^{19}
1	W^2	W^4	• • •	$W^{2 \times 19}$
1	W^3	W^6	•••	$W^{3 \times 19}$
	•.	•••	•.	÷
1	W^k	W^{2k}	•••	$W^{k \times 19}$
	•	••••	•.	:
1	W^{19}	$W^{19 \times 2}$	• • •	$W^{19 \times 19}$

Noisy Setting: R-FFAST | Sample-Optimal Recovery with Near Linear Time

Theorem: R-FFAST algorithm computes the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^N$,

- using M noisy samples, where $M = O(K \log N)$, (order optimal)
- with probability at least 1 O(1/M),
- in $O(N \log N)$ computations.
- for a finite SNR.

Theorem: FFAST algorithm computes the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^N$,

- using M = O(K) samples,
- in $O(K \log K)$ computations,
- with probability at least 1 O(1/M).

Noiseless

Noisy

Noisy Setting: R-FFAST | Sample-Optimal Recovery with Near Linear Time

Theorem: R-FFAST algorithm computes the K-sparse DFT of $\boldsymbol{x} \in \mathbb{C}^N$,

- using *M* noisy samples, where $M = O(K \log^{1.33} N)$,
- with probability at least 1 O(1/M),
- in $O(K \log^{2.33} N)$ computations,
- for a finite and sufficiently high SNR.

Noiseless

Noisy

matching $O(\log N)$ random points of a noisy sinusoid

Noisy

Noisy (sub-linear)

matching $O(\log N)$ random points of a noisy sinusoid

1	1	1	•••	1
1	W	W^2	•••	W^{19}
1	W^2	W^4	• • •	$W^{2 \times 19}$
1	W^3	W^6	•••	$W^{3 \times 19}$
:	••••	•••	·	:
1	W^k	W^{2k}	•••	$W^{k \times 19}$
•	•	••••	••••	•
1	W^{19}	$W^{19 \times 2}$		$W^{19 \times 19}$

matching $O(\log N)$ random pieces of a noisy sinusoid

1	1	1	• • •	1
1	W	W^2	•••	W^{19}
1	W^2	W^4	•••	$W^{2 \times 19}$
1	W^3	W^6	•••	$W^{3 \times 19}$
Ŀ	• •	•	•••	•
•	•	•	•	•
1	W^k	W^{2k}	•••	$W^{k \times 19}$
	•••	•	·	:
1	W^{19}	$W^{19 \times 2}$	•••	$W^{19 \times 19}$

each piece is of length $O(\log^{0.3} N)$

• For each random start, take consecutive delays spaced by 2^i

- For each random start, take consecutive delays spaced by 2^i
- [1989'Kay] provides an unbiased and efficient estimate of $2^i \omega$

	Noisy O(log N) random starts
--	------------------------------

- For each random start, take consecutive delays spaced by 2^i
- [1989'Kay] provides an unbiased and efficient estimate of $2^i \omega$
- $O(\log^{1/3} N)$ consecutive rows are sufficient for matching each piece

• **Piece 1**: estimates ω with no ambiguity

- **Piece 1**: estimates ω with no ambiguity
- **Piece 2**: estimates $2\omega \implies$ unwrapping leads to 2 ambiguities

- **Piece 1**: estimates ω with no ambiguity
- **Piece 2**: estimates $2\omega \implies$ unwrapping leads to 2 ambiguities
- **Piece** *i*: estimates $2^i \omega \implies$ unwrapping leads to 2^i ambiguities

Noisy Setting: R-FFAST | Near Sample-Optimal Recovery with Sub-linear Time

- accuracy improves dyadically 2^i
- each piece provides 1 information bit
- $\log N$ pieces $\implies N$ locations

Computing Sparse DFT | **Some Concrete Examples of FFAST**

Original Brain image

Fourier domain of the Brain Image

Brain image reconstructed by FFAST

Computing Sparse DFT | **Numerical Comparisons**

Sub-linear time performance:

- Signal length increased 15 fold.
- Processing time less than 3 fold.

Sample Complexity:

 This verifies the sample overhead of fast search over the slow search

Discussions:

Sparse WHT Compressed Sensing

Walsh-Hadamard Transform | What is it?

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993

The Poorman's Transform: Approximating the Fourier Transform without Multiplication

Michael P. Lamoureux

Walsh-Hadamard Transform |

- Noiseless results [2013'Scheibler *et al*] Scheibler, R., Haghighatshoar, S., Vetterli, M., 2013 51st Annual Allerton Conf. on Communication, Control, and Computing (pp. 1250-1257).

Walsh-Hadamard Transform |

- Noiseless results [2013'Scheibler *et al*] Scheibler, R., Haghighatshoar, S., Vetterli, M., 2013 51st Annual Allerton Conf. on Communication, Control, and Computing (pp. 1250-1257).
- Noisy results [2014'Li *et al*]

Xiao Li; Bradley, J.K.; Pawar, S.; Ramchandran, K., "The SPRIGHT algorithm for robust sparse Hadamard Transforms," Information Theory (ISIT), 2014 IEEE International Symposium on , vol., no., pp.1857,1861, June 29 2014-July 4 2014.

Sparse Iterative Graph-based Hadamard Transform (SPRIGHT)

Conclusion

• FFAST algorithm for computing K-sparse DFTs

C++ code available!

- exploits coding-theory principle (i.e., sparse-graph alias codes)
- Noiseless:

* M = O(K) samples and $T = O(K \log K)$ run-time

- Noisy:
 - * sample-optimal recovery $M = O(K \log N)$ with near-linear run-time $T = O(N \log N)$
 - * near sample-optimal recovery $M = O(K \log^{1.3} N)$ with sub-linear run-time $T = O(K \log^{2.3} N)$
- Extensions to **sparse WHT** and **compressed sensing**
 - Sparse WHT
 - $https://www.eecs.berkeley.edu/~kannanr/assets/project_ffft/WHT_noisy.pdf$
 - Compressed sensing using sparse-graph codes http://www.eecs.berkeley.edu/~xiaoli/FR_CS_SGC.pdf

Future Directions

- More general sparsity and signal models
- Off-grid frequency estimation
- Practical applications in
 - MRI
 - Optical imaging such as Fourier Ptychography
 - Phase retrieval \implies "PhaseCode" design http://arxiv.org/abs/1408.0034