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In microscopy, it is difficult to observe sub-wavelength 
structures (Rayleigh Criterion, Abbe Limit, …) 
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Super-resolution Cameras 
2014 Nobel Prize in Chemistry! 

Eric Betzig, Stefan Hell, William Moerner 
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A Mathematical Framework [Donoho, ‘91]: 

Super-position of k spikes, each fj in [0,1): 

x(t) =   uj δf (t) j 
j = 1 

k 

Measurement at frequency ω, |ω| ≤ m: 

uj ei2πf ω + ηω j 

j = 1 

k 

vω =  

cut-off  
frequency 



  Are there algorithms for enhancing resolution? 



  Are there algorithms for enhancing resolution? 

When can we recover the coefficients (uj’s) and  
locations (fj’s) from low freq measurements? 



  Are there algorithms for enhancing resolution? 

Proposition 1: When there is no noise (ηω=0), there 
is a polynomial time algorithm to recover the uj’s  
and fj’s exactly with m = k – i.e. measurements at 
ω = -m, -m+1, …, m-1, m 

When can we recover the coefficients (uj’s) and  
locations (fj’s) from low freq measurements? 



  Are there algorithms for enhancing resolution? 

Proposition 1: When there is no noise (ηω=0), there 
is a polynomial time algorithm to recover the uj’s  
and fj’s exactly with m = k – i.e. measurements at 
ω = -m, -m+1, …, m-1, m 

When can we recover the coefficients (uj’s) and  
locations (fj’s) from low freq measurements? 

[Prony (1795), Pisarenko (1973), Matrix Pencil (1990), …] �
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  Are there algorithms for enhancing resolution? 

What if there is noise? Under what conditions is  
there an estimator 
 

fj fj uj uj and 

which converges at an inverse poly-rate (in 1/|ηω|)? 

And is there an algorithm? 

When can we recover the coefficients (uj’s) and  
locations (fj’s) from low freq measurements? 
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…where dw is the “wrap-around” distance: 

Proposition 2 [M ‘14]: There is a polynomial time  
algorithm to recover estimates where 

min 
matchings σ 

max 
j 

fσ(j) uσ(j) - fj - uj + ≤ ε 
provided |ηω| ≤ poly(ε, 1/m, 1/k), and m > 1/Δ + 1  
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  Matrix Pencil Method 
Claim 1: The entries of A and B correspond to vω  
with -m+1 ≤ ω ≤ m 

Du = diag({uj}) and Dα = diag({αj})  Notation: 

VmDu(Vm)H k k k k VmDαDu(Vm)H and B =  A = 

Claim 2: If αj’s are distinct and m ≥ k and uj’s are  
non-zero, the unique solns to 

Ax = λBx 
are λ = 1/αj 
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robust recovery 

αj = ei2πf   j 
def 

Vm k is well-conditioned 

We show a phase transition for its condition number 
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    The threshold for super-resolution is 1/Δ 

And the condition number of the Vandermonde  
matrix has an identical phase transition 

Theme: Test functions are used in harmonic analysis 
to prove various inequalities  

These functions can be interpreted as preconditioners 
for Vm, and can yield faster, new algorithms… k 



  

Thanks! 
Summary:	
  
 

 �	
  Noisy	
  super-­‐resolu-on	
  needs	
  separa-on,	
  and	
  there	
  
is	
  a	
  sharp	
  phase	
  transi-on	
  for	
  when	
  it	
  is	
  possible	
  
 

 �	
  Applica-ons	
  of	
  Beurling-­‐Selberg	
  extremal	
  func5ons	
  
in	
  the	
  analysis	
  of	
  algorithms	
  
 

 �	
  A	
  new	
  interpreta-on	
  of	
  test	
  func-ons	
  in	
  harmonic	
  
analysis	
  as	
  precondi5oners	
  for	
  the	
  Vandermonde	
  matrix	
  
 

 �	
  Can	
  these	
  tools	
  be	
  applied	
  to	
  compressed	
  sensing	
  
off-­‐the-­‐grid?	
  Other	
  inverse	
  problems?	
  


