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In microscopy, it is difficult to observe sub-wavelength
structures (Rayleigh Criterion, Abbe Limit, ...)
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Applications in medical imaging, microscopy,
astronomy, radar detection, geophysics, ...

2014 Nobel Prize in Chemistry!
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e
A Mathematical Framework [Donoho, ‘91]:

Super-position of k spikes, each f;in [0,1):
cut-off

X(t) — X uj 6fj(t) frequency

=1

Measurement at frequency w, |w| = m:

K
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V(U — UJ e J + rlw
j=1
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Are there algorithms for enhancing resolution?

When can we recover the coefficients (u;'s) and
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[Prony (1795), Pisarenko (1973), Matrix Pencil (1990), ...]
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Are there algorithms for enhancing resolution?

When can we recover the coefficients (u;'s) and
locations (f;'s) from low freq measurements?

What if there is noise? Under what conditions is
there an estimator

”N ”N

fj —_— fJ and uj o uj
which converges at an inverse poly-rate (in 1/|n,|)?

And is there an algorithm?
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Proposition 2 [M ‘14]: There is a polynomial time
algorithm to recover estimates where

min max‘/f;(j)- fj‘ +‘GGG)- uj‘ <¢

matchings o j

provided |n,| < poly(g, 1/m, 1/k), and m > 1/A + 1

...where d,, is the "wrap-around” distance:

0
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and A = min,,d,,(f.f) .e. d,(1/8,7/8) = 1/4
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[Donoho, '91]:
Asymptotic bounds
form = 1/A, on a grid
(Beurling’s balyage)

compressed sensing
off-the-grid

hundreds of other papers

[Candes, Fernandez-Granda, '12]:
Convex program for m = 2/AA, no noise

[Fernandez-Granda, '13]:
Convex program for m = 2/A, with noise
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Matrix Pencil Method

Claim 1: The entries of A and B correspond to v,
with-m+1 <w=<=m

Claim 2: If aj’s are distinct and m = k and uj’s are
non-zero, the unique solins to

AXx = ABXx
are A\ = 1/0(j

Notation: D, = diag({u;}) and D, = diag({a})
A= VED,(Vi)Hand B = VDD (Vi)
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This matrix plays a key role in many exact inverse
problems (poly interpolation, sparse recovery,v..)

super-resolution
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Vandermonde Matrices

11 - 1
01 GZ ak def .
Vk _ 5 5 5 aJ:elz'leJ
m=— | & @ Cic

. -1.m-1 .m-
a;n a, --- O

robust recovery 4mmp VX is well-conditioned

[We show a phase transition for its condition number }
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The Beurling-Selberg majorant.
sign(Trou)2 — L 2
() (w2 Y-+ 5)

Properties: (1) sgn(w) < B(w)
(2) g(x) supported in [-1,1]
(3) s B(w) — sgn(w) dw = 1

-w
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The Beurling-Selberg minorant:

sgh(w)

b(w)

Properties:  (1)~b(w) < sgn(w)
(2) /l:;(x) supported in [-1,1]
(3) ssgn(w) — b(w) dw =1

=00
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[We will use them to bound k(VX) ... }

Theorem 1: There are functions C(w) and c(w) for
E = [0,m-1] that satisfy:

indicator
) celw) < 1O

(2) /C\E(X) and 8E(x) supported in [-A,A]

(3) S%E(w) - lg(w) dw = SOIOE(w) - Ce(w) dw = 1/A
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EThe threshold for super-resolution is 1/A }

And the condition number of the Vandermonde
matrix has an identical phase transition

Theme: Test functions are used in harmonic analysis
to prove various inequalities

These functions can be interpreted as preconditioners
for V%, and can yield faster, new algorithms...



Thanks!

Summary:

* Noisy super-resolution needs separation, and there
is a sharp phase transition for when it is possible

* Applications of Beurling-Selberg extremal functions
in the analysis of algorithms

* A new interpretation of test functions in harmonic
analysis as preconditioners for the Vandermonde matrix

* Can these tools be applied to compressed sensing
off-the-grid? Other inverse problems?



