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Array Processing Problem 

2/18/2013 

Sensors 

Sources 

A number of sensors are sensing a scene. 

A number of sources transmit in a scene. 

Can we localize and reconstruct 
sources in the scene? 

This talk: overview of basic models and methods 
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(Linearized) Wave Propagation 

Source 	

k	


Sensor 
(array element) 

m	


Distance: dk,m	

((((((((( 

Propagation delay:  
τk,m=dk,m/c	


Signal delayed according to distance and 
speed of wave propagation in medium  

Superposition: Signal at receiver sum of all transmitted signals 
Narrowband approximation: Phase delay same for all ω	


Free space assumption: No secondary reflections 

ym(t) = xk(t− τk,m)

⇐⇒ Ym(ω) = e−iωτk,mXk(ω)

2/18/2013 
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Wave Propagation, Far-field Approximation 

… … 

Sensor 
array	


Source	


Propagating 
waves	


Propagating waves are circular:  
Same delay for same distance from source 

Far field approximation  
Sources located far relative to array size 
Propagating waves become flat (planar) 

Sensor 
array	


2/18/2013 
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Linear Array, Far Field Approximation 

Sensor m	


Position pm 

0	

dθ,m=pmcosθk	


θk 

2/18/2013 

Delay to origin unknown: 
T=D/c 	


Signal at origin: Xk(ω) 	


Source k	


Total signal at position p 

Yp(ω) =
�

k

ei2π
p
λ cos θkXk(ω)

Signal at position p due to source k:	


Frequency: ω=2πf,  Wavelength: λ=c/f	


Yp(ω) = e−iω
p cos θk

c Xk(ω)
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Linear Array, Far Field Approximation 

2/18/2013 

Drop ω from notation 
Substitute variable uk=cosθk	


We get a (spatial, inverse) Fourier transform! 

Yp =
�

k

ei2π
p
λukXk

Yp(ω) =
�

k

ei2π
p
λ cos θkXk(ω)

Received  
Signal 

“Source Frequency”  
(cosine of angle) 

Source 
Signal 

Sampling point  
In wavelengths 
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Discretizing the (inverse) Fourier Transform 

2/18/2013 

Yp =
�

k

ei2π
p
λukXk

Sensor m	


Position pm 

0	

dθ,m=pmcosθk	


θk 

uk=cosθk	


Uniform linear array: 
pm=mp0, m=1,…,M	


Spacing p0 
Set u∈[-1,1] on a grid 

un=-1+2n/N	


Ym =
�

n

ei2π
mp0
λ (−1+ 2n

N )Xn

= e−i2π
mp0
λ

�

n

ei
2πmn

N
2p0
λ Xn

K-Sparse 
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Discretizing the (inverse) Fourier Transform 
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Sensor m	


Position pm 

0	

dθ,m=pmcosθk	


θk 

uk=cosθk	


Spacing p0 

Ym = e−i2π
mp0
λ

�

n

ei
2πmn

N
2p0
λ Xn

Set this to one.  
We get the DFT! 

Half wavelength spacing: Pm=λ/2	

M=N array elements.	


For other spacing p0, use DFT manipulations:  
Zero padding and aliasing (folding) 

Y=FX	




© MERL 

MITSUBISHI ELECTRIC RESEARCH LABORATORIES!

Inversion Problem 

2/18/2013 

Y=FX	

Inversion Problem: What X generated Y? 

Classical approach:  

Common names: Beamforming, Backprojection, Matched Filter 

�X = F†Y = FHY

Main design issue: 
Given target at certain angle,  

what does the inversion look like? 
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Inversion Problem 

2/18/2013 

Y=FX	

Inversion Problem: What X generated Y? 

Main design issue: 
Given target at certain angle,  

what does the coherence look like? 

(possible) Sparse approach:  
�X = argmin

X
�Y − FX�2 s.t. �X�0 ≤ K

Also uses FHY for most algorithms: coherence is important 
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Beampattern/coherence 
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Given target at certain angle, what does inversion look like? 

F =





ej
2π
N

2p0
λ · · · ej

2πn
N

2p0
λ · · · ej

2πN
N

2p0
λ

...
. . .

...

ej
2πm
N

2p0
λ · · · ej

2πmn
N

2p0
λ · · · ej

2πmN
N

2p0
λ

...
. . .

...

ej
2πM
N

2p0
λ · · · ej

2πMn
N

2p0
λ · · · ej

2πMN
N

2p0
λ
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�X = F†Y = FHY

p0 = λ/2	


p0 > λ/2	


p0 < λ/2	


u=cosθ	


Narrow beampattern 
Grating lobes 

Wider beampattern 
No grating lobes 

Too wide beampattern 
No grating lobes 



© MERL 

MITSUBISHI ELECTRIC RESEARCH LABORATORIES!

Beampattern/coherence 
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Given target at certain angle, what does inversion look like? 
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p0 = λ/2	


p0 > λ/2	


p0 < λ/2	


u=cosθ	

Larger aperture ⇒ Narrower main lobe 
Large element spacing ⇒ Grating lobes 

Narrow main lobe, no grating lobes ⇒ Many array elements? 
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Random Element Spacing  
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u=cos!

p = 4λ/2

p0 = 4λ/2

Solves the grating lobes problem! 
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Remaining Problem: Grid! 
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All this analysis has an implied angle (frequency) grid… 
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But sources are not always on the grid!!! 
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Solution (?) Make grid very fine 

•  Actual source closer to a grid point, “leakage” is smaller. 
•  Big problem: Computational complexity 

–  Application of F is O(NlogN) 
–  Sparse FFT could (maybe) help 

•  Bigger problem: Coherence!!! 

2/18/2013 
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Solution: Previous talk 
•  Off-the grid sampling 

–  Previous talk (Yi Li) 
–  Goal: identify continuous frequency components 
–  Look ma no grid! 

•  Advantages: 
–  Very efficient 
–  No grid 
–  Nice guarantees (robustness) 

•  Did we solve the coherence problem? 
–  Partly: no leaking problem with off-grid frequencies 
–  Partly NOT: sources should be separated by O(beamwidth) 

2/18/2013 
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Other solutions 
•  Finite Rate of Innovation (Vetterli et al.) 

–  Advantages: Computationally very efficient 
–  No robustness guarantees 
–  Not very robust in practice 
–  Newer results improving robustness (Eldar et al.) 

•  Atomic norm minimization (Recht et al.) 
–  Advantages: Optimization-based principled approach, nice 

guarantees 
–  Computationally very expensive 
–  Also provides reconstruction guarantees for sparse minimization on 

a fine grid (less expensive than atomic norm minimization!) 
–  Grid guarantees better than coherence/RIP-derived ones 
–  Grid guarantees only in ℓ2 sense (not on support estimation) 

2/18/2013 
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Broadband Processing [w/ Smaragdis, Raj] 

vs. θ=-π/2 vs. θ=0 

High Frequency 
(Large ω) 

Low Frequency 
(Small ω) 

Just right 
 d=λ/2=c/4πω 

High resolution, 
Ambiguity 

Low resolution, 
No ambiguity 

Sensor location is fixed. Can we exploit bandwidth?  

F =
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F(ω)=	


2/18/2013 
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Broadband Processing True Broadband Source 

Aliased images 
in other bands 

Joint sparsity across bands selects correct location! 

ω1	


ω2	


ω3	


ω4	


ω5	


2/18/2013 
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Localization vs. Recovery Broadband Source 

Signal recovery: Invert system 
on detected locations 

What if we have a second source? 

ω1	


ω2	


ω3	


ω4	


ω5	


2/18/2013 
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Localization vs. Recovery Broadband Source 

Signal recovery: Invert system 
on detected locations 

What if we have a second source? 

We can localize the sources 
Can not invert in all frequencies 

ω1	


ω2	


ω3	


ω4	


ω5	


2/18/2013 
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Simulation Examples 

Sensor 

Actual Source 

Estimated Source 
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F=2048
F=1024
F=512

2/18/2013 
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Discussion and open questions 

•  Relationship with FRI and Atomic Norm 
•  Can we identify sources closer than O(beamwidth)? 

–  There is a resolution limit (can be proven by the 
nullspace of F) but can we improve the constant in O(.)	


•  Related issue: remember that we are operating in u=cosθ	

–  Ambiguity in θ different on sides 
–  Can we resolve that? (maybe not) 

•  2D-versions? 
•  Off-grid joint sparsity? 
•  Aperture size ⇒ Resolution limit 

–  Can it be improved  
 with signal models? 

2/18/2013 
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… 

Questions/Comments? 

More info: 
petrosb@merl.com 

http://boufounos.com 
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