

MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts

Fourier Methods in Array Processing

Petros Boufounos

Array Processing Problem

A number of sensors are sensing a scene.

A number of sources transmit in a scene.

Can we localize and reconstruct sources in the scene?

This talk: overview of basic models and methods

(Linearized) Wave Propagation

Signal delayed according to distance and speed of wave propagation in medium

$$y_m(t) = x_k(t - \tau_{k,m})$$
$$\iff Y_m(\omega) = e^{-i\omega\tau_{k,m}} X_k(\omega)$$

Superposition: Signal at receiver sum of all transmitted signals Narrowband approximation: Phase delay same for all ω Free space assumption: No secondary reflections

Wave Propagation, Far-field Approximation

Propagating waves are circular: Same delay for same distance from source

Far field approximation Sources located far relative to array size Propagating waves become flat (planar)

Linear Array, Far Field Approximation

Linear Array, Far Field Approximation

[©] MERL 2/18/2013

Discretizing the (inverse) Fourier Transform

Discretizing the (inverse) Fourier Transform

For other spacing p_0 , use DFT manipulations: Zero padding and aliasing (folding)

Y=FX

Inversion Problem

Inversion Problem: What X generated Y?

Classical approach:

$$\widehat{\mathbf{X}} = \mathbf{F}^{\dagger}\mathbf{Y} = \mathbf{F}^{H}\mathbf{Y}$$

Common names: Beamforming, Backprojection, Matched Filter

Main design issue:

Given target at certain angle, what does the inversion look like?

Inversion Problem

Inversion Problem: What X generated Y?

(possible) Sparse approach:

$$\widehat{\mathbf{X}} = \arg\min_{\mathbf{X}} \|\mathbf{Y} - \mathbf{F}\mathbf{X}\|_2 \text{ s.t. } \|\mathbf{X}\|_0 \le K$$

Also uses $\mathbf{F}^{H}\mathbf{Y}$ for most algorithms: coherence is important

Main design issue:

Given target at certain angle, what does the coherence look like?

Beampattern/coherence

Given target at certain angle, what does inversion look like?

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Beampattern/coherence

Given target at certain angle, what does inversion look like?~

Narrow main lobe, no grating lobes \Rightarrow Many array elements?

© MERL 2/18/2013

eco

Random Element Spacing

Solves the grating lobes problem!

eco

Remaining Problem: Grid!

All this analysis has an implied angle (frequency) grid...

But sources are not always on the grid!!!

Solution (?) Make grid very fine

- Actual source closer to a grid point, "leakage" is smaller.
- Big problem: Computational complexity
 - Application of F is O(NlogN)
 - Sparse FFT could (maybe) help
- Bigger problem: Coherence!!!

Solution: Previous talk

- Off-the grid sampling
 - Previous talk (Yi Li)
 - Goal: identify *continuous* frequency components
 - Look ma no grid!
- Advantages:
 - Very efficient
 - No grid
 - Nice guarantees (robustness)
- Did we solve the coherence problem?
 - Partly: no leaking problem with off-grid frequencies
 - Partly NOT: sources should be separated by O(beamwidth)

Other solutions

- Finite Rate of Innovation (Vetterli et al.)
 - Advantages: Computationally very efficient
 - No robustness guarantees
 - Not very robust in practice
 - Newer results improving robustness (Eldar et al.)
- Atomic norm minimization (Recht et al.)
 - Advantages: Optimization-based principled approach, nice guarantees
 - Computationally very expensive
 - Also provides reconstruction guarantees for sparse minimization on a fine grid (less expensive than atomic norm minimization!)
 - Grid guarantees better than coherence/RIP-derived ones
 - Grid guarantees only in ℓ_2 sense (not on support estimation)

Sensor location is fixed. Can we exploit bandwidth?

© MERL 2/18/2013

Joint sparsity across bands selects correct location!

© MERL 2/18/2013

Localization vs. Recovery

Signal recovery: Invert system on detected locations

eco

Simulation Examples

Discussion and open questions

- Relationship with FRI and Atomic Norm
- Can we identify sources closer than O(beamwidth)?
 - There is a resolution limit (can be proven by the nullspace of \mathbf{F}) but can we improve the constant in O(.)
- Related issue: remember that we are operating in $u = \cos\theta$
 - Ambiguity in θ different on sides
 - Can we resolve that? (maybe not)
- 2D-versions?
- Off-grid joint sparsity?
- Aperture size ⇒ Resolution limit
 - Can it be improved

with signal models?

MITSUBISHI ELECTRIC RÉSEARCH LABORATORIES

for a greener tomorrow

© MERL 2/18/2013

