Task 1: Linear Antenna Array
Assume a single path propagation

Task 2: Multipath Profiles

Equation for the power received at angle θ :

$$
\begin{aligned}
& M P(\theta)=\left|\sum_{k} h_{k} e^{-2 \pi j \frac{k d \cos (\theta)}{\lambda}}\right|^{2} \\
& \theta^{\prime}=\left|\sum_{k} \frac{c}{d} e^{j 2 \pi \frac{D+d k \cos \theta}{\lambda}} \cdot e^{-j t \pi \frac{D+d k \cos \theta}{\lambda}}\right|^{2} \\
& \text { If } \theta^{\prime}=\theta \quad \text {, then } n\left(\frac{C}{D}\right)^{2} \\
& \text { If } \theta^{\prime} \neq \theta \text {, then }\left(\frac{C}{D}\right)^{2}\left|\sum_{k} \frac{c}{d} e^{j 2 \pi k \frac{d}{\bar{\lambda}}\left(\cos \theta^{\prime}-\cos \theta\right)}\right|
\end{aligned}
$$

(a) Multipath environment

Source (pinit paper)

Task 3: Synthetic Aperture

By using sliding antenna (speed v) and sampling at intervals $0,1, \ldots \mathrm{n}$
$h_{t}=\frac{c}{d} e^{j 2 \pi \frac{D+v t \cos \theta}{\lambda}}$

Benefit: the ability to simulate a large antenna array
Drawback: V is not constant over time

Task 4: Localization

Four nodes (i.e. objects with RFID tags) in multipath environment:

(b) Multipath profiles Source (pinit paper)

Inference Methods:
1- Correlation (issue: scaling)
2- Least squares (issue: time shift)
3- Dynamic time wrapping (handles scaling and time shifts)
Task 5: Circular Antenna Array
Assuming TX is far away so that the received signals are parallel

source(lab3 page)
for \emptyset_{k}, we have: $\emptyset_{k}=\frac{2 \pi}{n} k, \quad 0<k<n-1$
Also, $\left|\emptyset_{k}-\theta\right|>\frac{\pi}{2} \rightarrow \cos \left(\begin{array}{ll}\varnothing & -\theta\end{array}\right)<0 \rightarrow$ distance $>D$

