
Real-time Continuous Gesture Recognition for Natural

Multimodal Interaction

by

Ying Yin

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

© Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 19, 2014

Certified by .
Randall Davis

Professor
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Real-time Continuous Gesture Recognition for Natural

Multimodal Interaction

by

Ying Yin

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

I have developed a real-time continuous gesture recognition system capable of dealing with
two important problems that have previously been neglected: (a) smoothly handling two
different kinds of gestures: those characterized by distinct paths and those characterized
by distinct hand poses; and (b) determining how and when the system should respond to
gestures. The novel approaches in this thesis include: a probabilistic recognition framework
based on a flattened hierarchical hidden Markov model (HHMM) that unifies the recognition
of path and pose gestures; and a method of using information from the hidden states in the
HMM to identify different gesture phases (the pre-stroke, the nucleus and the post-stroke
phases), allowing the system to respond appropriately to both gestures that require a discrete
response and those needing a continuous response.

The system is extensible: new gestures can be added by recording 3-6 repetitions of
the gesture; the system will train an HMM model for the gesture and integrate it into the
existing HMM, in a process that takes only a few minutes. Our evaluation shows that even
using only a small number of training examples (e.g. 6), the system can achieve an average
F1 score of 0.805 for two forms of gestures.

To evaluate the performance of my system I collected a new dataset (YANG dataset)
that includes both path and pose gestures, offering a combination currently lacking in the
community and providing the challenge of recognizing different types of gestures mixed
together. I also developed a novel hybrid evaluation metric that is more relevant to real-
time interaction with different gesture flows.

Thesis Supervisor: Randall Davis
Title: Professor

3

4

Acknowledgments

I would like to dedicate this work to my advisor, Prof. Randall Davis. Words cannot express

my gratitude for all the trust, advice and learning opportunities he has provided for the past

6 years. His critiques helped me to be more precise in my research, and his questions guided

me to think more carefully about my approaches. The comments and suggestions he gave

me on this thesis are invaluable.

I would like to thank my thesis committee members Antonio Torralba and Bill Freeman.

They have provided me helpful suggestions and insightful questions. They pushed me to

work harder on my research, and answered my questions promptly.

I also want to express my gratitude to my friendly and supportive group-mates: Andrew

Sabisch, Jeremy Scott, and Yale Song. They have given me tips and suggestions throughout

the course of my study and research. More importantly, their companionship makes my time

at lab enjoyable. I also want to thank Aaron Adler, Chih-yu Chao, Tom Ouyang, and Sonya

Cates, who have graduated earlier from our group, but have given me useful advice when I

was still new.

Thank you to Nira for all of her help and for making tedious things such as reimbursement,

travel arrangement, and purchase much more easier. Thank you to Ron for helping me with

many workshop related tasks.

I feel fortunate to have a group of supporting friends who make my life here so wonderful.

Thank Dave McCoy for his strong support and belief in me. His drive and passion in creating

something new has also touched and motivated me. Thank Shen Shen for bringing me

laughter through her ingenuity.

Thank MIT for a wonderful 6-year experience. I will never forget this place and the

brilliant people here.

Finally, I want to thank my parents for their strong and loving support. Even though

they are thousands of miles away, their unwaving love is the fuel for my determination. I am

deeply indebted to them for everything they taught me. Today, they are as happy as I am.

5

Contents

1 Introduction 18

1.1 Background . 20

1.1.1 Definition of Gestures . 21

1.1.2 Gesture Taxonomy for Natural Interaction 22

1.1.3 Temporal Modeling of Gestures . 25

1.2 System Overview and Thesis Outline . 26

1.3 Contributions . 27

2 Related Work 29

2.1 Sensors . 29

2.2 Hand Tracking . 32

2.3 Feature Extraction . 34

2.4 Gesture Recognition . 35

2.4.1 Pose Gestures . 35

2.4.2 Path Gestures . 35

2.4.3 Multiple Categories of Gestures . 38

2.4.4 Gesture Spotting . 38

2.4.5 Online Recognition . 39

2.4.6 Commercial Systems . 40

2.5 Multimodal User Interfaces . 40

6

3 Datasets 42

3.1 Related Work . 42

3.2 YANG Dataset . 43

3.2.1 Recording Setup and Procedure . 43

3.2.2 Data Formats . 45

3.2.3 Qualitative Observations . 46

3.2.4 User Preferences . 47

3.2.5 Implications for a Gesture Interaction Interface 48

3.3 ChAirGest Dataset . 48

3.3.1 Gestures . 49

3.3.2 Recording Setup . 50

3.3.3 Data Formats . 50

3.3.4 Performance Metric . 50

3.3.5 Evaluation Protocol . 52

4 Hybrid Performance Metric 53

4.1 Existing Methods for Error Scoring . 53

4.2 Shortcomings of Conventional Performance Characterization 54

4.3 Hybrid Performance Metrics . 56

4.3.1 Metric for Discrete Flow Gestures . 57

4.3.2 Metric for Continuous Flow Gestures 58

5 Hand Tracking 59

5.1 Hand Tracking for Horizontal Display . 59

5.1.1 System Setup . 60

5.1.2 Kinect Calibration . 61

5.1.3 Hand and Fingertip Tracking . 62

5.1.4 3D Hand Model and Touch Detection 66

5.1.5 Evaluation . 67

5.2 Hand Tracking for Seated Interaction with Vertical Display 68

5.2.1 Gesture Salience Detection . 69

7

5.2.2 Evaluation . 71

6 Hand Features and Representations 72

6.1 Hand Motion Features . 73

6.2 Hand Pose Features . 75

6.2.1 Histogram of Oriented Gradients (HOG) 75

6.2.2 Compare HOG from Color or Depth Images 78

6.3 Principal Component Analysis . 80

6.4 SVM for Encoding Hand Poses . 80

6.5 Discussion . 84

7 Unified Gesture Recognition Framework 86

7.1 Gesture Modeling using Hierarchical HMM 87

7.2 Unified Framework . 89

7.2.1 Path Gestures . 90

7.2.2 Pose Gestures . 93

7.3 Real-time Gesture Recognition . 96

7.3.1 Combined HMM . 96

7.3.2 Online Inference . 98

7.4 Gesture Spotting . 100

7.5 Concatenated HMM versus LDCRF . 102

7.5.1 LDCRF Optimization . 103

8 Online Recognition Evaluation 105

8.1 Evaluation Protocol . 105

8.2 Effect of the Number of Principal Components 106

8.3 Compare Different Topologies . 107

8.4 Effect of Different Numbers of Mixtures . 109

8.5 Effect of Different Lag Times . 110

8.6 Training Time . 111

8.7 User Independent Evaluation . 111

8

8.8 Discussion . 111

9 Gestural Interaction 114

9.1 Client Server Architecture . 114

9.2 Gesture Controlled Presentation . 115

9.2.1 Handling Different Categories of Gestures 115

9.2.2 Gesture and Speech . 117

9.2.3 Natural Direction . 119

9.3 Adding New Gestures . 121

9.4 Discussion . 121

10 Conclusion 123

10.1 Limitations . 124

10.2 Future Work . 125

A Review of F-measure 127

B Principal Component Analysis Optimizations 129

B.1 No Scaling . 129

B.2 Transpose X . 130

C Review of State-space Model 132

C.1 Representation . 132

C.2 Inference . 133

C.2.1 Filtering . 133

C.2.2 Smoothing . 133

C.2.3 Viterbi Decoding . 133

C.2.4 Classification . 134

D Hidden Markov Models 135

D.1 Inference . 135

D.2 Termination Probability . 137

D.3 Learning . 138

9

D.3.1 Baum-Welch Training . 138

D.3.2 Viterbi Training . 139

D.4 Embedded Training . 139

E Review of Conditional Random Fields 141

E.1 Linear-Chain CRF . 143

E.2 LDCRF . 143

F Notation and Abbreviations 145

10

List of Figures

1-1 Real-time demonstration of the gesture controlled presentation application.

The sequence shows using a circle gesture to bring up all the slides. 19

1-2 Two views of the gesture controlled presentation application. The left view

is the browser based presentation framework. The purple circle indicates

that the user is pointing at the slide. The right view is the debug interface

showing the RGB image, the depth mapped image, the skeleton tracking, and

the bounding box of the gesturing hand. 19

1-3 Production and perception of gestures. Hand gestures originate as a mental

concept, are expressed through arm and hand motion, and are perceived as

visual images [47]. 21

1-4 Gesture taxonomy along four dimensions. The abbreviation “w.r.t” means

“with respect to.” . 23

1-5 Examples of path gestures. 24

1-6 A categorization of gestures along the flow and the form dimensions. 25

1-7 System overview. 26

3-1 YANG dataset gesture vocabulary. 44

3-2 Skeleton joint positions. 46

11

3-3 Differences between participants for the same swipe right gesture. The first

row shows that a user does the Swipe Right gesture in a straight horizontal

path with a Palm Up pose; the second row shows that another user does the

same gesture in a curve path with less distinct poses. 47

3-4 Even though the gesture nucleus label detected by Algorithm 1 is correct (SL

stands for “swipe left”), the start time difference from the ground truth is too

large (larger than half of the ground truth nucleus duration), and hence, it

is not considered as a correct detection. The detection from Algorithm 2 is

considered correct. 51

4-1 Considering events as an ordered list without timing information does not give

a fair comparison for recognition performance. Applying the edit distance

score used in the challenges, both algorithms have 2 mistakes. However if we

consider the timing of the recognition, Algorithm 1 would have 3 mistakes. . 55

4-2 Even though Algorithm 1 has a higher true positive rate, it has more frag-

menting errors. For certain applications, Algorithm 2 would have a better

performance. 55

4-3 Even though Algorithm 1 has a higher true positive rate, it has more merge

errors. For certain applications, Algorithm 2 would have a better performance. 56

5-1 System setup for a horizontal display. 60

5-2 Kinect calibration. The darker squares are the wooden blocks. The intensity

of the gray level image is proportional to the distance from the Kinect sensor

after applying histogram equalization, so closer things look darker. 62

5-3 Background subtraction. 63

5-4 The white triangular areas are convexity defects and the red outline is the

convex hull. 64

5-5 Fingertip tracking results: green dots are detected fingertips. 65

5-6 On the left are images showing 3D model of the upper limb and the tabletop

surface; on the right are are corresponding depth mapped images. The vertical

blue line is the z axis and the green horizontal line is the y axis. 67

12

5-7 Tracking result displayed on the tabletop surface. The red dot is the detected

fingertip position. 68

5-8 Gesture salience detection steps: (a) RGB image under low lighting condition;

(b) depth map Dt filtered by skin and user mask, MS∧U
t . False detection of

skin is due to the similar colors between clothes and skin; (c) motion mask,

MM
t∨t−1, indicating moved pixels for time t and t − 1; (d) salience map with

red color indicating high probability of the salience; (e) final gesture salience

bounding box, Bt. (Best viewed in color. Based on data from the ChAirGest

corpus.) . 69

5-9 Comparison of hand tracking results. Our method (red region) gives more

reliable result on hand tracking compared to the off-the-shelf Kinect software

(green line). (Best viewed in color. Based on data from the ChAirGest corpus.) 71

6-1 Per frame classification confusion matrices. The numbers are percentages.

The darker the color the higher the percentage. 74

6-2 Histograms of motion features. 76

6-3 64× 64px raw image patches of hands from the ChAirGest dataset. 77

6-4 Histogram values in cell01 is normalized by the sum in cell00, cell01, cell10, and

cell11. 77

6-5 Visualization of HOG descriptors computed from 64× 64px image patches. . 78

6-6 View of quantized depth data of a hand in 3D. 79

6-7 Per frame classification confusion matrices based on result from 3-fold cross

validation using the ChAirGest dataset. The numbers are percentages. The

darker the color the higher the percentage. 81

6-8 Histograms of the 15 components of in the feature vectors computed from

apply PCA to the HOG descriptors. 82

6-9 Examples of hand poses from two classes. 83

6-10 Visualization of the classification results comparing two methods. This is a

continuous segment of about 200 frames (around 7s) in a sequence with two

pose gestures: Palm Up and Point. 84

13

6-11 Histogram of SVM probability output for one class. 85

7-1 State transition diagram of the HHMM representation of the gesturing pro-

cess. Solid arcs represent horizontal transitions between states; dotted arcs

represent vertical transitions, i.e., calling a phase HMM (sub-HMM). Double-

ringed states are end states. Only examples of transitions are shown here. . . 87

7-2 DBN representation of the HHMM for the temporal gesture model. Gt is the

gesture label, Pt is the phase label, and St is the hidden state representing

a sub-stage in a gesture phase. F d
t = 1 if the HMM at the lower level has

finished (entered its exit state), otherwise F d
t = 0. Shaded nodes are observed;

the remaining nodes are hidden. 88

7-3 Embedding phase HMMs into an entire gesture. 91

7-4 A state transition diagram of a modified 4-state Bakis model for the nucleus

phase. 91

7-5 DBN representation of HMM with mixture of Gaussians emission probabilities. 92

7-6 State transition diagram of a single state HMM for gestures with distinct hand

poses. 93

7-7 Visualization of normalized covariance matrices of the MoG for different hid-

den states. The darker the color, the larger the variance. 95

7-8 Combined HMM. The red lines are examples of transitions added to combine

the individual gesture HMMs. To keep the diagram from getting cluttered,

not all possible transitions are shown. 97

7-9 Figure adapted from [42] comparing different kinds of inference. The shaded

region is the interval for which we have data. The arrow represents the time

step at which we want to perform inference. t is the current time, and T is

the sequence length (see Appendix C.2 for details). 99

7-10 Most likely hidden states using fixed-lag smoothing from a segment of an input

sequence. Different colors indicate different hidden states. Yellow indicates

rest position. 100

14

7-11 Visualization of gesture recognition result. A non-rest segment without a

nucleus phase (see t ∼ 30700 in (b)) is not identified as a gesture (no label

reported at the same time in (a). 101

8-1 Comparison between recognition result using online inference and ground

truth. The colors correspond to different gestures. For discrete flow gestures

(Swipe Left/Right, Circle, Horizontal Wave), one color segment with a fixed

length is shown at the time of response. For continuous flow gestures, the

recognized gesture is shown at each frame indicating frame-by-frame responses.106

8-2 Graph showing how F1 scores for discrete flow gestures, continuous flow ges-

tures and the average scores change with the number of principal components

used for the HOG descriptor. 107

8-3 Estimated hidden states for a Palm Up gesture using the left-right model the

same as path gestures. Different colors correspond to different hidden states. 108

8-4 F1 scores versus number of mixtures. 109

8-5 F1 score versus lag time l. 110

8-6 Confusion matrix for pose gestures. 112

8-7 This frame is mistakenly classified as Grab while the true gesture is Point.

Motion blur is significant. 113

9-1 Square cursor for Palm Up gesture to seek video forward or backward by

moving hand left or right. 117

9-2 In the overview mode, user can point to a slide and say “show this slide” to

display it. 118

9-3 The user and the display face the same direction during presentation. 120

9-4 Sensor and display coordinate spaces. 120

9-5 Training interface. 122

15

List of Tables

3.1 YANG dataset gesture vocabulary. 43

3.2 Challenging and easy aspects of the dataset. 45

3.3 ChAirGest gesture vocabulary. 50

5.1 Comparison of the average 3-fold cross validation results for different hand

tracking methods using the ChAirGest dataset. Values in parentheses are

standard deviations. 71

6.1 Comparison of the average 3-fold cross validation results for different mo-

tion feature vectors using the ChAirGest dataset. Values in parentheses are

standard deviations. 73

6.2 Comparison of the average 3-fold cross validation results for features com-

puted from the Kinect sensor data using the ChAirGest dataset. Values in

parentheses are standard deviations. 79

6.3 Comparison of hand pose classification results. 84

7.1 Comparison of recognition results between LDCRF and concatenated HMMs

using the ChAirGest dataset. 103

8.1 Results from using different topologies. The numbers in parentheses are stan-

dard deviations. The results are based on using 3 mixtures of Gaussians for

all hidden states, and lag time l = 8 frames. 108

16

8.2 Results from using different numbers of mixtures of Gaussians for the emission

probabilities (l = 8 frames). 110

8.3 User independent model 10-fold cross validation results (l = 8 frames). The

last column is the user dependent result for user PID-02 for comparison. . . 112

9.1 Mapping from gestures to presentation control actions. DF stands for discrete

flow gesture and CF stands for continuous flow gesture. 116

F.1 Notation for HMMs. 146

F.2 List of abbreviations . 146

17

Gesture is a critical link running through the evolution of percep-

tion, conceptualization, and language.

David Armstrong, William Stokoe, and Sherman Wilcox,

Gesture and the nature of language

1
Introduction

Imagine how nice it would be, the next time you make a presentation, if

you did not need to stand close to your laptop, or use a remote control with its

limited functionality. What if you could present your work as naturally as having

a conversation with your audience. You swipe your hand left and right to change

slides. When you point to the slide with your hand, the display shows a cursor

following wherever you point. When you are showing a video, you use a palm

forward hand pose (“stop” gesture) to pause the movie, then move left and right

to fast forward or rewind the video. You can also say “faster” or “slower” to

change the video speed. When you need to jump to a particular slide, you make

a circle gesture to show all the slides, and say “show this slide” while pointing at

that slide. You can also make a dismiss gesture to pause the slide show (making

the screen black) to take the distracting slides off the screen and get the full

18

attention of the audience.

This scenario shows an application of a multimodal interface to a real-world problem,

with different categories of gestures playing an important part in the scenario. The system

I developed makes the scenario real (Figure 1-1 and 1-21). It provides real-time continuous

gesture recognition and interaction, addressing problems that have previously been neglected,

such as handling different types of gestures, and determining how and when the system should

respond.

Figure 1-1: Real-time demonstration of the gesture controlled presentation application.
The sequence shows using a circle gesture to bring up all the slides.

Figure 1-2: Two views of the gesture controlled presentation application. The left view
is the browser based presentation framework. The purple circle indicates that the user
is pointing at the slide. The right view is the debug interface showing the RGB image,
the depth mapped image, the skeleton tracking, and the bounding box of the gesturing

hand.

1A live demo video can be found at https://www.youtube.com/watch?v=09BXfN2vk1E

19

https://www.youtube.com/watch?v=09BXfN2vk1E

Recent trends in user interfaces have brought on a new wave of interaction techniques

that depart from the traditional mouse and the keyboard, including multi-touch interfaces

(e.g., the iPhone, the iPad and the Microsoft Surface) as well as camera-based systems

(e.g., the Microsoft Kinect and the Leap Motion Controller). Most of these devices gained

instant popularity among consumers, and the common trait among them is that they make

interacting with computation more natural and effortless. Many of them allow users to use

their hands and/or body gestures to directly manipulate virtual objects. This feels more

natural because this is how we interact with our environment everyday.

There is also a trend in wearable human-computer interfaces (e.g., Google Glass, Sam-

sung’s Galaxy Gear smartwatches, Pebble smartwatches) that have potential for gesture

input as well. Google Glass has a camera that can be used to recognize hand motion and

hand shapes, while the accelerometers and gyroscopes in the smartwatches can be used to

measure hand motion.

There is considerable potential and demand for natural interaction, and gesture is an

important part of it. We are starting to see more gestural interfaces, but many of them

still require that the hands function as a mouse with a limited number of other gestures.

Our goal is to break this old paradigm of “point, click, drag” interaction. Our hands are

much more versatile, and hence, offer the chance to design a gesture recognition system for

natural human computer interaction (HCI) starting from the user interaction perspective.

This means asking: what different types of gestures do people use; when should the system

respond; how should the model be defined and trained; and how should we combine gesture

and speech? These are the questions addressed in this thesis. Based on my findings, I

developed a real-time continuous gesture recognition and interaction system that handles

different types of gestures seamlessly, and responds to gestures appropriately.

1.1 Background

To design a natural gesture input interface, it is important to understand the nature of

human gestures. This section gives some background on gesture production and taxonomy,

and introduces several important concepts and terms central to the final system design.

20

1.1.1 Definition of Gestures

For a natural interface, it is important for the system to distinguish gestures from non-

gestures (e.g., unconscious habitual movements like scratching one’s head) because this will

avoid restricting how people place or move their hands when they are not doing any purposive

gestures.

Webster’s Dictionary defines gestures as “. . . a movement usually of the body or limbs

that expresses or emphasizes an idea, sentiment, or attitude.” This definition is particularly

related to the communicative aspect of the human hand and body movements. However, in

HCI, the notion of gestures is somewhat different. In their review of the visual interpretation

of hand gestures for HCI, Pavlović et al. [47] state that in a computer controlled environment

one wants to use the human hand to perform tasks that mimic the natural use of the hand

both as a manipulator and as used in human-machine communication. They describe this

in part by having both manipulative and communicative gestures in their gesture taxonomy.

We adopt this distinction.

Figure 1-3: Production and perception of gestures. Hand gestures originate as a mental
concept, are expressed through arm and hand motion, and are perceived as visual

images [47].

Pavlović et al. [47] also gives a model (Figure. 1-3) for the production and perception of

gestures, based on the model used in the field of spoken language recognition. According to

their model, gestures originate as a gesturer’s mental concept, possibly in conjunction with

speech. They are expressed through the motion of arms and hands, while observers perceive

gestures as streams of visual images that they interpret using their knowledge about those

gestures. In HCI, the observer is the computer and the knowledge it possesses is the training

data.

21

1.1.2 Gesture Taxonomy for Natural Interaction

Several gesture taxonomies have been suggested in the literature. Some of them deal with

psychological aspects of gestures [29, 39], while others are inspired by an HCI perspective

[47, 50, 74]. The taxonomy that seems most appropriate for natural HCI and human-centric

design is developed by Wobbrock et al. [74]. Their study was based on eliciting natural

behavior from non-technical users when interacting with a computing system. As their study

focused on tabletop gestures, I further generalized their taxonomy to encompass interaction

for both vertical and horizontal interfaces.

Wobbrock et al. [74] classified gestures along four orthogonal dimensions : form, flow,

binding, and nature. Within each dimension, there are multiple categories, shown in Figure 1-

4. The form dimension is particularly relevant for gesture recognition because it concerns the

visual characteristics of gestures. The flow and the binding dimensions are relevant for the

application layer because they are related to how the user interface (UI) should respond to

gesture events. The nature dimension is very similar to the taxonomies mentioned in other

related work, and hence, will be explained further below. However, the form and the flow

dimensions are the focus of this thesis. Since these four dimensions have specific meanings

in this taxonomy, I will refer them in italic text in the thesis to make the distinction.

Wobbrock’s Nature Dimension

Along the nature dimension, Wobbrock et al. divide gestures into four categories: symbolic,

physical, metaphorical and abstract. These categories have some overlap with Pavlović’s

classification, but Pavlović’s is more comprehensive.

The hierarchical categorization along the nature dimension in Figure 1-4 is the one I

summarized based on Pavlović’s taxonomy. Gestures are divided into manipulative and

communicative. Manipulative gestures are used to act on objects (e.g. moving an virtual

object around, click a button), while communicative gestures have an inherent purpose for

communication [47].

People perform communicative gestures via acts or symbols. Gestures via acts are those

directly related to the interpretation of the movement itself. Such movements are classified

22

Form

Distinct Path
with any hand pose

Distinct Hand Pose
with any path

Flow

Discrete
response occurs after

the user acts

Continuous
response occurs while

the user acts

Binding

Object-Centric
location defined

w.r.t. object

World-Dependent
location defined w.r.t.

world

World-Independent
location can ignore

world

Mixed Dependencies
world-independent plus

another

Nature

Manipulative
act on objects

Communicative
for communication

Via Acts
interpretation of movement

Via Symbols
visually depicts a

symbol

Mimetic
imitate actions

Deictic
pointing

Figure 1-4: Gesture taxonomy along four dimensions. The abbreviation “w.r.t” means
“with respect to.”

as either mimetic (which imitate some actions) or deictic (pointing acts that select objects

by location). Gestures via symbols are those that have a linguistic role, and are often

represented by different static hand postures. An example is forming the O.K. pose for

“accept”.

Form and Flow Dimensions

Although the classification in the nature dimension gives us a good understanding of gestures,

it is less useful for designing the gesture recognition system than the form and the flow

dimensions are.

I distinguish two categories in the form dimension: path and pose. The path category

contains gestures characterized by distinct paths without any distinct hand poses. For

example, a Swipe Left gesture is characterized by a right to left motion, while a Circle

23

gesture is characterized by a circular motion of the hand (Figure 1-5). In doing these, users

typically hold their hands in some natural, relaxed, but unpredictable pose.

(a) Swipe Left (b) Circle

Figure 1-5: Examples of path gestures.

Pose gestures are characterized by distinct hand poses without any distinct paths. This

category of gestures is usually associated with direct manipulation of some virtual objects

on the interface. For example, a user may use a Point hand pose and move around to point

at different things on a display.

In the flow dimension, a gesture’s flow is discrete if the gesture is performed, delimited,

recognized, and responded to as an atomic event [74]. For example, if the Wave gesture is

regarded as a discrete flow gesture, the system should respond once, at the last repetition of

the left-right motion. Flow is continuous if ongoing recognition is required and the system

should respond frame by frame, as for example during a “point” gesture, where we want to

show the cursor on the screen continuously moving according to the hand position.

The form dimension informs us what different features we need to consider to differentiate

gestures. The flow dimension informs us how the system should respond to gesture events.

As a result, I focus on these two dimensions in this thesis.

While for some gestures, their categorization along certain dimension is obvious; for

others, it is not, and the actual categorization can be decided by the application developer

or the user. Figure 1-6 shows an example of gesture categorization along the two dimensions.

24

Figure 1-6: A categorization of gestures along the flow and the form dimensions.

1.1.3 Temporal Modeling of Gestures

Making gesture interaction feel natural requires a system that responds at the correct mo-

ment, meaning that we have to consider the temporal characteristics of a gesture. We set a

foundation for doing this by taking account of the three phases that make up a gesture:

� pre-stroke,

� nucleus (peak [39]), and

� post-stroke [47].

Pre-strokes and post-strokes are movement from and to the rest position. The nucleus of a

gesture, as Kendon [29] observes, has some “definite form and enhanced dynamic qualities”.

Every gesture must have a nucleus, which is the content-carrying part of the gesture. Based

on this theory, the lack of a nucleus phase can be used to distinguish unintentional movements

from gestures .

Even though the end of the post-stroke phase can be more easily detected by finding

the start of the rest position, I want to do more than this. Since the nucleus phase is

the meaningful part of the gesture, for a discrete flow gesture, the system should respond

immediately at the end of the nucleus, instead of at the end of the post-stroke. To make

the system more responsive, I address this challenging problem of distinguishing the start

25

and end of the nucleus phase from the pre-stroke and post-stroke phases. This also allows

the system to respond to continuous flow gestures immediately at the start of the nucleus

phase.

1.2 System Overview and Thesis Outline

The gesture interaction system consists of four modules: hand tracking, feature extraction,

gesture recognition, and application user interface (Figure 1-7). At each time frame, the hand

tracking module takes raw data from the sensor and estimates the location of the gesturing

hand. The feature extraction module computes feature descriptors from the localized hand

and sends the encoded features to the gesture recognition module. The gesture recognition

module estimates the current most likely gesture label and gesture phase information based

on the input stream of feature vectors. The gesture information, together with smoothed

hand position information are sent to the application level.

Figure 1-7: System overview.

In each module, I have developed new techniques to improve the gesture recognition

accuracy and user experience, and improved upon existing methods. The main focus and

contributions of this work are in gesture recognition.

26

1.3 Contributions

The main contributions of this work include:

� Hand tracking

– I improved hand tracking by replying in part on gesture salience: I define gesture

salience to be proportional to the amount of motion and the closeness of the

motion to the observer. Based on this, I compute a probability map for the

gesturing hand locations in a frame. Compared with using the hand joint position

from the Kinect SDK, using our hand tracking method gives a 2.7% absolute

increase in the recognition F1 score.

� Feature extraction

– I use histogram of oriented gradients (HOG) as a hand shape descriptor and apply

principal component analysis (PCA) to reduce its dimensionality. I then use it

as part of the feature vector input to the hidden Markov models (HMMs) based

recognition module. This novel approach allows the system to handle path and

pose gestures in a unified way.

� Gesture recognition

– I developed a probabilistic framework based on HMMs for real-time continuous

(i.e., unsegmented) gesture recognition that unifies recognition of two forms of

gestures (path and pose). I use different HMM topologies for different forms of

gestures and combine them into one flattened hierarchical HMM for simultaneous

recognition and segmentation. With user dependent training and testing, the

system achieves an average F1 score of 0.805 on the YANG dataset.

– I used embedded training and hidden state information to detect different gesture

phases – the pre-stroke, the nucleus, and the post-stroke phases – allowing the

system to respond more appropriately and promptly to gestures that require a

discrete response and those needing a continuous response. With user independent

27

training and testing on the ChAirGest dataset, this method achieves a temporal

segmentation rate of 0.923 for identifying the start and the end of nucleus phases.

– I collected a new dataset (YANG dataset) that includes 4 path and discrete flow

gestures and 3 pose and continuous flow gestures from 10 users, a combination

currently lacking in the community, to evaluate system performance.

– I developed a hybrid evaluation metric that is more relevant to real-time interac-

tion with different gesture flows.

– I used gesture phase information to do gesture spotting, filtering out non-gestures

with no nucleus phases.

� User interaction techniques

– I identified two main ways of combining gesture and speech for natural interaction:

using gestures to augment speech, and using speech to augment gestures, and

demonstrated the combination in an interactive system.

28

2
Related Work

A gesture input pipeline can be broken down into several sequential modules: sensors, hand

tracking, feature extraction, gesture recognition, and user interfaces. I discuss related work

in each module.

2.1 Sensors

The first step in the pipeline is having sensors capture hand movements and configurations.

Early attempts to solve this problem resulted in mechanical devices that measure hand joint

angles and spatial positions directly. This group is best represented by the glove-based

approaches using devices such as CyberGloves [20] and Powergloves [28]. However, wearing

gloves makes gesturing more cumbersome, leading to many efforts to make the gloves more

light-weight (e.g., by using Bluetooth wireless data transmission as in the CyberGove II). To

29

further reduce the bulkiness of the gloves, people have used colored markers on the fingers

[40] or colored gloves with no electronics [70] and using RGB cameras and computer vision

techniques to interpret gestures. However, by requiring the user to wear something extra

hinders the acceptance of such devices as “everyday” natural interaction interfaces.

The most non-obtrusive way to capture the hand is bare-hand tracking. Shin et al.

[56] use stereo RGB cameras to extract the hand from background based on skin colors.

One limitation of RGB cameras is that they are very sensitive to lighting condition. This

prompted researchers to look into other types of cameras. Oka et al. [45] use thermal

imaging for hand segmentation under complex background and changing light, relying on

the condition that a hand’s temperature is almost always distinct from the background.

Larson et al. [35] improved on this method by adding touch detection. They detect finger

contacts by using heat transferred from a user’s hand to the surface for touch-based gestures.

However, in order to detect the heat trace, users have to drag their fingers a bit instead of

just touching. This may be a small departure from what users would expect as “natural”

based on their experience in the physical world.

Thermal imaging measures radiation emitted by objects in the far-infrared (F-IR) spec-

trum. There are other well-known “IR-imaging” techniques used in the HCI community

which use devices operating in the near-infrared (N-IR) spectrum. N-IR is employed in some

fairly recent interactive tabletop surfaces and depth cameras [27, 81]. A number of projects

have used IR for tabletop interaction by detecting multi-touch gestures using an under-

surface mounted camera and an illumination source, e.g., Microsoft’s Surface. Recently,

multi-touch phones and tablets have become more and more ubiquitous. These devices

are based on capacitive touch sensitive screens. Touch-based devices are becoming more

sophisticated, but are still limited to gestures in 2D space with one or multiple fingers.

Depth sensing input devices such as the Kinect sensor and the Leap Motion Controller

open up the possibility of gesturing in 3D space. The Kinect sensor contains a depth sensor, a

color camera, and a four-microphone array that provide full-body 3D skeleton tracking, face

recognition, and voice recognition capabilities [81]. The first generation of the sensor uses

structured light for depth sensing. The color stream has a resolution of 640× 480px at 30Hz

or 1280 × 960px at 12Hz. The depth sensing video stream has a resolution of 640 × 480px

30

at 30Hz1. With the default range, the Kinect sensor (version one) has a depth sensing

range limit of about 0.8m - 4m2. The random error of its depth measurements increases

quadratically with increasing distance from the sensor, and ranges from a few millimeters at

0.5m distance to about 4cm at the maximum range of 5m [31]. It can track 20 body joints

including hands. The newer version of Kinect uses a time-of-flight camera for depth sensing,

and a higher resolution color camera (1920× 1080px at 30Hz)3. It can track 25 body joints

(including thumbs)4.

In stead of full-body tracking, the Leap Motion Controller has a smaller observation

area and specializes in hand tracking with higher resolution. It uses two monochromatic IR

cameras and three infrared LEDs, and observes a roughly hemispherical area, to a distance

of about 1m [5]. It can track all 10 fingers up to 1/100th of a millimeter5. However, as

the algorithm is optimized for detecting finger-shaped objects, detecting other hand shapes

such as “palm up” (with finger closed) or “fist” can be challenging with the Leap Motion

Controller.

More recently, a new generation of smart watches is leading the way in wearable comput-

ing interfaces. These smart watches are equipped with motion sensors such as accelerometers,

gyroscopes and magnetometers, which are basic components of an inertial measurement unit

(IMU). These sensors can give relatively accurate motion and orientation information of

users’ hands at a high frame rate (e.g., the Xsens MTw IMU has a frame rate of 50Hz [54]),

and can thus be used for gesture input. While data from camera-based sensors is prone to

occlusion, and its quality of accuracy is highly dependent on the position of the user relative

to the sensor, IMU sensors are occlusion free and position independent. In addition, data

from IMUs can be used with less complex processing compared with data from camera-based

sensors [54].The disadvantage of an IMU is that it cannot capture hand shape information.

There is a plethora of new sensors, and they have both pros and cons for hand tracking and

gesture recognition. It is possible to combine different sensors so that they can complement

each other. Sensor technology will continue to advance, and as a result it is important to

1http://msdn.microsoft.com/en-us/library/jj131033.aspx
2http://msdn.microsoft.com/en-us/library/hh973078.aspx
3http://www.develop-online.net/news/next-xbox-leak-reveals-kinect-2-specs/0114096
4http://en.wikipedia.org/wiki/Kinect#Kinect_for_Xbox_One
5https://www.leapmotion.com/product

31

http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://msdn.microsoft.com/en-us/library/hh973078.aspx
http://www.develop-online.net/news/next-xbox-leak-reveals-kinect-2-specs/0114096
http://en.wikipedia.org/wiki/Kinect#Kinect_for_Xbox_One
https://www.leapmotion.com/product

make gesture recognition system flexible and generalizable to different feature input.

I classify sensors into two categories according to their placement: environmental and

wearable. An environmental sensor is installed at a fixed position (e.g., the Kinect senor

and the Leap Motion Controller); while a wearable sensor is worn by the user (e.g., smart

watches). I evaluated my system with sensors from both of these categories: a Kinect

sensor and an IMU sensor. The Kinect sensor’s microphone array is useful for multimodal

interaction, while its depth sensor and color camera can be used for bare hand tracking and

hand pose recognition, integral parts of my system. With the IMU, I demonstrate that the

framework is generalizable and the two sensors can be used together.

2.2 Hand Tracking

The next step in the pipeline is tracking the hand(s), i.e., localizing and segmenting hands

from the rest of the input. This step is substantive for camera based sensors, but trivial for

sensors worn on hands or wrists.

Common hand tracking methods are based on either skin detection [56] or motion detec-

tion [15]. Skin detection in the HSV [12] or the YCrCb color space can be relatively robust

and less sensitive to lighting conditions, compared to the RGB color space. However materi-

als with skin-like colors (such as clothes) can produce false positives. Skin from other parts

of the body can also interfere with hand tracking. Shin et at. [56] filter out false positives

by considering the skin blob closest to the camera. However this can fail when the hand is

close to the body, generally resulting in the face being detected instead. Methods based on

motion detection would assume the background is relatively static and there is no motion

from other parts of the body.

Marcos-Ramiro et al. [38] developed a method of computing hand likelihood maps based

on RGB videos. They mention that, given a frontal, static camera pointing to the gesturer,

hands are usually the closest part to the camera, and also move with the highest speed.

These characteristics translate to more movement in the image where the gesturing hand(s)

is. As they only used non-stereo RGB images, they could not compute the closeness of the

movement.

32

Hand tracking can be considered as a feature localization/detection problem. Feature

detectors usually select spatio-temporal locations and scales in video by maximizing specific

salience functions [68]. One example is space-time interest points (STIPs) detector intro-

duced by Laptev [33]. He used it for human action recognition from movies [34]. STIPs

are points in the video sequence where the image values have significant local variations in

both space and time. His method extends the Harris interest point detector in the spatial

domain [25] to the spatial-time domain. For each cuboid of interest point, both histograms

of oriented gradients (HOG) and histograms of optic flow (HOF) are computed as feature

descriptors. Although promising results were demonstrated using STIPS, Wang et al. [68]

find that the simple dense sampling method (i.e., computing feature descriptors at regular

positions and scales in space and time) outperforms STIPs and other interest point detec-

tors for action recognition in realistic video settings. They suggest that this indicates the

limitations of current interest point detectors.

Another approach to hand tracking is based on 3D body pose estimation and searching

for the hand region near the wrist [59]. Skeleton tracking provided by the Kinect Software

Development Kit (SDK) gives a relatively robust 3D body pose estimation. The track-

ing is based on a body part detector trained from a random forest of a huge number of

synthetically-generated body poses [58]. One of its major strengths is that it does not re-

quire an initialization pose. However, the hand joint tracking from the Kinect SDK fails

when the hands are close to the body or are moving fast, especially in the seated mode [78].

With a coarse initialization of a hand’s configuration, Sudderth et al. [64] use a graphical

model of hand kinematics and nonparametric belief propagation (NBP) to refine the tracking.

However, the process is relatively slow (1 min per NBP iteration o a Pentium IV workstation

and the process requires multiple iterations) and cannot be used in real-time yet.

My hand tracking method is salience based and is similar to Marcos-Ramiro et al.’s, but

I combine both RGB images and depth images to compute gesture salience. I use depth data

to compute the amount of motion, which is computationally less expensive than the optical

flow method they used. By combining skin, motion and closeness together to compute a

probability map for the gesturing hand location, my method better filters out false positive

regions with skin-like colors and makes fewer restrictions on motion. I compared my method

33

with the dense sampling method using the same dataset and recognition method, and my

method gives 11.6% absolute improvement in frame-based classification F1 score. Compared

with the hand joint tracking from Kinect SDK, my method is also shown to be more robust

when the user is seated and the hands are close to the body or are moving fast.

2.3 Feature Extraction

The extraction of low level image features depends on the hand model in use, and the

complexity of the hand model is, in turn, application dependent. For some applications, a

very coarse and simple model may be sufficient. The simplest model is treating the hand as

a blob and tracking only the 2D/3D location of the blob. For example, Sharma et al. [55] use

2D position and time difference parameters to track the hands as blobs, which is sufficient

for them to distinguish whether the hands are doing a point, a contour, or a circle gesture.

The PrimeSense NITE middleware for OpenNI’s natural interaction framework also tracks

the hand as a point. It requires the user to do a “focus” gesture (“click” or “wave”) in order

to start hand tracking [49]. The gestures it supports are “click” (pushing hand forward),

“wave”, “swipe left”, “swipe right”, and “raise hand”.

However, to make a more generalizable system for natural interaction, a more sophisti-

cated model is required. One step forward is adding fingertip locations in the hand model

as in [45, 26, 35]. Tracking fingertips is usually sufficient for manipulating objects on the

2D surface. To support a richer set of gestures involving 3D manipulation, we may need

a more sophisticated model. For instance, Wang et al. [70] uses a 26 DOF 3D skeletal

model in their real-time hand-tracking system with a color glove. Oikonomidis et al. [44]

also used a parametric 3D model with 26 DOF and 27 parameters. They treat hand pose

estimation from markerless visual observation as an optimization problem and achieved a

15Hz frame rate with an average error of 5mm (distance between corresponding finger joints

in the ground truth and the in the estimated model) .

Another approach is using an appearance-based model. This means that the model

parameters are not directly derived from the 3D spatial description of the hand. The hand

poses are modeled by relating the appearance of any pose to the appearance of the set of

34

predefined, template poses [47]. In their markless hand-tracking system, Wang et al. [69]

use efficient queries of a database of gestures and desktop-specific hand silhouette samples

for pinch/click gesture detection.

In this work, I use a simplified 3D skeletal hand model for horizontal display interaction

where hands are close to the display surface and can directly manipulate virtual objects.

For communicative gestures, we need to know just the meaning of the gesture and do not

require exact spatial parameters. Hence appearance-based models is more suitable which

also require less computation, allowing us to achieve a real-time frame rate of 30Hz.

2.4 Gesture Recognition

Many previous efforts on gesture recognition have focused on a single category of gestures (ei-

ther path gestures or pose gestures), though here are some work that addressed the problem

of handling multiple gesture categories in one system.

2.4.1 Pose Gestures

One group of prior work focuses on classifying a set of predefined static hand poses frame by

frame. Freeman and Roth [23] use histogram of local orientations, a precursor of HOG [16],

for hand pose recognition. Recognition is based on selecting the feature vector in the training

set that is closest to the test feature vector. Suryanarayan et al. [65] use a volumetric shape

descriptor computed from depth data as the feature vector, and use Support Vector Machine

(SVM) for classification. I use HOG as a hand pose feature descriptor but incorporate it in

a unified HMM-based framework for both pose and path gestures.

2.4.2 Path Gestures

Another group of prior work focus on recognizing only path gestures. Most of these efforts

used a hidden Markov model (HMM) and its variants to recognize such gestures [63, 55].

Starner and Pentland used HMMs to recognize the part of American Sign Language that

uses path gestures [63]. They collected about 500 sentences of a specific grammar (“personal

35

pronoun, verb, noun, adjective, (the same) personal pronoun”) with a total lexicon of forty

words. No intentional pauses were placed between signs within a sentence, but the sentences

themselves were distinct. Because finger spelling was excluded and there were few ambiguities

in the vocabulary based on individual finger motion, each gesture word would have a distinct

path. The feature vector they used includes 8 elements: each hand’s x and y position, angle

of axis of least inertia, and eccentricity of bounding ellipse. They use Gaussian distributions

to model the emission probabilities. When training the HMMs, they used Viterbi training

(see Appendix D for more details on HMMs) to estimate the initial means and variances of

the output probabilities (after initially dividing the evidence equally among the words in the

sentence). The initial estimates are fed into a Baum-Welch re-estimator, whose estimates

are refined in embedded training. The techniques they use are very similar to the ones used

in speech recognition (not surprisingly given the close parallel between sign language and

speech). In fact, they were able to use Entropic’s Hidden Markov Model TookKit (HTK)6

directly for all the modeling and training tasks.

Gestures for HCI usually are less structured than sign language and do not follow a

grammar, hence to learn context-dependent transition and emission parameters will require

O(N2) training examples to cover all possible pairs of gestures for N gestures. But our

user study indicate that people prefer to give around 5 examples per gesture (i.e. linear

growth with the number of gestures). To prevent quadratic growth of required training

examples, I do not embed gesture HMMs in a sentence to learn context-dependent models for

inter-gesture transition and assume the transitions between gestures have equal probability.

However, I do embed gesture phase HMMs in a full gesture sequence to identify different

gesture phases which is necessary for real-time interaction. In this way, we learn context-

dependent models within a gesture, i.e., different gestures may have different pre-stroke and

post-stroke phases depending on their starting and ending points.

Sharma et al. [55] considered natural gestures that do have grammar constraints. They

examined hand gestures made in a natural domain, weather narration, and identified three

deictic gestures: point, area, and contour. They also considered the pre-stroke and post-

stroke gesture phases, and used 5 states for each of the pre-stroke, post-stroke and point

6http://htk.eng.cam.ac.uk/

36

http://htk.eng.cam.ac.uk/

HMMs and 6 states for each of the contour and rest HMMs. The feature vector they use

is motion based, and includes relative distance between the hand and the face, angle of the

arm, angular velocity, radial velocity and tangential velocity. Hand poses are not considered.

Without considering speech input, they obtained 69.52% recognition accuarcy for the three

gestures. Although the deictic gesture is an important category in HCI, it is still too limited

to support a broader range of applications.

More recently, discriminative models such as conditional random fields (CRF) and its

variants, such as hidden CRF [71] and latent dynamic CRF (LDCRF) [41], have been applied

to gesture recognition with improved recognition results. Morency et al. [41] formulated the

LDCRF model that is able to perform sequence labeling and segmentation simultaneously.

Song et al. [61] use LDCRF to distinguish path gestures where certain gestures share the

same paths but different hand poses. They use the HOG feature descriptor for hand poses

and use SVM to classify a pre-determined set of hand poses. The result of the classification

is used as part of the final feature vector. They considered hand poses for gestures with

distinct paths, but did not handle arbitrary movement, as I am doing.

As discriminative classifiers model the posterior p(y|x) directly, or learn a direct map

from inputs x to the class labels y, it is generally believed that discriminative classifiers

are preferred to generative ones (such as HMMs) for classification problems. However, one

limitation of CRF-based models is that training for these models is much more expensive

computationally and converges much slower than those of HMMs [32] because of the larger

parameter space to search. Discriminative models can also require more training data to

reach lower asymptotic error rates [43]. I applied LDCRF for gesture classification and ges-

ture phase segmentation. Compared with my concatenated HMM-based method, LDCRF

gives better gesture phase segmentation result, but lower gesture classification result. The

LDCRF model also takes much longer time to train (18hr on the ChAirGest dataset) com-

pared to the HMM-based method (which takes 7min). As my user study shows that people

prefer to use a few examples to define their own gestures when necessary (see Section 3.2.4),

I decided to use the HMM-based model, which is fast to train and requires fewer training

examples.

37

2.4.3 Multiple Categories of Gestures

Some work has addressed the problem of handling multiple gesture categories in one system.

Keskin et al. [30] propose a unified framework to allow concurrent usage of hand gestures,

shapes and hand skeletons. Hand gestures are modeled with mixture of HMMs using spectral

clustering. Hand shape classification and hand skeleton estimation are based on classifying

depth image pixels using randomized decision forests. Hand gesture classification is active all

the time. The framework estimates a set of posteriors for the hand shape label at each frame,

and continuously uses these posteriors and the velocity vector as observations to spot and

classify known gestures. They distinguish gestures with pure motion and pure hand shape by

thresholding the magnitude of the velocity vector. However, they did not mention handling

gestures that combine distinct hand poses with arbitrary movement. For this category of

gesture, it will be hard to manually set a velocity threshold to distinguish them from gestures

with distinct paths.

Oka et al. [45] developed a system that allows both direct manipulation and symbolic

gestures. These two categories are in the nature dimension. Based on the tracking result,

the system first differentiates the gesture as either manipulative or symbolic according to the

extension of the thumb. They define gestures with an extended thumb as direct manipulation

and those with a bent thumb as symbolic gestures. For direct manipulation, the system

selects operating modes such as rotate, move or re-size based on the fingertips configuration;

for symbolic gestures, it uses HMMs for classification. The use of thumb to distinguish

manipulative and communicative gestures seems arbitrary and unnatural. My system does

not require an arbitrary hand pose to indicate gesture categories. It handles the path and

pose gestures seamlessly under one recognition framework. I believe that this can help to

reduce users’ cognitive load for using the interface, and make the interaction more natural.

2.4.4 Gesture Spotting

A common approach to distinguish non-gestures from gestures is to use one or two non-

gesture HMMs to provide likelihood thresholds for outlier rejection [75]. Peng et al. [48]

argue that using one or two HMMs cannot effectively reject non-gesture outliers that resemble

38

portions of gestures. In addition to a general non-gesture model, they train several non-

gesture HMMs by automatically identifying and manually specifying non-gesture models

from the training data. This approach is suitable when the set of the input data is limited,

but in real life the set of possible non-gestures is limitless and it is not clear how this approach

will scale.

I use gesture phases to distinguish gestures from non-gestures. As explained in Sec-

tion 1.1.3, every gesture must have a nucleus phase. My system identifies different gesture

phases, and any hand movement that does not contain a nucleus phase will be treated as

a non-gesture. I combine this method with a thresholding method to improve the overall

performance of gesture spotting.

2.4.5 Online Recognition

Another group of work focus on online gesture recognition which is important for real-time

interactive systems. Song et al. [61] extend LDCRF with multi-layered filtering and a

temporal sliding window to perform online sequence labeling and segmentation simultane-

ously. Their approach incurs one to four seconds delay in their experiments. For real-time

interaction, 0.1s is about the limit for having the user feel that the system is reacting in-

stantaneously. We may relax this response time a bit, but 1.0s is about the limit for the

user’s flow of thought to stay uninterrupted [13]. Song et al. focus only on communicative

gestures and assume no non-gestures in the input data.

Françoise et al. [22] use hierarchical HMMs to model musical gestures using motion data

from the Wii remote controller, and use fixed-lag smoothing for real-time recognition and

segmentation.

My method is similar to Françoise et al.’s, but I consider path and pose gestures in a

single framework. My system incurs a 0.3s delay, which is shorter than that of Song et al.’s

method.

39

2.4.6 Commercial Systems

There are several commercially available gesture recognition systems that are worth noting.

The gesture interaction provided by the Kinect-based games is one of the popular ones.

Based on the observation of the interaction available in Kinect games, it seems that the

system is looking for only one gesture (wave) or body pose (the exit pose7) at a time, and

the rest of the time, it is just tracking the hand and the body, and turns the hand into a

mouse.

Many commercial gesture recognition systems use if-then (hand-coded) rules based on

heuristics. For example, the Leap Motion plugin8 for the Reveal.js9 HTML5 presentation

framework uses the number of fingers detected and the changes in the x and y coordinates

between consecutive frames to detect swipe and point gestures. While if-then rules could be

easy to define for a small number of simple gestures, they may be hard to define for more

complex gestures [4]. For example, it may be hard to define a circle gesture using if-then

rules because a sequence of several coordinate locations (instead of just two) are needed,

and the rules can conflict with other rules (e.g., the rules for swipe left/right gestures). My

system uses a probabilistic model and learns the gesture parameters automatically based

on observations (training data), which provides a more general and scalable way to define

gestures.

2.5 Multimodal User Interfaces

Bolt’s pioneering work in the “Put That There” system [10] demonstrated the potential

for voice and gestural interaction. In that system, the hand position and orientation were

tracked by the Polhemus tracker, i.e., the hand was essentially transformed to a point on the

screen. The actual hand posture did not matter, even if it was not in a pointing shape. The

speech also followed a rigid and limited command-like grammar. Even though this is early

work, it provides some insight about the advantages of multi-modal interaction. As Bolt

summarized in the paper, using pointing gesture allows the use of pronouns in the speech,

7http://support.xbox.com/en-US/xbox-360/kinect/how-to-use-the-kinect-hub-and-guide
8https://github.com/hakimel/reveal.js/blob/master/plugin/leap/leap.js
9http://lab.hakim.se/reveal-js

40

http://support.xbox.com/en-US/xbox-360/kinect/how-to-use-the-kinect-hub-and-guide
https://github.com/hakimel/reveal.js/blob/master/plugin/leap/leap.js
http://lab.hakim.se/reveal-js

with the corresponding gain in naturalness and economy of expression [10].

Since then, several multi-modal interaction prototypes have been developed that moved

beyond Bolt’s “Put That There” system. Cohen et al. [14] developed the QuickSet prototype,

a collaborative, multi-modal system running on a hand-held PC using pen and voice as

input. They used a multi-modal integration strategy that allows speech and pen gesture to

compensate for each other, yielding a more robust system. Rauschert et al. [53] developed

a system called Dialogue-Assisted Visual Environment for Geoinformation (DAVE G) that

uses free hand gestures and speech as input. They recognized that gestures are more useful for

expressing spatial relations and locations. Gestures in DAVE G include pointing, indicating

an area and outlining contours. Speech and gesture are fused for commands that need spatial

information provided by the gesture.

In this thesis, I identify two ways of combining speech and gestures that are particularly

effective for HCI. In addition to using deictic gestures to provide spatial information as a

complement to speech as in [53], I also use speech as a complement to manipulative gestures.

Based on the user study [77] I conducted, I observe that manipulative gestures are at times

accompanied by adjectives and adverbs that refine the actions. I demonstrate these two

combinations in a gesture controlled presentation framework I developed.

41

3
Datasets

This chapter describes the datasets used to perform the experiments in this dissertation.

3.1 Related Work

Many public datasets for evaluating gesture recognition contain only one category of gesture

[37, 54, 60]. One dataset that contains different categories of gestures is the Chalearn Gesture

Dataset (CGD 2011) [24]. It contains both static postures and dynamic gestures. In this

dataset, a static posture is one in which a single posture is held at the same position for a

certain duration. If we consider the pre-stroke and the post-stroke phases as well, the static

posture also has a distinct path, and hence, they could be handled by the same method as

the dynamic gestures. This dataset does not contain gestures with distinct hand poses but

arbitrary movement.

42

3.2 YANG Dataset

As we have been unable to find gesture datasets that include both gestures with distinct paths

and gestures with distinct hand poses. To evaluate our method, I collected a new dataset

named YANG (Yet Another Natural Gesture dataset) which has a vocabulary of 7 one-

hand/arm gestures including both path and posture gestures. They are chosen for possible

use in gesture controlled presentation and also to span over different potential difficulties

(see the comments in Table 3.1). Figure shows an example of each gesture.

Name of gesture Form Comment
1 Swipe Left distinct path simple path
2 Swipe Right distinct path simple path
3 Circle distinct path complex path
4 Horizontal Wave distinct path has arbitrary repetitions
5 Point distinct hand pose arbitrary path
6 Palm Up distinct hand pose arbitrary path
7 Grab distinct hand pose arbitrary path

Table 3.1: YANG dataset gesture vocabulary.

This dataset presents various features of interest. Table 3.2 lists both the challenging

and easy aspects of the dataset.

3.2.1 Recording Setup and Procedure

The dataset contains data from 10 participants each performing the gestures in 4 sessions. All

the participants are university students. The participants were shown a video demonstration

of each gesture1 at the beginning. In each session, the participant stands at about 1.5m from

the Kinect for Windows sensor (version one), and performs each gesture 3 times according

to the text prompts on a screen indicating the name of the gesture to perform. The order

of the gestures is random and the time between each gesture is random (between 2s and

6s). The first 2 sessions have “Rest” prompts between each gesture, telling participants to

go to the rest position (hands relaxing at the side of the body), and the second 2 sessions

do not have “Rest” prompts so participants can choose to rest or not between consecutive

1Video demonstration of the gestures: https://www.youtube.com/watch?v=VDDX0TkenTY

43

https://www.youtube.com/watch?v=VDDX0TkenTY

(a) Path gestures

(b) Pose gestures with arbitrary movement

Figure 3-1: YANG dataset gesture vocabulary.

gestures. This too distinguishes the dataset from previous ones [54, 24] where gestures are

always delimited by rest positions.

Unlike Ruffieux et al. [54], we do not show video demonstration every time the partici-

pants perform a gesture because we want a realistic scenario. In real practice, it is unlikely

that a user will follow a video demonstration every time he/she does a gesture. The result

is that there will be more variations among the gestures.

To motivate movement for gestures with distinct hand poses that require a continuous

response, the text prompt asks participants to draw random letters in the air with the

specified hand pose.

The full corpus contains 10P × 4S × 7G × 3R = 840 gesture occurrences where P =

participants, S = sessions, G = unique gestures, R = repetitions per gesture. There are

approximately 96 minutes of continuous recording.

44

Challenging
Within each sequence:
Different forms of gestures: path and pose gestures
Pose gestures have arbitrary movement
Resolution for hands is low
Continuous gestures with or without a resting pose
Many gesture instances are present
Non-gestures may be present
Between sequences:
High variabilities across participants
Variations in clothing, skin color, lighting

Easy
Fixed camera
Near frontal view acquisition
Within a sequence the same user
Gestures performed by arms and hands
Camera framing full body
Several data sources: skeletal model, user mask, depth, and RGB
Several instances of each gesture for training
Single person present in the visual field
One hand/arm gestures

Table 3.2: Challenging and easy aspects of the dataset.

3.2.2 Data Formats

The data from the Kinect sensor is recorded in a raw binary format at 30 frame per second

(FPS). It includes RGB, depth and skeleton data. Both the RGB and the depth data have

a resolution of 640 × 480px. The skeleton data contains joint positions for 20 joint types.

Figure 3-22 visualizes these joint types

During the recording process, the name and the start time (for pre-stroke) for each

gesture are recorded according to the prompts. Due the human reaction time, the prompt

time may not exactly be the true start time of the pre-stroke. I wrote a program to improve

the start pre-stroke and stop post-stroke time labeling based on the initial recorded timings

by automatically detecting the rest positions. There are no ground truth time labels for the

start and the stop of nucleus phases.

2Image from http://msdn.microsoft.com/en-us/library/jj131025.aspx

45

http://msdn.microsoft.com/en-us/library/jj131025.aspx

Figure 3-2: Skeleton joint positions.

3.2.3 Qualitative Observations

We find that there is considerable variations in the way participants perform each gesture

even though they were given the same demonstration video. Major variations are observed

in speed, the magnitude of motion, the paths and hand poses.

For example, some participants do the swipe left and right gestures in a rather straight

horizontal line, while others have a more curved path. Some participants do swipe left

and right with a palm up pose while others have less distinct hand poses (their hands are

more relaxed). Some participants start the circle gesture at the bottom, others start at the

top. Some participants do the “circle” gesture clockwise while others do it anti-clockwise.

Figure 3-3 shows an illustration of such differences. However, within each participant, the

intra-class variation of gestures is smaller, although still present.

46

Figure 3-3: Differences between participants for the same swipe right gesture. The first
row shows that a user does the Swipe Right gesture in a straight horizontal path with a
Palm Up pose; the second row shows that another user does the same gesture in a curve

path with less distinct poses.

3.2.4 User Preferences

We did a survey with the participants on questions that can influence gesture interface

design. Below are the aggregated results:

� User differences: As an example to show user differences, we asked the participants

how they would prefer to do the Circle gesture. 54% of them prefer doing the Circle

gesture in clockwise direction, 15% in anti-clockwise direction, and 31% do not care.

� Predefined gestures versus user defined gestures: 90% of the participants prefer to

be able to define their own gestures if necessary while 10% of them prefer to follow

prefined gestures completely. No one prefers to use a system without any predefined

gestures either.

� How to define gestures: 80% prefer defining a gesture by performing it themselves;

no one prefers to define gestures solely via rules written in terms of positions and

directions of movement of the hands. However 20% prefer to be able to do both.

47

� Number of repetitions per gesture for training: 50% are willing to give a maximum of

4 – 6 examples, 40% are willing ot give 1 – 3 examples, and 10% are willing to give

more than 13 examples. So the average maximum is about 5 repetitions.

� Number of gestures for an application: 80% think 6–10 gestures are appropriate and

easy to remember for a given application, while 20% prefers 1 – 5 gestures, giving an

average of 7 gestures.

� Intuitiveness of the gesture vocabulary for PowerPoint presentation: the average score

is 4 out of 5 where 5 is very intuitive.

3.2.5 Implications for a Gesture Interaction Interface

Based on the observation of the large variation in gesture execution among users and small

variations within users, and the fact that a majority of participants prefer defining their own

gestures if they do not like the predefined gestures, I suggest that it is more important to

optimize user dependent recognition and user adaptation. As no one prefers to define their

own gesture at the very beginning, it also means that having a reasonable predefined gesture

set and basic user independent model for recognition will be useful too.

Recognition methods based on examples will allow users to train models of their own

gestures easily. We also need to develop methods that require relatively few training examples

and fast training speed.

3.3 ChAirGest Dataset

ChAirGest dataset [54] is a publicly available dataset3 for the ongoing open challenge on

Multimodal Mid-Air Gesture Recognition for Close HCI4. Although the dataset only has

path gestures, it has other interesting features which are relevant for evaluating the methods

in this thesis:

3https://project.eia-fr.ch/chairgest/Pages/Download.aspx
4https://project.eia-fr.ch/chairgest/Pages/Scoreboard.aspx

48

https://project.eia-fr.ch/chairgest/Pages/Download.aspx
https://project.eia-fr.ch/chairgest/Pages/Scoreboard.aspx

� It has data from both a Kinect sensor and IMU sensors, allowing me to evaluate

the generalizability of my methods for different sensor input and compare recognition

performance for different combinations of sensor input.

� It has ground truth labeling of pre-stroke, nucleus and post-stroke phases. Few datasets

have gesture phase labeling. This dataset allows me to evaluate my gesture phase

segmentation method.

� It represents the scenario where a person sits in front of a desk working on a computer.

Because of the absence of the full body and the presence of the distracting foreground

(the desk), the Kinect skeleton tracking is less robust. This allows me to evaluate my

salience based hand tracking method in the case where the skeleton tracking fails.

� It contains three different rest poses selected according to common user positions when

sitting in front of a computer: “hands on the table” when working/typing, “elbows

on the table, hands joined under chin” when thinking and “hands on the belly” when

watching a movie. These variations, which closely mimic the reality, present challenges

to hand tracking, as well as to gesture phase detection as the pre-stroke and the post-

stroke are affected the rest positions.

� It contains non-gestures mainly as transitions between rest poses, and hence, can be

used to evaluate gesture spotting.

3.3.1 Gestures

The dataset contains a vocabulary of 10 one-hand/arm gestures focusing on close HCI (Ta-

ble 3.3). The vocabulary has been chosen to present a range of difficulties, including varia-

tions in paths, hand rotations, and hand poses. Some gestures have overlapping paths but

different hand poses, and this promotes algorithms using fusion from multiple sensors.

The dataset contains 10 participants, each doing 4 recording sessions with 2 different

lighting conditions (dark and normal). In a recording session, the participant performs once

each gesture class for each resting posture. The full corpus contains 10P ×(2L× [2S×10G×

3R]) = 1200 gesture occurrences, where S = subject, L = lighting condition, S = session, G

49

Name of gesture
1 Shake Hand
2 Wave Hello
3 Swipe Right
4 Swipe Left
5 Circle Palm Rotation
6 Circle Palm Down
7 Take From Screen
8 Push To Screen
9 Palm Down Rotation
10 Palm Up Rotation

Table 3.3: ChAirGest gesture vocabulary.

= unique gesture, and R = resting posture. Only three fourths of the corpus (3 recording

sessions from each participant) is publicly available and the remaining is used for judging.

Hence, in the actual dataset I use, there are 900 gesture occurrences.

3.3.2 Recording Setup

The participant sits on a chair in front of a desk as if working on a computer. He/she wears

4 Xsens IMUs attached under his/her clothes on his/her shoulder, arm, wrist and hand. A

Kinect for Windows records the scene from the top of a computer screen with a 30°downward

angle.

3.3.3 Data Formats

The Kinect binary format contains the RGB and the depth streams along with the 3D

skeleton representation at 30Hz acquired using the official SDK. Each Xsens IMU provides

information in: linear acceleration, angular acceleration, magnetometer, Euler orientation

and orientation quaternion at 50Hz.

3.3.4 Performance Metric

The challenge uses a combination of existing event-based metrics and a novel time-based

metric to evaluate performance.

50

The two event-based metrics are precision and recall, which are combined to compute an

F1 score5. Precision is to the number of correctly detected events divided by the number

of returned events and recall is to the number of correctly detected events divided by the

number of events in the ground truth [54]. Let tgt start nucleus and tgt stop nucleus be the ground

truth start time and stop time of a gesture nucleus respectively, and let talg start nucleus and

talg stop nucleus be the corresponding timings returned by a recognition algorithm for the same

gesture. A detected gesture event is correct only if the label of the gesture is correct and the

timings satisfy the following condition

|tgt start nucleus − talg start nucleus| < 0.5× (tgt stop nucleus − tgt start nucleus) &&

|tgt stop nucleus − talg stop nucleus| < 0.5× (tgt stop nucleus − tgt start nucleus)

Figure 3-4 shows an example comparing the results from two algorithms. Even though both

of them have correct labels for the detected gesture nucleus, the result from Algorithm 1

is not considered correct because the time discrepancy is larger than the allowed tolerance,

which is half of the ground truth duration of the gesture nucleus.

Figure 3-4: Even though the gesture nucleus label detected by Algorithm 1 is correct
(SL stands for “swipe left”), the start time difference from the ground truth is too large
(larger than half of the ground truth nucleus duration), and hence, it is not considered

as a correct detection. The detection from Algorithm 2 is considered correct.

The time-based metric is used to measure the gesture spotting performance and the

accuracy of temporal segmentation. The metric is named Accurate Temporal Segmentation

Rate (ATSR) and represents a measure of the performance in terms of accurately detecting

5See Appendix A for details

51

the start and stop timings of all correctly detected gesture nuclei. The ATSR is computed as

follows: for each correctly detected gesture occurrence, the Absolute Temporal Segmentation

Error (ATSE) is computed according to Equation 3.1; the ATSR metric is computed for a

particular sequence with n correctly detected gestures according to Equation 3.2.

ATSE =
|tgt start nucleus − talg start nucleus|+ |tgt stop nucleus − talg stop nucleus|

tgt stop nucleus − tgt start nucleus
(3.1)

ATSR = 1− 1

n

n∑
i=1

ATSE(i) (3.2)

The final single metric used by the challenge is the combination of F1 score and ATSR

shown in Equation 3.4, which is of the same form as the F2 metric and correspondingly weighs

F1 more than ATSR. This is because the recognition of gestures remains more important.

Perf = (1 + 22)× ATSR× F1

22 × ATSR + F1

(3.3)

= 5× ATSR× F1

4× ATSR + F1

(3.4)

3.3.5 Evaluation Protocol

All evaluations based on the ChAirGest dataset reported in this thesis use user independent

training and testing. The results are the average of 3-fold cross-validation.

52

4
Hybrid Performance Metric

It is important to have metrics that can accurately evaluate and compare performance of

different algorithms for a given task domain, and important to recognize that a metric that

is good for one task, is not necessarily appropriate for another task.

4.1 Existing Methods for Error Scoring

Gesture recognition can be considered a sub-domain of human activity recognition. Two

basic units of comparison are typically used in this field – frames or events:

Scoring Frames. A frame is a fixed-length, fixed-rate unit of time. It is often the smallest

unit of measure defined by the system [72], and in such cases approximates continuous time.

For example, in our case, a frame is a data frame consisting of RGB data, depth data and

skeleton data from the Kinect sensor at 30 FPS. If there is ground truth for each frame, each

53

frame can be assigned to one of: true positive (TP), true negative (TN), false positive (FP)

or false negative (FN). Commonly recommended frame-based metrics include: true positive

rate (TPR = TP
TP+FN

), false positive rate (FPR = FP
TN+FP

), precision (TP
TP+FP

).

Scoring Events. An event is a variable duration sequence of frames within a continuous

time-series. It has a start time and a stop time. Given a test sequence of g known events,

E = [e1, e2, . . . , eg], a recognition outputs h return events, R = [r1, r2, . . . , rh]. There is not

necessarily a one-to-one relation between E and R. A comparison can instead be made using

alternative means such as dynamic time warping (DTW) [9] or edit distances [24]. An event

can then be scored as either correctly detected (C), falsely inserted (I), or deleted (D) [72].

Event scores can be summarized by precision (C
h

), and recall (C
g

).

4.2 Shortcomings of Conventional Performance Char-

acterization

Either frame-based or event-based metrics alone may not be adequate for evaluating a real-

time continuous gesture recognition system handling different types of gestures. We illustrate

this using examples from related work.

Both the ChaLearn Gesture Challenge 2012 [24] and the Multimodal Gesture Recognition

Challenge 2013 [19] use the Levenshtein edit distance1, L(R,E), between the ordered list of

recognized events (R) and the ground truth events (E) to evaluate performance. However,

such event-based metrics that ignore the timing offset errors are inadequate to identify true

positives in sequences. For example, in Figure 4-1, both Algorithm 1 and Algorithm 2 would

have the same score using their metric. However, Algorithm 1 is in fact worse because the

recognized event B is mistakenly considered as a true positive in the minimum edit distance

calculation, and the number of mistakes should be 3. Consider a real-time application, if the

user does gesture A, it cannot be considered correct if the system classifies it as gesture B.

Song et al. [61] and Morency et al. [41] used frame-based metrics to evaluate their contin-

uous gesture recognition systems. Frame-based metrics consider timing inherently, but there

are artifacts, such as fragmenting and merge errors [72] in the results that cannot be captured

1http://en.wikipedia.org/wiki/Levenshtein_distance

54

http://en.wikipedia.org/wiki/Levenshtein_distance

Figure 4-1: Considering events as an ordered list without timing information does not
give a fair comparison for recognition performance. Applying the edit distance score
used in the challenges, both algorithms have 2 mistakes. However if we consider the

timing of the recognition, Algorithm 1 would have 3 mistakes.

by this type of metrics. For example, in Figure 4-2, Algorithm 1 has a higher frame-based

TPR. However, depending on the application, Algorithm 2 can have a better performance.

Suppose we cast this example into a concrete scenario of a gesture-controlled presentation

application, if the user does a “swipe left” gesture, using Algorithm 1, the system would

respond three times and change the slides three times; while using Algorithm 2, the system

would respond one time which is the desired outcome. The same argument can also be made

for merge errors (see Figure 4-3). This scenario shows that frame-based evaluation is less

relevant for gestures requiring discrete responses.

Figure 4-2: Even though Algorithm 1 has a higher true positive rate, it has more
fragmenting errors. For certain applications, Algorithm 2 would have a better

performance.

There are situations where frame-based metrics are more relevant than event-based met-

55

Figure 4-3: Even though Algorithm 1 has a higher true positive rate, it has more merge
errors. For certain applications, Algorithm 2 would have a better performance.

rics as well. Consider the same recognition results in Figure 4-2, but this time gesture A is

the “point” gesture requiring continuous frame-by-frame response from the system (e.g., the

system shows a point cursor moving around according to where the user points at). In this

case, Algorithm 1, having a higher frame-based TPR, would have better performance.

4.3 Hybrid Performance Metrics

The examples in the previous section demonstrate the requirement of a hybrid performance

evaluation system. I believe that all three types of information – frames, events and timings

– are relevant for a real-time activity/gesture recognition system, and should be included in

the metric. More importantly, as different categories of activities/gestures require different

kinds of responses from the system, it is necessary to identify which metric is appropriate

for which category of activities/gestures: the event-based metric is appropriate for discrete

flow gestures and the frame-based metric is appropriate for continuous flow gestures.

There are previous works that consider hybrid metrics. Ruffieux et al. combined a time-

based metric with an event-based metric (see Section 3.3.4). They included timing offset

errors explicitly in the metrics, but they did not consider frame-based metric. Ward et

al. [72] proposed a comprehensive scheme to combine both frame and event scoring, but

they did not consider how the different types of metrics are relevant for different categories

of activities.

56

The following section explains the details of the hybrid performance metric I propose.

4.3.1 Metric for Discrete Flow Gestures

For discrete flow (DF) gestures, the system responds at the end of the nucleus phase, there-

fore the evaluation should be event-based. Let Tgt start pre be the ground truth start time of

the pre-stroke phase and Tgt stop post be the ground truth stop time of the post-stroke phase.

A recognized event is considered a TP if the time of response (Tresponse) occurs between

Tgt start pre and Tgt stop post + 0.5× (Tgt stop post − Tgt start pre). We allow some margin for error

because there can be small ground truth timing errors2. Once a TP event is detected, the

corresponding ground truth event is not considered for further matching, so that multiple

responses for the same gesture (fragmenting errors) will be penalized. We then can compute

event-based precision, recall and F1 score for DF gestures:

precisionDF =
TP DF events

recognized DF events
(4.1)

recallDF =
TP DF events

ground truth DF events
(4.2)

FDF
1 = 2 · precisionDF · recallDF

precisionDF + recallDF
(4.3)

For discrete flow gestures, we also define a Responsiveness Score (RS) as the time differ-

ence in seconds between the moment when the system responds and the moment when the

hand goes to a rest position or changes gesture. Let NTP be the number of true positives,

then

RS =

∑NTP

i=1 Tgt stop post − Tresponse

NTP

(4.4)

A positive score means the responses are before the end of the post-strokes, hence higher

scores are better.

2Pre-stroke and post-stroke timings are used because there may not be ground truth timings for nucleus
phases, such as in the YANG dataset. Manual labeling of the start and stop timings of nucleus phases may
be too time consuming.

57

4.3.2 Metric for Continuous Flow Gestures

For continuous flow (CF) gestures, the system responds frame by frame, so it is more appro-

priate to use frame-based evaluation. For all the frames that are recognized as continuous

gestures, we can compute the number of TPs by comparing them with the corresponding

frames in the ground truth. Then, we can compute frame-based precision, recall and F1

score for all the frames corresponding to CF gestures:

precisionCF =
TP CF frames

recognized CF frames
(4.5)

recallCF =
TP CF frames

ground truth CF frames
(4.6)

FCF
1 = 2 · precisionCF · recallCF

precisionCF + recallCF
(4.7)

The average of the two F1 scores can give an overall indication of the performance of the

system.

58

The retinal image produced by the hand of a gesticulating speaker

is never the same from moment to moment, yet the brain must

consistently categorize it as a hand.

Semir Zeki, The visual image in mind and brain

5
Hand Tracking

The difficulty of hand tracking (localizing and segmenting hands) varies with the complexity

of the input scene, which in turn depends on the setup of the interaction interface. Gesture

input is particularly useful for large displays for which keyboard and mouse input become

cumbersome. Depending on the orientation of the display (horizontal or vertical), the sensor

setup can be different, and hence, the characteristics of the input data can be different. As a

result, I developed different approaches for hand tracking using data from the Kinect sensor

under different system and sensor setup.

5.1 Hand Tracking for Horizontal Display

Horizontal displays are also called tabletop displays, and are useful for collaborative work

and touch-based interaction.

59

5.1.1 System Setup

Our custom tabletop structure includes four 1280 × 1024 pixel projectors (Dell 5100MP)

that provide a 2560 × 2048 pixel resolution display. The display is projected onto a flat

white surface digitizer (GTCO Calcomp DrawingBoard V), which uses a stylus as an input

device. The digitizer is tilted 10 degrees down in front, and is placed at 41in (104cm)

above the floor, following the FAA’s design standard to accommodate the 5th through 95th

percentiles of population. The projected displays are aligned to produce a single seamless

large display area using the ScalableDesktop Classic software developed by Scalable Display

Technologies1. The graphics card used is AMD Radeon�TM HD 6870 and the operating

system used is Ubuntu 11.10.

Figure 5-1: System setup for a horizontal display.

One Kinect sensor is placed above the center of the tabletop at the same level as the

projectors. Figure 5-1 shows the setup. I use the depth data for hand tracking because

it is less sensitive to lighting conditions. This is particularly relevant for our projection

system. The Dell 5100MP projector uses a spinning color wheel to modulate the image.

This produces a visible artifact on the screen, referred to as the “rainbow effect”, with colors

1http://www.scalabledisplay.com/products/software/scalabledesktopclassic

60

http://www.scalabledisplay.com/products/software/scalabledesktopclassic

separating out in distinct red, green, and blue. At any given instant in time, the image on

the screen is either red, or green, or blue, and the technology relies upon people’s eyes not

being able to detect the rapid changes from one to the other. However, when seen through

a RGB camera, the effect is very obvious, and this would greatly affect hand segmentation

if I were to use the RGB images.

The depth sensing video stream has a resolution of 640 × 480 pixels with 11-bit depth

value. The depth value increases as the distance of the object from the sensor increases.

The tabletop surface is about 1.2m away from the Kinect sensor which allows us to have a

relatively good depth resolution. I use the open source OpenNI framework2 and its Kinect

driver3 to get both the depth and RGB data streams.

5.1.2 Kinect Calibration

In order to develop an interactive interface, it is necessary to accurately map a point in the

depth image to a point on the display. I do this by projecting a checkerboard image on

the tabletop display, and placing some wooden blocks at the corners of the checkerboard

image to create the depth differences so that the depth sensor can capture these corners

(see Figure 5-2). I manually labeled 16 pairs of corresponding points on the display and the

depth image. Then I apply undistortion to the depth image and planar homography to find

the mapping.

Planar homography is a projective mapping from one plane to another. In this case, I

map points on the plane of the depth image to the points on the plane of the display. To

evaluate the result of the calibration, I obtain a new set of manually labeled corresponding

points on the display and the depth image. I then transform the coordinates of the points on

the depth image to the coordinates on the display using the calibration result, and find the

Euclean distance (error) between the transformed coordinates and the labeled coordinates

of the points on the display. The average errors in the x-axis and y-axis are 4.3px and 8.9px

respectively, which are 0.21cm in x, and 0.4cm in y in physical distance. The average width

of the index fingertip is about 1.4cm, so the error is less than 30% of the fingertip width.

2https://github.com/OpenNI/OpenNI
3https://github.com/avin2/SensorKinect

61

Figure 5-2: Kinect calibration. The darker squares are the wooden blocks. The intensity
of the gray level image is proportional to the distance from the Kinect sensor after

applying histogram equalization, so closer things look darker.

5.1.3 Hand and Fingertip Tracking

As the Kinect sensor is looking down at the tabletop, only the upper limbs of the users are

in the field of view of the sensor, so skeleton tracking from the Kinect SDK does not work.

Hence, I developed a hand tracking process from scratch, which consists of 4 steps:

1. Background subtraction

2. Upper limb and hand segmentation

3. Fingertips tracking

4. Kalman Filtering

The following subsections explain these steps in details. Many of the computer vision

methods I use are based on the OpenCV4 library and its Java interface JavaCV5.

Background Subtraction

While the background - i.e., the tabletop - is relatively static, there is still noise from the

depth sensor. I use the averaging background method, which learns a model of the back-

ground in terms of the average distance and the average difference in distance to each pixel

4http://opencv.willowgarage.com/wiki/
5http://code.google.com/p/javacv/

62

in the depth image. The average values are based on the initial 30 frames with no hands in

the scene; the average frame-to-frame absolute difference for my system is 1.3mm. For the

subsequent frames, any value that is 6 times larger than this (i.e., at least 7.8mm above the

surface) is considered foreground.

To clean up the background subtracted depth image, I use 1 iteration of morphological

opening to clear out small pixel noise. Morphological opening is a combination of erosion

and dilation. The kernel of erosion is a local minimum operator, while that of dilation is a

local maximum operator. Figure 5-3 shows the difference after using morphological opening.

(a) Without using morphological opening. (b) Using morphological opening to clear out
small pixel noise.

Figure 5-3: Background subtraction.

Upper Limb and Hand Segmentation

With the cleaned up, background subtracted depth image, we find connected components

by finding all contours with perimeters greater than a threshold value of 300mm. These

components are considered to be the upper limbs. The threshold value is roughly the lower

bound of the perimeter of a hand. We use this lower bound because the perimeter of the

upper limb changes depending on the position of the hand relative to the table. The smallest

perimeter occurs when the hand is at the edge of the table.

Each upper limb is approximated with a convex hull and a bounding box. The hand

region is at either end of the bounding box depending on the position of the arm relative to

the table.

63

Fingertips Tracking

The estimation of the hand model is based on geometric properties of the hand. I first

compute the convexity defects (shown by the white areas in Figure 5-4(a)) from the convex

hull of the upper limb. These convexity defects offer a means of characterizing the hand

shape [11]. As Figure 5-4(a) shows, an extended finger has one convexity defect on each

side, and the two adjacent sides of the defects form a small acute angle (e.g., point A in

Figure 5-4(a)). We iterate through two adjacent convexity defects each time, for example,

4BiCiDi and 4Bi+1Ci+1Di+1 in the closeup view in Figure 5-4(b). If the angle between the

two sides, CiDi and Bi+1Di+1 is smaller than a threshold value (45 ◦), we mark the middle

point of CiBi+1 as potential fingertips. The distance between the depth points (the point

on the defect that is farthest from the edge of the hull [11], e.g., Di, Di+1) of the adjacent

convexity defects also has to be greater than the finger width threshold value (14mm).

(a) (b) Closeup view.

Figure 5-4: The white triangular areas are convexity defects and the red outline is the
convex hull.

We further refine the fingertip position by searching in the direction of the finger for a

sharp change in the gradient of the depth value (i.e., when the gradient is greater than 0.05).

Figure 5-5 shows the result of fingertip tracking even with multiple fingers in the image6.

6A video of this demo can be found at: https://www.youtube.com/watch?v=_LZ4RJYBgZ4

64

https://www.youtube.com/watch?v=_LZ4RJYBgZ4

Figure 5-5: Fingertip tracking results: green dots are detected fingertips.

Kalman Filtering

Like [45] and [26], I use a Kalman filter to further improve tracking accuracy. The dynamic

state of the fingertip can be summarized by a 4-dimensional vector, xt, of two position

variables, x and y, and two velocities, vx and vy.

xt =

x

y

vx

vy

t

The measurement is a 2-dimensional vector, zt, of the measured x and y coordinates of the

fingertip.

Assuming no external control, the a priori estimate x−t of the state is given by:

x−t = Fxt−1 + wt

F is the 4-by-4 transfer matrix characterizing the dynamics of the system with the following

values:

65

F =

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

assuming constant instantaneous velocities at time t, and that time is measured in frames.

wt is the process noise associated with random events or forces that directly affect the actual

state of the system. I assume that the components of wt have Gaussian distribution N(0,Σt)

for some 4-by-4 covariance matrix Σt which has the following values:

Σt =

1 0 0 0

0 1 0 0

0 0 10 0

0 0 0 10

The larger variance values in the last 2 values in the diagonal indicate greater uncertainty

in the velocities, as they can have big changes instantaneously.

5.1.4 3D Hand Model and Touch Detection

I use a simplified 3D skeletal hand model, which includes hand position, orientation and

fingertip positions, to enable touch-based direct manipulation.

I use a line segment in 3D space to model the upper limb by computing the arm joint

position and an average of fingertip positions from the depth data. The tabletop is modeled

as a plane. In Figure 5-6(a), the image on the left shows the 3D model: the big red sphere

is the arm joint and the small red sphere is the average fingertips position.

The black dot in Figure 5-6(a) is the intersection between the line extended from the

upper limb segment and the tabletop plane. If the intersection is the same as the average

fingertip position, the finger(s) is in contact with the table (Figure 5-6(b)). As the tabletop

plane is computed from averaged depth data, this touch detection method is more robust

66

(a) Fingertip is not in contact with the tabletop.

(b) Finger is in contact with the tabletop.

Figure 5-6: On the left are images showing 3D model of the upper limb and the
tabletop surface; on the right are are corresponding depth mapped images. The vertical

blue line is the z axis and the green horizontal line is the y axis.

than comparing the depth value of the fingertip with the depth of the tabletop surface at

one point.

5.1.5 Evaluation

Figure 5-7 shows an example of the fingertip tracking result on an actual display7. The

red dot is the detected fingertip position. I evaluate the accuracy of our fingertip tracking

method by comparing the detected fingertip position with the manually labeled position

in a sequence of video frames. In this evaluation, only one extended finger was used. My

method finds the fingertips with an average error (Euclidean distance) of 5.3px, about 10mm

in physical distance on the projected display. The error rate also informs us the size of the

virtual objects we should have in our applications, i.e., they need to be at least 10mm in

7A video of this demo can be found at: https://www.youtube.com/watch?v=8tr0ZZ-4KMc

67

https://www.youtube.com/watch?v=8tr0ZZ-4KMc

radius, in order to increase the accuracy of the manipulative interaction. This result is

comparable with the accuracy in [26], but my system has no restriction on the angle of the

fingers with respect to the surface.

Figure 5-7: Tracking result displayed on the tabletop surface. The red dot is the
detected fingertip position.

5.2 Hand Tracking for Seated Interaction with Vertical

Display

As most people interact with computers while sitting in front of a desk, it is important to

consider gesture input in this setting as well. In a setup with a vertical display, the Kinect

sensor is usually placed near the display facing the user. In this case, the background scene

is more complex compared with the tabletop setup. Because of the absence of the full body

and the presence of the distracting foreground (the desk), the Kinect skeleton tracking is

less robust in the seated mode, and in particular, hand joint tracking fails when the hands

are close to the body or are moving fast. To improve hand tracking for seated interaction, I

developed a salience based hand tracking method.

68

5.2.1 Gesture Salience Detection

Similar to Marcos-Ramiro et al. [38], we define gesture salience as a function of both the

closeness of the motion to the observer (e.g., the sensor) and the magnitude of the motion,

i.e., the closer the motion and the larger the magnitude of the motion, the more salient the

motion is and the more likely it is from the gesturing hand. There are 4 steps in our method

(Figure 5-8).

(a) (b) (c) (d) (e)

Figure 5-8: Gesture salience detection steps: (a) RGB image under low lighting
condition; (b) depth map Dt filtered by skin and user mask, MS∧U

t . False detection of
skin is due to the similar colors between clothes and skin; (c) motion mask, MM

t∨t−1,
indicating moved pixels for time t and t− 1; (d) salience map with red color indicating

high probability of the salience; (e) final gesture salience bounding box, Bt. (Best
viewed in color. Based on data from the ChAirGest corpus.)

Skin Segmentation

We use an off-the-shelf simple skin color detection method to compute a binary skin mask

at time t, MS
t , based on the RGB image converted to the YCrCb color space. We also find

the user mask, MU
t obtained from the Kinect SDK based on the depth image. We align the

two to find their intersection MS∧U
t , which indicates the user’s skin region.

Motion Detection

The depth data is first clipped to a maximum value depthmax of 2m and then scaled to a

single byte value between 0 (depth of 2m) and 255 (depth of 0m).

We compute the motion mask for the current depth frame at t based on 3 frames at t,

t− 1 and t− 2. We first filter each depth frame by the user and skin mask MS∧U
t , and then

smooth it through a median filter to obtain Dt (Figure 5-8(b)). Equation (5.1) computes

the binary mask, MM
t∨t−1, indicating pixels whose depth values have changed from time t− 1

69

to t (Figure 5-8(c)). Dt∨t−1 is the absolute difference between Dt and Dt−1, and T is the

threshold operator that filters out small changes in depth value (with a threshold of 15mm).

To obtain the motion mask, MM
t for time t, we use MM

t−1∨t−2, the motion mask for t− 1 and

t− 2 as well (see Equation (5.2), AND and XOR are indicated by ∧ and ⊕).

MM
t∨t−1 = T (Dt∨t−1) (5.1)

MM
t = MM

t∨t−1 ⊕ (MM
t∨t−1 ∧MM

t−1∨t−2) (5.2)

Salience Map

We compute histograms of depth values in both Dt and Dt∨t−1 and then apply histogram

equalization8 to obtain cumulative distributions Ht and Ht∨t−1. Ht represents the probability

of salience given a depth value, while Ht∨t−1 represents the probability of salience given a

depth difference value. The lower the depth value or the higher the depth difference value,

the higher the salience probability. We use histogram equalization to reduce the effect of

outliers, so that a single large depth value will not suppress the salience probabilities of other

depth values. The salience map (Figure 5-8(d)) can then be computed for each pixel (x, y):

St(x, y) = Ht(Dt(x, y))×Ht∨t−1(Dt∨t−1(x, y))×MM
t

The multiplication of the binary motion mask MM
t allows us to consider only the motion

due to the user at t.

Salience Location

The final step of locating the most salient region in a frame is finding the contour, Ct, from

the salience map St that has a perimeter greater than the smallest possible hand perimeter

and with the highest average salience for all the pixels inside the contour.

When motion is slow, the motion mask usually indicates the edge of the moving object.

As a result, the center of Ct may not be the center of the moving object (in this case,

the user’s hand). Hence, I use 2 iterations of camshift [12] on the depth image Dt with a

8http://www.math.uci.edu/icamp/courses/math77c/demos/hist_eq.pdf

70

http://www.math.uci.edu/icamp/courses/math77c/demos/hist_eq.pdf

(a) (b) (c) (d)

Figure 5-9: Comparison of hand tracking results. Our method (red region) gives more
reliable result on hand tracking compared to the off-the-shelf Kinect software (green

line). (Best viewed in color. Based on data from the ChAirGest corpus.)

starting search location at the center of Ct to refine the final bounding box, Bt, of gesture

salience (Figure 5-8(e)). Camshift is similar to the mean-shift algorithm which finds the

local maximum in a distribution. The difference is that camshift uses an adaptive search

window whereas mean-shift uses a fix search window. In this case, the higher a pixel value

in Dt, the closer it is to the sensor, and hence the more salient. The camshift algorithm is

used to find the region with the highest salience.

5.2.2 Evaluation

The red regions in Figure 5-9 show examples of my hand tracking result, which demonstrates

that my salience detection method is more reliable than hand joint locations from the Kinect

SDK. Using the ChAirGest dataset and the same recognition method, Table 5.1 gives a

quantitative comparison between the two hand tracking methods. The same motion features

from the IMU attached to the hand are used in both cases. It shows that using my salience

detection method to extract hand position features gives a 2.7% absolute increase in gesture

recognition F1 score compared to using the hand joint position from the Kinect SDK.

Hand position from salience
detection

Hand position from Kinect
skeleton

F1 Score 0.897 (0.01) 0.870 (0.02)

Table 5.1: Comparison of the average 3-fold cross validation results for different hand
tracking methods using the ChAirGest dataset. Values in parentheses are standard

deviations.

71

It is precisely this variation – and the apparent success of our

visual system and brain in achieving recognition in the face of it

– that makes the problem of pattern recognition so interesting.

Irving Biederman, Higher-level vision

6
Hand Features and Representations

This chapter discusses different hand feature representations and encoding methods I use to

produce feature vectors for input to the recognition module. One feature vector is computed

for each input frame streamed from the sensor(s) to form a sequence of feature vectors.

As features can have different numeric ranges, to avoid features with greater numeric

ranges dominating those with smaller numeric ranges, it is important to scale the feature

vectors before feeding them into the recognition module [73]. Hence, after computing the

feature vectors, the last step is always standardizing all the features to have mean 0 and

standard deviation 1 using all the training data. During testing, the data are standardized

using the means and the standard deviations from training.

72

6.1 Hand Motion Features

Motion features are important for representing path gestures.

It is relatively easy to obtain motion features from IMUs if they are present. From the

ChAirGest dataset, I use linear acceleration (x, y, z), angular velocity (x, y, z) and Euler

orientation (yaw, pitch, roll) from the IMU on the hand to form a 9-dimensional feature

vector ximu
t at every time frame t.

As IMUs cannot provide hand position information, I use hand position information from

the hand tracking described in the previous section. With the Kinect sensor data from the

ChAirGest dataset and using the gesture salience based hand tracking method, I extract

the position of a gesturing hand in (x, y, z) coordinates relative to the shoulder center joint,

forming a 3-dimensional vector xkinect
t (shoulder center joint position from the Kinect SDK

is relatively accurate under most situations). Combining the two, we have a 12-dimensional

feature vector xt = [xkinect
t , ximu

t]. The evaluation in Table 6.1 shows that adding position

information can improve recognition accuracy further for path gestures.

Hand position from salience de-
tection & IMU, [xkinect

t , ximu
t]

IMU only, ximu
t

F1 Score 0.897 (0.03) 0.863 (0.02)
ATSR Score 0.907 (0.02) 0.918 (0.02)
Final Score 0.898 (0.02) 0.874 (0.02)

Table 6.1: Comparison of the average 3-fold cross validation results for different motion
feature vectors using the ChAirGest dataset. Values in parentheses are standard

deviations.

Figure 6-1 shows a comparison between the confusion matrices based on results using

different motion features. The per frame classification accuracy increases for most gestures

when hand position features are added. For example, Wave Hello and Shake Hand have very

similar motion trajectory. One difference between them is that the hand position for Shake

Hand is lower. When hand position features are used, the confusion between Shake Hand

and Wave Hello decreases.

73

90

0

1

3

0

0

0

0

0

0

1

1

0

2

90

0

0

0

1

0

1

0

0

1

1

0

0

0

80

0

0

0

0

0

0

0

1

0

0

0

0

0

88

0

0

0

0

0

0

1

1

0

0

0

0

0

86

1

0

0

0

0

1

1

0

0

0

0

0

0

81

1

0

0

0

1

0

0

0

0

0

0

0

0

64

3

0

0

1

0

0

0

0

0

0

0

0

11

71

0

0

1

1

0

0

0

1

0

0

0

0

0

76

3

2

1

0

0

0

0

0

0

0

0

0

0

71

1

1

0

4

4

4

4

4

4

4

5

8

9

27

0

0

3

5

10

4

6

7

8

11

10

10

0

56

2

1

1

4

1

4

6

13

10

6

8

63

36

98

gr
ou

nd
 tr

ut
h

prediction

Sha
ke

Han
d

W
av

eH
ell

o

Swipe
Righ

t

Swipe
Le

ft

Circ
leP

alm
Rot

at
ion

Circ
leP

alm
Dow

n

Tak
eF

ro
m

Scr
ee

n

Pus
hT

oS
cr

ee
n

Palm
Dow

nR
ot

at
ion

Palm
UpR

ot
at

ion

Pre
Stro

ke

Pos
tS

tro
ke

Res
t

ShakeHand

WaveHello

SwipeRight

SwipeLeft

CirclePalmRotation

CirclePalmDown

TakeFromScreen

PushToScreen

PalmDownRotation

PalmUpRotation

PreStroke

PostStroke

Rest

(a) Using hand position features and IMU features.

89

0

2

1

0

0

0

0

0

0

1

1

0

5

88

1

1

0

1

0

1

0

0

1

1

0

0

0

79

1

0

0

0

0

1

0

1

1

0

0

0

1

87

0

0

0

0

0

0

1

0

0

0

0

0

0

83

0

0

0

0

0

1

0

0

0

0

0

0

0

79

0

0

0

0

1

0

0

0

0

0

0

0

0

59

4

0

0

1

0

0

0

0

0

0

0

0

10

70

0

0

1

1

0

0

0

0

0

0

0

0

0

74

6

2

2

0

0

0

0

0

0

0

0

0

1

73

1

1

0

3

4

4

3

5

5

4

5

7

8

28

0

0

2

5

8

5

8

9

9

11

8

6

0

55

2

1

3

5

1

4

6

18

9

8

7

63

37

98

gr
ou

nd
 tr

ut
h

prediction

Sha
ke

Han
d

W
av

eH
ell

o

Swipe
Righ

t

Swipe
Le

ft

Circ
leP

alm
Rot

at
ion

Circ
leP

alm
Dow

n

Tak
eF

ro
m

Scr
ee

n

Pus
hT

oS
cr

ee
n

Palm
Dow

nR
ot

at
ion

Palm
UpR

ot
at

ion

Pre
Stro

ke

Pos
tS

tro
ke

Res
t

ShakeHand

WaveHello

SwipeRight

SwipeLeft

CirclePalmRotation

CirclePalmDown

TakeFromScreen

PushToScreen

PalmDownRotation

PalmUpRotation

PreStroke

PostStroke

Rest

(b) Using IMU features only.

Figure 6-1: Per frame classification confusion matrices. The numbers are percentages.
The darker the color the higher the percentage.

74

It is important to check the distribution of the feature values in order to model them

accurately. Figure 6-2(a) shows the histograms of the standardized (x, y, z) coordinates

of relative position, velocity and acceleration from one user’s data in the YANG dataset.

The peak values corresponds to the rest position because it is the most frequent pose in the

recording. Figure 6-2(b) shows the histograms of the same data excluding those from the rest

position. The distribution roughly follows Gaussian or mixture of Gaussians distributions

which means that it will be reasonable to model them using these probability distributions

in the gesture model.

6.2 Hand Pose Features

If no IMU is present, we can still compute velocity and acceleration from relative positions,

but we will lose the information on hand orientation, which is important to distinguish

gestures with the same path but different hand poses, e.g., gestures in the ChAirGest dataset.

In this case, I use the HOG feature descriptor derived from the Kinect data to represent hand

poses. The HOG feature descriptor can be computed from either color, depth or both images.

Figure 6-3 shows sequences of hand image patches extracted using the salience based hand

tracking algorithm.

6.2.1 Histogram of Oriented Gradients (HOG)

For each pixel, the magnitude (r) and the orientation (θ) of the gradient are

r =
√
dx2 + dy2

θ = arccos(dx/r)

where dx and dy are computed using a centered [−1, 0, 1] derivative mask. Each pixel con-

tributes a weighted vote (the magnitude of the gradient r) to an edge orientation histogram

based on the orientation, θ, of the gradient element centered on it, and the votes are accu-

mulated into orientation bins over local spatial regions called cells. The orientation bins are

evenly spaced over 0°– 180°(“unsigned” gradient). To reduce aliasing, votes are interpolated

75

−4 −3 −2 −1 0 1 2 3
0

500

1000

1500

2000

2500

3000

x
−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

y

relative position

−3 −2 −1 0 1 2 3
0

200

400

600

800

1000

1200

z

−6 −4 −2 0 2 4 6
0

1000

2000

3000

4000

5000

6000

x
−3 −2 −1 0 1 2 3 4
0

1000

2000

3000

4000

5000

6000

y

velocity

−5 0 5
0

500

1000

1500

2000

2500

3000

z

−15 −10 −5 0 5 10 15
0

1000

2000

3000

4000

5000

6000

7000

x
−10 −5 0 5 10
0

1000

2000

3000

4000

5000

y

acceleration

−10 −5 0 5 10
0

1000

2000

3000

4000

5000

z

(a) With rest positions.

−4 −3 −2 −1 0 1 2 3
0

50

100

150

200

250

300

x
−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

y

relative position

−3 −2 −1 0 1 2
0

50

100

150

200

250

300

350

z

−6 −4 −2 0 2 4 6
0

100

200

300

400

500

x
−3 −2 −1 0 1 2 3 4
0

50

100

150

200

250

300

350

y

velocity

−5 0 5
0

100

200

300

400

z

−15 −10 −5 0 5 10 15
0

200

400

600

800

1000

1200

1400

x
−10 −5 0 5 10
0

100

200

300

400

500

600

y

acceleration

−10 −5 0 5 10
0

200

400

600

800

1000

1200

z

(b) Without rest positions.

Figure 6-2: Histograms of motion features.

76

(a) Gray images converted from color images with
only skin-colored pixels.

(b) Corresponding depth-mapped images.

Figure 6-3: 64× 64px raw image patches of hands from the ChAirGest dataset.

bilinearly between the neighboring bin centers in both orientation and position [16].

Fine orientation and spatial binning turns out to be essential for good performance. My

evaluation shows that using 4 × 4px cells (cell size = 4) and 9 orientation bins gives the

best result.

Finally, cell values are normalized using blocks of 2× 2 cells (Figure 6-4). If an image I

has dimensions m × n, the size of the computed feature vector H is (m/cell size − 1) ×

(n/cell size−1)×num bin. Figure 6-5 shows a visualization of the HOG descriptors from

both the color images and depth-mapped images.

Figure 6-4: Histogram values in cell01 is normalized by the sum in cell00, cell01, cell10,
and cell11.

77

(a) Gray images converted from color images. (b) Corresponding depth-mapped images.

(c) HOG from color images (converted to gray). (d) HOG from depth-mapped images.

Figure 6-5: Visualization of HOG descriptors computed from 64× 64px image patches.

6.2.2 Compare HOG from Color or Depth Images

Previous work [61] has used the HOG descriptor computed from color images for hand pose

representation. With the addition of depth data, it is not obvious which data, depth or

color, should be used for computing the HOG descriptor. Using the ChAirGest dataset and

the same recognition method, I compared results between these two types of data. Table 6.2

shows that using HOG from both color and depth data gives the highest F1 score. However,

the improvement is small compared with using HOG computed from depth data only. As a

result, in the real-time system, I only use the HOG computed from depth data to increase

78

processing speed.

motion (no orientation) color depth color and depth
F1 Score 0.677

(0.04)
0.703
(0.01)

0.720
(0.02)

0.723
(0.01)

ATSR Score 0.893
(0.02)

0.870
(0.01)

0.880
(0.01)

0.873
(0.01)

Final Score 0.710
(0.03)

0.732
(0.01)

0.748
(0.01)

0.749
(0.00)

Table 6.2: Comparison of the average 3-fold cross validation results for features
computed from the Kinect sensor data using the ChAirGest dataset. Values in

parentheses are standard deviations.

HOG from depth data may give better results than HOG from color data because depth

data contains more information about the contour of the hand in one more dimension (see

Figure 6-6).

Figure 6-6: View of quantized depth data of a hand in 3D.

The confusion matrices in Figure 6-7 shows that “Take from Screen” and “Push to Screen”

have the lowest recognition accuracy, especially when using the Kinect data. I notice that,

in this dataset, when the users extend their hands towards the screen, the hands are too

close to the sensor (below the too near range), and the depth sensor cannot get accurate

readings.

Table 6.2 also indicates that if we use only motion features such as relative position,

velocity and acceleration, the result is poor because it cannot distinguish gestures with the

79

same path but different hand postures such as “Wave Hello” and “Shake Hand”, “Circle

Palm Rotation” and “Circle Palm Down” (Figure 6-7(b)). However, using motion features

only gives the highest temporal gesture nucleus segmentation score (the ATSR score). This

means that for segmentation, motion features are probably more useful than the hand pose

features.

6.3 Principal Component Analysis

The dimension of the HOG feature descriptor can be large, therefore, I use Principal Com-

ponent Analysis (PCA) [1] to reduce its dimensionality (see Appendix B for details). PCA

can be seen as a feature encoder [52]. Since the principal components are orthogonal to each

other, the encoded features are not correlated to each. As a result, the covariance matrix

for these features is diagonal.

The number of principal components is determined through cross-validation. For the

YANG dataset, I use 15 principal components from the HOG feature descriptor. Figure 8-2

shows the histograms of the 15 variables after projecting the original HOG descriptors onto

the principal components and then applying standardization for one user’s data from the

YANG dataset. The distributions closely follow Gaussian or mixture of Gaussians, which

again means we can model them using these probability distributions in the gesture model,

same as the motion features.

6.4 SVM for Encoding Hand Poses

Similar to Song et al. [61], I attempted to further encode the feature vectors obtained from

PCA into hand pose classes. For each pose gesture, there is a class for its hand poses, and

for all the path gestures, all of their hand poses are grouped into one class called “Other”

(recall that hand pose is irrelevant in path gestures). Figure 6-9 shows hand pose images

from two such classes.

I use an SVM with a Radial Basis Function (RBF) as the kernel function to do the

80

(a) Using HOG computed from both color and depth data.

81

5

3

6

0

0

1

0

0

1

1

3

0

2

78

2

0

0

0

1

1

1

2

1

2

0

4

3

60

1

1

1

0

0

3

3

1

1

0

2

0

0

71

0

0

0

1

1

0

1

0

0

0

0

1

0

65

18

0

0

4

3

1

1

0

0

0

0

0

15

59

0

0

1

0

1

0

0

0

0

0

0

0

0

42

15

1

1

1

1

0

0

0

0

0

0

0

9

35

4

0

1

1

0

1

1

8

1

1

0

3

0

53

3

1

3

0

0

0

3

0

0

1

2

0

2

43

1

0

0

4

7

11

5

5

6

5

6

8

20

18

1

1

1

5

9

8

9

6

13

11

9

10

0

52

5

3

1

3

6

4

9

23

32

14

13

74

35

93

gr
ou

nd
 tr

ut
h

prediction

Sha
ke

Han
d

W
av

eH
ell

o

Swipe
Righ

t

Swipe
Le

ft

Circ
leP

alm
Rot

at
ion

Circ
leP

alm
Dow

n

Tak
eF

ro
m

Scr
ee

n

Pus
hT

oS
cr

ee
n

Palm
Dow

nR
ot

at
ion

Palm
UpR

ot
at

ion

Pre
Stro

ke

Pos
tS

tro
ke

Res
t

ShakeHand

WaveHello

SwipeRight

SwipeLeft

CirclePalmRotation

CirclePalmDown

TakeFromScreen

PushToScreen

PalmDownRotation

PalmUpRotation

PreStroke

PostStroke

Rest

(b) Using motion features only (relative position, velocity, acceleration)

Figure 6-7: Per frame classification confusion matrices based on result from 3-fold cross
validation using the ChAirGest dataset. The numbers are percentages. The darker the

color the higher the percentage.

81

−4 −2 0 2 4
0

100

200

300

400

500

600

−4 −2 0 2 4
0

100

200

300

400

500

600

−4 −2 0 2 4
0

200

400

600

800

−4 −2 0 2 4
0

200

400

600

800

−4 −2 0 2 4
0

200

400

600

800

−4 −2 0 2 4
0

200

400

600

800

1000

−4 −2 0 2 4
0

200

400

600

800

−4 −2 0 2 4
0

200

400

600

800

1000

−4 −2 0 2 4
0

200

400

600

800

1000

−4 −2 0 2 4
0

200

400

600

800

1000

−5 0 5
0

200

400

600

800

1000

−5 0 5
0

200

400

600

800

1000

1200

−5 0 5
0

200

400

600

800

1000

−5 0 5
0

200

400

600

800

1000

−5 0 5
0

200

400

600

800

1000

1200

Figure 6-8: Histograms of the 15 components of in the feature vectors computed from
apply PCA to the HOG descriptors.

classification1. Grid search [73] on the training data was used to find the misclassification

costs and γ in the RBF kernel function.

It is important to note that the data is highly unbalanced, for example, there are more

instances in the “Other” class than other hand pose classes. If we ignore the fact that the

data is unbalanced, the resultant classifier will favor the majority class [8]. To take this into

account, I assign different misclassification costs, Ci, (SVM soft-margin constants) to each

class i. If n+ and n− are the number of examples in a two -class problem, we choose C+ and

C− such that:

C+

C−
=
n−
n+

(6.1)

To generalize this to multi-class problems, if n1, n2, . . . , nk are the number of examples in a

1 LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) are used for SVM related computation.

82

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

(a) Depth-mapped hand pose images from ”POINT”
class.

(b) Corresponding HOG descriptor.

(c) Depth-mapped hand pose images from “OTHER”
class.

(d) Corresponding HOG descriptor.

Figure 6-9: Examples of hand poses from two classes.

k-class problem, we can choose C1, C2, . . . , Ck such as

C1 : C2 : . . . : Ck =
1

n1

:
1

n2

: . . . :
1

nk
(6.2)

Using data from one user in the YANG dataset, I compared hand pose classification

results using SVM and my HMM-based gesture recognition algorithm with a mixture of

Gaussians (MoG) as the emission probability. There are 5 classes in total: Point, Palm Up,

Grab, Rest, and Other. Table 6.3 shows that using HMM with MoG emission probability

gives better result. Figure 6-10 shows a visualization of the classification results for a segment

in a sequence. It shows that the HMM-based method has a smoothing effect which helps to

improve performance.

83

Precision Recall F1

SVM 0.74 0.77 0.75
HMM with MoG emission 0.81 0.82 0.81

Table 6.3: Comparison of hand pose classification results.

Figure 6-10: Visualization of the classification results comparing two methods. This is a
continuous segment of about 200 frames (around 7s) in a sequence with two pose

gestures: Palm Up and Point.

An SVM can output probabilities instead of hard classifications. It is plausible to use the

probabilities as part of the feature vector (concatenated with the motion features and the

HOG features). However, unlike the other features in the feature vector, the probabilities for

a particular class from SVM does not follow Gaussian distribution (see Figure 6-11). This

makes it hard to incorporate them into an HMM-based model which models compatibility

between the output and the hidden state using a conditional probability distribution (CPD).

As a result, it does not seem to be effective to add SVM encoding (hard decisions or soft

decisions) into the feature vectors.

6.5 Discussion

Based on the above analysis, the final feature vector is a concatenation of motion features and

PCA encoded HOG descriptors. All of the features follow Gaussian or MoG distributions,

making it easy to incorporate them in the HMM-based models.

The probability output from an SVM does not follow Gaussian distribution. However, it

might be useful to use it as part of a feature vector for a CRF-based model as those models

84

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

Figure 6-11: Histogram of SVM probability output for one class.

have greater flexibility to incorporate features (e.g. no CPD is required).

It is also useful to apply temporal smoothing on the motion data. In the final real-time

gesture recognition system, I apply “box” smoothing (i.e., simple linear smoothing with equal

weights) on the relative positions of the gesturing hand with a window size of 15 frames.

85

Apparently the child recognizes speech sounds as patterns of ges-

tures.

Israel Rosenfield, The invention of memory

7
Unified Gesture Recognition Framework

As mentioned in the discussion of related work, most prior work focuses on recognizing one

form of gesture, either path or pose gestures. We could conceivably just combine the two

forms by first deciding whether it is a path or pose gesture (e.g., using a threshold or a

classifier on speed and/or hand pose features), then apply different recognition methods.

However making such decisions too early may not be robust. For example, if the system

makes the decision wrongly, it will be hard to correct that later. We could also apply two

different methods simultaneously, e.g., compute likelihood from HMMs for path gestures and

compute SVM probability scores for pose gestures, but it is not clear how these probabilities

can be compared for making final decisions.

As a result, I developed a unified probabilistic framework to handle the two forms of

gestures so that probabilities are comparable. During online recognition, the system makes

soft (probabilistic) decisions rather than hard (categorical) decisions, and propagates prob-

86

abilities until a response from the system is required according to the flow of the currently

most likely gesture. This chapter gives details about this unified framework.

7.1 Gesture Modeling using Hierarchical HMM

In Section 1.1.3, I explained that a gesture can be broken down into three phases: pre-stroke,

nucleus, and post-stroke. With multiple gestures, the temporal model can be represented by

a stochastic state machine as shown by the black circles and arcs (top level) in Figure 7-1.

Each gesture phase in turn includes a sequence of hand/arm movements that can also be

represented by a stochastic state machine (the blue circles and arcs in the second level in

the figure), with each state generating an observation (i.e., the feature vector) according to

certain distribution. This generative model is a hierarchical HMM (HHMM).

Figure 7-1: State transition diagram of the HHMM representation of the gesturing
process. Solid arcs represent horizontal transitions between states; dotted arcs represent
vertical transitions, i.e., calling a phase HMM (sub-HMM). Double-ringed states are end

states. Only examples of transitions are shown here.

The HHMM is an extension of the HMM that is designed to model domains with hierar-

chical structure and/or dependencies at multiple length/time scales [42]. In an HHMM, the

87

states of the stochastic automaton can emit single observations or strings of observations.

Those that emit single observations are called “production states” (blue circles in Figure 7-1,

and those that emit sequences of observations are termed “abstract states” (black circles).

The abstract states call sub-HMMs to which I refer as phase HMMs here.

We can represent the HHMM as a dynamic Bayesian network (DBN) (a directed graphical

model) [42] as shown in Figure 7-2. The state of the whole HHMM at time t is encoded by

the vector (Gt, Pt, St) where Gt is the gesture label, Pt is the phase label, and St is the hidden

state representing a sub-stage in a gesture phase. F d
t is a binary indicator variable that is

“on” (has value 1) if the lower level HMM at time t has just “finished” (i.e., is about to enter

an end state), otherwise it is “off” (value 0). The bottom level Xt are the observations.

P1 P2 P3

G1 G2 G3

FG
1 FG

2 FG
3

F P
1 F P

2 F P
3

S1 S2 S3

X1 X2 X3

Figure 7-2: DBN representation of the HHMM for the temporal gesture model. Gt is the
gesture label, Pt is the phase label, and St is the hidden state representing a sub-stage
in a gesture phase. F dt = 1 if the HMM at the lower level has finished (entered its exit
state), otherwise F dt = 0. Shaded nodes are observed; the remaining nodes are hidden.

The F d
t binary indicator in the hierarchical model allows us to do simultaneous segmenta-

tion and recognition. I want to avoid doing segmentation first and then find the most likely

HMM for the given sequence, because segmentation based on differentiating rest position

versus non-rest position will not allow the system to respond fast enough. I want the system

to respond at the beginning of the post-stroke phase rather then at the beginning of the rest

position. In addition, making a hard decision on segmentation can introduce errors that are

hard to correct later.

Even though the HHMM gives an appropriate model of temporal gestures, performing

exact inference on it can be slow due to the loops in the graphical model (Figure 7-2). To

88

make possible a real-time system, I flatten the hierarchical HMM into a one-level HMM

for fast training and inference. This is done by creating an HMM state for every leaf in the

HHMM state transition diagram (i.e., every legal HHMM stack configuration) [42], assuming

that the states in the phase-HMMs are not shared. The effect of the F d
t binary indicator

can be achieved by modeling the termination probability of each state, t(END|s), i.e., the

probability for state s to transit to the end state in the phase HMM.

When flattening the HHMM, we need to add to the flattened model all the transition

probabilities among phase HMMs in the original hierarchal model. For example, after flat-

tening the HHMM in Figure 7-1, we have (among others)

Pflat(5→ 6) = Ph(5→ END→ Rest→ 6)

Pflat(4→ 5) = Ph(4→ END→ Post-stroke N→ 5)

where Ph represents the probability in the HHMM.

Flattening the HHMM into an one-level HMM does have some disadvantages. First,

flattening loses modularity, since the parameters of the phase HMMs get combined in a

complex way [42]. A separate index is needed to map the hidden states back to the abstract

states (the phase and gesture labels) they correspond to. Secondly, training HMMs separately

and combining them together in one model requires segmented data, i.e., data about an

individual gesture. However, getting separate training examples for different gestures is not

a difficult task in this case. Lastly, an HHMM can represent and learn sub-models that are

re-used in different contexts, but an HMM cannot do this [42].

7.2 Unified Framework

To include both path and pose gestures within the model, I use different topologies for their

corresponding phase HMMs because they have different characteristics in terms of hand

movement.

Based on the standard HMM1 formulation, the probability of a sequence of observation,

1See Appendix D for more details about the HMM.

89

x1:T = x1 . . . xT , and the corresponding hidden states sequence, s1:T = s1 . . . sT , is given by

P (x1:T , s1:T ; θ) = t(s1)t(END|sT)
T∏
t=2

t(st|st−1)
T∏
t=1

e(xt|st) (7.1)

where θ represents the model parameter vector which includes the initial state probabilities

t(s), the state transition probabilities t(s′|s), the emission probabilities e(x|s), and the ter-

mination probabilities t(END|s) for s, s′ ∈ {1, 2, . . . H}. In this section, I describe how I

model these conditional probability distributions (CPDs), and compute the model parame-

ters for both path and pose gestures, combining them together under the unified HMM-based

framework. Note that the term “unified framework” means that the two forms of gestures

are combined under the same probabilistic framework, but there are still differences in the

models for the two gestures, e.g., different topologies and different training strategies.

7.2.1 Path Gestures

If we have ground truth labels for the pre-stroke, the nucleus and the post-stroke phases

(as we do in the ChAirGest dataset), we can train the phase HMMs for each phase and

each gesture separately, then concatenate the phase HMMs (i.e., the concatenated HMMs2).

However in practice, for example if we want users to be able to easily add their new gestures

by giving a few examples, it will be tedious to manually label the start and the end of

the three phases. In this case, I use embedded training [80], i.e. train each phase HMM

embedded in an entire gesture segment (Figure 7-3).

With the YANG dataset, I choose to use one hidden state for pre-stroke and post-stroke

phases through cross-validation. I use the Bakis (left-right with skips) topology [7] for the

nucleus phase, but add a backward transition from the last hidden state to the first one

for gestures with an arbitrary number of repetitions (e.g., the Wave gesture) (Figure 7-

4). The left-right topology not only closely models the temporal evolution of a gesture,

it also reduces the model complexity by constraining the number of possible transitions.

Without this constraint, the model would have O(H2) transition parameters; with the left-

right constraint, it only has O(H) transition parameters where H is the number of hidden

2See my previous publication [78] for details.

90

Figure 7-3: Embedding phase HMMs into an entire gesture.

states in the HMM.

start s1 s2 s3 s4 end
t(s1)

Figure 7-4: A state transition diagram of a modified 4-state Bakis model for the nucleus
phase.

In Chapter 6, I showed that the features I use follow mixture of Gaussians (MoG) dis-

tributions, hence I use MoG with diagonal covariances to model the emission probability,

i.e.,

e(x|s) =
k∑

m=1

q(m|s)N (x;µs,m,Σs,m) (7.2)

where k is the number of mixtures. Figure 7-5 shows the DBN representation of an HMM

of MoG emission probabilities. The covariance, Σs,m, has a fixed prior of 0.01 × I which is

added to the maximum likelihood estimate to prevent the covariance from shrinking to a

point/delta function.

Training Strategies

I use two-pass training to estimate the model parameters for each path gesture HMM sepa-

rately. Currently, training is done in MATLAB using Kevin Murphy’s HMM toolbox3.

3https://code.google.com/p/bnt/

91

https://code.google.com/p/bnt/

Figure 7-5: DBN representation of HMM with mixture of Gaussians emission
probabilities.

The first pass is Viterbi training4. In this pass, only the pre-stroke hidden state can be

the initial state and only the post-stroke hidden state can be the termination state. The

emission probability parameters are initialized by dividing the data sequence into H segments

of equal length (where H is the total number of hidden states in the embedded HMM) and

associating each successive segment with successive states [80]. For each segment, the K-

means algorithm is used to initialize MoG parameters. In each iteration of the training, the

most likely path is computed using the Viterbi algorithm. For all the observations assigned

to the same hidden state, K-means algorithm is used again to find the new MoG parameters

for that state. The Viterbi training provides a better alignment of data with the hidden

states, and thus gives a better initialization of the MoG parameters.

The second pass is Baum-Welch training that computes the maximum likelihood estimate

of the parameters. It uses the estimated MoG parameters as the initial values. It also

relaxes the initial state probabilities (allowing the first two states to be the start state) and

the termination probabilities (allowing the last two states to be the termination state). This

allows the possibility of transitions between nucleus phases without going through pre-strokes

and post-strokes when we combine the individual gesture HMMs together. For natural

interaction, this is important because sometimes users may do two gestures immediately after

one another, with no post-stroke. When initializing the transition matrix, all the allowed

transitions are set to the same value, so that no states are favored arbitrarily. Transitions

that are not allowed are initialized to zero.

4See Appendix D.3.2 for details

92

The Baum-Welch estimation formulae for MoG parameters and transition parameters are

well established. Here, I give the formula for the termination probability. Given N training

sequences, the update for the termination probability during the ith iteration is

ti(END|s) =

∑N
j=1 count(j, s→ END; θi−1)∑N
j=1

∑
s′ count(j, s→ s′; θi−1)

where count(j, s→ END; θi−1) is the expected count of s being the end state. We can use

the usual forward-backward algorithm to compute all the expected sufficient statistics by

adding a dummy END state to the end of each sequence (see Appendix D.2 for details).

7.2.2 Pose Gestures

I use one hidden state, spose, to represent of the nucleus phase of a pose gesture (Figure 7-6).

Within a user, there may be variation in the hand pose used for a particular pose gesture.

For example, the Point hand pose can have different orientations. Hence, I also use the MoG

for the emission probability e(x|spose).

Figure 7-6: State transition diagram of a single state HMM for gestures with distinct
hand poses.

The number of mixtures for pose gestures are greater than that of path gestures, made to

capture the variation in hand poses people use. The number of mixtures can also be different

for different pose gestures. This is because some hand poses may have more variation than

others. For example, the Point gesture may have more variations in orientations than Grab

gesture (hand in fist).

93

Training Strategies

Because there is only one hidden state, I directly compute the maximum likelihood estimates

of the MoG parameters for emission probability of spose using an expectation–maximization

(EM) algorithm, instead of doing embedded training.

The number of mixtures is determined using the Bayesian Information Criterion (BIC) [21]:

BIC
def
== 2loglik(x1:n, θ

∗
k)− (# params) log(n)

where loglik(x1:n, θ
∗
k) is the maximized loglikelihood for the data and the model with k

mixtures per state, (# params) is the number of independent parameters to be estimated

in the model, and n is the number of observations in the data. Let d be the feature vector

dimension, then µs,m for hidden state s and mixture m has d independent parameters,

and the diagonal covariance matrix Σs,m has d independent parameters as well. Because∑k
m=1 q(m|s) = 1, the number of independent parameters for the weights q(m|s) is k − 1.

Hence,(# params) is computed as:

params = (k − 1) + (d+ d) ∗ k

The k that gives the highest BIC is chosen from a predetermined range (determined through

cross-validation).

For each k, Expectation Maximization (EM) is used to estimate the means, covariance

matrices and mixture probabilities of the MoG. As the EM algorithm may converge to a

local optimum of the observed data likelihood [18], I repeat the optimization 3 times using

K-means algorithm with random initialization to set the initial cluster centers, and choose

the model that gives the maximum likelihood.

The training data for pose gestures should contain random variations in the hand move-

ment so that the resultant variances for the motion features will be larger, making motion

features less important in e(x|spose). Figure 7-7 gives an illustration of this by comparing two

covariance matrices of the MoG for hidden states from two forms of gestures. The variance

values are normalized between the two matrices for each feature to make them comparable.

94

We can see that the variances for the motion features (features 1–9) are larger (with darker

colors) for the pose gesture.

5 10 15 20

5

10

15

20

(a) Covariance of a MoG of a path gesture.

5 10 15 20

5

10

15

20

(b) Covariance of a MoG of a pose gesture.

Figure 7-7: Visualization of normalized covariance matrices of the MoG for different
hidden states. The darker the color, the larger the variance.

It is possible that a gesture with a distinct path also has the same hand pose as another

gesture with distinct hand pose, for instance, some user may prefer to do the Circle gesture

with their hand in a point hand pose. In this case, the gesture will be recognized as the

Circle gesture because the Circle gesture model matches both the hand pose and the path

and thus will have a higher likelihood after considering a few consecutive frames.

Since there is only one hidden state for spose, its transition probability is 1. Its termination

probability is estimated according to the expected duration of the gesture. The self-arc on

a state in an HMM defines a geometric distribution over waiting time [42]. In the case

of a single state HMM, the probability of remaining in state spose for exactly d steps is

P (d) = p(1 − p)d−1, where p = P (END|spose) is the termination probability for spose.

This means the expected number of steps remaining in state spose is 1
p
. I assume that the

minimum duration of a path gesture is one second (30 frames). The termination probability

P (END|spose) is then set to be less than 1
30

.

I use one hidden state to model the rest position in a similar way.

95

7.3 Real-time Gesture Recognition

I train one HMM, θg, for each gesture (path or pose) g ∈ {1 . . . G}, then combine them

into a one-level HMM flattened from the HHMM in Figure 7-1, assuming uniform transition

probabilities among gestures.

7.3.1 Combined HMM

I use a superscript c to denote the model parameters in the combined HMM. Let Hg be the

number of hidden states for gesture g. The total number of hidden states in the combined

HMM, Hc, is then

Hc =
∑
g

Hg

The model for each path gesture starts with a hidden state for the pre-stroke, then 1 or

2 hidden states for the nucleus, followed by a hidden state for the post-stroke. Each pose

gesture has a hidden state for the nucleus. The combined HMM has a sequential labeling for

these hidden states, with the hidden state label for the pre-stroke of the second gesture model

following the hidden state label for the post-stroke of the previous gesture, etc. Formally,

the new hidden states labels are in {1 . . . Hc}, and the hidden states from (basei + 1) to

(baseg +Hg) belongs to gesture g where baseg is the base index

baseg =

g−1∑
j=1

Hj

Figure 7-8 gives an example of the labeling scheme in the combined HMM. This scheme

allows an easy mapping of hidden state labels back to their corresponding gestures and

phases.

The non-trivial part in creating the combined HMM is computing the new transition

probabilities. The initial state probability in the combined HMM, tc(s), for s ∈ {1 . . . Hc} is

tc(s) =
t(s)∑Hc

s′=1 t(s
′)

96

Figure 7-8: Combined HMM. The red lines are examples of transitions added to
combine the individual gesture HMMs. To keep the diagram from getting cluttered, not

all possible transitions are shown.

The probability of an s to s′ transition in the combined model is the sum over all paths from

s to s′ for s, s′ ∈ {1 . . . Hc} [42]. In our model,

tc(s′|s) = t(s′|s)(1− t(END|s)) + t(END|s)tc(s′) (7.3)

where t(s′|s) is the transition probability in the individual gesture HMM if s and s′ are from

the same gesture; otherwise it is zero. Note that t(s′|s) is normalized such that
∑

s′ t(s
′|s) = 1

without taking into account the termination probability t(END|s) (as the end state is not an

actual hidden state), hence it is necessary to multiply t(s′|s) by (1−t(END|s)) in Equation 7.3

to get the actual unnormalized probability.

As the pre-strokes and post-strokes for different gestures can be similar, I allow sharing of

the pre-stroke hidden states and post-stroke hidden states among gestures by adding a small

transition probability (0.01) prior among pre-stroke hidden states and among post-stroke

hidden states (e.g., t(spre-strokei |spre-strokej) = 0.01). Pose gestures also share the pre-stroke

and post-stroke hidden states of path gestures. The sharing of hidden states is similar to the

97

mechanism of parameter tying/sharing which is often used in speech recognition to improve

the robustness of the model when training data is limited [80]. Note that these probabilities

are not learned because the phase HMMs are trained separately and the inability to learn

shared structures is a disadvantage of flattening the HHMM as mentioned earlier.

Finally, we need to make sure that the new transition matrix is stochastic, i.e.,

Hc∑
s′=1

tc(s′|s) = 1

by normalizing tc(s′|s).

7.3.2 Online Inference

Once we have a combined model, I use fixed-lag smoothing [42] to do online inference on the

flattened HMM for real-time gesture recognition. Fixed-lag smoothing is a modified forward-

backward algorithm. Unlike online filtering, which estimates the belief state at current time

t using only a forward pass, we estimate the state at t − l, given all the evidence up to

the current time t, i.e., compute γt−l(s)
def
== P (St−l = s|x1:t), where l > 0 is the lag (see

Figure 7-9). Introducing lag time is a tradeoff between accuracy and responsiveness. Using

some future evidence to smooth the estimate can increase the accuracy while adding some

delay. However if the delay is small, it might be unnoticeable. In the Experiment Evaluation

section (Section 8), I show details about the relationship between l and the recognition

performance.

Fixed-lag smoothing can be implemented efficiently. I compute forward probabilities

αt(s)
def
== P (St = s|x1:t) normally5 and keep a history window of αt−l . . . αt. At every time

frame t, I compute backward probabilities βt−l′(s)
def
== P (xt−l′+1:t|St−l′ = s) from the current

time t to t− l, i.e., from l′ = 0 to l. The base case is

βt(s) = 1 (7.4)

5It is more common (see e.g., [51]) to define αt(s) = P (St = s, x1:t); the difference is discussed in
Appendix D.1.

98

Figure 7-9: Figure adapted from [42] comparing different kinds of inference. The shaded
region is the interval for which we have data. The arrow represents the time step at

which we want to perform inference. t is the current time, and T is the sequence length
(see Appendix C.2 for details).

Then γ can be computed as

γt−l
def
== P (St−l = s|x1:t) ∝ αt−l · βt−l (7.5)

The time complexity at each time frame is O((Hc)2l). Note that at time t, the belief state

at t− l is committed, while the belief state from t− l+ 1 to t will still be revised later. The

space complexity is O(Hcl) mainly for storing a window of αt−1 . . . αt.

We can then compute the most likely hidden state at t− l:

ŝ = arg max
s
γt−l(s) (7.6)

The most likely hidden state is then mapped to the gesture label it belongs to (including the

rest position) and the gesture phase.

Gesture events are detected at the boundary of a phase change: start pre-stroke, start

gesture nucleus and start post-stroke. In this way we achieve simultaneous segmentation and

recognition. The gesture event information, together with the gesture label for the nucleus

phase, are sent to the application level. The system achieves real-time performance at 30FPS

on a consumer level machine with a Intel Core2 Quad CPU (2.83GHz) and 8GB of memory.

99

Figure 7-10: Most likely hidden states using fixed-lag smoothing from a segment of an
input sequence. Different colors indicate different hidden states. Yellow indicates rest

position.

Figure 7-10 shows a visualization of the most likely hidden states based on online fixed-lag

smoothing inference with l = 5 on a test sequence from the YANG dataset (only a segment

is shown). Notice that at the beginning of the hand movement, the most likely hidden state

is the pre-stroke for Horizontal Wave, but since a response is not required at this time, the

wrong estimate does not matter. After a few more frames, the estimates are updated to

have the correct most likely gesture label and the system responds correctly when it detects

the start of the post-stroke of the Circle gesture.

7.4 Gesture Spotting

Identifying gesture phases allows us to distinguish gestures from non-gestures. As every

gesture must have a nucleus, any hand movement that does not have a nucleus phase can

be classified as a non-gesture.

For example, when performing offline recognition, I use MoG models for rest and non-rest

positions to find non-rest segments (i.e., segments with hand movement), and for a non-rest

segment, use the Viterbi algorithm to find the most probable hidden state sequence ŝ1 . . . ŝT

using the mostly likely gesture model θĝ (see [78] for details). Again, each hidden state can

by classified into a pre-stroke (spre-stroke), nucleus (snucleus), or post-stroke (spost-stroke) state.

100

The start and the end time for a gesture nucleus are the first and the last time frame t where

ŝt ∈ snucleus respectively.

Time t

G
ro

un
d

tr
ut

h
P

re
di

ct
io

n

27724 28124 28524 28924 29324 29724 30124 30524 30924 31324

ShakeHand

WaveHello

SwipeRight

SwipeLeft

CirclePalmRotation

CirclePalmDown

TakeFromScreen

PushToScreen

PalmDownRotation

PalmUpRotation

PreStroke

PostStroke

Rest

(a) Gesture label result. The pre-stroke and post-stroke phases are indicated by two orange colors (see the
color bar).

(b) Most probable hidden states. Colors 1-3 indicate the pre-stroke hidden states, colors 4 - 9 indicate the
nucleus hidden states, colors 10 - 12 indicate the post-stroke hidden states, and color 14 indicates the rest
state.

Figure 7-11: Visualization of gesture recognition result. A non-rest segment without a
nucleus phase (see t ∼ 30700 in (b)) is not identified as a gesture (no label reported at

the same time in (a).

Figure 7-11(a) shows the recognition result for one test sequence. The top row is the

101

ground truth, with different colors indicating different gesture phases or the rest position.

The second row is my segmentation and recognition result. Figure 7-11(b) shows the color-

coded most probable hidden states for the same sequence. If a non-rest segment does not

contain hidden states belonging to the nucleus phase, it is ignored (see the blue bar at

t ∼ 30700 in Figure 7-11(b)). In this way, we can spot the actual gestures while filtering out

other movements.

Using a thresholding method on the loglikelihood of a given segment may not be robust,

because the maximum loglikelihood of a non-gesture segment among all gesture HMMs can

be greater than that of a gesture segment. The HMM formulation (Equation 7.1) implies

that the longer the sequence the smaller the likelihood (and hence the loglikelihood) because

there are more probability terms which are all smaller than 1 in the product terms. For

example, the loglikelihood of the fifth non-rest segment (a non-gesture) in Figure 7-11(b)

has a maximum loglikelihood of -296.6, while the first non-rest segment (a gesture) has a

maximum loglikelihood of -785.6. Even if we normalize the loglikelihoods by the segment

lengths, the normalized loglikelihood for the non-gesture (-14.8) is still greater than that of

the gesture (-17.9). As non-gestures are often shorter than gesture sequences, it would hard

to set a good threshold.

My gesture phase based method can be used in addition to a thresholding method with

a relative conservative threshold, i.e., a threshold that may cause false positives but no false

negatives so that the gesture phase based method can be used to further filter out false

positives.

7.5 Concatenated HMM versus LDCRF

Morency et al. formulated LDCRF [41] (an extension to CRF), and used it for head and eye

gesture recognition. In contrast to HMM (a generative model), LDCRF is a discriminative

model. It gives per frame classification, and hence, can be used to do simultaneous segmen-

tation and labeling. I applied LDCRF to gesture phase segmentation and recognition, and

compared the result with my concatenated HMM method [78].

As LDCRF requires per frame labeled training data, we need ground truth labeling for

102

the gesture phases. Hence, I use the ChAirGest dataset for this evaluation. For all the

non-rest segments in the training set, the nucleus frames are labeled 1 – 10 according to

their corresponding gesture labels. All the pre-stroke frames are labeled 11, and all the

post-stroke frames are labeled 12. This means the pre-strokes of all the gestures share the

same hidden states, and same for post-strokes. Using different hidden states for pre-strokes

and post-strokes of different gestures would increase computation time significantly since it

increases quadratically with the number of hidden states (see Appendix E.1). For each label,

6 hidden states are used, resulting in 72 hidden states in total.

During testing, frames from the non-rest segments are classified into gesture nucleus

labels, pre-stroke or post-stroke using the trained LDCRF model. Using the pre-stroke and

post-stroke labels, we can find the start and end of the nucleus phases. The HCRF library6

which contains an implementation of the LDCRF model is used for both training and testing.

Table 7.1 shows a comparison of the results between using LDCRF and concatenated

HMMs. The F1 score of the concatenated HMMs model is 7.7 percentage points higher

than the LDCRF model. However, the LDCRF gives a slightly higher (1.5%) temporal

segmentation score, ATSR. Overall, the concatenated HMMs gives better performance (6.0%

higher) and, importantly, takes 150 times shorter time to train (two orders of magnitude).

LDCRF Concatenated HMMs
F1 Score 0.82 (0.03) 0.897 (0.03)
ATSR Score 0.923 (0.02) 0.907 (0.02)
Final Score 0.84 (0.02) 0.90 (0.02)
Training Time 18hr 7min

Table 7.1: Comparison of recognition results between LDCRF and concatenated HMMs
using the ChAirGest dataset.

7.5.1 LDCRF Optimization

One reason that LDCRF is so slow is that it considers all pair-wise transitions among all

the hidden states in the optimization process (722 transition features in this case). However,

since the hidden states are not shared among gestures, we do not need to consider the

6http://sourceforge.net/projects/hcrf/

103

http://sourceforge.net/projects/hcrf/

transitions between hidden states from different gestures. In order to decrease the training

time, I reduce the time complexity of the model by constraining allowed transitions among

hidden states.

In HMM, we can specify the topology by initializing transitions that are not allowed to

zero. In LDCRF, I do the same by setting transitions that are not allowed to always be

zero (or negative infinity if loglikelihood is used) in each update. The edge features only

include allowed transitions as well, reducing the number of features in the model needs to

be optimized. A mask matrix is used to specify allowed transitions, and I call this masked

LDCRF. Using this optimization, I am able to reduce the training time to 11hr, but this

still means that LDCRF takes 100 times longer to train.

104

8
Online Recognition Evaluation

The previous sections reported evaluation results most pertinent to the sections under dis-

cussion. This chapter presents results for the overall online recognition performance.

8.1 Evaluation Protocol

I evaluate the online gesture recognition performance using the YANG dataset and the hybrid

performance metrics proposed in Section 4.3. The evaluation is based on the assumption

that all the path gestures are discrete flow gestures, and pose gestures are continuous flow

gestures. The survey results shown earlier in Section 3.2.4 show that it is important to allow

users to quickly define and train their own gestures. Hence, I evaluate my system using user

dependent training and testing. For each user in the dataset, I use the first 2 sessions of

recording (6 samples per gesture) as training examples, and the last 2 sessions as testing

105

examples. The first 2 sessions have “Rest” prompts which help to do automatic segmentation

on the training data. All the results reported are the average test results from 10 users.

Figure 8-1 shows a visualization of the recognition result on a test sequence. The figure

highlights the challenges in the test sequences: there are 21 gestures in each continuous

unsegmented sequence; gestures sometimes follow one another immediately.

Figure 8-1: Comparison between recognition result using online inference and ground
truth. The colors correspond to different gestures. For discrete flow gestures (Swipe

Left/Right, Circle, Horizontal Wave), one color segment with a fixed length is shown at
the time of response. For continuous flow gestures, the recognized gesture is shown at

each frame indicating frame-by-frame responses.

8.2 Effect of the Number of Principal Components

PCA reduces the dimensionality of the feature vectors, and hence, reduces the computational

complexity. I use cross-validation to find the best number of principal components that

accounts for the variation in the data while keeping the dimension at the minimum. Figure 8-

106

2 shows how the recognition F1 scores depends on the number of principal components used

for the HOG descriptor. The best average score is obtained with 15 principal components.

Figure 8-2: Graph showing how F1 scores for discrete flow gestures, continuous flow
gestures and the average scores change with the number of principal components used

for the HOG descriptor.

8.3 Compare Different Topologies

In this section, I compare my unified framework with a common HMM-based approach used

in previous works [55, 63], which use the same topology for all gestures.

Table 8.1 compares the results between the two methods. The third column is the result

from treating the two forms of gestures in the same way, i.e., all gestures have the same left-

right Bakis topology for their nucleus phases. The fourth column is the result from using

a left-right Bakis topology for path gestures and a single state topology for pose gestures.

To ensure a fair comparison, all hidden states have 3 mixtures of Gaussians. As Table 8.1

shows, having different HMM topologies for the two forms of gestures significantly increases

107

the recall and F1 score for pose gestures.

Same topol-
ogy for two
forms of ges-
tures

Different
topologies for
two forms of
gestures

Path & discrete flow
gestures

Precision 0.84 (0.16) 0.82 (0.16)
Recall 0.87 (0.17) 0.87 (0.18)
F1 0.85 (0.16) 0.84 (0.16)
Responsiveness (s) 0.6 (0.3) 0.6 (0.3)

Pose & continuous flow
gestures

Precision 0.65 (0.14) 0.63 (0.11)
Recall 0.41 (0.15) 0.65 (0.09)
F1 0.50(0.14) 0.64 (0.10)

Average F1 0.675 (0.150) 0.740 (0.130)

Table 8.1: Results from using different topologies. The numbers in parentheses are
standard deviations. The results are based on using 3 mixtures of Gaussians for all

hidden states, and lag time l = 8 frames.

For gestures with arbitrary movement (e.g., pose gestures), it is difficult to use embedded

training to accurately align pre-stroke, nucleus and post-stroke phases, because training

sequences can have very different lengths, and so do the testing sequences. Figure 8-3 shows

the estimates of the most likely hidden states for a Palm Up gesture sequence when the same

left-right topology are used for both forms of gestures is used. The main (center) part of the

gesture, which should be the nucleus of the gesture, is identified as the post-stroke. This is

why it is important to have different topologies and different training strategies for the two

forms of gestures.

Figure 8-3: Estimated hidden states for a Palm Up gesture using the left-right model
the same as path gestures. Different colors correspond to different hidden states.

108

8.4 Effect of Different Numbers of Mixtures

The previous section shows that using different topologies for path and pose gestures give

better recognition performance. So using this model, I investigate the effects of the number

of mixtures (k) in the MoG emission probabilities.

First, I set k be the same for both forms of gestures. Fig. 8-4 shows that the F1 score

increases as the number of mixtures increases until k = 3. After that, we start to see the

effect of overfitting.

Figure 8-4: F1 scores versus number of mixtures.

I then experimented with using different k’s for path and pose gestures. For path gestures,

I set kpath = 3, and use a different number of mixtures, kpose
g ∈ {3 . . . 6}, for each pose gesture

g. Each kpose
g is chosen according to the Bayesian Information Criterion (see Section 7.2.2).

Using this method, I am able to improve precision, recall and F1 scores for both forms of

the gestures even further (see Table 8.2).

109

Use different
topologies and
numbers of mix-
tures

Path & discrete flow
gestures

Precision 0.94 (0.05)
Recall 0.93 (0.08)
F1 0.93 (0.06)
Responsiveness (s) 0.6 (0.2)

Pose & continuous
flow gestures

Precision 0.68 (0.10)
Recall 0.69 (0.08)
F1 0.68 (0.09)

Average F1 0.805 (0.075)

Table 8.2: Results from using different numbers of mixtures of Gaussians for the
emission probabilities (l = 8 frames).

8.5 Effect of Different Lag Times

Figure 8-5 shows how the F1 scores change with respect to the lag time (l) in fixed-lag

smoothing. The performance increases as l increases, and plateaus at l = 8 frames which

is about 0.3s at 30 FPS. This shows that more evidence does help to improve the estimates

until a limit, and we do not need to sacrifice too much delay to reach the limit.

Figure 8-5: F1 score versus lag time l.

110

8.6 Training Time

The HMM-based unified framework is fast to train. The average computation time for

training the model for one user is about 5s with 7 gestures and 6 training examples per

gesture.

Because of the fast training process, the system is easily extensible. New gestures can

be added by recording 3-6 repetitions of the gesture using the Kinect; the system will train

an HMM model for the gesture and add it to the existing combined HMM. This process,

including the recording time, takes only a few minutes.

8.7 User Independent Evaluation

Our survey (Section 3.2.4) indicated that users generally prefer a system to have a predefined

gesture set and then add or change gestures later according to their own preferences. This

means that having a user independent base model will be useful as well. If the system has

user provided training examples for certain gestures, it uses the user dependent models for

those gestures; otherwise it backs off to the base model. This adaptation strategy is similar

to [79].

To evaluate the user independent model, I did a 10-fold cross-validation where in each

fold, the data from one user’s last 2 sessions are used for testing and the data from the

remaining 9 users’ first 2 sessions are used for training. Table 8.3 shows the average, best

and worst results among the users. We can see that there is large variation among the users.

Users who want to do the gestures differently need to train their user dependent models. For

example, the results based on user dependent model for user PID-02 is much better than the

user independent model.

8.8 Discussion

Our overall best performance for the YANG dataset is reported in Table 8.2. The perfor-

mance for the pose and continuous flow gestures is relatively low compared to that of the

path and discrete flow gestures. Most confusions are among the 3 pose gestures, i.e., Point,

111

Average Best
(PID-01)

Worst
(PID-02)

User dep.
(PID-02)

Path & discrete
flow gestures

Precision 0.72 (0.18) 1.00 0.35 0.96
Recall 0.72 (0.16) 1.00 0.72 1.00
F1 0.70 (0.16) 1.00 0.47 0.98
Responsiveness (s) 0.6 (0.3) 0.6 0.4 0.4

Pose &
continuous flow
gestures

Precision 0.59 (0.12) 0.79 0.49 0.67
Recall 0.56 (0.16) 0.77 0.21 0.67
F1 0.56 (0.13) 0.78 0.29 0.67

Average F1 0.63 (0.15) 0.89 0.38 0.83

Table 8.3: User independent model 10-fold cross validation results (l = 8 frames). The
last column is the user dependent result for user PID-02 for comparison.

Palm Up, Grab (see Figure 8-6). There are big variations in the recognition results for the

pose gestures among users: the highest F1 score for pose gestures is 0.81 and the lowest is

0.58. For the ones with low F1 scores, confusion occurs when there is significant motion blur

(see Figure 8-7). These correspond to the users who move relatively fast when doing the

pose gestures. This suggests that with the frame rate of the Kinect sensor used (30Hz for

the Kinect version One), users may need to perform pose gestures relatively slowly in order

to get better recognition results, or a better (higher rate) sensor is needed.

2.4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

6.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

3.4

0.0

0.0

0.1

0.2

0.0

0.0

0.2

0.0

2.7

0.0

0.2

0.1

0.0

0.1

1.0

0.8

0.4

59.1

6.4

16.3

0.1

10.0

0.2

2.0

1.3

4.5

76.0

6.5

0.3

3.2

0.2

3.8

0.9

30.0

12.6

69.2

0.2

84.3

92.2

90.0

94.7

6.3

4.8

7.8

99.4

gr
ou

nd
 tr

ut
h

prediction

Swipe
_L

ef
t

Swipe
_R

igh
t

Circ
le

Hor
izo

nt
al_

W
av

e
Poin

t

Palm
_U

p
Gra

b
Res

t

Swipe_Left

Swipe_Right

Circle

Horizontal_Wave

Point

Palm_Up

Grab

Rest

Figure 8-6: Confusion matrix for pose gestures.

112

Figure 8-7: This frame is mistakenly classified as Grab while the true gesture is Point.
Motion blur is significant.

113

Each gesture is created at the moment of speaking and highlights what is

relevant and the same entity can be referred to by gestures that have changed

their form.

David McNeill, Hand and mind: what gestures reveal about thought

9
Gestural Interaction

This chapter discusses application level considerations for natural multimodal interaction.

9.1 Client Server Architecture

I developed a multimodal input recognition engine that consists of a gesture recognition

engine and a speech recognition engine. The gesture recognition engine includes the hand

tracking, feature extraction and gesture recognition modules described in the previous chap-

ters. For speech recognition, I used the application programming interface (API) from the

Windows for Kinect SDK1.

The multimodal input recognition engine runs as a server sending recognized gesture and

speech events over a WebSocket2. Any client application can subscribe to the input events

1http://msdn.microsoft.com/en-us/library/jj131035.aspx
2http://en.wikipedia.org/wiki/WebSocket

114

http://msdn.microsoft.com/en-us/library/jj131035.aspx

by connecting to the server socket. There are two types of events: gesture and speech, and

they are serialized in JSON format3 (Listing 9.1 and 9.2).

Listing 9.1: Gesture event JSON object

{"gesture": <gestureName>,

"eventType": <"StartPreStroke" | "StartNucleus" | "StartPostStroke">,

"phase": <"PreStroke" | "Nucleus" | "PostStroke">,

"rightX": <rightHandXWorldCoordinate>,

"rightY": <rightHandYWorldCoordinate> }

Listing 9.2: Speech event JSON object

{"speech": <speechTag>}

9.2 Gesture Controlled Presentation

To demonstrate the use of multimodal input recognition system in a real life application, I

developed a gesture controlled presentation application4, acting as a client. The application

is HTML-based and uses the reveal.js framework5. The framework’s API allows me to

control the presentation directly (e.g., changing slides, showing an overview, pausing the slide

show) instead of controlling it by binding to mouse events (as is commonly done in many

previous demonstrations of gesture control). There are only 2 or 3 buttons on a mouse, and

its functionality is confined to clicking and dragging. By mimicking mouse events, one limits

the full potential of gesture input interface, because our hands have five fingers and are much

more versatile than doing just clicking and dragging.

9.2.1 Handling Different Categories of Gestures

This application demonstrates the use of path and pose gestures and shows how the system

respond differently for discrete flow and continuous flow gestures. I map the gestures in the

YANG dataset to presentation control actions (Table 9.1).

3http://www.json.org/
4See http://groups.csail.mit.edu/mug/projects/gesture_kinect/ for demo videos.
5http://lab.hakim.se/reveal-js/

115

http://www.json.org/
http://groups.csail.mit.edu/mug/projects/gesture_kinect/
http://lab.hakim.se/reveal-js/

Gesture Action
Swipe Left Next slide (DF)
Swipe Right Previous slide (DF)
Circle Toggle overview (show all slides) (DF)
Horizontal Wave Toggle pause (turn screen black) (DF)
Point Show a round cursor corresponding to hand position (CF)
Palm Up Show a square cursor and seek video forward or backward (CF)

Table 9.1: Mapping from gestures to presentation control actions. DF stands for
discrete flow gesture and CF stands for continuous flow gesture.

An interface should reflect the system’s current state of understanding of the users’ actions

to help users develop the right mental model for interaction. For discrete flow gestures, the

interface needs to respond at the StartPostStroke event. This responsiveness of the system

helps users understand the relation between their actions and the system’s responses.

For continuous flow gestures, the interface needs to show visual feedback of frame by

frame changes corresponding to certain hand parameters. In addition, as pose gestures have

distinct poses but arbitrary movement, it is important to have different visualizations show

the system’s understanding of the different poses. Hence, for a Point gesture, the system

shows a round cursor moving according to the user’s hand position (Figure 9-2), and for a

Palm Up gesture, it shows a square cursor (Figure 9-1). Listing 9.3 shows the corresponding

client code in CoffeeScript.

Listing 9.3: Client code mapping gesture events to actions in CoffeeScript.

switch ge.eventType

when ’StartPostStroke’

switch ge.gesture

when ’Swipe_Left’

if @_config.mirror then Reveal.right() else Reveal.left()

when ’Swipe_Right’

if @_config.mirror then Reveal.left() else Reveal.right()

when ’Circle’ then Reveal.toggleOverview()

when ’Horizontal_Wave’ then Reveal.togglePause()

else

switch ge.gesture

when ’Point’ then @_view.updateCirclePointer(ge.rightX, ge.rightY,

@_config.mirror)

when ’Palm_Up’ then @_view.updateSquarePointer(ge.rightX, ge.rightY,

@_config.mirror)

when ’Rest’ then @_view.reset()

116

Figure 9-1: Square cursor for Palm Up gesture to seek video forward or backward by
moving hand left or right.

9.2.2 Gesture and Speech

Traditionally, gestures are used to augment speech in interaction, as pioneered by Bolt’s

“Put That There” system [10]. My previous user study [76] shows that speech also can

augment gestures.

When using gesture to augment speech, gesture is often used to indicate location. This

type of gesture, also called deictic gesture (a pointing gesture), is very effective in conveying

spatial information, and is often used to supplement a spoken deictic marker (this, those,

here, etc.) [46, 67]. In my application, the user can show a slide by pointing at it in the

overview and saying “show this slide” (Figure 9-2). Synonyms of the verb (e.g., “display”,

“go to”) can be used as well to improve flexibility and naturalness.

When speech is used to augment gesture, the spoken words are adjectives and adverbs to

modify actions indicated by gestures [76]. This combination is particularly useful when there

is a limitation in the expressiveness of the gesture or in the physical space of the gesture. In

117

Figure 9-2: In the overview mode, user can point to a slide and say “show this slide” to
display it.

my application, when using the Palm Up gesture to move a video forward and backward the

user can say “faster” or “slower” or their synonyms to control video speed.

The speech recognition in my system is based on key word spotting by defining grammars

in XML (Listing 9.4). The application needs to connect a behavior to each speech tags.

Listing 9.4: An example of grammar definition in XML.

<item>

<tag>SHOW</tag>

<one-of>

<item>show</item>

<item>open</item>

<item>display</item>

<item>go to</item>

</one-of>

</item>

When speech and gesture are used together, they not only complement each other, but

also reinforce each other. In the presentation application, the behavior to speech events is

dependent on gesture event (see Listing 9.5). The dependency helps to reduce false positives

118

such that if the user says some command words defined in the grammar without doing the

gesture, the system will not respond. This allows the user to say those words freely in other

context.

Listing 9.5: Code for speech events in CoffeeScript.

switch speechText

when ’MORE’

@_view.onMore() if @_currentGesture is ’Palm_Up’

when ’LESS’

@_view.onLess() if @_currentGesture is ’Palm_Up’

when ’SHOW’

@_view.onShowSlide() if @_currentGesture is ’Point’

In many commercial speech input interface, a trigger action is required to tell the system

that the following speech is intended as a command. The trigger action can either be actions

such as holding down a button (e.g., iPhone’s Siri interface and Google Now) or specific

speech utterance (e.g., “OK Glass” for Google Glass and “Xbox” for Xbox Kinect voice

commands). Using a combination of speech and gesture provides an alternative and more

natural way to engage the system for voice command.

9.2.3 Natural Direction

The natural direction of interaction depends on the relative position of the display, the user

and the sensor. There are two common modes of interaction: users facing the display (e.g.,

controlling TV); or users facing away from the display (e.g., doing presentation). If the

user is facing the display, the UI should show mirrored effects. For example, a Swipe Left

gesture would naturally corresponds to “go to the next slide” action. On the other hand, if

the user and the display face the same direction (Figure 9-3), the Swipe Left gesture would

corresponds more naturally to “go to the previous slide” action.

As a result, the UI responses need to adapt to the sensor and the display coordinate

spaces (Figure 9-4). For example, if the display and the sensor are facing in the same

direction, when the user points towards the positive x direction in the sensor’s coordinate

space, the corresponding cursor on the display should also move to the positive x direction

in the display’s coordinate space (Figure 9-4(a)). On the other hand, if the display and

119

Figure 9-3: The user and the display face the same direction during presentation.

the sensor are facing the opposite directions, when the user points towards the positive x

direction in the sensor’s coordinate system, the corresponding cursor should move to the

negative x direction in the display’s coordinate space (Figure 9-4(b)). My system can be

easily configured using a flag for these two modes (see Listing 9.3).

(a) Display and sensor face the same direction. (b) Display and sensor face the opposite directions.

Figure 9-4: Sensor and display coordinate spaces.

120

9.3 Adding New Gestures

Listing 9.6 shows an example of the gesture definition file the system uses. To add a new

gesture, the user just needs to add a new line to the file specifying the name of the gesture,

the form of the gesture (D for dynamic path gesture, S for static pose gesture), whether the

gesture has arbitrary number of repetitions like the Wave gesture (0 means no repetition)

and the number of hidden states per gesture (for pose gestures, the number of hidden states

must be 1). Then the user can specify the number of examples per gesture to provide and

start the training process (Figure 9-5). The system records the new gesture examples and

updates the gesture model to include the new one.

Listing 9.6: Gesture definition file.

#name, form, repeat, nHiddenStates

Swipe_Left, D, 0, 4

Swipe_Right, D, 0, 3

Circle, D, 0, 4

Horizontal_Wave, D, 1, 4

Point, S, 0, 1

Palm_Up, S, 0, 1

Next_Point, D, 0, 3

9.4 Discussion

The client server architecture provides a clean separation of the user interface and the back-

end recognition engine, hiding the complexity of the multimodal input recognition from

application developers. The gesture event based API gives a rich set of input compared to the

mouse events (e.g., mouse entered, mouse clicked, mouse dragged), and allows easy mapping

to application functionality. The limited functionality of a mouse forces the Windows-Icons-

Menus-Pointer (WIMP) paradigm in UI design that has not changed for decades. With a

new richer set of gesture input, we open up the potential for designing simpler, more natural,

and more intuitive user interfaces.

121

Figure 9-5: Training interface.

122

Language is a part of social behavior. What is the mechanism

whereby the social process goes on? It is the mechanism of ges-

ture. . .

George Herbert Mead, Mind, self, and society

10
Conclusion

I developed a real-time continuous gesture recognition system for natural human computer

interaction. The unified probabilistic framework for handling two forms of gestures is a novel

approach, and the evaluation shows promising results: an average online recognition F1 score

of 0.805 using the hybrid performance metric, on a challenging dataset with unsegmented

gestures of different forms. The system also achieves real-time performance at 30FPS. Using

the framework, I developed a gesture controlled presentation application similar to the one

described at the beginning of this paper. All the code is open-source and is available online1.

Another novel approach is using embedded training and hidden state information to

detect gesture phases, allowing the system to respond more promptly. On average, for

discrete flow gestures, the system responds 0.6s before the hand comes to rest.

I collected a new dataset that includes two forms of gestures, a combination currently

1http://groups.csail.mit.edu/mug/projects/gesture_kinect/index.html#code

123

http://groups.csail.mit.edu/mug/projects/gesture_kinect/index.html#code

lacking in the community, and plan to make it public. I also proposed a hybrid performance

metric that is more relevant to real-time interaction and different types of gestures.

10.1 Limitations

Currently, the system handles only single-hand gestures. It will be great to add support for

two-hand gestures. One challenge for this is handling cases where there is occlusion between

the two hands. Once features from both hands are computed, they can be concatenated,

and the recognition module could remain the same.

The number of hidden states per gesture needs to be specified by the user or the appli-

cation developer in the gesture definition file. In the future work, we will make the system

automatically learn the number of hidden states through cross-validation and by grouping

similar frames [62].

The performance for pose gestures is lower than that for path gestures. Two factors

contribute to this problem: the limitation in both the pixel and the depth resolutions of

the Kinect sensor, and motion blur. It would be interesting to test with the new version of

the Kinect sensor, which uses a time-of-flight depth sensor and is reported to have a higher

resolution. Other feature descriptors (e.g., histograms of optic flows) and encoding methods

(e.g, sparse coding [36]) can be explored as well.

The performance of a user independent model is relatively low. This is expected because

there is large variation among users and the number of users in our dataset is relatively

small to train a general model. Even though users can quickly define and train their own

models, a relatively accurate base model is always valuable. Hence, more work can be done

to improve the base model, e.g., using mixture of HMMs [30]. The mixture of Gaussians

used in the current system accounts for variation in each hidden state, but it cannot model

variations in transition probabilities between the hidden states. The mixture of HMMs can

fill the gap in this regard.

124

10.2 Future Work

In addition to work that address the limitations, future research should also consider pushing

ahead on natural human computer interaction.

Sensors In this thesis, I considered the Kinect and the IMU as input sensors. The gesture

controlled presentation application currently only uses the Kinect data. We can explore even

more combinations of sensors by including the Leap Motion Controller and smartwatches.

Each sensor has strengths of its own, so by combining them we can get the best system

overall. The Leap Motion Controller is used mostly as an environmental sensor, but we can

also explore its use case a wearable sensor (e.g., attaching it to the arm or wearing it in front

of the chest). Its high accuracy in finger tracking may help improve recognition performance

for pose gestures.

User adaptation This is a hot topic in both machine learning and HCI, and is applicable

to many domains such as speech recognition and touch screen keyboard input [79]. Currently,

the system uses a binary decision to do user adaptation: if a user-trained model is present,

the system will use that model; otherwise it uses the base model. It would be more convenient

if the system learned the user dependent model implicitly while the user is using the system,

and used soft decisions to combine the base model and user dependent model, e.g., weighted

combination.

Interactive training Due to the large variation in the way users performing gestures

and differences in user preference, the gesture recognition system would benefit from having

an easy to use interface for fast training. Many efforts in machine learning research assume

the availability of training data. Creating interfaces that are easy for users to provide training

examples, either in a separate session, or when using the system and provide feedback to

the system for wrong recognition, would be an interesting interdisciplinary topic in machine

learning and HCI.

Context-aware gesture recognition When I was using the gesture controlled presen-

tation application during a talk, I had to be careful not to do a gesture that the system would

recognize and respond to even though that was not my intention. This kind of restriction

can make users feel more constrained and reduce the naturalness of the interaction. The

125

reason for this is that currently, whenever the system detects a movement that matches a

gesture model, it will respond. People are much better at discerning whether or not a gesture

is intended as a command, based on the context. It will be interesting to add this capability

to the system as well. For example, in the gesture controlled presentation application, we

might model the context based on what the user is saying and the state of the application

(e.g., the content on the slide and the progression on the slide) and make gesture recognition

dependent on the context.

126

A
Review of F-measure

In statistical analysis of binary classification, the F-measure is a measure of test’s accuracy,

combining both the precision and the recall of the test. Precision is the fraction of correct

results from all the returned results (i.e., the number of correct results divided by the number

of all returned results), and recall is the fraction of correct results from all the results that

should be returned (i.e., the number of correct results divided by the number of results that

should have been returned) [3]. Note that both precision and recall have the same numerator.

The general formula for F-measure is

Fβ = (1 + β2) · precision · recall

(β2 · precision) + recall

=
1 + β2

1
precision

+ β2

recall

which is the weighted harmonic mean of precision and recall. The F1 score (β = 1) is the

127

most commonly used one where precision and recall have equal weight:

F1 = 2 · precision · recall

precision + recall

Two other commonly used F measures are the F2 measure, which weighs recall higher than

precision, and the F0.5 measure, which puts more emphasis on precision than recall.

128

B
Principal Component Analysis Optimizations

Principal Component Analysis (PCA) computes a new basis to re-express a dataset. The new

basis is a linear combination of the original basis. All the new basis vectors are orthonormal

and are in the directions of largest variations in the data [57]. This appendix explains some

optimizations I did to speed up PCA computation.

B.1 No Scaling

Assume we have n data points and each data point is represented by a feature vector with

dimension d. Let matrix X be the “centered” data (i.e., every feature has mean 0), where

columns are data points and rows are features (i.e, a d×n matrix), then nΣ = XXT , where

Σ is the covariance matrix of the data and n is the number of data points. The principal

components of the data are the eigenvectors of Σ.

129

Since XXT and Σ are real symmetric matrices, their eigenvectors can be chosen such

that they are real, orthogonal to each other and have norm one. Let QXΛXQ
T
X be the

eigendecomposition of XXT and QΛQT be the eigendecomposition of Σ, and QX and Q

have unit column vectors, then we have

nQΛQT = QXΛXQ
T
X

Λ =
1

n
ΛX

Q = QX

This shows that PCA is invariant to the scaling of the data, and will return the same

eigenvectors regardless of the scaling of the input [6]. Only the eigenvalues will be scaled by

the same factor if the input is scaled.

The total variance in the data is defined as the sum of the variances of the individual

components, i.e., the sum of eigenvalues of Σ. Let λ1, λ2, . . . , λn be the eigenvalues of Σ

(sorted in descending order), i.e., the diagonal entries of Λ. Variation explained by k principal

components is then given by

∑k
i=1 λi∑n
i=1 λi

(B.1)

We can use the diagonal entries from ΛX to compute the variation explained because the

scaling factor will be canceled out.

B.2 Transpose X

If d is much larger than n, it is more efficient1 to compute XTX which is a n × n matrix

instead of d × d. If we find the eigenvectors of this matrix, it would return n eigenvectors,

each of dimension n.

Let QXT ΛXTQT
XT be the eigendecomposition of XTX. Let vi be an eigenvector of XTX

(i.e., vi is a column vector of QXT), and ui be an eigenvector of XXT (i.e., ui is a column

1http://onionesquereality.wordpress.com/2009/02/11/face-recognition-using-eigenfaces-

and-distance-classifiers-a-tutorial/

130

http://onionesquereality.wordpress.com/2009/02/11/face-recognition-using-eigenfaces-and-distance-classifiers-a-tutorial/
http://onionesquereality.wordpress.com/2009/02/11/face-recognition-using-eigenfaces-and-distance-classifiers-a-tutorial/

vector of QX). We can show that

(XXT)2 = XQXT ΛXTQT
XTX

T = QXΛ2
XQ

T
X

This means that ui = siXvi where si is a scaling factor that normalizes Xvi. Let λvi and λui

be the eigenlavues corresponding to vi and ui.

XTXvi = λvi vi

XXTXvi = λviXvi

XXTui = λvi ui = λui ui

This proves that λui = λvi .

The above shows that we can obtain ui and λui from vi and λvi .

131

C
Review of State-space Model

State-space models (e.g., HMMs) are used to model sequential data. A dynamic Bayesian

network1 (DBN) [17] provides an expressive language for representing state-space models. It

is a way to extend Bayes nets to model probability distribution over a semi-infinite collection

of random variables.

C.1 Representation

Let St be the hidden state and Xt be the observation at time t. Any state-space model must

define a prior, P (S1), a state-transition function, P (St|St−1), and an observation function,

P (Xt|St). An HMM is one way of representing state-space models.

1This part is mainly based on the Kevin Murphy’s Ph.D. thesis [42].

132

C.2 Inference

A state-space model is a model of how St generates or “causes” Xt and St+1. The goal of

inference is to invert this mapping, i.e., to infer S1:t given X1:t. There are many kinds of

inference one can perform on state-space models. Here I list the ones that are relevant to

this thesis. See Figure 7-9 for a summary.

C.2.1 Filtering

The most common inference problem in online analysis is to recursively estimate the current

belief state at time t using Bayes’s rule:

P (St|x1:t) ∝ P (xt|St, x1:t−1)P (St|x1:t−1)

= P (xt|St)

[∑
st−1

P (St|st−1)P (st−1|x1:t−1)

]

This task is traditionally called “filtering”, because we are filtering out the noise from the

observations. We can find this value using the forward algorithm.

C.2.2 Smoothing

Smoothing means we use all the evidence up to the current time to estimate the state of the

past, i.e., compute P (St−l|x1:t), where l > 0 is the lag. This is traditionally called “fixed-lag

smoothing”. In the offline case, this is called (fixed-interval) smoothing which corresponds

to computing P (St|x1:T) for all 1 ≤ t ≤ T .

C.2.3 Viterbi Decoding

In Vertibi decoding (computing the “most probable explanation”), the goal is to compute

the most likely sequence of hidden states give the data:

s∗1:t = arg max
s1:t

P (s1:t|x1:t)

133

C.2.4 Classification

The likelihood of a model, θ, is P (x1:t|θ). This can be used to classify a sequence as follows:

C∗(x1:T) = arg max
C

P (x1:T |θC)P (C)

where P (x1:t|θC) is the likelihood to the model for class C, and P (C) is the prior for class

C. This method ahs the advantage of being able to handle sequences of variable-length. By

contrast, most classifiers work with fixed-size feature vectors.

134

D
Hidden Markov Models

An HMM is an example of a state-space model. It is a stochastic finite automaton, where

each state generates (emits) an observation [42].

D.1 Inference

The main inference algorithm for HMMs is the forward-backward algorithm. We compute

α recursively in the forward pass as follows:

αt(s) = P (St = s|x1:t)

=
P (x1:t−1)P (St = s, x1:t)

P (x1:t)P (x1:t−1)

=
1

ct
P (St = s, xt|x1:t−1)

135

where

P (St = s, xt|x1:t−1) =
P (St = s, x1:t)

P (x1:t−1)

=
P (St = s, x1:t−1)P (St = s, x1:t)

P (x1:t−1)P (St = s, x1:t−1)

= P (St = s|x1:t−1)P (xt|St = s) (Markov property)

=
∑
s′

P (St = s, St−1 = s′|x1:t−1)P (xt|St = s)

=

[∑
s′

P (St = s|St−1 = s′)P (St−1 = s′|x1:t−1)

]
P (xt|St = s)

=

[∑
s′

P (St = s|St−1 = s′)αt−1(s′)

]
P (xt|St = s)

and

ct = P (xt|x1:t−1) =
∑
s

P (St = s, xt|x1:t−1)

Without the normalization term ct, we would be computing αt(s) = P (St = s, x1:t) which

is the original definition of the forward probability. Normalization prevents underflow, and

also gives a more meaningful quantity (a filtered state estimate) [42]. We keep track of the

normalizing constants so that we can compute the likelihood of the sequence:

P (x1:T) = P (x1)P (x2|x1)P (x3|x1:2) . . . P (xT |x1:T−1) =
T∏
t=1

ct

In the backward pass, we compute βt(i)
def
== P (xt+1:T |St = i), the sum of probabilities of

all paths starting with state s at position t and going to the end of the sequence. Combining

forward and backward passes produces the final answer

γt(i)
def
== P (St = i|x1:T) ∝ αt(s)βt(s)

136

D.2 Termination Probability

Suppose s ∈ {1, 2, . . . , K}, we add an special state END, so s ∈ {1, 2, . . . , k, END}. We also

add a special observation at the end of the sequence x1:T to get (x1:T , xEND). The model

takes the following form:

P (x1:T , xEND, s1:T , END; θ) = t(s1)t(END|sT)
T∏
t=2

t(st|st−1)
T∏
t=1

e(xt|st)

We define the following

e(xEND|END) = 1

e(xEND|s) = 0 for s 6= END

e(xi|END) = 0 for i 6= END

t(s|END) = 0 ∀s

αt(END) =

∑

s′∈{1...K} α̂t−1(s′)× t(END|s′), if t == T + 1

0, if t ≤ T

βT+1(s) = 1 ∀s

βT (s) = βT+1(END)× t(END|s) = t(END|s)

βt(END) = 0 for t ≤ T

We want to find t(END|s) for s 6= END. The EM update for t(END|s) is

t(END|s) =

∑n
i=1 count(i, s→ END; θ−)∑n
i=1

∑
s′ count(i, s→ s′; θ−)

count(i, s→ END; θ) = P (ST = s, ST+1 = END|xi,1:T , xEND; θ);

∝ αT (s)× t(END|s)× βT+1(END)

= αT (s)× t(END|s)

= αT (s)× βT (s) ∝ γT (s)

137

We do not need to compute the constant of proportionality explicitly because we normalize

γt(s) at each time step.

Finally, the likelihood of the sequence is

P (x1:T , xEND; θ) =
T∏
i=1

ci
∑

s∈{1...K}

αT (s)× t(END|s)

D.3 Learning

D.3.1 Baum-Welch Training

The Baum-Welch algorithm uses the well know Expectation Maximization (EM) algorithm

to find the maximum likelihood estimate of the parameters of a HMM model given a set of

observed feature vectors [2].

For discrete output, the update for the emission probability at each iteration is

e(x|s) =

∑n
i=1 count(i, s x; θ−)∑n

i=1

∑
x count(i, s x; θ−)

where count(i, s x; θ) is the expected number of times the state s is paired with paired

with the emission x in the training sequence i for parameters θ.

For continuous output with Gaussian emission probability, the updates are

µ
s

=

∑n
i=1

∑T
t=1 P (St = s|xi,1:T ; θ−)xi,t∑n

i=1

∑T
t=1 P (St = s|xi,1:T ; θ−)

=

∑n
i=1

∑T
t=1 γj(s)xi,t∑n

i=1

∑T
t=1 γt(s)

Σs =

∑n
i=1

∑T
t=1 γt(s)(xi,t − µ−s)(xi,t − µ−s)T∑n

i=1

∑T
t=1 γt(s)

The − superscript denotes parameters from the previous iteration.

138

For continuous output with mixture of Gaussians emission probability, the update are

µ
s,q

=

∑n
i=1

∑T
t=1 P (St = s,Qt = q|xi,1:T ; θ−)xi,t∑n

i=1

∑T
t=1 P (St = s,Qt = q|xi,1:T ; θ−)

Σs,q =

∑n
i=1

∑T
t=1 p(St = s,Qt = q|xi,1:T ; θ−)(xi,t − µ−s)(xi,t − µ−s)T∑n

i=1

∑T
t=1 p(St = s,Qt = q|xi,1:T ; θt−1)

P (St = s,Qt = q|xi,1:T ; θ−) = γt(s)P (Qt = q|St = s, xi,t)

= γt(s)
P (Qt = q|St = s)N(xi,t;µs,q,Σs,q)

e(xi,t|s)

D.3.2 Viterbi Training

Instead of summing over all possible paths as in Baum-Welch training, Viterbi training

only considers the single most likely path computed using the Viterbi algorithm. In each

iteration, the Viterbi path for each training sequence is computed, and the model parameters

are updated. For single Gaussian emission probability, the update at iteration t is

tt(s′|s) =

∑n
i=1 count(i, s→ s′; θt−1)∑n

i=1

∑
s′ count(i, s→ s′; θt−1)

µt
s

=

∑n
i=1

∑m
j=1 xi,j∑n

i=1

∑
s′ count(i, s→ s′)

s.t. Sj = s

where count(i, s→ s′; θt−1) is the number of times the transition s→ s′ is seen in the most

likely path for sequence i.

Viterbi training is much faster than Baum-Welch training, but does not work quite as

well. However, it can be used in the initialization step to provide better start values for

Baum-Welch training.

D.4 Embedded Training

Embedded training simultaneously updates all of the HMMs in a system using all of the

training data. In HTK [80] for speech recognition, it is suggested to perform one iteration of

EM update for embedded training after individual phone HMMs are trained. This is because

repeated re-estimation may take an impossibly long time to converge. Worse still, it can lead

139

to over-training since the models can become too closely matched to the training data and

fail to generalize well on unseen test data.

140

E
Review of Conditional Random Fields

This chapter is based on [66]. Let variables y be the attributes of the entities that we wish to

predict, with input variables x representing the observation about the entities. Conditional

random fields [32] is simply a conditional distribution p(y|x) with an associated graphical

structure.

In a CRF with a general graphical structure, we can partition the factors of the graph

into C = {C1, C2, . . . , Cp} where each Cp is a clique template whose parameters are tied. The

clique template Cp is a set of factors which has a corresponding set of sufficient statistics

{fpk(xp,yp)} and parameters θp ∈ RK(p) where K(p) is the number of feature functions in

Cp. The CRF can be written as

p(y|x) =
1

Z(x)

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,yc; θp)

141

where each factor is parameterized as

Ψc(xc,yc; θp) = exp

K(p)∑
k=1

λpkfpk(xc,yc)

and the normalization function is

Z(x) =
∑
y

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,yc; θp)

=
∑
y

exp

∑
Cp∈C

∑
Ψc∈Cp

K(p)∑
k=1

λpkfpk(xc,yc)

The conditional log-likelihood is given by

`(θ) =
∑
Cp∈C

∑
Ψc∈Cp

K(p)∑
k=1

λpkfpk(xc,yc)− logZ(x)

The partial derivative of the log-likelihood with respect to a parameter λpk associated

with a clique template Cp is

∂`

∂λpk
=
∑

Ψc∈Cp

fpk(xc,yc)−
1

Z(x)

∂Z(x)

∂λpk

=
∑

Ψc∈Cp

fpk(xc,yc)−
1

Z(x)

∑
y

exp

∑
Cp∈C

∑
Ψc∈Cp

K(p)∑
k=1

λpkfpk(xc,yc)

 ∑
Ψc∈Cp

fpk(xc,yc)

=
∑

Ψc∈Cp

fpk(xc,yc)−
1

Z(x)

∑
y

p(y,x)
∑

Ψc∈Cp

fpk(xc,yc)

=
∑

Ψc∈Cp

fpk(xc,yc)−
1

Z(x)

∑
Ψc∈Cp

∑
y

p(y,x)fpk(xc,yc)

=
∑

Ψc∈Cp

fpk(xc,yc)−
1

Z(x)

∑
Ψc∈Cp

∑
y′c

p(y′c,x)fpk(xc,y
′
c)

=
∑

Ψc∈Cp

fpk(xc,yc)−
∑

Ψc∈Cp

∑
y′c

fpk(xc,yc)p(y
′
c|x)

142

E.1 Linear-Chain CRF

In linear-chain CRF, each feature function has the form fk(yt, yt−1, xt). We have one feature

fij(y, y
′, x) = 1(y = i)1(y′ = j) for each transition (i, j) and one feature fi(y, y

′, x) = x

for each state. Let M be the total number of hidden states, and d be the dimension of the

observation x. The number of model parameters is O(M2 + dM). The total training cost

is O(TM2NG) where T is sequence length, N is the number of training examples and G is

the number of gradient computations required by the optimization procedure. Hence if the

number of states is large, the computation can be expensive [66].

The forward-backward algorithm for linear-chain CRF is identical to the HMM version

except that the transition weights Ψt(j, i, xt) are defined differently.

The Viterbi recursion for linear-chain CRF can be computed similarly as in HMMs as

well

δt(s) = max
s′∈S

Ψt(s, s
′, xt)δt−1(s′)

Like in HMMs, the vectors αt, βt and δt are normalized to prevent underflow.

E.2 LDCRF

LDCRF has a linear chain graphical structure as well. The objective function to learn the

parameter θ∗ is:

l(θ) =
n∑
i=1

logP (yi,1:T |xi,1:T , θ)−
1

2σ2
||θ||2

143

where

logP (yi,1:T |xi,1:T , θ) = log
∑

h1:T :∀ht∈Hyt

P (h1:T |x1:T , θ)

= log
∑

h1:T :∀ht∈Hyt

1

Z(x1:T)
exp

(∑
k

λkfk(h1:T , x1:T)

)

= log
∑

h1:T :∀ht∈Hyt

exp

(∑
k

λkfk(h1:T , x1:T)

)
− logZ(x1:T)

The gradient of logP (yi,1:T |xi,1:T , θ) with respect to the parameter λk is

∑
h1:T :∀ht∈Hyt

exp

(∑
k

λkfk(h1:T , x1:T)

)
fk(h1:T , x1:T)

∑
h1:T :∀ht∈Hyt

exp

(∑
k

λkfk(h1:T , x1:T)

) −

∑
h1:T

exp

(∑
k

λkfk(h1:T , x1:T)

)
fk(h1:T , x1:T)

∑
h1:T

exp

(∑
k

λkfk(h1:T , x1:T)

)
=

∑
h1:T :∀ht∈Hyt

P (h1:T |y1:T , x1:T , θ)fk(h1:T , x1:T)−
∑
h1:T

P (h1:T |x1:T , θ)fk(h1:T , x1:T)

144

F
Notation and Abbreviations

We adopt the standard convention that random variables are denoted as capital letters,

and instantiations of random variables (values) are denoted as lower-case letters. We use

underlines for vector-valued quantities to distinguish them from scalar-valued ones. So x

refers to a scalar, while x refers to a vector. We use caligraphic letters to denote sets.

145

Symbol Meaning
St Hidden state variable at time t
Xt Observation (output) at time t
T Length of sequence
H Size of hidden state space
l Lag
k Number of mixtures in MoG
x1:T Sequence of observation
t(s) Initial state probability: P (S1 = s)
t(s′|s) Transition probability: P (St = s′|St−1 = s)
e(xt|s) Emission probability at time t: P (xt|St = s)
αt(s) P (St = s|x1:t)
βt(s) P (xt+1:T |St = s)
γt(s) P (St = s|x1:T)

Table F.1: Notation for HMMs.

Abbreviation Meaning
ATSR Accurate temporal segmentation rate
BIC Bayesian Information Criterion
CF Continuous flow
CPD Conditional probability distribution
CRF Conditional random fields
DBN Dynamic Bayesian network
DF Discrete flow
FPS Frame per second
IMU Inertia measurement unit
HCI Human computer interaction
HHMM Hierarchical hidden Markov model
HMM Hidden Markov model
HOG Histogram of oriented gradients
LDCRF Latent dynamic conditional random field
MoG Mixture of Gaussians
PCA Principal component analysis
SVM Support Vector Machine
TP True positive
TPR True positive rate
UI User interface

Table F.2: List of abbreviations

146

Bibliography

[1] Principal component analysis. https://inst.eecs.berkeley.edu/~ee127a/book/

login/l_sym_pca.html.

[2] Baum–Welch algorithm. http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_

algorithm, Apr 2014.

[3] F1 score. http://en.wikipedia.org/wiki/F1_score, Apr 2014.

[4] Kinect Space user manual. https://kineticspace.googlecode.com/files/kinetic_

space.pdf, May 2014.

[5] Leap Motion. http://en.wikipedia.org/wiki/Leap_Motion, 2014.

[6] PCA. http://deeplearning.stanford.edu/wiki/index.php/PCA, Feb 2014.

[7] B. Bauer and H. Hienz. Relevant features for video-based continuous sign language

recognition. In FG, page 440, 2000.

[8] A. Ben-Hur and J. Weston. A users guide to support vector machines. In Data mining

techniques for the life sciences, pages 223–239. Springer, 2010.

[9] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time

series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[10] R. A. Bolt. “Put-That-There”: Voice and gesture at the graphics interface. In SIG-

GRAPH ’80: Proceedings of the 7th annual conference on Computer graphics and in-

teractive techniques, pages 262–270, New York, NY, USA, 1980. ACM.

147

https://inst.eecs.berkeley.edu/~ee127a/book/login/l_sym_pca.html
https://inst.eecs.berkeley.edu/~ee127a/book/login/l_sym_pca.html
http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm
http://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm
http://en.wikipedia.org/wiki/F1_score
https://kineticspace.googlecode.com/files/kinetic_space.pdf
https://kineticspace.googlecode.com/files/kinetic_space.pdf
http://en.wikipedia.org/wiki/Leap_Motion
http://deeplearning.stanford.edu/wiki/index.php/PCA

[11] G. Bradski and A. Kaehler. Learning OpenCV. The Art of Computer Programming.

O’Reilly, first edition, 2008.

[12] G. R. Bradski. Computer vision face tracking for use in a perceptual user interface,

1998.

[13] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The information visualizer, an

information workspace, pages 181–186. ACM, 1991.

[14] P. R. Cohen, M. Johnston, D. McGee, S. Oviatt, J. Pittman, I. Smith, L. Chen, and

J. Clow. Quickset: multimodal interaction for distributed applications. In MULTIME-

DIA ’97: Proceedings of the fifth ACM international conference on Multimedia, pages

31–40, New York, NY, USA, 1997. ACM.

[15] R. Cutler and M. Turk. View-based interpretation of real-time optical flow for gesture

recognition. In Proc. Automatic Face and Gesture Recognition, pages 416–421, 1998.

[16] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR,

volume 1, pages 886–893, June 2005.

[17] T. Dean and K. Kanazawa. A model for reasoning about persistence and causation.

Comput. Intell., 5(3):142–150, Dec. 1989.

[18] S. Dicintio. Comparing approaches to initializing the expectation-maximization algo-

rithm. Master’s thesis, The University of Guelph, 2012.

[19] S. Escalera, J. Gonzàlez, X. Baró, M. Reyes, O. Lopes, I. Guyon, V. Athitsos, and

H. Escalante. Multi-modal gesture recognition challenge 2013: Dataset and results. In

Proceedings of the 15th ACM on International conference on multimodal interaction,

pages 445–452. ACM, 2013.

[20] S. Fels, R. Pritchard, and A. Lenters. Fortouch: A wearable digital ventriloquized actor.

In New Interfaces for Musical Expression, pages 274–275, 2009.

[21] C. Fraley and A. E. Raftery. Mclust version 3: an r package for normal mixture modeling

and model-based clustering. Technical report, DTIC Document, 2006.

148

[22] J. Françoise, B. Caramiaux, and F. Bevilacqua. Realtime segmentation and recognition

of gestures using hierarchical markov models. Mémoire de Master, Université Pierre et

Marie Curie–Ircam, 2011.

[23] W. T. Freeman and M. Roth. Orientation histograms for hand gesture recognition. In

FG, volume 12, pages 296–301, 1995.

[24] I. Guyon, V. Athitsos, P. Jangyodsuk, and H. J. Escalante. The chalearn gesture dataset

(CGD 2011), 2013.

[25] C. Harris and M. Stephens. A combined corner and edge detector. In In Proc. of Fourth

Alvey Vision Conference, pages 147–151, 1988.

[26] C. Harrison, H. Benko, and A. Wilson. Omnitouch: wearable multitouch interaction

everywhere. In Proceedings of the 24th annual ACM symposium on User interface

software and technology, pages 441–450. ACM, 2011.

[27] S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues. Going

beyond the display: a surface technology with an electronically switchable diffuser.

In Proceedings of the 21st annual ACM symposium on User interface software and

technology, pages 269–278. ACM, 2008.

[28] M. W. Kadous. Temporal Classification: Extending the Classification Paradigm to Mul-

tivariate Time Series. PhD thesis, The University of New South Wales, 2002.

[29] A. Kendon. Current issue in the study of gesture. Lawrrence Erlbaum Assoc., 1986.

[30] C. Keskin, E. Berger, and L. Akarun. A unified framework for concurrent usage of hand

gesture, shape and pose. http://goo.gl/2icUwv.

[31] K. Khoshelham. Accuracy analysis of kinect depth data. In ISPRS workshop laser

scanning, volume 38, page 1, 2011.

[32] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. 2001.

149

http://goo.gl/2icUwv

[33] I. Laptev and T. Lindeberg. Space-time interest points. In Proc. ICCV, pages 432–439

vol.1, 2003.

[34] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions

from movies. In CVPR, pages 1–8, 2008.

[35] E. Larson, G. Cohn, S. Gupta, X. Ren, B. Harrison, D. Fox, and S. Patel. Heatwave:

thermal imaging for surface user interaction. In Proceedings of the 2011 annual confer-

ence on Human factors in computing systems, pages 2565–2574. ACM, 2011.

[36] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. Advances

in neural information processing systems, 19:801, 2007.

[37] S. Marcel. Hand posture and gesture datasets. http://www.idiap.ch/resource/gestures/.

[38] A. Marcos-Ramiro, D. Pizarro-Perez, M. Marron-Romera, L. S. Nguyen, and D. Gatica-

Perez. Body communicative cue extraction for conversational analysis. In Automatic

Face and Gesture Recognition, 2013.

[39] D. McNeill and E. Levy. Conceptual representations in language activity and gesture.

Wiley, 1982.

[40] P. Mistry and P. Maes. Sixthsense: a wearable gestural interface. In ACM SIGGRAPH

ASIA 2009 Sketches, page 11. ACM, 2009.

[41] L. Morency, A. Quattoni, and T. Darrell. Latent-dynamic discriminative models for

continuous gesture recognition. In CVPR, 2007.

[42] K. Murphy. Dynamic bayesian networks: representation, inference and learning. PhD

thesis, University of California, 2002.

[43] A. Ng and A. Jordan. On discriminative vs. generative classifiers: A comparison of

logistic regression and naive bayes. Advances in neural information processing systems,

14:841, 2002.

[44] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Efficient model-based 3d tracking of

hand articulations using kinect. In BMVC, pages 1–11, 2011.

150

[45] K. Oka, Y. Sato, and H. Koike. Real-time fingertip tracking and gesture recognition.

IEEE Computer Graphics and Applications, 22(6):64–71, 2002.

[46] S. Oviatt, A. DeAngeli, and K. Kuhn. Integration and synchronization of input modes

during multimodal human-computer interaction. In Referring Phenomena in a Multi-

media Context and their Computational Treatment, pages 1–13. Association for Com-

putational Linguistics, 1997.

[47] V. I. Pavlović, R. Sharma, and T. S. Huang. Visual interpretation of hand gestures

for human-computer interaction: A review. IEEE Trans. Pattern Anal. Mach. Intell.,

19:677–695, 1997.

[48] B. Peng and G. Qian. Online gesture spotting from visual hull data. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, (99):1–1, 2011.

[49] PrimeSence Inc. PrimeSense�NIT Algorithms, 1.5 edition, 2011.

[50] F. Quek. Eyes in the interface, 1995.

[51] L. Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[52] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of

invariant feature hierarchies with applications to object recognition. In Computer Vision

and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1–8, June 2007.

[53] I. Rauschert, P. Agrawal, I. R. Pyush, and R. Sharma. Designing a human-centered,

multimodal GIS interface to support emergency management, 2002.

[54] S. Ruffieux, D. Lalanne, E. Mugellini, and D. Roggen. Chairgest - A challenge for

multimodal mid-air gesture recognition for close HCI. In ICMI, 2013.

[55] R. Sharma, J. Cai, S. Chakravarthy, I. Poddar, and Y. Sethi. Exploiting speech/gesture

co-occurrence for improving continuous gesture recognition in weather narration. In

FG, pages 422–427, 2000.

151

[56] M. C. Shin, L. V. Tsap, and D. B. Goldgof. Gesture recognition using bezier curves

for visualization navigation from registered 3-D data. Pattern Recognition, 37(5):1011

– 1024, 2004.

[57] J. Shlens. A tutorial on principal component analysis. Systems Neurobiology Laboratory,

University of California at San Diego, 82, 2005.

[58] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook,

and R. Moore. Real-time human pose recognition in parts from single depth images.

Commun. ACM, 56(1):116–124, Jan. 2013.

[59] Y. Song, D. Demirdjian, and R. Davis. Multi-signal gesture recognition using temporal

smoothing hidden conditional random fields. In Proc. FG, pages 388–393, 2011.

[60] Y. Song, D. Demirdjian, and R. Davis. Tracking body and hands for gesture recognition:

Natops aircraft handling signals database. In FG, pages 500–506, March 2011.

[61] Y. Song, D. Demirdjian, and R. Davis. Continuous body and hand gesture recognition

for natural human-computer interaction. ACM Transactions on Interactive Intelligent

Systems (TiiS), 2012.

[62] Y. Song, L.-P. Morency, and R. Davis. Action recognition by hierarchical sequence

summarization. In Proceedings of the 26th IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 3562–3569, Portland, OR, June 2013.

[63] T. Starner and A. Pentland. Visual recognition of American sign language using hidden

Markov models. In FG, pages 189–194, 1995.

[64] E. B. Sudderth, M. I. M, W. T. Freeman, and A. S. Willsky. Visual hand tracking

using nonparametric belief propagation. In IEEE Workshop on Generative Model Based

Vision, page 189, 2004.

[65] P. Suryanarayan, A. Subramanian, and D. Mandalapu. Dynamic hand pose recognition

using depth data. In ICPR, pages 3105–3108, 2010.

152

[66] C. Sutton and A. McCallum. An introduction to conditional random fields for relational

learning, volume 2. Introduction to statistical relational learning. MIT Press, 2006.

[67] E. Tse, S. Greenberg, C. Shen, and C. Forlines. Multimodal multiplayer tabletop gam-

ing. Comput. Entertain., 5(2), Apr. 2007.

[68] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, C. Schmid, et al. Evaluation of local

spatio-temporal features for action recognition. In BMVC, 2009.

[69] R. Wang, S. Paris, and J. Popović. 6d hands: markerless hand-tracking for computer

aided design. In Proceedings of the 24th annual ACM symposium on User interface

software and technology, pages 549–558. ACM, 2011.

[70] R. Y. Wang and J. Popović. Real-time hand-tracking with a color glove. ACM Trans-

actions on Graphics, 28(3), 2009.

[71] S. Wang, A. Quattoni, L. Morency, D. Demirdjian, and T. Darrell. Hidden conditional

random fields for gesture recognition. In CVPR, volume 2, pages 1521–1527, 2006.

[72] J. A. Ward, P. Lukowicz, and H. W. Gellersen. Performance metrics for activity recog-

nition. ACM Trans. Intell. Syst. Technol., 2(1):6:1–6:23, Jan. 2011.

[73] C. wei Hsu, C. chung Chang, and C. jen Lin. A practical guide to support vector

classification, 2010.

[74] J. Wobbrock, M. Morris, and A. Wilson. User-defined gestures for surface computing.

In CHI, pages 1083–1092, 2009.

[75] H. Yang, A. Park, and S. Lee. Gesture spotting and recognition for human–robot

interaction. Robotics, IEEE Transactions on, 23(2):256–270, 2007.

[76] Y. Yin. Toward an intelligent multimodal interface for natural interaction. Master’s

thesis, 2010.

[77] Y. Yin and R. Davis. Toward natural interaction in the real world: Real-time gesture

recognition. In Proc. of ICMI, November 2010.

153

[78] Y. Yin and R. Davis. Gesture spotting and recognition using salience detection and

concatenated hidden markov models. In Proc. of ICMI, pages 489–494, 2013.

[79] Y. Yin, T. Y. Ouyang, K. Partridge, and S. Zhai. Making touchscreen keyboards

adaptive to keys, hand postures, and individuals - a hierarchical spatial backoff model

approach. In Proceedings of the ACM SIGCHI Conference on Human Factors in Com-

puting Systems, CHI’13, pages 2775–2784, Paris, France, April 2013.

[80] S. J. Young. The HTK hidden Markov model toolkit: Design and philosophy. Entropic

Cambridge Research Laboratory, Ltd, 2:2–44, 1994.

[81] Z. Zhang. Microsoft kinect sensor and its effect. MultiMedia, IEEE, 19(2):4–10, Feb

2012.

154

	Introduction
	Background
	Definition of Gestures
	Gesture Taxonomy for Natural Interaction
	Temporal Modeling of Gestures

	System Overview and Thesis Outline
	Contributions

	Related Work
	Sensors
	Hand Tracking
	Feature Extraction
	Gesture Recognition
	Pose Gestures
	Path Gestures
	Multiple Categories of Gestures
	Gesture Spotting
	Online Recognition
	Commercial Systems

	Multimodal User Interfaces

	Datasets
	Related Work
	YANG Dataset
	Recording Setup and Procedure
	Data Formats
	Qualitative Observations
	User Preferences
	Implications for a Gesture Interaction Interface

	ChAirGest Dataset
	Gestures
	Recording Setup
	Data Formats
	Performance Metric
	Evaluation Protocol

	Hybrid Performance Metric
	Existing Methods for Error Scoring
	Shortcomings of Conventional Performance Characterization
	Hybrid Performance Metrics
	Metric for Discrete Flow Gestures
	Metric for Continuous Flow Gestures

	Hand Tracking
	Hand Tracking for Horizontal Display
	System Setup
	Kinect Calibration
	Hand and Fingertip Tracking
	3D Hand Model and Touch Detection
	Evaluation

	Hand Tracking for Seated Interaction with Vertical Display
	Gesture Salience Detection
	Evaluation

	Hand Features and Representations
	Hand Motion Features
	Hand Pose Features
	Histogram of Oriented Gradients (HOG)
	Compare HOG from Color or Depth Images

	Principal Component Analysis
	SVM for Encoding Hand Poses
	Discussion

	Unified Gesture Recognition Framework
	Gesture Modeling using Hierarchical HMM
	Unified Framework
	Path Gestures
	Pose Gestures

	Real-time Gesture Recognition
	Combined HMM
	Online Inference

	Gesture Spotting
	Concatenated HMM versus LDCRF
	LDCRF Optimization

	Online Recognition Evaluation
	Evaluation Protocol
	Effect of the Number of Principal Components
	Compare Different Topologies
	Effect of Different Numbers of Mixtures
	Effect of Different Lag Times
	Training Time
	User Independent Evaluation
	Discussion

	Gestural Interaction
	Client Server Architecture
	Gesture Controlled Presentation
	Handling Different Categories of Gestures
	Gesture and Speech
	Natural Direction

	Adding New Gestures
	Discussion

	Conclusion
	Limitations
	Future Work

	Review of F-measure
	Principal Component Analysis Optimizations
	No Scaling
	Transpose X

	Review of State-space Model
	Representation
	Inference
	Filtering
	Smoothing
	Viterbi Decoding
	Classification

	Hidden Markov Models
	Inference
	Termination Probability
	Learning
	Baum-Welch Training
	Viterbi Training

	Embedded Training

	Review of Conditional Random Fields
	Linear-Chain CRF
	LDCRF

	Notation and Abbreviations

