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Abstract—Our real-time continuous gesture recognition sys-
tem addresses problems that have previously been neglected:
handling both gestures that are characterized by distinct paths
and gestures characterized by distinct hand poses; and determin-
ing how and when the system should respond to gestures. Our
probabilistic recognition framework based on hidden Markov
models (HMMs) unifies the recognition of the two forms of
gestures. Using information from the hidden states in the HMM,
we can identify different gesture phases: the pre-stroke, the
nucleus and the post-stroke phases. This allows the system to
respond appropriately to both gestures that require a discrete
response and those needing a continuous response. Our system
is extensible: in only a few minutes, users can define their own
gestures by giving a few examples rather than writing code. We
also collected a new gesture dataset that contains the two forms
of gestures, and propose a new hybrid performance metric for
evaluating gesture recognition methods for real-time interaction.

Keywords—Gesture recognition, real-time, hidden Markov mod-
els

I. INTRODUCTION

Imagine how nice it would be, the next time
you make a presentation, you do not need to stand
close to your laptop or use a remote control with
limited functionality. What if you could present your
work as naturally as having a conversation with your
audience. You swipe your hand left and right to
change slides. When you point to the slide with your
hand, the display shows a pointer cursor following
where you are pointing at. When you are showing a
video, you use a palm forward hand pose and move
left and right to fast forward or rewind the video.
When you need to jump to a particular slide, you
make a circle gesture to show all the slides, and say
“show this slide” while pointing at that slide. You
can also make a dismiss gesture to pause the slide
show (making the screen black) to get full attention
from the audience.

This scenario shows an application of multi-modal interface
to a real-world problem. Different categories of gestures play
an important part in the scenario.

Gestural input has just become popular recently with the
introduction of new sensors (e.g. Kinect, Leap). As gesture
recognition systems mature, gestural input will become an
integral part of human computer interfaces, and hence will
be an interesting area to explore in terms of visual languages.

Many gesture input interfaces still mainly make the hands
function as a mouse with a limited number of other gestures.
Previous research on gesture recognition usually focuses on
one category of gestures, and the evaluation is also based
on offline recognition. We believe that to design a gesture
recognition system for natural human computer interaction
(HCI), we need to start from the user interaction perspective:
what are the different categories of gestures people use; when
should the system respond; and how should the model be
trained or defined. These are the questions we addressed when
we develop our system.

The main contributions of this work include:

• We developed a unified probabilistic framework for
real-time gesture recognition that combines two forms
of gestures.

• We use embedded training and hidden state informa-
tion to detect different gesture phases, allowing the
system to respond more promptly.

• We collected a new dataset that include two forms
of gestures, a combination currently lacking in the
community. We also propose a hybrid evaluation met-
ric that is more relevant to real-time interaction and
different categories of gestures.

II. GESTURE TAXONOMY FOR NATURAL INTERACTION

This section introduces important concepts in gesture tax-
onomy that are the basis of our gesture modeling. Several
gesture taxonomies have been suggested in the literature [1],
[2], but the one that seems most appropriate for natural HCI
and human-centric design was developed Wobbrock et al. [3].
Their study is based on eliciting natural behavior from non-
technical users when interacting with a computing system.

Wobbrock et al. classify gestures in four orthogonal dimen-
sions. As a first step, we focus on two of them (Table I) and
incorporate them in designing the gesture recognition system
and interface. We also further generalize the taxonomy to
encompass interaction for both vertical and horizontal displays.

A. Gesture Forms and Flows

One dimension is the form of a gesture; we distinguish two
categories in this dimension: path and pose. The path category
contains gestures characterized by distinct paths without any
distinct hand pose. For example, a “swipe left” gesture is
characterized by a right to left motion, while a “circle” gesture
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TABLE I. TAXONOMY OF GESTURES FOR NATURAL INTERACTION.

Form
distinct path with any hand pose

distinct hand pose with any path

Flow
discrete response occurs after the user acts

continuous response occurs while the user acts

is characterized by a circular motion of the hand. In doing
these, users typically hold their hands in some natural relaxed
pose. The second category of gestures is characterized by
distinct hand poses without any distinct paths. This category
of gestures is usually associated with direct manipulation of
some virtual objects on the interface. For example, a user may
use a “point” hand pose and move around to point at different
things on a display.

Another dimension is the flow of a gesture. A gesture’s flow
is discrete if the gesture is performed, delimited, recognized,
and responded to as an event [3]. One example is the “wave”
gesture which has a few repetitions of left and right movement;
usually we want the system to respond at the last repetition.
Flow is continuous if ongoing recognition is required and the
system should respond frame by frame, as for example during
a “point” gesture, where we want to show the cursor on the
screen continuously moving according to the hand position.

B. Temporal Modeling of Gestures

Making gesture interaction feel natural requires a system
that responds at the correct moment. As a result, it is important
to consider the temporal characteristics of gestures. We set a
foundation for doing this by taking account of the three phases
that make up a gesture: pre-stroke, nucleus, and post-stroke [2].
Pre-strokes and post-strokes are movement from and to the rest
position. The nucleus of a gesture has some “definite form and
enhanced dynamic qualities” [1]. Every gesture must have a
nucleus, which is the content-carrying part of the gesture.

Even though the end of the post-stroke phase can be more
easily detected by finding the start of the rest position, we
want to do more than this. Since nucleus is the meaningful
part of the gesture, for a discrete flow gesture, we want the
system to respond immediately at the end of the nucleus phase
instead. To make the system more responsive, we address the
more challenging problem of detecting the start and end of the
nucleus phase from the pre-stroke and post-stroke phases. This
also allows the system to respond to continuous flow gesture
immediately at the start of the nucleus phase.

III. RELATED WORK

Many previous efforts have focused on one category of
gesture, though some efforts have attempted to handle multiple
categories.

A. Gesture with Distinct Hand Poses

One group of prior work focuses on classifying a set of
predefined static hand poses frame by frame. Freeman and
Roth [4] use histogram of local orientations, a precursor of
histogram of oriented gradients (HOGs) [5] for hand pose
recognition. Recognition is based on selecting the feature
vector in the training set that is closest to the test feature vector.
Suryanarayan et al. [6] use a volumetric shape descriptor
computed from depth data as the feature vector, and use
Support Vector Machine (SVM) for classification.

B. Gesture with Distinct Paths

The gesture production process has a direct analogy to the
speech production process [7], and as a result many previous
efforts have used hidden Markov models (HMMs) to recognize
path gestures [8], [9]. More recently, discriminative models
such as conditional random fields (CRF) and its variants, such
as hidden CRF [10] and latent dynamic CRF (LDCRF) [11],
have also been applied to gesture recognition with improved
recognition results. However, discriminative models may re-
quire more data to train [12], and may also take more time to
train as the parameter space of the model is larger.

Morency et al. [11] use LDCRF to learn the transition
parameters between gestures. In our case, we assume the
transition between gestures for interaction is uniform: each
gesture is equally likely to transit to every other gesture.

C. Different Types of Gestures

Keskin et al. [13] propose a unified framework to allow
concurrent usage of hand gestures, shapes and hand skeletons.
Hand gestures are modeled with mixture of HMMs using
spectral clustering. Hand shape classification and hand skeleton
estimation are based on randomized decision forests. Hand
gesture classification is active all the time. The framework
estimates a set of posteriors for the hand shape label at each
frame, and continuously use these posteriors and the velocity
vector as observation to spot and classify known gestures. They
distinguish gestures with pure motion and pure hand shape by
thresholding the magnitude of the velocity vector. However,
they did not mention handling gestures with distinct hand poses
but with arbitrary movement. For this type of gestures, it will
be hard to manually set a velocity threshold to distinguish them
from gestures with distinct paths.

Oka et al. [14] developed a system that allows both direct
manipulation and symbolic gestures, but requires the user to
indicate the gesture type by the extension of the thumb.

D. Online Recognition

Song et al. uses LDCRF with a temporal sliding win-
dow to perform online sequence labeling and segmentation
simultaneously [15]. Françoise et al. [16] use hierarchical
HMMs to model musical gestures using motion data from the
Wii remote controller, and use fixed-lag smoothing for real-
time recognition and segmentation. Our method is similar to
Françoise et al.’s, but we consider different forms of gestures
in a single framework.

E. Commercial Systems

Many commercial gesture recognition systems uses if-
then rules based on heuristics. For example, the Leap Motion
plugin1 for the Reveal.js presentation framework uses the
number of fingers detected and the changes in the x and y
coordinates between consecutive frames to detect swipe and
point gestures. While if-then rules could be easy to define for
a small number of simple gestures, it may be hard for more
complex gestures. For example, it may be hard to define a
circle gesture using if-then rules and the rules may conflict
with each other.

1https://github.com/hakimel/reveal.js/blob/master/plugin/leap/leap.js
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Fig. 1. System overview.

The gesture interaction provided by the Kinect-based
games is one of the popular ones. Based on the observation
of the interaction available in Kinect games, it seems that the
system is only looking for one gesture (wave) or body pose
(the exit pose2) at a time, and the rest of the time, it is just
tracking the hand and the body.

F. Datasets

Many public datasets for evaluating gesture recognition
contain only one form of gesture [17]–[19]. The Chalearn Ges-
ture Dataset (CGD 2011) [20] contains nine gesture categories
corresponding to various settings and application domains. It
contains both static postures and dynamic gestures. In this
dataset, a static posture is one in which a single posture is
held for a certain duration. For a static hand posture, the hand
is held at similar positions for multiple instances of the same
gesture. In this case, the static postures also have distinct paths
so they could be handled by the same method as the dynamic
gestures. This dataset does not contain gestures with distinct
hand poses but arbitrary movement (Table I row 2).

IV. SYSTEM OVERVIEW

We develop our system based on the understanding of the
gestures for natural interaction. Fig. 1 shows an overview of
our system design. We use a RGB-depth sensor (the Kinect
sensor) for hand tracking so that we can extract features for
hand poses.

The gesture recognition model estimates the current most
likely gesture label and gesture phase information based on
the input stream of feature vectors. The gesture information,
together with smoothed hand position information are sent to
the application level at each time frame. We explain the main
modules in detail in the following sections.

V. HAND TRACKING AND FEATURE EXTRACTION

As one category of gestures is characterized by distinct
hand poses, we need to track the full hand, rather than just
treating the hand as one point. We also need to derive a feature
vector that represents the hand shape as well.

We base our hand tracking on information from the skele-
ton tracking of the Kinect SDK, which is relatively robust for
standing articulated body poses. At each time frame, we use the

2http://support.xbox.com/en-US/xbox-360/kinect/
how-to-use-the-kinect-hub-and-guide

Fig. 2. Hand tracking and hand pose feature extraction.

hand joint position reported from the SDK as an initial rough
estimate of the bounding box of the hand in the depth frame.
We align the RGB and the depth frames, use skin detection to
filter out non-skin pixels in the bounding box, and then refine
the bounding box using 4 interactions of CAMSHIFT [21].
We normalize the bounding box to a 32×32 px depth mapped
image. We compute HOGs feature from the normalized hand
image (cell size = 4, number of orientation bins = 9) (see
Fig. 2). Since the depth data is less affected by change in
illumination, we use only one fold of normalization in the
HOG feature to speed up processing. This gives us a HOG
feature of length 441 ((32/4−1)× (32/4−1)×9). The HOG
feature has been used as a hand pose descriptor in previous
work [15] where it is often used as the input to SVM. Our
system uses principal component analysis (PCA) to reduce the
HOD dimensionality from 441 to 14, then uses it directly as
part of the input feature vector to the hidden Markov model
(HMM) based recognition framework.

The feature vector xt at frame t is then a concatenation of
motion features and encoded HOG features. The motion fea-
tures include relative position of the hand to the shoulder joint,
velocity and and acceleration, all in 3D world coordinates. The
feature vector is computed for each input frame streamed from
the sensor to form a sequence of feature vectors.

VI. REAL-TIME CONTINUOUS GESTURE RECOGNITION

The temporal model of gestures can be represented by a
stochastic state machine. Each gesture phase can in turn also
be represented by a stochastic state machine, with each state
generating an observation (i.e. the feature vector). This process
can be viewed as a hierarchical HMM (HHMM) (Fig. 3). If
we assume that the states in the sub-HMMs are not shared,
we can flatten the hierarchical HMM into a one-level HMM
for fast inference, as the graphical model for one-level HMM
does not have loops.

If we have ground truth labels for the pre-stroke, the
nucleus and the post-stroke phases, we can train the sub-
HMMs for each phase and each gesture separately and then
combine them [22]. However in practice, for example if we
want users to be able to easily add their new gestures by
giving a few examples, it will be tedious to manually label
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Fig. 3. State transition diagram of the hierarchical HMM representation of
gesture phases. Double-ringed states are end states.

Fig. 4. Embed phase HMMs into an entire gesture.

the start and the end of the three phases. In this case, we can
do embedded training [23], i.e. train each phase sub-HMM
embedded in an entire gesture segment (Fig. 4).

A. Unified Framework

We do not treat the two forms of gestures separately: path
gestures and pose gestures are handled within a single prob-
abilistic framework. This avoids making early hard decisions
(which form of gesture it is) which will be hard to correct later.
Instead, we want to make a decision only when a response is
needed, according to the flow of the current most likely gesture,
and propagate belief probabilities as time progresses.

1) Gestures with distinct paths: We use embedded training
to combine the three gesture phases together and use normal
Baum-Welch algorithm to compute the maximum likelihood
of the parameters.

Through cross-validation, we choose to use one hidden
state for pre-stroke and post-stroke phases. We use the Bakis
(left-right) model [24] for the nucleus phase, but add a
backward transition from the last hidden state to the first
one for gestures with an arbitrary number of repetitions (e.g.,
“wave” gesture). We use a mixture of Gaussians to model the
emission probabilities for each hidden state. We also estimate
the termination probabilities as in [22].

2) Gesture with distinct hand poses: We use one hidden
state to represent this form of gestures. Let spose be the single
hidden state for the nucleus phase for a gesture with a distinct
hand pose (Fig. 5). Instead of doing embedded training, we
directly compute the maximum likelihood estimates of the
mixture of Gaussians parameters for emission probability of
spose. Let xT

1
be a sequence of feature vectors corresponding

to a gesture with a distinct hand pose. The feature vector se-
quence also contains random variations in the hand movement
path. We use Expectation Maximization to estimate the means,
covariance matrices and mixture probabilities for the mixture
of Gaussians.

Fig. 5. State transition diagram of a single state HMM for gestures with
distinct hand poses.

Since there is only one hidden state for spose, its transi-
tion probability is 1. Its termination probability is estimated
according to the expected duration of the gesture. The self-
arc on a state in an HMM defines a geometric distribution
over waiting time [25]. In the case of a single state HMM,
the probability of remaining in state spose for exactly d steps

is P (d) = p(1 − p)d−1, where p = P (END|spose) is the
termination probability for spose. This means the expected

number of steps remaining in state spose is 1

p
. We assume

that the minimum duration of a gesture with distinct hand
pose is one second (30 frames). The termination probability
P (END|spose) is then set to be less than 1/30.

We also use one hidden state to model the rest position in
a similar way.

B. Combined HMM for Real-Time Recognition

We train the HMMs separately for each gesture, then
combine them into a hierarchical model, assuming uniform
transition probabilities among gestures. The hierarchical model
allows us to do simultaneous segmentation and recognition. We
want to avoid doing segmentation first and then find the most
likely HMM for the given sequence, because segmentation
based on differentiating rest positions versus non-rest positions
will not allow the system to respond fast enough. We want the
system to respond at the beginning of the post-stroke phase
instead. In addition, making a hard decision on segmentation
can introduce errors that are hard to correct later.

For fast inference, we flatten the hierarchical HMM into a
regular HMM by creating an HMM state for every leaf in the
HHMM state transition diagram [25]. The individual HMM for
each path gesture starts with a hidden state for the pre-stroke,
then 1 or 2 hidden states for the nucleus, followed by a hidden
state for the post-stroke. Each pose gesture has a hidden state
for the nucleus. The combined HMM has a sequential labeling
for these models’ hidden states, with the hidden state label
for the pre-stroke of the second gesture model following the
hidden state label for the post-stroke of the previous gesture,
etc (Fig. 6).

C. Online Inference

Once we have a trained model, we use fixed-lag smoothing
[25] to do online inference on the flattened HMM for real-
time gesture recognition. Fixed-lag smoothing is a modified
forward-backward algorithm. Unlike online filtering, which
estimates the belief state at current time t using forward pass
only, we estimate the state at t−L, given all the evidence up to

the current time t, i.e., compute γt−L(s)
def
== P (St−L = s|xt

1),
where L > 0 is the lag. Introducing lag time is a trade-
off between accuracy and responsiveness. Using some future
evidence to smooth the estimate can increase the accuracy
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Fig. 6. Combined HMM. The red lines are examples of new transitions
combining the HMMs. Not all possible transitions are shown to avoid
cluttering the diagram.

while adding some delay. However if the delay is small, it
might be unnoticeable. In the Experiment Evaluation section
(Section IX), we show details about the relationship between
L and the recognition performance.

Fixed-lag smoothing can be implemented efficiently. We
compute forward probabilities αt normally and keep a history
window of αt−L . . . αt. At every time frame, we compute
backward probabilities β from current time t to t − L. Then
we can compute

γt−L = αt−L · βt−L (1)

The time complexity at each time frame is O(N2
sL) where

Ns is the total number of hidden states in the flattened HMM.
Note that at time t, the belief state at t−L is committed, while
the belief state from t− L+ 1 to t will still be revised later.

We can then compute the most likely hidden state at t−L:

ŝ = argmax
s

γt−L(s) (2)

We map the most likely hidden state to the gesture label
it belongs to (including the rest position) and the gesture
phase. In this way we achieve simultaneous segmentation and
recognition.

Gesture events are detected at the boundary of a phase
change: start pre-stroke, start gesture nucleus and start post-
stroke. This information, together with the gesture label for
the nucleus phase, are sent to the application level.

Fig. 7 shows a visualization of the most likely hidden
states based on the online fixed-lag smoothing inference with
L = 5. This is based on an input sequence of 6 gestures.
The first 3 gestures are “circle” and the last 3 gestures are
“shake hand” gestures. Notice that in the first segment, at the
beginning, the most likely hidden state is the pre-stroke for
“shake hand”, but since we do not need to respond at this
time, the wrong estimate does not matter. After a few more
frames, the estimates are updated to have the correct most
likely gesture label and the system responds correctly when it
detects the start of the post-stroke of “circle” gesture.

VII. DATA COLLECTION AND USER STUDY

Previous related work does not appear to have gesture
data sets that include both gestures with distinct paths and

Fig. 7. Most likely hidden states using fixed-lag smoothing. Different colors
indicate different hidden states. Yellow indicates rest position.

TABLE II. LIST OF GESTURES RECORDED IN THE DATASET.

# Name of gesture Form Comment

1 Swipe left distinct path simple path

2 Swipe right distinct path simple path

3 Circle distinct path complex path

4 Horizontal wave distinct path has arbitrary repetitions

5 Point distinct hand pose arbitrary path

6 Palm forward distinct hand pose arbitrary path

7 Grab distinct hand pose arbitrary path

gestures with distinct hand poses. To evaluate our method,
we collected a dataset with a vocabulary of 7 one-hand/arm
gestures focusing on combining these two forms of gestures.
They are also chosen to span over different potential difficulties
(see the comments in Table II).

The dataset contains data from 10 participants each doing
4 sessions. All the participants are university students. The
participants were shown video demonstration of each gesture
at the beginning.

A. Recording Setup and Procedure

In each session, the participant stands at about 1.5m from
the Kinect for Windows sensor (version one), and performs
each gesture 3 times according to the text prompts on a screen
indicating the name of the gesture to perform. The order of
the gestures is random and the time between each gesture is
random (between 2s and 6s). The first 2 sessions have “Rest”
prompts between each gesture, telling participants to go to the
rest position (hands relaxing at the side of the body), and the
second 2 sessions do not have “Rest” prompts so participants
can choose to rest or not between consecutive gestures. This
too distinguishes the dataset from previous ones [18], [20]
where gestures are always delimited by rest positions.

Unlike Ruffieux et al. [18], we do not show video demon-
stration every time the participants perform a gesture because
we want a realistic scenario. In real practice, it is unlikely that
a user will follow a video demonstration every time he/she
does a gesture. The result of this is that there will be more
variations among the gestures.

To motivate movement for gestures with distinct hand
poses that require a continuous response, the text prompt asks
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participants to draw random letters in the air with the specified
hand pose.

The full corpus contains 10P×4S×7G×3R = 840 gesture
occurrences where P = participants, S = sessions, G = unique
gestures, R = repetitions per gesture. There are approximately
96 minutes of continuous recording, recorded in the raw data
from the Kinect sensor, including RGB, depth and skeleton
data. Both the RGB and depth data have a resolution of 640×
480px. The frame rate is 30 frame per second (FPS).

B. Qualitative Observations

We find that there is considerable variations in the way
participants perform each gesture even they were given the
same demonstration video. Major variations are observed in
speed, the magnitude of motion, the paths and hand poses.

For example, some participants do swipe left and right in a
rather straight horizontal line, while others have a more curved
path. Some participants start the circle gesture at the bottom,
while others start at the top. Some participants do swipe left
and right with a palm forward pose while others have less
distinct hand poses (hand is more relaxed). However, within
users, they are quite consistent within each gesture.

C. User Preferences

We did a survey with the participants with questions that
can influence gesture interface design. We asked them, given
a gesture input interface:

• Whether they prefer predefined gestures or user de-
fined gestures: 90% of the participants prefer to be
able to define their own gestures if necessary while
10% of them prefer to following prefined gestures
completely. As no one prefers to define their own
gestures at the very beginning either.

• How to define gestures: 80% prefer defining gesture
by performing the gestures themselves; no one prefers
to define gestures solely via rules written in terms of
positions and directions of movement of the hands.
However 20% prefer to being able to do both.

• Number of repetitions per gesture for training: 50%
are willing to give a maximum of 4 - 6 examples,
40% are willing ot give 1 - 3 examples, and 10% are
willing to give more than 13 examples. So average
maximum is about 5 repetitions.

• Number of gestures for an application: 80% think 6-
10 gestures are appropriate and easy to remember for
a given application, 20% prefers 1 - 5 gestures.

• Intuitiveness of the gesture vocabulary for PowerPoint
presentation: average score is 4 out of 5 where 5 is
very intuitive.

D. Implications for Gesture Interaction Interface

Based on our observation of the large variation in gesture
execution among users and small variations within users, and
the fact that a majority of participants preferring defining their
own gestures if they do not like the predefined gestures, we
suggest that it is more important to optimize user dependent

recognition. As no one prefers to define their own gesture at
the very beginning, it also means that having a reasonable
predefined gesture set and basic user independent model for
recognition will be useful too.

Recognition methods based on examples will allow users
to train models of their own gestures easily. We also need to
develop methods that require relatively few training examples.

VIII. HYBRID PERFORMANCE METRIC

Both frame [15] and event-based [20] metrics has been
used for evaluating gesture recognition systems. A frame is
a fixed-length, fixed-rate unit of time. It is often the smallest
unit of measure defined by the system [26] and in such cases
approximates continuous time. For example, in our case, a
frame is a data frame consisting of a RGB data frame, a depth
data frame and a skeleton data from the sensor at 30 FPS.
An event is a variable duration sequence of frames within a
continuous time-series. It has a start time and a stop time.

Each of these metrics alone may not be adequate for
evaluating a real-time gesture recognition system handling
different types of gestures. Frame-based evaluation is less
relevant for gestures requiring discrete responses. For the
ChaLearn Gesture Challenge 2012, Guyon et al. [20] use the
Levenshtein distance between the ordered list of recognized
events and the ground truth events. However, such event-based
metrics that ignore timing of recognition are inappropriate
for real-time applications where responsiveness of the system
matters.

Ruffieux et al. combined a time-based metric with an event-
based metirc [18]. Ward et al. [26] proposed a comprehensive
scheme of combining both frame and event scoring. We believe
that all three types of information – frames, events and timings
– are relevant for a real-time system that responds to different
types of gestures. Hence, we developed a hybrid performance
metric.

For discrete flow gestures, the system responds at the end of
the nucleus phase, so the evaluation should be event-based. Let
Tgt start pre be the ground truth start time of the pre-stroke phase
and Tgt stop post be the ground truth stop time of the post-stroke
phase. A recognized event is considered a true positive (TP)
if the time of response (Tresponse) occurs between Tgt start pre

and Tgt stop post + 0.5 × (Tgt stop post − Tgt start pre). We allow
some margin for error because there can be small ground truth
timing errors. Once a TP event is detected, the corresponding
ground truth event is not considered for further matching, so
that multiple responses for the same gesture will be penalized.
We then can compute event-based precision, recall and F1

score.

For discrete flow gestures, we also define a Responsiveness
Score (RS) as the time difference in seconds between the
moment when the system responds and the moment when the
hand goes to a rest position or changes gesture. Let NTP be
the number of true positives, then

RS =

∑NTP

i=1
Tgt stop post − Tresponse

NTP

(3)

A positive score means the responses are before the end of the
post-strokes, hence higher scores are better.
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Fig. 8. Comparison between recognition result using online inference and
ground truth. The colors correspond to different gestures. For discrete flow
gestures (swipe left/right, circle, horizontal wave), one color segment with a
fixed length is shown at the time of response. For continuous flow gestures,
the recognized gesture is shown at each frame indicating frame-by-frame
responses.

For continuous flow gestures, the system responds frame by
frame, so it is more appropriate to use frame-based evaluation.
For all the frames that are recognized as continuous gestures,
we can compute the number of TPs by comparing with
the corresponding frame in the ground truth. Then, we can
compute frame-based precision, recall and F1 score for all the
frames corresponding to continuous flow gestures.

The average of the two F1 scores gives an indication of
the overall system performance.

IX. EXPERIMENT EVALUATION

We evaluate our method based on the dataset we collected,
using the evaluation metrics proposed in the previous section.
The evaluation is based on the assumption that all the gestures
with distinct paths (gesture #1–4) are discrete flow gestures,
and gestures with distinct hand poses (gesture #5–7) are
continuous flow gestures.

Our survey results show that it is important to allow users to
quickly define and train their own gestures. Hence, we evaluate
our system using user dependent training and testing. For each
user in the dataset, we use the first 2 sessions of recording
(6 samples per gesture) as training examples, and the last 2
sessions as testing examples. Fig. 8 shows a visualization of
the recognition result on a test sequence. The figure highlights
the challenges in the test sequences: there are 21 gestures in
each continuous unsegmented sequence; sometimes gestures
immediately follow one another. We report the average results
for 10 users.

• Compare different topologies: We compare our uni-
fied framework with a common HMM-based approach
used in previous works [8], [9], i.e., using the same
left-right topology for all gestures. Table III compares
the results between the two methods. The third column
is the result from treating the two forms of gestures
in the same way, i.e., all gestures have the same left-
right Bakis model for their nucleus phases. The forth
column is the result from using a left-right Bakis
model for path gestures and a single state for pose
gestures. To have a fair comparison, all hidden states

TABLE III. RESULTS FROM USING DIFFERENT TOPOLOGIES. THE

NUMBERS IN PARENTHESES ARE STANDARD DEVIATIONS. THE RESULTS

ARE BASED ON USING 3 MIXTURES OF GAUSSIANS FOR ALL HIDDEN

STATES, AND LAG TIME L = 5 FRAMES.

Same topology

for two forms of

gestures

Different topolo-

gies for two forms

of gestures

Path & discrete

flow gestures

Precision 0.77 (0.14) 0.77 (0.15)

Recall 0.89 (0.09) 0.88 (0.11)

F1 0.82 (0.10) 0.81 (0.11)

Responsiveness (s) 0.6 (0.3) 0.6 (0.3)

Pose & continuous

flow gestures

Precision 0.54 (0.13) 0.60 (0.10)

Recall 0.24 (0.08) 0.62 (0.09)

F1 0.33(0.09) 0.61 (0.09)

Average F1 0.58 (0.10) 0.71 (0.10)

Fig. 9. F1 scores versus lag time.

have 3 mixtures of Gaussians. The result shows that
our method of having different HMM topologies for
the two forms of gestures significantly increases the
precision, the recall and the F1 score for pose gestures.

• Compare different lag times: Using our unified
framework, we investigated how the F1 scores change
with respect to the lag time (L) in fixed-lag smoothing
(Fig. 9). The performance increases as L increases,
and plateaus at L = 8 frames which is about 0.3s
at 30 FPS. This shows that more evidence does help
to smooth the estimates until a limit, and we do not
need to sacrifice too much delay to reach the limit.
Our result shows that the responsiveness score stays
around 0.6-0.7 seconds as we increase L.

• Compare different number of mixtures: Within a
user, there may be variation in the hand pose for
a gesture with distinct hand pose. For example, the
“point” hand pose can have different orientations.
This is why we use a mixture of Gaussians for
the emission probabilities. Fig. 10 shows that the
F1 scores increases as the number of mixtures (M)
increases until M = 3. After that, we start to see
the effect of overfitting. Then, we experimented with
using different M ’s for path and pose gestures. We
set M path = 3 for path gestures, and use a different
M pose

g ∈ {3 . . . 6} for pose gesture g. Each M pose
g

is chosen using Bayesian Information Criterion [27].
Using this method, we are able to improve the overall
average F1 score to 0.81 when L = 8 frames.

Our system is fast to train and extensible. The average
computation time for training the model for one user is about
5s with 7 gestures and 6 training examples per gesture. New
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Fig. 10. F1 scores versus number of mixtures of Gaussians. Lag time L = 5

frames.

gestures can be added by recording 3-6 repetitions of the
gesture using the Kinect; the system will train an HMM model
for the gesture and add it to the existing combined HMM. This
process takes only a few minutes.

We also evaluated our method with a public dataset
(ChAirGest) containing 10 path gestures performed by 10
users [22]. We obtained an F1 score of 0.86 with offline user
independent recognition. While it offers a baseline only for
path gestures, it does show that our unified approach performs
at the state of the art on this category of gesture.

X. CONCLUSION AND FUTURE WORK

We designed our system from natural human computer
interaction perspective. The evaluation shows promising results
for the unified probabilistic recognition framework that handles
two forms of gestures seamlessly. Even using only a small
number of training examples (e.g. 6 per gesture), our system
can achieve an average F1 score of 0.81 for two forms of
gestures. Using the framework, we developed a real-time (30
FPS) gesture controlled presentation application similar to the
one described at the beginning of this paper.

The performance for pose gestures is lower than that for
path gestures. This may be due to limit in both the pixel
and the depth resolutions of the Kinect sensor. It would be
interesting to test the new version of the Kinect sensor which
uses a time-of-flight depth sensor and is reported to have
a higher resolution. We are also going to to explore other
feature descriptors and encoding methods to see whether we
can improve the result for pose gestures.

Using embedded training and hidden state information, we
can effectively detect gesture phases, allowing the system to
respond more promptly. On average, for discrete flow gestures,
the system responds 0.6s before the hand comes to rest.

We collected a new dataset that includes two forms of
gestures, a combination currently lacking in the community,
and plan to make it public. We have also proposed a hybrid
evaluation metric that is more relevant to real-time interaction
and different types of gestures.
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