
Making Touchscreen Keyboards Adaptive to Keys, Hand
Postures, and Individuals - A Hierarchical Spatial Backoff

Model Approach
Ying Yin*

yingyin@mit.edu
Tom Y. Ouyang†

ouyang@google.com
Kurt Partridge†

kep@google.com
Shumin Zhai†

zhai@google.com
*Massachusetts Institute of Technology †Google Inc.

32 Vassar St. 1600 Amphitheatre Parkway
Cambridge, MA U.S. Mountain View, CA U.S.

ABSTRACT
We propose a new approach for improving text entry accuracy
on touchscreen keyboards by adapting the underlying spatial
model to factors such as input hand postures, individuals, and
target key positions. To combine these factors together, we in-
troduce a hierarchical spatial backoff model (SBM) that con-
sists of submodels with different levels of complexity. The
most general model includes no adaptive factors, whereas the
most specific model includes all three. Considering that in
practice people may switch hand postures (e.g., from two-
thumb to one-finger) to better suit a situation, and that the
specific submodels may take time to train for each user, a
specific submodel should be applied only if its correspond-
ing input posture can be identified with confidence, and if the
submodel has enough training data from the user. We intro-
duce the backoff mechanism to fall back to a simpler model
if either of these conditions are not met. We implemented
a prototype system capable of reducing the language-model-
independent error rate by 13.2% using an online posture clas-
sifier with 86.4% accuracy. Further improvements in error
rate may be possible with even better posture classification.

Author Keywords
Touchscreen text input; posture adaptation; personalization;
adaptive model.

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User inter-
faces.

INTRODUCTION
The rapid growth of touchscreen based smartphones and
tablets have made finger typing on touchscreens an everyday
information input activity. Touchscreen keyboards, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, In proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 2775 - 2784, 2013.
Copyright 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

can also be called Smart Touch Keyboards (STKs), have ad-
vanced significantly in the past few years. Taking the open
source Android keyboard as an example, a modern touch
screen keyboard uses language modelling, spatial and edit
distance based corrections, and other sophisticated techniques
to predict, correct, and complete the users imprecise typing.
Despite these engineering achievements, text input continues
to be a mobile user experience bottleneck, particularly for
business and productive use [3]. Any further improvement
to the mobile typing experience, even by a small amount, is
desired and important since hundreds of millions of people
use a smartphone or tablet everyday.

One compelling direction of research is better adaptation and
personalization of keyboard spatial models. A spatial model
converts each touch point into a probability distribution over
the different letters on the keyboard. With soft keyboards, the
underlying “keys” can shift and adapt to the user. Azenkot
and Zhai [2] did a systematic study of smartphone keyboard
touch patterns under various typing conditions. We note the
following observations from their study:

1. People use different “hand postures” - one index finger, one
thumb, and two thumbs - to type on smartphones. Depend-
ing on the situation (e.g. sitting, standing or walking), the
same individual may also change from one hand posture to
another. For example, the same individual who normally
types with two thumbs on a phone while sitting down may
switch to one index finger or one thumb typing while stand-
ing or walking. We cannot assume that the same individ-
ual will use the same hand posture all the time. Adapta-
tion methods based on lab experiments with one consis-
tent hand posture, such as those in [6], give important in-
sights and guidance for designing practical systems. But
they may also face challenges as practical solutions be-
cause user may change their hand posture in real world
settings from their usual preference.

2. These hand postures change the touch typing patterns. For
example, for right handed users adopting one index finger
and one thumb typing postures, touches on the left side of a
smartphone touchscreen keyboard tend to be biased right-
ward. However these touches tend to be biased leftward
among users adopting two thumb postures.

3. Touch patterns can also depend on letter keys. For exam-
ple, for one-finger typing, touch points tend to shift down-
ward on the bottom letter row of a touchscreen keyboard,
but not the top row (Q - P).

4. Users touch points tend to spread wider on a collective ba-
sis (polling all users data together) than on an individual
basis for the same posture. This shows that different users
tend to have different touch point distributions, but within
the same user, the touch point pattern using the same pos-
ture may be more consistent.

Together these findings make a strong case for personaliza-
tion of smartphone touch keyboard algorithms. However they
also illustrate the challenges and complexities of personaliza-
tion. An advanced keyboard that adapts to user differences
needs to account for multiple adaptive factors in order to
work effectively. For example, a personalized typing model
would have limited effectiveness if it could not also adapt to
hand posture. This is because the same user can have a very
different typing pattern depending on whether she is typing
with one finger or two. Effective adaptation may require a
combinatorial approach that includes key location, hand pos-
ture, and user personalization.

A combinatorial approach raises challenging implementation
issues. First, there need to be a large number (e.g., 26 keys
× 3 postures = 78) of submodels for each user. Collecting a
sufficient amount of data to build each submodel may take too
long to be practically useful, especially for infrequent letters
such as, in English, “Z” and “X.” Second, if an STK does
have a large number of (sub)models, model selection can be
a significant challenge. Since each submodel is specific to a
combination of factors, a wrong selection may actually hurt
the keyboards quality. Correct model selection requires an
accurate identification of the current mode, i.e. a combination
of adaptive factors. While it is relatively easy to identify the
individual (for example, by device login), it is not so easy to
identify what hand posture the user is applying to each tap.

To address these challenges, we propose and explore a hier-
archical backoff approach to building adaptive STK spatial
models. The models in the hierarchy range from generic (e.g.
a base model that is user, key, and posture invariant) to spe-
cific (e.g., a model that has specialized parameters for each
user, key, and posture combination). When a user first starts
typing on a hierarchical adaptive keyboard, it initially defaults
to the base model, and the other more specific models are
dormant. The system continues to collect touch points data
from the user to train submodels. A submodel becomes ma-
ture when a sufficient amount of data is available to train it.
Determining the threshold for the minimum amount of data
required is an essential part of the backoff model, which we
discuss later in the paper. A mature model will continue to
renew itself with new user data to accommodate both short
and long-term adaptation to changes in user behavior. If there
is not enough data to train the model or the system is not
confident enough that the model is appropriate, the system
backs-off to a more general model or the base model. This
hierarchical backoff approach is a major contribution of this

paper, and offers the following advantages for fast and robust
adaptation in an STK:

1. It does combinatorial and fine grained adaptation, not only
to the user as a single lumped entity, but also in combina-
tion with other factors such as hand posture and key loca-
tion. It is therefore more practical and less brittle since it
does not assume one user will always use the same hand
posture in all situations.

2. It is conservative. Posture adaptation is applied only if the
posture detection is confident enough, and when its cor-
responding submodel is mature. It is also designed to be
conservative and biased towards the standard base model if
either of these condition is not clearly satisfied. This mini-
mizes the risk of over-adaptation and transitional instability
when the user changes hand posture.

3. The system does not require a separate training (data col-
lection) phase for each individual. Instead, it adapts to a
user gradually as she is typing. This makes it more practi-
cal to deploy and eliminates any additional interruption or
burden on the user.

4. The system continually updates and renews itself, so it can
accommodate long-term changes in user behavior.

We call keyboards built in such an approach SBM (spatial
backoff model) keyboards. The SBM approach also raises
many questions and challenges that will be addressed in the
rest of the paper. Here we give a brief outline to these prob-
lems and their solutions.

We first report one analysis on the relative key detection
power of various spatial models specific to the combinato-
rial factors of keys, hand postures, and users in the “Com-
parison of Spatial Model” section. The analysis is based on
observed posture and user-intended key. This means the true
identity of the posture and the keys users intend to type are
known. With our dataset it was found that, compared to the
base model, posture- and key-specific spatial models could
reduce character error rate by about 11.5%, and that user- and
key-specific spatial models could reduce character error rate
by about 14.2%. These reductions in error rates represent the-
oretical upper bounds based on our dataset.

Second, in the “Input Hand Posture Classification” section,
we present a detailed SVM (support vector machine) classi-
fier of hand postures that distinguishes between two-thumb
and one-finger (including one-thumb and one-index-finger)
postures from the user’s touch points on the fly while she is
entering text. This approach is able to achieve an accuracy
rate of 86.4%.

Third, in the “Evaluation of Standalone SBM” section, we
show that posture classification combined with adaptive mod-
els improves spatial model performance, reducing the charac-
ter error rate by 13.2% over a non-adaptive baseline model.

RELATED WORK
There is a body of active research on using spatial models,
language models, and a combination of the two to improve
text entry accuracy on an STK. For example, Al Faraj et al. [1]
and Magnien et al. [16] both use visual highlight of the next
possible keys to aid typing. Their predictions of the next keys
are based on a language model which is independent of the
improvements we propose through spatial model adaptation.

Kristensson et al. [13] propose a geometric pattern matching
technique to improve stylus input accuracy. They match the
geometric pattern of the touch points on a stylus keyboard
against patterns formed by the letter key center positions of
legitimate words in a lexicon. Their approach uses a combi-
nation of spatial and language models. However, their spatial
model is not adaptive. While our focus is on tapping input,
the same adaptive spatial model approach can be potentially
applied to the gesture-based input.

Goodman et al. [7] explore key adaptive spatial models for
stylus input by using separate bivariate Gaussian distribu-
tions with means and covariance matrices per key. Zhai et
al. also show that the hit points for each key on a custom
keyboard [20] are normally distributed, but furthermore that
the centers of the distributions shift in different directions de-
pending on the positions of the keys [21]. In their relative
keyboard input system, Rashid et al. [17] use a different bi-
variate Gaussian for each key. However, the error rate of their
system is high because of the keyboard position is not fixed.

Building on [7], Gunawardana et al. [8] use restricted bi-
variate Gaussian models in their anchored key-target resizing
method. Key-target resizing means dynamically adjusting the
underlying target areas of the keys based on their probabili-
ties. The probabilities can be a combination of spatial model
and language model probabilities. They argue that overly
aggressive key-target resizing can sometimes prevent a user
from entering their desired text, and hence violate his or her
expectation about keyboard functionality. They ensure that a
touch point within the anchor area of a key is always detected
as that key irrespective of the language model.

In personal adaptation for STK, Findlater and Wobbrock [6]
explore spatial model adaptation on large touch surfaces, in
which one can use ten fingers to do traditional desktop style
touch typing. Based on a user study of 12 participants, they
find measurable performance improvements when the key-
board touch typing model is able to adapt to a particular user.

In comparison to ten-finger typing on a large touch surface,
the individual differences in one-finger or two-thumb typing
on smartphones are more subtle but still compelling. Rud-
chenko et al. [18] developed a text entry game for smart-
phones that provides targeting words for users to type to im-
prove their typing experience. As a side effect, the game gen-
erates labeled touch point data that can be used as training
data to build spatial models. Their results, based on a user
study of 6 participants, show that key-target resizing based on
a spatial model only, without personalization, gives an error
reduction of 18.9% over no key-target resizing. When adding
personalization, there is a further 2.84% error reduction. The

results show the benefit of user adaptation in an ideal condi-
tion in which the intended key is known. In real use, however,
the intended key is unknown and can only be inferred from
the current spatial and language models. In our prototype im-
plementation and evaluation we impose this same real-world
limitation. We build the user-adaptive spatial model by proba-
bilistically assigning a key to each of the user’s touch points,
without relying on the hidden identity of the true intended
key.

The user- and key-adaptive methods mentioned above all as-
sume that a user’s input posture remains the same. As far as
we are aware, our work is the first to investigate adaptation of
dynamically changing postures.

There is also a body of applicable work on user modeling and
adaptation not directly related to touch keyboard typing. A
system can be considered a user-adaptive system if it makes
nontrivial inferences about properties of the user, and adapts
its actions to these inferred properties [10]. Some systems
use rule-based adaptation that may lack empirical justifica-
tion, while others use decision-theoretic methods (e.g., [11]).
Jameson et al. [10] argue that it is important to develop de-
cision procedures for adaptation in a principled and empiri-
cally justified way, and they present a method to do so based
on a Bayesian network model. We also use a data-driven ap-
proach for adaptation and build a relative simple user model
compared to theirs. More work could be done in the user-
modeling direction to incorporate even more properties for
STK adaptation, e.g., whether the user is walking or sitting,
the user’s body posture, etc.

The idea of backing off to a lower level model when a more
specific model is not available is commonly used in language
modeling for speech recognition [12, 22]. For example, when
unseen n-gram events are encountered, the backoff class-
based n-gram language model is used. In language modeling,
all variables are observed including backoffs. However in our
model some of the variables are observed, e.g. user, whereas
some are hidden and need to be inferred, e.g. posture. As
a result, the backoff conditions are more complicated in our
model.

Finally, researchers have explored other ways to improve the
text input experience on touchscreen keyboards. One method
is to vibrotactile feedback [5, 9]. Another is to use alter-
native keyboard layouts optimized for typing speed (word
per minute) based on Fitts’ law and character level digraph
frequencies [20, 15]. These dimensions are orthogonal to
the language and the spatial models, and can be potentially
combined together to further increase the input accuracy and
speed.

RESEARCH METHODS
We use a combination of HCI and ML (machine learning)
methods to develop and evaluate the SBM.

We use a previously published smartphone typing dataset as
the empirical basis for our training and cross-validation [2].
We will call it the Pepper dataset in the rest of the paper for
easy reference. Briefly, the experiment involved 32 partic-
ipants who were given random phrases to type on a “data

collector” keyboard on an Android touchscreen phone. The
“data collector” keyboard was designed to collect data that
reflected users’ natural instincts, uninfluenced by the key-
board’s actual performance. The keyboard therefore dis-
played only an asterisk as a placeholder for each tap, and did
not provide a backspace key. The experiment was between-
subjects, with each subject adopting a different hand pos-
ture. For consistency, we removed the data from the two
left-handed users in our analysis. This leaves 9 users using
one-index-finger input, 11 users using one-thumb input, and
10 users using two-thumb input. We also filtered out touch
points that are 1.5 times the height of the key away from the
center of the target key. After this, there are 84,292 total touch
points.

A basic dependent variable of the dataset and any models built
from it is “character error rate.” This is measured by the dif-
ference between the character in the target phrase and char-
acter determined from the touch point via a spatial model.
Note that although this rate can be viewed as a percentage
of the total number of characters in the target phrase, it is to
be interpreted cautiously. First, a 0% error rate may never be
achievable in the Pepper dataset because the participants were
asked to type naturally and fast. Second, the absolute error
rate maybe dataset-dependent and is not necessarily what a
user would experience in practice. Nonetheless, the compar-
ative error rates across conditions can be informative of the
qualities of different models.

To get a sense of the error variation among different in-
put postures, we calculate the mean error rates by checking
whether each touch point lies within the bounding box of the
target key. The mean error rates per person using this method
are 7.98% (SD = 5.7) overall, 7.92% (SD = 5.8) for one-
index-finger, 6.59% (SD = 3.7) for one-thumb, and 10.69%
(SD = 7.4) for two-thumb input respectively. Since there is
much less difference between the index finger posture and the
single thumb posture, and because of posture classification
reliability concerns, we combine the index-finger posture and
the one-thumb posture into a single one-finger posture con-
dition. Hence the posture class random variable y can take
values in the set Y = {one-finger, two-thumb}. For all evalu-
ations below, the ratio of the number of users using one-finger
input to that using two-thumb input is kept the same for the
training and testing datasets.

HIERARCHICAL SPATIAL BACKOFF MODELS (SBM)
The hierarchical adaptive SBM consists of a number of sub-
models in different “levels” (Figure 1). Each submodel is
represented by a bivariate Gaussian distribution [2, 7, 17].
The lowest level is the base model which is key-, user-, and
posture- independent, i.e. all the keys have the same Gaus-
sian distribution N(µ,Λ) where µ ∈ R2 is the mean (x, y)
offsets from the center of each key’s bounding box, and Λ
is the 2 × 2 covariance matrix. This is the most general
model combining all data together. The higher level sub-
models adapt to a combination of key positions, hand pos-
tures, and users. For example, the “posture-adaptive” model
adapts to input posture only, which means there are sepa-
rate Gaussian models N(µ

y
,Λy) for each posture y for all

Base
model

Key-
adaptive

User-
adaptive

Posture-
adaptive

Posture- &
user-adatpive

lower level /
general

higher level /
specific

User- &
key-adaptive

Posture- &
key-adaptive

Posture-, user- &
key-adaptive

Figure 1. A complete hierarchical spatial backoff model. For practical
purposes, not all the submodels need to be included. The models with
thicker lines are the ones we included in the prototype implementation.

keys. The “posture- & key-adaptive” model adapts to both
posture and key which means there are separate Gaussian
models N(µ

y,k
,Λy,k) for each posture y and key k combi-

nation. At the highest level there are separate Gaussian mod-
els N(µ

y,u,k
,Λy,u,k) for each posture y, user u, and key k

combination.

Each combination of the factors needs a sufficient number
of samples to build a reliable model. Hence, each submodel
would only become mature when its reliability passes a set
threshold. Otherwise a lower order model (backoff) will be
used instead.

Figure 1 shows a complete hierarchy of the submodels with
all possible combinations of the three adaptive factors. How-
ever, depending on the relative effectiveness of the submod-
els, it may not be necessary to include all of them in an im-
plementation. In this paper, we focus on analyzing the key-
adaptive model, posture- and key-adaptive model and user-
and key-adaptive model. The order of the backoff process,
and the priority of the submodels at the same level can also
be design choices, but the analysis in the next section gives
guidance and suggestions on how to determine an order.

KEY ESTIMATION FORMULATION
As mentioned in the Research Methods section, our basic
measure for analysis and comparison of the spatial models
is character error rate. This is computed as:

character error rate =
wrongly estimated characters

all target characters
(1)

Character estimation is made based on an underlying model,
which can consist of both a language model and a spatial
model. We use θ to denote the parameter vector of the overall
model. Given ith touch point coordinates ci ∈ R2, we esti-
mate the input character as the most likely intended key, k̂i,

given by the following formulation:

k̂i = arg max
k

p(k|ci; θ) (2)

= arg max
k

p(ci, k; θ)∑
k p(ci, k; θ)

(3)

= arg max
k

p(ci, k; θ) (4)

= arg max
k

p(k; θl)p(ci|k; θs) (5)

where θl represents the parameter vector of the language
model and θs represents the parameter vector of the spatial
model. The p(k; θl) term is related to the frequencies of let-
ters and is part of the language model. To investigate whether
spatial model adaptation can be beneficial, we analyze key
estimation using the spatial model alone as a first step. Hence
we assume p(k; θl) is the same for all k (i.e. a uniform lan-
guage model). As a result

k̂i = arg max
k

p(ci|k; θs) (6)

The spatial model parameter vector θs depends on the sub-
model selected from the hierarchical SBM. For example,
when the posture-, user- and key-adaptive model is selected,
then

k̂i = arg max
k

∑
y,u

N(ci − ok;µ
y,u,k

,Λy,u,k)[[y = y ∧ u = u]]

(7)

where ok is the center of the visual bounding box of key k,
and ci−ok represents the offset. y and u represent a particular
value for the posture and the user respectively. [[y = y∧ u =
u]] = 1 if the statement is true, and 0 otherwise. Note that we
use serif fonts, e.g., y, to denote random variables, and use
sans-serif fonts, e.g., y, to denote known quantities.

The above formulation assumes the values of the posture and
user variables are known. For the user variable, this is reason-
able because smartphones are personal devices and we can
assume that the same user types on the same device. For the
posture variable, potentially we could use a soft decision and
combine probability distributions together based on the pos-
ture probability, p(y). For the analysis in the ”Comparison of
Spatial Models” section below, the values for y and u are ob-
served based on the dataset. This establishes the upper bound
for the potential benefits from the adaptations. In the ”Imple-
mentation and Evaluation” section, only the user is observed;
the value for the posture variable y is inferred through proba-
bilistic classification.

COMPARISON OF SPATIAL MODELS
We compare character error rate with different adaptive spa-
tial models to analyze their relative effectiveness (Table 1 and
Figure 2)). This can suggest the order of the backoff models
to use when there is not enough data for higher level models.
10-fold cross-validation is used, and the training and testing
data sets have different users.

The simplest model is a Gaussian distribution with zero mean
and the same spherical covariance matrix for all the keys.

Spatial model Character
error rate

(SD)
Distance from the center of the keys 7.98% (5.7)
Base model (same Gaussian model
N(0,Λ) for all the keys with a full
covariance matrix)

7.85% (5.4)

Key-adaptive model, N(µ
k
,Λk) 8.02% (5.6)

Posture & key-adaptive model,
N(µ

y,k
,Λy,k)

7.06% (4.4)

Individual & key-adaptive model,
N(µ

u,k
,Λu,k)

6.85% (4.4)

Table 1. Comparison of character error rate (no language model) with
different spatial models using 10-fold cross-validation. These results rep-
resent the theoretical upper bounds for the different adaptive spatial
models based on the Pepper dataset since they assume observed postures
and intended keys when building the models.

0.0

2.5

5.0

7.5

10.0

bounding box
base key

posture&key

individual&key

spatial model

er
ro

rr
ate

in
%

Figure 2. Bar plot of error rates in Table 1 with error bars indicating
the standard error of the mean (SEM).

This model detects keys by choosing the key with the short-
est Euclidean distance from the tapping coordinates. Our base
model has a full covariance matrix Λ learned from the train-
ing data, but the same base model N(0,Λ) is used for all
keys. Hence, when using the base model for key estimation,
the most likely intended key is

k̂ = arg max
k

N(ci − ok; 0,Λ) (8)

Key Adaptation
A basic key-adaptive model has one bivariate Gaussian model
N(µ

k
,Λk) for each key k built using data from all users in

the training dataset. The most likely intended key based on
key-adaptive model is

k̂i = arg max
k

N(ci − ok;µ
k
,Λk) (9)

The result in Table 1 shows that the key-adaptive model has
a higher error rate than the base model. A little investigation
shows that different hand postures tend to shift key specific
spatial model in different ways, sometimes even in opposite
directions. For example, in Figure 3(a), we observe that the

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

(a) Key-adaptive model

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

(b) Posture- and key-adaptive
model for one-finger input

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

(c) Posture- and key-adaptive
model for two-thumb input

Figure 3. Comparison of effective key areas with different spatial mod-
els. Each colored area presents the region such that if the user taps in
that region, the spatial model will classify that key with the correspond-
ing key label.

effective area of the “W” key goes slightly beyond the vi-
sual key boundary between “E” and “W.” For one-finger in-
put, there is a horizontal offset biased to the right for the “W”
key, whereas for two-thumb input, there is a horizontal offset
biased to the left for the “W” key. When mixing these oppo-
site effects together in key adaptation, no meaningful results
could be expected. The base model suffers the same setback,
but even though neither of the two models closely models the
underlying distributions of the touch points, the base model,
with fewer parameters than the key-adaptive model, may be
more generalizable when there are limited data.

Posture Adaptation
Key adaptation becomes more effective when combined with
posture adaptation as shown in Table 1. There is 12.0% re-
duction in error rate compared to key adaptation only. A two-
sample one-sided paired t-test shows that the improvement in
accuracy is significant when using posture and key adaptation
versus key adaptation only (t(29) = -2.4421, p = 0.01).

There can be different levels of complexity for posture adap-
tation. For the most complex one, we can have two models
for each key for each input posture, i.e., N(µ

y,k
,Λy,k) for

y ∈ {one-finger, two-thumb}; or we can do posture adapta-
tion only for a certain number of keys, for examples for keys
on the left side only or a smaller subset of keys on the left
side. We experimented with these options and the best result
obtained is when posture adaptation is applied to the keys on
the left side while keeping the Gaussian models for the keys
on the right side independent of postures, i.e., N(µ

k
,Λk).

The error rate for posture and key adaption shown in Table 1
is based on this option. This approach is similar to the “pa-
rameter tying” technique that is often used in acoustic mod-
eling in speech recognition [4] and natural language process-
ing [14] to deal with insufficient training data.

From (5), the most likely intended key based on posture- and
key-adaptive model can be written as

k̂i = arg max
k

∑
y

p(ci|k, y; θs)[[y = y]], (10)

where

p(ci|k, y; θs) =

{
N(ci − ok;µ

y,k
,Λy,k) if k is on left side

N(ci − ok;µ
k
,Λk) if k is on right side

(11)

The choice of this set of keys is not arbitrary. As observed
by Azenkot et al. [2], the difference in horizontal offsets of
the touch points from different postures are most prominent
for the keys on the left side. In addition, the analysis of vari-
ance based on the tapping coordinates from the Pepper dataset
shows that, for different postures, there are significant differ-
ences in the means of the x coordinate for the keys on the left
side of the keyboard (p < 0.05).

Figures 3(b) and 3(c) show the comparison of effective areas
of the keys with spatial models adapted to one-finger input
and two-thumb input respectively. Note how the key areas
for the left-side keys shift to the left for two-thumb input, and
shift to the right for one-finger input. The difference in the
effective key areas is the same concept as key-target resizing
mentioned in [8, 18].

The error rate in Table 1 is based on perfect knowledge of
the posture. In a deployed system, the online posture classi-
fication may introduce errors. To mitigate the problem, the
posture-adaptive model can be enabled only if the posture
classification confidence is high. The details are explained
in “Evaluation of Standalone SBM section.

User Adaptation
The user- and key-adaptive model reduces the error rate by
14.7% over the key-adaptive model. As some data is needed
to build the user and key-specific model, the most likely in-
tended key k̂i can be written as:

k̂i = arg max
k

∑
u

p(ci|k, u; θs)[[u = u]], (12)

where

p(ci|k, u; θs) =

{
N(ci − ok;µ

k
,Λk) if i ≤ Tuser

N(ci − ok;µ
u,k
,Λu,k) if i > Tuser

(13)

Tuser is the minimum number of data points needed to build
a user-specific key model. Equation (13) shows the backoff
mechanism for the user- and key-adaptive model. The thresh-
old can also be key dependent, i.e. Tuser, k for each key k. We
have not experimented with this variation and this can be part
of the future work.

The result in the last row of Table 1 is computed by the fol-
lowing method. For each fold of the cross-validation, data
from the training set are used to train the combined backoff
key models. For each user u in the test set, 50% of the data
for each key is used to train the user- and key-adaptive model,

10

11

12

13

14

15

16

17

18

19

20

10 20 30 40 50 60 70

K
ey

 d
et

ec
tio

n
er

ro
r

ra
te

 in
 %

Number of points for user adaptation for key E

Error rate of user-adaptive model

Error rate of key-adaptive model

Figure 4. Graph showing how key estimation error rate for key E
changes as the number of points used to build the user-adaptive model
for key E increases.

i.e., N(µ
u,k
,Λu,k). The intended keys of these data points

are evaluated on the combined backoff key models. The re-
maining 50% of the test data for each user are evaluated on
the user- and key-adaptive model.

The black line in Figure 4 shows how key estimation er-
ror rate for the “E” key changes as the number of points
used to build the personalized model for key “E” increases.
The green line indicates the error rate when using the key-
adaptive model only. The error rates are obtained using cross-
validation and are based on the touch points that are not used
in building the model. We choose “E” as an example be-
cause it has the most number of data points (around 90) for
each user in the Pepper dataset besides the “Space” key. It is
hard to do the analysis for the other keys with relatively small
number of data points. However, we believe the result would
be applicable to other keys. Also due to the limited num-
ber of data points, we only show the trend until the number
of touch points used to build the user model is 70. Never-
theless, the figure still shows a general trend, and suggests
that the minimum number of data points for building a user-
and key-adaptive model should be at least 55 when the error
rate becomes lower than that when using key-adaptive model
alone. This is only a single data point for one key, but since
it’s cross-validated and averaged over several users, it is prob-
ably not too far from the real threshold.

INPUT HAND POSTURE CLASSIFICATION
The posture-adaptive model requires a real-time posture clas-
sifier. For this paper, we have developed a classifier that con-
tinuously estimates y ∈ {two-thumb, one-finger} from only
the user’s input touch points. Note that a variety of sensor,
signals, and algorithms could be used, but optimal posture
classification is not the primary goal of this paper.

Our analysis of the touch point data shows that for one-finger
input, the time taken increases with the distance moved,
whereas for two-thumb input, there is no obvious trend. The
difference is more significant when the log distance (natural
log) between two consecutive touch points is greater than 5.

The result makes intuitive sense. For example, a user may
take a longer time than average to type the letters “AL” us-
ing one finger because the finger has to travel a long distance
from the “A” key to the “L” key on a Qwerty keyboard. But
with two thumbs, typing “AL” can be faster than average be-
cause different hands are used for each key. No long distance
move is required.

Based on this finding, we include the time elapsed and the log
distance between two consecutive touch points as two fea-
tures for the posture classifier. To account for individual typ-
ing speed differences, we also use normalized time elapsed
between consecutive key presses as the third feature. It is cal-
culated by dividing the time elapsed since the last touch point
by the average time elapsed for the last 10 touch points.

Using 20 users data for training and 10 users data for test-
ing, we train an SVM classifier offline using these three fea-
tures. Each input touch point satisfies conditionC: it is on the
other side of the keyboard from the previous touch point, and
the log distance from the previous touch point is at least 5.
This classifier gives a probability score psingle

y for these touch
points. Note that

∑
y∈Y

psingle
y = 1. The posture classification

accuracy for these touch points is 83.6%.

In order to classify every key tap and assuming the user does
not change posture rapidly, we look at a sliding time window
of 10 touch points (about 2 words). For each time window,
we use another SVM classifier with the following features:

1. Correlation between time elapsed and log distance (this
feature has the advantage of being speed independent)

2. Sum of psingle
one-finger for touch points satisfying condition C.

3. Sum psingle
two-thumb for touch points satisfying condition C.

4. Number of touch points within the window classified as
one-finger input.

5. Number of touch points within the window classified as
two-thumb input.

Features 2-4 are also normalized by the window size. The
history of the touch points are cleared for every new typing
session. The choice of the size of the sliding window rep-
resents a trade-off between the accuracy of the classification
and how responsive the system is when the user changes pos-
ture. We assume that in general users do not change posture
more often than every two words.

The sliding time window classifier gives a final probability
score py for posture y for each touch point. Again

∑
y∈Y

py =

1. To evaluate the classification accuracy, we set the the clas-
sified posture to be y if py > 0.5. With this threshold, the
overall classification accuracy for each touch point with a
sliding time window is 86.4% (23,128 out of 26,769 touch
points).

In the sliding window approach, the posture for the first few
touch points of a new session is unknown. In this situation,

Highest level spatial model in SBM Character
error rate

(SD)
Base model 8.64% (5.1)
Key-adaptive model 8.71% (5.1)
Posture- and key-adaptive model 8.39% (5.0)
User- and key-adaptive model 7.62% (4.8)
Posture-, user- and key-adaptive model 7.50% (4.5)

Table 2. Comparison of character error rates using the real-world im-
plementation of the standalone SBM model across different submodels.
These results are based on inferred postures and intended keys for build-
ing the user specific models. Results are based on 10 test users.

a system can back off to a lower level spatial model (key-
adaptive or base model). Furthermore it can enable the pos-
ture adaptive spatial model only when the probability score
for one posture is much higher than the other.

IMPLEMENTATION AND EVALUATION
The key estimation process with the proposed SBM fits nicely
with the Chain of Responsibility design pattern. Each higher
level model can hold one or more references to lower level
models. Given a touch point, the system queries the high-
est level model for a Gaussian submodel for a particular
user/posture/key combination. If not present, the higher
model calls the lower model, and the query propagates un-
til a Gaussian submodel is found.

Based on this design, we implemented a prototype of SBM
with online posture classification. The prototype has flags
to turn on/off certain adaptive models so that we can easily
compare their performance. For all the evaluations, we use
20 users’ data for training both the posture classifier and the
spatial models, and the other 10 users’ data for testing.

Evaluation of Standalone SBM
Like Findlater et al. [6] and Rudchenko et al. [18], we eval-
uate the effectiveness of the standalone SBM prototype on
key estimation without a language model. Table 2 and Fig-
ure 5 show the comparison of character error rates using SBM
with different submodels turned on. The main difference be-
tween these results and those in Table 1 is that in the proto-
type implementation, posture is inferred and the user specific
model is built according to inferred user-intended key. This
means that the true identity of the intended keys are unknown
which is true in a realtime application. The implication is that
some of the data points used to train the posture- and/or user-
specific models are inevitably erroneous. Our goal is to re-
duce the error as much as possible and to show that even with
potential errors, the overall error rates with adaptive models
are still lower than the non-adaptive one.

Posture Adaptation
The posture- and key-adaptive model uses the posture classi-
fication method described in the previous section. As a result,
the key detection error rate for this model is compounded by
the posture classification error rate.

An error in posture classification will lead to an incorrect
submodel, and hence adversely affect the key detection ac-
curacy. To minimize incorrect classifications, we consider

0

3

6

9

12

base key
posture&key

individual&key

posture,individual&key

spatial model

er
ro

rr
ate

in
%

Figure 5. Bar plot of error rates in Table 2 with error bars indicating
standard error of the mean (SEM).

8.40

8.45

8.50

8.55

8.60

8.65

8.70

8.75

0.5 0.6 0.7 0.8 0.9 1.0

K
ey

 d
et

ec
tio

n
er

ro
r

ra
te

 in
 %

Posture classification confidence threshold

Error rateof
posture- & key-
adaptive model

Error rateof key-
adaptive model

Error rateof base
model

Figure 6. Graph showing how key estimation error rate changes as the
confidence threshold for posture classification increases.

the confidence of the classifier. The classifier’s confidence
can be determined by examining the pair of probability scores
(pone-finger, ptwo-thumb). We can set a threshold Tposture such that
the input posture is classified as y only if Py ≥ Tposture. Oth-
erwise the posture is treated as unknown and we backoff to a
lower-level spatial model.

There is a trade-off in setting the Tposture threshold. When
Tposture is higher, there will be fewer errors in posture clas-
sification, but also more touch points classified as unknown
posture. No posture adaptation can be used for these touch
points. Figure 6 shows that there is an optimal level of the
threshold beyond which the error rate increases because we
can no longer take advantage of posture adaptation. The error
rate in Table 2 for SBM with posture- and key-adaptive model
as the highest order model is obtained by setting Tposture =
0.94.

User Adaptation
When computing the user- and key-adaptive model, for every
touch point we calculate the probability for each key given the
underlying spatial model. Then we use the (x, y) coordinates
of the touch point to update the Gaussian model for the most
probable key. Updating the Gaussian model involves comput-

Base
model

Key-
adaptive

User- & key-
adaptive

Posture-, user- &
key-adaptive

higher level /
specific

1

4

3

2

Posture- & key-
adaptive

lower level /
general

Figure 7. Partial hierarchical model implemented in our prototype. The
numbers indicate the order of the submodels to use during backoff.

ing the running average of the (x, y) offsets from the center
of the key and the covariance matrices. The counter for the
number of points used for a particular key Gaussian is main-
tained so that we know when a particular Gaussian model is
mature. When there are not enough data points, the system
backs-off to a lower level model.

We set the minimum number of points needed to build the
Gaussian model for a particular key and user pair to be 50.
Ideally we would want to set this number higher for better
model reliability as shown in Figure 4. However the current
number is limited by the amount of data available. Only about
half of the keys have more than 50 data points for each user.
The average number of data points per key per individual is
about 80. We chose 50 as a middle ground so that there is
room for individual adaptations for most of the keys. In a
deployed system, the data limitation will be less of an issue
since the user is continually typing. Alternatively, the system
can use a user’s past data to update the combined model.

Posture, User, and Key Adaptation
Tying everything together, the last row in Table 2 shows the
error rate when the highest level model is posture-, user- and
key-adaptive. It reduces the error rate of the base model by
13.2% ((8.64 − 7.50)/8.64). The reduction is significant
based on the two-sample one-sided paired t-test (t(9) = 2.58,
p = 0.015).

Figure 7 shows the backoff mechanism when there is insuf-
ficient data for the highest level model. The results based
on the Pepper dataset in the ”Comparison of Spatial Models”
section suggest that we can give higher priority to the user-
and key-adaptive model when there is not enough data for
the highest level model. If there are still not enough data for
that, we can further backoff to the posture- and key-adaptive
model.

Note that because the dataset is a between-subjects study, we
cannot study the full effect of posture adaptation for each in-
dividual. We believe that there could be additional improve-
ment, but further study is required to verify it.

DISCUSSION AND FUTURE WORK
We have shown the potential of posture, user, and key adapta-
tion for improving key estimation. An important limitation of
our exploration thus far has been the constraints of the Pepper
dataset. To advance this line of work further we need more
data than is typically available from lab experiments. Meth-
ods such as real-use logging and game playing [18] can be
employed to gather a large body of data. With this scale of
data, the specific (sub)models, the backoff procedure and se-
quence, and the parameters learned from the data may change
and be better optimized in the future.

In our proposed SBM, we switch from a more general to a
more specific submodel when a certain threshold of confi-
dence is reached or enough data points are collected. This
is a binary decision, i.e., a submodel is either used or it is
not. Alternatively, we can employ a mixture model that is a
weighted average of the general and the specific submodels
(i.e., using soft decisions), with the relative weight of the spe-
cific submodel increasing as confidence in it increases. We
have started to experiment with this approach for user adapta-
tion, i.e., combining the individual data points with the com-
bined model from the very beginning instead of waiting until
enough individual data points have been collected. Our pre-
liminary studies have not shown a substantial difference, but
our ongoing investigations may yield better results. It is also
worth noting that even though the mixture model approach
may not improve accuracy, it may provide a more gradual
transition between submodels and hence may provide a less
disruptive user experience.

Once more data are collected to improve the SBM, more user
studies can be run to validate how the system improves user
typing accuracy and speed. Of particular interest is how users
adapt their behavior to the SBM. For example, since pos-
ture adaptation can tolerate different shifts left or right, might
users respond by shifting their touch positions even further?
Will users adopt the tactic of choosing one posture and stick-
ing to it in order to increase the system’s accuracy, and would
it be desirable for them to do so? Might the sudden switch
by the system from one model to another disrupt interaction
by making the input method less predictable? All these are
interesting HCI questions to be explored.

In our analysis, we only considered right-handed users. For
left-handed users, we expect the posture-adaptive models
would be different, for example, the horizontal offsets would
be in the opposite direction. This means we also need a mech-
anism to identify the handedness of the user which is also an
interesting aspect of the future work.

In this work, we combined the index-finger and one-thumb
data together because with the current touchscreen phones
it is difficult to reliably distinguish the two postures. But it
may be possible to identify them by augmenting the capaci-
tive sensing with a range of frequencies that can help identify
different kinds of hand grips [19]. Another possibility is to
add a widget to the keyboard that allows the user to option-
ally specify what posture they are currently using. While this
method can eliminate the posture prediction error, it does so
at the expense of overhead for the user. It would be interest-

ing to examine the trade-off between accuracy and time, and
users’ preferences in this regard.

We have so far only considered the spatial model alone. More
work is needed to explore the interaction between spatial
adaptation and language modeling. As the language model
can get fairly complex, our plan is to start with the simplest
one, e.g., one based on dictionary word frequencies, and then
add complexity step by step by, e.g., considering bigram fre-
quencies, substitution, elimination, and transposition errors.

Additional improvements in key estimation may be possible
by extending the formulae in the “Key Estimation Formula-
tion” section to consider a sequence of touch points [7, 8] in-
stead of just one. It would also be interesting to study how to
use posture detection to guide transposition error correction,
because transposition errors are more likely to occur when
two hands are used to type.

CONCLUSION
We have introduced and evaluated a novel hierarchical adap-
tive spatial model for touchscreen keyboards. Through com-
parative submodel analysis and evaluation of a prototype im-
plementation, we have shown that both posture and user adap-
tation for a spatial model can improve key estimation accu-
racy. When posture, user, and key adaptations are combined,
they achieve the greatest improvement. For real-world im-
plementations, the hierarchical structure gives a systematic
way of backing-off to successively simpler models when data
is limited or when there is insufficient confidence in higher
level models.

We have also developed a new touchscreen input posture clas-
sification method that achieves an accuracy of 86.4% for clas-
sifying one-finger and two-thumb input. When combined
with the adaptive spatial model, the our analysis shows that
the overall key detection increases significantly.

Our work also opens up many more interesting HCI questions
in adaptive STK that may not have been previously consid-
ered. We think that addressing these questions will help im-
prove the user experience with STK as touchscreen devices
become even more ubiquitous.

ACKNOWLEDGEMENTS
We want to thank our team members Ciprian Chelba for shar-
ing his theoretical insights and for extensively commenting
an early draft of this paper, Xiaojun Bi for sharing tools for
collecting and analyzing the data, and Shiri Azenkot for col-
lecting the Pepper dataset [2] reused in the analysis of SBM
methods proposed in this paper.

REFERENCES
1. Al Faraj, K., Mojahid, M., and Vigouroux, N. Bigkey: A virtual

keyboard for mobile devices. In Human-Computer Interaction.
Ambient, Ubiquitous and Intelligent Interaction, vol. 5612. Springer
Berlin / Heidelberg, 2009, 3–10.

2. Azenkot, S., and Zhai, S. Touch behavior with different postures on soft
smart phone keyboards. In Proc. MobileHCI (2012).

3. Bao, P., Pierce, J., Whittaker, S., and Zhai, S. Smart phone use by
non-mobile business users. In Proc. MobileHCI ’11 (2011), 445–454.

4. Bellegarda, J., and Nahamoo, D. Tied mixture continuous parameter
models for large vocabulary isolated speech recognition. In
International Conference on Acoustics, Speech, and Signal Processing,
vol. 1 (may 1989), 13 –16.

5. Brewster, S., Chohan, F., and Brown, L. Tactile feedback for mobile
interactions. In Proc. of CHI ’07 (2007), 159–162.

6. Findlater, L., and Wobbrock, J. Personalized input: improving
ten-finger touchscreen typing through automatic adaptation. In Proc.
CHI ’12 (2012), 815–824.

7. Goodman, J., Venolia, G., Steury, K., and Parker, C. Language
modeling for soft keyboards. In Proc. IUI ’02 (2002), 194–195.

8. Gunawardana, A., Paek, T., and Meek, C. Usability guided key-target
resizing for soft keyboards. In Proc. IUI ’10 (2010), 111–118.

9. Hoggan, E., Brewster, S. A., and Johnston, J. Investigating the
effectiveness of tactile feedback for mobile touchscreens. In Proc. of
CHI ’08 (2008), 1573–1582.

10. Jameson, A., Großmann-Hutter, B., March, L., and Rummer, R.
Creating an empirical basis for adaptation decisions. In IUI 2000:
International Conference on Intelligent User Interfaces, H. Lieberman,
Ed. ACM, 2000, 149–156.

11. Jameson, A., Schäfer, R., Weis, T., Berthold, A., and Weyrath, T.
Making systems sensitive to the user’s time and working memory
constraints. In Proceedings of the 4th international conference on
Intelligent user interfaces, IUI ’99 (1999), 79–86.

12. Katz, S. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. Acoustics, Speech and Signal
Processing, IEEE Transactions on 35, 3 (mar 1987), 400 – 401.

13. Kristensson, P., and Zhai, S. Relaxing stylus typing precision by
geometric pattern matching. In Proc. IUI ’05 (2005), 151–158.

14. Lin, Y.-C., Chiang, T.-H., and Su, K.-Y. The effects of learning,
parameter tying and model refinement for improving probabilistic
tagging. Computer Speech and Language 9, 1 (1995), 37 – 61.

15. MacKenzie, I. S., and Zhang, S. X. The design and evaluation of a
high-performance soft keyboard. In Proc. CHI ’99 (1999), 25–31.

16. Magnien, L., Bouraoui, J. L., and Vigouroux, N. Mobile text input with
soft keyboards: Optimization by means of visual clues. In MobileHCI
’04, vol. 3160. Springer Berlin / Heidelberg, 2004, 197–218.

17. Rashid, D. R., and Smith, N. A. Relative keyboard input system. In
Proc. IUI ’08 (2008), 397–400.

18. Rudchenko, D., Paek, T., and Badger, E. Text text revolution: a game
that improves text entry on mobile touchscreen keyboards. In Proc. the
9th international conference on Pervasive computing (2011), 206–213.

19. Sato, M., Poupyrev, I., and Harrison, C. Touché: Enhancing touch
interaction on humans, screens, liquids, and everyday objects. In Proc.
CHI ’12 (2012).

20. Zhai, S., Hunter, M., and Smith, B. A. The metropolis keyboard - an
exploration of quantitative techniques for virtual keyboard design. In
Pro. UIST ’00 (2000), 119–128.

21. Zhai, S., Sue, A., and Accot, J. Movement model, hits distribution and
learning in virtual keyboarding. In Proc. of CHI ’02 (2002), 17–24.

22. Zitouni, I. Backoff hierarchical class n-gram language models:
effectiveness to model unseen events in speech recognition. Computer
Speech and Language 21, 1 (2007), 88 – 104.

	Introduction
	Related Work
	Research Methods
	Hierarchical Spatial Backoff Models (SBM)
	Key Estimation Formulation
	Comparison of Spatial Models
	Key Adaptation
	Posture Adaptation
	User Adaptation

	Input Hand Posture Classification
	Implementation and Evaluation
	Evaluation of Standalone SBM
	Posture Adaptation
	User Adaptation
	Posture, User, and Key Adaptation

	Discussion and Future Work
	Conclusion
	Acknowledgements
	REFERENCES

