
Fingertip Tracking for Tabletop Interaction Using a Depth
Sensor

Anonymous Anonymous

ABSTRACT
We report a new technique for using a depth sensor to track
fingertips for tabletop interaction. Our technique is pre-
cise; the average position error (Euclidean distance) is 5.3px,
about 10mm on the tabletop. We designed our system with
naturalness in mind, making fewer assumptions about how
users will move their hands on the tabletop. We believe our
method is general and accurate enough to allow manipula-
tive interaction using hands on a tabletop display.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—input devices and strategies, interaction styles

General Terms
Human Factors

Keywords
Multi-modal interaction, natural human computer interac-
tion, fingertip tracking, hand tracking, digital table interac-
tion.

1. INTRODUCTION
Since its introduction, the Microsoft’s Kinect has been

used widely for capturing both body and hand gestures [1].
Many similar devices have subsequently come onto the mar-
ket and have been used for capturing gestures. For instance,
Harrison et al. [4] use a short-range PrimeSense [2] depth
camera for their wearable multi-touch interaction. In com-
parison to the touch-sensitive devices, such as Microsoft’s
Surface and the iPad, depth sensors allow tracking of hands
above the surface, and hence enable in-air gestures.

Our long term goal is to build an intelligent multi-modal
interface for natural interaction that can serve as a testbed
for enabling the formulation of a more principled system
design framework for multi-modal HCI. One focus of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

research is on gestural input for a large tabletop display. The
user should be able to use gesture as an input effortlessly for
both direct manipulation and communication to the system.

The first step towards gesture understanding is accurate
hand tracking and hand model estimation. In this paper,
we present our fingertip tracking technique using the Kinect
sensor.

2. RELATED WORK
Hand tracking is essentially the frame-by-frame estima-

tion of the parameters of the hand model. The complexity
of the hand model is application dependent. For a given ap-
plication, a very coarse and simple model may be sufficient.
The simplest model treats the hand as a blob and only the
2D/3D location of the blob is tracked. For example, Sharma
et al. [9] use 2D positional and time differential parameters
to track the hands as blobs, which is sufficient for them
to distinguish whether the hands are doing a point, a con-
tour, or a circle gesture. The PrimeSense NITE middleware
for OpenNI’s natural interaction framework also tracks the
hand as a point. It requires the user to do a “focus” gesture
(“click” or “wave”) to gain control in order to start hand
tracking [8]. The gestures it supports are “click”, “wave”,
“swipe left”, “swipe right”, “raise hand candidate” and “hand
candidate moved”.

However, to make a more generalizable system for natural-
like interaction, a more sophisticated model is required. One
step forward is adding fingertip locations in the hand model.
Representative work in this area includes Oka et al. [6],
which uses normalized correlation with a template of a prop-
erly sized circle to search for fingertips. They use a thermal
camera to capture the hands. Larson et al. [5] also rely
on a thermal camera, and use thinning operation to obtain
a skeletization of the fingers, and then iteratively apply a
hit-and-miss transform to find the endpoints of each finger.
However, neither of them report the accuracy of their fin-
gertip tracking.

Harrison et al. [4] use a depth sensor for fingertip track-
ing. They first compute the depth derivative of a scene, and
look for vertical slices of cylinder-like objects. Then they
group proximate slices into continuous paths and assume
that the leftmost point in the path is the fingertip for a
right-handed users. In their finger click evaluation, they re-
port that their system has an average of 11.7mm offset from
the targets. However, their method only works when the
fingers approach the surface horizontally, not at an angle.
This is a major assumption which may not be true for natu-
ral interaction. Our method does not make this assumption.

Tracking fingertips is usually sufficient for manipulating
objects on a 2D surface [7]. A richer set of gestures, however,
requires a more sophisticated model. For instance, Wang et
al. [10] uses a 26 DOF 3D skeletal model in their real-
time hand-tracking system. However, their system does not
directly track the exact positions of the fingertips, and hence
is not for touch-based interaction.

One requirement of our system is the ability for users to
manipulate virtual 2D objects, for example, selecting, mov-
ing, and clicking on virtual objects, as for example, the urls
in a web browser display. A simplified 3D skeletal hand
model is needed for manipulative gestures because we want
to know exactly where the fingertips are.

3. HAND TRACKING ON A TABLETOP DIS-
PLAY

In this section, we describe our hand and fingertip tracking
technique for a tabletop display.

3.1 System Setup
The custom tabletop structure includes four 1280× 1024

pixel projectors (Dell 5100MP) that provide a 2560 × 2048
pixel resolution display. The display is projected onto a
flat white surface digitizer (GTCO Calcomp DrawingBoard
V), which uses a stylus as an input device. The digitizer
is tilted 10 degrees down in front, and is placed at 41in
(1.04m) above the floor, following FAA’s design standard to
accommodate the 5th through 95th percentiles of population.
The projected displays were mechanically aligned to produce
a single seamless large display area. The graphics card used
is AMD RadeonTMHD 6870 and the operating system used
is Ubuntu 11.10.

Figure 1: System setup.

One Kinect motion sensor by Microsoft is placed above
the center of the tabletop at the same level of the projec-
tors. Figure 1 shows the setup. The Kinect sensor has a
RGB camera, a depth sensor and a multi-array microphone.
We use the depth sensor to capture hand motion because it
is less sensitive to the lighting condition. This is particu-
larly useful for our projection system, as the Dell 5100MP
projector uses a spinning color wheel to modulate the im-
age, which produces a visible artifact on the screen with

colors separating out in distinct red, green, and blue (see
Figure 2). At any given instant in time, the image on the
screen is either red, green, or blue, and the technology relies
upon people’s eyes not being able to detect rapid changes
from one to the other. However, when seen through a RGB
camera, the effect is very obvious, and this interferes with
hand segmentation in RGB images. With a depth camera,
we do not have this problem.

Figure 2: A RGB image with visible artifacts due to
color-wheel projectors.

The Kinect sensor outputs video at a frame rate of 30Hz.
The depth sensing video stream has a resolution of 640×480
pixels with 11-bit depth value. The depth sensor has a range
limit of about 0.5m - 5m with a resolution of 1.5mm at 0.5m
and 50mm at 5m. The tabletop surface is about 1.2m away
from the Kinect sensor which allows us to have a relatively
good depth resolution. We use the open source OpenNI
framework 1, and its Kinect driver 2 to get both the depth
and RGB data streams.

3.2 Kinect Calibration
In order to develop an interactive interface, we need to

map a point in the depth image to a point on the display.
We do this by projecting a checkerboard image on the table-
top display, and placing some wooden blocks at the corners
of the checkerboard image to create the depth differences, al-
lowing us to capture both positi0n and depth (see Figure 3).
We manually labeled 16 pairs of corresponding points on
the display and the depth image. Then we apply undistor-
tion to the depth image and planar homography to find the
mapping.

Planar homography is a projective mapping from one plane
to another. In our case, we are mapping points on the plane
of the depth image to the points on the plane of the display.
To evaluate the result of the calibration, we obtain a new
set of manually labeled corresponding points on the display
and the depth image. We then transform the coordinates
of the points on the depth image to the coordinates on the
display using the calibration result, and find the Euclidean
distance (error) between the transformed coordinates and
the labeled coordinates of the points on the display. The
average errors in the x-axis and y-axis are 4.3px and 8.9px
respectively, which are 2.1mm, and 4mm in physical distance
of the projected display. The average width of the human
index fingertip is about 14mm, so the error is less than 30%
of the width of the fingertip.

1https://github.com/OpenNI/OpenNI
2https://github.com/avin2/SensorKinect

Figure 3: Kinect calibration. The darker squares
are the wooden blocks. The intensity of the gray
level image is inversely proportional to the distance
from the Kinect sensor.

3.3 Hand Tracking
Our hand tracking process consists of feature detection

and parameter estimation. The hand tracking pipeline con-
sists the following steps:

1. Background subtraction

2. Upper limb and hand segmentation

3. Fingertips tracking

Many of the computer vision methods we use are based
on the OpenCV 3 library and its Java interface JavaCV 4.

3.3.1 Background Subtraction
While the background - i.e., the tabletop - is static, there

is still noise from the depth sensor. We use the averaging
background method, which learns the average and average
difference of each pixel in the depth image as the model of
the background. The average values are based on the initial
30 frames with no hands in the scene; the average frame-
to-frame absolute difference is 1.3mm in our case. For the
subsequent frames, any value that is 6 times larger than
this (i.e., at least 7.8mm above the surface) is considered
foreground.

To clean up the background subtracted depth image, we
use 1 iteration of morphological opening to clear out small
pixel noise. Morphological opening is a combination of ero-
sion and dilation. The kernel of erosion is a local minimum
operator, while that of dilation is a local maximum opera-
tor. Figure 4 shows the difference after using morphological
opening.

3.3.2 Upper Limb and Hand Segmentation
With the cleaned up background subtracted depth im-

age, we find connected components by finding all contours
with perimeters greater than a threshold value of 300mm.
These components are considered to be the upper limbs. The
threshold value is roughly the lower bound of the perimeter
of a hand. We use this lower bound because the perimeter
of the upper limb changes depending on the position of the
hand relative to the table. The smallest perimeter occurs
when the hand is at the edge of the table.

3http://opencv.willowgarage.com/wiki/
4http://code.google.com/p/javacv/

(a) Without using morpho-
logical opening.

(b) Using morphological
opening to clear out small
pixel noise.

Figure 4: Background subtraction.

Each upper limb is then approximated with a convex hull
and a bounding box. The hand region is at either end of the
bounding box depending on the position of the arm relative
to the table.

3.3.3 Fingertip Tracking
We base our estimation of the hand model on geometric

properties of the hand. We compute the convexity defects
(shown by the white triangular areas in Figure 5) from the
convex hull of the upper limb. These convexity defects of-
fer a means of characterizing the hand shape [3]. As Figure
5 shows, an extended finger has one convexity defect on
each side, and the two adjacent sides of the defects form a
small acute angle (e.g., point A in Figure 5). We iterate
through two adjacent convexity defects each time, for exam-
ple, 4BiCiDi and 4Bi+1Ci+1Di+1 in Figure 5(a). If the
angle between the two sides, CiDi and Bi+1Di+1 is smaller
than a threshold value (45 ◦), we mark the middle point of
CiBi+1 as potential fingertips. The distance between the
depth_points (the point on the defect that is farthest from
the edge of the hull [3], e.g., Di, Di+1) of the adjacent con-
vexity defects also has to be greater than the finger width
threshold value (14mm).

We further refine the fingertip position by searching in
the direction of the finger for a sharp change in the gradient
of the depth value (i.e., when the gradient is greater than
0.05).

3.3.4 Kalman Filtering
Like [6] and [4], we use a Kalman filter to further improve

tracking accuracy. The dynamic state of the fingertip can
be summarized by a 4-dimensional vector, xk, of two posi-
tion variables, x and y, and two velocities, vx and vy. The
measurement is a 2-dimensional vector, zk, of the measured
x and y coordinates of the fingertip.

Assuming no external control, the a priori estimate x−
k of

the state is given by:

x−
k = Fxk−1 + wk

F is the 4-by-4 transfer matrix characterizing the dynamics
of the system with the following values:

xk =

x
y
vx
vy

k

, F =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

assuming constant velocities, and that time is measured in

(a)

(b)

Figure 5: The white triangular areas are convexity
defects and the red outline is the convex hull.

frames. wk is the process noise associated with random
events or forces that directly affect the actual state of the
system. We assume that the components of wk have Gaus-
sian distribution N(0, Qk) for some 4-by-4 covariance matrix
Qk. We set the matrix Q with the following values:

Q =

1 0 0 0
0 1 0 0
0 0 10 0
0 0 0 10

The larger variance values in the last 2 values in the diagonal
indicate greater uncertainty in the velocities, as they may of
course not be constant.

3.3.5 Evaluation
We evaluate the accuracy of our fingertip tracking method

by comparing the detected fingertip position with the man-
ually labeled position in a sequence of video frames. In our
first evaluation, only one extended finger was used. Our
method finds the fingertips with an average error (Euclidean
distance) of 5.3px, about 10mm in physical distance on the
projected display. The error rate also informs us the size of
the virtual objects we should have in our applications, i.e.,
they need to be at least 10mm in radius, in order to increase
the accuracy of the manipulative interaction. This result is
comparable with the accuracy in [4], but our system has no
restriction on the angle of the fingers with respect to the
surface.

4. GESTURE INPUT FOR THE BROWSER
We are developing a browser-based game-like application

that allows the use of hand gesture for interaction. With
the recent development in HTML5, browser-based interac-
tion has become richer and richer and a browser has become

a routine application people use to do a variety of tasks. A
browser-based game application easily enables online multi-
player interaction. So far, we have developed the infras-
tructure that can enable gesture input to a web application
5. Our system uses WebSocket to establish the connection
between the hand-tracking server and the browser applica-
tion and transforms the coordinates from the virtual display
coordinate to the browser coordinate.

5. DISCUSSION AND FUTURE WORK
We believe that, with the accuracy of our current finger-

tip tracking method, we can enable hand manipulation of
virtual objects on a large tabletop display. We are going
to develop demo browser-based applications to test this as-
sumption.

Our fingertip tracking method does not have restrictions
on the number of fingers we can track, but we still need to
evaluate the accuracy for multi-finger tracking.

Eventually, we are going to develop a multi-modal system
that allows both manipulative and communicative gestures,
as well as speech input. The result of parameter estimation
of the hand model will be used both as the information the
system needs to make response to manipulative gestures,
and as the input to a gesture recognizer.

6. REFERENCES
[1] OpenNI Arena. http://arena.openni.org/.

[2] PrimeSense Ltd. http://www.primesense.com.

[3] G. Bradski and A. Kaehler. Learning OpenCV. The
Art of Computer Programming. O’Reilly, first edition,
2008.

[4] C. Harrison, H. Benko, and A. Wilson. Omnitouch:
wearable multitouch interaction everywhere. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology, pages 441–450.
ACM, 2011.

[5] E. Larson, G. Cohn, S. Gupta, X. Ren, B. Harrison,
D. Fox, and S. Patel. Heatwave: thermal imaging for
surface user interaction. In Proceedings of the 2011
annual conference on Human factors in computing
systems, pages 2565–2574. ACM, 2011.

[6] K. Oka, Y. Sato, and H. Koike. Real-time fingertip
tracking and gesture recognition. IEEE Computer
Graphics and Applications, 22(6):64–71, 2002.

[7] V. I. Pavlovic, R. Sharma, and T. S. Huang. Visual
interpretation of hand gestures for human-computer
interaction: A review. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19:677–695, 1997.

[8] PrimeSence Inc. PrimeSenseTMTM NIT Algorithms,
1.5 edition, 2011.

[9] R. Sharma, J. Cai, S. Chakravarthy, I. Poddar, and
Y. Sethi. Exploiting speech/gesture co-occurrence for
improving continuous gesture recognition in weather
narration. In Automatic Face and Gesture Recognition,
2000. Proceedings. Fourth IEEE International
Conference on, pages 422–427. IEEE, 2000.

[10] R. Y. Wang and J. Popović. Real-time hand-tracking
with a color glove. ACM Transactions on Graphics,
28(3), 2009.

5Code available at https://github.com/xxxxx/xxxxxx
(anonymized for review)

