
Chapter 6

Action Datasets

6.1 Action Datasets

Based on the contents of the previous chapters, it is evident that human action under-

standing and recognition are exploited for different applications in the field of com-

puter vision and human-machine interaction. However, different researchers experi-

ment with various datasets, having different number of subjects, variations in gender,

size, number of action classes, background, number of cameras and their respective po-

sitions, image size, illumination, indoor or outdoor, fixed or moving cameras, etc. Due

to these various issues, for more than a decade, several datasets have been developed

and made open for research communities to explore – to recognize various actions and

activities. A recent survey [48] covers the major datasets in a shorter version.

6.2 Necessity for Standard Datasets

Researchers have been exploiting various action datasets along with the open-access

datasets, and some of those open-access and free datasets become prominent in the re-

search community. Due to the presence of some benchmark and free datasets, it be-

comes easier for the researchers to compare their new approaches with the state-of-

the-arts. However, for some methods, existing datasets may not be suitable or may lack

severe dimensional and variational issues, specifically for which these methods are pro-

posed. Therefore, the demand for a new dataset for a specific method is necessary, and

based on this context, every year — we find few more datasets, typically, more challeng-

ing and with more variability. This chapter covers important and well-known datasets

along with some recent datasets, which will be explored in more papers as expected in

the future.
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However, the demand for new and challenging datasets remains as an important area of

contribution for the vision community. Among the existing datasets, most of the cases,

digital video cameras are employed to capture videos, though various other sensors (e.g.,

wireless sensors [76], body-markers, gyro-sensors, etc.) are used as well.

6.2.1 Motion Capture System

Motion capture or mocap system is an important technique for capturing and analyz-

ing human articulations, though it is very expensive to buy professional motion capture

systems (e.g., Vicon (http://vicon.com), Animazoo (http://www.animazoo.com/),

Xsens (http://www.xsens.com/), Optotrak). The mocap is widely used to animate

computer graphics in motion pictures and video games [85]. A typical layout is shown

in Figure 6.1.

A motion capture system is a special arrangement of very high-specific camera arrange-

ments and their coordination — to record human body configuration and movement in

digital model. In film industry and animation — expensive motion capture systems are

used. Various markers are placed in tight-fit clothing or on body parts, face, wrist, etc.

as per the requirement and then these are tracked. Some markers are based on optical

systems. Some of these are —

• Passive markers (passive optical system uses markers coated with a retro-reflective

material to reflect light that is generated near the cameras lens).

• Active markers (e.g., flashing IR lights).

• Time modulated active marker.

• Semi-passive imperceptible marker.

There are some non-optical sensors based on,

• Inertial systems,

• Mechanical systems,

• Magnetic systems,

— to aid motion capture. However, recently, marker-less motion capture systems are

being developed by some groups. Microsoft’s Kinect (http://www.xbox.com/en-US/

Kinect), released for the XBOX 360, is capable of Marker-less motion capture as well. A

good description on motion capture systems is available in [20].
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Fig. 6.1: A typical motion capture system layout. The setting may vary based on the

number of cameras and the target of the acquisition.

6.3 Datasets on Single-person in the View

This section presents dominant datasets on action and gesture that has mainly one-

subject in action or in the scene. We provide short information about these and some

comparative recognition results for dominant datasets.

6.3.1 KTH Dataset

The most widely used dataset is the KTH dataset [592]. The KTH human action dataset

has 6 action classes of a single person. The actions are — walking, running, jogging,

boxing, hand-waving, and hand-clapping. Each type of action is performed by 25 ac-
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tors in indoor and outdoor settings (in four sets). There are 600 video sequences in the

dataset. For the common KTH dataset, results are often non-comparable due to the

different experimental settings used by different papers [587]. Figure 6.2 shows some

sample frames of this dataset. From this Fig., we can understand that even though the

dataset has single-subject in the views, it is a difficult dataset. Moreover, the presence of

run, walk and jog turn this dataset to a more challenging one. However, several recent

methods achieve good recognition results, as shown in Table 6.1.

Fig. 6.2: Sample frames for KTH action dataset. Each row represents one set out of four

settings.

6.3.2 Weizmann Dataset

The Weizmann dataset [542] is an easy dataset. It consists of 90 low-resolution (180×
144) videos of 9 different subjects, each performing 10 natural actions. The actions are

— bend, jumping jack, jump forward, jump in place, run, gallop sideways, skip, walk,

wave one hand and wave both hands. This dataset uses a fixed camera setting and a

simple background. Figure 6.3 shows some sample frames of this dataset. Table 6.2

presents some comparative results of different methods on this dataset.
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Table 6.1

Approach Recognition (in %)
[110] 81.50

[1] 97.40
[87] 95.10

[593] 80.00
[415] 80.99
[86] 87.70

[584] 81.50
Relative Motion Descriptor [590] 84.00

Relative Motion Descriptor + RANSAC [590] 89.30
[592] 71.72
[394] 90.50
[599] 91.40
[579] 91.80
[578] 94.50
[81] 94.50

[573] 97.00
[583] 97.00
[577] 95.00
[587] 86.60

Fig. 6.3: Sample frames for Weizmann action dataset.

6.3.3 IXMAS Dataset

The IXMAS dataset records in a controlled environment [473] by 11 actors, each per-

forming 13 actions for 3 times. These are — check watch, cross arms, scratch-head, sit-

down, get-up, turn-around, walk, wave, punch, kick, point, pick up, and throw. Multiple

views of 5 synchronized and calibrated cameras are employed in this case. This dataset

can be used for view-invariant analysis.
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Table 6.2

Approach Recognition (in %)
[88] 95.33
[87] 97.50
[86] 94.74

6.3.4 CASIA Action Database

The CASIA action dataset is a collection of sequences of human activities captured by

video cameras outdoors from different angles of view [72, 74]. There are 1446 sequences

in all containing eight types of actions of a single person. The actions are — walk, run,

bend, jump, crouch, faint, wander and punching a car. These are performed by 24 sub-

jects. It also includes seven types of two person interactions (i.e., rob, fight, follow, fol-

low and gather, meet and part, meet and gather, overtake) performed by every 2 subjects

[73].

6.3.5 UMD Dataset

The UMD dataset [44] contains 100 sequences of 10 activities (e.g., pick up object, jog in

place, push, squat, wave, kick, bend on the side, throw, turn around, talk on cellphone)

performed 10 times each by only one actor. These activities are captured using two syn-

chronized cameras that were about 45 degrees apart.

6.3.6 ICS Action Database

The ICS Action Database [78] is used for human action recognition and segmentation.

The ICS database has 25 different actions, which are — get-up, lying, lookup, turn, walk,

run, stand-up, sit-down, sitting, etc. Each action has five trials.

6.3.7 Korea University Gesture Database

The Korea University Gesture (KUG) database [77, 204] is created by 20 subjects. It in-

cludes 14 normal gestures (such as — sitting, walking), 10 abnormal gestures (different

forms of falling such as forward, backward, or from a chair), and 30 command gestures

(well-defined and commonly used in gesture based studies such as yes, no, pointing,

and drawing numbers). As of today, it is not free of cost like other datasets and one

should pay for the dataset to get it.
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6.3.8 Wearable Action Recognition Database (WARD)

The Wearable Action Recognition Database [76] consists of continuous sequences of hu-

man actions that are measured by a network of wearable and wireless motion sensors.

These sensors are located on the two wrists, the waist, and two ankles. It has 13 male and

7 female subjects and they produce a rich set of 13 action categories that covers some of

the most common actions in a human’s daily activities, such as standing, sitting, walk-

ing, and jumping [75].

6.3.9 Biological Motion Library (BML)

The Biological Motion library [71] is built to analyze and identify features such as gender,

identity, and affects. This dataset is structured and evenly distributed across these pa-

rameters. There are 15 male and 15 female non-professional actors who perform: walk,

arm motions (knocking, throwing, and lifting), and sequences of a walk; as well as their

affective styles.

6.3.10 HDM05 (Hochschule der Medien) Motion Capture Database

The Hochschule der Medien (HDM05) database [70] has more than 70 motion classes in

10–50 realizations executed by five actors. Most of the motion sequences are performed

several times as per fixed guidelines.

6.4 Gesture Datasets

6.4.1 Cambridge Gesture Dataset

The Cambridge Gesture dataset [577] contains nine classes of gestures. In total, there

are 900 video sequences, which are partitioned into five different illumination subsets

(Set1, Set2, Set3, Set4, and Set5).

6.4.2 Naval Air Training and Operating Procedures Standardization (NATOPS)
Dataset

The Naval Air Training and Operating Procedures Standardization (NATOPS) aircraft

handling signals database [69] is a body-and-hand gesture dataset containing an offi-

cial gesture vocabulary used for communication between carrier deck personnel and

Navy pilots (e.g., yes/no signs, taxing signs, fueling signs, etc.). The dataset contains 24
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Table 6.3

Approach Recognition (in %)
Baseline [HOG/SVM] 46.98

MultiSVM [115] 59.35
(Best) [115] 63.61

Latent Pose [124] 50.58
Binary representation of node tests [590] 61.10

Quaternary representation of node tests [590] 71.30

gestures, with each gesture performed by 20 subjects 20 times, resulting in 400 samples

per gesture. Each sample has a unique duration. Unlike previous gesture databases, this

data requires knowledge about both body and hand in order to distinguish gestures.

6.4.3 Keck Gesture Dataset

The Keck gesture dataset [581] consists of 14 different gesture classes. It is performed by

three people, repeated three times, which are a subset of military signals. Hence there

are 126 video sequences for training, which are captured using a fixed camera with the

person viewed against a simple, static background. There are 168 video sequences for

testing, which are captured from a moving camera and in the presence of background

clutter and other moving objects. Another dataset consisting of 14 army signaling ges-

tures is developed by [68], where each gesture is performed 5 times by 5 subjects.

6.5 Datasets on Social Interactions

Most of the above-mentioned single-subject datasets are not good enough for real-life

activities and social interactions. Moreover, these are not much challenging — consider-

ing background, camera movements, cluttered environment, presence of multiple sub-

jects and other moving objects, noisy data, etc. Therefore, recently a good number of

datasets are developed and this section will cover these.

6.5.1 Youtube Dataset

The YouTube dataset [67] contains actions obtained from YouTube, TV broadcast, and

personal video collections and are captured under uncontrolled conditions. The videos

are of varying resolution, and contain significant variations. There are 11 action cate-

gories. Table 6.4 presents some comparative results of different methods on this dataset.
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6.5.2 Youtube Video Dataset

There is another youtube video dataset, which is collected by Niebles et al. [65]. It is pub-

licly available in http://vision.stanford.edu/projects/extractingPeople.

html

6.5.3 Hollywood2 Human Action (HOHA) Datasets

The Hollywood2 actions dataset [601] has been collected from 69 different Hollywood

movies. There are 12 action classes: answering the phone, driving car, eating, fighting,

getting out of the car, hand shaking, hugging, kissing, running, sitting down, sitting up,

and standing up. Since action samples in Hollywood2 are collected from movies, they

contain many shot boundaries, which cause many artificial interest points. Figure 6.4

shows some sample frames of this dataset.

Fig. 6.4: Few action samples for HOHA2 actions dataset.

6.5.4 UCF Sports Dataset

The UCF sport action dataset [387] consists of ten categories of human actions including

swinging on the pommel horse, driving, kicking, lifting weights, running, skateboard-

ing, swinging at the high bar, swinging golf clubs, and walking. This dataset has vari-

ous diverse actions from real sports broadcasts. The number of videos for each action

varies from 6 to 22 and there are 150 video sequences in total. Furthermore, the videos

presented in this dataset have non-uniform backgrounds and both the camera and the

subject are moving in some actions. This dataset has strong scene correlations among

videos, and some videos are captured in exactly the same location. Table 6.5 presents

some comparative results of different methods on this dataset.
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Table 6.4

Approach Recognition (in %)
[573] 88.00

Hierarchy of Discriminative Space-Time Neighborhood (HDN) [578] 87.27
Orientation-Magnitude Descriptor (OMD) [84] 86.90

Histograms of 3D Gradient Orientations (HOG3D) [587] 86.60

Table 6.5

Approach Recognition (in %)
[435] 67.00
[394] 71.00

[4] 66.00

6.5.5 Soccer Dataset

The Soccer dataset is a low-resolution dataset of World Cup soccer game [435]. It con-

tains 66 action sequences from 8 classes. The classes are defined as — run left 45 degree,

run left, walk left, walk in/out, run in/out, walk right, run right, run right 45 degree.

Table 6.6 presents some comparative results of different methods on this dataset.

6.5.6 Figure-skating Dataset — Caltech Dataset

The Figure-skating dataset contains 32 video sequences of seven people each with three

actions: stand-spin, camel-spin and sit-spin [118].

6.5.7 ADL — Assisted Daily Living Dataset

The ADL dataset [80] consists of high resolution videos of activities performed in daily

living. Actions include: answer phone, chop banana, dial phone, look up in directory,

write on whiteboard, drink water, eat snack, peel banana, eat banana, and eat with

silverware. Table 6.7 presents some comparative results of different methods on this

dataset.

6.5.8 Kisses/Slaps Dataset

The Kisses/Slaps dataset [387] contains actions of two classes — (i) Kissing and (ii) Hit-

ting/Slapping. These are compiled from various movies, covering 92 samples of Kissing

and 112 samples of Hitting/Slapping. These actions are performed by different actors,
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Table 6.6

Approach Recognition (in %)
Binary representation of node tests [590] 87.90

Quaternary representation of node tests [590] 91.20
Velocity histories [80] 63.00

Latent velocity histories [80] 63.00
Tracklets [83] 82.70

Augmented velocity histories with relative and absolute position [80] 89.00
Relative Motion Descriptor [590] 84.00

Relative Motion Descriptor + RANSAC [590] 89.30

Table 6.7

Approach Recognition (in %)
Binary representation of node tests [590] 67.70

Quaternary representation of node tests [590] 74.60
Action MACH [387] 66.80

Local Trinary Pattern (LTP) [82] 80.75
Relative Motion Descriptor [590] 74.60

Relative Motion Descriptor + RANSAC [590] 79.80

at different scales, and in a wide range of scenes. Table 6.8 presents some comparative

results of different methods on this dataset.

6.5.9 UIUC Action Dataset

The UIUC action dataset [45] has two different items — some actions and badminton

sequences. The dataset-1 consists of 532 high resolution sequences of 14 activities per-

formed by 8 actors. The dataset-2 has one single and two double matches of the Bad-

minton World Cup 2006 (taken from youtube), with various labels (e.g., jump, walk,

hop, unknown, various shots, etc.). It is available in http://vision.cs.uiuc.edu/

projects/activity/

6.6 Datasets on Other Arenas

This section present various datasets related to action understanding and recognition in

different dimensions.
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Table 6.8

Approach [111] Recognition in % [112]
Structure-level approach 67.4
Feature-level approach 60.3

Root + SVM 52.4
Minimum spanning tree 62.3

6.6.1 Actions in Still Images

Still image action dataset is collected by [114, 115]. This dataset contains five action

classes (running, walking, playing golf, sitting and dancing). It has 2458 images. The

images of this dataset are downloaded from the Internet. So there are a lot of pose vari-

ations and cluttered backgrounds in the dataset. Yang et. al. [116] further increase the

size and pose variability of the dataset by mirror-flipping all the images. Most of actions

in the dataset do not have axial symmetry. For example, running-to-left and running-

to-right appear very different in the image. So mirror-flipping makes the dataset more

diverse. The baseline HOG/SVM approach shows 52% per class accuracy, whereas the

latent pose approach by [116] shows 62% per class accuracy [116]. Action recognition

from still images is important mainly in news and sports image retrieval and analysis.

6.6.2 Nursing-home Dataset

This is one of the rare but very important real-life action datasets. However, due to pri-

vacy issue, till-to-date, these are not available as open-access. It is developed for fall

analysis in nursing-home surveillance videos [111], to find the causes of falls by elderly

residents in order to develop strategies for prevention. This is recorded in a dining room

of a nursing home by a low resolution fish-eye camera. Typical activities happening in

nursing homes include — people walking, sitting, standing, falling and people helping

the fallen person to stand up, etc. This dataset contains ten 3-minutes video clips with-

out falls and another ten short clips with falls [111]. Figure 6.5 and Figure 6.6 show some

sample frames of this dataset. Table 6.9 presents some comparative results of different

methods on this dataset.

6.6.3 Collective Activity Dataset

This dataset contains five different collective activities: crossing, walking, waiting, talk-

ing, and queuing and 44 short video sequences, some of which are recorded by con-
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Fig. 6.5: Nursing-home dataset: Samples with some results. Image courtesy to G. Mori,

SFU for his permission.

sumer hand-held digital camera with varying view point. Every 10th frame in all video

sequences is annotated with an image location of the person, activity ID, and pose di-

rection. The average number of people per frame performing a certain activity is 5.22

persons. The average number of different activities in a short video sequence and hence

represents the activity contamination is 1.37.

They later augment the dataset by adding two more categories (dancing and jogging).

Since the Walking activity is rather an isolated activity than a collective activity, in an-

other augmented dataset, they remove it and include the following two categories: danc-

ing and jogging activities. Annotation file has the same format as original dataset and

the dancing/jogging activities are labeled as 7 and 8 respectively. Figure 6.7 shows some

sample frames of this dataset. Table 6.10 presents some comparative results of differ-
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Fig. 6.6: Nursing-home dataset: Samples with some results of fall detection. Image

courtesy to G. Mori, SFU for his permission.

Table 6.9

Approach Recognition in %
STV (Spatio-Temporal Volume) [126] 64.3

STV (Spatio-Temporal Volume)+MC [126] 65.9
STV (Spatio-Temporal Volume)+RF (Random Forest) [125] 64.4

RSTV (Randomized Spatio-Temporal Volume) [125] 67.2
RSTV (Randomized Spatio-Temporal Volume)+MRF (Markov Random Field) [125] 70.9

AC (Action Context) [111] 68.2

ent methods on this dataset. It is available in http://www.eecs.umich.edu/vision/

activity-dataset.html
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Fig. 6.7: Sample images from the collective activity dataset from http://www.eecs.

umich.edu/vision/activity-dataset.html

6.6.4 Coffee and Cigarettes Dataset

Another recent benchmark for temporal action detection is called Coffee and Cigarettes

[91]. It consists of a single movie composed of 11 short stories, each with different scenes

and actors [600].

6.6.5 People Playing Musical Instrument (PPMI)

The People Playing Musical Instrument (PPMI) [117] is a dataset of human and ob-

ject interaction activities. The PPMI dataset contains images of humans interacting

with twelve different musical instruments. These are: bassoon, cello, clarinet, flute,

French horn, guitar, harp, recorder, saxophone, trumpet, and violin. Different inter-

actions are with the same object. For each instrument, there are images that contain a

person playing the instrument (PPMI+), as well as images that contain a person hold-

ing the instrument without playing (PPMI-). On each image, they also crop image

neighborhood of the face(s) of the target person(s), then normalize the image neigh-

borhood so that the size of human face is 32x32 pixels. All images are downloaded

from Internet. Resources of the images include image search engines Google, Yahoo,

Baidu, and Bing, and photo hosting websites Flickr, Picasa and Photobucket. There-
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fore, these images are real-world images and backgrounds are cluttered. It is available

in http://ai.stanford.edu/~bangpeng/ppmi.html

6.6.6 DARPA’s Mind’s Eye Program

DARPA’s Mind’s Eye Program covers animated videos, multi-camera, multi-view, inten-

sity variations, challenging dataset, variability in object sizes, depth, illumination, con-

text, view-angle, presence of serious occlusion, low-intensity and contrast, etc. Action-

verb! – 48 action-verbs are maintained in this dataset. It is extremely difficult dataset for

analysis, and has huge impact in real-life applications.

6.6.7 VIRAT Video Dataset

The dataset [66] is designed to be realistic, natural and challenging for video surveillance

domains in terms of its resolution, background clutter, diversity in scenes, and human

activity/event categories than existing action recognition datasets, with a large number

of examples (> 30) per action class. Here, both ground camera videos and aerial videos

are collected. The 1st workshop on this dataset was held with IEEE CVPR 2011 and the

papers and challenges are available in http://www.umiacs.umd.edu/conferences/

cvpr2011/ARC/

6.6.8 UMN Dataset: Unusual Crowd Activity

In this dataset, unusual crowd activities are collected in 11 videos, from 3 scenes. Videos

contain a normal starting section and an abnormal ending section [106]. Figure 6.8

shows some sample frames of this dataset.

6.6.9 Web Dataset

This dataset contains eight videos of real-life escape panic, clash, fight (as abnormal

scenes) and 12 videos of normal pedestrians (as normal scenes) [106, 107]. Figure 6.9

shows some images for normal behaviors of crowd and abnormal scenes from real-life

video (image courtesy: R. Mehran, UCF).

6.6.10 HumanEva Dataset

The HumanEva-I dataset contains 7 calibrated video sequences (4 grayscale and 3 color)

that are synchronized with 3D body poses obtained from a motion capture system. The
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Table 6.10

Features HumanEva-I HumanEva-II
Synchronization Software Hardware
Number of video
cameras

7 4

Types of video cam-
eras

3 color + 4 grayscale 4 color

Number of motion
capture cameras

6 8

Types of data Training, Validation, Testing Testing

Actions
Walking, jogging, gesturing,
throwing

catching a ball, boxing, combo

# of subjects 4 2

# of frames

6800 frames (training [synchro-
nized]),37000 frames (training
[MoCap only]), 6800 frames (val-
idation),

24000 (testing) 2460 frames (test-
ing)

database contains 4 subjects performing a 6 common actions (e.g. walking, jogging,

gesturing, etc.). The error metrics for computing error in 2D and 3D pose are provided

to participants. The dataset contains training, validation and testing (with withheld

ground truth) sets [49].

The HumanEva database [49] provides ground-truth data to assist in the evaluation

of algorithms for pose estimation and tracking of human motion. For every video of

a human figure performing some action, there is the corresponding motion capture

data of the same performance. The dataset also provides a standard evaluation met-

ric, which can be used to evaluate algorithms using the data. There are six actions

performed by four subjects in the HumanEva dataset. Figure 6.10 shows some sample

frames of this dataset. Table 6.11 presents some comparative features for HumanEva-I

and HumanEva-II datasets.

Based on these datasets, two workshops were organized with NIPS and IEEE CVPR:

E HuM : Evaluation of Articulated Human Motion and Pose Estimation workshop at

NIPS (Neural Information Processing System Conference) 2006.

E HuM2: 2nd Workshop on Evaluation of Articulated Human Motion and Pose Estima-

tion workshop at IEEE CVPR 2007. More than 50 papers utilize the HumanEva dataset,

and publish those papers in reputed journals and conference/workshop.
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6.6.11 University of Texas Dataset of Interaction, Aerial-view and Wide-area
Activity

The University of Texas develops three different datasets, for the ICPR 2010 Contest

on Semantic Description of Human Activities (SDHA 2010 http://cvrc.ece.utexas.

edu/SDHA2010/). These are described below.

6.6.11.1 Interaction Dataset for High-level Human Interaction Recognition
Challenge

The UT-Interaction dataset contains videos of continuous executions of 6 classes of

human-human interactions: shake-hands, point, hug, push, kick and punch. Fig-

ure 6.11 shows some sample frames of this dataset.

6.6.11.2 Aerial-view for Aerial View Activity Classification Challenge

It has human actions in low-resolution videos. The average height of human figures in

this dataset is about 20 pixels. It contains total nine classes: pointing, standing, dig-

ging, walking, carrying, running, wave1, wave2, and jumping. Figure 6.12 shows some

sample frames of this dataset. For details, http://cvrc.ece.utexas.edu/SDHA2010/

Aerial_View_Activity.html

6.6.11.3 Wide-area Activity for Wide-Area Activity Search and Recognition
Challenge

The Videoweb dataset consists of about 2.5 hours of video observed from 4-8 cameras.

The data is divided into a number of scenes that are collected over many days. Each

scene is observed by a camera network, where the actual number of cameras changes

by scene due the nature of the scene. The dataset contains several types of activities

including — throwing a ball, shaking hands, standing in a line, handing out forms, run-

ning, limping, getting into/out of a car, and cars making turns. Figure 6.13 shows some

sample frames of this dataset.

Source: http://cvrc.ece.utexas.edu/SDHA2010/Wide_Area_Activity.html

6.6.12 Other Datasets

There are several other datasets available for the research community. Here, the name

and reference of these are mentioned.

• MSR Action Dataset of 63 actions [55];
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• CMU motion capture database http://mocap.cs.cmu.edu;

• Human Motion Database (HMD) at University of Texas at Arlington [64];

• Interactive Emotional Dyadic MoCo (IEMOCAP) Database [63];

• Multi-camera Human Action Video Data [62];

• Manually Annotated Silhouette Data from the MuHAVi Dataset [62];

• Virtual Human Action Silhouette (ViHASi) Dataset [60, 61, 266];

• POETICON Enacted Scenario Corpus [59];

• TMU Kitchen Dataset [58];

• Carnegie Mellon University Multimodal Activity (CMUMMAC) Database [57];

• i3DPost Multi-view Dataset [56];

• CHIL 2007 Evaluation Dataset [54];

• OpenDoor and SitDown-StandUp Dataset [53];

• Visual Geometry Gr. opens up several datasets in [52], e.g., TV human interactions

dataset; available in http://www.robots.ox.ac.uk/~vgg/data/

• Yilmaz and Shah develop a dataset having 18 sequences of 8 actions [51];

• PETS has sequences of datasets, e.g., PETS2006 benchmark data-sets are multi-

sensor sequences containing unattended luggage scenarios with increasing scene

complexity [50];

• PETS2007 contains the following 3 scenarios, with increasing scene complexity: loi-

tering, attended luggage removal (theft), and unattended luggage. Based on these

datasets, workshops are organized [50].

There are a few sign language datasets. Sign language recognition has more problems

than action datasets, as the former lacks of large corpuses of labeled training data. More-

over, it consists of hand motions and the position of it varies depending on the Inter-

preter.

6.7 Challenges Ahead on Datasets

In this chapter, a survey of various important action/activity datasets for the computer

vision community is presented. However, a systematically constructed gesture database

in carefully controlled environment is essential due to the fact that it can help to find

or analyze the characteristics of human motion and verify or evaluate the developed

algorithm and its application system [48]. Few datasets consider mainly upper body

gestures, whereas, in some cases, lower-body movements are systematically collected,
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mainly for gait recognition and analysis. Despite clear advances in the field of action

recognition and understand, evaluation of these methods remains mostly heuristic and

qualitative [77]. Different datasets have different perspectives, and are suitable for dif-

ferent methods. For example, it is found that local descriptors are more suitable for the

KTH dataset; whereas, the holistic features are more suitable for Weizmann dataset [48].

Ashbrook and Starner [350, 351] introduce a gesture creation and testing tool called Mul-

tiple Action Gesture Interface Creation (MAGIC) for motion gestures from wrist mounted

accelerometers. The MAGIC combines interactive recognizer building with a false pos-

itive testing method. It encourages iterative design and attempts to predict the num-

ber of false positives by a module called ‘Everyday Gesture Library’ (EGL), where the

EGL is a large database of users’ movements recorded from everyday life. At the top

of the MAGIC, [349] develop a prototype of MAGIC 2.0 grounded by the task of cre-

ating a gesture set for Android phones using their built-in accelerometer. However,

the MAGIC 2.0 can handle all kinds of gestures recorded as a time series of any di-

mension. The Gesture Interface Designer (GID) [352] allows users to design a physi-

cal interface on a screen that responds to pointing and finger gestures. Long’s Quill

[357], a pen gesture system, enables users to create pen gestures by example. Further-

more, Quill offers an aid for improving recognition. However, Long discovered that

many Quill users do not understand basic error sources and have difficulties in under-

standing suggestions from the aid system. Another design tool called SUEDE [356] is

designed to focus on speech-based user interfaces. It supports a design/test/analyze

iterative work flow that inspired MAGIC [350]. Other existing tools include Crayons

[354], Eyepatch [358] and aCapella [353]. Numerous machine learning tools like Weka

(http://www.cs.waikato.ac.nz/ml/weka/) and GART (Gesture and Activity Recog-

nition Toolkit) [355] are often used for gesture recognition but acted more as a library

than a design tool for interaction designers.

Most of the datasets do not include ground-truth and detailed pose information for

the researchers. Hence, a researcher may not think and consider beyond the conven-

tional approaches in analyzing actions (e.g., developing mathematical foundation for

computer vision based on new approaches or existing physics-based approaches). Sigal

et al. [49] define a standard set of error measures to evaluate their action datasets. More

efforts on this similar track are required [48].
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One important area is the development of smart data structure approaches for storing

and extracting human motion data [47]. It is necessary to understand the involvement

of the cerebral structures in processing the how, what, and why of other people’s actions

[46]. Datasets that can somehow relate to research on neuron system is a due now. How

monkey’s brain acts in doing something — is under study in computer vision recently.

It is necessary to investigate various scaling aspects for large motion capture databases

as well as reconstructing multiple people and handling occlusions and different obser-

vation representations [48]. Development of action datasets in few areas are still in the

list to do; e.g.,

• Action datasets at night or darker areas (e.g., by employing IR camera);

• Action datasets from far distance (e.g., by manipulating PNZ cameras);

• Abnormal activities understanding in cluttered outdoor scene (even though a few

datasets are available lately);

• Action datasets along with face and emotion (few datasets are partly having these);

• Action datasets — considering the notion of how brain works and thinks;

• Action datasets in rehabilitation and nursing-home environment (however, privacy

issue may be a concern in some places);

• Action datasets in various sports’ activities for automatic sports analysis; etc.

Usually, most of the datasets are — cropped, isolated, not having much context, have

limited cluttered scenes in the background, do not capture real surveillance scenarios,

and some of their performances are already saturated (e.g., KTH dataset, Weizmann

dataset). It is necessary to have datasets which,

• Do not have any spatio-temporal crop in videos (end-to-end examples),

• Diversity in events (e.g., cars, human, facilities, etc.),

• Detailed annotations,

• Natural scenes and variability (not acted scenes but realistic and spontaneous),

• Variations in sites, subjects, view angles, samples, etc.

The community needs a noble dataset. But question comes – what is noble in creating

dataset? This depends on various applications and research dimensions. Therefore, re-

searchers are free to develop based on their applications. However, a key point to keep in

mind towards a noble dataset is that — the diversity and dimensions should be incorpo-

rated. We need to find some meaningful datasets and areas to work, rather than keeping
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our engagement in trivial action recognition datasets. The community is also struggling

to decipher a right-size problem in this arena. We may consider multi-modality or cross-

modality to learn our systems. By multi-modes, we mean information from audio, video

and the contexts.

6.8 Think Ahead!

(1) ‘KTH or Weizmann datasets are beaten to death (!!!) by research communities in

terms of achieved recognition rates’ — Do you agree on this point? Why or why not?

(2) ‘The real-life applications usually have more people in the view and have complex

background with different actions/activities’ — So do we need datasets with single

person and regular simple actions?

(3) What are the key parameters a benchmark dataset should have?

(4) ‘Some groups developed a dataset for their papers and because the papers/works

have become important or well-known, the datasets also have become well-known

and are used by other researchers’ — Do you think that all of the existing datasets

fulfill the necessary requirements of being a benchmark dataset?

(5) List up the problems of the existing datasets and make a guideline for future datasets

to develop.

(6) If you want to make a new dataset for the computer vision community — then what

kind of dataset(s) do you want to develop? Why?

(7) ‘Dataset should be application-oriented and goal-oriented’ — What do you think

about this statement?
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Fig. 6.8: UMN dataset: Unusual Crowd Activity — few sample images with proper de-

tection. Image courtesy to R. Mehran for the permission.
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Fig. 6.9: Abnormal crowd dataset — few sample images.
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Fig. 6.10: Sample frames from HumanEva dataset.

Fig. 6.11: Human interaction dataset.

Source: http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html
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Fig. 6.12: Aerial-view activity dataset — person extraction from each class.

Source: http://cvrc.ece.utexas.edu/SDHA2010/Aerial_View_Activity.html

Fig. 6.13: Wide-area activity dataset.

Source: http://cvrc.ece.utexas.edu/SDHA2010/Wide_Area_Activity.html
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