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Abstract—This paper studies the path planning for Un-
manned Aerial Vehicles (UAVs) under critical situations, where
the aircraft has to execute a hard landing. Such critical
situations can be provoked by equipment failures or extreme
environmental situations that demand the UAV to abort the
mission running and to land the aircraft without risk for
people, properties and itself. First, a mathematical formulation
is introduced to describe this problem. A planner system is
proposed based on a multi-population genetic algorithm and
a greedy heuristic. Computational results are conducted over
a large set of scenarios with different levels of difficulty. Also,
some simulations are executed using FlightGear simulator to
illustrate the UAV’s behaviour when landing under different
wind velocities. The results achieved indicate the greedy heuris-
tic is able to define faster feasible landing paths, whose quality
can be improved by the evolutionary approach always within
a short computation time.

Keywords-Evolutionary Computing; Decision Optimization;
Unmanned Aerial Vehicles; Path Planning; Uncertainty

I. INTRODUCTION

The path planning for Unmanned Aerial Vehicles (UAVs)
under the occurrence of critical situations is studied in this
paper, where a greedy heuristic and a genetic algorithm
are applied to define emergency routes for landing. In this
context, the mission running on the aircraft needs to be
aborted and the current route has to be re-planned by the
proposed methods. The main objective becomes to land the
UAV without risk to the safety of people, properties and
aircraft itself. Critical situations can be related to failures
in the equipments of the UAV or extreme environmental
situations. In the case of equipment failures, it is possible to
have technical problems with sensors, motor crash, battery
overheating, among others. Examples of extreme environ-
mental situations can be strong turbulence, unforeseen storm
approximation and detection of another aircraft. The mission
can be aborted leading the UAV to return base or even to
execute a hard landing. This paper will evaluate some critical
situations caused by equipment failures that demand a hard
landing. The use of UAVs increased in the last years and
discussions have begun about their commercial application

and risks related to their operation. The probability of failure
for this type of aircraft should be less than or equal the
currently accepted in general aviation [4]. The authors in
[7] argue that safety is the most important factor to ensure
the integration of UAVs to airspace, so ways to bring back on
board relevant features lost with the absence of pilots have
to be considered. This is the case when a decision about path
re-planning has to be made under critical situations, where
a viable route must be defined within a short time.

Genetic algorithms, as well as other heuristic and evolu-
tionary techniques, have been successfully applied in real
world problems where near-optimal solutions become more
relevant than time-consuming optimal solutions [10]. Thus,
the main contribution of this paper is to describe the problem
of path re-planning under an emergency landing and to
propose fast approaches to solve it. A mathematical formu-
lation is introduced to describe this problem and a multi-
population genetic algorithm (MPGA) is applied as path
planner. It is also introduced a greedy heuristic (GH), whose
objective is to build fast feasible paths. The performance of
GH is evaluated by itself and as an initialization operator
for MPGA. The paper is organized as follows: section
2 describes some related work and section 3 defines the
problem to be studied. The proposed methods are presented
in section 4 and computational results achieved are reported
in section 5. The conclusions of this work are in section 6.

II. RELATED WORK

The mission planning for autonomous vehicles is stud-
ied in [6], [2], [12]. A system able to plan a sequence
of discrete actions and continuous controls for air and
underwater autonomous vehicles is presented in [6]. The
authors in [2] evaluate risks during the path planning for
UAV, where the risk of collision with obstacles must be
within a certain margin of safety. The mission planning is
studied in [12], where a new planner system is proposed that
introduces improvement in the treatment of risk allocation
and incorporates scheduling for the tasks to be executed.
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The path re-planning during a critical situation is studied
in [9], where a system helps aircraft pilots to determine the
best landing site for a damaged aircraft. After the critical
failure of the aircraft, the pilot must first recover control of
the aircraft, so the goal becomes to find the best place for the
emergency landing. The Emergency Landing Planner (ELP)
system proposes routes as well as possible landing sites for
the aircraft using an A* hybrid algorithm. In a later work
[8], the behavior of the A* hybrid algorithm proposed in [9]
was analyzed through its application in a real scenario. The
authors conducted tests in a flight simulator for large aircraft,
where the A* hybrid algorithm was used to determine the
landing site. The simulation considers problems occurring
between 1 to 3 minutes of flight, where the ELP algorithm
is triggered to assist pilots.

Evolutionary algorithms have been used in path planning
for UAVs. The author in [13] applies genetic algorithms with
Voronoi diagram for path planning of UAVs. It is given
emphasis in the new mutation strategy proposed that was
separated in global and local random diversity. The Voronoi
diagram is used in the initial phase when the population
is created. Metrics to compare path planners for UAVs
are proposed by [1], where it is taken into account the
complexity and peculiarities of the problem handled. The au-
thors evaluate the performance of three techniques: Genetic
Algorithm (GA), Particle Swarm Optimization (PSO) and
Differential Evolution (DE). The results reported that GA
is the best method, followed by PSO and DE. Differential
Evolution is applied in [15] to path planning for UAV
in three-dimensional environments. The UAV has to avoid
no-fly zones, radars zones, missiles and anti-aircraft guns.
This paper proposes the use of MPGA, where individuals
are hierarchically structured in trees. This approach was
introduced by [5] with individuals following a hierarchy
based on their fitness value in a ternary tree. Such approach
has been applied to solve problems in different contexts
like glass container production scheduling [14], ordering
microarray data [11], among others, with relevant results
reported.

The studies conducted in [6], [2], [12] are advances in the
treatment of risk for planning and ensure that the planned
mission is executed within a safety margin, considering
the inaccuracies of the equipment and the environment.
However, path re-planning under critical situations is not
considered as proposed in the present paper. Therefore, the
present paper introduces a mathematical formulation for this
path re-planning problem based on that described in [2] for
path planning with risk allocation. When considering failure
in aircraft, the current study is closer to that described in
[9], but our study is dealing with UAVs and it has also a
different set of associated failures, which demand an urgent
aircraft landing. The aircraft in [9] is still able to flight even
during failure.

III. PROBLEM DESCRIPTION

The problem is described in this section from the situation
illustrated by Figure 1. There is a scenario composed by
two populated regions (houses), woods, a plain area, an
area under storm, an airport, a scenic region and the UAVs
runway. Suppose a mission to be performed by the UAV
followed by a critical situation as described next:

B
on

us 
R
eg

io
n

Penalty
 R

egion

Aborted route

E
m

e
rg

e
n
cy

 

La
n
d
in

g
 R

o
u
te

Plain

Houses

Penalty Region

Bonus Region

Runway

Airport

No-Fly Zone

No-Fly Zone

P
la

n
n
e
d
 r
o
u
te

Wood

Wood

scenic area

Houses

Critical 

Situation

Figure 1: Illustrative scenario for mission planning.

Mission: Starting from the UAV runway, it must reach the
scenic region and remain in it taking pictures for a while.
Next, the aircraft must return to the runway. In all the way,
it should stay in a safety region, avoiding no-fly zones as
storm and airport. The aircraft can fly over populated and
wood areas.

Critical situation: During the mission execution, the UAV
systems detect a problem like battery overheating. Such
systems are able to abort the mission and trigger the
algorithm to re-plan the current route. Such re-planning will
from now seek to minimize the likelihood of damage during
landing, considering information from the mentioned regions
and the limitations caused by the aircraft’s problem.

A. Sets of Regions

Several regions can be mapped before the mission ex-
ecution and classified in sets of regions, based on their
characteristics. These sets are separated according to the
probability of landing the aircraft in one of their regions.
A total of four sets are defined for the types of regions
considered by this work.

1) No-Fly Set (φn): The aircraft cannot fly over and land
in the regions of this set. Regions within this set can be
represented by airports, military base and other areas
with restrictions on the UAV flight.

2) Navigable with Penalty Set (φp): The UAV can fly
over regions on this set, but it is not desired landing on
them. The regions of this set may represent populated
regions, factories, forests, among others.

3) Navigable and Bonus Set (φb): The UAV can fly
and it is desired landing on regions of this set. This
set contains flat and suitable regions for landing as
grassy areas or fields with grounder plantations.
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4) Remainder Set (φr): The aircraft can fly and land in
these regions. This set represents the remain areas that
are not classified for landing. There are no restrictions
for flight or landing in these regions.

B. Critical Situations

The re-planning algorithm must also be informed about
the kind of limitation imposed on the aircraft by the detected
problem. In this work, some critical situations to aircraft
operation were considered:

1) Motor Failure (ψm): The motor m presents problems
and stops functioning. In this case, a suitable region
for the landing has to be found while the aircraft is
hovering.

2) Battery Failure (ψb): The battery b has an overheat-
ing, where all the controls work, but the UAV should
land as soon as possible.

3) Aerodynamic Surfaces Failure type 1 (ψs1 ): The
aircraft fails in one of the wings s1 that makes it able
only to turn left.

4) Aerodynamic Surfaces Failure type 2 (ψs2 ): The
aircraft fails in one of the wings s2 that makes it able
only to turn right.

C. Problem Modeling

We present a mathematical formulation to summarize all
aspects of the problem addressed. This formulation comes
from a similar modeling described in [2] for path planning
with risk allocation.
Parameters:
• φj = {Z1

φj
, Z2

φj
..., Z

|φj |
φj
}: Set of regions with j ∈

{n, p, b, r};
• Ziφj : ith region of the set φj ;
• |φj |: Number of regions in set φj ;
• Cφj : Cost of landing in set φj ;
• T : Number of time steps to land the UAV;
• ∆: Probability of UAV violate a region in the set φn;
• FΨ: State transition function for a given type of failure

Ψk with k ∈ {m, b, s1, s2};
• ∆T : Time discretization established in the simulation;
• ωt: State-independent disturbance at time step t.

Decision variables:
• xt: Set of states of the UAV (xt = [pxt , p

y
t , vt, αt]

T );
• pxt : Position in the x-axis of the UAV at time step t;
• pyt : Position in the y-axis of the UAV at time step t;
• vt: Velocity at time step t of the aircraft;
• αt: Angle of the UAV in time step t from x-axis;
• ut: Set of UAV controls (ut = [at, εt]

T );
• at: Acceleration of the UAV at time step t;
• εt: Angular variation of the UAV.

Minimize

|φp|∑
i=1

(Cφp · P (xT ∈ Ziφp))−
|φb|∑
i=1

(Cφb · P (xT ∈ Ziφb))

(1)

subject to:
xt+1 = FΨ(xt, ut) + ωt ∀ t = 0, 1, . . . T (2)

P

 T∧
t=0

|φn|∧
i=1

xt /∈ Ziφn

 ≥ 1−∆ (3)

A discrete and finite series of time steps t = 0, 1, ..., T
is assumed to land the aircraft. The decision variable xt
represents the state of UAV at time t, which is given by
its coordinate at Cartesian plane (pxt , p

y
t ), velocity (vt) and

angular direction on this plane (αt). The variable ut has
the controls at t, where the acceleration (at) and angular
variation (εt) applied over the aircraft are defined.

The objective function (1) aims to minimize damage
executing a safety landing, so it has two parts: penalty and
bonus. The first part has the penalties (Cφp ) given for a
route that lands the aircraft at the last time step (t = T )
within penalty set regions (xT ∈ Ziφp ). The second part has
the rewards (Cφb ) given for a route that lands the aircraft
within safety regions (xT ∈ Ziφb ). The function P (...) used
in this formulation represents the probability of the aircraft
in the state xt belongs or not to a particular region in φi.

Constraints (2) describes the transition states of the UAV,
where the dynamic of the UAV states at time t + 1 are
defined from positions and controls applied at time t added
by uncertainty ωt from external factors. The function FΨ

can depend on each type of critical situation addressed (Ψ).
As proposed in [2], it is assumed that the uncertainty ωt
follows a Gaussian white noise distribution ωt ∼ N (0, Q)
with covariance matrix Q. It is also assumed a Gaussian
distribution for the initial position with mean x̂0 and co-
variance matrix Σx0 , so x0 ∼ N (x̂0,Σx0). Moreover, the
future states follow a Gaussian distribution and xt becomes
a random variable.

Thus, the location of the UAV is not precise and there
is always the risk of it deviates from its route and reaches
a non-fly area, but a limit for such risk can be considered
during the path planning. Constraints (3) describe the prob-
ability (1−∆) of the UAV being out of regions that belong
to set φn. The final trajectory will be returned by set of
waypoints for the landing route.

IV. METHODS

This section presents proposed methods. First, the repre-
sentation of solution (encoding) adopted as well as fitness
function and operators that deal with such representation
are explained. Next, the methods are described from their
pseudocodes.

A. Codification, Operators and Fitness

The solution of the problem is encoded as real values for
the controls ut = [at, εt]

′
applied to the aircraft at each

instant t. Four initialization operators are defined to create
such codification: random, short curves, short acceleration
and greedy. The random initialization generates values with
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uniform distribution for at ∈ U [amin; amax] and εt ∈
U [εmin; εmax]. The short curves operator takes values for
at ∈ U [amin; amax], but it draws reduced values for angular
variation with εt ∈ U [0.25εmin; 0.25εmax]. The short accel-
eration does the opposite, i.e., it takes εt ∈ U [εmin; εmax]
and at ∈ U [0.25amin ; 0.25amax]. These two operators give
more chance to apply smoother controls for changes over
the direction and acceleration of the aircraft. The greedy
initialization applies the greedy heuristic, explained in the
next section, to generate a set of controls that already
guarantees to reach bonus regions.

The crossover operators are average, geometric, arith-
metic, OX and BLX-α. The mutation operators are uniform,
limit and creep. These are classical real-coded operators
from literature [10]. Previous computational experiments
evaluating these operators were conducted. From these re-
sults, the better strategy is to apply all operators, which
means always to select randomly one among the five
crossovers to be applied every time a new individual is
created. Also, one between the three mutation operators is
randomly chosen every time the mutation rate is satisfied.

The transition function FΨ(xt, ut) is used to decode the
controls using Equation 4. This function approximates the
motion of a fixed-wing UAV in a 2-D space, wheres F dt and
m indicate resistance of the air and the mass of the UAV,
respectively.

FΨ(xt, ut) =


pxt + vt · cos(αt) ·∆T + at · cos(αt) · (∆T )2/2

p
y
t + vt · sin(αt) ·∆T + at · sin(αt) · (∆T )2/2

vt + at ·∆T −
Fdt
m
·∆T

αt + εt ·∆T

 (4)

Once xt is a random variable (xt ∼ N (xt,Σt)), the
authors in [2] show that the next expected state (xt+1)
depends only of the current expected state (xt) and nominal
controls applied (ut), so we can use the transition function to
calculate all the next expected states (xt+1 = FΨ(xt, ut)).
However, the uncertainty Σt around the expected state xt
grows every time step. The authors in [12] introduced a
close-loop control approach to define control inputs from
a nominal control input ut. It is applied a correction that
slows down the growth of the uncertainty Σt. In this work,
we assume that the uncertainty Σt at any time t is constant
(Σt = Q). If it is known that the uncertainty about the state
xt at any time step t is given by xt ∼ N (xt,Σt), it is
possible to calculate the probability function P (xt ∈ Ziφ)
using a lookup table for a Gaussian distribution. The co-
variance matrix used in this work is given by Equation 5
where σ = 10 meters is assumed.

Σt = Q =

 σ2 0 0 0
0 σ2 0 0
0 0 0 0
0 0 0 0

 (5)

The aircraft failures are described from changes in Equa-
tion 4. For critical situation ψm, the acceleration is set null
(at = 0) in FΨm once it is not possible to accelerate the
UAV during a motor failure. The angular variation becomes

only positive (εt ∈ [0, εmax]) for ψs1 , when the UAV is able
only to turn left. On the other hand, εt ∈ [εmin; 0] when the
UAV is able only to turn right (ψs2 ). There is no change in
Equation 4 for critical situation ψb, once the UAV with a
battery failure has only to quickly land, so the Equation 13
is added in the fitness function as explained latter.

The decoding procedure described will return the set with
all waypoints to land the UAV by constraints (2) in section
III-C. It is possible to land the aircraft without spending
all time steps available, so we can land it in a time step
K such that 0 < K ≤ T . This trajectory is a solution for
this problem and it will be evaluated by a fitness function
described by Equation 6.

fitness = fLandingφb + fLandingφp + fFlightφn
+fCurves + fDistUAVφb + fV iolatedT + fψb

(6)

Equations 7 and 8 define reward and penalization to land,
respectively, in bonus and penalized regions.

fLandingφb = −Cφb ·
|φb|∑
i=1

(P (xK ∈ Ziφb)) (7)

fLandingφp = Cφp ·
|φp|∑
i=1

(P (xK ∈ Ziφp)) (8)

Equation 9 penalizes landing or flying over no-fly regions,
while Equation 10 and 11 give more chance to paths that
avoid unnecessary bends and with shortest distances to
bonus regions, respectively.

fFlightφn = Cφn ·max(0, 1−∆−P

 K∧
t=0

|φn|∧
i=1

xt /∈ Ziφn

) (9)

fCurves =
1

|εmax|
·
K∑
t=0

‖ut‖ · |εt| (10)

fDistUAVφb = shortestDist(xK , Zφb) (11)

If the aircraft has final velocity greater than its minimum
value, it is not landing in fact. Thus, Equation 12 avoids
paths where the UAV did not land, besides it reaches the
bonus region.

fV iolatedT =

{
Cφb , vK − vmin > 0

0 , otherwise (12)

If there is a battery failure, Equation 13 is added to
the fitness function. The aim is to reduce the number of
waypoints instead of spending several time steps for aircraft
landing.

fψ =

{
Cφb · 2

(K−T )
10 , ψ = ψb

0 , otherwise
(13)
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B. GH and MPGA

A greedy heuristic (GH) was developed aiming to have
a method simple enough to achieve a solution within a
short time. Such approach can be worthwhile for landing
under critical situations, where a fast decision-making is
necessary and a viable solution becomes more interesting
than time-consuming better solutions. Algorithm 1 describes
the greedy heuristic.

Algorithm 1: Greedy Heuristic.
1 begin
2 RouteLanding route[] ← RouteLanding()[map.|φb|];
3 for i = 1 to map.|φb| do
4 initialize(route[i], map.Ziφb );
5 evaluate(route[i]);

6 RouteLanding bestRoute ← getBestRoute(route);
7 return bestRoute;

The basic operation of this heuristic is to generate
a candidate solution for each one of the bonus regions
(map.|φb|). This candidate solution is determined rotating the
aircraft until it reaches the same direction of a bonus region
(map.Ziφb ). Next, it is calculated one trajectory straight to
this region.

The rotation occurs to the side with lower angle between
the UAV and a straight line to a bonus region. This is
illustrated by angles λ1 < λ‘

1 for region b1 in Figure 2,
where the rotation occurs towards the angle λ1.

b3

b2

b1p1

n2

S

E

E
E

1'1
n1

p2

32

UAV's 

ro
ute

UAV's 

direction

Figure 2: Candidate routes using Greedy Heuristic.

The best trajectory defined among all bonus regions is
returned by the GH. The candidate solutions are evaluated
according to their performance in Equation 6. In Figure 2,
the best solution is that landing in region b3, which is the
closest region to the UAV. The solution that lands on b1 has
slightly worse performance and the solution that lands on b2
violates the not navigability constraint, so it has low quality.
As already mentioned, GH can be used as an initialization
operator by MPGA. In this case, a bonus region is randomly
selected by GH and a trajectory is built. The controls defined
for this trajectory will be an individual in the MPGA.

Algorithm 2 describes the MPGA proposed in this work.
The population is first initialized and all individuals are
evaluated. Next, these individuals are structured in tree as

illustrated by Figure 3. The hierarchy is represented by the
position of the individuals (nodes) in the clusters of the tree,
where the leader has better fitness than its followers. The
best individual is represented by the root node and the worst
individuals are the leaf nodes.

Algorithm 2: Multi-Population Genetic Algorithm.
1 begin
2 repeat
3 for i = 1 to numPop do
4 for j = 1 to numIndividuals do
5 initialize(pop(i).ind(j));
6 evaluate(pop(i).ind(j));

7 organize(pop(i));
8 repeat
9 for j = 1 to rateCross × numIndividuals do

10 select(parents);
11 child ← crossover(parents);
12 mutation(child);
13 evaluate(child);
14 add(child, pop(i));

15 organize(pop(i));
16 until converge(pop(i));

17 for i = 1 to numPop do
18 migrate(pop(i));

19 until reach(stoppingCriterion);
20 RouteLanding bestRoute ← getBestRoute(pop);
21 return bestRoute;

MigrationMigration

Migra
tion

Figure 3: Hierarchical tree structure.

The evolution process selects randomly two individuals
for reproduction, which are always a leader node and one
of its followers, respectively. The new individual generated,
if it has better fitness, replaces the worst parent. After
the new individuals insertion, the population is hierarchi-
cally restructured where better individuals become leader in
their clusters. The population converge when no individuals
are inserted after rateCross× numIndividuals attempts.
When all populations converge, a migration operator is exe-
cuted and they are reinitialized, except by the best individual
of each population. The migration operator sends a copy of
the best individual from population i to population i + 1.
The stop criterion is the number of fitness evaluations.

V. COMPUTATIONAL RESULTS

Maps with different scenarios were randomly generated
to validate the landing path planners. For this purpose, an
automatic map generator was developed, from one described
in [2], based on the proportion of regions belonging to the
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navigable and bonus set φb along with map density. It is
considered a map with dimensions 1000m×1000m and the
critical situation always happens in the center of the map
at position (px0 , p

y
0) = (0; 0). Three levels of difficulty are

considered taking the proportion of regions in φb. The first
level is the Easy Maps (ME), where there are many bonus
regions, a median level of penalty (φp) and few no-fly (φn)
regions. The second level is named Normal Map (MN ) with
a balanced number of regions belonging sets φn, φp and φb.
The Hard Map (MH ) level has maps with many regions in
set φn, a median amount in set φp and few regions in φb. The
other two levels of difficulty take into account the density
of the map. The level Coverage 25% (C25%) defines maps
where the regions are more sparse, so they will occupy about
25% of the total area of the map. The level Coverage 50%
(C50%) defines maps with regions that will occupy about
50% of the total area. For these criteria, it is possible to
define six group of instances (I1-I6) from which 100 maps
are generated for each instance as shown by Figure 4.
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Figure 4: Automatically generated maps.

Table I shows parameters of the problem, where those for
UAV are based on data of the UAV model Tiriba [3]. The

experiments were performed with machines under Linux-
Ubuntu 13.10, Intel Core i5 processor, 64 bits, 1.80 GHz
and 4 GB RAM. Results of a previous parameter tuning for
the MPGA are available at web1. From these results, MPGA
is set with 3 populations, where each one has 13 individuals
disposed in ternary trees in a total of 39 individuals. The
evolutionary process applies 0.5 and 0.75 of crossover and
mutation rates, respectively, and the stop criterion is 10,000
fitness evaluations.

Table I: Settings of the UAV and weights of penalties used
in the experiments.

Parameters Value Parameters Value
px0 , p

y
0 (m) (0; 0) ∆T (s) 1

v0 (m/s), α0 (°) 24, 90 ∆ 0.001
vmin, vmax (m/s) [11.1; 30.5] Cφb 2000
εmin, εmax (°/s) [−3; 3] Cφp 8000
amin, amax (m/s2) [0.0; 2.0] Cφn 100000

T (s) 60 Cφr 0

Two versions of MPGA are evaluated, one without ap-
plying GH as an initialize operator (MPGA1) and another
applying it as operator (MPGA2). Table II shows the results
following each type of critical situation associated with the
UAV (Ψ), and the level of difficulty defined by Instances.
The number of times the UAV landed in bonus (Landed
φb) and penalty regions (Landed φp) are shown. It is also
reported the number of infeasible paths, which happen if the
UAV lands in remain regions (φr) or it can fly over a non-fly
zone when landing in φb or φp. Let’s give an example from
the results reported for motor problem (ψm) in instances I1
(Easy Maps with Coverage 25%). In this case, GH is able to
land the UAV for 79 out of 100 maps in bonus regions and
21 out of 100 maps landings in remainder regions, so the
UAV does not land in a penalty region in this case. MPGA1
and MPGA2 return, respectively, 81 and 90 routes that land
the UAV in a bonus area for I1.

MPGA2 outperforms all other approaches from the results
reported in Table II. It landed the UAV in bonus area for
79.2% of the maps on average, when there is a motor failure,
against 67.8% and 68.8% of GH and MPGA1, respectively.
GH, MPGA1 and MPGA2 have their better performance
dealing with battery overheating problem. MPGA2 landed
the aircraft safely in 97.8% of maps, while GH returned
89.5% and MPGA1 88.8% . For flaws in both wings,
MPGA2 is the only approach able to land the aircraft in
bonus areas for more than 80% of maps. GH presents the
worst performance for the majority of results. For all critical
situations, the performance of MPGA1 is not much better
than GH. This indicates that to evolve paths, without some
previously defined route for bonus regions, is not a better
strategy. All methods returned a large amount of infeasible
solution when dealing with flaws in both wings.

1http://lcrserver.icmc.usp.br/projects/uav/wiki
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Table II: Result obtained for the GH, MPGA1 and MPGA2
for all critical situations and all instances.

GH MPGA1 MPGA2
Ψ Inst. φb φr Inf. φb φr Inf. φb φr Inf.

ψm

I1 79 21 0 81 19 0 90 10 0
I2 92 6 2 92 7 1 96 3 1
I3 58 39 3 60 39 1 71 28 1
I4 86 12 2 84 16 0 96 4 0
I5 30 52 18 36 64 0 40 60 0
I6 62 28 10 60 33 7 82 15 3

Avg 67.8 26.3 5.8 68.8 29.7 1.5 79.2 20.00 0.83

ψb

I1 99 0 1 100 0 0 100 0 0
I2 97 0 3 99 0 1 99 0 1
I3 93 3 4 94 5 1 99 0 1
I4 98 0 2 99 0 1 100 0 0
I5 67 5 28 73 27 0 94 6 0
I6 83 0 17 68 17 15 95 2 3

Avg 89.5 1.3 9.2 88.8 8.2 3.0 97.8 1.3 0.8

ψ
s1

I1 81 8 11 90 8 2 91 7 2
I2 88 0 12 89 0 11 93 0 7
I3 68 16 16 76 18 6 86 8 6
I4 82 1 17 84 3 13 89 0 11
I5 41 23 36 49 46 5 67 28 5
I6 56 0 44 46 23 31 78 4 18

Avg 69.3 8.0 22.7 72.3 16.3 11.3 84.0 7.8 8.2

ψ
s2

I1 90 4 6 94 4 2 99 0 1
I2 90 0 10 95 1 4 95 1 4
I3 70 20 10 79 16 5 92 5 3
I4 87 1 12 83 8 9 94 0 6
I5 40 17 43 62 35 3 74 24 2
I6 61 3 36 57 13 30 76 4 20

Avg 73.0 7.5 19.5 78.3 12.8 8.8 88.3 5.7 6.0
- 74.9 10.8 14.3 77.1 16.7 6.2 87.3 8.7 4.0

The difference among the maps does not affect the
processing time of the methods, since the stop criterion
established was the limit of 10, 000 evaluations. GH is the
fastest method as expected spending on average 0.07 sec.
and no longer than 0.12 sec. in the worst case to return a
solution. MPGA1 and MPGA2 spent on average around 1
sec. to conclude their execution and no longer than 1.5 sec.
in the worst case. Figure 5 shows four routes determined by
the planner MPGA2 in a map MN with coverage C25%. In
this scenario, the aircraft is flying towards north direction
when a failure occurs. For each example, it is presented
the original routes as well as the point S where the critical
situation happens and the point E where the aircraft lands.
The circles represent the uncertainty related with the UAV
position as described in sections III and IV.

From one of the paths provided by MPGA2, a simulation
is also executed aiming to illustrate the behaviour of the
aircraft following such path under an environment with
winds. The FlightGear (FG) was chosen once it is an open-
source simulator with many resource available. FG was
set to simulate the flight dynamic of Cessna 172, but an
autopilot was coded to control automatically the Cessna
172 flight. Thus, the simulation is not conducted by a
human pilot. Figure 6 shows the framework that integrates
FG, autopilot and MPGA2 path. MGPA2 sends the path to
the autopilot that aborts the current path and starts a new
path. The autopilot executes the MPGA2 path based on the
environment and aircraft simulations from FG. The green
line is the original path executed by the aircraft, and the red
path is the re-planning path for emergency land.

Two maps from Instances I3 (MN with C25%) and I6
(MH with C50%) were selected to execute the simulations
where a battery failure ψb has been assumed. Figures 7(a)

S
E

(a)

S

E

(b)

S

E

(c)

S

E

(d)

Figure 5: Paths for ψm, ψb, ψs1 and ψs2 .

Figure 6: Framework for FlightGear with MPGA paths.

and (c) show the paths when there are winds with 10 knots
during the flight simulation, while Figures 7 (b) and (d)
have the same path execution under winds with 50 knots.
The winds bring disturbances that do not allow to follow
exactly the MPGA2 route in both maps. As expected, the
difference between MPGA2 path and the path executed by
autopilot is larger under strong winds, but the aircraft stays
away from non-fly zones and near the MPGA2 path for both
maps. Videos of these simulations are available at web2.

VI. CONCLUSIONS

This paper presented a path re-planning problem to land
a UAV under four types of critical situation. The objective
was to minimize damages increasing the safety during the
landing. Two strategies for planner were introduced, GH
and MPGA, where it was evaluated the MPGA with GH
(MPGA2) to initialize paths (individuals) and without it

2http://lcrserver.icmc.usp.br/projects/uav/wiki
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(a) Wind Velocity 10 Knots - MN with C25% (b) Wind Velocity 50 Knots - MN with C25%

(c) Wind Velocity 10 Knots - MH with C50% (d) Wind Velocity 50 Knots - MH with C50%

Figure 7: (a), (c) FG simulation with winds 10 knots, (b)
and (d) with winds 50 knots. Wind direction: west.

(MPGA1). A set of 600 maps were generated to evaluate the
proposed methods. The results showed that all approaches
were able to land the aircraft for more than 67% of maps on
average under all critical situations. MPGA2 was the most
promising method once it took advantage to evolve individ-
uals initialized by GH, being able to land the UAV in safety
regions for more than 79% of the maps. The methods were
better dealing with battery problem and worse for motor
failure, so this must be taken into account as future works to
improve them. MPGA approaches returned solutions around
1 sec, while GH spent 0.07 sec. Thus, GH returned fast
solution, but it can fail more than MPGA1 and MPGA2
to land in bonus regions. The simulation with FlightGear
showed that the aircraft was able to follow the path even
under different wind velocities. Thus, the proposed methods
found good quality solutions within a short computational
time, which is relevant for such problem. As future work,
the mathematical model will be improved aiming to describe
this problem as a mixed-integer linear programming model
and solve it using exact methods. The functions to describe
critical situations will also be improved and other failures
will be considered. Finally, a deeper evaluation of many
land paths will be conducted based on the results from flight
simulator as FlightGear.
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