
Market-based Risk Allocation Optimization ∗

Masahiro Ono and Brian C. Williams
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{hiro_ono, williams}@mit.edu

ABSTRACT
This paper proposesMarket-based Iterative Risk Allocation(MIRA),
a new market-based decentralized optimization algorithm for multi-
agent systems under stochastic uncertainty, with a focus on prob-
lems with continuous action and state space. In large coordination
problems, from power grid management to multi-vehicle missions,
multiple agents act collectively in order to maximize the perfor-
mance of the system, while satisfying mission constraints. These
optimal action plans are particularly susceptible to risk when uncer-
tainty is introduced. We present a decentralized optimization algo-
rithm that minimizes the system cost while ensuring that the proba-
bility of violating mission constraints is below a user-specified up-
per bound.

We build upon the paradigm ofrisk allocation [13], in which
the planner optimizes not only the sequence of actions, but also its
allocation of risk among state constraints. We extend the concept
of risk allocation to multi-agent systems by highlighting risk as a
resource that is traded in a computational market. The equilibrium
price of risk that balances the supply and demand is found by an
iterative price adjustment process calledtâtonnement(also known
asWalrasian auction). Our work is distinct from the classical tâ-
tonnement approach in that we use Brent’s method to provide fast
guaranteed convergence to the equilibrium price. The simulation
results demonstrate the efficiency and optimality of the proposed
decentralized optimization algorithm.

Categories and Subject Descriptors
I.2 [Artificial Intelligence ]: Distributed Artificial Intelligence

General Terms
Algorithms
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1. INTRODUCTION

1.1 Motivation
There is an increasing need for multi-agent systems that perform

optimal planning under uncertainty. An example is planning and
control of power grid systems [3]. A power grid consists of a num-
ber of generators and electric transformers whose control should be
carefully planned in order to maximize efficiency. A significant is-
sue in power grid planning is the uncertainty in demand for energy
by consumers. As the use of renewable energy, such as solar and
wind power, become more popular, uncertainty in supply increases
due to weather conditions.

Another example is the Autonomous Ocean Sampling Network
(AOSN) [18], which consists of multiple automated underwater ve-
hicles (AUVs), robotic buoys, and aerial vehicles. AOSN should
maximize science gain while being exposed to external disturbances,
such as tides and currents.

To deal with such problems, we developedMarket-based Itera-
tive Risk Allocation(MIRA), a multi-agent optimization algorithm
that operates within user-specified risk bounds. The scope of this
paper is a dynamic system with continuous state and action space
under stochastic uncertainty.

1.2 Overview

Optimization of action sequence under uncertainty, and
risk allocation.

When planning action sequence under uncertainty, there is al-
ways a risk of failure that should be avoided. However, in many
cases, performance can be improved only by taking extra risk. We
can reach a destination faster by driving at a faster speed and ac-
cepting a higher risk of an accident. Hannibal, a Carthaginian mil-
itary commander in the third century B.C., was able to frustrate
the Roman army by taking the great risk of crossing the Alps with
50,000 troops. As seen in these examples, risk and performance
are in a trade-off relationship. In other words, risk is a resource
that can be spent to improve the performance of the system.

Without taking any risk, nothing can be done; however, no one
dares to take unlimited risk. Although the sensitivity for risk varies
from person to person, everyone somehow balances risk and per-
formance to find the optimal action sequence.

There are three main ways to formulate the trade-off problem of
risk and performance; the first is to set a negative utility for failure
(i.e. penalty), and maximize the expected total utility (the utili-
tarian approach, such as MDP [2][11][12]); the second is to set
upper bound on risk and maximize performance within this bound
[13][16]; the third is to set lower bound on performance and min-
imize risk. It is up to the user to choose which formulation to use
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Figure 1: Risk allocation in a race car path planning scenario.
A large portion of risk is allocated to the corner, since taking
a risk (approaching the wall) at corner results in greater time
saving than taking the same risk along straightaway.

according to her needs and requirements.
Our focus is on the second approach: performance maximization

with an upper-bound on risk. An example problem is to drive a
car as fast as possible while limiting the probability of a crash to
0.01%. This formulation is particularly useful for optimal planning
and control problems that involve high-impact low-probability risk
such as loss of life.

With this formulation, [13] showed that we should optimize not
only the sequence of actions but also therisk allocationin order to
maximize the performance under a risk bound .

The example shown in Figure 1 illustrates the concept of risk al-
location. A race car driver wants to plan a path to get to the goal
as fast as possible. However, crashing into the wall leads to a fatal
accident, so he wants to limit the probability of a crash to 0.01%.
An intelligent driver would plan a path as shown in Figure 1, which
runs mostly in the middle of the straightaway, but gets close to the
wall at the corner. This is because taking a risk (i.e. approaching
the wall) at the corner results in a greater time saving than taking
the same risk along the straightaway; in other words, the utility of
taking risk is greater at the corner than the straightaway. Therefore
the optimal path plan allocates a large portion of risk to the corner,
while allocating little to the straightaway. As illustrated by this ex-
ample,risk allocationneeds to be optimized across the constraints,
in order to maximize the performance.

The optimal controller then needs to generate an optimal action
sequence that abides to the allocated risk at each constraint.

Risk allocation for multi-agent system.
Past work on risk allocation [6][13][14] focused on single agent

problems.
In this work we extend the concept of risk allocation to multi-

agent systems. Figure 2 shows an example of a multi-agent system
with two unmanned air vehicles (UAVs), whose mission is to extin-
guish a forest fire. A water tanker drops water while a reconnais-
sance vehicle monitors the fire with its sensors. The loss of either
vehicle results in a failure of the mission. Two vehicles are required
to extinguish the fire as efficiently as possible, while limiting the
probability of mission failure to a given risk bound, say, 0.1%. The
water tanker can improve efficiency by flying at a lower altitude,
but it involves risk. The reconnaissance vehicle can also improve
the data resolution by flying low, but the improvement of efficiency
is not as great as the water tanker. In such a case a plausible plan
is to allow the water tanker to take a large portion of risk by flying
low, while keeping the reconnaissance vehicle at a high altitude to
avoid risk. This is because the utility of taking risk (i.e. flying low)

Forest fire

Water tanker

Reconnaissance vehicle

Figure 2: Risk allocation for multi-UAV fire-fighting system.
The water tanker is allowed to fly low since it is allocated larger
risk than the reconnaissance vehicle.

is greater for the water tanker than for the reconnaissance vehicle.
The optimal risk allocation for multi-agent systems can be found

by applying the same algorithm as the single agent problems, such
as [6][13][16], with extended state variable that include all agents.
However, this approach requires centralized computation, which
has an issue of scalability.

In this paper we propose a noveldecentralizedalgorithm that
finds the globally optimal risk allocation among multiple agents.

Market-based risk allocation using tâtonnement.
Our approach is to use the market-based mechanism. In a com-

putational market each agent demands risk in order to improve its
own performance. However, it cannot take risk for free; it has to
purchase it from the market at a given price.

Agents are price takers. Given the price, each agent computes
the optimal amount of risk to take (i.e.,demand for risk) by solving
the optimization problem where the objective function is the sum-
mation of the original cost function and the payment for the risk.
The optimal action sequence and the internal risk allocation are
also determined by solving the optimization problem, just as in the
single-agent case described before. The demand from each agent
can be seen as a function of the price of risk (demand curve). Typ-
ically, the higher the price is, the less each agent demands. Each
agent has a different demand curve according to its sensitivity to
risk. On the other hand, the supplier of the risk is the user. She
supplies the fixed amount of risk by specifying the upper-bound of
risk the system can take.

The price must be adjusted so that the total demand (aggregate
demand) becomes equal to the supply. The equilibrium price is
found by an iterative process calledtâtonnementor Walrasian auc-
tion [17] as follows:

• Increase the price if aggregate demand exceeds supply,

• Decrease the price if supply exceeds aggregate demand,

• Repeat until supply and demand are balanced.

In classical tâtonnement, the price increment is obtained by simply
multiplying the excess aggregate demand by a constant. However,
the upperbound of the constant that guarantees the convergence
is specific to a problem, and is hard to find. Slow convergence
speed is also an issue. Our method obtains the price increment in
each iteration by computing one step of Brent’s method, which is
a commonly-used root-finding algorithm with fast and guaranteed
convergence [1].

Figure 3 gives the graphical interpretation of the market-based
risk allocation in a system with two agents. Agent 1 and Agent 2
have different demand curves, since their utility of taking the same
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Figure 3: Market-based risk allocation in a system with two
agents. Note that we followed the economics convention of plac-
ing the price on the vertical axis. The equilibrium price is p?,
and the optimal risk allocation is ∆?

1 = D1(p
?) for Agent 1 and

∆?
2 = D2(p

?) for Agent 2.

risk is different. The aggregate demand curve is obtained by adding
the two demand curves horizontally. The supply curve is a vertical
line since it is constant. The equilibrium pricep? lies at the inter-
section of the aggregate demand curve and the supply curve. The
optimal risk allocation for the two agents corresponds to their de-
mands at the equilibrium price (∆?

1 and∆?
2 in Figure 3).

It is proven in a later section that the performance of the entire
system is maximized at the equilibrium price, although each agent
only maximizes its own utility. The only information that each
agent needs to communicate in each iteration is price and demand,
both of which are a scalar value. These are desirable features for
distributed systems.

MIRA - Decentralized optimization of risk allocation.
Our proposed algorithm, MIRA (Market-based Iterative Risk Al-

location), optimizes risk allocation between agents, internal risk
allocation of each agent, and action sequences of each agent con-
currently.

Figure 4 illustrates the Market-based Iterative Risk Allocation
(MIRA) algorithm. The tâtonnement process is repeated until it
converges to the equilibrium price. Risk is not allocated until the
algorithm converges. The optimal action sequence and the internal
risk allocation are also obtained as the by-product of the demand
optimization problem (Step 2 in the Figure 4).

Figure 5 shows how MIRA algorithm breaks down the risk for
individual constrains in each agent. The risk bound for the sys-
tem is given by the user (A). Risk is optimally allocated to agents
through tâtonnement (B). Each agent optimizes internal risk allo-
cation when computing the demand in each iteration of MIRA (C).
At the same time, the action sequence is optimized according to the
internal risk allocation (D).

1.3 Related Work
MDP-based algorithms have been mainly used to solve multi-

agent planning problems under uncertainty in discrete domains [2]
[11][12]. M-DPFP algorithm proposed by [9] can solve problems
with continuous resources. Our problem formulation is different
from MDP-based approaches in that we set an upper bound on risk
(chance constraint) and maximize performance within this bound,
instead of maximizing utility. Also, our focus is on the problem
with continuous state and action space.

Optimal control under uncertainty with chance constraint is in-

1. Auctioneer announces the price

p

p

Risk bound (supply of risk): 0.1%

2. Agents bid the demand for risk

0.08%

0.04%
My optimal plan:

u1=0.3, u2=0.5,…

My optimal plan:

u1=0.1, u2=0.2,…
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demand, the price 

should be lowered.

Agents compute the 

demand by solving the plan 
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0.03% My optimal plan:

u1=0.2, u2=0.1,…

My optimal plan:

u1=0.3, u2=0.4,…

p*
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Figure 4: Illustration of MIRA algorithm. Risk is allocated to
agents through tâtonnement; their continuous action sequences
are also optimized in the loop when computing the demand at
the given price.
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Figure 5: Distribution of risk in MIRA algorithm.

tensively researched in the robust model predictive control (RMPC)
community. Due to the difficulty of handling the chance constraint
analytically, past work used either a very conservative bound that
resulted in large suboptimality [5][19], or a sample-based method
[4] that is computationally inefficient. Based on the pioneer work
by [16] that proposed the conservative approximation of chance
constraint by decomposing it into multiple atomic chance constraints,
[13] introduced the concept of risk allocation, and developed Iter-
ative Risk Allocation (IRA) algorithm that can optimize risk allo-
cation efficiently, with substantially smaller suboptimality than the
past work [14].

Market-based approach has recently been recognized as an ef-
fective tool for distributed multi-agent systems in AI community.
Although tâtonnement has drawn less attention than auctions, it has
been successfully applied to various problems such as the distribu-
tion of heating energy in an office building[20], control of electri-
cal power flow[7], and resource allocation in communication net-
works[8]. In economics, a simple linear price update rule has long
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been the main subject of study, but the convergence of price can
only be guaranteed under a quite restrictive condition[17]. In or-
der to substitute the linear price update rule, various root-finding
methods have been employed in agent-based resource allocation
algorithms, such as the bisection method[21], Newton method[22],
and Broyden’s method[20]. However, in general, it is difficult to
guarantee quick and stable convergence to the equilibrium price.
We employ Brent’s method [1] to provide guaranteed convergence
with a superlinear rate of convergence by exploiting the fact that a
risk, which is treated as a resource in our problem formulation, is a
scalar value.

2. RISK ALLOCATION FOR
SINGLE-AGENT SYSTEMS

We will first briefly review the mathematical formulation of risk
allocation. Our focus on this paper is a problem with continuous
state space, although the concept of risk allocation can be used for
discrete/hybrid systems [13].

2.1 Formulation

Optimization of action sequence under uncertainty.
We formulate an optimization problem with a chance constraint

as follows:

min
u1:T

J(u1:T ) (1)

s.t. ∀t xt+1 = Axt +But +wt (2)

∀t umin ≤ ut ≤ umax (3)

Pr

[
T∧

t=0

Nt∧
n=1

gt,n(xt) ≤ 0

]
≥ 1 − ∆ (4)

wherext andut are the state vector and action (control input) vec-
tor at thetth time step, respectively. The disturbancewt and the
initial state estimationx0 have Gaussian distributions with known
mean and variance. Although we focus on Gaussian-distributed un-
certainty in this paper for simplicity, our algorithm can be applied
to any stochastic uncertainties with quasi-concave distribution. We
assume thatJ(·) andgt,n(·) are convex functions.

A discrete-time stochastic dynamics model of the system is given
as (2)(3), and state constraints are imposed as (4). Since violation
of any state constraint at any time step is regarded as a mission
failure, the probability of satisfying all constraints at all time steps
must be more than1−∆, where∆ is the upper bound of the prob-
ability of failure (risk bound). Given a risk bound∆, the action
sequenceu1:T := [u1 · · ·uT ]T that minimizes the costJ in (1)
is obtained as an output by solving the optimization problem. In
other words, the user can adjust the risk averseness of the system
by specifying the risk bound∆.

Decomposition of chance constraint.
The chance constraint (4) is hard to evaluate since it involves a

probability defined on a multi-dimensional distribution. We de-
compose this constraint into multiple atomic chance constraints
that only involve a single-dimensional distribution, using the fol-
lowing Boole’s inequality:

Pr

[∪
i

Ai

]
≤
∑

i

Pr [Ai] (5)

Observe that, using Boole’s inequality (5), following condition (6),
together with (7), implies the original chance constraint (4).

∀(t,n) Pr [gt,n(xt) ≤ 0] ≥ 1 − δn
t (6)

T∑
t=1

Nt∑
n=1

δn
t ≤ ∆ (7)

∀(t,n) δn
t ≥ 0 (8)

Therefore, the original chance constraint (4) can be replaced with
(6) and (7). Since we introduced new variablesδn

t , the costJ in (1)
needs to be optimized overδn

t as well as the sequence of actions
u1:T :

min
δ,u1:T

J(u1:T ) (9)

whereδ =
[
δ1
0 δ2

0 · · · δNT −1
T δNT

T

]T

.

We now have the revised constrained optimization problem de-
fined by (9) with constraints (2)(3)(6)(7).

2.2 Risk allocation
The newly introduced variableδ is the mathematical representa-

tion of risk allocation. In (6), each single constraint at each time
step has its own risk boundδn

t ; in other words,δn
t is the amount of

risk allocated to thenth constraint at thetth time step. Eq.(7) states
that the summation of all individual risk bound is upper-bounded by
the original risk bound∆; therefore risk is regarded as a resource
with total amount∆. In order to obtain the maximum performance
(minimum cost), the risk allocation needs to be optimized (9), just
as resource allocation problems.

The risk allocation optimization problem can be solved efficiently
by a two-stage algorithm called Iterative Risk Allocation (IRA)
[14]. Alternatively it can also be solved by a single shot optimiza-
tion [6]. We employ the latter approach in this work.

3. DECENTRALIZED RISK ALLOCATION
FOR MULTI-AGENT SYSTEMS

We first formulate the optimization problem under uncertainty
for multi-agent systems in a centralized manner, and then derive the
decentralized formulation using Karush-Kuhn-Tucker (KKT) con-
ditions of optimality. We will then observe that economic concepts
such as price, demand, and supply appear in the resulting formula-
tion.

3.1 Formulation

Optimization of action sequence under risk for multi-
agent system.

In a multi-agent system such as the UAV fire fighting system
illustrated in Figure 2, the failure of one agent leads to a failure of
the entire system. In a manned system, loss of one crew member is
regarded as a failure of the mission. Therefore the user wants to set
an upper-bound on the probability of having at least one agent fail.

With the same discussion as in the previous section, the follow-
ing bound is obtained by using Boole’s inequality (5):

I∑
i=1

∆i ≤ S (10)

where∆i is the upper bound on the probability of failure of the
ith agent,I is the number of agents in the system, andS is the
upper bound on the probability of failure of the entire system (i.e.
the total amount of risk the entire system is allowed to take). Note
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that∆ was a given constant in the single-agent case (4)(7), but now
each∆i is a decision variable, whileS is the new given constant,
which is specified by the user.

The performance (cost) of the entire system is defined as the sum
of the performance (cost) of all individual agents:

Jsys =
∑

i

Ji(ui,1:T ) (11)

The optimal control problem under risk for multi-agent systems
is formulated as a constrained optimization problem of minimizing
(11), subject to the constraints (2)(3)(6)(7) for each agent, and (10).

To simplify this formulation, we define a function1 J?
i (∆i), which

is equal to the minimized cost for theith agent obtained by solving
the constrained optimization problem for a single agent (9)(2)(3)(6)(7)
given∆i:

J?
i (∆i) = J(u?

i,1:T )

whereu?
1:T is the solution to the single agent optimization problem

given ∆i. An important fact is that functionJ?
i (∆i) is a convex

function. See Appendix of [15] for the proof.
Using J?

i (∆i), the optimization problem can be rewritten in a
simple form as follows:

min
∆1:I

I∑
i=1

J?
i (∆i) (12)

s.t.
∑

i

∆i ≤ S (13)

This formulation describes a centralized approach where the ac-
tion sequences and risk allocations of all agents are planned in a
single optimization problem. We will next derive the decentralized
formulation using the KKT conditions of optimality.

Decentralized optimization.
We build upon the resource allocation algorithm proposed by

[20], with an modification of using the KKT conditions for opti-
mality instead of the method of Lagrange multipliers, since risk
(resource) is bounded by inequality (13) in our problem formula-
tion.

The KKT conditions of the optimization problem (12)(13) are:2

dJ?
i

d∆i

∣∣∣∣
∆?

i

+ p = 0 (14)∑
i

∆?
i ≤ S (13)

p ≥ 0 (15)

p

(∑
i

∆?
i − S

)
= 0 (16)

wherep is the Lagrange multiplier corresponding to the constraint
(13). This is the necessary and sufficient condition for optimality,
sinceJ?

i (∆i) is convex.

1It is often not possible, and not necessary as well, to obtain the
functionJ?

i (∆i) in a closed form; in practiceJ?
i (∆i) is evaluated

simply by solving the optimization problem (9)(2)(3)(6)(7), with
an extra termp∆i added to the objective function (9).
2We assume the differentiability ofJ?

i (∆i) here; in fact, since
J?

i (∆i) is a convex function, it is continuous and differentiable at
all but at most countably many points in its domain; we can obtain
the same result for the points where it is not differentiable by using
extended KKT condition with subgradient.

Observe that (14) is also the optimality condition for the follow-
ing unconstrained optimization problem:

min
∆i

J?
i (∆i) + p∆i (17)

Therefore solving the optimization problem (12) and (13) is equiv-
alent to solvingI independent optimization problems (17) with
common parameterp, which is determined by (13), (15), and (16).
Since (17) contains only the variables related to theith agent, it
can be solved by each agent in a decentralized manner. Each agent
optimizes its internal risk allocationδ (Figure 5-C) and action se-
quenceu1:T (Figure 5-D) by solving (17).

3.2 Economic Interpretation
The economic interpretation of these mathematical manipula-

tions becomes clear by regarding the Lagrange multiplierp as the
price of risk. Each agent can reduce the cost (i.e. improve the per-
formance) by taking more risk∆i, but not for free. Note that a new
termp∆i is added to the cost function (17). This is what the agent
has to pay to take the amount of risk∆i. The agent must find the
optimal amount of riskDi(p) to minimize the cost plus payment,
by solving the optimization problem (17) with a given pricep:

Di(p) = arg min
∆i

J?
i (∆i) + p∆i. (18)

In other words,Di(p) is the amount of risk theith agent wants to
take at the given price of riskp. ThereforeDi(p) can be interpreted
as theith agent’sdemand for risk. On the other hand, the total
amount of riskS can be interpreted as thesupply of risk.

The optimal pricep? must satisfy the KKT conditions (13), (15),
and (16), with the optimal demands at the price∆?

i = Di(p
?).

Such a pricep? is called theequilibrium price.
The condition (16) illustrates the relation between the equilib-

rium pricep?, optimal demand∆?
i , and supplyS; in the usual case

where the equilibrium price is positivep? > 0, the aggregate de-
mand

∑
i ∆?

i must be equal to the supplyS; in a special case where
the supply always exceeds the demand for allp ≥ 0, the optimal
price is zerop? = 0. If the aggregate demand always exceeds the
supply for allp ≥ 0, there is no solution that satisfies the primal
feasibility condition (13), and hence the problem is infeasible. See
Figure 3 for the graphical interpretation.

3.3 Global Optimality
The optimal risk allocation to each agent is equal to its demand

for risk at the equilibrium price. This is the globally optimal solu-
tion since all the KKT conditions for optimality (13)-(16) are sat-
isfied at the equilibrium price. If the supply always exceeds the
demand for allp ≥ 0, the demand atp = 0 is the globally optimal
risk allocation.

Therefore, we must find the equilibrium pricep? that satisfies
(13)(15)(16) in order to solve the optimization problem. The next
section discusses how MIRA finds such an equilibrium price.

4. TÂTONNEMENT: PRICE ADJUSTMENT
MECHANISM

We employ an iterative process called tâtonnement to find the
equilibrium price: initialize the price with arbitrary value, and up-
date it in each iteration according to the excess demand (supply)
until the demand and supply are balanced (Figure 4).

In the real world economy the demand for a good is typically a
monotonically decreasing function of price (people want more if
price is less). This is also the case in our computational economy.
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By differentiating (14),

dp

dDi
= −d2J?

i

d∆2
i

∣∣∣∣
∆i=Di

≤ 0 (19)

The inequality comes from the fact thatJ?
i (∆i) is a convex func-

tion (See the Appendix of [15] for proof). Since demand is mono-
tonically decreasing, the equilibrium price found by tâtonnement is
the sole and globally optimal equilibrium.

The price is updated in each iteration (Step 3 of Figure 4). The
price update rule must be carefully chosen for quick and stable con-
vergence to the equilibrium. In the following subsections we inves-
tigate two update rules: linear increment and Brent’s method [1].

4.1 Linear Price Increment
The following simple price update rule is most extensively ex-

plored in the economics literatures:

pk+1 = max

{
pk + c

(∑
i

Di(pk) − S

)
, 0

}
(20)

wherepk is the price in thekth iteration.
With this update rule, the price is guaranteed to converge forsuf-

ficiently smallc > 0, if a condition called gross substitutability is
satisfied [17]. Although this update rule is commonly studied, it has
three issues when computing the equilibrium. First, the condition
for convergence (gross substitutability) is very restrictive. Second,
the constant parameterc is specific to a problem, and it is very
hard to obtain the upper bound for which the convergence is guar-
anteed. Third, the convergence is slow. In our case, where there
is a single kind of resource (risk) exchanged in the market, gross
substitutability3 is implied by the decreasing monotonicity of the
demand function. However, the other two issues still exist in our
case. We solve these issues by applying Brent’s method.

4.2 Brent’s method
Mathematically, tâtonnement can be seen as a process of finding

a root of the excess demand function:
∑

i Di(p) − S.
Brent’s method is a root-finding algorithm that achieves quick

and guaranteed convergence, by combining three methods: the bi-
section method, the secant method, and inverse quadratic interpola-
tion [1]. Another important feature of Brent’s method is that it does
not require the derivative ofDi(p), which is very hard to obtain.

As far as we know, there is only one past work [23] that applies
Brent’s method to find the equilibrium price, but in economics lit-
erature; no past research has applied Brent’s method to resource
allocation problems.

This is probably because Brent’s method can only take a scalar
variable, while resource allocation algorithms typically deal with
multiple resources (i.e. vector). However, in arisk allocation prob-
lem, risk is always a scalar value. Therefore Brent’s method can
efficiently and reliably find the equilibrium price of risk. It is pos-
sible to extend our algorithm, MIRA, to solve multi-resource allo-
cation problems by using a generalization of Brent’s method[10]
or by decomposing the market so that each market deals with only
one kind of resource[21]. However, such extensions of MIRA are
out of the scope of this paper.

4.3 MIRA algorithm
Algorithm 1 shows the entire flow of the MIRA algorithm. MIRA

has a distributed part and centralized part. The computation of de-
3In the general equilibrium theory, money is also treated as a goods;
therefore, in our case, the gross substitutability is defined as the
substitutability between risk and money.

mand (Line 5) is distributed to each agent; by solving (18), each
agent obtains the optimal demand at the price given by Line 4, as
well as its optimal sequence of actions (ui,1:T ). The computation
of price (Line 7) is centralized; the auctioneer collects the demands
from all agents (Line 6), and updates the price using Brent’s method
according to the excess demand/supply. One of the agents plays the
role of the auctioneer.

The computation time of the centralized part is substantially shorter
than the distributed part. For example, in the fire-fighter UAV sce-
nario with two agents (see Section 5.1), the computation time of
the distributed part is 13.8 seconds while the centralized part takes
only 0.046 seconds. Moreover, the number of agents does not influ-
ence the computation time of centralized part much, since Brent’s
method only takes theaggregatedemand (i.e. the summation of the
demands of all agents). Therefore, the centralized part of MIRA
does not harm the scalability of the algorithm.

The communication requirements between agents are small; in
each iteration, each agent receives a price (Line 4) and transmits its
demand (Line 6), both of which are scalars.

The centralized part of the algorithm can be distributed by mak-
ing all individual agents conduct the same computation of price up-
date simultaneously. In such case the demands of all agents must
be shared with all agents, while price needs to be shared only at the
first iteration. Although we can remove the centralized auctioneer
in this way, there is no advantage in terms of computation time.

5. SIMULATION
We implemented MIRA in Matlab. Non-linear optimization solver

SNOPT is used to compute the demandDi(p), and the Matlab im-
plementation of Brent’s method (fzero) is used to find the equi-
librium pricep?. Simulations were conducted on a machine with
Intel(R) Core(TM) i7 CPU clocked at 2.67 GHz and 8GB RAM.

5.1 Validity
We tested MIRA on the multi-UAV altitude planning problem for

the fire-fighting scenario (Figure 2). Figure 6 shows the simulation
result. Two vehicles fly at the constant horizontal speed, starting
from d = 0 at altitude0.5. The mission is to extinguish the fire at
d = 6, 7. Both vehicles minimize the flight altitude above the fire,
although the water tanker is given 100 times more penalty (cost) of
flying at high altitude than the reconnaissance vehicle. Both have
uncertainty in altitude, so flying at lower altitude involves more
risk. The total risk must be less than 0.1%.

The optimal plan allocates 99.2% of the total risk to the water
tanker, while only 0.8% to the reconnaissance vehicle. This is be-
cause the utility of taking risk (i.e. flying low) is larger for the water
tanker than for the reconnaissance vehicle. As a result, the water
tanker flies at a lower altitude.

Both vehicles optimize the internal risk allocation as well. For

Algorithm 1 Market-based Iterative Risk Allocation
1: Fix S; //Total supply of risk
2: Initializep; //Price of risk
3: while |

∑
i Di(p) − S| > ε andp > 0 do

4: Auctioneer announcesp;
5: Each agent computes its demand for riskDi(p) by solving

(18);
6: Each agent submits its demand to the auctioneer;
7: The auctioneer updatesp by computing one step of Brent’s

method;
8: end while

62



Water tanker

Reconnaissance vechicle

R
is

k
 a

llo
c
a

ti
o

n
 

Horizontal distance d 

Total risk bound: S = 0.1%

Water tanker

  = 0.0992%W

Reconnaissance vehicle

  = 0.0008%R

Horizontal distance d 

A
lt
it
u

d
e

d

Figure 6: Simulation result of flight altitude planning prob-
lem for multi-UAV fire-fighting scenario (see Figure 2). Upper
graph: Optimized altitude profile; Lower graphs: Internal risk
allocation of each vehicle.

example, the water tanker takes 99.9% of the allocated risk above
the fire, atd = 6 and7 (the middle graph in Figure 6).

The optimal action sequence is planned according to this risk
allocation; both vehicles dive before the fire, and climb as fast as
possible, after they pass the fire (the top graph in Figure 6). This
is because there is no benefit of conducting risky low-altitude flight
before and after the fire.

These results conform with intuition. The optimality of MIRA
is validated by the result that the difference in the optimized cost
between MIRA and the centralized algorithm is less than 0.01%,
which is accounted by numerical error.

5.2 Efficiency
In order to evaluate the efficiency of the MIRA algorithm, the

computation times of the following three algorithms are compared:
1) centralized optimization, 2) decentralized optimization with the
linear price update rule (classical tâtonnement), and 3) the pro-
posed algorithm, MIRA, which is a decentralized optimization with
Brent’s method.

Table 1 shows the result. The three algorithms are tested with
different problem sizes - two, four, and eight agents. Each algo-
rithm is run 10 times for each problem size with randomly gener-
ated constraints. The parameterc is set so that the price converges
in most problems. The average running time is shown in the ta-
ble. The computation of the distributed algorithms was conducted
parallelly. Communication delay is not included in the result.

The computation time of the centralized algorithm quickly grows
as the problem size increases. Decentralized optimization with a
linear price increment is even slower than the centralized algorithm,
although the growth rate of computation time is slower.

MIRA, the proposed algorithm, outperforms the other two for
all problem sizes. The advantage of MIRA becomes clearer as the
problem size increases.

A counterintuitive phenomenon observed in the result is that

Table 1: Comparison of the computation time of three opti-
mization algorithms. Values are the average of 10 runs with
randomly generated constraints.

Computation time [sec]

Number of
agents Centralized

Decentralized
(linear update) MIRA

2 13.9 80.6 6.4
4 63.8 540.5 18.1
8 318.5 797.8 37.5
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Figure 7: Convergence of different price update methods for
tâtonnement

the decentralized algorithms (MIRA and decentralized optimiza-
tion with linear increment) also slow down for large problems, al-
though not as significantly as the centralized algorithm. This is
mainly because the iterations of tâtonnement must be synchronized
among all agents. When each agent computes its demand for risk
by solving the non-linear optimization problem, the computation
time diverges from agent to agent, and from situation to situation.
In each iteration of tâtonnement, all agents must wait until the slow-
est agent finishes computing its demand. As a result, tâtonnement
process slows down for large problems, as the expected computa-
tion time of the slowest agent grows.

5.3 Convergence
Figure 7 shows the convergence of different price update algo-

rithms for tâtonnement on a problem with four agents. Three algo-
rithms are compared: Brent’s method, which is employed by our
proposed algorithm MIRA, the bisection method, which is used by
WALRAS [21], and the linear price update. The linear price update
is tested with three different settings of the parameterc in (20).

It is empirically shown from the result that increasingc makes
the linear price update method faster, but it diverges whenc is too
large. The upperbound ofc that guarantees the convergence is spe-
cific to a problem, and hard to obtain. Brent’s method achieves
the fastest converges among the three methods. Its convergence is
guaranteed without parameter tunings.

5.4 Used Parameters
The horizontal speed of the vehicles is 1 per time step. Hence,

d = t. The planning window is1 ≤ t ≤ 10. Other parameters are
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set as follows:

A =

[
1 1
0 1

]
,B =

[
0.5
1

]
,x0 =

[
0.5
0

]
,

umin = −0.2, umax = 0.2, gt(xt) = − [1 0]xt + lt

wt is sampled from zero-mean Gaussian distribution with variance

Σw =

[
0.001 0

0 0

]
.

lt is the ground level att. It is set at zero in the fire-fighter UAV
scenario, and randomly generated for the evaluation of computation
time. The cost functions are

JW = E [[100 0] (x6,W + x7,W )]

JR = E [[1 0] (x6,R + x7,R)]

in Section 5.1 (subscriptW andR indicate the water tanker and the
reconnaissance vehicle respectively), and

Ji = E

[[
1 0

]
(

10∑
t=1

xt,i)

]
in Section 5.2 and 5.3. Note that the expectation ofxt is a function
of u1:t−1. ThereforeJ is a function ofu1:T .

6. CONCLUSION
We have developed Market-based Iterative Risk Allocation (MIRA),

a multi-agent optimization algorithm that operates within user-specified
risk bounds. It was built upon the concept of risk allocation. The
key innovations presented in the paper include 1) extension of the
concept of risk allocation to multi-agent system, 2) decentralized
formulation of the multi-agent risk allocation optimization prob-
lem using market-based method, and 3) introduction of Brent’s
method to tâtonnement-based resource allocation algorithm. The
simulation result showed that MIRA can optimize the action se-
quence of the multi-agent system by optimally distributing risk. It
achieved substantial speed-up compared to centralized optimiza-
tion approach, particularly in a large problem.
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