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Abstract— This paper proposes a novel two-stage optimiza-
tion method for robust Model Predictive Control (RMPC)
with Gaussian disturbance and state estimation error. Since
the disturbance is unbounded, it is impossible to achieve zero
probability of violating constraints. Our goal is to optimize
the expected value of an objective function while limiting
the probability of violating any constraints over the planning
horizon (joint chance constraint). Prior arts include ellipsoidal
relaxation approach [1] and Particle Control [2], but the former
yields very conservative result and the latter is computationally
intensive. Our approach divide the optimization problem into
two stages; the upper-stage that optimizesisk allocation, and
the lower-stage that optimizes control sequence with tightened
constraints. The lower-stage is a regular convex optimization,
such as Linear Programming or Quadratic Programming. The
upper-stage is also convex, but the objective function is not
always differentiable. We developed a fast descent algorithm for
the upper-stage called Iterative Risk Allocation (IRA), which
yield much smaller suboptimality than ellipsoidal relaxation
method while achieving a substantial speedup compared to and
Particle Control.

I. INTRODUCTION AND PROBLEM STATEMENT

Model Predictive Control has drawn the attention of o,
researchers in a wide range of fields from chemical plantw
control and financial engineering to unmanned aerial vehicl k

kinds of chance constraintsndividual chance constraint
andjoint chance constraint[7]. Individual chance constraints
limit the probability of violating each single constraimthile
joint chance constraint limits the probability of violagimny
constraints in a problem. For example, individual chance
constraints in a racing car path planning problem mean the
limit of the probability of having the race car crash into
a wall in each time instant. On the other hand, a joint
chance constraint means the limit of the probability of kras
from start to goal. Although individual chance constraints
are easy to solve, a joint chance constraint is more natural
and intuitive for the system operator.

This paper sets its focus on RMPC with Gaussian dis-
turbances and @int chance constraint, which is formally
described in the following subsection.

A. Formal Problem Statement

Notations: The Following notations are used throughout
this paper.

xp : State vector at time k(A random variable).
Control input at time k.

Disturbance at time k(A random variable).

path planning. Robustness against uncertainty is an import £+ = FE[zs] : Nominal state at time .
issue when it is applied to real-world robotic systems, Wwhic o ug T
are subject to exogenous disturbance, actuation error, ang ._ U — X = .
state estimation error. B
TT ur—1 LT

There is a considerable body of work on robust Model
Predictive Control (RMPC), which assumes a bounded dis- ) . . .
turbance [3][4][5][6]. However, in many practical Cases,%mblem 1 RMPC with a joint chance constraint

disturbance is often stochastic and unbounded. This paper H;}n ElJ(X,U)] @)
foguse_s on RMPC unde_r Ge_tussian distribuFed Qisturbance, sit. Tiy1 = Azy, + Buy + wy, )
which is a good approximation of stochastic disturbances

Umin < Uk < Umax (3)
for many problems.

When the disturbance is unbounded, it is impossible to w ~ N(0,5,) 4)
guarantee that state constraints are satisfied since there i xo ~ N(Zp,Xz0) (5)
always a finite probability of having a disturbance that is T N 4
large enough to push the state out of the feasible region. Pr /\ /\ h}fa:,C < 94 >1-A (6)
Therefore, RMPC with unbounded disturbance constrains the k=0i=1

probability of violating constraints. This constraint is called \we assume a discrete-time linear time invariant (LTI

aschance constraint system with disturbance over a time horizéh Exogenous
RMPC problem usually has multiple state constraintsgisturbance and actuation error are representedvbynd

if it has NV constraints in a single time step afdtime state estimation error is represented dy. Both random

steps in its planning horizon, there afél" constraints in  yariables have a Gaussian distribution with varialigeand

a problem. Given multiple state constraints, there are two,_, respectively. The joint chance constraint is described

as (6), whereA is the upper bound of the probability of

violating any of N constraints during the planning horizon

0<k<T.
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B. Related Works and Proposed Approach review RMPC withindividual chance constraints and its so-

) ] ] lution, followed by an introduction of the two-stage optaai
Problem 1 is hard to solve since the computation of the leff,, approach and a proof of convexity of the upper-stage

hand side of (6) involves the multidimensional Gaussian irbptimization problem. Section IV and Section V describe
tegral. There are two algorithms that are previously prefos v aigorithms for the upper-stage; the subgradient method
for solving RMPC with gjoint chance constraint (Problem 5 the newly developed Iterative Risk Allocation algarith

1). One turns a stochastic RMPC problem to a deterministiyg performance of these algorithms are demonstrated and
problem using a very conservative ellipsoidal relaxatidh [ compared on simulations in Section VI.

Although this algorithm is computationally efficient, itssult

is highly suboptimal since the ellipsoidal relaxation proes Il. REVIEW OF RMPCWITH INDIVIDUAL CHANCE

a very conservative bound. The other is a sampling-based CONSTRAINTS

method called Particle Control [2]. It can directly optimiz  RMPC with individual chance constraints is stated as
the control sequence without using a conservative bountbllows.

such as ellipsoidal relaxation. However, it is slow since thProblem 2: RMPC with individual chance constraints

dimension of the decision vector grows proportionally te th min E[J(X,U)]

number of samples. Another important issue with Particle U

Control is that, although there is a guarantee that it cayager s.t. i1 = Az + Bug + wy
to the true optimum when the number of the samples goes Umin < W < Upmax

to infinity, there is no guarantee that the original chance wy, ~ N(0,%,)

constraint is satisfied with finite number of samples.

On the other hand, RMPC witmdividual chance con- , ) )
straints can be solved efficiently by constraint tightening Pr {hZka < gi] >1-4; (7)
[1][8]. Blackmore et. al. proposed an elegant method in (k=0---T,i=0---N)

[9] where they decomposed jaint chance constraint into o ]

individual chance constraints by using Boole’s inequality, Problem 2 can be solved efficiently by turning the stochas-
so that Problem 1 can be solved in the same manner §% Problem into a deterministic one.

RMPC with individual chance constraints. However, the First, the variance of;, is computed as follows, using the
method has non-negligible conservatism since it fixes eaMgfiance ofw andx.

xo ~ N (Zo,X50)

individual risk bound to an uniform value. Our new approach k-1
exploits this point to achieve further optimality by using a Yok = Z A", (AT + Sp 0. ®)
novel concept calledisk allocation [10]; we decompose a n=0

joint chance constraint efficiently by flexibly allocatekis Since the distribution ofX is known, the expectation of

bounds to individual chance constraints. The resulting-alg the objective function can be described as a function of the

rithm consists of two stages, with its upper-stage optingizi nominal statesX, which is a deterministic variable.

risk allocation, while the lower-stage solving RMPC with - <

individual chance constraints. The upper-stage optimization ElJ(X,U)] = J(X,U) ©)

problem is convex but not always differentiable. A standardithough the derivation off is not always trivial, it is rather

optimization algorithm for such a problem is the subgrasimple for some specific forms aof that are widely used

dient method, but the convergence is slow. To solve th@ practical cases. Wheif is linear in X, J(-) = J(-); see

upper-stage optimization problem efficiently, we devetbpe[8] for the case of a quadratic objective function; whérs

a descent algorithm called Iterative Risk Allocation (IRA) only the function ofU (independent ofX), J(-) = J(-).

IRA algorithm finds the descent direction by exploiting Finally, the individual chance constraints (7) are turned

the problem structure, instead of computing subgradignt. into deterministic constraints on the nominal state usimgyc

converges very quickly compared to Particle Control [2l anstraint tightening[1][8] as (13). Now Problem 2 is equivale

the resulting suboptimality is much smaller than ellipsbid to the following deterministic MPC problem (Problem 3).

approximation approach [1]. Problem 3: Deterministic MPC on nominal states (Lower-
The concept of the risk allocation and IRA algorithm isstage) . = 5

initially developed on discrete/continuous hybrid domaal H[l}—n J(X,U) (10)

presented in the authors’ previous work [10], but it lacked s.t. Zypi1 = AZy + Buy, (11)

the dlscus§|on about the optlmallty._ T_h|s_paper flrs_t_ proves Ui < Up < U (12)

the convexity of the upper-stage optimization by limititng t T ; P

focus on linear systems with Gaussian distribution. Then th hi; @k < gip — m;,(0)) (13)

suboptimality and the convergence speed of IRA algorithiyhere —m/ (-) is the inverse of cumulative distribution func-

is discussed by comparing with the subgradient algorithniion of one-dimensional Gaussian distribution with vacian

which is proved to converge to the global optimum Wherh;'ﬁszykhz_ Note the negative sign.

the optimization problem is convex.

The rest of paper is outlined as follows. We first briefly mi(08) = —\/2hiTS, phi erf71(26L — 1) (14)



where erf! is the inverse of the Gauss error function. Seavhere J*(§) is the optimum objective function of Problem
Fig. 1 for the graphical interpretation of constraint tghing 3 given.
(13).

J*(8) = min J(X,U) s.t. (11) — (13) (21)
IIl. TWO-STAGE OPTIMIZATION APPROACH U

A. Risk Allocation - L .
o . The original RMPC with joint chance constraint (Problem
Problem 1 can also be solved efficiently if it is reduced tq)) s solved by solving Problem 4igper-stage together

Problem 2 (or Problem 3, equivalently). The only differenc&yith problem 3 fower-stage. An important fact is that
between Problem 1 and Problem 2 is chance constraints (8)oplem 4 is convex under a practical assumption.

and (7). Observe that, using the union bound or Boole’s

inequality (Pr[AU B] < Pr[A] + Pr[B]), a set ofindividual Theorem 1: Problem 4 is a convex optimization if the
chance constraints (7), together with the following addisl  objective function of Problem 3/(X,U), is convex and
constraint (15), implies thgint chance constraint (6) [9]. A < 0.5.

T N The assumptiorA < 0.5 is reasonable because allowable
Z 252 <A (15)  probability of failure is much less than 50% in most cases.
k=0 i=1
For lat , 6ris defined as follows: Proof: Let ' and é® be feasible risk allocations that
or later convenience, a vectéris defined as follows; satisfy (18) - (20). Let(X*.U") and (X5, U3) be the
8= (03 62 - N1 oN)T. (16) optimum solution of Problem 3 fo§' and 4, respectively.

o . We first show the convexity of the feasible region &f

The key observation is that Problem 1 is reduced t§ s opvious that the region defined by (18) and (19) is
Problem 2, once the upper bounds of the probability ofonvex, so we will show that the region defined by (20)
violating individual constraints are fixed so that (15) is 5 z1s0 convex. SincéX?,U?) and (X3, U3) are feasible
satisfied. Then a question ariseésw to fixd? This problem  gg|utions for Problem 3NXT 4 (1— X35, AU + (1 —
can be viewed as a resource allocation problem; the goal /'\§U;) satisfies (11) and (12) for linearity for @l < \ < 1.
to find the optimal resource allocati@nthat maximizes the |1 5150 satisfies (13), since
expected utility while the total amount of resource is it

to A. Thus we calld a "risk allocatiorf. RT D& 1 + (1 — N)Zpo)
B. Two-stage Optimization and Convexity < gh — Amp(6.1) — (1= N)mj.(5; )
The previous observation naturally lead to a two-stage <g - Am;;(w,’l +(1-=X 2’2) (22)

optimization approach; the upper-stage optimizes rigica o
tion 6 while lower-stage optimize® given a risk allocation The second inequality holds because| (6;) is convex
4 (i.e. solving Problem 3). The upper-stage optimizatiomnder a conditiond0 < §; < 0.5, which is implied by

problem is formally stated as follows. the assumptiorA < 0.5 and (19). The convexity ofn}
Problem 4: Risk Allocation Optimization (Upper-stage) immediately follows from the fact that étf) is convex for
min J*(8) (17) = < 0. Therefore,(AX7 + (1 — \) X35, \UT + (1 — \U3)
0 is a feasible (but not necessarily optimal) solution of Reob

T N 3 for Ad; + (1 — \)d2. Thus, the feasible region of Problem
st Y Y G <A (18) 4 s convex.

=0t Next we prove the convexity of the objective function of

o >0 (19)  Problem 4. Since Problem 3 is feasible fad; + (1 —

6 € {6 |PU, X that satisfies (11) — (13)20) \)d, for all 0 < A < 1, there is an optimum solution
(X3, Uy) that gives a smaller or equal value of the objec-
tive function than(AX} + (1 — \) X35, \U7 + (1 — \)U3).

. Tightened|  Original Note thatJ (X%, U%) is equivalent to the objective function
i constraint constraint = . .

= < of Problem 4,J*(Ad; + (1 — A\)d2). Using convexity of

_ —

5 ; J(X,U),

; i

B > T*(A81 + (1 \)d2) = J(X5,U3)
g —my 8 . X <TOAXT 4 (1= NX35, U + (1 - \U3)
< A(X5,U7) + (1 - 0)J(X3,U3)

Fig. 1.  Graphical interpretation of constraint tightenifig). The solid =\ ’*(51) + (1 _ /\)j*(((;Q) (23)

curve represents the probability distribution bf” x;, when hilz;, =

g;, — m},(6;.). mj, is a safety margin imposed on the the center of o . _ )
distribution (i.e. nominal stat&), so that the probability of violating the Thus the objective function of Problem & () is convex.
ith constraint at timek is less than the upper bour&g. n



IV. SUBGRADIENT METHOD C. Subgradient Method

. Thg upper-stagg optimization (Proplem 4.) is convex, but \we ysed the projected subgradient method with a constant
its objective function is not always differentiable. Thebsu step sizex and a non-summable diminishing step sizea/i.
gradient method is a standard optimization algorithm fofe constant step size achieves faster convergence, hut onl
such problems. We first g*erlve the gradient and subgradiefife giminishing step size can guarantee the convergence to
of the objective function/*(§), which is necessary for the ihe optimum [11][12]. The gradient have to be bounded in

subgradient method.

A. Gradient
The derivation of the gradient of is not trivial. For a

feasible risk allocatiord at which the objective function is

differentiable, _ _ )
aJ* _ 0J* dmj,
oot o omi dési

(24)

order to guarantee the convergence, @g* — oo when

. k
;. — 0. Therefore we used the following constraints in place
of (19).

5>

(32)

wheree > 0 is a small number.
Since it is difficult to calculate the projection on the

The second differential is obtained in a closed form aspace defined by (18)-(20), we use the projection on the

follows; )
dmy, _ -1

doy, — pi(mi(0}))

(25)

wherepi (-) is the probability distribution function of zero-

mean Gaussian distribution with varianbg’ >, . h.. Note
the negative sign. B
. . . J* .
On the other hand, the first dlﬁerentlagﬁ_, is harder

to obtain. Even in the simplest case whefeis linear,

space defined by (18)-(19) instead. Therefore the subgradie
method may fail to find a feasible solution even though the
original problem is feasible.

V. ITERATIVE RISK ALLOCATION

As shown in the previous section, computation of gradient
and subgradient is not trivial even in the simplest case sher
J is linear, since it involvesu; by ny matrix inversion.

it requires the following complicated procedure includinqworeover, its convergence is often unstable for a large step

matrix inversion.

size since the subgradient method is not a descent algorithm

First, Problem 3 is reformulated in a simple form aYysing small step size leads to a slow convergence.

follows, by eliminating X using (11);

min ffu (26)
s.t. HU < g—m(d) 27)
Let U* be the optimized decision vectof; = f7U™* be

the optimized objective function, ang; be the number of
dimensions oU. If there are exactly,;; active independent
constraints in (27) folU*, J*(§) is differentiable. We then
divide (27) into active and inactive constraints;

HAU* :gAfmA(JA)
H[U* <gr —m1(51)

Active (28)
(29)
where H, is any by ny full rank matrix. The objective
function J*(9) is differentiated bym as follows;

dJ*

Inactive

gy = —fHA (30)
0"
pell 0. (31)

When there are more thamy active independent con-

straints,J*(8)
the subgradient.

B. Subgradient

Let ny be the number of active constraints. Liét, be a
ny by ny matrix constructed fronH 4 by removing(ny —
ny) rows from H,4. There are(j}g ) ways to construct’,.
Any “gradient” vector obtained from (30) usin’, in place

of H4 is included in the subgradient.

is not differentiable, hence we need to deriveconstraints Thereforg ™

We developed a descent algorithm called lIterative Risk
Allocation (IRA) to solve Problem 4. Instead of using
subgradient that is hard to compute, IRA exploits the faat th
J* is a decreasing function @f, to find a descent direction.
We first prove that/* is indeed a decreasing function.

A. Monotonicity ofJ*

Theorem 2: Monotonicity of J*

dJ*

do7

Vk,i

Proof: Let 6 and ' be risk assignments, ari(J)
andR(8") be the corresponding feasible region (oY, U)
in Problem 3 defined by (11)-(13). & < 4%’ for all (k, i),
thenR(8) C R(&’) sincem, is a decreasing function of .
ThereforeJ*(§) > J*(&') and thus Theorem 2 holds since
J*(8) is the minimum ofJ(8) in R(9). [ ]

When Problem 3 is a linear programming problem, the
optimal solution is always on the intersection of active
is a strictly decreasing function
of 6; when theith constraint at time: is active, as is stated
in the following lemma.

Lemma 1: Strict monotonicity of .J* when Problem 3 is
LP

dJ*

95 <0 if hi'z; = gt —mi(5L) and J is linear.
k




B. A Descent Algorithm active constraints. In Line 10, — cdf}, (g, — h} @}) is the
Given a feasible risk assignmend(,), it is able probability of violating a constraint atk, ¢), wherecdf) ()

to construct a sequence of feasible risk assignmeri® the cumulative distribution function of the Gaussian-dis

(8(0),8(1),8(2), - 8(my) SUCh thatT*(8(g)) > J*(8(1)) > tribuFion with varianceh’ 3, .hi, andz} is the optimized

-+ > J*(8(,y) by using Theorem 2 as follows. nominal state fod. o _ _
Assume thab,,, is a feasible risk allocation that satisfies !t follows from the discussion in the previous subsection

(18)-(20). We first construaf,,, by tightening the inactive that the_ IRA algorithm generates a sequence of feasible

constraints. For alli, k) whereith constraint at time; is 'Sk assignmentdq), d(1), - -- 8») that monotonically de-

active, set}, = dj,,). For all (i, k) whereith constraint Creases the objective functioft (). .

at time is inactive. choossi’ . < & . so that In the next section the perfprmance of IRA algorithm
' k(n) = "k(n) is compared with the subgradient method as well as two

iT ~ i igit i i(si ;

WS} < g~ i) < ok~ mi(fl,). (@) Prorarts he elipsoidal relaxation approach and thétr

wherezj is the optimal nominal state @t givend,,. The

constraint (33) ensures that the optimal solution oy,

is feasible for(s'(n It follows from 51’;/@) < 51@(71 that The performance comparison of five algorithms are com-

R(8") C R(8) whereR(3) is a feasible region ofX,U) parefj on simulation._The fjve algorithms are;

for &. Therefore the optimal solution faf, is also the -IRA: Two-stage optimization with IRA for the upper-stage

optimal solution foré’(n), and thus.J*(8(,)) = j*((;zn)). -SM(d): Two-stage optimization W!th the s_ubgradlent

Finally, &, is feasible, because; (i) (18) is satisfied sincégel’\;r(‘g)d ;Orotr:agzpoeprt-'srrt?g:t'((ﬂmI'?rzstwggs S;Z?azli;)t ethod
T N T N e g - : Two- imization wi u [

2 k=0 2i=1 5k<n) < Xk=o %izl (Sk(n)’ (i) (19) fOHOY_\_’S for the upper-stage (constant step size)

from (33) and the fact that:;(§) — co whend — 0; (iii) -ER: Ellipsoidal relaxation approach [1]

(20) is satisfied since all tightened constraints are iecti . particle Control 2]

for ‘y(n)' The subgradient method is not a descent algorithm and hence

/ .
Next we constructd(, 1) from 4, by loosening the he stop condition is hard to define; therefore we computed
active constraints. For alli, k) whereith constraint at time 5 fixed number (300) of iterations.

VI. SIMULATION

k is inactive, seté}c(nﬂ) = 57&@)- qu all (z,k). Iwhere ith Following parameters are used;

constraint at timet is active, choosé; ,, ;) > d;,,, so that T

(18) is satisfied. It is straightforward to show th&t, ) J(X,U) = Z lupl, A =005 T=10, N=2
is feasible. Theorem 2 implies thalt (6(,,)) > J*(8(n+1))- ’ — ’ ’

Therefore, 11 0
7 (8! 7x A<o 1)’ 3(0033)
J*(0(ny) = J*(0(n)) = J*(8(nt1))- (34) :

_ o 1T o7 _
By constructing the sequend@ o, d(1) -+ d(,) recur- tmax = 0.2, Umin = —0.2, " = (1,0), h” = (=1,0)

sively in this manner, the objective functioft monotoni-
cally decreases. Whehis linear, a stronger bound (35) can

be obtained by using Lemma 1; Algorithm 1 Iterative Risk Allocation
j*(é(n)) = j*(d'(n)) > j*((s(n+1)). (35) 1 V(k,’i) 6;@ — A/(T : N)

. , _ _2: while |J* — Jx | <edo
Observe that if all constraints are active or all constmint 3 T

are inactive ford,,, it is impossible to construcd,,, 1 4 Szgli/ve Problem 3 withs

using the procedure described in the previous subsectionﬁ: Nyetive — nUMber of steps where constraint is active
Actually having all constrainténactive is a sufficient con- N fi — 00 Nyuyspe = T - N then
actiwve — actwve —

dition for the optimality of Problem 4. On the other hand, . break:

having all constraintgctiveis not a sufficient condition. 8: end if ’

C. lterative Risk Allocation Algorithm 9: for all (k,%) such thatith constraint atth time step
is inactivedo

The discussions in the previous subsections lead to a 5l adi 4 (1 - ){1 _ dfi( i —hiT**)}
simple yet very powerful descent algorithm called Itemativ kT X0k @ CAk I, kT
Risk Allocation (IRA), which is described in Algorithm 1. It 11:  end for T N o
is initialized by a uniform risk allocation (Line 1). The lew % Oresidual < A — ZkzO_Zizl O ,
stage optimization problem is solved in Line 4 to compute13: for all (k,) such thatith constraint atth time step

the optimal solution for current risk allocatiod. Line 6 . IS ?icnvego P
terminates the algorithm when all constraints are active oJr4: dka i T Oresiduat /Nactive
inactive. Line 10 tightens inactive constraints accordiag 1>  ©€nd for

16: end while

(33) with a parametet < o < 1, while Line 14 loosens




0.01 0.001 0
x():( 0 )7 ZI,OZZU}:< 0 O) 150

The boundsg; and g7, are randomly generated. We used 100

a = 0.7-0.98" (with n being iteration index) for IRA and 50

a = 0.001 for the subgradient methods. These are the largest 0

step sizes that can achieve stable convergence. We =set -0.08 008~ -004  -0.02 0
10_8 fOI’ (32) Jira" mm(‘/SMHI)’JS.\‘[(c))

The performance of the five algorithms is compared in

Table I. The numbers in the table are the average of 2F79. 3. Histogram of the difference in the objective funatizalue of IRA
. _._ and both subgradient methods.
randomly generated problems. All three two-stage optimiza

tion algorithms with risk allocation (IRA, SM(d), and SMJc)

has much less suboptimality than the ellipsoidal relaxatioyq 4tive Risk Allocation, which showed fast convergenud a
approach while achieving a significant speed up comparedg suboptimality in simulations.
to Particle Control.
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1 2 3 4 5 6 Algorithm IRA SM (d) | SM (c) ER PC
Time [sec] J* 0.0906 | 0.0978 | 0.0957 | 0.3502 | 0.0959
Comp. time [sec]| 0.33 26.4 30.7 0.05 212.2

Prob. of failure | 0.0378 | 0.0183 | 0.306 | < 10~° | 0.0281

Fig. 2. Convergence of IRA and the subgradient methods



