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Abstract— This paper proposes a novel two-stage optimiza-
tion method for robust Model Predictive Control (RMPC)
with Gaussian disturbance and state estimation error. Since
the disturbance is unbounded, it is impossible to achieve zero
probability of violating constraints. Our goal is to optimize
the expected value of an objective function while limiting
the probability of violating any constraints over the planning
horizon (joint chance constraint). Prior arts include ellipsoidal
relaxation approach [1] and Particle Control [2], but the former
yields very conservative result and the latter is computationally
intensive. Our approach divide the optimization problem into
two stages; the upper-stage that optimizesrisk allocation, and
the lower-stage that optimizes control sequence with tightened
constraints. The lower-stage is a regular convex optimization,
such as Linear Programming or Quadratic Programming. The
upper-stage is also convex, but the objective function is not
always differentiable. We developed a fast descent algorithm for
the upper-stage called Iterative Risk Allocation (IRA), which
yield much smaller suboptimality than ellipsoidal relaxation
method while achieving a substantial speedup compared to and
Particle Control.

I. I NTRODUCTION AND PROBLEM STATEMENT

Model Predictive Control has drawn the attention of
researchers in a wide range of fields from chemical plant
control and financial engineering to unmanned aerial vehicle
path planning. Robustness against uncertainty is an important
issue when it is applied to real-world robotic systems, which
are subject to exogenous disturbance, actuation error, and
state estimation error.

There is a considerable body of work on robust Model
Predictive Control (RMPC), which assumes a bounded dis-
turbance [3][4][5][6]. However, in many practical cases,
disturbance is often stochastic and unbounded. This paper
focuses on RMPC under Gaussian distributed disturbance,
which is a good approximation of stochastic disturbances
for many problems.

When the disturbance is unbounded, it is impossible to
guarantee that state constraints are satisfied since there is
always a finite probability of having a disturbance that is
large enough to push the state out of the feasible region.
Therefore, RMPC with unbounded disturbance constrains the
probability of violating constraints. This constraint is called
aschance constraint.

RMPC problem usually has multiple state constraints;
if it has N constraints in a single time step andT time
steps in its planning horizon, there areNT constraints in
a problem. Given multiple state constraints, there are two
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kinds of chance constraints;individual chance constraint
and joint chance constraint[7]. Individual chance constraints
limit the probability of violating each single constraint,while
joint chance constraint limits the probability of violating any
constraints in a problem. For example, individual chance
constraints in a racing car path planning problem mean the
limit of the probability of having the race car crash into
a wall in each time instant. On the other hand, a joint
chance constraint means the limit of the probability of crash
from start to goal. Although individual chance constraints
are easy to solve, a joint chance constraint is more natural
and intuitive for the system operator.

This paper sets its focus on RMPC with Gaussian dis-
turbances and ajoint chance constraint, which is formally
described in the following subsection.

A. Formal Problem Statement

Notations: The Following notations are used throughout
this paper.

xk : State vector at time k(A random variable).

uk : Control input at time k.

wk : Disturbance at time k(A random variable).

x̄k := E[xk] : Nominal state at time k.

X :=







x0

...
xT






U :=







u0

...
uT−1






X̄ :=







x̄0

...
x̄T







Problem 1: RMPC with a joint chance constraint
min
U

E[J(X,U)] (1)

s.t. xk+1 = Axk + Buk + wk (2)

umin ≤ uk ≤ umax (3)

wk ∼ N (0,Σw) (4)

x0 ∼ N (x̄0,Σx,0) (5)

Pr

[

T
∧

k=0

N
∧

i=1

hiT
k xk ≤ gi

k

]

≥ 1−∆ (6)

We assume a discrete-time linear time invariant (LTI)
system with disturbance over a time horizonT . Exogenous
disturbance and actuation error are represented byw, and
state estimation error is represented byx0. Both random
variables have a Gaussian distribution with varianceΣw and
Σx,0, respectively. The joint chance constraint is described
as (6), where∆ is the upper bound of the probability of
violating any ofN constraints during the planning horizon
0 ≤ k ≤ T .



B. Related Works and Proposed Approach

Problem 1 is hard to solve since the computation of the left
hand side of (6) involves the multidimensional Gaussian in-
tegral. There are two algorithms that are previously proposed
for solving RMPC with ajoint chance constraint (Problem
1). One turns a stochastic RMPC problem to a deterministic
problem using a very conservative ellipsoidal relaxation [1].
Although this algorithm is computationally efficient, its result
is highly suboptimal since the ellipsoidal relaxation produces
a very conservative bound. The other is a sampling-based
method called Particle Control [2]. It can directly optimize
the control sequence without using a conservative bound,
such as ellipsoidal relaxation. However, it is slow since the
dimension of the decision vector grows proportionally to the
number of samples. Another important issue with Particle
Control is that, although there is a guarantee that it converges
to the true optimum when the number of the samples goes
to infinity, there is no guarantee that the original chance
constraint is satisfied with finite number of samples.

On the other hand, RMPC withindividual chance con-
straints can be solved efficiently by constraint tightening
[1][8]. Blackmore et. al. proposed an elegant method in
[9] where they decomposed ajoint chance constraint into
individual chance constraints by using Boole’s inequality,
so that Problem 1 can be solved in the same manner as
RMPC with individual chance constraints. However, the
method has non-negligible conservatism since it fixes each
individual risk bound to an uniform value. Our new approach
exploits this point to achieve further optimality by using a
novel concept calledrisk allocation [10]; we decompose a
joint chance constraint efficiently by flexibly allocate risk
bounds to individual chance constraints. The resulting algo-
rithm consists of two stages, with its upper-stage optimizing
risk allocation, while the lower-stage solving RMPC with
individual chance constraints. The upper-stage optimization
problem is convex but not always differentiable. A standard
optimization algorithm for such a problem is the subgra-
dient method, but the convergence is slow. To solve the
upper-stage optimization problem efficiently, we developed
a descent algorithm called Iterative Risk Allocation (IRA).
IRA algorithm finds the descent direction by exploiting
the problem structure, instead of computing subgradient. It
converges very quickly compared to Particle Control [2], and
the resulting suboptimality is much smaller than ellipsoidal
approximation approach [1].

The concept of the risk allocation and IRA algorithm is
initially developed on discrete/continuous hybrid domainand
presented in the authors’ previous work [10], but it lacked
the discussion about the optimality. This paper first proves
the convexity of the upper-stage optimization by limiting the
focus on linear systems with Gaussian distribution. Then the
suboptimality and the convergence speed of IRA algorithm
is discussed by comparing with the subgradient algorithm,
which is proved to converge to the global optimum when
the optimization problem is convex.

The rest of paper is outlined as follows. We first briefly

review RMPC withindividual chance constraints and its so-
lution, followed by an introduction of the two-stage optimiza-
tion approach and a proof of convexity of the upper-stage
optimization problem. Section IV and Section V describe
two algorithms for the upper-stage; the subgradient method
and the newly developed Iterative Risk Allocation algorithm.
The performance of these algorithms are demonstrated and
compared on simulations in Section VI.

II. REVIEW OF RMPC WITH INDIVIDUAL CHANCE

CONSTRAINTS

RMPC with individual chance constraints is stated as
follows.
Problem 2: RMPC with individual chance constraints

min
U

E[J(X,U)]

s.t. xk+1 = Axk + Buk + wk

umin ≤ uk ≤ umax

wk ∼ N (0,Σw)

x0 ∼ N (x̄0,Σx,0)

Pr
[

hiT
k xk ≤ gi

k

]

≥ 1− δi
k (7)

(k = 0 · · ·T, i = 0 · · ·N)

Problem 2 can be solved efficiently by turning the stochas-
tic problem into a deterministic one.

First, the variance ofxk is computed as follows, using the
variance ofw andx0.

Σx,k =

k−1
∑

n=0

AnΣw(An)T + Σx,0. (8)

Since the distribution ofX is known, the expectation of
the objective function can be described as a function of the
nominal statesX̄, which is a deterministic variable.

E[J(X,U)] = J̄(X̄,U) (9)

Although the derivation of̄J is not always trivial, it is rather
simple for some specific forms ofJ that are widely used
in practical cases. WhenJ is linear inX, J̄(·) = J(·); see
[8] for the case of a quadratic objective function; whenJ is
only the function ofU (independent ofX), J̄(·) = J(·).

Finally, the individual chance constraints (7) are turned
into deterministic constraints on the nominal state using con-
straint tightening[1][8] as (13). Now Problem 2 is equivalent
to the following deterministic MPC problem (Problem 3).
Problem 3: Deterministic MPC on nominal states (Lower-
stage)

min
U

J̄(X̄,U) (10)

s.t. x̄k+1 = Ax̄k + Buk (11)

umin ≤ uk ≤ umax (12)

hiT
k x̄k ≤ gi

k −mi
k(δi

k) (13)

where−mi
k(·) is the inverse of cumulative distribution func-

tion of one-dimensional Gaussian distribution with variance
hiT

k Σx,khi
k. Note the negative sign.

mi
k(δi

k) = −
√

2hiT
k Σx,khi

k erf−1(2δi
k − 1) (14)



where erf−1 is the inverse of the Gauss error function. See
Fig. 1 for the graphical interpretation of constraint tightening
(13).

III. T WO-STAGE OPTIMIZATION APPROACH

A. Risk Allocation

Problem 1 can also be solved efficiently if it is reduced to
Problem 2 (or Problem 3, equivalently). The only difference
between Problem 1 and Problem 2 is chance constraints (6)
and (7). Observe that, using the union bound or Boole’s
inequality (Pr[A∪B] ≤ Pr[A] +Pr[B]), a set ofindividual
chance constraints (7), together with the following additional
constraint (15), implies thejoint chance constraint (6) [9].

T
∑

k=0

N
∑

i=1

δi
k ≤ ∆ (15)

For later convenience, a vectorδ is defined as follows;

δ = (δ1
0 δ2

0 · · · δN−1
T δN

T )T . (16)

The key observation is that Problem 1 is reduced to
Problem 2, once the upper bounds of the probability of
violating individual constraintsδ are fixed so that (15) is
satisfied. Then a question arises;how to fixδ? This problem
can be viewed as a resource allocation problem; the goal is
to find the optimal resource allocationδ that maximizes the
expected utility while the total amount of resource is limited
to ∆. Thus we callδ a ”risk allocation”.

B. Two-stage Optimization and Convexity

The previous observation naturally lead to a two-stage
optimization approach; the upper-stage optimizes risk alloca-
tion δ while lower-stage optimizesU given a risk allocation
δ (i.e. solving Problem 3). The upper-stage optimization
problem is formally stated as follows.
Problem 4: Risk Allocation Optimization (Upper-stage)

min
δ

J̄⋆(δ) (17)

s.t.

T
∑

k=0

N
∑

i=1

δi
k ≤ ∆ (18)

δi
k ≥ 0 (19)

δ ∈ {δ |∃U , X̄ that satisfies (11)− (13)}(20)
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Fig. 1. Graphical interpretation of constraint tightening(13). The solid
curve represents the probability distribution ofh

iT

k
xk when h

iT

k
x̄k =

gi

k
− mi

k
(δi

k
). mi

k
is a safety margin imposed on the the center of

distribution (i.e. nominal statēx), so that the probability of violating the
ith constraint at timek is less than the upper boundδi

k
.

where J̄⋆(δ) is the optimum objective function of Problem
3 givenδ.

J̄⋆(δ) = min
U

J̄(X̄,U) s.t. (11)− (13) (21)

The original RMPC with joint chance constraint (Problem
1) is solved by solving Problem 4 (upper-stage) together
with Problem 3 (lower-stage). An important fact is that
Problem 4 is convex under a practical assumption.

Theorem 1: Problem 4 is a convex optimization if the
objective function of Problem 3,̄J(X,U), is convex and
∆ ≤ 0.5.

The assumption∆ ≤ 0.5 is reasonable because allowable
probability of failure is much less than 50% in most cases.

Proof: Let δ1 and δ2 be feasible risk allocations that
satisfy (18) - (20). Let(X⋆

1,U
⋆
1) and (X⋆

2,U
⋆
2) be the

optimum solution of Problem 3 forδ1 andδ2, respectively.
We first show the convexity of the feasible region ofδ.

It is obvious that the region defined by (18) and (19) is
convex, so we will show that the region defined by (20)
is also convex. Since(X⋆

1,U
⋆
1) and (X⋆

2,U
⋆
2) are feasible

solutions for Problem 3, (λX⋆
1 + (1 − λ)X⋆

2, λU⋆
1 + (1 −

λ)U⋆
2) satisfies (11) and (12) for linearity for all0 ≤ λ ≤ 1.

It also satisfies (13), since

hiT {λx̄k,1 + (1− λ)x̄k,2}
≤ gi

k − λmi
k(δi

k,1)− (1− λ)mi
k(δi

k,2)

≤ gi
k − λmi

k(λδi
k,1 + (1− λ)δi

k,2) (22)

The second inequality holds becausemi
k(δi

k) is convex
under a condition0 ≤ δi

k ≤ 0.5, which is implied by
the assumption∆ ≤ 0.5 and (19). The convexity ofmi

k

immediately follows from the fact that erf(x) is convex for
x ≤ 0. Therefore,(λX⋆

1 + (1− λ)X⋆
2, λU⋆

1 + (1− λ)U⋆
2)

is a feasible (but not necessarily optimal) solution of Problem
3 for λδ1 + (1− λ)δ2. Thus, the feasible region of Problem
4 is convex.

Next we prove the convexity of the objective function of
Problem 4. Since Problem 3 is feasible forλδ1 + (1 −
λ)δ2 for all 0 ≤ λ ≤ 1, there is an optimum solution
(X⋆

λ,U⋆
λ) that gives a smaller or equal value of the objec-

tive function than(λX⋆
1 + (1− λ)X⋆

2, λU⋆
1 + (1− λ)U⋆

2).
Note thatJ̄(X⋆

λ,U⋆
λ) is equivalent to the objective function

of Problem 4,J̄⋆(λδ1 + (1 − λ)δ2). Using convexity of
J̄(X,U),

J̄⋆(λδ1 + (1− λ)δ2) = J̄(X⋆
λ,U⋆

λ)

≤ J̄ (λX⋆
1 + (1− λ)X⋆

2, λU⋆
1 + (1− λ)U⋆

2)

≤ λJ̄(X⋆
1,U

⋆
1) + (1− λ)J̄(X⋆

2,U
⋆
2)

= λJ̄⋆(δ1) + (1− λ)J̄⋆((δ2) (23)

Thus the objective function of Problem 4̄J⋆(δ) is convex.



IV. SUBGRADIENT METHOD

The upper-stage optimization (Problem 4) is convex, but
its objective function is not always differentiable. The sub-
gradient method is a standard optimization algorithm for
such problems. We first derive the gradient and subgradient
of the objective function,̄J⋆(δ), which is necessary for the
subgradient method.

A. Gradient

The derivation of the gradient of̄J is not trivial. For a
feasible risk allocationδ at which the objective function is
differentiable,

∂J̄⋆

∂δi
k

=
∂J̄⋆

∂mi
k

dmi
k

dδi
k

(24)

The second differential is obtained in a closed form as
follows;

dmi
k

dδi
k

=
−1

pi
k(mi

k(δi
k))

(25)

wherepi
k(·) is the probability distribution function of zero-

mean Gaussian distribution with variancehiT
k Σx,khi

k. Note
the negative sign.

On the other hand, the first differential,∂J̄⋆

∂mi

k

, is harder

to obtain. Even in the simplest case wherēJ is linear,
it requires the following complicated procedure including
matrix inversion.

First, Problem 3 is reformulated in a simple form as
follows, by eliminatingX̄ using (11);

min
U

fT U (26)

s.t. HU ≤ g −m(δ) (27)

Let U⋆ be the optimized decision vector,̄J⋆ = fT U⋆ be
the optimized objective function, andnU be the number of
dimensions ofU . If there are exactlynU active independent
constraints in (27) forU⋆, J̄⋆(δ) is differentiable. We then
divide (27) into active and inactive constraints;

Active : HAU⋆ = gA −mA(δA) (28)

Inactive : HIU
⋆ < gI −mI(δI) (29)

where HA is a nU by nU full rank matrix. The objective
function J̄⋆(δ) is differentiated bym as follows;

∂J̄⋆

∂mA

= −fT H−1
A (30)

∂J̄⋆

∂mI

= 0. (31)

When there are more thannU active independent con-
straints,J̄⋆(δ) is not differentiable, hence we need to derive
the subgradient.

B. Subgradient

Let nH be the number of active constraints. LetH ′

A be a
nU by nU matrix constructed fromHA by removing(nH −
nU ) rows fromHA. There are

(

nH

nU

)

ways to constructH ′

A.
Any “gradient” vector obtained from (30) usingH ′

A in place
of HA is included in the subgradient.

C. Subgradient Method

We used the projected subgradient method with a constant
step sizea and a non-summable diminishing step sizea/

√
i.

The constant step size achieves faster convergence, but only
the diminishing step size can guarantee the convergence to
the optimum [11][12]. The gradient have to be bounded in
order to guarantee the convergence, but∂J̄⋆

∂δi

k

→ ∞ when

δi
k → 0. Therefore we used the following constraints in place

of (19).

δi
k ≥ ǫ (32)

whereǫ > 0 is a small number.
Since it is difficult to calculate the projection on the

space defined by (18)-(20), we use the projection on the
space defined by (18)-(19) instead. Therefore the subgradient
method may fail to find a feasible solution even though the
original problem is feasible.

V. I TERATIVE RISK ALLOCATION

As shown in the previous section, computation of gradient
and subgradient is not trivial even in the simplest case where
J̄ is linear, since it involvesnU by nU matrix inversion.
Moreover, its convergence is often unstable for a large step
size since the subgradient method is not a descent algorithm.
Using small step size leads to a slow convergence.

We developed a descent algorithm called Iterative Risk
Allocation (IRA) to solve Problem 4. Instead of using
subgradient that is hard to compute, IRA exploits the fact that
J̄⋆ is a decreasing function ofδi

k to find a descent direction.
We first prove thatJ̄⋆ is indeed a decreasing function.

A. Monotonicity ofJ̄⋆

Theorem 2: Monotonicity of J̄⋆

∀k, i
∂J̄⋆

∂δi
k

≤ 0

Proof: Let δ and δ′ be risk assignments, andR(δ)
andR(δ′) be the corresponding feasible region of(X̄,U)
in Problem 3 defined by (11)-(13). Ifδi

k ≤ δi
k

′
for all (k, i),

thenR(δ) ⊆ R(δ′) sincemi
k is a decreasing function ofδi

k.
ThereforeJ̄⋆(δ) ≥ J̄⋆(δ′) and thus Theorem 2 holds since
J̄⋆(δ) is the minimum ofJ̄(δ) in R(δ).

When Problem 3 is a linear programming problem, the
optimal solution is always on the intersection of active
constraints. ThereforēJ⋆ is a strictly decreasing function
of δi

k when theith constraint at timek is active, as is stated
in the following lemma.

Lemma 1: Strict monotonicity of J̄⋆ when Problem 3 is
LP

∂J̄⋆

∂δi
k

< 0 if hiT
k x̄⋆

k = gi
k −mi

k(δi
k) and J̄ is linear.



B. A Descent Algorithm

Given a feasible risk assignmentδ(0), it is able
to construct a sequence of feasible risk assignments
(δ(0), δ(1), δ(2), · · · δ(n)) such thatJ̄⋆(δ(0)) ≥ J̄⋆(δ(1)) ≥
· · · ≥ J̄⋆(δ(n)) by using Theorem 2 as follows.

Assume thatδ(n) is a feasible risk allocation that satisfies
(18)-(20). We first constructδ′

(n) by tightening the inactive
constraints. For all(i, k) where ith constraint at timek is
active, setδi

k

′

(n) = δi
k(n). For all (i, k) whereith constraint

at timek is inactive, chooseδi
k

′

(n) < δi
k(n) so that

hiT
k x̄⋆

k < gi
k −mi

k(δi
k

′

(n)) < gi
k −mi

k(δi
k(n)). (33)

wherex̄⋆
k is the optimal nominal state atk given δ(n). The

constraint (33) ensures that the optimal solution forδ(n)

is feasible for δ′

(n). It follows from δi
k

′

(n) < δi
k(n) that

R(δ′) ⊆ R(δ) whereR(δ) is a feasible region of(X̄,U)
for δ. Therefore the optimal solution forδ(n) is also the
optimal solution forδ′

(n), and thusJ̄⋆(δ(n)) = J̄⋆(δ′

(n)).
Finally, δ′

(n) is feasible, because; (i) (18) is satisfied since
∑T

k=0

∑N

i=1 δi
k

′

(n) <
∑T

k=0

∑N

i=1 δi
k(n); (ii) (19) follows

from (33) and the fact thatmk
i (δ) → ∞ when δ → 0; (iii)

(20) is satisfied since all tightened constraints are inactive
for δ′

(n).
Next we constructδ(n+1) from δ′

(n) by loosening the
active constraints. For all(i, k) whereith constraint at time
k is inactive, setδi

k(n+1) = δi
k

′

(n). For all (i, k) where ith

constraint at timek is active, chooseδi
k(n+1) > δi

k

′

(n) so that
(18) is satisfied. It is straightforward to show thatδ(n+1)

is feasible. Theorem 2 implies that̄J⋆(δ′

(n)) ≥ J̄⋆(δ(n+1)).
Therefore,

J̄⋆(δ(n)) = J̄⋆(δ′

(n)) ≥ J̄⋆(δ(n+1)). (34)

By constructing the sequence(δ(0), δ(1) · · · δ(n)) recur-
sively in this manner, the objective function̄J⋆ monotoni-
cally decreases. When̄J is linear, a stronger bound (35) can
be obtained by using Lemma 1;

J̄⋆(δ(n)) = J̄⋆(δ′

(n)) > J̄⋆(δ(n+1)). (35)

Observe that if all constraints are active or all constraints
are inactive forδ(n), it is impossible to constructδ(n+1)

using the procedure described in the previous subsection.
Actually having all constraintsinactive is a sufficient con-
dition for the optimality of Problem 4. On the other hand,
having all constraintsactive is not a sufficient condition.

C. Iterative Risk Allocation Algorithm

The discussions in the previous subsections lead to a
simple yet very powerful descent algorithm called Iterative
Risk Allocation (IRA), which is described in Algorithm 1. It
is initialized by a uniform risk allocation (Line 1). The lower-
stage optimization problem is solved in Line 4 to compute
the optimal solution for current risk allocationδ. Line 6
terminates the algorithm when all constraints are active or
inactive. Line 10 tightens inactive constraints accordingto
(33) with a parameter0 < α < 1, while Line 14 loosens

active constraints. In Line 10,1− cdfi
k(gi

k − hiT
k x̄⋆

k) is the
probability of violating a constraint at(k, i), wherecdfi

k(·)
is the cumulative distribution function of the Gaussian dis-
tribution with variancehiT

k Σx,khi
k, andx̄⋆

k is the optimized
nominal state forδ.

It follows from the discussion in the previous subsection
that the IRA algorithm generates a sequence of feasible
risk assignments(δ(0), δ(1), · · · δ(n)) that monotonically de-
creases the objective function̄J⋆(δ).

In the next section the performance of IRA algorithm
is compared with the subgradient method as well as two
prior arts; the ellipsoidal relaxation approach and the Particle
Control, using simulations.

VI. SIMULATION

The performance comparison of five algorithms are com-
pared on simulation. The five algorithms are;
-IRA: Two-stage optimization with IRA for the upper-stage
-SM(d): Two-stage optimization with the subgradient
method for the upper-stage (diminishing step size)
-SM(c): Two-stage optimization with the subgradient method
for the upper-stage (constant step size)
-ER: Ellipsoidal relaxation approach [1]
-PC: Particle Control [2]
The subgradient method is not a descent algorithm and hence
the stop condition is hard to define; therefore we computed
a fixed number (300) of iterations.

Following parameters are used;

J(X,U) =
T

∑

k=1

|uk|, ∆ = 0.05, T = 10, N = 2

A =

(

1 1
0 1

)

, B =

(

0
0.033

)

umax = 0.2, umin = −0.2,h1T
k = (1, 0),h2T

k = (−1, 0)

Algorithm 1 Iterative Risk Allocation

1: ∀(k, i) δi
k ← ∆/(T ·N)

2: while |J̄⋆ − J̄⋆
prev| < ǫ do

3: J̄⋆
prev ← J̄⋆

4: Solve Problem 3 withδ.
5: Nactive ← number of steps where constraint is active
6: if Nactive = 0 or Nactive = T ·N then
7: break;
8: end if
9: for all (k, i) such thatith constraint atkth time step

is inactivedo
10: δi

k ← αδi
k + (1− α)

{

1− cdfi
k(gi

k − hiT
k x̄⋆

k)
}

11: end for
12: δresidual ← ∆−∑T

k=0

∑N

i=1 δi
k

13: for all (k, i) such thatith constraint atkth time step
is activedo

14: δi
k ← δi

k + δresidual/Nactive

15: end for
16: end while



x0 =

(

0.01
0

)

, Σx,0 = Σw =

(

0.001 0
0 0

)

The bounds,g1
k and g2

k, are randomly generated. We used
α = 0.7 · 0.98n (with n being iteration index) for IRA and
a = 0.001 for the subgradient methods. These are the largest
step sizes that can achieve stable convergence. We setǫ =
10−8 for (32).

The performance of the five algorithms is compared in
Table I. The numbers in the table are the average of 237
randomly generated problems. All three two-stage optimiza-
tion algorithms with risk allocation (IRA, SM(d), and SM(c))
has much less suboptimality than the ellipsoidal relaxation
approach while achieving a significant speed up compared
to Particle Control.

The probability of failure in Table I is defined as follows;

Probability of failure := 1− Pr

[

T
∧

k=0

N
∧

i=1

hiT
k xk ≤ gi

k

]

We used Monte Carlo simulation with 10,000 samples to
evaluate the probability of failure. Difference between the
probability of failure and∆ = 0.05 is the measure of con-
servatism. The ellipsoidal relaxation has strong conservatism,
which leads to a large suboptimality.

Figure 2 compares the convergence speed of IRA and the
subgradient methods on a typical problem. The convergence
of IRA is significantly faster than the subgradient methods.
The weakness of IRA is the lack of the theoretical guarantee
of convergence to the optimal. However, the empirical result
shows that the suboptimality is considerably small. Table I
shows that IRA yields even better solution than the subgra-
dient methods after 300 iterations on average. Figure 3 is
the histogram ofJ̄⋆

IRA−min(J̄⋆
SM(d), J̄

⋆
SM(c)). The objective

function value of IRA is smaller or equal to the objective
function value of both subgradient methods in most cases;
IRA yields worse solution in several cases, but the difference
is less than 0.01 in those cases; on the other hand, the
subgradient methods may be worse than IRA by up to 0.08.

VII. C ONCLUSION

A novel two-stage optimization method for robust Model
Predictive Control (RMPC) with Gaussian disturbance is pre-
sented. We proved that its upper-stage is a convex optimiza-
tion, but the objective function is not always differentiable.
We developed a descent algorithm for the upper-stage called
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Fig. 2. Convergence of IRA and the subgradient methods
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Fig. 3. Histogram of the difference in the objective function value of IRA
and both subgradient methods.

Iterative Risk Allocation, which showed fast convergence and
a small suboptimality in simulations.
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TABLE I

PERFORMANCE OF TWO-STAGE OPTIMIZATION METHODS WITH RISK

ALLOCATION AND PRIOR ARTS; VALUES ARE THE AVERAGE OF237

RANDOMLY GENERATED PROBLEMS.

Algorithm IRA SM (d) SM (c) ER PC
J̄⋆ 0.0906 0.0978 0.0957 0.3502 0.0959

Comp. time [sec] 0.33 26.4 30.7 0.05 212.2
Prob. of failure 0.0378 0.0183 0.306 < 10−5 0.0281


