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Research Objective

Physically grounded AI systems consisting of multiple mo-
bile agents need to conduct complicated tasks coopera-
tively in dynamic, uncertain environment. Two important
capabilities for such systems are robust kinodynamic path
planning and distributed plan execution on a hybrid dis-
crete/continuous plant. For example, a fleet of autonomous
underwater vehicles (AUV) shown in Figure 1, which con-
ducts scientific observations cooperatively for up to 20 hours
without human supervision, should ideally navigate them-
selves to areas of scientific interest according to a game plan
provided by scientists.

Our plan formalism is Qualitative State Plan (QSP)
(Léauté 2005), which specifies the desired evolution of the
qualitative state of the system as well as the flexible tem-
poral constraints. This approach elevates the interaction be-
tween the human operator and the robotic system, to a more
abstract level where the operator is able to qualitatively com-
mand the tasks. A centralized model-based QSP executive
called Sulu (Léauté 2005) generates optimal path and sched-
ule that is consistent with a given QSP in deterministic envi-
ronment.

Real-world systems, however, are exposed to stochastic
disturbances. Stochastic systems typically have a risk of
failure due to unexpected events, such as unpredictable tides
and currents that affect the AUV’s motion. AUV opera-
tors want to limit the risk of losing AUV by colliding with
seafloor. Thus the kinodynamic path planning has to be ro-
bust in existence of disturbance.

The plan executive should ideally be distributed for a
number of reasons. First, in many cases such as underwa-
ter, the inter-vehicle communication is limited. Second, the
leader vehicle that has the centralized plan executive is the
single point failure. Third, computation burden concentrates
in the leader vehicle. Distributed plan executive makes sys-
tem more robust and efficient.

My research objective is to develop a distributed model-
based QSP executive that is robust in a stochastic environ-
ment.
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Figure 1: Autonomous underwater vehicle Dorado of Mon-
terey Bay Aquarium Research Institute, conducting bathy-
metric mapping mission

Research Plan

There are four major steps to develop distributed robust QSP
executive.

• Step 1: Develop robust kinodynamic path planner

• Step 2: Develop centralized robust QSP executive

• Step 3: Develop distributed robust QSP executive

• Step 4: Experiment on real-world system.

Step 1 has been achieved, which will be introduced in the
next section. The robust path planner developed in Step 1
will be merged to Sulu, a centralized model-based QSP ex-
ecutive, to achieve Step 2. To proceed from Step 2 to Step
3, two problems must be solved; distribution of QSP and
collision avoidance. For Step 4, we are collaborating with
Monterey Bay Aquarium Research Institute to test the algo-
rithms using their AUV.

Robust Kinodynamic Path Planner

The task of robust kinodynamic path planner is to find the
control sequence (action sequence) of a stochastic system
that maximizes performance while guaranteeing that the
probability of failure is less than the given upper bound
(chance constraint). We developed a new efficient robust
kinodynamic path planner called Bi-stage Robust Motion
Planning (BRMP) algorithm (Ono & Williams 2008). The
key notion is risk allocation, which is explained in the next
subsection.

Racing Car Example Imagine a racing car example
shown in Figure 2. The dynamics of the vehicle is stochas-
tic and the distribution of uncertainty is unbounded. The
task is to plan a control sequence of wheel and acceleration
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Figure 2: Risk allocation strategies on the racing car exam-
ple

that minimizes the time to reach a goal, with the guarantee
that the probability of crashing into a wall during the race is
less than a certain probability, say, 0.1% (chance constraint).
Planning the control sequence is equivalent to planning the
nominal path, which is shown as the solid lines in the Figure
2. To limit the probability of crashing into the wall, a good
driver would set the safety margin, which is colored in dark
gray in Figure 2, and then plan the nominal path out of the
safety margin. In other words, the driver tightened the orig-
inal constraints (the walls) and set new constraints on the
nominal path, which is shown as the dotted line.

The driver wants to set the safety margin as small as pos-
sible to make the nominal path shorter. However, since the
probability of crash during the race is bounded, there is a
certain lower bound on the size of the safety margin. We
assume here that the total area of the safety margin is lower-
bounded. Given this constraint, there are different strategies
of setting a safety margin; in Figure 2(a) the width of the
margin is uniform; in Figure 2(b) the safety margin is nar-
row around the corner, and wide at the other places.

An intelligent driver would take the strategy of (b), since
he knows that going closer to the wall at the corner is effec-
tive to make the path shorter while doing so at the straight
line is not. A key observation here is that taking a risk
(i.e. setting narrow safety margin) at the corner results in
a greater reward (i.e. time saving) than taking the same risk
at the straight line. This gives rise to the notion of risk allo-
cation. The good risk allocation strategy is to save risk when
the reward is small while taking it when the reward is great.

Another important observation is, once risk is allocated
and the safety margin is fixed, the stochastic path planning
problem with chance constraint has been reduced to a de-
terministic nominal path planning problem with tightened
constraints. This can be solved quickly with existing deter-
ministic path planning algorithms.

These two observations lead to bi-stage optimization al-
gorithm as shown in Figure 3, in which its upper stage al-
locates risk to each time step while its lower stage tightens
constraints according to the risk allocation and solves the
resulting deterministic problem. We call this algorithm Bi-
stage Robust Motion Planning (BRMP) (Ono & Williams
2008).
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Figure 3: Architecture of Bi-stage Robust Motion Planning

Table 1: Performance comparison on the AUV depth navi-
gation problem with chance constraint PFail ≤ 0.05.
(a) ER: Ellipsoid relaxation approach, (b) BRMP: Bi-stage
Robust Motion Planning, PC: Particle Control

Algorithm used (a) ER (b) BRMP (c) PC

Resulting PFail < 10
−5 0.037 0.085

Average altitude [m] 99.3 55.2 51.1

Computation time [sec] 1.9 4.1 481.2

Implementation BRMP is implemented and tested on a
AUV depth navigation case. The task is to minimize AUV’s
altitude from sea floor while limiting the probability of
crashing into it. The dynamics model is taken from the ac-
tual AUV developed by Monterey Bay Aquarium Research
Institute (Figure 1), and the actual bathymetric data of the
Monterey Bay is used. The deterministic planning algorithm
used in the lower-stage has been demonstrated in the actual
AUV mission.

The simulation result is shown in Table 1, along with the
two prior arts; ellipsoidal relaxation approach (van Hessem
2004) and Particle Control (Blackmore 2006). It is shown
from this result that BRMP is much less suboptimal than
ellipsoidal relaxation approach while achieving substantial
speed up from Particle Control.
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