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Abstract

When controlling dynamic systems, such as mobile
robots in uncertain environments, there is a trade off be-
tween risk and reward. For example, a race car can turn
a corner faster by taking a more challenging path. This
paper proposes a new approach to planning a control se-
quence with a guaranteed risk bound. Given a stochas-
tic dynamic model, the problem is to find a control se-
quence that optimizes a performance metric, while sat-
isfying chance constraints i.e. constraints on the up-
per bound of the probability of failure. We propose a
two-stage optimization approach, with the upper stage
optimizing the risk allocation and the lower stage cal-
culating the optimal control sequence that maximizes
reward. In general, the upper-stage is a non-convex op-
timization problem, which is hard to solve. We develop
a new iterative algorithm for this stage that efficiently
computes the risk allocation with a small penalty to op-
timality. The algorithm is implemented and tested on
the autonomous underwater vehicle (AUV) depth plan-
ning problem, and demonstrates a substantial improve-
ment in computation cost and suboptimality, compared
to the prior arts.

Introduction

Physically grounded AI systems typically interact with their
environment through a hybrid of discrete and continuous
actions. Two important capabilities for such systems are
kinodynamic motion planning and plan execution on a hy-
brid discrete/continuous plant. For example, our application
is a bathymetric mapping mission using Dorado-class au-
tonomous underwater vehicle (AUV) (Figure 1) operated by
the Monterey Bay Aquarium Research Institute (MBARI).
Dorado-class mapping AUV is 6,000 m rated, and can op-
erate for up to 20 hours without human supervision. This
system should ideally navigate itself to areas of scientific
interest, such as underwater canyons, according to a game
plan provided by scientists. Since the AUV’s maneuverabil-
ity is limited, it needs to plan its path while taking vehi-
cle dynamics into account, in order to avoid collisions with
the seafloor. A model-based executive, called Sulu (Léauté
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Figure 1: Dorado-class autonomous underwater vehicle of
Monterey Bay Aquarium Research Institute

2005), implemented these two capabilities using determin-
istic model.

Real-world systems can be exposed to significant levels
of stochastic disturbance. Stochastic systems typically have
a risk of failure due to unexpected events, such as unpre-
dictable tides and currents that affect the AUV’s motion. To
reduce the risk of failure, the AUV needs to stay away from
failure states, such as the seafloor. This has the consequence
of reducing mission performance, since it prohibits high
resolution observation of the seafloor. Thus operators of
stochastic systems need to trade-off risk with performance.

A common approach to trading-off risk and performance
is to define a positive reward for mission achievement and a
negative reward for failure, and then optimize the expected
reward using a Markov Decision Process (MDP) encoding.
However, in many practical cases, only an arbitrary defini-
tion of reward is possible. For example, it is hard to define
the value of scientific discovery compared to the cost of los-
ing the AUV.

Another approach to trading off risk and performance is to
limit the probability of failure (chance constraint) and max-
imize the performance under this constraint. For example,
an AUV minimizes the average altitude from the seafloor,
while limiting the probability of collision to 0.1%.

There is a considerable body of work on this approach
within Robust Model Predictive Control (RMPC) commu-
nity. If the distribution of disturbance is bounded, zero fail-
ure probability can be achieved by sparing the safety margin
between the failure states and the nominal states (Kuwata,



Richards, & How 2007). If the distribution is unbounded,
which is the case in many practical applications, the chance
constraint needs to be considered. When only the proba-
bility of failure of each individual time step is constrained
(chance constraints at individual time steps), the stochastic
problem can be easily reduced to a deterministic problem
by constraint tightening(Yan & Bitmead 2005)(van Hessem
2004).

A challenge arises when the probability of failure of the
entire mission is constrained (a chance constraint over the
mission). This is the case in many practical applications; for
example, an AUV operator would like to limit the probabil-
ity of losing the vehicle throughout the mission, rather than
during each time instant. The chance constraint over the
entire mission can be decomposed into chance constraints
at individual time steps using an ellipsoidal relaxation tech-
nique (van Hessem 2004). However, the relaxation is very
conservative, hence the result is significantly suboptimal.

A sample based algorithm called Particle Control (Black-
more 2006) represents state distributions by samples and
uses Mixed Integer Linear Programming (MILP) to directly
optimize the control sequence. The algorithm can handle
the probability of failure over the mission directly without
using a conservative bound. However, the algorithm is slow
when it is applied to many problems such as goal-directed
execution of temporally flexible plans (Léauté & Williams
2005), due to the large dimension of the decision vector.
Another important issue with Particle Control is soundness.
Although there is a convergence guarantee to the true opti-
mum as the number of the samples goes to infinity, there is
no guarantee that the original chance constraint is satisfied
for a finite number of samples.

We propose a new fast algorithm called Bi-stage Robust
Motion Planning (BRMP), which is only slightly subopti-
mal and offers strict guarantee of satisfying a chance con-
straint over a mission. The BRMP algorithm makes two
key contributions; the first is the introduction of a bi-stage
optimization approach, with the upper stage optimizing the
risk allocation and the lower stage optimizing the control
sequence. The second is the development of a risk allo-
cation algorithm for the upper stage, called Iterative Risk
Allocation (IRA). Although IRA does not offer a guarantee
of the convergence to the global optima, it does have the
guarantee of monotonic increase of the objective function
over successive iterations. Simulation results on our imple-
mentation demonstrates a substantial improvement in sub-
optimality compared to the ellipsoidal relaxation approach,
while achieving a significant speed up compared to the Par-
ticle Control.

The rest of this paper is outlined as follows. The next
section introduces the notion of risk allocation, followed by
a formal problem statement. Next, the two key ideas in
BRMP, the bi-stage optimization approach and the Iterative
Risk Allocation algorithm, are presented. The BRMP algo-
rithm is implemented for systems with linear dynamics and
Gaussian distributed noise. It is applied to AUV navigation
problem, for which the performance of BRMP is compared
with the ellipsoidal relaxation approach and Particle Con-
trol.

Risk Allocation

Racing Car Example Consider the race car example
shown in Figure 2. The task is to plan a control sequence
of steering and acceleration that minimizes the time to reach
a goal, with the guarantee that the probability of crashing
into a wall during the race is less than a certain probability,
say, 0.1% (the chance constraint over the mission). Planning
the control sequence is equivalent to planning the nominal
path, which is shown by the solid lines in Figure 2. We as-
sume that the dynamics of the vehicle is stochastic and the
distribution of uncertainty is unbounded.

To limit the probability of crashing into the wall, a good
driver would set a safety margin along the wall, and then
plan a nominal path that does not penetrate the safety mar-
gin. (Safety margins are the areas colored in dark gray in
Figure 2). In other words, the driver tightens the feasibility
constraints.

The driver wants to set the safety margin as small as pos-
sible, in order to make the path shorter. However, since the
probability of crash during the race is bounded, there is a
certain lower bound on the total size of the safety margin.
We assume here that the total area of the safety margin has a
lower bound. Given this constraint, there are different strate-
gies of setting a safety margin; in Figure 2(a) the width of
the margin is uniform; in Figure 2(b) the safety margin is
narrow around the corner, and wide at other places.

An intelligent driver would take the strategy of (b), since
he knows that going closer to the wall at the corner is more
effective at making the path shorter than at the straight line
is not. A key observation here is that taking risk (i.e. set-
ting a narrow safety margin) at the corner results in a greater
reward (i.e. time saving) than taking the same risk at the
straight line. This gives rise to the notion of risk allocation.
A good risk allocation strategy is to save risk when the re-
ward is small, while taking it when the reward is great.

Another important observation is, once risk is allocated
and the safety margin is fixed (i.e. a chance constraint over
the mission is decomposed into chance constraints at indi-
vidual time steps), the stochastic optimization problem has
been reduced to a deterministic nominal path planning prob-
lem with tightened constraints. This can be solved quickly
with existing deterministic path planning algorithms.
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(a) Uniform risk allocation (b) Optimal risk allocation

Walls
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Figure 2: Risk allocation strategies on the racing car exam-
ple



These two observations naturally lead to a bi-stage opti-
mization approach (Figure 3), in which its upper stage allo-
cates risk to each time step, while its lower stage tightens
constraints according to the risk allocation and solves the
resulting deterministic problem.

The next section formally states the problem, and the
subsequent section describes the bi-stage optimization algo-
rithm, called Bi-stage Robust Motion Planning.

Formal Problem Statement

Our goal is to develop a method that can generalize to plan-
ning over either continuous or discrete state spaces, such as
kinodynamic path planning and PDDL planning.

Let xt ∈ X , ut ∈ U , and wt ∈ W denote the state vec-
tor, control input (action) vector, and disturbance vector at
time step t, respectively. For example, for AUV navigation,
x denotes position and velocity of the vehicle, u denotes
ladder angle and throttle position, and w denotes the uncer-
tainty in position and velocity. The domains X , U and W
may be continuous (i.e. real-valued), discrete, or a hybrid of
both. The uncertainty model of wt is given as a probability
distribution function f :W → [0, 1].

wt ∼ f(w) (1)

The stochastic dynamics model for a continuous space, or
the state transition model for a discrete space, is defined as
follows:

xt+1 = g(xt,ut,wt), (2)

where g : X × U ×W → X is the state transition function.
Note that x is a random variable, while u is deterministic.

Assuming that the initial state x0 is known deterministi-
cally, the nominal states x̄t ∈ X are defined as the sequence
of deterministic states evolved from x0 according to Eq. (2)
without disturbances, that is:

x̄t+1 = g(x̄t,ut, 0). (3)

Let Rt ⊂ X denote the feasible region at time step t. For
example of AUV navigation, R corresponds to the ocean
above the seafloor. A mission fails when xt is out of this
region at any time within the mission duration t ∈ [0, T ].
The probability of failure over the mission PFail is defined
as follows:

PFail = Pr[(x1 /∈ R1) ∨ (x2 /∈ R2) ∨ · · · ∨ (xT /∈ RT )].
(4)

The chance constraint over the mission is an upper bound
on the probability of failure over the mission:

PFail ≤ δ. (5)

Finally, the objective function (i.e. reward) J is given as a
function h : X T × UT → R that is defined on the sequence
of nominal states and control inputs:

J = h(x̄1:T ,u1:T ). (6)

The problem is formulated as an optimization over con-
trol (action) sequences u1:T that maximizes the objective
function Eq.(6), given the state transition model, uncertainty
model, and the chance constraint.
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Deterministic planner

(MILP, tree search, etc)

Risk

Allocation
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Uncertainty model

Objective function

Figure 3: Architecture of Bi-stage Robust Motion Planning

Problem 1: Control Sequence Optimization with Chance
Constraint

Maximize J = h(x̄1:T ,u1:T )

s.t. Eq.(1), (2), and(5).

Bi-stage Robust Motion Planning algorithm

Our approach to solving Problem 1 is the Bi-stage Robust
Motion Planning (BRMP) algorithm (Figure 3). As de-
scribed in the previous sections, the chance constraint over
the mission is decomposed into chance constraints at indi-
vidual time steps by risk allocation. It results in the bi-stage
optimization approach, which is the first important contribu-
tion at this paper.

Decomposition of chance constraint over the
mission

The probability of failure at time step t is defined as follows:

PFail,t = Pr[xt /∈ Rt]. (7)

Using the union bound or Boole’s inequality (Pr[A ∪
B] ≤ Pr[A] + Pr[B]), it can be easily shown that the origi-
nal chance constraint Eq.(5) is implied by the following con-
junction (Blackmore & Williams 2006):

T
∧

t=1

Pfail,t ≤ δt (8)

∧
T

∑

t=1

δt ≤ δ. (9)

Eq.(8) refers to the chance constraints at individual
time steps. Risk allocation means assigning values to
(δ1, δ2 · · · , δT ). Once the risk is allocated so that Eq.(9)
is satisfied, the original chance constraint over the mission
Eq.(5) is replaced by a set of chance constraints at individual
time steps Eq.(8).

Thus the original optimization problem (Problem 1) can
be decomposed into risk allocation optimization (the upper-
stage of BRMP) and control sequence optimization with
chance constraints at individual time steps (the lower-stage).
The lower-stage is described in the next subsection, followed
by the upper-stage.



Lower-stage optimization

The stochastic optimization problem with chance constraints
at individual time steps (Eq.(8)) is reduced to determinis-
tic planning problem over nominal states x̄ using constraint
tightening; constraint tightening corresponds intuitively to
setting a safety margin (Yan & Bitmead 2005)(van Hessem
2004). The safety margin at t (denotedMt) is calculated so
that the following conditional probability is bounded by the
given risk assignment δt:

Pr[xt /∈ Rt | x̄t ∈ (Rt −Mt)] ≤ δt. (10)

Since the distribution of xt can be calculated a priori from
Eq.(1) and Eq.(2), Mt can also be computed off-line and
compiled in a table. For many common distributions such as
Gaussian,Mt can be derived analytically.

Given the safety marginMt, the chance constraints at in-
dividual time steps t (Eq.(8)) are implied by the following
tightened constraints on the nominal states, which are deter-
ministic.

[(x̄1 ∈ (R1 −M1)] ∧ · · · ∧ [(x̄T ∈ (RT −MT )] (11)

The lower stage optimization problem is to find the con-
trol sequence u1:T which maximizes the objective function
Eq.(6), given the tightened constraints, Eq.(11).

Problem 2: Lower-stage Optimization

MaximizeJ = h(x̄1:T ,u1:T )

s.t. Eq.(3) and (11)

No random variables are involved in this optimization prob-
lem. It can be solved by existing deterministic plan-
ning methods. For a hybrid state space with a lin-
ear dynamics(Eq.(2)), Mixed-integer Linear Programing
(MILP) is widely used. For a discrete state space, standard
tree search algorithms can be used.

For later use, this optimization process is expressed as a
function of the risk allocation as follows;

LSO(δ1 · · · δT ) = max
u1:T

J s.t. Eq.(3) ∧ (10) ∧ (11).

(12)

Upper-stage Optimization

The upper-stage optimizes the risk allocation δ1 · · · δT ac-
cording to constraint Eq.(9).

Problem 3: Upper-stage Optimization

Maximize LSO(δ1 · · · δT )

s.t. Eq.(9)

The question is how to optimize Problem 3. In general it
is a non-convex optimization problem, which is very hard
to solve. The next section introduces the second important
contribution of this paper, a risk allocation algorithm for the
upper stage, called Iterative Risk Allocation.

Algorithm 1 Iterative Risk Allocation

1: ∀t δt ← δ/T
2: while J − Jprev > ǫ do
3: Jprev ← J
4: [J, x̄1:T ]← LSO(δ1 · · · δT )
5: Nactive ← number of steps where constraint is active
6: if Nactive = 0 or Nactive = T then
7: break;
8: end if
9:

10: for all t such that constraint is inactive at t th step do
11: δt ← (1− α)δt + α Pr(xt /∈ Rt | x̄t)
12: end for
13: δres ← δ −

∑T

t=1 δt

14: for all t such that constraint is active at t th step do
15: δt ← δt + δres/Nactive

16: end for
17: end while

Iterative Risk Allocation Algorithm

The Iterative Risk Allocation (IRA) algorithm (Algorithm 1)
solves Problem 3 through iterative improvement. It has a pa-
rameter (an interpolation coefficient) 0 < α < 1. The lower
stage optimization is solved in Line 4. The lower-stage opti-
mization function LSO (Eq.(12)) is modified so that it also
outputs the resulting nominal state sequence x̄1:T . A con-
straint is active at time t iff the nominal state x̄ is on the
boundary of (Rt−Mt). The graphical interpretation is that
the constraint is active when the nominal path touches the
safety margin (Figure 2 and 5). In Line 11, Pr(xt /∈ Rt | x̄t)
is the actual probability of failure at time t, given the nom-
inal state x̄t. It is equal to δt only when the constraint is
active, and otherwise, it is less than δt.

For each iteration of the algorithm the nominal path is
planned using the lower-stage optimization algorithm, given
the current risk allocation (Line 4). Risk assignment is de-
creased when the constraint is inactive (Line 11), and it is
increased when the constraint is active (Line 15). Line 13

and 15 ensure that
∑T

t=1 δt = δ so that the suboptimality
due to the union bound is minimized.

The interpolation coefficient α (Line 11 of Algorithm 1)
can be interpreted as a “step size”. Just like a fixed step size
of descend algorithms, a large α leads to a fast descent but
greater suboptimality, as shown in Figure 4. A good strategy
is to use a large α (∼ 0.7) at the beginning of the algorithm,
and gradually discount it over iterations.

Properties

A very important property of the IRA algorithm is summa-
rized by the following theorem.

Theorem 1 The objective function J monotonically in-
creases over the iteration of Algorithm 1:

J i ≤ J (i+1) (13)

where i is the iteration index.
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Figure 4: A typical convergence plot of the iterative risk
allocation algorithm with different settings of α. Plots are
obtained from AUV depth navigation example described in
the Simulation section

Proof. If there are inactive constraints, they keep being inac-
tive after Line 11, since α < 1. Thus, the objective function
J does not change at this point. Then in Line 15, the active
constraints are relaxed, so J become equal or larger than in
the previous iteration. If there are no inactive constraints,
then δres = 0 and thus the risk assignment of active con-
straints does not change. Consequently, the objective func-
tion does not change as well.

In a special case where the lower stage optimization is

a linear programming, the strict monotonicity J i < J (i+1)

can be obtained when there are both active and inactive con-
straints.

Note that Algorithm 1 has no convergence guarantee to
the global optima. However, Theorem 1 ensure that if δt is
initialized with the risk allocation obtained from ellipsoidal
relaxation approach, the result of Algorithm 1 is no worse
than that of the ellipsoidal relaxation approach. Our empiri-
cal results demonstrate that Algorithm 1 can yield a signifi-
cantly less conservative result when started from the simple
uniform risk allocation δt = δ/T (t = 1 · · ·T ) (Line 1 of
Algorithm 1).

The IRA algorithm is sound but not complete. If the ini-
tial risk allocation (Line 1 of Algorithm 1)is feasible, then
the algorithm is guaranteed to find a feasible risk allocation
that is equal or better than the initial risk allocation; how-
ever, if the initial risk allocation is infeasible the algorithm
fails to find feasible solution. Therefore if the IRA algorithm
is initialized with the solution of the ellipsoidal approxima-
tion approach, it can always find equal or better feasible so-
lution than the ellipsoidal approximation. In practice, the
simple uniform initial risk allocation as Line 1 of Algorithm
1 is less conservative than the ellipsoidal approximation in
most cases (this may not hold only when the upper-bound
of the risk δ is close to one; however, in practical cases, δ
is very close to zero). Therefore, although both the ellip-
soidal approximation and IRA is incomplete, IRA can find
a feasible solution whenever the ellipsoidal approximation
approach can find one. On the other hand, Particle Control
algorithm is complete but not sound for a finite number of

samples.
IRA algorithm can be complete if the set of feasible risk

allocation has non-zero volume (indeed, it is often the case).
In such case we can find a feasible initial risk allocation us-
ing branch and bound algorithm, but it may requires signifi-
cant computation time in the worst case.

Linear Time Invariant System

with a Gaussian Disturbance

In many practical applications, a continuous system can be
approximated as a linear time-invariant (LTI) system with
Gaussian disturbances. The general form of the BRMP al-
gorithm, derived in the previous sections, is applied to the
linear Gaussian case in this section.

The state and action domain is continuous, that is, X =
R

nx and U = R
nu . Deterministic constraints such as actu-

ator saturation are encoded by adding linear constraints on
u, rather than limiting its domain, U . The state transition
model (Eq.(2)) is linear, as follows:

xt+1 = Axt + But + wt. (14)

The distribution of w (Eq.(1)) is a zero-mean Gaussian
with covariance matrix Σw.

w ∼ N (0,Σw) (15)

Consequently, the distribution of xt is also Gaussian, with
the covariance matrix given as:

Σx,t =

t−1
∑

k=0

A
kΣw(Ak)T . (16)

The feasible region is defined by the conjunction of Nt

linear constraints:

Rt =

{

xt ∈ X :

Nt
∧

i=1

h
iT
t xt ≤ gi

t

}

. (17)

Thus the chance constraint of individual time steps
(Eq.(7)(8)) is described as follows:

Pr

[

Nt
∨

i=1

h
iT
t xt > gi

t

]

≤ δt. (18)

This joint chance constraint is decomposed by risk allo-
cation. The decomposition results in a set of chance con-
straints on the probability of violation of individual con-
straints. Thus Eq.(8) and (9) are replaced by the following:

T
∧

t=1

Nt
∧

i=1

(

Pr[hiT
t xt > gi

t] ≤ δi
t

)

∧
T

∑

t=1

Nt
∑

i=1

δi
t ≤ δ. (19)

The risk allocation problem of δi
t is solved by the iterative

risk allocation algorithm (Algorithm 1).
The constraint tightening,R−M, in Eq.(11) is equivalent

to reducing the upper bounds gi
t of Eq.(17). The nominal

states are bounded by the tightened constraints such that

h
iT
t x̄t ≤ gi

t −mi
t (20)

mi
t =

√

2h
iT
t Σx,th

i
t erf−1(1− 2δi

t), (21)



where erf−1 is the inverse of the Gauss error function. The
conditional probability of failure at time t in the Algorithm
1, Line 11 is replaced by the probability of violating the i th
constraint at time t, which is equal to the cumulative distri-
bution function,

Pr(xt > gi
t | x̄t) =

1

2



1 + erf
h

iT
t (xt − x̄)

√

2h
iT
t Σx,th

i
t



 . (22)

If the objective function (Eq.(6)) is also linear, the lower-
stage optimization can be solved by Linear Programming. If
it is quadratic, Quadratic Programming can be used.

Simulation: AUV Depth Planning

Problem Setting We assume the case where an au-
tonomous underwater vehicle (AUV) plans a path to mini-
mize the average altitude from the sea floor, while limiting
the probability of crashing into it. The AUV is disturbed
by tides and currents. We discretize the linear dynamics
with interval ∆t = 5. The AUV’s horizontal speed is con-
stant at 3.0 knots, so only the vertical position needs to be
planned. The dynamics model is taken from Dorado-class
AUV that is operated by Monterey Bay Aquarium Research
Institute (Figure 1), and the bathymetric data is taken from
Monterey Bay. The deterministic planning algorithm used
in the lower-stage has been demonstrated in the actual AUV
mission.

The AUV has six real-valued state and takes one real-
valued control input, thus X = R

6 and U = R. Disturbance
w with σw = 10 [m] acts only on the third component of x,
which refers to the depth of the vehicle. The AUV’s elevator
angle and pitch rate are deterministically constrained.

The depth of the AUV is required to be less than the
seafloor depth for the entire mission (1 ≤ t ≤ 20) with prob-
ability δ = 0.05. The objective is to minimize the average
of AUV’s nominal altitude above the floor.

Algorithms tested Three algorithms are implemented in
Matlab and run on a machine with a Pentium 4 2.80 GHz
processor and 1.00 GB of RAM. The planning horizon
is 100 seconds (20 time steps each with a 5 second time
intervals). Three algorithms are:
(a) Ellipsoidal relaxation approach (van Hessem 2004),
(b) Bi-stage Robust Motion Planning (α = 0.3), and
(c) Particle Control (20 particles) (Blackmore 2006)

Result The three algorithms are run on 50 cases with dif-
ferent segments of the Monterey Bay sea floor. Figure 5
shows a typical result of the three algorithms with δ = 0.05.
Ellipsoid relaxation yields a large safety margin, which
touches the nominal path (i.e. constraint is active) only at
a few points, just as Figure 2-(a). This is because ellipsoid
relaxation uniformly allocates risk to each step. On the other
hand, Bi-stage Robust Motion Planning algorithm generates
a nominal path that touches the safety margin at most points,

Table 1: Performance comparison on the AUV depth plan-
ning problem with chance constraint PFail ≤ 0.05. Values
are the average of 50 runs on different segments of the Mon-
terey Bay sea floor. Planning horizon is 20 steps (100 sec-
onds).
(a) ER: Ellipsoid relaxation approach, (b) BRMP: Bi-stage
Robust Motion Planning, PC: Particle Control

Algorithm used (a) ER (b) BRMP (c) PC

Resulting PFail < 10−5 0.023 0.297

Objective function J 88.6 64.1 56.2

Computation time [sec] 0.093 1.36 915.6

just as Figure 2-(b). This implies that risk is allocated effi-
ciently such that a large portion of risk is allocated to the
critical points, such as the top of the seamount.

Figure 6 shows the optimal risk allocation computed by
BRMP algorithm on the same case as Figure 5 with δ =
0.05. A large portion of the risk is allocated to the time
steps when AUV go above the sea mountain, just as taking a
large risk at the corner in the race car example.

The performance of the three algorithms is compared in
Table 1. Values in the table are the average of 50 cases.
The resulting probability of failure PFail is evaluated by
Monte Carlo simulation with 100,000 samples. The plan
generated by the ellipsoidal relaxation approach ((a) ER) re-
sults in nearly zero probability of failure although the bound
is PFail ≤ 0.05, which shows its strong conservatism. Bi-
stage Robust Motion Planning ((b) BRMP) is also conser-
vative, but much less so than (a). On the other hand, the
probability of failure of Particle Control ((c) PC) is higher
than the bound, which means violation of the chance con-
straint. This is because Particle Control is a sample based
stochastic algorithm that does not have guarantee that the
chance constraint is strictly satisfied (i.e. Particle Control is
not sound).

The ellipsoidal relaxation approach fail to find a solution
in one case out of 50, while BRMP find solutions in all 50
cases. This is because the strong conservatism of the ellip-
soidal relaxation(i.e. large safety margin) makes the opti-
mization problem infeasible.

The value of objective function J is a measure of optimal-
ity. Note that this problem is a minimization, hence smaller
J means better performance. The true optimal value of J
lies between (b) BRMP and (c) Particle Control, since the
former is suboptimal and the latter is ”overoptimal” in the
sense that it does not satisfy the chance constraint. The sub-
optimality of the BRMP is 14% at most, while the ellipsoidal
relaxation has 57% suboptimality at most.

The computation time of Particle Control is longer than
the planning horizon (100 sec). Although BRMP is slower
than the ellipsoidal relaxation approach, it is approximately
one thousand times faster than Particle Control.



Conclusion

In this paper, we have developed a new algorithm called
Bi-stage Robust Motion Planning (BRMP). It computes a
control sequence that maximizes an objective function while
satisfying a chance constraint over the mission. It consists
of two stages; the upper stage that allocates risk to each
time step while the lower stage tightens constraints accord-
ing to this risk allocation and solves the resulting determin-
istic problem. Risk allocation in the upper stage can be ef-
ficiently computed by a novel Iterative Risk Allocation al-
gorithm. The BRMP algorithm has been implemented for
systems with a linear dynamics and Gaussian distribution,
and applied to the AUV depth navigation problem. Simu-
lation studies demonstrated that BRMP achieves substantial
speed up compared to Particle Control, with greater optimal-
ity compared to an ellipsoidal relaxation approach.
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Figure 5: Nominal path of AUV and safety margin planned
by three algorithms. Safety margin is not shown in (c) since
Particle Control does not explicitly compute it.

0 50 100 150
0

0.005

0.01

0.015

0.02

Horizontal position [m]

R
is

k
 a

s
s
ig

n
m

e
n
t

Figure 6: Risk allocation of Figure 5 (b)


