
Generative Planning for Hybrid Systems based on Flow Tubes

Hui X. Li and Brian C. Williams
MIT CSAIL MERS

32 Vassar St. 32-224, Cambridge, MA 02139
huili, williams@mit.edu

Abstract

When controlling an autonomous system, it is ineffi-
cient or sometimes impossible for the human operator to
specify detailed commands. Instead, the field of AI au-
tonomy has developed goal-directed systems, in which
human operators specify a series of goals to be accom-
plished. Increasingly, the control of autonomous sys-
tems involves performing a mix of discrete and contin-
uous actions. For example, a typical autonomous under-
water vehicle (AUV) mission involves discrete actions,
like get GPS and set sonar, and continuous actions, like
descend and ascend, which involve continuous dynam-
ics of the vehicle. Accordingly, we develop a hybrid
planner that determines a series of discrete and contin-
uous actions that achieve the mission goals.
In this paper, we describe a novel approach to solv-
ing the generative planning problem for hybrid sys-
tems, involving both continuous and discrete actions.
The planner, Kongming1, incorporates two innovations.
First, it employs a compact representation of all hy-
brid plans, called a Hybrid Flow Graph, which com-
bines the strengths of a Planning Graph for discrete ac-
tions and Flow Tubes for continuous actions. Second,
it encodes the Hybrid Flow Graph as a mixed logic lin-
ear/nonlinear program, which it solves using an off-the-
shelf solver. We empirically demonstrate that Kong-
ming can efficiently plan for real-world scenarios that
are based on science missions performed at the Mon-
terey Bay Aquarium Research Institute (MBARI).

Introduction
It is often inefficient or impossible for the human operator
to specify the detailed action sequence, needed to control
an autonomous system. Especially for real-world missions,
such as AUV seafloor mapping and multi-vehicle search-
and-rescue tasks, it is crucial to automate the process, such
that human operators only need to specify a set of goals that
they want to accomplish, and have the planner itself produce
a series of actions that achieve the mission goals, based on
the model of the physical plant under control.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Kongming is the courtesy name of the genius strategist of the
Three Kingdoms period in ancient China.

Increasingly, the control of autonomous systems involves
a mix of discrete and continuous actions. For example, a typ-
ical AUV mission is implemented by invoking a sequence of
behaviors, which include discrete actions like get GPS and
set sonar, and continuous actions that involve the continuous
dynamics of the vehicle, such as descend and ascend. Hence,
it is important for a generative planner to be able to reason
about and plan with both discrete and continuous actions.

A large number of existing temporal planners (Smith and
Weld 1999; Long and Fox 2002; Gerevini et al. 2003;
Do and Kambhampati 2001; Frank and Jónsson 2003; Joslin
1996; Penberthy and Weld 1994; Vere 1983) are able to gen-
erate discrete action sequences to achieve goals, and handle
time and other simple numeric constraints. Some of them
have been used in real-world planning problems. For exam-
ple, EUROPA (Frank and Jónsson 2003) has been deployed
in space missions at NASA (Muscettola et al. 1998) and
AUV missions at MBARI (McGann et al. 2007). How-
ever, the type of hybrid problems we are interested in re-
quires more flexibility in representing the continuous ac-
tions. More specifically, we want to be able to represent
the dynamics of the continuous actions as a set of ordinary
differential equations (ODE). LPSAT planner (Wolfman and
Weld 1999) solves resource planning problems where real-
valued quantities are involved. TM-LPSAT (Shin and Davis
2005) extends it to handling problems with durative actions
and linear continuous change. The difference from our work
is that TM-LPSAT is limited to simple linear changes in
terms of continuous effects and hence cannot handle com-
plex robot dynamics or obstacle avoidance. In addition TM-
LPSAT generates a feasible plan, while often times the ca-
pability of generating an optimal plan is desired.

In this paper, we introduce a novel approach to solving
the generative planning problem for hybrid systems, where
both continuous and discrete actions are involved. Currently
actions are assumed to have fixed and equal durations for
simplicity. The planner, Kongming, has the following key
innovations. First, it employs a compact representation of
all hybrid plans, called a Hybrid Flow Graph, which com-
bines the strengths of a Planning Graph for discrete actions
and Flow Tubes for continuous actions. Second, it encodes
the Hybrid Flow Graph as a mixed logic linear/nonlinear
program (ML(N)LP) that is then solved by an off-the-shelf
solver. Kongming is implemented in Java, and uses the

ILOG CPLEX solver to solve the ML(N)LPs. We empir-
ically evaluate Kongming on a set of real-world scenarios
that are based on the AUV science missions, performed at
MBARI. The results show that Kongming is capable of plan-
ning for complex hybrid problems efficiently.

Ocean Exploration using AUVs
Many real-world robot missions involve planning of a mix
of discrete and continuous actions. At MBARI among
other missions, marine scientists use AUVs to obtain high-
resolution seafloor maps of the Monterey Canyon, one of
the deepest underwater canyons along the continental United
States. Currently the AUVs are controlled by pre-defined
action sequences, specified by engineers. Having to design
the action sequence for every new mission puts a significant
cognitive burden on the human operator. A generative plan-
ner that can produce the sequences of both continuous and
discrete actions automatically would save time, reduce hu-
man error and enable more complex missions.

Let’s consider an example. Fig. 1 shows part of a seafloor
mapping mission of an AUV in 2D. The actions and their
preconditions, effects and dynamics are listed in Fig. 2. We
use first-order velocity limited dynamics in the example for
simplicity, but we are not limited to such dynamical systems.
There’s an obstacle on the way. The objective may be the
shortest path, minimum battery use, or best mapping image
resolution, which translates to traveling close to the seafloor
as long as possible.

(0,0)

(100,100)

Figure 1: Part of an AUV seafloor mapping mission

Problem Statement
The inputs to the system are:

• A set of real-valued state variables, s ∈ <n, e.g. the x, y
position of the physical plant, and a set of real-valued in-
put variables, u ∈ <n, e.g. the x, y velocity;

• An initial condition I and a goal condition G, each de-
noted by a conjunction of (in)equalities over the state
variables and propositions, e.g. the initial condition
for the example shown in Fig. 1 is {x = 0, y =

(:action glide
 :duration (d)
 :precondition (¬rudder)
 :effect ()
 :dynamics (-10 ≤ vx ≤ 10, vy = 0))
(:action ascend
 :duration (d)
 :precondition (and(rudder)(y ≥ 3))
 :effect ()
 :dynamics (4 ≤ vx ≤ 8, -5 ≤ vy ≤ -2))
(:action descend
 :duration (d)
 :precondition (and(rudder)(y ≤ 200))
 :effect ()
 :dynamics (4 ≤ vx ≤ 8, 3 ≤ vy ≤ 6))

(:action getGPS
 :duration (d)
 :precondition (and(¬GPS)(y = 0))
 :effect (GPS)
 :dynamics ())
(:action startRudder
 :duration (d)
 :precondition (¬rudder)
 :effect (rudder)
 :dynamics ())
(:action stopRudder
 :duration (d)
 :precondition (rudder)
 :effect (¬rudder)
 :dynamics ())

Figure 2: Available actions of the seafloor mapping exam-
ple.

0,¬GPS,¬rudder}, and the goal condition is {95 ≤
x ≤ 105, 98 ≤ y ≤ 102, GPS, rudder};

• A set of hybrid actions, each of which has preconditions,
effects, dynamics and a duration. For simplicity we cur-
rently assume all actions have fixed and equal durations.
Future work will extend Kongming to handle varying du-
rations with flexible temporal bounds.

– Preconditions can be continuous or discrete. A continu-
ous precondition is a conjunction of (in)equalities over
state variables, and a discrete precondition is a conjunc-
tion of propositions.

– Effects are discrete facts. An effect is a conjunction of
propositions.

– Dynamics are represented by bounds on the control in-
put |u| ≤ ulimit, and the state equation ṡ = As+Bu.
They are mapped into flow tubes, as described in next
section. The continuous effect of the action is then the
goal region of the flow tube.

A hybrid action is continuous when there are dynamics,
e.g. action descend in Fig. 2. A hybrid action is discrete
when no dynamics are involved, e.g. action getGPS in
Fig. 2.

• Two types of obstacles, inside obstacles and outside ob-
stacles:

– An inside obstacle defines the boundaries of the world
the robots maneuver in, e.g. the map boundary in
Fig. 1. It defines the feasible region as inside the ob-
stacle and convex;

– An outside obstacle is an obstacle our robots avoid, e.g.
the seamount in Fig. 1. It defines the feasible region as
outside the obstacle and non-convex.

• An objective function f to be optimized.

The outputs are an optimal solution to s ∈ <n and u ∈ <n,
and the corresponding action sequence.

In our framework, a valid hybrid plan is defined as fol-
lows. First, it follows the definition in Graphplan. A valid

plan is a set of actions and times in which each is to be car-
ried out; actions can be concurrent as long as they do not
interfere with each other; a valid plan may perform an ac-
tion if all its preconditions are true; and finally a valid plan
makes the goal condition of the problem true at the final time
step. Second, a valid plan is a state trajectory that goes from
a point in the initial region of the problem to a point in the
goal region of the problem, without going outside any of the
connected flow tubes, while avoiding obstacles.

The Approach
Graphplan (Blum and Furst 1997) and Blackbox (Kautz and
Selman 1997) have introduced two fundamental concepts to
planning with discrete actions. Graphplan introduced the
Planning Graph as a compact way of representing all possi-
ble plans, while pruning many invalid plans. Blackbox in-
troduced the concept of searching the plan space by refor-
mulating the Planning Graph as a SAT problem, and using
the best off-the-shelf solvers to extract a plan. In this paper,
we take an analogous approach, but for hybrid actions.

We first introduce an important concept to our approach,
called Flow Tubes. Then we introduce the main innovation
of the paper, a Hybrid Flow Graph, which is a compact rep-
resentation of all valid hybrid plans. The second innova-
tion of the paper is a constraint encoding of the Hybrid Flow
Graph as an ML(N)LP, which we feed into a standard solver.

Flow Tube
When planning with purely discrete actions, the decision
variables are discrete, and we only need to reason about a
finite number of trajectories in plan space. However, when
we include continuous actions and continuous variables in
planning, we need a compact way of representing and rea-
soning about an infinite number of trajectories. Moreover,
for real-world planning problems, we often need to take into
account uncertainty in states and in actions. To address the
above problems, we use flow tubes to represent the abstrac-
tion of the infinite number of trajectories.

Flow tubes have been used in the qualitative reasoning
community to represent a set of trajectories with common
characteristics that connect two regions. (Bradley and Zhao
1993) used flow tubes to characterize phase spaces during
analysis of nonlinear dynamical systems. (Hofmann and
Williams 2006) used flow tubes to represent sets of flexi-
ble state trajectories that can reach the goal region of foot
placement.

We define a flow tube through the concept of cross sec-
tions. A cross section c is a function of an N dimensional
initial region Ri, a duration d, and bounds on dynamics dB,
c = f(Ri, d, dB). Given an initial region, c is the set of
states in N dimensions, such that they are all the states that
can be reached from the initial region for a certain duration.
A flow tube is a collection of all the trajectories that start
from the initial region and reach the cross section. For exam-
ple, Fig. 3 shows a simple flow tube of a first-order velocity
limited system in 1D. The vertical line c1 is the cross section
for duration d1, and c2 is the cross section for duration d2.
In this case, Ri = [ximin, ximax], dB = [vxmin, vxmax],
and c = [xgmin(d), xgmax(d)].

x

t

initial
region

d2

xg_max

xi_max

xi_min

xg_min

xg_min(d) = xi_min + vx_min·d

xg_max(d) = xi_max + vx_max·d

d1

c1

c2

Figure 3: The flow tube of a 1D action for a first-order
velocity limited dynamic system. Ri = [ximin, ximax].
dB = [vxmin, vxmax]. c = [xgmin(d), xgmax(d)].

Flow tubes for the first-order velocity limited system are
computed through a set of linear equations. For the 1D
action in Fig. 3, xgmin(d) = ximin + vxmin ∗ d and
xgmax(d) = ximax + vxmax ∗ d. For higher dimensional,
nonlinear dynamical systems, computing a flow tube is more
complex. The example in Fig. 4 is a flow tube of a second-
order acceleration limited system. Linear equations are no
longer adequate. Therefore various approximation methods
have been used to approximate the cross sections. (Hofmann
and Williams 2006) use a polyhedral approximation, which
approximates the tubes as slices of polyhedra for each time
step. (Kurzhanskiy 2006) uses an ellipsoidal calculus for
approximation that has proven highly efficient.

t

x ẋ

t0 tj tg

Figure 4: The flow tube of a 1D action for a second-order
acceleration limited dynamic system.

Hybrid Flow Graph
Hybrid Flow Graphs are built upon Planning Graphs from
Graphplan, augmented with flow tubes, to represent all valid
plans and collections of feasible state trajectories. Before
diving into the Hybrid Flow Graph, we need to explain two
important processes. One is the mapping from a hybrid ac-
tion to a flow tube. The other is the connection from one
flow tube to another.

Flow Tube of An Action As described in Problem State-
ment, a hybrid action includes the following: a con-
tinuous precondition, characterized by a conjunction of

(in)equalities over the state variables, ∧ifi(s) ≤ 0; discrete
preconditions and effects, both described as conjunctions of
propositions; and dynamics of the physical plant, which con-
sist of a state equation and the bounds on the control input,
e.g. the velocity limits of a first-order velocity limited sys-
tem. We only need to consider the continuous elements in a
hybrid action in order to map it to a flow tube, i.e. the con-
tinuous precondition and the dynamics. In Fig. 5, a generic
hybrid action is on the left, and its corresponding flow tube
is on the right. Suppose the region s is the current region of
feasible states in state space, and the region that corresponds
to the continuous precondition has a non-empty intersection
with the region s. We denote the non-empty intersection Ri,
which is the initial region of the flow tube. The cross section
c is calculated as a function of Ri, duration d and the dy-
namics bounds, and the function type depends on the state
equation.

s c
Ri

d

c = f(Ri, d, bounds)
Hybrid action a

• preconditions:

– continuous:

– discrete:

• dynamics:

– state equation

– bounds

• effects:

!

" j p j

!

" j p j

⋀i fi (s) ≤ 0

Figure 5: Mapping from a hybrid action to a flow tube.

Connecting Flow Tubes The condition under which ac-
tion a2’s flow tube is connected to action a1’s flow tube is the
following: connect a2 to a1 if a1’s goal region Rg1 intersects
with a2’s continuous precondition CP2, i.e. Rg1∩CP2 6= ∅.
In this case, we name Rg1 the resolved precondition of ac-
tion a2. A resolved precondition of action A is a continuous
fact that has a non-empty intersection with A’s precondition.
Fig. 6 shows an example for a first-order velocity limited
system. We connect a2’s flow tube to a1’s flow tube, be-
cause a2’s continuous precondition, represented by the ver-
tical line, has a non-empty intersection with Rg1. The non-
empty intersection, Ri2, is the initial region of a2’s flow
tube. This connection condition guarantees that all valid
plans are included in the graph, so it is complete. How-
ever, the condition is not sound, meaning that not all plans
in the graph are valid, which is in the same spirit as Graph-
plan. The step in Kongming, where it encodes the Hybrid
Flow Graph as an ML(N)LP and solves it, makes sure that
the output plan is valid and optimal.

A Hybrid Flow Graph is similar to a Planning Graph in
that it is also a directed, leveled graph that alternates be-
tween fact levels and action levels. It represents all valid
plans while pruning many invalid plans through mutual ex-
clusion. The structure of a Hybrid Flow Graph is different
from that of a Planning Graph in that, first, a fact level of
the Hybrid Flow Graph includes two types of fact nodes,
discrete and continuous; and second, an action level of the
Hybrid Flow Graph contains hybrid actions, which can be

x

td1

Ri1
Rg1

Ri2
Rg2

d2

a2

a1 a2 continuous
precondition

Figure 6: Connecting one flow tube to another.

either continuous or discrete, based on whether continuous
dynamics are involved.

Fact Level A fact level includes two types of fact nodes:
continuous fact nodes and discrete fact nodes. A continuous
fact node is defined by a conjunction of (in)equalities over
the state variables, ∧ifi(s) ≤ 0. A discrete fact node is
defined by a proposition. In a Planning Graph a fact can be
either a precondition or an effect; in a Hybrid Flow Graph,
a fact can be a discrete precondition, an effect, a goal region
of a flow tube, or a resolved precondition.

Action Level An action level contains hybrid action
nodes, and each node can be either continuous or discrete.
When continuous dynamics are not involved, a hybrid ac-
tion is discrete. When there are dynamics involved, a hybrid
action is continuous and is denoted by a flow tube, connect-
ing an initial region and a goal region over a duration. From
sub-section Connecting Flow Tubes, we can see that because
there may be multiple continuous facts in a fact level that can
be resolved preconditions of an action, there may be multi-
ple flow tubes of the same action in one action level. In
that case, the multiple flow tubes share the same dynamic
bounds, but may connect different initial and goal regions.
For example, in Fig. 7 in Action Level 1, there are two action
nodes from the action glide, based on the different resolved
preconditions in Fact Level 1. A no-op action node can be
continuous or discrete depending on the type of the fact it
carries forward. So for example, if the fact is continuous,
then the no-op action node is a flow tube whose initial re-
gion and goal region are equal.

Exclusion Relations Similar to a Planning Graph, in a
Hybrid Flow Graph, two action nodes, either continuous or
discrete, at a given action level are mutually exclusive if no
valid plan could contain both. Likewise, two facts at a given
fact level are mutually exclusive if no valid plan could have
both satisfied. Different from Graphplan are the exclusion
rules that involve continuous facts or actions, i.e. Compet-
ing Needs II, Obstacle Avoidance and Causal Conflict. We
propagate the exclusion relationships through the graph us-
ing the following rules. We use mutex as a short term for
mutual exclusion in the rest of the paper.

• Interference: If an effect of action A negates an effect or
a precondition of action B, then A and B are mutex.

• Competing Needs I: If a discrete precondition of A and

rudder=t
GPS=t
(x,y)∈r1

(x=0,y=0)
GPS = f
rudder=f

fact level 0 action level 0

startRudder
getGPS
glide

(x=0,y=0)
GPS = f
rudder=f

fact level 1

startRudder
getGPS
glide1

descend
stopRudder
glide2

action level 1

t

y
x

0
0

d

glide

Figure 7: A Hybrid Flow Graph for the AUV seafloor map-
ping example. The dotted edges connect resolved precondi-
tions to actions and actions to their goal regions. The solid
edges connect preconditions to actions and actions to their
effects. The big dots represent no-op actions. The vertical
lines connect mutex actions or facts. The flow tube of action
glide in action level 0 is shown on top.

a discrete precondition of B negate one another or are
mutex, then A and B are mutex.

• Competing Needs II: If a resolved precondition of action
A and a resolved precondition of action B are mutex or
have an empty intersection, then A and B are mutex.

• Obstacle Avoidance: If the initial region or goal region of
a continuous action node A or a continuous precondition
of a discrete action node A has an empty intersection with
the inside obstacle or is contained by an outside obstacle,
then A is excluded.

• Causal Conflict: If each of fact A’s causal actions is mu-
tex with each of fact B’s causal actions, then A and B are
mutex, where a causal action of fact A is an action such
that either A is its effect or A is its goal region.

The Competing Needs II rule indicates, whether two con-
tinuous actions are mutex does not depend on the contin-
uous preconditions of the actions, but rather their resolved
preconditions. Fig. 8 and Fig. 9 shows an example. We
have two actions, listed on the right of Fig. 8. getGPS’s
continuous precondition corresponds to the x axis, and de-
scend’s continuous precondition corresponds to the region
above y = 50. The two regions overlap, but we need to
look at the resolved preconditions in order to decide about
mutex. Suppose the fact level is as in Fig. 9, and the two
continuous facts correspond to the two rectangular regions
in Fig. 8. From the definition of resolved preconditions,
(x, y) ∈ ([0, 5], [−3, 3]) can be the resolved precondition of
getGPS, and (x, y) ∈ ([10, 20], [10, 20]) can be the resolved
precondition of descend. Because they have an empty inter-
section, the two action instances are mutex.

0 x

y

50

Discrete Action getGPS
 continuous precondition: y=0

Continuous Action descend
 continuous precondition: y!50

Figure 8: Competing Needs II example: part I

rudder

GPS

(x,y)!([10,20],[10,20])

(x,y)!([0,5],[-3,3])

¬GPS

¬rudder

fact level i

getGPS

descend

mutex

Figure 9: Competing Needs II example: part II

Expanding the Hybrid Flow Graph Similar to Graph-
plan, we expand the graph by starting from Fact Level 0,
where the initial condition is contained; then keep adding
an action level, followed by a fact level, until the goal con-
dition is reached. As shown in the pseudo code Expand-
Graph(), for each fact level we go through all the possible
actions (line 4, 5) to check for the insertion conditions. The
pseudo code of routine CheckInsertion() gives the insertion
conditions for both actions and facts. The conditions are
similar to Graphplan in checking for discrete preconditions,
and inserting discrete effects. The conditions are different
from Graphplan in checking for continuous preconditions,
obstacles, and computing flow tube goal regions.

Let’s revisit the AUV example. Fig. 7 shows part of the
expansion of the flow graph for the planning problem in the
example. The initial condition is in Fact Level 0. We insert
discrete action startRudder because its only precondition is
in Fact Level 0. We insert discrete action getGPS because
its discrete precondition is in Fact Level 0 and its continuous
precondition y = 0 has a non-empty intersection with fact
(x = 0, y = 0). We insert continuous action glide because
its only precondition, ¬rudder, is in Fact Level 0. The initial
region of the glide flow tube is (x = 0, y = 0) and the
intersection of its goal region with the inside obstacle and
the complementary set of the outside obstacle is denoted by
r1. Hence r1 is inserted in Fact Level 1 along with other
effects. startRudder and glide are mutually exclusive due to
the Interference rule. The Interference rule also applies to
the other two pairs of mutex in Action Level 0. The three
pairs of mutually exclusive facts in Fact Level 1 are all due
to the Causal Conflict rule.

As mentioned before, similar to Graphplan, the way we
expand the graph does not guarantee every plan in the graph

is valid, but it guarantees all valid plans are included. The
step, where we encode the graph as an ML(N)LP and solve
it, makes sure that every solution plan is valid and optimal.

ExpandGraph - returns a Hybrid Flow Graph
1. start with the initial condition - Fact Level 0
2. while goal condition is not contained do
3. find mutex facts in current fact level
4. for each action
5. CheckInsertion()
6. for each fact in current fact level
7. form no-op action
8. find mutex actions in current action level

CheckInsertion - returns next action level, next fact level
1. if action a is discrete
2. check 1: a’s discrete preconditions are contained in
fact level
3. check 2: each of a’s continuous preconditions has a
non-empty intersection with a continuous fact in fact level
4. check 3: no two preconditions or resolved
preconditions of a are mutex
5. if the 3 checks are all true
6. insert a and a’s effects
7. if action a is continuous
8. check 1: a is not labeled as excluded
9. check 2: a’s discrete preconditions are contained in
fact level
10. check 3: each of a’s continuous preconditions has a
non-empty intersection with a continuous fact in fact level;
the intersection is the initial region of a’s flow tube
11. check 4: the goal region of a’s flow tube computed
from the initial region has a non-empty intersection r with
the inside obstacle and the complementary set of the
outside obstacles
12. check 5: no two preconditions or resolved
preconditions of a are mutex
13. if the 5 checks are all true
14. insert a and r

Constraint Encoding
Kongming encodes the Hybrid Flow Graph as an ML(N)LP,
based on a series of encoding rules. The rules are analogous
to those for Blackbox, which encodes a Planning Graph as
a SAT problem. The main difference from Blackbox is the
introduction of continuous variables and constraints.

Depending on the type of the dynamical system and the
obstacle representation used in a problem, the constraint en-
coding could be linear or nonlinear. Note that Kongming is
not limited to any specific type of continuous dynamics or
any dimensionality. The condition on which the flow tubes
are connected, the expansion of the Hybrid Flow Graph, the
mutex rules, and the constraint encoding rules are all inde-
pendent of the dynamics, dimensionality or the obstacle rep-
resentation. Aspects that are influenced are the method used
to compute the flow tubes, and the type of solver we choose
to solve the ML(N)LPs. The encoding includes both real-
valued and boolean variables. The real-valued variables are
the state variables for each fact level and the input variables

of each continuous action node. The boolean variables rep-
resent all the fact and action nodes in the graph. The objec-
tive function for a plan is over the variables and is any such
function handled by the solver.

• If fact F is true, at least one of F ’s causal actions is true.

• If continuous fact F in Fact Level i is true, the state vari-
ables of the fact level satisfy F .

• If action A is true, all A’s discrete preconditions and re-
solved preconditions are true.

• If continuous action A in Action Level i is true, the state
variables of Fact Level i satisfy A’s initial region, and the
state variables of Fact Level i and i + 1 and the input
variables of Action Level i satisfy A’s dynamic ODEs.

• Mutex facts or actions cannot both be true.

• Obstacles are avoided at all times.

The form of an ML(N)LP is shown in Fig. 10, where Φ is
recursively defined. It is MLLP when f(x) and g(x) are
linear; it is MLNLP when f(x) and g(x) are nonlinear.

€

minimize f (Χ)
 s.t. Φ(Χ)
Φ(Χ) := Φ(Χ)∧Φ(Χ) |Φ(Χ)∨Φ(Χ) |¬Φ(Χ) |
Φ(Χ)⇒Φ(Χ) |Φ(Χ)⇔Φ(Χ) | proposition | g(Χ) ≤ 0

Figure 10: The form of an ML(N)LP

High-level Algorithm
Roughly speaking, the high-level algorithm of Kongming in-
terleaves between expanding the Hybrid Flow Graph and en-
coding and solving the ML(N)LP. As shown in the pseudo
code Kongming(), the algorithm starts from Fact Level 0
and keeps expanding the graph until the goal condition is
reached (line 1). Then it encodes the graph as an ML(N)LP
and solves it with a standard solver (line 2). If no solution to
the ML(N)LP exists, Kongming keeps expanding the graph
one level at a time, until a solution is found (line 3-5). Un-
like Graphplan, Kongming is not guaranteed to terminate
if no valid plan exists, because there is no level-off in the
presence of an infinite number of possible continuous ac-
tion nodes and continuous fact nodes. This is not a major
issue for the range of hybrid problems we are interested in,
because it is rare that no valid plan exists.

If the solver outputs a solution, it is the optimal plan for
the current k-stage Hybrid Flow Graph. Hence, it is a local
optimum, rather than the global optimum. When the ob-
jective function is unrelated to the number of levels in the
graph, the following statement is true: if the goal condition
is contained in the Fact Level k and s∗ is an optimal so-
lution of the corresponding ML(N)LP, then there exists an
optimal solution for every expansion of the graph after level
k and the optimal solution is at least as good as s∗. This is
because each (fact or action) level is a superset of its previ-
ous level, and mutex in each (fact or action) level is a subset
of its previous level. Therefore, there are more choices in

terms of solving the ML(N)LP for a graph with more lev-
els. Hence, for a minimization problem, Kongming keeps
expanding the graph one level by one level until the optimal
value no longer improves (line 7-10), and that optimal value
is the global optimum.

Kongming()
1. ExpandGraph()
2. encode as ML(N)LP and solve
3. while no solution do
4. expand graph by one level
5. encode as ML(N)LP and solve
6. incumbent← +infinity
7. while current optimal value < incumbent do
8. incumbent← current optimal value
9. expand graph by one level
10. current optimal value← encode as ML(N)LP and
solve

Experimental Results
Kongming is implemented in Java, and tested on a variety
of AUV mission and Unmanned Air Vehicle (UAV) fire-
fighting examples involving linear dynamics. We use the
ILOG CPLEX solver to solve the MLLPs.

For example, one test problem we use is as follows. In
a science mission we need an AUV to go to two algal
bloom regions to perform a survey. The mission requires
the AUV to go up and down (a yoyo motion) inside the
two regions to take samples. Going up or down requires
the up or down rudder to be set within the desired range
of depth. Taking samples requires a gulper, which ”gulps”
samples, to be set and the AUV to be inside the algal bloom
regions while at the desired depth. The initial condition
is {(x, y, z) ∈ [0, 2]3, ¬sampleA, ¬sampleB, ¬gulper,
¬upRudder, ¬downRudder}, and the goal condition is,
{(x, y, z) ∈ ([80, 82], [0, 2], [0, 2]), sampleA, sampleB}.
The continuous actions are glide, descend and ascend, and
the discrete actions are setGulper, takeSample, setUpRud-
der, setDownRudder. The objective function is to minimize
the average depth z over time, in order to keep on the surface
as long as possible, so that it achieves maximum GPS cover-
age. Kongming found the optimal solution in 13.1 seconds,
from a graph with 14 levels. The left side of Fig. 11 shows
the trajectory, i.e. the solution to the state variables, and the
right side shows the corresponding action sequence. Note
that the output also includes the optimal solution to the con-
trol input variables, in this example, the x, y.z velocity for
each continuous action. In Fig. 11 along the optimal trajec-
tory, due to the fixed duration assumption and the velocity
limits, we cannot reach from point 6 to 8 in one time step,
so there has to be a point 7 in the middle. Since in this case
the cost is only on the z-axis, point 7 is required to be on the
surface but not necessarily in a straight line with 6 and 8 in
an optimal trajectory. Same with point 12.

To test the scaling of Kongming, we tested it on 48 prob-
lems with different numbers of discrete and continuous ac-
tions. The average computation time used to expand the
Hybrid Flow Graph and to encode and solve the MLLPs is
recorded in Fig. 12 and Fig. 13.

initial
region

goal
region

A

B0

1

2,3

4,5

6

7
8

9,10

11

12

13 0: glide
 1: glide
 2: setGulper, setDownRudder
 3: descend
 4: takeSample, setUpRudder
 5: ascend
 6: glide, setDownRudder
 7: glide
 8: descend
 9: takeSample, setUpRudder
10: ascend
11: glide
12: glide

Figure 11: On the left: the optimal trajectory of the example
problem. On the right: its corresponding action sequence.
The numbers along the trajectory mark the fact level in the
graph. The numbers next to the actions mark the action level
in the graph.

Figure 12: Computation time in milliseconds for different
number of discrete actions. Meanwhile, continuous actions
and continuous initial/goal conditions are kept the same.

Fig. 12 shows that scaling in terms of discrete actions is
efficient. This is expected with respect to the time used to
expand the graph, because it should follow the complexity
of Graphplan, which is polynomial in the number of discrete
actions. Comparing Fig. 13 to Fig. 12, we notice that scaling
in terms of continuous actions in Kongming is more difficult
than discrete actions. This is because while there can only
be one instance of a discrete action in any action level and
there are a finite number of discrete facts in a plan, there
can be multiple flow tubes of a continuous action in any
action level and there are potentially an infinite number of
continuous facts. The good news is that in real-world prob-
lems, there are only a small number of continuous actions
involved, because different continuous actions correspond to
different dynamics of the robot. For example, an AUV en-
gages 3 continuous actions: glide, descend and ascend. The
scaling issue will be addressed further in our future work.

Figure 13: Computation time in milliseconds for different
number of continuous actions. Meanwhile, discrete actions
and discrete initial/goal conditions are kept the same.

Conclusion & Future Work
This paper provides a novel solution to the generative plan-
ning problem for hybrid systems, where both continuous and
discrete actions are involved. The planner, Kongming, has
the following key innovations. First, a compact representa-
tion of all hybrid plans, called a Hybrid Flow Graph, which
combines the strengths of a Planning Graph for discrete ac-
tions and Flow Tubes for continuous actions. Second, a con-
straint encoding of the Hybrid Flow Graph in terms of an
ML(N)LP that is then solved by an off-the-shelf solver.

Currently we are working on removing the assumption
that actions have fixed and equal duration. It is not dif-
ficult to extend it to varying but fixed duration, in which
case different actions have different duration, but for each
action the duration is fixed. We can apply existing tempo-
ral planning methods, like LPGP or TGP, and keep most of
our algorithm unchanged. Extending it to flexible duration
is more challenging, because the time space is infinite and
the infinity is propagated into the state space. Future work
will also include extending the input from a goal condition
to a set of goals with temporal constraints among them. As
for real-world demonstration, we are collaborating with the
AUV Lab at MIT Sea Grant, who has several different types
of AUVs for sea deployment. Because the AUVs are con-
trolled by low-level controllers that take as input a sequence
of behaviors (i.e. actions) and way points, which are what
Kongming outputs, there is a natural interface between our
planner and the controllers.

Acknowledgments
This research is funded by The Boeing Company under grant
MIT-BA-GTA-1.

References
Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence.
Bradley, E., and Zhao, F. 1993. Phase-space control system
design. Control Systems 13(2).
Do, M. B., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. In Proceed-
ings of ECP.
Frank, J., and Jónsson, A. 2003. Constraint-based at-
tributes and interval planning. Journal of Constraints.
Gerevini, A.; Serina, I.; Saetti, A.; and Spinoni, S. 2003.
Local search for temporal planning in lpg. In Proceedings
of ICAPS.
Hofmann, A., and Williams, B. 2006. Robust execution of
temporally flexible plans for bipedal walking devices. In
Proceedings of ICAPS.
Joslin, D. 1996. Passive and active decision postponement
in plan generation. Ph.D. thesis, Carnegie Mellon Univer-
sity Computer Science Department.
Kautz, H., and Selman, B. 1997. Unifying sat-based and
graph-based planning. In Proceedings of ICAPS.
Kurzhanskiy, A. 2006. Ellipsoidal toolbox:
http://www.eecs.berkeley.edu/ akurzhan/ellipsoids/.

Long, D., and Fox, M. 2002. Fast temporal planning in a
graphplan framework. In Proceedings of ICAPS.
McGann, C.; Py, F.; Rajan, K.; Thomas, H.; Henthorn, R.;
and McEwen, R. 2007. T-rex: A model-based architecture
for auv control. In Proceedings of ICAPS Workshop.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. 1998.
Remote agent: To boldly go where no ai system has gone
before. Artificial Intelligence 103(1-2):5-48.
Penberthy, J., and Weld, D. 1994. Temporal planning with
continuous change. In Proceedings of AAAI.
Shin, J., and Davis, E. 2005. Processes and continuous
change in a sat-based planner. Artificial Intelligence 166.
Smith, D., and Weld, D. 1999. Temporal planning with
mutual exclusion reasoning. In Proceedings of IJCAI.
Vere, S. 1983. Planning in time: Windows and durations
for activities and goals. Pattern Matching and Machine
Intelligence 5.
Wolfman, S., and Weld, D. 1999. The lpsat engine and its
application to resource planning. In Proceedings of IJCAI.

