
Computing Exploration Policies via Closed-form Least-Squares Value Iteration ∗

Lawrence A. Bush, Brian Williams and Nicholas Roy
bushL2@csail.mit.edu, williams@mit.edu, nickroy@mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA, 02139

Abstract

Optimal adaptive exploration involves sequentially select-
ing observations that minimize the uncertainty of state es-
timates. Due to the problem complexity, researchers settle
for greedy adaptive strategies that are sub-optimal. In con-
trast, we model the problem as a belief-state Markov Deci-
sion Process and show how a non-greedy exploration policy
can be computed using least-squares value iteration. The key
to generating such a policy is our use of a non-standard re-
ward function for which we derive a closed form expected re-
ward expression, given a set of sensing actions. Furthermore,
by carefully selecting features to approximate the value func-
tion, we can compute value iteration backups in closed form.
We apply our approach to adaptive occupancy mapping and
demonstrate our method on problems of up to 103 grid cells,
solving example problems within 1% of the optimal policy.

Introduction
We are very good at collecting lots of information. Our re-
search is about collecting the right information. The optimal
adaptive exploration problem is to sequentially select obser-
vations that minimize the uncertainty of a state estimate. A
common example of this problem is occupancy map explo-
ration, in which a sensor seeks to minimize the uncertainty
over which grid cells are occupied, using a finite set of se-
quential observations. The tools we have at our disposal in-
clude a sensing platform, a generic signal processor, and a
pattern recognition engine to detect activities of interest.

A concrete example is autonomous ocean sampling (Mon-
terey Bay Aquarium Research Institute, 2006), where net-
worked sensing platforms detect activity of interest over a
geographic area (Figure 1). For example, a satellite could
collect ocean surface color data, which provides indications
of algae bloom formation. The data could be automatically
analyzed and aggregated into an algae bloom formation ac-
tivity map.

In this paper, we generate a synoptic activity map. Our
probablistic activity map provides a holistic approach to
characterizing ocean observations. The map can subse-
quently be used to direct the attention of other platforms
(e.g. autonomous underwater vehicles (AUVs)) for focused
exploration.

The method of searching the area affects the quality
of the map, and the problem is to generate the most in-
formative search plan. Due to the overall problem com-
plexity, researchers settle for sub-optimal adaptive greedy

∗Research supported in part by The Boeing Co. grant MITBA-GTA-1.

Figure 1: The AOSN in Monterey Bay integrates a va-
riety of modern platforms (e.g. satellites and AUVs)
to produce a comprehensive regional view of the ocean.
http//www.mbari.org/muse/images/MUSE 2001.jpg

strategies for choosing sensing locations. In other words,
rather than considering the combined consequences of the
current and potential future actions, only the first action
is evaluated. While greedy strategies perform reasonably
well (Guestrin et al., 2005), with a worst case optimality
of (1 − 1/e) (Krause & Guestrin, 2005), for many applica-
tions expensive resources are deployed based on the infor-
mation collected, amplifying the impact of sub-optimality.
Therefore, a better solution is very desirable. In this pa-
per, we show how domain specific problem structure can
be exploited, and a better sensing strategy can be efficiently
learned.

Methods: We review the use of open-loop feedback con-
trol (Bertsekas, 2005) and discrete state policy learning. Al-
though both methods would improve optimality, they are in-
tractable. Specifically, they solve problems infinitesimal in
size relative to relevant real-world problems.

Thus, our approach is to model the problem as a belief-
state Markov Decision Process (MDP) and learn a non-

myopic approximate policy via least-squares value iteration
(LSVI). Our key contribution is the closed form backup, en-
abling rapid learning and rapid rollout. Specifically, we per-
form LSVI efficiently by employing a non-standard reward
function for which we derive a closed form expected reward
expression (for a given set of sensing actions). By carefully
selecting the features to approximate the value function, we
can compute a full value iteration backup in closed form.
Specifically, we compute an entire value iteration backup
for all state samples and control actions as a single compact
matrix multiplication. We then use a full rollout algorithm
to select the control action, which maximizes the expected
outcome with respect to the base policy.

Organization: Our paper is organized as follows. We first
describe our formulation of the problem and characterize the
optimal solution. We review possible approaches and why
they are intractable. We then describe our learning algo-
rithm and performance results. Specifically, we show how
the expected reward can be computed in closed form, and
demonstrate how this enables efficient value function learn-
ing. We conclude with a demonstration of our approach on
a set of example activity detection problems of up to 1,089
grid cells, and show that we are able to find policies effi-
ciently that are within 1% of optimal.

Problem Model
Our task is to map the activity in an area and sequentially
decide where to sense next. We model the environment as
an occupancy grid, as shown in Figure 2. An occupancy
grid divides the area into discrete locations. The activity
is assumed to be located at specific “occupied” grid cells.
Without loss of generality, we assume that the activity does
not change location, and the sensor can be steered from one
aimpoint to any other aimpoint (i.e., the sensor is not con-
strained to follow a contiguous path).

We model the sensor as a 3 × 3 grid; that is, when the
sensor is aimed at a particular grid cell i, it observes that
grid cell and the 8 surrounding cells. Modeling the sensor
in this way allows two actions to partially overlap. There-
fore, the sensor can plan two actions that deliberately over-
lap in order to collect more information at the overlapping
grid cell. Each of the 9 measurements created by a single
sensing action is modeled as an independent Bernoulli dis-
tribution, with some probability of detecting the activity of
interest and some probability of false alarm.

The stochastic sensor measurements cause uncertainty re-
garding activity map state. Therefore, we infer the probabil-
ity of activity in a given cell using Bayes filtering, i.e.

pi = P (i|wi) = αP (wi|i)P (i) (1)

where pi represents the posterior probability that a grid cell
is occupied, wi is the sensor measurement for cell i, P (wi|i)
is the sensor model and P (i) is the prior probability of ac-
tivity at cell i. We refer to the probabilities of the entire grid
as a “belief map.”

The exploration process of building an accurate activity
map works as follows. We take a sensing action, which re-
turns a measurement for each of the 3×3 observed grid cells.
For each sensed cell, we then update the belief map p i using
equation (1). We then use the updated belief map to select
the next most informative sensing action.

Figure 2: Occupancy grid and Bayesian belief representa-
tion of our satellite sensing problem.

Figure 3: Example comparison of greedy and non-myopic
sensing action selection strategies.

Motivation For Our Approach

In this section we motivate our approach by first compar-
ing greedy and non-myopic strategies. We then discuss why
a non-myopic open-loop feedback control approach is in-
tractable. Finally, we formulate our problem as a belief-
state Markov Decision Process and analyze the complexity
of finding an optimal control policy.

Greedy Strategy
Our objective is to find the most informative sensing plan,
which minimizes map error. Since the true activity map state
is unobservable, we can instead minimize the uncertainty of
our belief regarding the activity in the area. A common sub-
optimal approach to the problem is a greedy strategy, which
looks one step ahead and selects the sensing action that re-
duces uncertainty the most. In the example shown in Figure
3, the boxes represent the map and red indicates the amount
of uncertainty. The greedy strategy takes a sensing action
right in the middle of the map, where uncertainty is great-
est. A non-myopic strategy, on the other hand, considers the
entire mission duration, consisting of 4 sensing actions in
this example. As the problem proceeds, we can see that the
greedy strategy made a poor initial decision, in the end, leav-
ing part of the map completely unobserved. Consequently,
the non-myopic strategy leads to reduced map uncertainty
over the entire mission duration.

Open-loop Feedback Control
One non-myopic approach to map exploration is open-loop
feedback control (OLFC). To select a sensing action, OLFC
generates an open loop plan (via search) for the mission du-
ration, which minimizes uncertainty. After the first action is
executed and the belief is updated, a new open loop plan is
generated for the remaining mission. The process continues
for the mission duration.

While OLFC is effective, it is also intractable. For exam-
ple suppose we have a problem with 1,000 locations and we
make 100 sensing actions per mission. In this case, there
would be 10300 possible plans. We cannot possibly search
over that many plans. For example, even if a fast computer
could evaluate 1 trillion plans per second and an efficient al-
gorithm could prune away 99.9999% of the plan space, it
would still take billions of years to consider the remaining
plans. To make matters worse, the detections are probabilis-
tic, which makes evaluating plan outcomes more expensive.
Furthermore, we need to update our belief about the world
after each sensing action, which requires us to re-plan in
real-time, based on our updated belief. As OLFC is far from
computationally tractable, the current state of the art uses
a randomized greedy strategy (Krause & Guestrin, 2005).
Our approach provides a better, non-myopic, solution while
maintaining tractability. Next we formulate the problem as
a belief-state MDP and analyze the complexity of finding an
optimal control policy.

Exploration as a Belief-state MDP
In this subsection we formulate the previously described oc-
cupancy grid model as a belief-state MDP, using basic prob-
lem notation (Bertsekas, 2005). The underlying imperfect
state information problem can be viewed as a perfect state
information problem whose probabilistic belief-state x is
conditioned on the information available (Bertsekas, 2005).
The belief-state x is comprised of the probability of occu-
pancy of each grid cell. Thus, p represents the probability
that a particular grid cell contains the activity of interest.
The probability can be any real number between 0 and 1.
Thus, the state space is an n-dimensional continuous space.

Following definition 10.7 from Bertsekas & Shreve
(1978), a belief-state MDP is defined as the tuple
{X, U, g, f, T}, respectively, the state space (X), control

actions (U), reward function (g), system dynamics (f) and
problem horizon (T). These variables are as follows:
• State space: The belief-state x = [p1 p2 . . . pn] is the

vector of the probability of activity in each grid cell (p i),
such that x ∈ X = [0, 1]n, where n is the number of cells.

• Control actions: The set of actions is the set of possible
sensing locations, u ∈ U = {1, 2, 3, . . . , n}, that is, we
can select any grid cell as the sensor aim-point, and the
sensor will observe that cell and the surrounding cells.

• System dynamics: We assume that each action u gener-
ates a set of sensor measurements w,

w = {w1 . . . w9} (2)
such that wj = {0, 1} (3)

and each wj is drawn according to the sensor model
P (w|ρ(j)), where ρ(j) maps the j-th observation to some
grid cell i. The transition from xt to xt+1 is given by

xt+1 = f (xt, u, w) (4)

and the state transition probability is the probability of
getting sensor measurement w, given our current belief-
state and control action u.

P (xt+1|u, xt) = P (w|u, xt) (5)

Thus, the system dynamics are dictated by a Bayesian
update given w. For example, we take control action u
and get sensor mearurements w; the collection of 9 sen-
sor measurements, one for each observed grid cell. We
then perform a Bayesian update according to equation (1)
to generate the next state. Hence, the probability of end-
ing up in state xt+1 is just the probability of getting sensor
measurements w, given the previous state and action u.

• Reward: Our objective is to minimize map error; the dif-
ference between our belief-state and the truth. Since we
cannot compute the actual error, a common approach is to
maximize entropy reduction.

g (x, u, w) = h (x) − h (f (x, u, w)) (6)

where

h(x) = −
∑

i

(pi log2 pi + (1 − pi) log2(1 − pi)) (7)

In other words, our reward is the decrease in entropy
caused by control action u.
Our task is to develop a strategy (also known as a policy)

for selecting control action u, whose outcome depends on
sensor return w, which in turn depends on the probability of
detection and whether or not a grid cell is occupied. Natu-
rally, we do not know if a grid cell is occupied; however, we
maintain a distribution over occupancy, which we call our
belief. Therefore, we have a certain expectation over how
much information, control action u will provide.

The optimal policy maximizes the expected reward over
the entire mission, w.r.t. the stochastic sensor returns.

J(x0) = max
ut

Ewt

[∑
t=0:T−1

g(xt, ut, wt)

]
(8)

Naturally, we can formulate the problem as a dynamic pro-
gram, which maximizes the expected one-stage reward g
plus the expected value J (Bellmann, 1957),

J(x) = max
u

Ew [g(x, u, w) + J (f(x, u, w))] . (9)

Figure 4: Value iteration backup diagram (discrete state-
space problem).

The dynamic programming equation is recursive. However,
given the optimal future reward function J , we could com-
pute the optimal control action u. Therefore, knowing the
value function J is tantamount to knowing the optimal con-
trol policy. Our objective is, therefore, to find the optimal
value function J .

Policy Learning Complexity
Unfortunately, solving the described MDP is intractable. To
be specific, there are no known methods for solving a con-
tinuous belief-state MDP exactly. Let us then consider a
discrete version of the problem. For example, suppose our
problem has 1,000 grid cells and we represent our belief at
each grid cell as 10 discrete probability intervals. We would
then have a huge number (101000) of discrete states. The cur-
rent state of the art for solving discrete MDPs includes two
methods (SPUDD and APRICODD) based on Abstract De-
cision Diagrams (Hoey et al., 1999; St-Aubin et al., 2000)
and one method based on Factored MDPs (Guestrin et al.,
2003), which can solve problems with 1040 states, a small
fraction of the size of our problem 1. Alternatively, our ap-
proach is to approximate J as a parametric function, and
learn an approximation of J using dynamic programming.

Closed Form Least Squares Value Iteration
We outline our closed form LSVI approach in this section.
We begin our discussion by outlining exact discrete value
iteration backup. We then discuss computational complex-
ity and our approach to addressing it. Specifically, we de-
tail our function approximation architecture and alternate re-
ward function.

Our main contribution is that we can compute a value it-
eration backup in closed form (with respect to the current

1POMDP techniques have analogous complexity issues. Con-
ventional POMDP techniques maintain a large set of α-vectors rep-
resenting the policy value, and back up each α-vector by comput-
ing an expectation over all possible sensor outcomes. It is exactly
this computation which we perform efficiently while avoiding the
POMDP formulation. Although approximate POMDP algorithms
have improved dramatically, the exploration problem complexity
still precludes using them for all but the simplest problems.

and approximate value functions). We prove our claim with
a derivation.

Value Iteration
Our objective is to learn value function J . For a discrete
state space, J is represented as a table of values (one record
for each discrete state). The table of values can be initialized
arbitrarily and improved iteratively. To iteratively improve
the value function estimate, for each x, we find control ac-
tion u that maximizes the expected current reward g plus the
expected future reward J (using our current value function
table J i).

J i+1(x)← maxu Ew

[
g(x,u, w) + J i (f(x, u, w))

]
(10)

The sensor measurements w are stochastic; therefore, the
expectation entails summing over the rewards, times their
probability of occurring.

J i+1(x)← max
u

∑
w∈{0,1}9

(
g(x, u, w) + J i (f(x, u, w))

)
P (w)

(11)
We compute this summation for each control action. We
then replace the current table entry J(x) with the new max-
imum value corresponding to the best control action. The
process (a value iteration backup) is shown in Figure 4.
The above process constitutes one iteration. We repeat the
process until J(x) converges.

The main problem with this approach is that we must per-
form a value iteration backup for every single state, which
would take far too long (i.e. for 101000 discrete states). Fur-
thermore, we cannot store the huge table representation of
J in memory, as no computer can hold (101000) values. We
address these complexities by representing J as a parametric
function. Furthermore, we employ a better reward function,
which serendipitously allows us to compute the summation
over w in closed form.

Linear Architecture: Formally, a linear architecture ap-
proximates J (x) by first mapping the state x to feature vec-
tor Φ (x) ∈ �k and by computing a linear combination of
those features Φ (x)β, where β is a function parameter vec-
tor. We compose Φ (x) by applying basis function φ () to
the probability of occupancy of each grid cell, such that

Φ (x) = [φ (p1) ... φ (pn)] (12)

We also use an intercept that our description ignores for sim-
plicity. We compute an improved value estimate Ĵ(x) for
state sample set Xs via value iteration backups, such that

Ĵ(x) = maxu Ew [g(x, u, w) + Japprox (f(x, u, w))] ,
(13)

where Japprox (·) = Φ (·)β.
We then update our estimate of Japprox using regression,

where

Φ (Xs) =

⎡
⎣ Φ (x1)

...
Φ (xν)

⎤
⎦ (14)

is a set of feature vectors for all state samples and

Ĵ (Xs) =

⎡
⎢⎣

Ĵ (x1)
...
Ĵ (xν)

⎤
⎥⎦ (15)

Figure 5: RMSE versus Entropy.

is the updated value estimate for all state samples.
We re-estimate the parameters β of our function as

β =
(
Φ (Xs)

T × Φ (Xs) + λI
)−1

Φ (Xs)
T

Ĵ (Xs) (16)

where ridge penalty λ ensures invertiblity and can be in-
creased to reduce estimation variance at the expense of in-
creased bias. Our updated Japprox (x) = Φ (x) β now esti-
mates our new target value Ĵ (x) in a least squares sense.

To summarize, we simulate a next state and plug that state
into Japprox, our approximate value function. As the sensor
measurements are stochastic, we must sum over the rewards
of each possible future state. In the next subsections, we
show how a better reward function allows us to compute the
summation (i.e. expectation) over g in closed form. Further-
more, if we carefully select our features, we can also com-
pute the summation over Japprox in closed form. The better
reward function we are referring to is root mean squared er-
ror (RMSE).

Better Reward Function : Root Mean Squared Error
This subsection motivates why RMSE makes sense as a re-
ward function. Recall that our initial reward function was
entropy, which is a measure of uncertainty. Likewise, RMSE
is also a measure of uncertainty, specifically it is the standard
deviation of a binomial distribution. Our system is well-
modeled by a binomial distribution, in that a grid cell is ei-
ther occupied or unoccupied, and we maintain a distribution
over occupancy, called our belief.

Figure 5 shows that RMSE looks very much like entropy;
entropy being the traditional measure of uncertainty and the
basis of information theory. However, entropy is not directly
related to our intended decision. On the other hand, RMSE
is directly related to expected map error, computed as the
true occupancy ø ∈ {0, 1} minus our estimate p squared,
multiplied by the probability with respect to occupancy.

E[(ø−p)
2
] =

∑
ø∈{0,1}

(ø−p)
2
P (ø) = (0−p)

2
(1−p)+(1−p)

2
p = p(1−p)

(17)

Thus, RMSE is not just a reasonable proxy for entropy, it is
actually a more appropriate reward as it is directly related to
our intended decision. However, the main benefit of using
RMSE is its computational properties.

Closed Form Value Iteration Backup
During a value iteration backup, for each control action we
compute the expected current plus (approximate) future re-
ward, as a weighted sum over potential sensor outcomes.
Using RMSE, rather than Entropy, we can compute the ex-
pected current reward g in closed form. Furthermore, if we
carefully select the features of our function Japprox, we can
also compute the sum over Japprox in closed form. There-
fore, using RMSE, we can compute the entire expectation
with respect to w as a single dot product.

Put another way, we avoid the complexity of a stochastic
transition function. We instead use a deterministic expres-
sion with respect to current and approximate future rewards,
which gives us the exact same result. We extend this concept
to every control action u and every state sample s, to com-
pute a backup for all samples, states and actions, as a single
matrix multiplication. This is a very unusual property for
an interesting distribution and useful reward function, which
speeds up our computation considerably.

Closed Form E[RMSE]: Here we derive a closed form
expression for the expected RMSE, given a set of t sensing
actions and our prior belief x. We then show how this gen-
eral derivation can be applied to a value iteration backup.

We first observe that the expected reward per grid cell is
conditionally independent given t. Therefore, from t sensing
actions we count the n observations of a particular grid cell
due to the overlapping 3×3 footprints. We then compute the
E[RMSE] for that cell. We define the following notation:

• n: number of observations at a given cell
• k: number of detections
• a = P (detection)
• b = P (false-alarm)
• p = P (occupancy), where

P (occupancy|detection) =
P (detection|occupancy)P (occupancy)

P (detection)
.

(18)

Thus, a Bayesian update, computing the posterior proba-
bility that a cell is occupied given just one single detection
(n = 1, k = 1), is expressed using the above notation as:

ppost|n=1,k=1 =
ap

ap + b(1− p)
(19)

Next we will compute a Bayesian update for a particular
cell, given a possible set of n sensor returns. We observe that
the computed posterior is the same regardless of the sensor
return order. Thus, the posterior probability that a cell is
occupied given k detections (ppost) is

ppost =
(1− a)(n−k) akp

(1− a)(n−k) akp + (1− b)(n−k) bk (1− p)
(20)

Similarly, the posterior probability a cell is unoccupied is

1− ppost =
(1− b)(n−k) bk (1− p)

(1− a)(n−k) akp + (1− b)(n−k) bk (1− p)
(21)

Thus, E[RMSE] may be computed as the sum over the pos-
terior RMSE times the likelihood of getting k detections and
n − k non-detections, given prior p. We weight the likeli-
hood given occupancy by the prior probability of occupancy
(and vice versa), then multiply by the binomial coefficient
(the number of k-element subsets of an n-element set) to get

E [RMSE] =
n∑

k=0

{ (
(1− a)(n−k) akp + (1− b)(n−k) bk (1− p)

)
× n!

k!(n−k)!

√
ppost (1− ppost)

}
(22)

Notice the normalizing denominator of a Bayesian update
is also the likelihood of the data given the model. Therefore,
when we spell out the posterior RMSE

√
ppost (1 − ppost) =

√
(1 − a)(n−k) akp (1 − b)(n−k) bk (1 − p)(

(1 − a)(n−k) akp + (1 − b)(n−k) bk (1 − p)
)

(23)

we see that its denominator conveniently cancels out the
observation likelihood, resulting in:

E [RMSE] =
n∑

k=0

n!
k!(n−k)!

√
(1− a)(n−k) akp (1− b)(n−k) bk (1− p)

(24)
The key reason we are able to reduce equation (22) to equa-
tion (24) is that both posterior denominators are the same
and

√
d2 = d, a reduction is particular to RMSE. We then

pull out the prior and reorganize the sensor parameters.

E [RMSE] =√
p (1− p)

n∑
k=0

n!
k!(n−k)!

√
ab

k√
(1− a) (1− b)

n−k (25)

We then apply the Binomial Theorem:

(x + y)n =

n∑
k=0

n!

k! (n− k)!
xn−kyk, (26)

If we let x =
√

ab and y =
√

(1− a) (1− b) then

E [RMSE] =
√

p (1− p)
(√

ab +
√

(1− a) (1− b)
)n

(27)

Set c =
√

ab+
√

(1− a) (1− b) (a constant of our sensor model).
Note that equation (27) allows us to compute the expected
RMSE reduction (our reward) for a given cell after n mea-
surements. The computation is simply our prior RMSE
times (1 − cn). Therefore, when performing a value iter-
ation backup, we can quickly compute the expected current
reward for the entire grid by applying (1− c)×

√
pi (1− pi)

at the observed grid cells. Furthermore, we show that, us-
ing RMSE as our basis functions, we can compute the sum
over Japprox in closed form. As it turns out, we also achieve
good results by doing so.

Closed Form E[Japprox()]: Japprox () is our approximate
value function, and β is the parameter set of our linear func-
tion over our features. Our features (or basis functions)
are defined as φ (·) =

√· (1 − ·). Specifically, we com-
pute the RMSE per grid cell of the resulting posterior state.
Serendipitously, these features allow us to approximate the
value function reasonably well. Furthermore, they allow us

Algorithm 1 Closed Form Least Squares Value Iteration

Input: {X, U, g, f, T}
Initialize β = [0...0]T
Construct C
repeat

Xs = samples(X)
Ĵ (Xs) = maxrowsΦ (x) ((1 − C) + (C ⊗ β × γ))

β =
(
Φ (Xs)

T Φ (Xs) + λI
)−1

Φ (Xs)
T

Ĵ (Xs)
until near-convergence
return(β)

to compute the expectation in closed form. We compute
Ew [Japprox (f (x, u, w))] on a per-cell basis as follows.

E
w

[J (f(p, u, w))] = E
w

[J (ppost)] = E
w

[βφ (ppost)] =

E
w

[
β
√

ppost (1 − ppost)
]

= β E
w

[√
ppost (1 − ppost)

] .

(28)

As shown above, we can compute Ew

[√
ppost (1− ppost)

]
in closed form as c × √

p(1 − p). Consequently, we can
combine the closed form expectation of g + Japprox into a
single expression, such that√

p(1− p)+Ew

[
−

√
ppost(1− ppost) + β

√
ppost(1− ppost)

]
(29)

=
√

p(1− p) +−c
√

p(1− p) + cβ
√

p(1− p)

=
√

p(1− p) ((1− c + βc))

= φ(p) ((1 + c(β − 1)))

The above expressions are given for a single grid cell. We
can compute a backup for all grid cells, given action u, as
a dot-product by representing Φ (x) as a row vector and by
constructing a column vector, containing a 1 for each unob-
served grid cell and

√
ab +

√
(1 − a) (1 − b) for each ob-

served grid cell. Thus we can concatenate the multiplier
vectors ∀u into a single square matrix C and compute an
entire backup ∀u as a max over a single dot product:

Ĵ (x) = maxΦ (x)T ((1 − C) + (⊗β)) (30)

where ⊗ is an element-wise multiplication. Finally, if we
concatenate our feature vectors vertically, we can compute
an entire backup for all belief-state samples Xs as a max
over a single matrix multiplication (note addition of γ).

Ĵ (Xs) = max
rows

Φ (Xs)
T ((1 − C) + (C ⊗ βγ)) (31)

For additional efficiency, we approximate the finite stage
problem as an infinite horizon problem with discount rate
γ = 1/T , where T is the mission horizon. The mean of
a geometric distribution with success probability 1/T is T .
Thus, the discount rate was chosen such that the equivalent
stochastic shortest path problem would have an average of T
stages or actions. The infinite horizon approximation allows
us to compute just one value function Japprox. Our results
show that the approximation is effective. Algorithm 1 shows
the closed form LSVI pseudo-code.

Figure 6: Un-normalized results, Least Squares Value Itera-
tion (approximate dynamic programming) approach.

Figure 7: Normalized results, Least Squares Value Iteration
(approximate dynamic programming) approach (red dotted
line). Performed optimally up to problem size ∼ 200. Per-
formance tapers and levels off.

Figure 8: Rollout considers each action and simulates where
the approximate policy will lead.

Algorithm 2 Rollout Algorithm

Input: {X, U, g, f, T}, xt,base-policyμβ

J̃ut (xt) = E
wt

[g (xt, ut, wt)]

+ E
wk

[∑
k=t+1:T−1

g (xk, μβ(xk), wk)

]

return(argmaxu(J̃u (xt)))

LSVI Results

Our results demonstrate the significant benefit of our ap-
proach. We tested our method on problems with uniform
prior beliefs (see Appendix A for details). Our method
scaled from 25 grid cells to 1,089 grid cells. We measure
performance in terms of RMSE reduction over the mission
horizon. Our method is shown in Figure 6 as the red dot-
ted line. As one can see, our method performed better than
greedy (blue line) on all problems. We can normalize the re-
sults in order to inspect them more closely. As shown in Fig-
ure 7, our method performed optimally up to problem size
∼ 200. The performance then tapers gracefully and levels
off. These initial results are very encouraging; however, we
are able to improve upon them using rollouts.

LSVI + Rollout Results

Rollout is a method for extracting a policy at runtime, which
uses some additional computation but tends to make better
action selections (Bertsekas & Castanon, 1999). For the full
details of rollout, see (Bertsekas, 2007). Here we provide
an intuitive explanation. Typically, we determine the policy
at runtime by finding the control action u which maximizes
the dynamic programming equation (13), with respect to our
approximate value function Japprox. On the other hand, the
rollout algorithm selects the control action that maximizes
the expected outcome with respect to a multi-stage rollout
of the base policy. A multi-stage rollout computes (via sim-
ulation) the expected outcome of the base policy over the
remaining mission horizon (Algorithm 2). In other words,
rollout maximizes over the initial action choice based on
where the base policy will lead (see Figure 8). By doing
so, rollout makes better control action selections. Rollout
is somewhat expensive for stochastic systems (Bertsekas &
Castanon, 1999); however, our closed form expected reward
expression makes rollout quick.

Figure 9 shows our results using rollout, indicated by the
magenta dotted line. As shown, our closed form LSVI plus
rollout performed within 1% of optimal on all problems.
These near-optimal results are much better than expected
and leave little room for improvement. Our closed form ver-
sion of LSVI + rollout generated the results efficently on
problems where all other exact methods would never finish.

Figure 9: Normalized results: LSVI + Rollout (magenta dot-
ted line) performed within 1% of optimal on all problems.

Contributions
Current methods employ greedy sensing action selection.
The non-mypoic approach has been avoided as no exact or
approximate MDP solver has been shown to work on rel-
evant problem sizes in this domain. Our contribution is a
belief-state MDP sensor tasking problem formulation and
an efficient function approximation dynamic programming
scheme for control policy learning. The result is efficient
non-myopic sensing action selection.

Our key innovation, which makes function approxima-
tion dynamic programming efficient, is our derivation of a
closed form expected reward expression for the alternate re-
ward function RMSE. Likewise, we enable a closed form
value iteration backup by selecting basis functions for our
value function architecture, which coalesce with the current
reward function. We further improve the performance of the
resulting policy using rollout. Our method solved large state
space problems within 1% of optimal, garnering significant
improvement over the state-of-the-art of both optimal explo-
ration and dynamic programming.

References
Bellmann, R. (1957). Dynamic programming. NJ: Princeton Uni-

versity Press.

Bertsekas, D. P. (2005). Dynamic programming and optimal con-
trol vol. i, 3rd ed. Cambridge, MA: MIT Press.

Bertsekas, D. P. (2007). Dynamic programming and optimal con-
trol vol. ii, 3rd ed. Cambridge, MA: MIT Press.

Bertsekas, D. P., & Castanon, D. A. (1999). Rollout algorithms
for stochastic scheduling problems. Journal of Heuristics, 5,
89–108.

Bradtke, S. J., & Barto, A. G. (1996). Linear least-squares algo-
rithms for temporal difference learning. Mach. Learn., 22, 33–
57.

Burgard, W., Fox, D., & Thrun, S. (1997). Active mobile robot
localization (Technical Report IAI-TR-97-3).

Cassandra, A. R., Kaelbling, L. P., & Kurien, J. A. (1996). Acting
under uncertainty: discrete bayesian models for mobile-robot
navigation. In Proceedings of the International Conference on
Intelligent Robots and Systems.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003). Ef-
ficient solution algorithms for factored MDPs. Journal of Artifi-
cial Intelligence Research, 19, 399–468.

Guestrin, C., Krause, A., & Singh, A. P. (2005). Near-optimal sen-
sor placements in gaussian processes. ICML ’05: Proceedings
of the 22nd international conference on Machine learning (pp.
265–272). New York, NY, USA: ACM.

Hoey, J., St-aubin, R., Hu, A., & Boutilier, C. (1999). Spudd:
Stochastic planning using decision diagrams. In Proceedings
of the Fifteenth Conference on Uncertainty in Artificial Intelli-
gence (pp. 279–288). Morgan Kaufmann.

J. Boyan, A. M. (1995). Generalization in reinforcement learning:
Safely approximating the value function. Tesauro, Touretzky and
Leen edition of Advances in Neural Information Processing Sys-
tems.

Krause, A., & Guestrin, C. (2005). Near-optimal nonmyopic value
of information in graphical models. Proceedings of the 21th An-
nual Conference on Uncertainty in Artificial Intelligence (UAI-
05) (pp. 324–33). Arlington, Virginia: AUAI Press.

Monterey Bay Aquarium Research Institute
(2006). Autonomous ocean sampling network.
http://www.mbari.org/aosn/default.htm.

Roy, N., Choi, H.-L., Gombos, D., Hansen, J., How, J., & Park, S.
(2007). Adaptive observation strategies for forecast error mini-
mization. Lecture Notes in Computer Science.

Sim, R., & Roy, N. (2005). Global a-optimal robot exploration in
slam. Proceedings of the International Conference on Robotics
and Automation. Barcelona, Spain.

St-Aubin, R., Hoey, J., & Boutilier, C. (2000). APRICODD: Ap-
proximate policy construction using decision diagrams. NIPS
(pp. 1089–1095).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An
introduction. Belmont, MA: Athena Scientific.

Tesauro, G. (1995). Temporal difference learning and td-gammon.
Communications of the ACM.

Appendix A

Test Problems: It is important to measure the optimality gap
reduction of our approach with respect to a greedy approach. Yet it
is generally impossible to know the optimal solution value. In order
to test for optimality we used a unique problem instance, whose
optimal solution value can be calculated via Lagrange relaxation
with our closed form E[RMSE] expression.

Our test problems have uniform .5 prior beliefs for all grid cells
and each problem allows n sensing actions which can evenly cover
the map. For example, we tested a 33 × 33 problem allowing 121
sequential sensing actions. Thus, the optimal open loop plan is to
evenly tile the sensing area with 11 rows of 11 sensor footprints.
We can prove this property via Lagrangian relaxation. General
problems with unequal priors and an arbitrary number of sensing
actions do not have an elegant solution. Our policies were trained
on arbitrary problems. They performed well on both arbitrary and
special case problem, with respect to the greedy solution. However,
we can only measure the optimality gap for our special problems.

Lagrange Relaxation: We solve the test problems using La-
grange relaxation, by relaxating the sensor footprint and integral-
ity constraints. Thus, the relaxed problems allow a single sensing
action to cover non-adjacent cells as well as a non-integer num-
ber of sensing actions per cell. The Lagrangian relaxation solu-
tions satisfy the original constraints, thus are optimal. Note that
our test problem is a special case, with solution properties which
do not hold for virtually every other instance. Consequently, the
general problem class requires our more sophisticated policy based
approach. Yet the test problems exhibit all of the relevant com-
plex decisions of the general problem class. Consequently, our test
problems offer a valid solution optimality comparison.

