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Abstract  

Autonomous systems operating in real-world environments 
must plan, schedule, and execute missions while robustly 
adapting to uncertainty and disturbance. One way to 
mitigate the effect of uncertainty and disturbance is to 
dynamically schedule the plan online, through dispatchable 
execution. Dispatchable execution increases the efficiency 
of plan execution by introducing (1) a compiler that reduces 
a plan to a dispatchable form that enables real-time 
scheduling, and (2) a temporal plan dispatcher that 
schedules start times of activities (or controllable events) 
dynamically in response to disturbances. Previous work 
addresses efficient dispatchable execution of plans 
described as Simple Temporal Problems (STPs).  While 
STPs have proven useful for many applications, Temporal 
Constraint Satisfaction Problems (TCSPs) provide a more 
rich language by introducing disjunctive constraints. 
However, previous approaches to dispatchable execution of 
disjunctive temporal plans are intractable for moderately-
sized problems. 
 The key contribution of this paper is an efficient 
algorithm for compiling and dynamically scheduling 
TCSPs. We present an incremental algorithm that compiles 
a TCSP to a compact representation, encoding the solution 
set in terms of the differences among solutions. We 
empirically demonstrate that this novel encoding reduces 
the space to encode the solution set by up to three orders of 
magnitude compared to prior art, and supports fast dynamic 
scheduling.  

Introduction  
Real-world autonomous agents must be able to schedule, 
and execute mission plans while robustly anticipating and 
adapting to uncertainty and disturbance. One way to 
mitigate the effect of uncertainty and disturbance is to 
dynamically schedule plan activities online, just before the 
activity is executed. This allows the scheduler to adapt to 
disturbances that have occurred prior to the activity 
without introducing unnecessary conservatism; this type of 
dynamic scheduling is called dispatchable execution. 
Dispatchable execution increases the efficiency of plan 
execution by introducing a compiler and a dispatcher. The 
compiler reduces a plan to a form that enables real-time 
scheduling. A temporal plan dispatcher then schedules 
activities online, dynamically in response to disturbances, 
while guaranteeing that the constraints of the plan will be 
satisfied. Dispatchable execution is domain independent 
and has been successfully applied to scheduling within the 

avionics processor of commercial aircraft (Tsamardinos et 
al. 1998), space probes (Muscettola et al. 1998b), 
autonomous air vehicles (Stedl 2004), and walking robots 
(Hofmann et al. 2006).  

Previous work has addressed efficient real-time 
scheduling of plans whose temporal constraints are 
described as Simple Temporal Problems (STPs) or STPs 
with Uncertainty (STPUs) (Dechter et al. 1991, Muscettola 
et al. 1998, Tsamardinos et al. 1998). STPs and STPUs 
provide a language for temporal constraints that is made 
tractable through simple interval constraints. Although 
STPs and STPUs have proven useful for important 
applications, their applicability to many problems is 
limited by their lack of disjunctive constraints.  
 Temporal Constraint Satisfaction Problems (TCSPs) 
extend STPs by allowing binary constraints to be expressed 
as sets of disjunctive intervals. Previous work in 
dispatchable execution has been developed for disjunctive 
temporal constraint networks (Tsamardinos 2001). First, 
offline, the disjunctive temporal constraint network is 
searched for all consistent component STPs, where each 
component STP is defined by selecting one simple interval 
from each disjunctive constraint (Dechter et al. 1991). This 
approach is the basis of most modern approaches for 
solving temporal problems with disjunctive constraints 
(Stergiou et al. 2000, Oddi and Cesta 2000, Tsamardinos 
and Pollack 2003). Dispatching the disjunctive temporal 
constraint network then involves (1) maintaining data 
structures for each of the viable component STPs, (2) 
computing interrelationships among the component STPs 
online, and (3) propagating timing information online 
simultaneously to multiple STPs (Tsamardinos 2001).  
However, this approach becomes costly for moderately-
sized problems. First, a significant amount of space is used 
to represent the solution set of disjunctive temporal plans. 
Second, repeated online computations, and propagation of 
timing information in multiple STPs contribute to 
execution latency.  

We propose an efficient approach to compiling and 
dynamically scheduling disjunctive temporal constraint 
networks. We present an incremental algorithm that 
compiles a TCSP to a compact representation that encodes 
the solution set in terms of only the differences among 
viable component STPs. The algorithm is developed as a 
set of incremental update rules in the spirit of other 



incremental algorithms for truth maintenance (Doyle 1979, 
Williams et al. 1998), informed search (Koenig et al. 
2001), and temporal reasoning (Shu et al. 2005). The 
incremental update rules exploit the causal structure of the 
TCSP to propagate constraint information as previous 
algorithms for incrementally maintaining dispatchability of 
STPs and STPUs (Shah et al. 2007). We apply incremental 
update rules to identify and record the logical 
consequences that a particular simple interval constraint 
(or a set of simple intervals) implies on the other 
constraints in the TCSP. We empirically show that the 
resulting compact representation reduces the space 
necessary to encode the TCSP solution set by up to three 
orders of magnitude, compared to prior art.  

The compact representation also enables fast dynamic 
scheduling by addressing two major sources of execution 
latency: (1) the need to compute interrelationships among 
component STPs online, and (2) the need to propagate 
timing information online simultaneously to multiple 
STPs.  The compact representation of the TCSP solution 
set already encodes interrelationships among viable 
component STPs. This reduces the amount of work 
necessary to identify interrelationships among component 
STPs online. Performing dynamic scheduling on this 
compact representation also eliminates the need to 
propagate timing information simultaneously to multiple 
STPs.  We empirically show that performing dispatchable 
execution on this compact representation yields low 
execution latency, and scales well with the size of the 
disjunctive temporal constraint network.  

Background 

Simple Temporal Problems 
A Simple Temporal Problem (STP) is composed of a set of 
variables X1,…Xn, representing timepoints with real-valued 
domains and binary constraints. Binary constraints are of 
the form: 
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A solution to an STP is an assignment to each timepoint 
such that all constraints are satisfied. An STP is said to be 
consistent if at least one solution exists. Checking an STP 
for consistency can be cast as an all-pairs shortest path 
problem. The STP is consistent iff there are no negative 
cycles in the all-pairs distance graph. This check can be 
performed in O(n3) time (Dechter et al. 1991). 

The all-pairs shortest path graph of a consistent STP is 
also a dispatchable form of the STP, enabling real-time 
scheduling. A network is dispatchable if for each variable 
XA it is possible to arbitrarily pick a time t within its 
timebounds and find feasible execution times in the future 
for other variables through one-step propagation of timing 
information. The constraints in the dispatchable form may 
then be tightened to remove all redundant information 
(Muscettola et al.  1998). The resulting network is a 

minimal dispatchable network, which is the tightest 
representation of the STP constraints that still contains all 
solutions present in the original network.  

During plan execution, a significant disturbance may 
require modifying constraints in the STP online. The STP 
must then be quickly compiled back to a dispatchable 
form.  Shah et al. (2007) introduce an incremental 
algorithm for maintaining dispatchability of STPs in 
response to plan changes.  For example, when a constraint 
is tightened, the following Dynamic Back-Propagation 
(DBP) rules are used to propagate the logical consequences 
of this constraint change throughout the network:   

Given a dispatchable STP with associated distance graph 
G: (i) Consider any tightening (or addition) of an edge AB, 
such that d(AB) = y, where y>0 and A! B. For all edges 
BC such that d(BC)= u <= 0, it follows that d(AC) = y + 
u. (ii) Consider any tightening (or addition) of an edge BA 
such that d(BA)= x, where x <= 0 and A! B; for all edges 
CB such that d(CB)= v, where v >= 0, it follows that 
d(CA) = x+v. 

Recursively applying rules (i) and (ii), when an edge is 
tightened in a dispatchable distance graph, will either 
expose an inconsistency or result in a dispatchable graph. 
The key feature of DBP is its increased efficiency because 
it only requires a subset of the edges to be checked to 
ensure that the modified constraint is consistent, rather 
than all edges when the all-pairs graph is computed. 

Temporal Constraint Satisfaction Problems 
  A Temporal Constraint Satisfaction Problem (TCSP) 
extends an STP by allowing multiple intervals in 
constraints, given by the power set of all intervals: 
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Determining consistency for a TCSP is NP-hard (Dechter 
et al. 1991). In previous work, a TCSP is viewed as a 
collection of component STPs, where each component STP 
is defined by selecting one STP constraint (i.e. one 
interval) from each TCSP constraint. Checking the 
consistency of the TCSP involves searching for a 
consistent component STP (Dechter et al. 1991). This 
approach is the basis of most modern approaches for 
solving temporal problems with disjunctive constraints 
(Stergiou et al. 2000, Oddi and Cesta 2000, Tsamardinos 
and Pollack 2003).  
 Previous work in dispatchable execution of disjunctive 
temporal plans (Tsamardinos 2001) first requires searching 
for all consistent component STPs. Once all component 
STPs have been identified, the next step is to summarize 
the information in the component STPs and to identify 
interrelationships among the solutions. This step is 
necessary to determine when events can be executed, and 
to ensure during execution that all viable solutions are not 
eliminated simultaneously. Previous work performs this 
step repeatedly online as events are executed and solutions 
are eliminated. Whenever an event is executed, timing 



information is then propagated online to all remaining 
viable component STPs.  
 There are two shortcomings to this approach. First, a 
significant amount of space is necessary to represent the 
solution set of even moderately-sized TCSPs. Second, 
repeated online computation and propagation of timing 
information to multiple STPs contribute to execution 
latency. Next, we propose an efficient approach to 
compiling and dynamically scheduling disjunctive 
temporal constraint networks that addresses these 
shortcomings.     

Incremental Algorithm for Compiling a TCSP 
to a Compact Dispatchable Form 

In this section we present an Incremental Compilation 
Algorithm (ICA-TCSP) for compiling a TCSP to a 
compact dispatchable form. The key idea behind ICA-
TCSP is to apply the Dynamic Back-Propagation (DBP) 
rules, described in (Shah et al. 2007), in a novel way to 
systematically investigate and record the logical 
consequences that a particular simple interval constraint 
implies on other constraints. The key innovation of this 
work is a compact representation that encodes a TCSP 
solution set in terms of only the differences among the 
component solution STPs. As we empirically show in the 
next section, this compact representation reduces the space 
to encode the solution by up to three orders of magnitude. 

Since DBP rules may only be applied to STP plans with 
simple temporal constraints, mapped to a dispatchable 
form, we first compile a relaxed version of the TCSP to 
dispatchable form. The relaxed problem and DBP rules are 
then used to compile the original TCSP to the compact 
dispatchable form.  

The algorithm is composed of four main steps. We use 
the example TCSP in Fig. 1(a) to illustrate the steps. Step 
1 relaxes the TCSP to an STP. This is accomplished by 
relaxing each disjunctive binary constraint in the TCSP 
(Fig. 1(a)-(b)). For each disjunctive constraint, a new 
simple temporal constraint is constructed using the 
lowerbound and upperbound of the union of intervals in 
the disjunctive constraint. Step 2 then compiles the 
resulting STP to dispatchable form (Fig. 1(b)). Step 3 
reverts each of the relaxed constraints back to disjunctive 
form, and places each interval (disjunct) of the reverted 
constraints on a queue (Fig. 1(c)). 
In Step 4, relationship lists are created for each simple 
interval constraint on the queue. The DBP rules are then 
applied to infer the effect of selecting one of these simple 
intervals on the other constraints in the problem. The 
logical consequences of each simple interval constraint are 
then recorded in the interval’s relationship list. During this 
process, if two or more simple interval constraints are 
found to be inconsistent, the set of intervals is recorded as 
a conflict. The final compiled form, including the reverted 
TCSP, its relationship lists and conflicts, is presented in 
Fig. 1(d).   

 
Figure 1(a):  Example TCSP 

 
Figure 1(b):  Example TCSP relaxed to a STP and compiled to 
dispatchable form. 

 
Figure 1(c):  Reverted  TCSP with Queue of reverted constraints. 
 

 
Figure 1(d):  Compiled Compact Dispatchable Form of TCSP. 
  
Next we explain, with examples, how the DBP rules are 
used to build the relationship lists and conflicts.   

Applying Dynamic Back-Propagation Rules 
 Given a relaxed STP in dispatchable form, Step 4 
reintroduces disjunctive constraints and creates a 
relationship list for each simple interval constraint on the 
queue. Next, we use the DBP rules in a novel way to 
systematically investigate and record the logical 
consequences that a particular simple interval constraint 
implies on other constraints. We use to DBP rules to 
accomplish this as follows:  
 For each simple interval constraint on the queue, we first 
tighten the constraint in the reverted TCSP to match this 
simple interval. For example, in Fig. 1(c), consider the 
simple interval DE[2,3] shown at the top of the queue. We 
tighten constraint DE [2,3]V[6,10] in the reverted TCSP to 
[2,3], to match the simple interval DE[2,3] on the queue. 
This requires tightening constraint DE’s highest 
upperbound from 10 to 3. We now propagate the effect of 
this tightened constraint throughout the rest of the reverted 
TCSP using the DBP rules. Recursively applying DBP 
rules (i) and (ii) modifies a subset of the constraints, as it 
derives the logical consequences of choosing DE[2,3] to be 
part of a solution to the TCSP. A record of these logical 

  B [5,9]   C   A   D   E [1,5] [1,4] [2,3]V[6,10] 

[8,17] [15,16] 

[7,13] [6,13] [6]V[11] 

[16,21] 

DE[2,3] 
AD[13,17] 
AC[9,13] 
BC[8,9] 
CD[3,4]|CE[6,6] 
BD[12,13] 
 

DE[6,10] 
BD[6,10] 
AD[8,15] 
 

CE[6,6] 
BC[9,9] 
AB[1,4] 
AC[10,13] 
 

CE[11,11] 
BC[5,5] 
AB[2,5] 
AC[7,10] 
 

Conflict 
DE[2,3] CE[11,11]
DE[6,10] CE[6,6] 
 

  B [5,9]   C   A   D   E [1,5] [1,4] [2,3]V[6,10] 

[8,17] [15,16] 

[7,13] [6,13] [6]V[11] 

[16,21] 

  B [5,9]   C   A   D   E [1,5] [1,4] [2,10] 

[8,17] [15,16] 

[7,13] [6,13] [6,11] 

[16,21] 

  B [5,9]   C   A   D   E [1,5] [1,4] [2,3]V[6,10] 

[8,17] [15,16] 

[7,13] [6,13] [6]V[11] 

[10,21] 

Q 
DE [2,3] 
DE [6,10] 
CE [6,6] 
CE [11,11] 



consequences is maintained by recording each modified 
constraint in the DE[2,3] relationship list.  
 For example, consider propagating the tightened 
constraint DE[2,3] throughout the network. Constraint 
DE[2,3] is propagated through AE[16,21] using DBP rule 
(i), resulting in a new constraint AD[13,17]. Recursively 
applying the DBP rules means that the new constraint 
AD[13,17] is then propagated through CD[1,4] using DBP 
rule (ii), resulting in a  new constraint AC[9,13]. Recursive 
propagation continues until no propagation remains, or an 
inconsistency is exposed. 
 Notice that a tightened constraint may need to be 
propagated through other disjunctive constraints. For 
example, DE[2,3] must also be propagated through 
CE[6]V[11]. We deal with this by propagating DE[2,3] 
through each disjunctive interval, as separate cases.  First 
DE[2,3] is propagated through CE[6,6], and then DE[2,3] 
is separately propagated through CE[11,11]. In this case, 
any modified constraints must be recorded as conditioned 
on the appropriate disjunctive interval. For example, 
propagating DE[2,3] through CE[6,6] using DBP rule (i) 
results in a new constraint CD[3,4]. This new constraint is 
recorded in the relationship list as CD[3,4]|CE[6,6], 
meaning CD[3,4] is conditioned on choosing CE[6,6] to be 
part of the TCSP solution set.  
 Propagation may also expose inconsistencies. An 
inconsistency is detected when propagation results in a 
negative cycle. This means that two or more simple 
intervals in the queue were found to conflict, in that 
together they result in an inconsistent solution. This set of 
conflicting intervals is composed of all the disjuncts that 
the negative self-loop is conditioned on at the time the 
inconsistency is detected. This set of intervals is then 
recorded is a conflict. Conflicts are used to increase the 
time efficiency of ICA-TCSP by avoiding exploring 
combinations of disjunctive intervals that were previously 
identified as dead ends. Conflicts are also necessary to 
correctly dispatch the plan, as will be described later. 
When propagation exposes an inconsistency, the 
relationship list must also be pruned to remove the logical 
consequences that result in the inconsistency.  
 Like previous algorithms for finding solutions to TCSPs, 
ICA-TCSP is exponential in the number of disjuncts. 
However, the result of ICA-TCSP offers a more compact 
representation on average, that encodes a TCSP solution 
set in terms of only the differences among the solution 
component STPs. This is in contrast to explicitly searching 
for and representing each solution component STP. The 
algorithm applies the DBP rules in a novel way to 
systematically investigate and record the logical 
consequences that a particular simple interval constraint 
implies on other constraints. During this process, typically 
only a subset of the constraints in the reverted TCSP must 
be modified and recorded, contributing to the compactness 
of the representation.  
 
 
 

function ICA-TCSP (G) 
1.     S !  Relax-Network-to-STP(G) 
2.     S ! Compile-STP-to-Dispatchable-Form(S) 
3.     if S is inconsistent return FALSE  
4.     for each disjunctive temporal constraint xi in G  
5.          S ! Revert-Disjunctive-Constraint(S, xi) 
6.          Q ! Add-Disjunctive-Intervals-To-Queue(Q, xi) 
7.     end for 
8.     R ! Initialize-Relationship-Lists(Q) 
9.     M !Initialize-Conflict-List 
10.   C ! Initialize-Condition-List 
11.   for each constraint ei on Q and its relationship list Ri 
12.         C ! Clear-List 
13.         C ! Add-To-Condition-List(ei) 
14.        APPLY-DBP-RULES(S, ei, Ri, M, C)  
15.    end for 
16.    if R is empty return FALSE 
17.    else return TRUE 
Figure 2:  Pseudo-code ICA-TCSP. 
 

function APPLY-DBP-RULES (S,ei Ri, M, C) 
1.      for each DBP incremental update rule propagating ei 
2.          deduce a new constraint zi 
3.           if IS-POS-LOOP(zi) then GOTO Line 16 
4.           if IS-NEG-LOOP(zi) then 
5.               M ! Add-To-Conflict-List(C) 
6.               R ! Remove-Thread-From-Relationship-List(Ri, C) 
7.               GOTO Line 16 
8.           end if 
9.           if zi  is not equal to the corresponding constraint in S 
10.               if ei was propagated through a disjunctive interval d 
11.                    C ! Add-To-Condition-List(d) 
12.               end if 
13.              R ! Add-To-Relationship-List(zi, C, Ri) 
14.             if C not in M then APPLY-DBP-RULES(S,zi,Ri,M,C) 
15.         end if 
16.         if ei was propagated through a disjunctive interval d  
17.              C ! Remove-Last-Constraint 
18.         end if 
19.    end for 
 
Figure 3:  Pseudo-code APPLY-DBP-RULES. 

Pseudo-Code for the ICA-TCSP 
 Figs. 2-3 show the pseudo-code for ICA-TCSP. Lines 1-
2 relax the TCSP (G) to an STP (S) and compile S to 
dispatchable form.  If S is inconsistent, then the TCSP is 
inconsistent and the algorithm returns false (Line 3). Else, 
Lines 4-7 revert each of the relaxed constraints in S back to 
the original disjunctive form found in G, and place each 
simple interval of the disjunctive constraints on a queue 
(Q). 
 Line 8 initializes the relationship lists, which are used to 
record the logical consequences of each simple interval 
constraint on Q. One relationship list is created for each 
simple interval constraint on Q. Line 9 initializes a conflict 
list, which is used to record sets of two or more simple 
intervals found to conflict. Line 10 initializes a condition 
list, which is used to maintain a history of the current 
propagation thread (i.e. which disjunctive intervals were 
selected during propagation). 
 Lines 11-15 apply the DBP rules to systematically 
investigate and record the logical consequences that a 
particular simple interval constraint on Q implies on other 



constraints. For each interval constraint ei on Q, the 
condition list is cleared, and then ei is added to the 
condition list. The DBP incremental update rules are then 
applied to ei according to APPLY-DBP-RULES in Fig. 2.  
 The function APPLY-DBP-RULES in Fig. 2 takes as 
input S, the reverted TCSP with queue (i.e., Fig. 1(c)), an 
interval constraint ei, the interval constraint’s relationship 
list Ri, the conflict list M, and the current propagation 
thread C. In Line 1, the DBP incremental update rules are 
used to propagate ei. For each rule application, a new 
constraint zi is deduced (Line 2). If zi is found to be a 
positive loop (i.e., starts and ends at the same timepoint) 
then no additional propagation is required (Line 3). The 
algorithm then skips to Line 16. If ei was propagated 
through a disjunctive interval, then the last constraint is 
removed from C. APPLY-DBP-RULES then proceeds to 
the next deduced constraint.  
 If zi is found to be a negative loop (Line 4), then 
propagation has exposed an inconsistency, and a conflict 
composed of all the interval constraints that the negative 
loop is conditioned on is formed. In Line 5, this set of 
intervals C is recorded as a conflict in M. In Line 6, the 
relationship list Ri is also pruned to remove the logical 
consequences that result in the inconsistency. This requires 
pruning Ri of any modified constraint that is conditioned 
on the set of disjunctive intervals C. The algorithm then 
skips to Line 16.  If ei was propagated through a 
disjunctive interval, then the last constraint is removed 
from C. APPLY-DBP-RULES then proceeds to the next 
deduced constraint.  
 If zi is found to be neither a positive nor negative loop 
(Line 9), then it is compared to the corresponding 
constraint in S. If zi is not equal to the corresponding 
constraint in S, then the algorithm checks whether zi 
resulted from propagation through a disjunctive interval d 
(Line 10). If so, then in Line 11, d is added to condition list 
C. Next, in Line 13, zi  and C (the disjunctive intervals zi is 
conditioned on) are added to the relationship list Ri. If the 
current propagation thread C was not previously identified 
as a conflict, then zi is propagated recursively using 
APPLY-DBP-RULES (Line 14). Propagation continues 
until each disjunctive interval constraint on Q has been 
systematically investigated, and the implied logical 
consequences have been recorded.  
 If, at the end of compilation, the set of relationship lists 
is empty, then the TCSP has no solution and ICA-TCSP 
returns false. If the set of relationship lists is not empty, 
then the TCSP has been compiled to a compact 
dispatchable form described by S, the reverted TCSP, R, 
the relationship lists, and M, the conflicts. Next, we 
empirically demonstrate that this novel encoding reduces 
the memory required to encode the solution set by up to 
three orders of magnitude compared to prior art.  

Empirical Validation of Incremental 
Compilation Algorithm  

 We empirically validated ICA-TCSP by randomly 
generating TCSPs, and comparing the space necessary to 

represent our compact encoding of the TCSP solution set 
to the space necessary to represent all consistent 
component STPs, as used by (Tsamardinos 2001).  

 We computed all consistent component STPs using a 
depth-first, chronological backtracking search algorithm.  
The algorithm created STPs by selecting and assigning one 
STP constraint (i.e. one interval) from each disjunctive 
constraint in a depth-first manner. Each resulting STP was 
checked for consistency using the Floyd-Warshall 
algorithm. While there are more time efficient methods for 
searching for consistent component STPs (Tsamardinos et 
al. 2003), most modern approaches for solving problems 
with disjunctive constraints involve representing the 
solution as a set of consistent component STPs (Stergiou et 
al. 2000, Oddi and Cesta 2000, Tsamardinos and Pollack 
2003). For a fair basis of comparison, we removed all 
redundant edges from each consistent component STP 
(Muscettola et al.  1998).  
 Both ICA-TCSP and the depth-first, chronological 
backtracking algorithm were implemented in JAVA. As a 
basis of comparison, we applied the two algorithms to 
randomly generated TCSPs. We generated random TCSPs 
using our implementation of the random Disjunctive 
Temporal Problem (DTP) generator (Stergiou et al. 2000), 
as is customary in the DTP literature (Oddi and Cesta 
2000, Tsamardinos and Pollack 2003). TCSPs were 
instantiated according to parameters <k, N, m, L>, where k 
is the number of disjuncts per constraint, N is the number 
of event nodes, and m is the number of constraints.  The 
parameter L is the maximum upperbound, and –L is the 
minimum lowerbound for each constraint. In this empirical 
validation, we used the settings: k= 2, L= 100, and N= [8, 
10, 12, 14, 16]. The parameter m was set at 30% of the 
maximum number of possible constraints.  
 Fig. 4. shows the number of constraints necessary to 
represent our compact encoding of the solution set, 
compared to the number of constraints necessary to 
represent all consistent component STPs. One hundred 
random TCSPs were generated for each N= [8, 10, 12, 14, 
16]. The figure presents the median number of constraints 
reported, as well as the range over all 100 randomly 
generated TCSPs. Note that data is not reported for the 
component STP representation above N= 12 due to 
memory resource constraints.  
 Fig. 4 shows that the resulting compact representation 
reduces the space necessary to encode the TCSP solution 
set by up to three orders of magnitude, compared to prior 
art. Extrapolating trends in the data, TCSPs with up to 27 
event nodes can now be addressed with the limited 
memory resources utilized in this empirical evaluation.  
 The key idea behind ICA-TCSP is to incrementally 
compile a TCSP to a compact representation that encodes 
the solution set in terms of only the differences among 
consistent component STPs. In applying the incremental 
update rules, typically only a subset of the constraints in 
the TCSP must be modified and recorded, contributing to 
the compactness of the representation.  
 



 

 

 
 
 
 
 
 
Figure 4:  Space to Represent Solution: Compact Encoding vs. 
Component STP Representation 
  

Algorithm for Fast Dynamic Scheduling  
ICA-TCSP compiles a TCSP to a novel, compact encoding 
that supports fast dynamic scheduling. In this section, we 
describe how to schedule in real-time the compact 
compiled form.  

In prior art (Tsamardinos 2001), dispatching the 
disjunctive temporal constraint network involves (1) 
maintaining data structures for each of the viable 
component STPs, (2) computing interrelationships among 
the component STPs online, and (3) propagating timing 
information simultaneously online to multiple STPs.  
Computing interrelationships among the component STPs 
is necessary to determine when events may be executed1, 
and to ensure during execution that all viable solutions are 
not eliminated simultaneously (Tsamardinos 2001).  

Recall that our compact representation enables fast 
dynamic scheduling by addressing two major sources of 
execution latency in prior art: (1) the repeated online 
computation necessary to compute interrelationships 
among the component STPs, and (2) the propagation of 
timing information online simultaneously to multiple STPs 
whenever an event is executed.  Our compact 
representation of the TCSP solution set already encodes 
interrelationships among feasible component STPs. This 
reduces the amount of work necessary to identify 
interrelationships among component STPs online. 
Performing dynamic scheduling on this compact 
representation also eliminates the need to propagate timing 
information simultaneously to multiple STPs.   

Fig. 5 shows the pseudo-code for INCREMENTAL-
DISPATCH-TCSP. The algorithm takes as input the 
reverted TCSP S, the relationship lists R, and conflicts M. 
Notice that the algorithm is very similar to the dispatch 
algorithm for STPs (Muscettola et al. 1998). We have  

                                                 
1 An STP event may be executed if it is alive and enabled, 
meaning that all the events that are constrained to occur before it 
have already been executed, and the temporal constraints of the 
event are satisfied (Muscettola et al. 1998).  

function INCREMENTAL-DISPATCH-TCSP (S,R,M) 
1.     E !  Add-Events-Without-Predecessors(S) 
2.     current_time = 0 
3.     X ! Initialize-Executed-List 
4.     R ! Mark-All-Feasible-Disjuncts() 
5.     while one or more events have not been executed 
6.          wait until current_time has advanced such that some      
             event N in E is live 
7.          set N’s execution time to current_time 
8.          R,S ! UPDATE-FEASIBLE-DISJUNCTS(R,M,N,S) 
9.          X ! Add-Event-To-Executed-List(N) 
10.        if S is an STP then 
11.             S ! Propagate-STP(S) 
12.        else S ! PROPAGATE-COMPACT-ENCODING(S,R) 
13.        end if 
14.        E !  Add-Enabled-Event-Nodes(S) 
15.    end while 
Figure 5:  Pseudo-code INCREMENTAL-DISPATCH-
TCSP. 
 
highlighted the three lines in which they differ. In 
particular, INCREMENTAL-DISPATCH-TCSP requires 
two extra functions, provided in Fig. 6-7. We walk through 
the dispatch of Fig.1(d) to illustrate the algorithm.  
 First, in Line 1, all events without predecessors are 
added to the enabled list E. In our example, event A is 
added to E. Next, in Lines 2-3, the current time is 
initialized to zero, and list X is initialized to record 
executed events. In Line 4, we initially mark all disjuncts 
with non-empty relationship lists as feasible, meaning 
these disjuncts are currently feasible dispatch solutions. In 
our example, this means the disjuncts DE[2,3], DE[6,10], 
CE[6,6], and CE[11,11] are marked feasible. In Line 6, the 
algorithm waits until the current time has advanced such 
that some event N in the enabled list E is live, meaning the 
temporal constraints of event N are satisfied. Event N’s 
execution is then set to the current time (Line 7). In the 
example, event A is executed at time t=0. 

At this point, Line 8 contains the first major 
modification to the dispatching algorithm. Initially we 
mark each disjunct as feasible. However, each time an 
event is executed, each feasible disjunct must be checked 
to ensure it is still feasible. This is necessary since a subset 
of the disjuncts may not be consistent with the event’s 
execution time. We update the feasible disjuncts by calling 
the function UPDATE-FEASIBLE-DISJUNCTS. In the 
example, the execution time of A at t=0 does not require 
any updates. In Line 9, we add the executed event A to the 
executed list X. In Line 10-11, if the reverted TCSP is 
found to be an STP, then the dispatcher proceeds according 
to the STP dispatch algorithm (Muscettola et al. 1998). 
However, if the reverted TCSP is not an STP, then we 
propagate event A’s timing information using the compact 
encoding of the TCSP solution set. We do this in Line 12 
using the function PROPAGATE-COMPACT-
ENCODING. Once timing information has been 
propagated, all enabled events are added to the enabled list 
E. An event is enabled if all the events that are constrained 
to occur before it have already been executed. Finally, 
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Lines 5 through 15 repeat until all events have been 
executed. 

Next, we describe the computation performed by 
UPDATE-FEASIBLE-DISJUNCTS (Fig.6). The function 
takes as input the relationship lists R, conflicts M, the most 
recently executed event N, and the reverted TCSP S. We 
illustrate the function assuming that event A in Fig 1(d) has 
been executed at time t=0, and event B has just been 
executed at time t=1. In Lines 1-3, we search each 
relationship list Rj for constraints (with feasible 
conditions) between each previously executed event and 
the most recently executed event. In the example, A is the 
previously executed event and B is the most recently 
executed event. First, we search relationship list DE[2,3] 
for a constraint between A and B. There is no such 
constraint, meaning that the logical consequences DE[2,3] 
did not imply a change to constraint AB. Therefore [U] is 
given by the corresponding constraint in S, AB[1,5] (Line 
6). In Line 8, we find that B’s execution time satisfies 
AB[1,5], therefore DE[2,3] remains feasible.  Next, we 
search relationship list DE[6,10]. Again, no constraint is 
found, [U] = AB[1,5], and DE[6,10] remains feasible. In 
searching the next list CE[6,6], we find {C} = {AB[1,4]}. 
Since AB[1,4] is not conditioned on any disjuncts, 
[U]=AB[1,4]. In Line 5, we calculate that the number of 
feasible disjunct combinations involving CE[6,6] is one. 
The size of {C} is also one, meaning the relationship list 
contains all feasible intervals for AB; we skip to Line 8. In 
Line 8, we find that B’s execution time at t=1 does satisfy 
[U], and therefore CE[6,6] remains feasible. Finally, we 
investigate relationship list CE[11,11]. We find 
{C}=[U]=AB[2,5]. In this case, B’s execution time at t=1 
does not satisfy AB[2,5] and therefore the disjunct 
CE[11,11] is marked as infeasible (Line 9). Intuitively, 
CE[11,11] is infeasible since choosing it to be part of the 
TCSP solution implies that B cannot be executed at t=1.  

Next, in Lines 13-15, we reduce the consequences of 
disjunctive constraints with one feasible disjunct,  using 
the conflicts M to identify and mark conflicting disjuncts 
as infeasible. In the example, disjunctive constraint CE has 
one feasible disjunct: CE[6,6]. Using the conflicts we find 
that they imply that disjunct DE[6,10] is infeasible. Notice 
that in the general case of more than two disjuncts per 
constraint, Lines 13-15 can be generalized as a SAT 
problem. Finally, in Lines 16-18, we update the constraints 
in S with the selected disjuncts and their implied logical 
consequences, given by R.  
 Next, we describe the computations performed by 
PROPAGATE-COMPACT-ENCODING (Fig. 7). This 
function efficiently propagates timing information to 
compute feasible windows of execution for future events. 
The computation of feasible time windows involves 
computing interrelationships among the possible TCSP 
solutions. The resulting time windows ensure that, during 
execution, all viable solutions are not eliminated 
simultaneously. The function takes as input the reverted  

function UPDATE-FEASIBLE-DISJUNCTS (R,M,N,S) 
1.     for each previously executed ei in S 
2.          for each relationship list Rj 
3.               {C} ! search Rj for constraints between ei and N with  
                              feasible conditions 
4.               [U] ! union of all {C}  
5.               if size({C}) < Num-Feasible-Disjunct-Combinations 
6.                     [U] !  union of [U] and (constraint[N][ek] in S)     
7.               end if 
8.               if N’s execution time does not satisfy [U] 
9.                    mark the disjunct associated with Rj as infeasible      
10.             end if  
11.        end for  
12.   end for  
13.   for each disjunctive constraint with one feasible disjunct 
14.        R ! Mark-Conflicting-Disjuncts-Infeasible(M,R) 
15.   end for 
16.   for each disjunctive constraint with one feasible disjunct 
17.        S !  Update-Network(S,R) 
18.   end for 
Figure 6:  Pseudo-code UPDATE-FEASIBLE-DISJUNCTS. 
 
Function PROPAGATE-COMPACT-ENCODING(S,R,N) 
1.     for each future event ek 
2.          for each disjunctive constraint hi  
3.              for each relationship list Rj associated with hi 
4.                   {P} ! search Rj for constraints between N and       
                                   each future event ek with feasible conditions 
5.                   [U] ! union of all {P}  
6.                   if size({P}) < Num-Feasible-Disjunct-Combinations 
7.                        [U] !  union of [U] and (constraint[N][ek] in S)     
8.                   end if 
9.                   set Xj = [U]  
10.              end for  
11.              set [Yi] = Union{X} 
12.        end for  
13.        set [Z] = Intersection{Y} 
14.        update ek’s feasible time window to be the intersection of  
             ek’s current time window and (current_time + [Z]) 
15.   end for 
 
Figure 7: Pseudo-code PROPAGATE-COMPACT-ENCODING. 
 
TCSP S, and the relationship lists R. We illustrate the 
function assuming that event A in Fig 1(d) has been 
executed at time t=0, and event B has just been executed at 
time t=4. 

In Lines 1-4, for each future event ek and disjunctive 
constraint hi, and for each relationship list Rj associated 
with hi, we search Rj for constraints (with feasible 
conditions) between the most recently executed event N 
and the event ek. In the example, we first consider the 
future event C, the disjunctive constraint DE, and its 
disjuncts: DE[2,3] and DE[6,10]. We first search DE[2,3]’s 
relationship list for constraints between events B and C. 
We find {P} = [U] = [XDE[2,3]] =BC[8,9] (Line 4-7). Next 
we search DE[6,10]’s relationship list  and find the size of 
{P} is zero, meaning that the logical consequences 
DE[6,10] did not imply a change to constraint BC. 
Therefore, [XDE[6,10]] = BC[5,9], where BC[5,9] is given by 
the corresponding constraint in S (Line 7-9). In Line 11 we 
take the union of { XDE[2,3], XDE[6,10] } = YDE = BC[5,9]. 
Intuitively, YDE = BC[5,9] allows for the selection and 



execution of all currently feasible DE disjuncts. Next, 
considering disjunctive constraint CE, we find that YCE = 
BC[5,5]V[9,9]. Intuitively, YCE = BC[5,5]V[9,9] allows for 
the selection and execution of all currently feasible CE 
disjuncts. Now, in Line 13, we use an intersection 
operation to ensure that any execution within event C’s 
feasible time window will include at least one feasible 
disjunct for each disjunctive constraint. In the example, [Z] 
= intersection{ YDE = BC[5,9], YCE = BC[5,5]V[9,9]} = 
BC[5,5]V[9,9]. Intuitively, this means that C must be 
executed exactly 5 time units after B, or exactly 9 time 
units after B, to avoid simultaneously eliminating all 
dispatch solutions. This information is then used to update 
event C’s feasible time window (Line 14).  
 In the next section we empirically show that 
INCREMENTAL-DISPATCH-TCSP reduces execution 
latency by more than three orders of magnitude, compared 
to prior art. 

Empirical Validation of                            
INCREMENTAL-DISPATCH-TCSP 

  We empirically validated INCREMENTAL-
DISPATCH-TCSP by dynamically scheduling randomly 
generated TCSPs. We compared the execution latency 
associated with dispatching our compact encoding to the 
execution latency of dispatching the component STP 
representation. As a conservative measure, we recorded the 
execution latency to propagate the timing of the first 
executed event. This is a conservative measure for 
execution latency because in the compact encoding, all 
relationship lists are still feasible, and in the component 
STP representation, all consistent component STPs are still 
viable, thus increasing the computation required to 
propagate timing information.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Dispatch Execution Latency: Compact Encoding vs. 
Component STP Representation 
 
 The results of the comparison are shown in Fig. 8. One 
hundred random TCSPs were generated for each N= [8, 10, 
12, 14, 16]. The figure presents the mean and standard 
deviation of execution latency for each dispatch method. 
The results indicate that dispatching the compact encoding 
significantly reduces execution latency, by up to three 

orders of magnitude compared to dispatch of the 
component STP representation.  

Conclusion 
 In this paper, we introduced an incremental compilation 
algorithm ICA-TCSP for compiling TCSPs to a compact 
dispatchable form that supports fast dynamic scheduling. 
The key innovation of this work is a compact 
representation that encodes a TCSP solution set in terms of 
only the differences among the solution component STPs. 
We empirically show that our compact encoding reduces 
the space necessary to encode the TCSP solution set by up 
to three orders of magnitude, compared to prior art. Also, 
we empirically show that our compact encoding supports 
fast dynamic scheduling, by reducing execution latency by 
more than three orders of magnitude, compared to prior art. 

References 
[Dechter, R., et al. 1991] Temporal constraint networks. 
AI, 49:61-95. 
[Doyle 1979] A truth maintenance system. AI, 12:231-272.  
[Hofmann, A., Williams, B. 2006] Robust execution of 
temporally flexible plans for bipedal walking devices. 
Proc. ICAPS-06. 
[Koenig, S., Likhachev, M. 2001] Incremental A*. 
Advances in Neural Information Processing Systems (14). 
[Muscettola, N., et al. 1998]. Reformulating temporal 
plans for efficient execution. Proc.KRR-98. 
[Muscettola, N., et el. 1998b] To boldly go where no AI 
system has gone before. AI 103(1):5-48. 
[Oddi, A., and Cesta, A. 2000] Incremental Forward 
Checking for the Disjunctive Temporal Problem. In Proc. 
14th European Conf. on Artificial Intelligence, 108–112. 
[Shah, J., et al. 2007] A Fast Incremental Algorithm for 
Maintaining Dispatchability of Partially Controllable 
Plans. Proc. ICAPS-07. 
[Stedl 2004] Managing Temporal Uncertainty Under 
Limited Communication: A Formal Model of Tight and 
Loose Team Communication, S.M. Thesis, MIT. 
[Stergiou, K., and Koubarakis, M. 2000] Backtracking 
Algorithms for Disjunctions of Temporal Constraints. 
Artificial Intelligence 120:81–117. 
[Tsamardinos, I., et al. 1998] Fast transformation of 
temporal plans for efficient execution. Proc. AAAI-98. 
[Tsamardinos, I.; et al. 2001]. Flexible dispatch of 
disjunctive plans. In Proceedings of the 6th European 
Conference on Planning, 417–422 
[Tsamardinos, I., and Pollack, M. E. 2003] Efficient 
Solution Techniques for Disjunctive Temporal Reasoning 
Problems. Artificial Intelligence 151(1-2):43–90.  
[Williams, B.C., and Millar, B. 1998] Decompositional, 
Model-based Learning and its Analogy to Model-based 
Diagnosis, Proc. AAAI, Milwaukee, Wisconsin,pp. 197-
203.  
 

0.001

0.01

0.1

1

10

100

1000

10000

0 5 10 15 20 25 30 35

Number of Disjunctive Constraints

Ex
ec

ut
io

n 
La

te
nc

y 
(s

ec
on

ds
)

Component STP Representation Compact Encoding


