

Fast Dynamic Scheduling of Disjunctive Temporal Constraint Networks

through Incremental Compilation

Julie A. Shah and Brian C. Williams
MIT CSAIL MERS

32 Vassar St. Room 32-D224, Cambridge, MA 02139
julie_a_shah@csail.mit.edu, williams@mit.edu

Abstract

Autonomous systems operating in real-world environments
must plan, schedule, and execute missions while robustly
adapting to uncertainty and disturbance. One way to
mitigate the effect of uncertainty and disturbance is to
dynamically schedule the plan online, through dispatchable
execution. Dispatchable execution increases the efficiency
of plan execution by introducing (1) a compiler that reduces
a plan to a dispatchable form that enables real-time
scheduling, and (2) a temporal plan dispatcher that
schedules start times of activities (or controllable events)
dynamically in response to disturbances. Previous work
addresses efficient dispatchable execution of plans
described as Simple Temporal Problems (STPs). While
STPs have proven useful for many applications, Temporal
Constraint Satisfaction Problems (TCSPs) provide a more
rich language by introducing disjunctive constraints.
However, previous approaches to dispatchable execution of
disjunctive temporal plans are intractable for moderately-
sized problems.
 The key contribution of this paper is an efficient
algorithm for compiling and dynamically scheduling
TCSPs. We present an incremental algorithm that compiles
a TCSP to a compact representation, encoding the solution
set in terms of the differences among solutions. We
empirically demonstrate that this novel encoding reduces
the space to encode the solution set by up to three orders of
magnitude compared to prior art, and supports fast dynamic
scheduling.

Introduction
Real-world autonomous agents must be able to schedule,
and execute mission plans while robustly anticipating and
adapting to uncertainty and disturbance. One way to
mitigate the effect of uncertainty and disturbance is to
dynamically schedule plan activities online, just before the
activity is executed. This allows the scheduler to adapt to
disturbances that have occurred prior to the activity
without introducing unnecessary conservatism; this type of
dynamic scheduling is called dispatchable execution.
Dispatchable execution increases the efficiency of plan
execution by introducing a compiler and a dispatcher. The
compiler reduces a plan to a form that enables real-time
scheduling. A temporal plan dispatcher then schedules
activities online, dynamically in response to disturbances,
while guaranteeing that the constraints of the plan will be
satisfied. Dispatchable execution is domain independent
and has been successfully applied to scheduling within the

avionics processor of commercial aircraft (Tsamardinos et
al. 1998), space probes (Muscettola et al. 1998b),
autonomous air vehicles (Stedl 2004), and walking robots
(Hofmann et al. 2006).

Previous work has addressed efficient real-time
scheduling of plans whose temporal constraints are
described as Simple Temporal Problems (STPs) or STPs
with Uncertainty (STPUs) (Dechter et al. 1991, Muscettola
et al. 1998, Tsamardinos et al. 1998). STPs and STPUs
provide a language for temporal constraints that is made
tractable through simple interval constraints. Although
STPs and STPUs have proven useful for important
applications, their applicability to many problems is
limited by their lack of disjunctive constraints.
 Temporal Constraint Satisfaction Problems (TCSPs)
extend STPs by allowing binary constraints to be expressed
as sets of disjunctive intervals. Previous work in
dispatchable execution has been developed for disjunctive
temporal constraint networks (Tsamardinos 2001). First,
offline, the disjunctive temporal constraint network is
searched for all consistent component STPs, where each
component STP is defined by selecting one simple interval
from each disjunctive constraint (Dechter et al. 1991). This
approach is the basis of most modern approaches for
solving temporal problems with disjunctive constraints
(Stergiou et al. 2000, Oddi and Cesta 2000, Tsamardinos
and Pollack 2003). Dispatching the disjunctive temporal
constraint network then involves (1) maintaining data
structures for each of the viable component STPs, (2)
computing interrelationships among the component STPs
online, and (3) propagating timing information online
simultaneously to multiple STPs (Tsamardinos 2001).
However, this approach becomes costly for moderately-
sized problems. First, a significant amount of space is used
to represent the solution set of disjunctive temporal plans.
Second, repeated online computations, and propagation of
timing information in multiple STPs contribute to
execution latency.

We propose an efficient approach to compiling and
dynamically scheduling disjunctive temporal constraint
networks. We present an incremental algorithm that
compiles a TCSP to a compact representation that encodes
the solution set in terms of only the differences among
viable component STPs. The algorithm is developed as a
set of incremental update rules in the spirit of other

incremental algorithms for truth maintenance (Doyle 1979,
Williams et al. 1998), informed search (Koenig et al.
2001), and temporal reasoning (Shu et al. 2005). The
incremental update rules exploit the causal structure of the
TCSP to propagate constraint information as previous
algorithms for incrementally maintaining dispatchability of
STPs and STPUs (Shah et al. 2007). We apply incremental
update rules to identify and record the logical
consequences that a particular simple interval constraint
(or a set of simple intervals) implies on the other
constraints in the TCSP. We empirically show that the
resulting compact representation reduces the space
necessary to encode the TCSP solution set by up to three
orders of magnitude, compared to prior art.

The compact representation also enables fast dynamic
scheduling by addressing two major sources of execution
latency: (1) the need to compute interrelationships among
component STPs online, and (2) the need to propagate
timing information online simultaneously to multiple
STPs. The compact representation of the TCSP solution
set already encodes interrelationships among viable
component STPs. This reduces the amount of work
necessary to identify interrelationships among component
STPs online. Performing dynamic scheduling on this
compact representation also eliminates the need to
propagate timing information simultaneously to multiple
STPs. We empirically show that performing dispatchable
execution on this compact representation yields low
execution latency, and scales well with the size of the
disjunctive temporal constraint network.

Background

Simple Temporal Problems
A Simple Temporal Problem (STP) is composed of a set of
variables X1,…Xn, representing timepoints with real-valued
domains and binary constraints. Binary constraints are of
the form:

! " # $., ikikik baXX %&

A solution to an STP is an assignment to each timepoint
such that all constraints are satisfied. An STP is said to be
consistent if at least one solution exists. Checking an STP
for consistency can be cast as an all-pairs shortest path
problem. The STP is consistent iff there are no negative
cycles in the all-pairs distance graph. This check can be
performed in O(n3) time (Dechter et al. 1991).

The all-pairs shortest path graph of a consistent STP is
also a dispatchable form of the STP, enabling real-time
scheduling. A network is dispatchable if for each variable
XA it is possible to arbitrarily pick a time t within its
timebounds and find feasible execution times in the future
for other variables through one-step propagation of timing
information. The constraints in the dispatchable form may
then be tightened to remove all redundant information
(Muscettola et al. 1998). The resulting network is a

minimal dispatchable network, which is the tightest
representation of the STP constraints that still contains all
solutions present in the original network.

During plan execution, a significant disturbance may
require modifying constraints in the STP online. The STP
must then be quickly compiled back to a dispatchable
form. Shah et al. (2007) introduce an incremental
algorithm for maintaining dispatchability of STPs in
response to plan changes. For example, when a constraint
is tightened, the following Dynamic Back-Propagation
(DBP) rules are used to propagate the logical consequences
of this constraint change throughout the network:

Given a dispatchable STP with associated distance graph
G: (i) Consider any tightening (or addition) of an edge AB,
such that d(AB) = y, where y>0 and A! B. For all edges
BC such that d(BC)= u <= 0, it follows that d(AC) = y +
u. (ii) Consider any tightening (or addition) of an edge BA
such that d(BA)= x, where x <= 0 and A! B; for all edges
CB such that d(CB)= v, where v >= 0, it follows that
d(CA) = x+v.

Recursively applying rules (i) and (ii), when an edge is
tightened in a dispatchable distance graph, will either
expose an inconsistency or result in a dispatchable graph.
The key feature of DBP is its increased efficiency because
it only requires a subset of the edges to be checked to
ensure that the modified constraint is consistent, rather
than all edges when the all-pairs graph is computed.

Temporal Constraint Satisfaction Problems
 A Temporal Constraint Satisfaction Problem (TCSP)
extends an STP by allowing multiple intervals in
constraints, given by the power set of all intervals:

! " # $' (! ".|, ikikikikik babaPXX)%&

Determining consistency for a TCSP is NP-hard (Dechter
et al. 1991). In previous work, a TCSP is viewed as a
collection of component STPs, where each component STP
is defined by selecting one STP constraint (i.e. one
interval) from each TCSP constraint. Checking the
consistency of the TCSP involves searching for a
consistent component STP (Dechter et al. 1991). This
approach is the basis of most modern approaches for
solving temporal problems with disjunctive constraints
(Stergiou et al. 2000, Oddi and Cesta 2000, Tsamardinos
and Pollack 2003).
 Previous work in dispatchable execution of disjunctive
temporal plans (Tsamardinos 2001) first requires searching
for all consistent component STPs. Once all component
STPs have been identified, the next step is to summarize
the information in the component STPs and to identify
interrelationships among the solutions. This step is
necessary to determine when events can be executed, and
to ensure during execution that all viable solutions are not
eliminated simultaneously. Previous work performs this
step repeatedly online as events are executed and solutions
are eliminated. Whenever an event is executed, timing

information is then propagated online to all remaining
viable component STPs.
 There are two shortcomings to this approach. First, a
significant amount of space is necessary to represent the
solution set of even moderately-sized TCSPs. Second,
repeated online computation and propagation of timing
information to multiple STPs contribute to execution
latency. Next, we propose an efficient approach to
compiling and dynamically scheduling disjunctive
temporal constraint networks that addresses these
shortcomings.

Incremental Algorithm for Compiling a TCSP
to a Compact Dispatchable Form

In this section we present an Incremental Compilation
Algorithm (ICA-TCSP) for compiling a TCSP to a
compact dispatchable form. The key idea behind ICA-
TCSP is to apply the Dynamic Back-Propagation (DBP)
rules, described in (Shah et al. 2007), in a novel way to
systematically investigate and record the logical
consequences that a particular simple interval constraint
implies on other constraints. The key innovation of this
work is a compact representation that encodes a TCSP
solution set in terms of only the differences among the
component solution STPs. As we empirically show in the
next section, this compact representation reduces the space
to encode the solution by up to three orders of magnitude.

Since DBP rules may only be applied to STP plans with
simple temporal constraints, mapped to a dispatchable
form, we first compile a relaxed version of the TCSP to
dispatchable form. The relaxed problem and DBP rules are
then used to compile the original TCSP to the compact
dispatchable form.

The algorithm is composed of four main steps. We use
the example TCSP in Fig. 1(a) to illustrate the steps. Step
1 relaxes the TCSP to an STP. This is accomplished by
relaxing each disjunctive binary constraint in the TCSP
(Fig. 1(a)-(b)). For each disjunctive constraint, a new
simple temporal constraint is constructed using the
lowerbound and upperbound of the union of intervals in
the disjunctive constraint. Step 2 then compiles the
resulting STP to dispatchable form (Fig. 1(b)). Step 3
reverts each of the relaxed constraints back to disjunctive
form, and places each interval (disjunct) of the reverted
constraints on a queue (Fig. 1(c)).
In Step 4, relationship lists are created for each simple
interval constraint on the queue. The DBP rules are then
applied to infer the effect of selecting one of these simple
intervals on the other constraints in the problem. The
logical consequences of each simple interval constraint are
then recorded in the interval’s relationship list. During this
process, if two or more simple interval constraints are
found to be inconsistent, the set of intervals is recorded as
a conflict. The final compiled form, including the reverted
TCSP, its relationship lists and conflicts, is presented in
Fig. 1(d).

Figure 1(a): Example TCSP

Figure 1(b): Example TCSP relaxed to a STP and compiled to
dispatchable form.

Figure 1(c): Reverted TCSP with Queue of reverted constraints.

Figure 1(d): Compiled Compact Dispatchable Form of TCSP.

Next we explain, with examples, how the DBP rules are
used to build the relationship lists and conflicts.

Applying Dynamic Back-Propagation Rules
 Given a relaxed STP in dispatchable form, Step 4
reintroduces disjunctive constraints and creates a
relationship list for each simple interval constraint on the
queue. Next, we use the DBP rules in a novel way to
systematically investigate and record the logical
consequences that a particular simple interval constraint
implies on other constraints. We use to DBP rules to
accomplish this as follows:
 For each simple interval constraint on the queue, we first
tighten the constraint in the reverted TCSP to match this
simple interval. For example, in Fig. 1(c), consider the
simple interval DE[2,3] shown at the top of the queue. We
tighten constraint DE [2,3]V[6,10] in the reverted TCSP to
[2,3], to match the simple interval DE[2,3] on the queue.
This requires tightening constraint DE’s highest
upperbound from 10 to 3. We now propagate the effect of
this tightened constraint throughout the rest of the reverted
TCSP using the DBP rules. Recursively applying DBP
rules (i) and (ii) modifies a subset of the constraints, as it
derives the logical consequences of choosing DE[2,3] to be
part of a solution to the TCSP. A record of these logical

 B [5,9] C A D E [1,5] [1,4] [2,3]V[6,10]

[8,17] [15,16]

[7,13] [6,13] [6]V[11]

[16,21]

DE[2,3]
AD[13,17]
AC[9,13]
BC[8,9]
CD[3,4]|CE[6,6]
BD[12,13]

DE[6,10]
BD[6,10]
AD[8,15]

CE[6,6]
BC[9,9]
AB[1,4]
AC[10,13]

CE[11,11]
BC[5,5]
AB[2,5]
AC[7,10]

Conflict
DE[2,3] CE[11,11]
DE[6,10] CE[6,6]

 B [5,9] C A D E [1,5] [1,4] [2,3]V[6,10]

[8,17] [15,16]

[7,13] [6,13] [6]V[11]

[16,21]

 B [5,9] C A D E [1,5] [1,4] [2,10]

[8,17] [15,16]

[7,13] [6,13] [6,11]

[16,21]

 B [5,9] C A D E [1,5] [1,4] [2,3]V[6,10]

[8,17] [15,16]

[7,13] [6,13] [6]V[11]

[10,21]

Q
DE [2,3]
DE [6,10]
CE [6,6]
CE [11,11]

consequences is maintained by recording each modified
constraint in the DE[2,3] relationship list.
 For example, consider propagating the tightened
constraint DE[2,3] throughout the network. Constraint
DE[2,3] is propagated through AE[16,21] using DBP rule
(i), resulting in a new constraint AD[13,17]. Recursively
applying the DBP rules means that the new constraint
AD[13,17] is then propagated through CD[1,4] using DBP
rule (ii), resulting in a new constraint AC[9,13]. Recursive
propagation continues until no propagation remains, or an
inconsistency is exposed.
 Notice that a tightened constraint may need to be
propagated through other disjunctive constraints. For
example, DE[2,3] must also be propagated through
CE[6]V[11]. We deal with this by propagating DE[2,3]
through each disjunctive interval, as separate cases. First
DE[2,3] is propagated through CE[6,6], and then DE[2,3]
is separately propagated through CE[11,11]. In this case,
any modified constraints must be recorded as conditioned
on the appropriate disjunctive interval. For example,
propagating DE[2,3] through CE[6,6] using DBP rule (i)
results in a new constraint CD[3,4]. This new constraint is
recorded in the relationship list as CD[3,4]|CE[6,6],
meaning CD[3,4] is conditioned on choosing CE[6,6] to be
part of the TCSP solution set.
 Propagation may also expose inconsistencies. An
inconsistency is detected when propagation results in a
negative cycle. This means that two or more simple
intervals in the queue were found to conflict, in that
together they result in an inconsistent solution. This set of
conflicting intervals is composed of all the disjuncts that
the negative self-loop is conditioned on at the time the
inconsistency is detected. This set of intervals is then
recorded is a conflict. Conflicts are used to increase the
time efficiency of ICA-TCSP by avoiding exploring
combinations of disjunctive intervals that were previously
identified as dead ends. Conflicts are also necessary to
correctly dispatch the plan, as will be described later.
When propagation exposes an inconsistency, the
relationship list must also be pruned to remove the logical
consequences that result in the inconsistency.
 Like previous algorithms for finding solutions to TCSPs,
ICA-TCSP is exponential in the number of disjuncts.
However, the result of ICA-TCSP offers a more compact
representation on average, that encodes a TCSP solution
set in terms of only the differences among the solution
component STPs. This is in contrast to explicitly searching
for and representing each solution component STP. The
algorithm applies the DBP rules in a novel way to
systematically investigate and record the logical
consequences that a particular simple interval constraint
implies on other constraints. During this process, typically
only a subset of the constraints in the reverted TCSP must
be modified and recorded, contributing to the compactness
of the representation.

function ICA-TCSP (G)
1. S ! Relax-Network-to-STP(G)
2. S ! Compile-STP-to-Dispatchable-Form(S)
3. if S is inconsistent return FALSE
4. for each disjunctive temporal constraint xi in G
5. S ! Revert-Disjunctive-Constraint(S, xi)
6. Q ! Add-Disjunctive-Intervals-To-Queue(Q, xi)
7. end for
8. R ! Initialize-Relationship-Lists(Q)
9. M !Initialize-Conflict-List
10. C ! Initialize-Condition-List
11. for each constraint ei on Q and its relationship list Ri
12. C ! Clear-List
13. C ! Add-To-Condition-List(ei)
14. APPLY-DBP-RULES(S, ei, Ri, M, C)
15. end for
16. if R is empty return FALSE
17. else return TRUE
Figure 2: Pseudo-code ICA-TCSP.

function APPLY-DBP-RULES (S,ei Ri, M, C)
1. for each DBP incremental update rule propagating ei
2. deduce a new constraint zi
3. if IS-POS-LOOP(zi) then GOTO Line 16
4. if IS-NEG-LOOP(zi) then
5. M ! Add-To-Conflict-List(C)
6. R ! Remove-Thread-From-Relationship-List(Ri, C)
7. GOTO Line 16
8. end if
9. if zi is not equal to the corresponding constraint in S
10. if ei was propagated through a disjunctive interval d
11. C ! Add-To-Condition-List(d)
12. end if
13. R ! Add-To-Relationship-List(zi, C, Ri)
14. if C not in M then APPLY-DBP-RULES(S,zi,Ri,M,C)
15. end if
16. if ei was propagated through a disjunctive interval d
17. C ! Remove-Last-Constraint
18. end if
19. end for

Figure 3: Pseudo-code APPLY-DBP-RULES.

Pseudo-Code for the ICA-TCSP
 Figs. 2-3 show the pseudo-code for ICA-TCSP. Lines 1-
2 relax the TCSP (G) to an STP (S) and compile S to
dispatchable form. If S is inconsistent, then the TCSP is
inconsistent and the algorithm returns false (Line 3). Else,
Lines 4-7 revert each of the relaxed constraints in S back to
the original disjunctive form found in G, and place each
simple interval of the disjunctive constraints on a queue
(Q).
 Line 8 initializes the relationship lists, which are used to
record the logical consequences of each simple interval
constraint on Q. One relationship list is created for each
simple interval constraint on Q. Line 9 initializes a conflict
list, which is used to record sets of two or more simple
intervals found to conflict. Line 10 initializes a condition
list, which is used to maintain a history of the current
propagation thread (i.e. which disjunctive intervals were
selected during propagation).
 Lines 11-15 apply the DBP rules to systematically
investigate and record the logical consequences that a
particular simple interval constraint on Q implies on other

constraints. For each interval constraint ei on Q, the
condition list is cleared, and then ei is added to the
condition list. The DBP incremental update rules are then
applied to ei according to APPLY-DBP-RULES in Fig. 2.
 The function APPLY-DBP-RULES in Fig. 2 takes as
input S, the reverted TCSP with queue (i.e., Fig. 1(c)), an
interval constraint ei, the interval constraint’s relationship
list Ri, the conflict list M, and the current propagation
thread C. In Line 1, the DBP incremental update rules are
used to propagate ei. For each rule application, a new
constraint zi is deduced (Line 2). If zi is found to be a
positive loop (i.e., starts and ends at the same timepoint)
then no additional propagation is required (Line 3). The
algorithm then skips to Line 16. If ei was propagated
through a disjunctive interval, then the last constraint is
removed from C. APPLY-DBP-RULES then proceeds to
the next deduced constraint.
 If zi is found to be a negative loop (Line 4), then
propagation has exposed an inconsistency, and a conflict
composed of all the interval constraints that the negative
loop is conditioned on is formed. In Line 5, this set of
intervals C is recorded as a conflict in M. In Line 6, the
relationship list Ri is also pruned to remove the logical
consequences that result in the inconsistency. This requires
pruning Ri of any modified constraint that is conditioned
on the set of disjunctive intervals C. The algorithm then
skips to Line 16. If ei was propagated through a
disjunctive interval, then the last constraint is removed
from C. APPLY-DBP-RULES then proceeds to the next
deduced constraint.
 If zi is found to be neither a positive nor negative loop
(Line 9), then it is compared to the corresponding
constraint in S. If zi is not equal to the corresponding
constraint in S, then the algorithm checks whether zi
resulted from propagation through a disjunctive interval d
(Line 10). If so, then in Line 11, d is added to condition list
C. Next, in Line 13, zi and C (the disjunctive intervals zi is
conditioned on) are added to the relationship list Ri. If the
current propagation thread C was not previously identified
as a conflict, then zi is propagated recursively using
APPLY-DBP-RULES (Line 14). Propagation continues
until each disjunctive interval constraint on Q has been
systematically investigated, and the implied logical
consequences have been recorded.
 If, at the end of compilation, the set of relationship lists
is empty, then the TCSP has no solution and ICA-TCSP
returns false. If the set of relationship lists is not empty,
then the TCSP has been compiled to a compact
dispatchable form described by S, the reverted TCSP, R,
the relationship lists, and M, the conflicts. Next, we
empirically demonstrate that this novel encoding reduces
the memory required to encode the solution set by up to
three orders of magnitude compared to prior art.

Empirical Validation of Incremental
Compilation Algorithm

 We empirically validated ICA-TCSP by randomly
generating TCSPs, and comparing the space necessary to

represent our compact encoding of the TCSP solution set
to the space necessary to represent all consistent
component STPs, as used by (Tsamardinos 2001).

 We computed all consistent component STPs using a
depth-first, chronological backtracking search algorithm.
The algorithm created STPs by selecting and assigning one
STP constraint (i.e. one interval) from each disjunctive
constraint in a depth-first manner. Each resulting STP was
checked for consistency using the Floyd-Warshall
algorithm. While there are more time efficient methods for
searching for consistent component STPs (Tsamardinos et
al. 2003), most modern approaches for solving problems
with disjunctive constraints involve representing the
solution as a set of consistent component STPs (Stergiou et
al. 2000, Oddi and Cesta 2000, Tsamardinos and Pollack
2003). For a fair basis of comparison, we removed all
redundant edges from each consistent component STP
(Muscettola et al. 1998).
 Both ICA-TCSP and the depth-first, chronological
backtracking algorithm were implemented in JAVA. As a
basis of comparison, we applied the two algorithms to
randomly generated TCSPs. We generated random TCSPs
using our implementation of the random Disjunctive
Temporal Problem (DTP) generator (Stergiou et al. 2000),
as is customary in the DTP literature (Oddi and Cesta
2000, Tsamardinos and Pollack 2003). TCSPs were
instantiated according to parameters <k, N, m, L>, where k
is the number of disjuncts per constraint, N is the number
of event nodes, and m is the number of constraints. The
parameter L is the maximum upperbound, and –L is the
minimum lowerbound for each constraint. In this empirical
validation, we used the settings: k= 2, L= 100, and N= [8,
10, 12, 14, 16]. The parameter m was set at 30% of the
maximum number of possible constraints.
 Fig. 4. shows the number of constraints necessary to
represent our compact encoding of the solution set,
compared to the number of constraints necessary to
represent all consistent component STPs. One hundred
random TCSPs were generated for each N= [8, 10, 12, 14,
16]. The figure presents the median number of constraints
reported, as well as the range over all 100 randomly
generated TCSPs. Note that data is not reported for the
component STP representation above N= 12 due to
memory resource constraints.
 Fig. 4 shows that the resulting compact representation
reduces the space necessary to encode the TCSP solution
set by up to three orders of magnitude, compared to prior
art. Extrapolating trends in the data, TCSPs with up to 27
event nodes can now be addressed with the limited
memory resources utilized in this empirical evaluation.
 The key idea behind ICA-TCSP is to incrementally
compile a TCSP to a compact representation that encodes
the solution set in terms of only the differences among
consistent component STPs. In applying the incremental
update rules, typically only a subset of the constraints in
the TCSP must be modified and recorded, contributing to
the compactness of the representation.

Figure 4: Space to Represent Solution: Compact Encoding vs.
Component STP Representation

Algorithm for Fast Dynamic Scheduling
ICA-TCSP compiles a TCSP to a novel, compact encoding
that supports fast dynamic scheduling. In this section, we
describe how to schedule in real-time the compact
compiled form.

In prior art (Tsamardinos 2001), dispatching the
disjunctive temporal constraint network involves (1)
maintaining data structures for each of the viable
component STPs, (2) computing interrelationships among
the component STPs online, and (3) propagating timing
information simultaneously online to multiple STPs.
Computing interrelationships among the component STPs
is necessary to determine when events may be executed1,
and to ensure during execution that all viable solutions are
not eliminated simultaneously (Tsamardinos 2001).

Recall that our compact representation enables fast
dynamic scheduling by addressing two major sources of
execution latency in prior art: (1) the repeated online
computation necessary to compute interrelationships
among the component STPs, and (2) the propagation of
timing information online simultaneously to multiple STPs
whenever an event is executed. Our compact
representation of the TCSP solution set already encodes
interrelationships among feasible component STPs. This
reduces the amount of work necessary to identify
interrelationships among component STPs online.
Performing dynamic scheduling on this compact
representation also eliminates the need to propagate timing
information simultaneously to multiple STPs.

Fig. 5 shows the pseudo-code for INCREMENTAL-
DISPATCH-TCSP. The algorithm takes as input the
reverted TCSP S, the relationship lists R, and conflicts M.
Notice that the algorithm is very similar to the dispatch
algorithm for STPs (Muscettola et al. 1998). We have

1 An STP event may be executed if it is alive and enabled,
meaning that all the events that are constrained to occur before it
have already been executed, and the temporal constraints of the
event are satisfied (Muscettola et al. 1998).

function INCREMENTAL-DISPATCH-TCSP (S,R,M)
1. E ! Add-Events-Without-Predecessors(S)
2. current_time = 0
3. X ! Initialize-Executed-List
4. R ! Mark-All-Feasible-Disjuncts()
5. while one or more events have not been executed
6. wait until current_time has advanced such that some
 event N in E is live
7. set N’s execution time to current_time
8. R,S ! UPDATE-FEASIBLE-DISJUNCTS(R,M,N,S)
9. X ! Add-Event-To-Executed-List(N)
10. if S is an STP then
11. S ! Propagate-STP(S)
12. else S ! PROPAGATE-COMPACT-ENCODING(S,R)
13. end if
14. E ! Add-Enabled-Event-Nodes(S)
15. end while
Figure 5: Pseudo-code INCREMENTAL-DISPATCH-
TCSP.

highlighted the three lines in which they differ. In
particular, INCREMENTAL-DISPATCH-TCSP requires
two extra functions, provided in Fig. 6-7. We walk through
the dispatch of Fig.1(d) to illustrate the algorithm.
 First, in Line 1, all events without predecessors are
added to the enabled list E. In our example, event A is
added to E. Next, in Lines 2-3, the current time is
initialized to zero, and list X is initialized to record
executed events. In Line 4, we initially mark all disjuncts
with non-empty relationship lists as feasible, meaning
these disjuncts are currently feasible dispatch solutions. In
our example, this means the disjuncts DE[2,3], DE[6,10],
CE[6,6], and CE[11,11] are marked feasible. In Line 6, the
algorithm waits until the current time has advanced such
that some event N in the enabled list E is live, meaning the
temporal constraints of event N are satisfied. Event N’s
execution is then set to the current time (Line 7). In the
example, event A is executed at time t=0.

At this point, Line 8 contains the first major
modification to the dispatching algorithm. Initially we
mark each disjunct as feasible. However, each time an
event is executed, each feasible disjunct must be checked
to ensure it is still feasible. This is necessary since a subset
of the disjuncts may not be consistent with the event’s
execution time. We update the feasible disjuncts by calling
the function UPDATE-FEASIBLE-DISJUNCTS. In the
example, the execution time of A at t=0 does not require
any updates. In Line 9, we add the executed event A to the
executed list X. In Line 10-11, if the reverted TCSP is
found to be an STP, then the dispatcher proceeds according
to the STP dispatch algorithm (Muscettola et al. 1998).
However, if the reverted TCSP is not an STP, then we
propagate event A’s timing information using the compact
encoding of the TCSP solution set. We do this in Line 12
using the function PROPAGATE-COMPACT-
ENCODING. Once timing information has been
propagated, all enabled events are added to the enabled list
E. An event is enabled if all the events that are constrained
to occur before it have already been executed. Finally,

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

6 8 10 12 14 16 18

Number of Event Nodes

N
um

be
r o

f C
on

st
ra

in
ts

Component STP Representation Compact Encoding

Lines 5 through 15 repeat until all events have been
executed.

Next, we describe the computation performed by
UPDATE-FEASIBLE-DISJUNCTS (Fig.6). The function
takes as input the relationship lists R, conflicts M, the most
recently executed event N, and the reverted TCSP S. We
illustrate the function assuming that event A in Fig 1(d) has
been executed at time t=0, and event B has just been
executed at time t=1. In Lines 1-3, we search each
relationship list Rj for constraints (with feasible
conditions) between each previously executed event and
the most recently executed event. In the example, A is the
previously executed event and B is the most recently
executed event. First, we search relationship list DE[2,3]
for a constraint between A and B. There is no such
constraint, meaning that the logical consequences DE[2,3]
did not imply a change to constraint AB. Therefore [U] is
given by the corresponding constraint in S, AB[1,5] (Line
6). In Line 8, we find that B’s execution time satisfies
AB[1,5], therefore DE[2,3] remains feasible. Next, we
search relationship list DE[6,10]. Again, no constraint is
found, [U] = AB[1,5], and DE[6,10] remains feasible. In
searching the next list CE[6,6], we find {C} = {AB[1,4]}.
Since AB[1,4] is not conditioned on any disjuncts,
[U]=AB[1,4]. In Line 5, we calculate that the number of
feasible disjunct combinations involving CE[6,6] is one.
The size of {C} is also one, meaning the relationship list
contains all feasible intervals for AB; we skip to Line 8. In
Line 8, we find that B’s execution time at t=1 does satisfy
[U], and therefore CE[6,6] remains feasible. Finally, we
investigate relationship list CE[11,11]. We find
{C}=[U]=AB[2,5]. In this case, B’s execution time at t=1
does not satisfy AB[2,5] and therefore the disjunct
CE[11,11] is marked as infeasible (Line 9). Intuitively,
CE[11,11] is infeasible since choosing it to be part of the
TCSP solution implies that B cannot be executed at t=1.

Next, in Lines 13-15, we reduce the consequences of
disjunctive constraints with one feasible disjunct, using
the conflicts M to identify and mark conflicting disjuncts
as infeasible. In the example, disjunctive constraint CE has
one feasible disjunct: CE[6,6]. Using the conflicts we find
that they imply that disjunct DE[6,10] is infeasible. Notice
that in the general case of more than two disjuncts per
constraint, Lines 13-15 can be generalized as a SAT
problem. Finally, in Lines 16-18, we update the constraints
in S with the selected disjuncts and their implied logical
consequences, given by R.
 Next, we describe the computations performed by
PROPAGATE-COMPACT-ENCODING (Fig. 7). This
function efficiently propagates timing information to
compute feasible windows of execution for future events.
The computation of feasible time windows involves
computing interrelationships among the possible TCSP
solutions. The resulting time windows ensure that, during
execution, all viable solutions are not eliminated
simultaneously. The function takes as input the reverted

function UPDATE-FEASIBLE-DISJUNCTS (R,M,N,S)
1. for each previously executed ei in S
2. for each relationship list Rj
3. {C} ! search Rj for constraints between ei and N with
 feasible conditions
4. [U] ! union of all {C}
5. if size({C}) < Num-Feasible-Disjunct-Combinations
6. [U] ! union of [U] and (constraint[N][ek] in S)
7. end if
8. if N’s execution time does not satisfy [U]
9. mark the disjunct associated with Rj as infeasible
10. end if
11. end for
12. end for
13. for each disjunctive constraint with one feasible disjunct
14. R ! Mark-Conflicting-Disjuncts-Infeasible(M,R)
15. end for
16. for each disjunctive constraint with one feasible disjunct
17. S ! Update-Network(S,R)
18. end for
Figure 6: Pseudo-code UPDATE-FEASIBLE-DISJUNCTS.

Function PROPAGATE-COMPACT-ENCODING(S,R,N)
1. for each future event ek
2. for each disjunctive constraint hi
3. for each relationship list Rj associated with hi
4. {P} ! search Rj for constraints between N and
 each future event ek with feasible conditions
5. [U] ! union of all {P}
6. if size({P}) < Num-Feasible-Disjunct-Combinations
7. [U] ! union of [U] and (constraint[N][ek] in S)
8. end if
9. set Xj = [U]
10. end for
11. set [Yi] = Union{X}
12. end for
13. set [Z] = Intersection{Y}
14. update ek’s feasible time window to be the intersection of
 ek’s current time window and (current_time + [Z])
15. end for

Figure 7: Pseudo-code PROPAGATE-COMPACT-ENCODING.

TCSP S, and the relationship lists R. We illustrate the
function assuming that event A in Fig 1(d) has been
executed at time t=0, and event B has just been executed at
time t=4.

In Lines 1-4, for each future event ek and disjunctive
constraint hi, and for each relationship list Rj associated
with hi, we search Rj for constraints (with feasible
conditions) between the most recently executed event N
and the event ek. In the example, we first consider the
future event C, the disjunctive constraint DE, and its
disjuncts: DE[2,3] and DE[6,10]. We first search DE[2,3]’s
relationship list for constraints between events B and C.
We find {P} = [U] = [XDE[2,3]] =BC[8,9] (Line 4-7). Next
we search DE[6,10]’s relationship list and find the size of
{P} is zero, meaning that the logical consequences
DE[6,10] did not imply a change to constraint BC.
Therefore, [XDE[6,10]] = BC[5,9], where BC[5,9] is given by
the corresponding constraint in S (Line 7-9). In Line 11 we
take the union of { XDE[2,3], XDE[6,10] } = YDE = BC[5,9].
Intuitively, YDE = BC[5,9] allows for the selection and

execution of all currently feasible DE disjuncts. Next,
considering disjunctive constraint CE, we find that YCE =
BC[5,5]V[9,9]. Intuitively, YCE = BC[5,5]V[9,9] allows for
the selection and execution of all currently feasible CE
disjuncts. Now, in Line 13, we use an intersection
operation to ensure that any execution within event C’s
feasible time window will include at least one feasible
disjunct for each disjunctive constraint. In the example, [Z]
= intersection{ YDE = BC[5,9], YCE = BC[5,5]V[9,9]} =
BC[5,5]V[9,9]. Intuitively, this means that C must be
executed exactly 5 time units after B, or exactly 9 time
units after B, to avoid simultaneously eliminating all
dispatch solutions. This information is then used to update
event C’s feasible time window (Line 14).
 In the next section we empirically show that
INCREMENTAL-DISPATCH-TCSP reduces execution
latency by more than three orders of magnitude, compared
to prior art.

Empirical Validation of
INCREMENTAL-DISPATCH-TCSP

 We empirically validated INCREMENTAL-
DISPATCH-TCSP by dynamically scheduling randomly
generated TCSPs. We compared the execution latency
associated with dispatching our compact encoding to the
execution latency of dispatching the component STP
representation. As a conservative measure, we recorded the
execution latency to propagate the timing of the first
executed event. This is a conservative measure for
execution latency because in the compact encoding, all
relationship lists are still feasible, and in the component
STP representation, all consistent component STPs are still
viable, thus increasing the computation required to
propagate timing information.

Figure 8: Dispatch Execution Latency: Compact Encoding vs.
Component STP Representation

 The results of the comparison are shown in Fig. 8. One
hundred random TCSPs were generated for each N= [8, 10,
12, 14, 16]. The figure presents the mean and standard
deviation of execution latency for each dispatch method.
The results indicate that dispatching the compact encoding
significantly reduces execution latency, by up to three

orders of magnitude compared to dispatch of the
component STP representation.

Conclusion
 In this paper, we introduced an incremental compilation
algorithm ICA-TCSP for compiling TCSPs to a compact
dispatchable form that supports fast dynamic scheduling.
The key innovation of this work is a compact
representation that encodes a TCSP solution set in terms of
only the differences among the solution component STPs.
We empirically show that our compact encoding reduces
the space necessary to encode the TCSP solution set by up
to three orders of magnitude, compared to prior art. Also,
we empirically show that our compact encoding supports
fast dynamic scheduling, by reducing execution latency by
more than three orders of magnitude, compared to prior art.

References
[Dechter, R., et al. 1991] Temporal constraint networks.
AI, 49:61-95.
[Doyle 1979] A truth maintenance system. AI, 12:231-272.
[Hofmann, A., Williams, B. 2006] Robust execution of
temporally flexible plans for bipedal walking devices.
Proc. ICAPS-06.
[Koenig, S., Likhachev, M. 2001] Incremental A*.
Advances in Neural Information Processing Systems (14).
[Muscettola, N., et al. 1998]. Reformulating temporal
plans for efficient execution. Proc.KRR-98.
[Muscettola, N., et el. 1998b] To boldly go where no AI
system has gone before. AI 103(1):5-48.
[Oddi, A., and Cesta, A. 2000] Incremental Forward
Checking for the Disjunctive Temporal Problem. In Proc.
14th European Conf. on Artificial Intelligence, 108–112.
[Shah, J., et al. 2007] A Fast Incremental Algorithm for
Maintaining Dispatchability of Partially Controllable
Plans. Proc. ICAPS-07.
[Stedl 2004] Managing Temporal Uncertainty Under
Limited Communication: A Formal Model of Tight and
Loose Team Communication, S.M. Thesis, MIT.
[Stergiou, K., and Koubarakis, M. 2000] Backtracking
Algorithms for Disjunctions of Temporal Constraints.
Artificial Intelligence 120:81–117.
[Tsamardinos, I., et al. 1998] Fast transformation of
temporal plans for efficient execution. Proc. AAAI-98.
[Tsamardinos, I.; et al. 2001]. Flexible dispatch of
disjunctive plans. In Proceedings of the 6th European
Conference on Planning, 417–422
[Tsamardinos, I., and Pollack, M. E. 2003] Efficient
Solution Techniques for Disjunctive Temporal Reasoning
Problems. Artificial Intelligence 151(1-2):43–90.
[Williams, B.C., and Millar, B. 1998] Decompositional,
Model-based Learning and its Analogy to Model-based
Diagnosis, Proc. AAAI, Milwaukee, Wisconsin,pp. 197-
203.

0.001

0.01

0.1

1

10

100

1000

10000

0 5 10 15 20 25 30 35

Number of Disjunctive Constraints

Ex
ec

ut
io

n
La

te
nc

y
(s

ec
on

ds
)

Component STP Representation Compact Encoding

