
A Fast Incremental Algorithm for Maintaining Dispatchability of
Partially Controllable Plans

Julie Shah, John Stedl, Brian Williams, and Paul Robertson

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory

32 Vassar St. Room 32-G275, Cambridge, MA 02139
julie_a_shah@csail.mit.edu, johnstedl@gmail.com, williams@mit.edu, paulr@csail.mit.edu

Abstract

Autonomous systems operating in real-world environments
must be able to plan, schedule, and execute missions while
robustly adapting to uncertainty and disturbances. Previous
work on dispatchable execution increases the efficiency of
plan execution under uncertainty by introducing a temporal
plan dispatcher that schedules events dynamically in
response to disturbances, and a compiler that reduces a plan
to a dispatchable form that enables real-time scheduling.
However, this work does not address the situation where
response requires modifying the plan in real-time. In these
situations, after the autonomous system replans, compilation
to dispatchable form must occur in near real-time.
 The key contribution of this paper is a fast Incremental
Dynamic Control algorithm (IDC) for maintaining the
dispatchability of a partially controllable plan, in response
to incremental plan modifications by an online planner.
IDC is developed as a set of incremental update rules that
exploit the structure of the plan in order to efficiently
propagate the effects of constraint loosening and tightening
throughout the plan. IDC exhibits an order of magnitude
improvement in compile time over the state of the art non-
incremental algorithm applied to randomly generated
problems. Its practicality is demonstrated on plans for
coordinating rovers within the authors’ hardware test-bed.

Introduction
Often, autonomous agents that operate in real-world
environments must be able to plan, schedule, and execute
missions while robustly anticipating and adapting to
uncertainty and disturbances. Typically an agent only
controls the timing of a subset of a plan’s events; timing of
the other events is controlled exogenously by nature or
other agents. For example, a Mars rover can control when
it starts driving to a rock; however, its precise arrival time
is influenced by environmental factors. To achieve
successful execution of a partially controllable plan, the
scheduler must guarantee that all temporal constraints are
satisfied, even though some events are uncontrollable.
Since it is difficult to provide such a guarantee without any
knowledge about the behavior of uncontrollable events, the
scheduler exploits a model, called a simple temporal
network with uncertainty (STNU) [Vidal 1996, Vidal and
Fargier 1999], to explicitly represent plan uncertainty by
bounding the behavior of uncontrollable events.
 The domain of application for STNUs is embedded
systems, such as airplanes and robotic systems, which
perform scheduling within their controller. The field of

STNU dispatching focuses on embedded control
applications in which the scheduler must satisfy hard
scheduling constraints while accommodating disturbances.
Applications include scheduling within the avionics
processor of commercial aircraft [Tsamardinos et al. 1998],
and control of space probes [Muscettola et al. 1998b],
autonomous air vehicles [Stedl 2004], and walking robots
[Hofmann et al. 2006].
 For a given STNU, it may not be possible to generate a
static schedule a priori that guarantees successful plan
execution over all possible execution times of
uncontrollable events. If a static schedule does exist, it may
be overly conservative in plan completion time. This
problem is addressed through dynamic control [Vidal
2000], a strategy that schedules controllable events online
just before they are executed. This strategy exploits the fact
that uncertainty associated with past uncontrollable events
is eliminated, allowing the scheduler to be less
conservative in the schedules it generates. Given a set of
temporal constraints over controllable and uncontrollable
events, and observations of past events, a dynamic control
strategy generates a schedule online that guarantees the
temporal constraints of the plan are satisfied.
 Dynamic control is achieved through dispatchable
execution [Muscettola 1998, Morris et al. 2000], the
incremental computation of feasible schedules performed
through constraint propagation, to update the network as
new information is received. The timing of executed events
is propagated throughout the network to ensure that time
windows of later events are appropriately narrowed to
satisfy timing constraints of the plan. Dynamic control of
STNUs, achieved through dispatchable execution, is
domain independent, and applicable to online scheduling
for systems that have uncontrollable events and must
satisfy hard scheduling constraints.
 To achieve the goal of scheduling STNUs in real-time,
[Morris et al. 2001] introduced a dynamic controllability
(DC) algorithm to 1) determine if a dynamic control
strategy exists for an STNU, and if so, 2) compile the
STNU to a dispatchable form which reduces the amount of
propagation necessary during execution, making it possible
to schedule in real-time. The dispatchable plan is
precompiled before plan execution, and is then used by a
dispatcher to schedule quickly online.
 This paper focuses on the additional technical challenge
of responding, in real-time, to disturbances that require
modifying the plan. To sustain operation during a critical

mission phase, the agent may need a way to quickly replan
and then recompile the modified plan into a dispatchable
form. Significant progress has been made on the first
problem – fast replanning. Efficient solutions include the
use of local repair [Zweben 1993, Rabideau et al. 1999],
and incremental search [Shu 2003, Effinger 2006].
However, existing compilation algorithms are insufficient
for real-time performance.
 We confront the challenge of real-time compilation
based on the observation that during replanning, typically
only a small portion of a plan is modified. Our compilation
algorithm improves efficiency substantially by
incrementally updating the dispatchable plan in response to
plan changes in the spirit of other incremental algorithms
for truth maintenance [Doyle 1979] and informed search
[Koenig et al. 2001]. Current DC compilation algorithms
repeatedly compute an all-pairs shortest path (APSP) graph
and then check all possible triangles in the network for
reductions. In contrast, our IDC algorithm maintains
dispatchability as constraints in the plan are tightened (or
added) and loosened (or removed). This is achieved
through a set of incremental update rules that exploit the
causal structure of the plan to efficiently propagate the
effect of each changed constraint throughout the network.
 This paper presents our incremental compilation
algorithm and its empirical validation. First, we describe a
practical scenario involving the coordination of rovers as
an example for the rest of the paper. Next we review
STNUs and the DC algorithm. We then develop our
incremental algorithm in two parts: we present how to
maintain dispatchability for the case when a constraint is
tightened or added to the plan, and then for the case where
constraints are loosened or removed from the plan. Finally,
we present empirical results comparing the incremental
algorithm to the DC algorithm and conclude.

Practical Scenario
Consider a two rover scenario used to demonstrate online
replanning, DC compilation and dispatching on a hardware
test-bed [Robertson and Williams 2005] (Fig.1). In this
scenario, the two rovers cooperatively search for science
targets in a simulated Martian environment. Rover 1
drives to location 3, via a route through location 1. At
location 3, Rover 1 surveys the area for interesting science
targets. Simultaneously, Rover 2 drives to location 4, via a
route through location 2. At location 4, Rover 2 surveys the
area for interesting science targets. When both rovers
finish surveying their respective areas, they rendezvous at
the same time at location 0. The plan corresponding to this
description involves uncontrollable events; for example,
the time the rovers spend “finding targets” is uncertain
since the rovers may find a target right away or use the
maximum allotted time without finding a target.

 Figure 1: Cooperative Rover Scenario

Background
A Simple Temporal Network with Uncertainty (STNU)
[Vidal and Fargier 1999] is an extension of an STN
[Dechter 1991] that distinguishes between controllable and
uncontrollable events. An STNU is a directed graph,
consisting of a set of nodes, representing timepoints, and a
set of edges, called links, constraining the duration between
the timepoints. The links fall into two categories:
requirement links and contingent links. A requirement link
specifies a constraint on the duration between two
timepoints. A contingent link models an uncontrollable
process whose uncertain duration, !, may last any duration
between the specified lower and upper bounds. All
contingent links terminate on a contingent timepoint whose
timing is controlled exogenously. All other timepoints are
called requirement timepoints and are controlled by the
agent. Fig.2 presents an STNU representing the
cooperative rover scenario of the preceding section.

 Figure 2: STNU for Cooperative Rover Scenario
 This STNU must be checked to determine if a
dynamically controllable execution strategy exists, and
then compiled into a dispatchable form. Once the plan is
dispatchable, the dispatcher consistently and efficiently
schedules timepoints through local propagation of
timebounds [Muscettola 1998, Morris et al. 2000]. We now
review how STNUs are compiled into dispatchable form
and present the dispatchable form for the rover scenario
(Fig.5).
 To support efficient inference, an STNU is mapped to an
equivalent distance graph [Dechter 1991], which we call a
Distance Graph with Uncertainty (DGU). Each link of the
STNU, containing both lower and upper bounds, is
converted to a pair of edges in the DGU. One edge in the
forward direction is labeled with the value of the upper
time bound, and one edge in the reverse direction is labeled
with the negative of the lower time bound. The distinction
between contingent and requirement edges is maintained.
Fig.3 presents the cooperative rover scenario DGU. Edge
BC [5, 7] in Fig.2 is converted to a pair of edges in Fig.3,
where the forward edge BC value is 7, and the reverse edge
CB value is -5.
 An STNU is consistent only if its associated distance
graph contains no negative cycles [Dechter 1991]. This can
be efficiently checked by applying the Bellman-Ford SSSP
algorithm [CLR 1990] on the DGU. However, consistency
is not sufficient to guarantee dynamic controllability,
meaning that there is enough flexibility in the plan to
compensate at execution time for temporal uncertainty in
the plan.

Rover 1

Rover 2

Loc 3

Loc 2
Loc 4

Loc 0

Loc 1

R1.goto(Loc.1)

R1.goto(Loc.3) R1.findTarget
R1.goto(Loc.0)

R2.goto(Loc.2)
R2.goto(Loc.4)

R2.findTarget
R2.goto(Loc.0)

[1, 2]
[1, 2] [2, 6]

[2, 17]

[4, 6] [1, 11] [2, 4] [1, 5]

A

B C D
H

E F G

Reqt. timepoint
Cont. timepoint
Reqt link
Cont. link

 Figure 3: DGU for Cooperative Rover Scenario

 The dynamic controllability (DC) algorithm introduced
by [Morris et al. 2001] reformulates the DGU to ensure
that each uncontrollable duration, !i, is free to finish any
time between [li,ui], as specified by the contingent link, Ci.
We review the three steps of the DC algorithm. The first
step (1) computes the APSP-graph of the DGU using the
Floyd-Warshall algorithm [CLR 1990] in order to expose
implicit temporal constraints. Exposing implicit constraints
is necessary to ensure events are scheduled in the proper
order, and with requisite temporal distances between
events. If the exposed constraints imply strictly tighter
bounds on an uncontrollable duration, then that
uncontrollable duration is squeezed [Morris et al. 2001]
and the plan is not dynamically controllable. In this case
there exists a situation [Vidal 1999] where the outcome of
the uncontrollable duration results in no feasible schedule
of controllable events to satisfy the STNU. An STNU is
pseudo-controllable [Morris et al. 2001] if it is both
temporally consistent and none of its uncontrollable
durations are squeezed.
 However, even if an STNU is pseudo-controllable, the
uncontrollable durations may be squeezed at execution
time [Morris et al. 2001] as follows. When the dispatcher
executes a timepoint, it fixes the value of the timepoint.
Updating the implicit constraints based on this value may
then squeeze, meaning imply tighter bounds, on a
contingent link. To avoid squeezing uncontrollable
durations, the DC algorithm, Step (2) adds constraints to
the plan. The constraints take the form of simple temporal
constraints and conditional constraints (or “wait”
constraints) and are applied according to the precede,
unordered, and unconditional unordered reduction rules
described in [Morris et al. 2001]. We review the reduction
rules since they are important to understanding our
incremental update rules.
 Consider the triangular DGU shown in Fig.4. Assume
the DGU is both pseudo-controllable and in APSP-form.
 When C is executed before B (v"0, u<0), the dispatcher
will never know the execution of the contingent timepoint
B when it needs to schedule timepoint C. To maintain
dynamic controllability, the dispatcher must avoid a
situation in which uncontrollable duration AB is squeezed
due to propagations from CB and BC during dispatching.
To ensure this does not happen, the dispatcher must
constrain the temporal relationship between timepoints A
and C such that, no matter how long uncontrollable
duration AB takes within [x, y], timepoint C can be
executed to satisfy constraints CB and BC. The precede
reduction achieves this by tightening constraints AC and
CA as follows.
 Definition (Precede Reduction [Morris et al. 2001]) If
v!0, u<0, tighten AC to x-u, and edge CA to v-y.

 When the execution of B and C are unordered (v # 0 and
u"0), the unordered reduction uses a conditional constraint
to prevent propagations from possibly squeezing the
uncontrollable duration AB during dispatching. If C is
executed before B (as in the precede reduction), constraint
CA must be tightened to ensure that no matter how long
uncontrollable duration AB takes within [x, y], constraint
CB will be satisfied. If B is executed before C, then the
dispatcher knows the execution time of B when scheduling
timepoint C, and tightening CA is not necessary.

 Figure 4: Triangular Distance Graph with Uncertainty (DGU)
 Definition (Unordered Reduction [Morris et al. 2001])
If v # 0 and u ! 0, apply a conditional constraint CA of <B,
v-y>.
For example, in Fig.5 conditional edge GC labeled <-3, D>
specifies that G must wait at least 3 time units after C
executes or until D executes, whichever comes first. We
call a DGU containing a set of conditional constraints a
Conditional Distance Graph with Uncertainty (CDGU).
 If the conditional edge created by the unordered
reduction requires that C is always executed before B, then
the edge is unconditional. The unconditional unordered
reduction describes when to convert the conditional edge
into a requirement edge.
 Definition (Unconditional Unordered Reduction
[Morris et al. 2001]) Given an STNU with contingent link
AB [x,y], and associated CDGU with a conditional
constraint CA of <B,-t>, if x>t, then convert the
conditional constraint into a requirement edge CA with
distance –x.
 Step (3) of the DC algorithm applies the rules for
regression to the conditional constraints in the CDGU. The
rules for regression, described in [Morris et al. 2001], add
constraints to the CDGU to ensure that the conditional
constraints created by the reduction rules are not violated
at execution and are satisfied for all outcomes of
uncontrollable events. We review the regression rules since
they are also important to understanding our incremental
update rules.
 Lemma (Regression [Morris et al. 2001]): Given a
conditional constraint CA of <B,t>, where -t is less than or
equal to the upper bound of contingent link AB. Then (in a
schedule resulting from a dynamic strategy):
i.) If there is a requirement edge DC with distance w,
where w # 0 and D $ B, we can deduce a conditional
constraint DA of <w+t, B>.
ii.) If t < 0 and if there is a contingent link DC with bounds
[x,y] and B " C, then we can deduce a conditional
constraint DA of <x+t, B>.
The rules for regression are applied recursively to all
conditional constraints in the CDGU, until no more
regressions are possible.

A

B C D

H

E F G

2
-1

2
-1

6
-2 17

-2

6
-4

11
-1

4
-2

 5
-1

v

A B

C

-x

-p
-u q

y

 If the CDGU is modified during Steps (2) or (3), then
the DC algorithm loops to Step (1) and computes the
APSP-graph again to propagate the effect of the added
constraints throughout the network. The DC algorithm
iterates through Steps 1-3 until the CDGU is found to be
inconsistent, not pseudo-controllable, or else the CDGU is
not modified. If the CDGU is not modified, it is then
trimmed of all dominated edges to reduce propagations at
execution time. An edge is dominated if in all possible
executions, another edge exists that always propagates a
tighter bound. [Muscettola 1998] showed that the
dominated edges can be removed without adversely
affecting the ability of the dispatcher to dynamically
execute the network. The trimmed CDGU for the
cooperative rover scenario is presented in Fig.5.

Figure 5: Dispatchable CDGU for Cooperative Rover Scenario

Incremental Algorithm
 for Maintaining Dispatchability

In this section, we present our incremental algorithm, IDC,
which enables the agent to quickly maintain dispatchability
after a fast replanner modifies a subset of the constraints.
IDC uses incremental update rules in the spirit of
incremental search algorithms [Koenig and Likhachev
2001], and employs a set of support similar to truth
maintenance systems [Doyle 1979]. The key innovation of
our algorithm is a unified set of incremental update rules
that exploit the causal structure of the plan to interleave
and efficiently apply the different types of propagation in
the DC algorithm. This is in contrast to how the DC
algorithm repeatedly computes the all-pairs shortest path
(APSP) graph and repeatedly checks all possible triangles
in the network for reductions.
 Our IDC algorithm maintains dispatchability when
constraints in the plan are both tightened (or added) and
loosened (or removed). We first address the problem of
maintaining dispatchability when constraints are tightened.
We then provide an intuitive explanation for the difference
between maintaining dispatchability when constraints are
tightened versus loosened, and address the problem of
maintaining dispatchability when constraints are loosened.

Constraint Tightening
The speed of our IDC algorithm is derived from exploiting
the causal structure of a dispatchable plan to propagate
constraint modifications throughout the plan. We introduce
a technique we call dispatchability back-propagation
(DBP) to resolve STN constraint tightening. We then
present a unified set of incremental update rules derived
from DBP, reduction, and regression rules to resolve the
constraint tightening in an STNU; by resolve we mean to

expose implicit constraints implied by the constraint
tightening, to check consistency, and to remove any case in
which an uncontrollable event may be squeezed.
 We develop dispatchability back-propagation (DBP) by
exploiting the dispatchability of plans [Muscettola 1998].
For a dispatchable graph, the dispatcher is able to
guarantee that it can make a consistent assignment to all
future timepoints, as long as each scheduling decision is
consistent with past scheduling decisions and observations.
This is possible since the compilation process has already
imposed the constraints of future events on the current
event. Recall that executing an event is equivalent to fixing
the value of a timepoint. During execution, the dispatcher
ensures that future scheduling decisions are consistent with
these fixed values by propagating information at execution
time. To incorporate scheduling decisions into the
dispatchable graph, when a timepoint A is executed, upper-
bound updates are propagated to A’s immediate neighbors
via all outgoing, non-negative edges AB and lower-bound
updates are propagated via all incoming negative edges
CA. The dispatching algorithm is free to schedule
timepoint X anytime within X’s execution window, as long
X is enabled. A timepoint X is enabled if all timepoints
that must precede X have been executed.

To maintain the dispatchability of the STN when a
constraint is tightened by a fast replanner, we only need to
make the modified constraint consistent with past
scheduling decisions, since during execution, the bounds
on events are only influenced by preceding events. This
involves eliminating all assignments to the current event
that are inconsistent with the STN and past scheduling
decisions. When an edge X is tightened, it only needs to be
made consistent with the set of edges that may cause an
inconsistency with the time window update propagated by
edge X at execution time. These edges are called threats.
The same reasoning applies if a constraint is added to the
network, since adding a constraint can be thought of as a
constraint tightening that goes from a bound of positive or
negative infinity to a finite value. We use DBP to refer to
the process of ensuring an STN edge tightening or addition
is consistent with the past scheduling decisions,
Lemma (STN-DBP) Given a dispatchable STN with
associated distance graph G:
(i) Consider any tightening (or addition) of an edge AB
with d(AB) = y, where y>0 and A"B; for all edges BC with
d(BC)= u, where u <= 0, we can deduce a new constraint
AC with d(AC) = y + u.
(ii) Consider any tightening (or addition) of an edge BA
with d(BA)= x, where x <= 0 and A"B; for all edges CB
with d(CB)= v, where v >= 0, we can deduce a new
constraint CA with d(CA) = x+v.
Proof: (i) During execution, a positive edge AB
propagates an upper bound to B of ubB = T(A) + d(AB). A
non-positive edge BC propagates a lower bound to B of
lbB = T(C) - d(BC). At execution time, changing AB will
be consistent if ubB >= lbB for any C, or T(A) + d(AB) >=

A

B C D

H

E F G

2
-1

2
-1

6
-2 17

-2

6
-4 11

-1
4
-2

 5

-1

<-1, D>
<-3, D>

T(C) - d(BC), which implies T(C) - T(A) < d(AB) +
d(BC). Adding an edge AC of d(AB) + d(BC) to G
encodes this constraint. Similar reasoning applies for case
(ii) when a negative edge changes.

Recursively applying rules (i) and (ii), when an edge is
tightened in a dispatchable distance graph, will either
expose a direct inconsistency or result in a dispatchable
graph1. The key feature of DBP is that it only requires a
subset of the edges be checked to ensure the modified
constraint is consistent, rather than all edges when the
APSP-graph is computed.
For the DC algorithm, in addition to computing implied
constraints by generating the APSP-graph, the algorithm
applies reduction and regression rules to ensure that
uncontrollable durations are not squeezed at execution
time. Likewise, to resolve squeezing in our IDC algorithm,
we interleave the DBP rules with incremental updates rules
derived from the reduction and regression rule sets. This
unified set of incremental update rules (described in Table
1) is used to ensure dynamic control. Each incremental
update rule differs, depending on the types of edges
involved, the signs of the edge distances, and the relative
direction of the edges. A DGU consists of five types of
edges: positive and negative requirement edges, positive
and negative contingent edges, and negative conditional
edges. The incremental update rules describe the
propagation of three of these edge types: negative
requirement edges, positive requirement edges, and
negative conditional edges - these are the only three types
of edges that may be added or modified during
compilation. (Any positive conditional edge is converted to
a requirement edge by the unconditional unordered
reduction rule.)
 Fig.6 shows the pseudo-code for BACKPROPAGATE-
TIGHTEN, which uses the unified set of incremental
update rules to maintain dispatchability of a conditional
distance graph with uncertainty (G) when a subset (e1…en)
of edges are tightened or added to the graph. Since the
incremental update rules propagate edge updates towards
the start of the plan, we reduce the amount of redundant
work in BACKPROPAGATE-TIGHTEN by initiating
propagations near the end of the plan first. In Line 1, the
relevant timepoint for each new or modified edge is
ordered according to single-destination shortest-path
(SDSP), from lowest to highest. IDC chooses the relevant
timepoint based on how the edge is back-propagated, it: (1)
uses the source timepoint of the edge if the edge is
conditional or the edge value is less than or equal to zero,
and (2) uses the target timepoint if the edge value is greater
than zero. Then, for each edge in the ordered list, IDC
checks if edge ei is a loop (i.e. starts and ends at the same

1 Note that application of the STN-DBP rules does not result in an APSP-
graph, and instead relies on the properties of a disptachable graph to make
consistent assignments to timepoints at execution. Therefore, STN-DBP is
not the basis for a fully-dynamic all-pairs-shortest-path algorithm
[Demestrescu 2004], and is not analogous to an incremental local
consistency algorithm in the constraint satisfaction framework [Bessiere,
C. 1994].

timepoint). A positive loop indicates no additional
propagations are required; IDC skips ei and proceeds with
the next modified edge in the ordered list. A negative loop
indicates an inconsistency; IDC returns false. Next, the
algorithm resolves all possible threats to ei by applying the
necessary incremental update rules (Table 1).
Table 1: Incremental Update Rules
Graphical

Description
Pre-conditions Post- conditions Deri-

vation

1 Propagate incoming (+)
reqt. edge AB changes
through any outgoing
(-) cont. edge BC.

Create cond.
edge AC. *

Un-
ordered
Reduction
[Morris
2001]

2 Propagate outgoing
cond. edge BA through
any incoming (+) cont.
edge CB.

Create cond.
edge CA. *

Regress-
ion
[Morris
2001]

3 Propagate outgoing
cond. edge BA through
any in-coming (+) reqt.
edge CB except when
D=C.

Create cond.
edge CA. *

Regress-
ion
[Morris
2001]

4 Propagate incoming (+)
reqt. edge AB through
any outgoing (-) reqt.
edge BC.

Create new reqt.
edge AC if none
exists or
tighten if (z-x)<
existing edge.

DBP(i)

5 Propagate incoming (+)
reqt. edge AB through
any outgoing cont. edge
BC except A=D.

Create cond.
edge AC. *

Regress-
ion
[Morris
2001]

6 Propagate out-going (-)
reqt. edge BA through
any incoming (+) cont.
edge CB.

Create new reqt.
edge CA if none
exists or
tighten if (x-z)<
existing edge.

Precede
Reduction
[Morris
2001]

7 Propagate out-going (-)
reqt. edge BA through
any incoming (+) reqt.
edge CB.

Create new reqt.
edge CA if none
exists or tighten
if (y-z)< existing
edge.

DBP(ii)

*If necessary, apply the Unconditional Unordered Reduction [Morris 2001]. If
resulting req. edge is new or tighter the existing edge, update reqt. edge.

function BACKPROPAGATE-TIGHTEN(G, e1…en)
1. Q % order e1…en by SDSP, lowest to highest
2. for each modified edge ei in ordered Q
3. if IS-POS-LOOP(ei) then SKIP ei
4. if IS-NEG-LOOP(ei) return FALSE
5. for each incremental update rule propagating ei
6. if edge zi in G is modified or created
7. if G is squeezed return FALSE
8. if &BACKPROPAGATE-TIGHEN(G, zi) return FALSE
9. end
10. end for
11. end for
12. return TRUE
Figure 6: Pseudo-code for BACKPROPAGATE-TIGHTEN

BACKPROPAGATE-TIGHTEN recursively applies the

incremental update rules until either a direct inconsistency
is detected or until no propagation remains. Consider a
tightening of HD in Fig.5 to -10. Rule 7 is applied to
propagate HD through GH, resulting in a new edge GD of
-5. Rule 6 is used to propagate the new edge GD through
FG, resulting in a new edge FD of -3. Other propagation

y
-x

A B

C

z

<B, z-y>

<D, x-z> y
-x

A B

C

<D, -z>

y

A B

C<D, y-z>

<D, -z>

-x
A B

C
z-x

z

A B

C

z

<D, z-x>
<D, -x>

y
-x

A B

C
x-z

-z

y

A B

C

-z

y-z

related to these modified and new edges do not result in
edge tightenings, and no other propagation remain.

Figure 7: (a) distance graph of an STN, (b) associated APSP
graph, (c) tightening edge AB to 4, (d) loosening of edge AB to 6.

Tightening vs. Loosening Constraints
In this section, we use a simple STN example to provide an
intuitive explanation for the difference between
maintaining dispatchability when constraints are tightened
versus loosened. Consider the distance graph of a STN
shown in Fig.7a. The associated APSP graph is shown in
Fig.7b. The APSP computation is used to reduce a STN
into dispatchable form [Muscettola 1998].
 When a constraint is tightened, this change needs only to
be made consistent with the past scheduling decisions and
the dispatcher will then ensure that this constraint change
is consistent with the future at execution time. To illustrate
this, consider what happens when edge AB is tightened
from 5 to 4 (Fig.7c). As long as this change is consistent
with the past (it is), then the dispatcher is able to
compensate for the tightening of AB by choosing the
appropriate execution time of C within the range [11, 13]
after B.
 In contrast, consider what happens when edge AB is
loosened from 5 to 6 (shown in Fig.7d). Timepoint C must
now be executed with a new lower bound of 9 time units
after B to ensure that C occurs exactly 15 time units after
A. The value 9 is not within the range [10, 13]; a situation
may arise where the dispatcher cannot compensate for the
loosening of AB using the dispatchable form. However,
remember that the BC timebound before the APSP
computation was [9, 13]. The value of edge CB was
tightened from -9 to -10 during the APSP computation
using edge values CA and AB as support. Since the value
of AB has changed, CB can revert back to -9.
Dispatchability is maintained as long as the AB value of 6
and CB value of -9 are consistent with previous timepoints.
 This simple STN example shows that it is necessary to
maintain a list of edge value support to identify the
influence of loosening a temporal constraint. A similar
argument can be made for maintaining a list of dominated
edge support. Support lists are also used if a constraint is
removed from a network, since this is an edge loosening
from a finite value to positive or negative infinity.
 Support lists, also called set of support, were first used
for incremental updates in truth-maintenance systems
[Doyle 1979], in order to record justification, recognize
inconsistencies, and remember derivations. In this spirit,
IDC, like other incremental graph algorithms, uses support
when constraints are loosened to identify edge values that
are no longer valid and revert them to supported values.
IDC is unique in that it also uses support to identify

trimmed edges that are no longer dominated and to add
them back into the CDGU.

Constraint Loosening
In this section, we first discuss how to build a set of
support during plan compilation, before dispatching. We
then discuss how the set of support is used to efficiently
maintain dispatchability when constraints in the plan are
loosened (or removed) during execution.
 We assume that the DC algorithm is used to precompile
the plan before dispatching, and our IDC algorithm is then
used for maintaining dispatchability in response to
incremental plan modifications made by an online planner.
Since the IDC algorithm relies on a set of support to
identify the influence of loosening a temporal constraint,
we first discuss how we modify the DC algorithm to build
set of support.
 The DC algorithm must maintain an edge value support
list to determine the set of edge values no longer valid due
to a modified constraint, and a dominated edge support list
to determine the set of edges no longer dominated due to a
modified constraint. A new edge value support is added to
the set of support when: (1) an edge value is updated in the
Floyd-Warshall algorithm, (2) a conditional or requirement
edge is created or updated using the reduction rules, or (3)
during regression. The following information is recorded:
(a) the edge that is updated, (b) the new value of the
updated edge, (c) the conditional node (if applicable) (d)
the supporting edges used to calculate the new edge value,
and (e) information describing how each supporting edge
was used to derive the new edge value. The derivation of a
new or modified edge depends on either the value,
positivity, or negativity of a supporting edge. For example,
in Fig.7b, CB is supported by the values of CA and AB.
 A dominated edge support list is built when the CDGU
is trimmed of all dominated edges. A dominated edge
support is added to the set of support for each edge
trimmed from the CDGU, and includes the following
information: (1) the edge that was trimmed and (2) the
supporting edges used to determine domination.
 Using this set of support, we adapt IDC’s
BACKPROPAGATE-TIGHTEN algorithm to maintain
dispatchability when constraints are loosened. The pseudo-
code for IDC’s BACKPROPAGATE-LOOSEN is shown
in Fig.8-10. This algorithm maintains dispatchability of a
conditional distance graph with uncertainty (G) when a
subset (e1…en) of edges are loosened or removed, using the
dominated edge support list (LD) and the edge value
support list (LE) built during the initial compilation. As in
BACKPROPAGATE-TIGHTEN, modified edges are
ordered according to SDSP to reduce the amount of
redundant work. Each edge ei in the ordered list is checked
whether it is a loop (i.e. starts and ends at the same
timepoint). A positive loop indicates no propagations are
required; IDC skips ei and proceeds with the next modified
edge in the ordered list. A negative loop indicates an
inconsistency; IDC returns false. Next, the
LOOSENCONSTRAINTS and BACKPROPAGATE

A C B
15

-15

5

-2

13

-9

A C B
15

-15

5

-2

13

-10

A C B
15

-15

4

-2

13

-11

A CB

15

-15

6

-2

13

-9

(b) (d) (c) (a)

methods are called to identify undominated edges and
unsupported edge values, and to propagate the effects of
new or modified edges using the incremental update rules.
 The method LOOSENCONSTRAINTS uses set of
support LD and LE to identify the influence of the loosened
constraint zi. First, LD is used to identify any edges marked
as dominated that may now no longer be dominated due to
the change in zi, and orders them according to SDSP,
lowest to highest (Line 1). Next, each potentially
undominated edge di in the ordered list is checked to
determine whether there is another valid reason it is still
dominated. If the edge is still dominated, then LD is
updated with the new support (Line 4). Otherwise, the
undominated edge is added back to the CDGU and
removed from LD (Lines 6, 7). Since adding a constraint to
the CDGU is a special case of tightening a constraint, the
method BACKPROPAGATE is then called to recursively
propagate the resulting modification throughout the
network (Line 8). Note that BACKPROPAGATE is very
similar to BACKPROPAGATE-TIGHTEN, except that
BACKPROPAGATE requires extra work to maintain
current set of support.

Next, LE is used to identify any edges with values that
now may be unsupported due to the change in zi, and orders
them according to SDSP, lowest to highest (Line 11).
Each unsupported edge vi in the ordered list is checked to
determine whether it represents the current edge value in
G, or a previous edge value. If the value is not current, then
the edge value support is removed from LE to prevent the
edge from later being reverted to an unsupported edge
value. If the value is current, then the edge vi is reverted to
the last supported value found in LE (Line 13), and the
unsupported edge value is removed from LE (Line 14). In
the case that no last supported edge value is found in LE,
the edge vi is reverted to the value found in the original
CDGU before compilation, and if the edge vi did not exist
in the original CDGU, then the edge is removed from the
network. Reverting or removing vi from the CDGU results
in a constraint loosening, and LOOSENCONSTRAINTS
must be called to identify the influence of the loosened
edge vi (Line 15). BACKPROPAGATE is then called to
recursively propagate the modification of vi throughout the
network (16). Recursive calls to LOOSEN-
CONSTRAINTS and BACKPROPAGATE revert the
CDGU to a previous stage of compilation to capture the
influence of the loosened constraint, and apply the
incremental update rules to all edge modifications to
maintain dispatchability.

Consider applying BACKPROPAGATE-LOOSEN to
the cooperative rover scenario CDGU in Fig.5. The plan is
dispatched to the rovers and executed up to time 4, when
Rover 1 is about to traverse to the rendezvous point
(Loc.0). At this point, Rover 1 discovers that the selected
path is unexpectedly muddy and estimates that it may take
up to 20 time units to reach Loc.0 (i.e. DH is loosened to
20). Calling LOOSENCONSTRAINTS for DH does not
yield any undominated edges or unsupported edge values.

DH is then back-propagated using the incremental update
rules. Rule 4 is applied to propagate DH through HD,
yielding edge DD with a value of 18. A positive self loop
means no inconsistency was detected and no more back-
propagations remain for this threat. Rule 4 is applied again
to propagate DH through HG, yielding edge DG with a
value of 16. The algorithm continues through a number of
further propagations, and in this example results in a
dispatchable network. If dispatchability could not be
maintained, a fast re-planner would form a contingency
plan to circumvent the muddy route, and IDC would then
be used to remove and add constraints to efficiently
compile the new plan into dispatchable form.
function BACKPROPAGATE-LOOSEN (G, e1…en, LD, LE)
1. Q% order e1…en by SDSP, lowest to highest
2. for each modified edge ei in ordered Q
3. if IS-POS-LOOP(ei) then SKIP ei
4. if IS-NEG-LOOP(ei) return FALSE
5. if &LOOSENCONSTRAINTS (G, ei, LD, LE) return FALSE
6. if &BACKPROPAGATE (G, ei, LD, LE) return FALSE
7. end for
8. return TRUE

Figure 8: Pseudo-code for BACKPROPAGATE-LOOSEN
function LOOSENCONSTRAINTS (G, zi, LD, LE)
1. D % IDENTIFY-AND-SDSP-ORDER_UNDOMINATED_EDGES (LD, zi)
2. for each Undominated Edge di in ordered list D
3. if OTHER-REASON-STILL-DOMINATED(di, G)
4. UPDATE-DOMINATED-SUPPORTS(di , LD, G)
5. else
6. add undominated edge di back to CDGU
7. REMOVE-FROM-DOMINATED-SUPPORTS(di, LD)
8. if &BACKPROPAGATE (G, di, LD, LE) return FALSE
9. end if
10. E % IDENTIFY-AND-SDSP-ORDER_UNSUPPORTED_EDGES (LE, zi)
11. for each Unsupported Edge Value vi in ordered list E
12. if EDGE-VALUE-CURRENT(vi, G)
13. revert unsupported edge vi to previously supported edge value
14. REMOVE-FROM-EDGE-VALUE-SUPPORTS(vi, , LE)
15. if &LOOSENCONSTRAINTS (G, vi, LD, LE) return FALSE
16. if &BACKPROPAGATE (G, vi, LD, LE) return FALSE
17. else
18. REMOVE-FROM-EDGE-VALUE-SUPPORTS(vi, , LE)
19. end if
20. end for
21. return TRUE

Figure 9: Pseudo-code for LOOSENCONSTRAINTS
function BACKPROPAGATE (G, ei, LD, LE)
1. if IS-POS-LOOP(ei) return TRUE
2. if IS-NEG-LOOP(ei) return FALSE
3. for each incremental update rule propagating ei
4. if edge zi in G is modified or created
5 add Edge Value Support for zi to LE
6. remove Dominated Edge Support for zi from LD if necessary
7. if G is squeezed return FALSE
8. if &BACKPROPAGATE (G, zi, LD, LE) return FALSE
9. end if
10. end for
11. return TRUE

Figure 10: Pseudo-code for BACKPROPAGATE

Empirical Validation
We empirically validated our IDC algorithm by comparing
runtime with our implementation of the DC algorithm.
 For basis of comparison, we randomly generated STNUs
of various sizes of n = 10, 20, 30, 40, and 50 nodes. The
STNUs were created by generating n/2 activities, each with
a start timepoint S and end timepoint E. An upperbound

time constraint between each S and E was then randomly
chosen between [1, max_duration =10], and a lowerbound
time constraint was randomly chosen between [0,
upperbound] so that the duration would be nonzero and
locally consistent. The link and end timepoint of each
activity was assigned as contingent with 0.3 probability. To
derive constraints among activities, we randomly placed
each activity in a 2D plan space similar to a simple
scheduling timeline, where overlapping activities represent
concurrent activities. Requirement links with generated
locally consistent values were then introduced to constrain
neighboring timepoints not already linked. This process
ensured that the structure of randomly generated STNUs
resulted in plan executions that generally flowed from left
to right in the plan space, (as is the case with the
cooperative rover scenario).
 We randomly generated STNUs and tested each for
dynamic controllability using the DC algorithm until 100
dispatchable STNUs for each size n were generated. Next,
a randomly chosen constraint was loosened by a random
number between [1, max_duration = 10]. We then recorded
the average runtime of the IDC and DC algorithm to
compile the plan. Fig.11a indicates that IDC offers up to
an order of magnitude speed increase over the DC
algorithm on these test cases.
 Note that IDC requires additional computation to
maintain set of support during the initial compilation using
the DC algorithm. Fig.11b shows the difference in runtime
(up to factor of 3) for the DC algorithm with and without
maintaining set of support.
 The results indicate that IDC offers a significant speed
increase for maintaining dispatchability in real-time, for a
comparatively modest cost in precompilation time. The
speed of IDC is derived from exploiting the causal
structure of a dispatchable plan to efficiently propagate
constraint modifications throughout the plan.

 (a) (b)
Figure 11: Runtime of (a) Incremental vs. DC Algorithm, (b) DC
Algorithm with vs. without maintaining support lists

References
[Bessiere, C. 1994] Arc-consistency and arc-consistency
again. Artificial Intelligence 65, pages 179–190, 1994.
[Corment, T. H., Leiserson, C.E., Rivest, R. L. 1990]
Introduction to Algorithms. MIT Press, Cambridge, MA.
[Dechter, R., Meiri, I., Pearl, J. 1991] Temporal
constraint networks. AI, 49:61-95.

[Demestrescu, C., Emiliozzi, S., Italiano, G. 2004]
Experimental analysis of dynamic all pairs shortest path
algorithms. Proc. SODA’04, pp. 362-271.
[Doyle 1979] A truth maintenance system. AI, 12:231-272.
[Effinger 2006] Optimal Temporal Planning at Reactive
Time Scales via Dynamic Backtracking Branch and
Bound, S.M. Thesis, MIT.
[Hofmann, A., Williams, B. 2006] Robust execution of
temporally flexible plans for bipedal walking devices.
Proc. ICAPS-06.
[Koenig, S., Likhachev, M. 2001] Incremental A*.
Advances in Neural Information Processing Systems (14).
[Morris, P., Muscettola, N. 2000] Execution of temporal
plans with uncertainty. In: Proc. AAAI-00.
[Morris, P., Muscettola, N., Vidal, T. 2001] Dynamic
Control of plans with temporal uncertainty. In: Proc.
IJCAI-01.
[Muscettola, N., Morris, P., Tsmardinos, I. 1998].
Reformulating temporal plans for efficient execution. Proc.
KRR-98.
[Muscettola, N., Nayak, P., Pell, B., Williams, B. 1998b]
To boldly go where no AI system has gone before. AI
103(1):5-48.
[Radibeau, G., Knight, R., Chien, S., Fukunaga, A, et
al. 1999] Iterative Repair Planning for Spacecraft
Operations in the ASPEN System, Proc. i-SAIRAS.
[Robertson, P., Williams, B. 2005] A Model-Based
System Supporting Automatic Self-Regeneration of
Critical Software, Proceedings of the IFIP/IEEE Intl
Workshop on Self-Managed Systems & Services, France.
[Shu, I., Effinger, R., Williams, C. 2005] Enabling Fast
Flexible Planning through Incremental Temporal
Reasoning, ICAPS-05.
[Stedl 2004] Managing Temporal Uncertainty Under
Limited Communication: A Formal Model of Tight and
Loose Team Communication, S.M. Thesis, MIT.
[Stenz 1995] The focused D* algorithm for real-time
planning. ICAI.
[Tsamardinos, I., Muscettola, N., Morris, P. 1998] Fast
transformation of temporal plans for efficient execution.
Proc. AAAI-98.
[Vidal, T., Ghallab, M. 1996] Dealing with uncertain
durations in temporal constraint networks dedicated to
planning. Proc. ECAI-96.
[Vidal 1999] Handling contingency in temporal constraint
networks: from consistencies to controllabilities. J. of Exp.
& Th. AI, 11:23-45.
[Vidal 2000]. Controllability characterization and checking
in contingent temporal constraint networks. Proc. KRR-
2000.
[Zweben, M., Davis, E., Daun, B., Deale, M. 1993]
Scheduling and rescheduling with iterative repair. IEEE
SMC 3(6):1588-1596.

0.0

0.2

0.4

0.6

0 10 20 30 40 50

Total Number of Nodes

Ti
m

e
(s

ec
on

ds
)

Incremental
DC

0.0

0.2

0.4

0.6

0.8

0 10 20 30 40 50

Total Number of Nodes

Ti
m

e
(s

ec
on

ds
)

With Support Lists

Without Support Lists

