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Abstract  

Autonomous systems operating in real-world environments 
must be able to plan, schedule, and execute missions while 
robustly adapting to uncertainty and disturbances. Previous 
work on dispatchable execution increases the efficiency of 
plan execution under uncertainty by introducing a temporal 
plan dispatcher that schedules events dynamically in 
response to disturbances, and a compiler that reduces a plan 
to a dispatchable form that enables real-time scheduling.   
However, this work does not address the situation where 
response requires modifying the plan in real-time. In these 
situations, after the autonomous system replans, compilation 
to dispatchable form must occur in near real-time.  
 The key contribution of this paper is a fast Incremental 
Dynamic Control algorithm (IDC) for maintaining the 
dispatchability of a partially controllable plan, in response 
to incremental plan modifications by an online planner.  
IDC is developed as a set of incremental update rules that 
exploit the structure of the plan in order to efficiently 
propagate the effects of constraint loosening and tightening 
throughout the plan. IDC exhibits an order of magnitude 
improvement in compile time over the state of the art non-
incremental algorithm applied to randomly generated 
problems.  Its practicality is demonstrated on plans for 
coordinating rovers within the authors’ hardware test-bed.  

Introduction  
Often, autonomous agents that operate in real-world 
environments must be able to plan, schedule, and execute 
missions while robustly anticipating and adapting to 
uncertainty and disturbances. Typically an agent only 
controls the timing of a subset of a plan’s events; timing of 
the other events is controlled exogenously by nature or 
other agents. For example, a Mars rover can control when 
it starts driving to a rock; however, its precise arrival time 
is influenced by environmental factors. To achieve 
successful execution of a partially controllable plan, the 
scheduler must guarantee that all temporal constraints are 
satisfied, even though some events are uncontrollable.  
Since it is difficult to provide such a guarantee without any 
knowledge about the behavior of uncontrollable events, the 
scheduler exploits a model, called a simple temporal 
network with uncertainty (STNU) [Vidal 1996, Vidal and 
Fargier 1999], to explicitly represent plan uncertainty by 
bounding the behavior of uncontrollable events.  
 The domain of application for STNUs is embedded 
systems, such as airplanes and robotic systems, which 
perform scheduling within their controller. The field of 

STNU dispatching focuses on embedded control 
applications in which the scheduler must satisfy hard 
scheduling constraints while accommodating disturbances. 
Applications include scheduling within the avionics 
processor of commercial aircraft [Tsamardinos et al. 1998], 
and control of space probes [Muscettola et al. 1998b], 
autonomous air vehicles [Stedl 2004], and walking robots 
[Hofmann et al. 2006].  
 For a given STNU, it may not be possible to generate a 
static schedule a priori that guarantees successful plan 
execution over all possible execution times of 
uncontrollable events. If a static schedule does exist, it may 
be overly conservative in plan completion time. This 
problem is addressed through dynamic control [Vidal 
2000], a strategy that schedules controllable events online 
just before they are executed. This strategy exploits the fact 
that uncertainty associated with past uncontrollable events 
is eliminated, allowing the scheduler to be less 
conservative in the schedules it generates. Given a set of 
temporal constraints over controllable and uncontrollable 
events, and observations of past events, a dynamic control 
strategy generates a schedule online that guarantees the 
temporal constraints of the plan are satisfied.  
 Dynamic control is achieved through dispatchable 
execution [Muscettola 1998, Morris et al. 2000], the 
incremental computation of feasible schedules performed 
through constraint propagation, to update the network as 
new information is received. The timing of executed events 
is propagated throughout the network to ensure that time 
windows of later events are appropriately narrowed to 
satisfy timing constraints of the plan. Dynamic control of 
STNUs, achieved through dispatchable execution, is 
domain independent, and applicable to online scheduling 
for systems that have uncontrollable events and must 
satisfy hard scheduling constraints. 
 To achieve the goal of scheduling STNUs in real-time, 
[Morris et al. 2001] introduced a dynamic controllability 
(DC) algorithm to 1) determine if a dynamic control 
strategy exists for an STNU, and if so, 2) compile the 
STNU to a dispatchable form which reduces the amount of 
propagation necessary during execution, making it possible 
to schedule in real-time. The dispatchable plan is 
precompiled before plan execution, and is then used by a 
dispatcher to schedule quickly online.  
 This paper focuses on the additional technical challenge 
of responding, in real-time, to disturbances that require 
modifying the plan. To sustain operation during a critical 



mission phase, the agent may need a way to quickly replan 
and then recompile the modified plan into a dispatchable 
form. Significant progress has been made on the first 
problem – fast replanning. Efficient solutions include the 
use of local repair [Zweben 1993, Rabideau et al. 1999], 
and incremental search [Shu 2003, Effinger 2006]. 
However, existing compilation algorithms are insufficient 
for real-time performance. 
   We confront the challenge of real-time compilation 
based on the observation that during replanning, typically 
only a small portion of a plan is modified. Our compilation 
algorithm improves efficiency substantially by 
incrementally updating the dispatchable plan in response to 
plan changes in the spirit of other incremental algorithms 
for truth maintenance [Doyle 1979] and informed search 
[Koenig et al. 2001]. Current DC compilation algorithms 
repeatedly compute an all-pairs shortest path (APSP) graph 
and then check all possible triangles in the network for 
reductions. In contrast, our IDC algorithm maintains 
dispatchability as constraints in the plan are tightened (or 
added) and loosened (or removed).  This is achieved 
through a set of incremental update rules that exploit the 
causal structure of the plan to efficiently propagate the 
effect of each changed constraint throughout the network.  
 This paper presents our incremental compilation 
algorithm and its empirical validation.  First, we describe a 
practical scenario involving the coordination of rovers as 
an example for the rest of the paper. Next we review 
STNUs and the DC algorithm. We then develop our 
incremental algorithm in two parts: we present how to 
maintain dispatchability for the case when a constraint is 
tightened or added to the plan, and then for the case where 
constraints are loosened or removed from the plan. Finally, 
we present empirical results comparing the incremental 
algorithm to the DC algorithm and conclude. 

Practical Scenario  
Consider a two rover scenario used to demonstrate online 
replanning, DC compilation and dispatching on a hardware 
test-bed [Robertson and Williams 2005] (Fig.1). In this 
scenario, the two rovers cooperatively search for science 
targets in a simulated Martian environment.  Rover 1 
drives to location 3, via a route through location 1. At 
location 3, Rover 1 surveys the area for interesting science 
targets. Simultaneously, Rover 2 drives to location 4, via a 
route through location 2. At location 4, Rover 2 surveys the 
area for interesting science targets. When both rovers 
finish surveying their respective areas, they rendezvous at 
the same time at location 0. The plan corresponding to this 
description involves uncontrollable events; for example, 
the time the rovers spend “finding targets” is uncertain 
since the rovers may find a target right away or use the 
maximum allotted time without finding a target.  
 
 
 

 
     Figure 1: Cooperative Rover Scenario  

Background 
A Simple Temporal Network with Uncertainty (STNU) 
[Vidal and Fargier 1999] is an extension of an STN 
[Dechter 1991] that distinguishes between controllable and 
uncontrollable events. An STNU is a directed graph, 
consisting of a set of nodes, representing timepoints, and a 
set of edges, called links, constraining the duration between 
the timepoints. The links fall into two categories: 
requirement links and contingent links. A requirement link 
specifies a constraint on the duration between two 
timepoints. A contingent link models an uncontrollable 
process whose uncertain duration, !, may last any duration 
between the specified lower and upper bounds. All 
contingent links terminate on a contingent timepoint whose 
timing is controlled exogenously. All other timepoints are 
called requirement timepoints and are controlled by the 
agent. Fig.2 presents an STNU representing the 
cooperative rover scenario of the preceding section. 
 
 

 

 

 

   

 

 
  Figure 2: STNU for Cooperative Rover Scenario   
 This STNU must be checked to determine if a 
dynamically controllable execution strategy exists, and 
then compiled into a dispatchable form. Once the plan is 
dispatchable, the dispatcher consistently and efficiently 
schedules timepoints through local propagation of 
timebounds [Muscettola 1998, Morris et al. 2000]. We now 
review how STNUs are compiled into dispatchable form 
and present the dispatchable form for the rover scenario 
(Fig.5).  
 To support efficient inference, an STNU is mapped to an 
equivalent distance graph [Dechter 1991], which we call a 
Distance Graph with Uncertainty (DGU). Each link of the 
STNU, containing both lower and upper bounds, is 
converted to a pair of edges in the DGU. One edge in the 
forward direction is labeled with the value of the upper 
time bound, and one edge in the reverse direction is labeled 
with the negative of the lower time bound. The distinction 
between contingent and requirement edges is maintained. 
Fig.3 presents the cooperative rover scenario DGU. Edge 
BC [5, 7] in Fig.2 is converted to a pair of edges in Fig.3, 
where the forward edge BC value is 7, and the reverse edge 
CB value is -5. 
 An STNU is consistent only if its associated distance 
graph contains no negative cycles [Dechter 1991]. This can 
be efficiently checked by applying the Bellman-Ford SSSP 
algorithm [CLR 1990] on the DGU. However, consistency 
is not sufficient to guarantee dynamic controllability, 
meaning that there is enough flexibility in the plan to 
compensate at execution time for temporal uncertainty in 
the plan. 
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    Figure 3: DGU for Cooperative Rover Scenario  
 
 The dynamic controllability (DC) algorithm introduced 
by [Morris et al. 2001] reformulates the DGU to ensure 
that each uncontrollable duration, !i, is free to finish any 
time between [li,ui], as specified by the contingent link, Ci. 
We review the three steps of the DC algorithm. The first 
step (1) computes the APSP-graph of the DGU using the 
Floyd-Warshall algorithm [CLR 1990] in order to expose 
implicit temporal constraints. Exposing implicit constraints 
is necessary to ensure events are scheduled in the proper 
order, and with requisite temporal distances between 
events. If the exposed constraints imply strictly tighter 
bounds on an uncontrollable duration, then that 
uncontrollable duration is squeezed [Morris et al. 2001] 
and the plan is not dynamically controllable. In this case 
there exists a situation [Vidal 1999] where the outcome of 
the uncontrollable duration results in no feasible schedule 
of controllable events to satisfy the STNU. An STNU is 
pseudo-controllable [Morris et al. 2001] if it is both 
temporally consistent and none of its uncontrollable 
durations are squeezed. 
 However, even if an STNU is pseudo-controllable, the 
uncontrollable durations may be squeezed at execution 
time [Morris et al. 2001] as follows. When the dispatcher 
executes a timepoint, it fixes the value of the timepoint. 
Updating the implicit constraints based on this value may 
then squeeze, meaning imply tighter bounds, on a 
contingent link. To avoid squeezing uncontrollable 
durations, the DC algorithm, Step (2) adds constraints to 
the plan. The constraints take the form of simple temporal 
constraints and conditional constraints (or “wait” 
constraints) and are applied according to the precede, 
unordered, and unconditional unordered reduction rules 
described in [Morris et al. 2001]. We review the reduction 
rules since they are important to understanding our 
incremental update rules. 
 Consider the triangular DGU shown in Fig.4. Assume 
the DGU is both pseudo-controllable and in APSP-form. 
 When C is executed before B (v"0, u<0), the dispatcher 
will never know the execution of the contingent timepoint 
B when it needs to schedule timepoint C. To maintain 
dynamic controllability, the dispatcher must avoid a 
situation in which uncontrollable duration AB is squeezed 
due to propagations from CB and BC during dispatching. 
To ensure this does not happen, the dispatcher must 
constrain the temporal relationship between timepoints A 
and C such that, no matter how long uncontrollable 
duration AB takes within [x, y], timepoint C can be 
executed to satisfy constraints CB and BC. The precede 
reduction achieves this by tightening constraints AC and 
CA as follows. 
 Definition (Precede Reduction [Morris et al. 2001]) If 
v!0, u<0, tighten AC to x-u, and edge CA to v-y. 

 When the execution of B and C are unordered (v # 0 and 
u"0), the unordered reduction uses a conditional constraint 
to prevent propagations from possibly squeezing the 
uncontrollable duration AB during dispatching. If C is 
executed before B (as in the precede reduction), constraint 
CA must be tightened to ensure that no matter how long 
uncontrollable duration AB takes within [x, y], constraint 
CB will be satisfied. If B is executed before C, then the 
dispatcher knows the execution time of B when scheduling 
timepoint C, and tightening CA is not necessary. 
 
 
 
 

 
 Figure 4: Triangular Distance Graph with Uncertainty (DGU)   
 Definition (Unordered Reduction [Morris et al. 2001]) 
If v # 0 and u ! 0, apply a conditional constraint CA of <B, 
v-y>. 
For example, in Fig.5 conditional edge GC labeled <-3, D> 
specifies that G must wait at least 3 time units after C 
executes or until D executes, whichever comes first. We 
call a DGU containing a set of conditional constraints a 
Conditional Distance Graph with Uncertainty (CDGU).  
 If the conditional edge created by the unordered 
reduction requires that C is always executed before B, then 
the edge is unconditional. The unconditional unordered 
reduction describes when to convert the conditional edge 
into a requirement edge. 
 Definition (Unconditional Unordered Reduction 
[Morris et al. 2001]) Given an STNU with contingent link 
AB [x,y], and associated CDGU with a conditional 
constraint CA of <B,-t>, if x>t, then convert the 
conditional constraint into a requirement edge CA with 
distance –x. 
 Step (3) of the DC algorithm applies the rules for 
regression to the conditional constraints in the CDGU. The 
rules for regression, described in [Morris et al. 2001], add 
constraints to the CDGU to ensure that the conditional 
constraints created by the reduction rules are not violated 
at execution and are satisfied for all outcomes of 
uncontrollable events. We review the regression rules since 
they are also important to understanding our incremental 
update rules. 
 Lemma (Regression [Morris et al. 2001]): Given a 
conditional constraint CA of <B,t>, where -t is less than or 
equal to the upper bound of contingent link AB. Then (in a 
schedule resulting from a dynamic strategy): 
i.) If there is a requirement edge DC with distance w, 
where w # 0 and D $ B, we can deduce a conditional 
constraint DA of <w+t, B>. 
ii.) If t < 0 and if there is a contingent link DC with bounds 
[x,y] and B " C, then we can deduce a conditional 
constraint DA of <x+t, B>. 
The rules for regression are applied recursively to all 
conditional constraints in the CDGU, until no more 
regressions are possible. 
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 If the CDGU is modified during Steps (2) or (3), then 
the DC algorithm loops to Step (1) and computes the 
APSP-graph again to propagate the effect of the added 
constraints throughout the network. The DC algorithm 
iterates through Steps 1-3 until the CDGU is found to be 
inconsistent, not pseudo-controllable, or else the CDGU is 
not modified. If the CDGU is not modified, it is then 
trimmed of all dominated edges to reduce propagations at 
execution time. An edge is dominated if in all possible 
executions, another edge exists that always propagates a 
tighter bound. [Muscettola 1998] showed that the 
dominated edges can be removed without adversely 
affecting the ability of the dispatcher to dynamically 
execute the network. The trimmed CDGU for the 
cooperative rover scenario is presented in Fig.5. 
 
 
 
 
 

 
Figure 5: Dispatchable CDGU for Cooperative Rover Scenario 

Incremental Algorithm 
 for Maintaining Dispatchability 

In this section, we present our incremental algorithm, IDC, 
which enables the agent to quickly maintain dispatchability 
after a fast replanner modifies a subset of the constraints. 
IDC uses incremental update rules in the spirit of 
incremental search algorithms [Koenig and Likhachev 
2001], and employs a set of support similar to truth 
maintenance systems [Doyle 1979]. The key innovation of 
our algorithm is a unified set of incremental update rules 
that exploit the causal structure of the plan to interleave 
and efficiently apply the different types of propagation in 
the DC algorithm. This is in contrast to how the DC 
algorithm repeatedly computes the all-pairs shortest path 
(APSP) graph and repeatedly checks all possible triangles 
in the network for reductions. 
 Our IDC algorithm maintains dispatchability when 
constraints in the plan are both tightened (or added) and 
loosened (or removed). We first address the problem of 
maintaining dispatchability when constraints are tightened. 
We then provide an intuitive explanation for the difference 
between maintaining dispatchability when constraints are 
tightened versus loosened, and address the problem of 
maintaining dispatchability when constraints are loosened.  

Constraint Tightening 
The speed of our IDC algorithm is derived from exploiting 
the causal structure of a dispatchable plan to propagate 
constraint modifications throughout the plan. We introduce 
a technique we call dispatchability back-propagation 
(DBP) to resolve STN constraint tightening. We then 
present a unified set of incremental update rules derived 
from DBP, reduction, and regression rules to resolve the 
constraint tightening in an STNU; by resolve we mean to 

expose implicit constraints implied by the constraint 
tightening, to check consistency, and to remove any case in 
which an uncontrollable event may be squeezed.  
 We develop dispatchability back-propagation (DBP) by 
exploiting the dispatchability of plans [Muscettola 1998]. 
For a dispatchable graph, the dispatcher is able to 
guarantee that it can make a consistent assignment to all 
future timepoints, as long as each scheduling decision is 
consistent with past scheduling decisions and observations. 
This is possible since the compilation process has already 
imposed the constraints of future events on the current 
event. Recall that executing an event is equivalent to fixing 
the value of a timepoint. During execution, the dispatcher 
ensures that future scheduling decisions are consistent with 
these fixed values by propagating information at execution 
time. To incorporate scheduling decisions into the 
dispatchable graph, when a timepoint A is executed, upper-
bound updates are propagated to A’s immediate neighbors 
via all outgoing, non-negative edges AB and lower-bound 
updates are propagated via all incoming negative edges 
CA. The dispatching algorithm is free to schedule 
timepoint X anytime within X’s execution window, as long 
X is enabled. A timepoint X is enabled if all timepoints 
that must precede X have been executed. 

To maintain the dispatchability of the STN when a 
constraint is tightened by a fast replanner, we only need to 
make the modified constraint consistent with past 
scheduling decisions, since during execution, the bounds 
on events are only influenced by preceding events. This 
involves eliminating all assignments to the current event 
that are inconsistent with the STN and past scheduling 
decisions. When an edge X is tightened, it only needs to be 
made consistent with the set of edges that may cause an 
inconsistency with the time window update propagated by 
edge X at execution time. These edges are called threats. 
The same reasoning applies if a constraint is added to the 
network, since adding a constraint can be thought of as a 
constraint tightening that goes from a bound of positive or 
negative infinity to a finite value. We use DBP to refer to 
the process of ensuring an STN edge tightening or addition 
is consistent with the past scheduling decisions, 
Lemma (STN-DBP) Given a dispatchable STN with 
associated distance graph G: 
(i) Consider any tightening (or addition) of an edge AB 
with d(AB) = y, where y>0 and A"B; for all edges BC with 
d(BC)= u, where u <= 0, we can deduce a new constraint 
AC with d(AC) = y + u.  
(ii) Consider any tightening (or addition) of an edge BA 
with d(BA)= x, where x <= 0 and A"B; for all edges CB 
with d(CB)= v, where v >= 0, we can deduce a new 
constraint CA with d(CA) = x+v. 
Proof: (i) During execution, a positive edge AB 
propagates an upper bound to B of ubB = T(A) + d(AB). A 
non-positive edge BC propagates a lower bound to B of 
lbB = T(C) - d(BC). At execution time, changing AB will 
be consistent if ubB >= lbB for any C, or T(A) + d(AB) >= 
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T(C) - d(BC), which implies T(C) - T(A) < d(AB) + 
d(BC). Adding an edge AC of d(AB) + d(BC) to G 
encodes this constraint. Similar reasoning applies for case 
(ii) when a negative edge changes. 

Recursively applying rules (i) and (ii), when an edge is 
tightened in a dispatchable distance graph, will either 
expose a direct inconsistency or result in a dispatchable 
graph1. The key feature of DBP is that it only requires a 
subset of the edges be checked to ensure the modified 
constraint is consistent, rather than all edges when the 
APSP-graph is computed. 
For the DC algorithm, in addition to computing implied 
constraints by generating the APSP-graph, the algorithm 
applies reduction and regression rules to ensure that 
uncontrollable durations are not squeezed at execution 
time. Likewise, to resolve squeezing in our IDC algorithm, 
we interleave the DBP rules with incremental updates rules 
derived from the reduction and regression rule sets. This 
unified set of incremental update rules (described in Table 
1) is used to ensure dynamic control. Each incremental 
update rule differs, depending on the types of edges 
involved, the signs of the edge distances, and the relative 
direction of the edges. A DGU consists of five types of 
edges: positive and negative requirement edges, positive 
and negative contingent edges, and negative conditional 
edges. The incremental update rules describe the 
propagation of three of these edge types: negative 
requirement edges, positive requirement edges, and 
negative conditional edges - these are the only three types 
of edges that may be added or modified during 
compilation. (Any positive conditional edge is converted to 
a requirement edge by the unconditional unordered 
reduction rule.)   
 Fig.6 shows the pseudo-code for BACKPROPAGATE-
TIGHTEN, which uses the unified set of incremental 
update rules to maintain dispatchability of a conditional 
distance graph with uncertainty (G) when a subset (e1…en) 
of edges are tightened or added to the graph. Since the 
incremental update rules propagate edge updates towards 
the start of the plan, we reduce the amount of redundant 
work in BACKPROPAGATE-TIGHTEN by initiating 
propagations near the end of the plan first. In Line 1, the 
relevant timepoint for each new or modified edge is 
ordered according to single-destination shortest-path 
(SDSP), from lowest to highest. IDC chooses the relevant 
timepoint based on how the edge is back-propagated, it: (1) 
uses the source timepoint of the edge if the edge is 
conditional or the edge value is less than or equal to zero, 
and (2) uses the target timepoint if the edge value is greater 
than zero. Then, for each edge in the ordered list, IDC 
checks if edge ei is a loop (i.e. starts and ends at the same 
                                                 
1 Note that application of the STN-DBP rules does not result in an APSP-
graph, and instead relies on the properties of a disptachable graph to make 
consistent assignments to timepoints at execution. Therefore, STN-DBP is 
not the basis for a fully-dynamic all-pairs-shortest-path algorithm 
[Demestrescu 2004], and is not analogous to an incremental local 
consistency algorithm in the constraint satisfaction framework [Bessiere, 
C. 1994]. 

timepoint). A positive loop indicates no additional 
propagations are required; IDC skips ei and proceeds with 
the next modified edge in the ordered list. A negative loop 
indicates an inconsistency; IDC returns false. Next, the 
algorithm resolves all possible threats to ei by applying the 
necessary incremental update rules (Table 1).   
Table 1: Incremental Update Rules 
# Graphical 

Description 
Pre-conditions Post- conditions Deri-

vation 

1  Propagate incoming (+) 
reqt. edge AB changes 
through any outgoing    
(-) cont. edge BC. 

Create cond. 
edge AC. * 

Un-
ordered 
Reduction 
[Morris 
2001] 

2  Propagate outgoing 
cond. edge BA through 
any incoming (+) cont. 
edge CB. 

Create cond. 
edge CA. * 

Regress-
ion  
[Morris 
2001] 

3  Propagate outgoing 
cond. edge BA through 
any in-coming (+) reqt. 
edge CB except when 
D=C. 

Create cond. 
edge CA. * 

Regress-
ion  
[Morris 
2001] 

4  Propagate incoming (+) 
reqt. edge AB through 
any outgoing (-) reqt. 
edge BC. 

Create new reqt. 
edge AC if none 
exists  or  
tighten if (z-x)< 
existing edge. 

DBP(i) 

5  Propagate incoming (+) 
reqt. edge AB through 
any outgoing cont. edge 
BC except A=D. 

Create cond. 
edge AC. * 

Regress-
ion 
[Morris 
2001] 

6  Propagate out-going (-) 
reqt. edge BA through 
any incoming (+) cont. 
edge CB. 

Create new reqt. 
edge CA if none 
exists  or  
tighten if (x-z)< 
existing edge. 

Precede 
Reduction 
[Morris 
2001] 

7  Propagate out-going (-) 
reqt. edge BA through 
any incoming (+) reqt. 
edge CB. 

Create new reqt. 
edge CA if none 
exists or tighten 
if (y-z)< existing 
edge. 

DBP(ii) 

*If necessary, apply the Unconditional Unordered Reduction [Morris 2001]. If 
resulting req. edge is new or tighter the existing edge, update reqt. edge.  
 
function BACKPROPAGATE-TIGHTEN(G, e1…en) 
1.     Q % order e1…en by SDSP, lowest to highest 
2.     for each modified edge ei in ordered Q 
3.          if IS-POS-LOOP(ei) then SKIP ei 
4.          if IS-NEG-LOOP(ei) return FALSE 
5.          for each incremental update rule propagating ei 
6.               if edge zi in G is modified or created 
7.                    if G is squeezed return FALSE 
8.                    if &BACKPROPAGATE-TIGHEN(G, zi) return FALSE 
9.               end 
10.         end for 
11.    end for 
12.    return TRUE 
Figure 6: Pseudo-code for BACKPROPAGATE-TIGHTEN  

 
BACKPROPAGATE-TIGHTEN recursively applies the 

incremental update rules until either a direct inconsistency 
is detected or until no propagation remains. Consider a 
tightening of HD in Fig.5 to -10. Rule 7 is applied to 
propagate HD through GH, resulting in a new edge GD of  
-5. Rule 6 is used to propagate the new edge GD through 
FG, resulting in a new edge FD of -3. Other propagation 
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related to these modified and new edges do not result in 
edge tightenings, and no other propagation remain. 
 

 

 

 

 

Figure 7: (a) distance graph of an STN, (b) associated APSP 
graph, (c) tightening edge AB to 4, (d) loosening of edge AB to 6. 

Tightening vs. Loosening Constraints  
In this section, we use a simple STN example to provide an 
intuitive explanation for the difference between 
maintaining dispatchability when constraints are tightened 
versus loosened. Consider the distance graph of a STN 
shown in Fig.7a. The associated APSP graph is shown in 
Fig.7b. The APSP computation is used to reduce a STN 
into dispatchable form [Muscettola 1998]. 
 When a constraint is tightened, this change needs only to 
be made consistent with the past scheduling decisions and 
the dispatcher will then ensure that this constraint change 
is consistent with the future at execution time. To illustrate 
this, consider what happens when edge AB is tightened 
from 5 to 4 (Fig.7c). As long as this change is consistent 
with the past (it is), then the dispatcher is able to 
compensate for the tightening of AB by choosing the 
appropriate execution time of C within the range [11, 13] 
after B. 
 In contrast, consider what happens when edge AB is 
loosened from 5 to 6 (shown in Fig.7d). Timepoint C must 
now be executed with a new lower bound of 9 time units 
after B to ensure that C occurs exactly 15 time units after 
A. The value 9 is not within the range [10, 13]; a situation 
may arise where the dispatcher cannot compensate for the 
loosening of AB using the dispatchable form. However, 
remember that the BC timebound before the APSP 
computation was [9, 13]. The value of edge CB was 
tightened from -9 to -10 during the APSP computation 
using edge values CA and AB as support. Since the value 
of AB has changed, CB can revert back to -9. 
Dispatchability is maintained as long as the AB value of 6 
and CB value of -9 are consistent with previous timepoints. 
 This simple STN example shows that it is necessary to 
maintain a list of edge value support to identify the 
influence of loosening a temporal constraint. A similar 
argument can be made for maintaining a list of dominated 
edge support. Support lists are also used if a constraint is 
removed from a network, since this is an edge loosening 
from a finite value to positive or negative infinity.  
 Support lists, also called set of support, were first used 
for incremental updates in truth-maintenance systems 
[Doyle 1979], in order to record justification, recognize 
inconsistencies, and remember derivations. In this spirit, 
IDC, like other incremental graph algorithms, uses support 
when constraints are loosened to identify edge values that 
are no longer valid and revert them to supported values. 
IDC is unique in that it also uses support to identify 

trimmed edges that are no longer dominated and to add 
them back into the CDGU. 

Constraint Loosening  
In this section, we first discuss how to build a set of 
support during plan compilation, before dispatching. We 
then discuss how the set of support is used to efficiently 
maintain dispatchability when constraints in the plan are 
loosened (or removed) during execution.  
 We assume that the DC algorithm is used to precompile 
the plan before dispatching, and our IDC algorithm is then 
used for maintaining dispatchability in response to 
incremental plan modifications made by an online planner. 
Since the IDC algorithm relies on a set of support to 
identify the influence of loosening a temporal constraint, 
we first discuss how we modify the DC algorithm to build 
set of support.  
 The DC algorithm must maintain an edge value support 
list to determine the set of edge values no longer valid due 
to a modified constraint, and a dominated edge support list 
to determine the set of edges no longer dominated due to a 
modified constraint. A new edge value support is added to 
the set of support when: (1) an edge value is updated in the 
Floyd-Warshall algorithm, (2) a conditional or requirement 
edge is created or updated using the reduction rules, or (3) 
during regression. The following information is recorded: 
(a) the edge that is updated, (b) the new value of the 
updated edge, (c) the conditional node (if applicable) (d) 
the supporting edges used to calculate the new edge value, 
and (e) information describing how each supporting edge 
was used to derive the new edge value. The derivation of a 
new or modified edge depends on either the value, 
positivity, or negativity of a supporting edge. For example, 
in Fig.7b, CB is supported by the values of CA and AB. 
 A dominated edge support list is built when the CDGU 
is trimmed of all dominated edges. A dominated edge 
support is added to the set of support for each edge 
trimmed from the CDGU, and includes the following 
information: (1) the edge that was trimmed and (2) the 
supporting edges used to determine domination.  
 Using this set of support, we adapt IDC’s 
BACKPROPAGATE-TIGHTEN algorithm to maintain 
dispatchability when constraints are loosened. The pseudo-
code for IDC’s BACKPROPAGATE-LOOSEN is shown 
in Fig.8-10. This algorithm maintains dispatchability of a 
conditional distance graph with uncertainty (G) when a 
subset (e1…en) of edges are loosened or removed, using the 
dominated edge support list (LD) and the edge value 
support list (LE) built during the initial compilation. As in 
BACKPROPAGATE-TIGHTEN, modified edges are 
ordered according to SDSP to reduce the amount of 
redundant work. Each edge ei in the ordered list is checked 
whether it is a loop (i.e. starts and ends at the same 
timepoint). A positive loop indicates no propagations are 
required; IDC skips ei and proceeds with the next modified 
edge in the ordered list. A negative loop indicates an 
inconsistency; IDC returns false. Next, the 
LOOSENCONSTRAINTS and BACKPROPAGATE 
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methods are called to identify undominated edges and 
unsupported edge values, and to propagate the effects of 
new or modified edges using the incremental update rules.   
 The method LOOSENCONSTRAINTS uses set of 
support LD and LE to identify the influence of the loosened 
constraint zi. First, LD is used to identify any edges marked 
as dominated that may now no longer be dominated due to 
the change in zi, and orders them according to SDSP, 
lowest to highest (Line 1). Next, each potentially 
undominated edge di in the ordered list is checked to 
determine whether there is another valid reason it is still 
dominated. If the edge is still dominated, then LD is 
updated with the new support (Line 4). Otherwise, the 
undominated edge is added back to the CDGU and 
removed from LD (Lines 6, 7). Since adding a constraint to 
the CDGU is a special case of tightening a constraint, the 
method BACKPROPAGATE is then called to recursively 
propagate the resulting modification throughout the 
network (Line 8). Note that BACKPROPAGATE is very 
similar to BACKPROPAGATE-TIGHTEN, except that 
BACKPROPAGATE requires extra work to maintain 
current set of support. 

Next, LE is used to identify any edges with values that 
now may be unsupported due to the change in zi, and orders 
them according to SDSP, lowest to highest (Line 11).  
Each unsupported edge vi in the ordered list is checked to 
determine whether it represents the current edge value in 
G, or a previous edge value. If the value is not current, then 
the edge value support is removed from LE to prevent the 
edge from later being reverted to an unsupported edge 
value. If the value is current, then the edge vi is reverted to 
the last supported value found in LE (Line 13), and the 
unsupported edge value is removed from LE (Line 14). In 
the case that no last supported edge value is found in LE, 
the edge vi is reverted to the value found in the original 
CDGU before compilation, and if the edge vi did not exist 
in the original CDGU, then the edge is removed from the 
network. Reverting or removing vi from the CDGU results 
in a constraint loosening, and LOOSENCONSTRAINTS 
must be called to identify the influence of the loosened 
edge vi (Line 15). BACKPROPAGATE is then called to 
recursively propagate the modification of vi throughout the 
network (16). Recursive calls to LOOSEN-
CONSTRAINTS  and BACKPROPAGATE revert the 
CDGU to a previous stage of compilation to capture the 
influence of the loosened constraint, and apply the 
incremental update rules to all edge modifications to 
maintain dispatchability.  

Consider applying BACKPROPAGATE-LOOSEN to 
the cooperative rover scenario CDGU in Fig.5. The plan is 
dispatched to the rovers and executed up to time 4, when 
Rover 1 is about to traverse to the rendezvous point 
(Loc.0). At this point, Rover 1 discovers that the selected 
path is unexpectedly muddy and estimates that it may take 
up to 20 time units to reach Loc.0 (i.e. DH is loosened to 
20). Calling LOOSENCONSTRAINTS for DH does not 
yield any undominated edges or unsupported edge values. 

DH is then back-propagated using the incremental update 
rules. Rule 4 is applied to propagate DH through HD, 
yielding edge DD with a value of 18. A positive self loop 
means no inconsistency was detected and no more back-
propagations remain for this threat. Rule 4 is applied again 
to propagate DH through HG, yielding edge DG with a 
value of 16. The algorithm continues through a number of 
further propagations, and in this example results in a 
dispatchable network. If dispatchability could not be 
maintained, a fast re-planner would form a contingency 
plan to circumvent the muddy route, and IDC would then 
be used to remove and add constraints to efficiently 
compile the new plan into dispatchable form.  
function BACKPROPAGATE-LOOSEN (G, e1…en, LD, LE) 
1.    Q% order e1…en by SDSP, lowest to highest 
2.     for each modified edge ei in ordered Q 
3.          if IS-POS-LOOP(ei) then SKIP ei 
4.          if IS-NEG-LOOP(ei) return FALSE 
5.          if &LOOSENCONSTRAINTS (G, ei, LD, LE) return FALSE 
6.          if &BACKPROPAGATE (G, ei, LD, LE) return FALSE 
7.    end for 
8.    return TRUE 

Figure 8: Pseudo-code for BACKPROPAGATE-LOOSEN  
function LOOSENCONSTRAINTS (G, zi, LD, LE) 
1.     D %  IDENTIFY-AND-SDSP-ORDER_UNDOMINATED_EDGES (LD, zi) 
2.     for each Undominated Edge di in ordered list D 
3.           if OTHER-REASON-STILL-DOMINATED(di, G) 
4.                 UPDATE-DOMINATED-SUPPORTS(di , LD, G) 
5.           else  
6.               add undominated edge di back to CDGU 
7.               REMOVE-FROM-DOMINATED-SUPPORTS(di, LD) 
8.               if &BACKPROPAGATE (G, di, LD, LE) return FALSE 
9.          end if 
10.     E %  IDENTIFY-AND-SDSP-ORDER_UNSUPPORTED_EDGES (LE, zi) 
11.     for each Unsupported Edge Value vi in ordered list E 
12.         if EDGE-VALUE-CURRENT(vi, G)  
13.               revert unsupported edge vi to previously supported edge value 
14.               REMOVE-FROM-EDGE-VALUE-SUPPORTS(vi, , LE) 
15.               if &LOOSENCONSTRAINTS (G, vi, LD, LE) return FALSE 
16.               if &BACKPROPAGATE (G, vi, LD, LE) return FALSE 
17.         else 
18.               REMOVE-FROM-EDGE-VALUE-SUPPORTS(vi, , LE) 
19.         end if 
20.     end for 
21.    return TRUE 

Figure 9: Pseudo-code for LOOSENCONSTRAINTS 
function BACKPROPAGATE (G, ei, LD, LE) 
1.     if IS-POS-LOOP(ei) return TRUE 
2.     if IS-NEG-LOOP(ei) return FALSE 
3.     for each incremental update rule propagating ei 
4.          if edge zi in G is modified or created 
5                add Edge Value Support for zi to LE 
6.                        remove Dominated Edge Support for zi from LD if necessary 
7.               if G is squeezed return FALSE 
8.               if &BACKPROPAGATE (G, zi, LD, LE) return FALSE 
9.         end if 
10.    end for 
11.    return TRUE 

Figure 10: Pseudo-code for BACKPROPAGATE  

Empirical Validation  
We empirically validated our IDC algorithm by comparing 
runtime with our implementation of the DC algorithm.  
 For basis of comparison, we randomly generated STNUs 
of various sizes of n = 10, 20, 30, 40, and 50 nodes. The 
STNUs were created by generating n/2 activities, each with 
a start timepoint S and end timepoint E. An upperbound 



time constraint between each S and E was then randomly 
chosen between [1, max_duration =10], and a lowerbound 
time constraint was randomly chosen between [0, 
upperbound] so that the duration would be nonzero and 
locally consistent. The link and end timepoint of each 
activity was assigned as contingent with 0.3 probability. To 
derive constraints among activities, we randomly placed 
each activity in a 2D plan space similar to a simple 
scheduling timeline, where overlapping activities represent 
concurrent activities. Requirement links with generated 
locally consistent values were then introduced to constrain 
neighboring timepoints not already linked. This process 
ensured that the structure of randomly generated STNUs 
resulted in plan executions that generally flowed from left 
to right in the plan space, (as is the case with the 
cooperative rover scenario).  
 We randomly generated STNUs and tested each for 
dynamic controllability using the DC algorithm until 100 
dispatchable STNUs for each size n were generated.  Next, 
a randomly chosen constraint was loosened by a random 
number between [1, max_duration = 10]. We then recorded 
the average runtime of the IDC and DC algorithm to 
compile the plan. Fig.11a indicates that IDC offers up to 
an order of magnitude speed increase over the DC 
algorithm on these test cases.  
 Note that IDC requires additional computation to 
maintain set of support during the initial compilation using 
the DC algorithm. Fig.11b shows the difference in runtime 
(up to factor of 3) for the DC algorithm with and without 
maintaining set of support.  
 The results indicate that IDC offers a significant speed 
increase for maintaining dispatchability in real-time, for a 
comparatively modest cost in precompilation time. The 
speed of IDC is derived from exploiting the causal 
structure of a dispatchable plan to efficiently propagate 
constraint modifications throughout the plan. 
 
 
 
 
 
 
 

 
         (a)            (b) 
Figure 11: Runtime of (a) Incremental vs. DC Algorithm, (b) DC 
Algorithm with vs. without maintaining support lists 
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