
IAC-02-U.5.04

1

MODEL-BASED AUTONOMY FOR THE NEXT GENERATION OF
ROBOTIC SPACECRAFT

Fesq, L.(1); Ingham, M.(1); Pekala, M.(2); Van Eepoel, J.(1); Watson, D.(2); Williams, B.(1)
(1) Space Systems Laboratory, Massachusetts Institute of Technology

(2) Applied Physics Laboratory, Johns Hopkins University
Contact: {fesq, ingham, vanny, williams}@mit.edu; {mike.pekala, dave.watson}@jhuapl.edu

ABSTRACT

A novel approach to the design of reactive embedded
software systems, called model-based autonomy, is
generating significant interest in the space systems
community. The goal of the model-based approach is
to automate onboard sequence execution by tightly
integrating goal-driven commanding with fault
detection, diagnosis, and recovery capabilities. This
paper describes Titan, a system-level autonomy
framework that expands upon previous model-based
approaches to configuration management, such as the
Livingstone mode identification and reconfiguration
system, which was demonstrated on the Deep Space
One spacecraft. Titan is a model-based executive that
estimates current spacecraft modes, detects and
repairs failures, and executes commands, all within a
fast sense-decide-act loop. This paper discusses the
model-based software technologies implemented
within the Titan executive. It describes a case study
of the deployment of Titan to a representative space
mission, including an overview of the various
component models assembled, as well as the
scenarios generated to verify proper execution of the
software. Finally, it provides results from initial tests
of the Titan implementation on these scenarios and
models.

INTRODUCTION

NASA’s vision of an end-to-end autonomously
operated space flight system is inspiring the
development of enabling technologies for highly
robust spacecraft. Over the past few years, a new
approach to the design of reactive embedded software
systems called model-based autonomy has generated
significant interest in the space systems community.
The goal of the model-based approach is to automate
onboard sequence execution by tightly integrating
goal-driven commanding with fault detection,
diagnosis, and recovery capabilities. Model-based
autonomy has been deployed in various aerospace
applications, including the Deep Space One (DS-1)

mission,1 and ground testbeds for the Space
Interferometry Mission,2 the X-34 and X-37 rocket
planes, and an in-situ propellant production system.3

This paper describes a system-level autonomy
framework that significantly expands upon previous
model-based approaches to fault protection, such as
the Remote Agent mode identification and
reconfiguration system (Livingstone4), which was
flown onboard the DS-1 spacecraft.1 This autonomy
framework, named Titan, is a model-based executive
that is capable of estimating current spacecraft
modes, detecting and repairing failures, and
executing commands, all within a fast sense-decide-
act loop. It leverages techniques from several fields
of artificial intelligence research, including model-
based reasoning, Markov modeling and constraint
programming.

The Titan model-based executive adopts the notion of
model-based programming5 as an approach to writing
software for embedded reactive systems. The
underlying principle is that embedded control
software can be written by asserting and checking
states which may be “hidden”, i.e. not directly
controllable or observable, rather than by operating
on observable and control variables.

A model-based program is comprised of two
components. The first is a control program, which
uses standard programming constructs to codify
specifications of desired system behavior. In
addition, to execute the control program, the
execution kernel needs a model of the system it must
control. Hence the second component is a plant
model, which includes probabilistic models of the
plant's nominal behavior and common failure modes.

A model-based program is executed by automatically
generating a control sequence that transitions the
physical plant to the states specified by the control
program. These specified states are called
configuration goals. Program execution is performed
using the Titan executive, which repeatedly generates
the next configuration goal, and then generates a
sequence of control actions that achieve this goal,
based on knowledge of the current plant state and
plant model.

Copyright © 2002 by the International Astronautical
Federation. All rights reserved.

2

The goal of this paper is to provide an overview of
the Titan executive, and to illustrate its application to
a representative space mission. In particular, this
paper presents results from a demonstration of Titan
performed in the context of a NASA New
Millennium Space Technology 7 Autonomy (ST7-A)
concept definition study.6 A successful demonstration
consists of showing that Titan can provide the
capabilities identified as critical for robust execution
of a real space mission.

This paper first provides a description of the model-
based technologies implemented within the Titan
executive. It describes a case study of the deployment
of Titan on the ST7-A space mission, including an
overview of the various plant models and control
programs assembled, as well as the scenarios
generated to verify proper execution of the engines.
Finally, it discusses initial tests of the Titan
implementation on these scenarios and models,
highlighting the demonstration of critical capabilities
for robust execution.

MODEL-BASED SOFTWARE OVERVIEW

Titan Overview

Titan is a model-based executive that estimates
current spacecraft modes, detects and repairs failures,
and executes commands within a fast sense-decide-
act loop. It is intended to interact with a system-level
planning capability (which may be ground-based, or
included as part of the onboard software
architecture), by executing scheduled activities in the
mission plan. It commands low-level hardware and
spacecraft subsystems.

As shown in Figure 1, Titan is composed of two
modules, a control sequencer and a d e d u c t i v e
controller. The control sequencer is responsible for
generating a sequence of configuration goals, using
the control program and plant state estimates. Each
configuration goal specifies an abstract state for the
plant to be placed in. The deductive controller is
responsible for estimating the plant's most likely
current state based on observations from the plant
(mode estimation), and for issuing commands to
move the plant through a sequence of states that
achieve the configuration goals (mode reconfigura-
tion).

Titan provides several advantages over existing
onboard execution systems. Similar to the Remote
Agent Executive,7 it uses a combination of scripted
and deduced actions, but Titan’s model-based control
sequencer design allows for a simpler interaction
between script execution and the deductive control
engine. This design lends itself to goal-oriented

commanding, and control code that is highly
modular, reusable, and more easily verified by
spacecraft engineers. The tight coupling of state
determination and reconfiguration within the
deductive controller allows for on-the-fly recovery
actions to be inferred and executed in real time, for
seamless continuation of operations in the event of
failure or anomalies. Finally, the high degree of plug-
and-play modularity within the Titan system, at both
the model and module level, will allow for high
portability between missions.

Figure 1. Titan Architecture

Control Sequencer Overview

The control sequencer takes in activity goals from the
ground or an onboard system-level planner, such as
ASPEN,8 Europa9 or Kirk.10 Its role is to decompose
these system-level activity goals into lower-level
configuration goals for the hardware components and
subsystems. Each activity goal invokes a control
program written in the Reactive Model-based
Programming Language (RMPL). The control
program can be viewed as a deterministic, executable
specification of the desired spacecraft behavior,
expressed in terms of the spacecraft’s state variables.
As the sequencer executes a control program, it reads
the current spacecraft state from, and issues
appropriate configuration goal states to, the deductive
controller. Technical details on RMPL and the
control sequencer are presented in reference 5.

Deductive Controller Overview

The deductive controller (Figure 2) takes as inputs
the plant model, a sequence of configuration goals,
and a sequence of observations. It uses the same plant
model to deduce the system state from the
observations, and to figure out how to achieve the
configuration goal states issued by the control
sequencer. It generates a sequence of most likely
plant state estimates and a sequence of control
actions (commands). The sequence of state estimates

Deductive

Commands

Configuration
goals

Observations

Flight System Control

RT Control Layer

Control Sequencer

State
estimates

Plant
Model

Control
Program

Deductive Controller

Reactive Model-based
Programming Language

Titan Model-based
Executive

Activity
goal

Activity
status

3

is generated by a process called mode estimation
(ME). The process of determining which control
actions should be issued in order to achieve a given
configuration goal is called mode reconfiguration
(MR). The deductive controller has been described
extensively in references 4 and 11; only a high-level
description of the ME and MR engines is provided
here.

Figure 2. Titan’s Deductive Controller

Mode Estimation

The ME engine provides confirmation of commands,
spacecraft state tracking, fault detection, and fault
diagnosis. ME interprets real-time sensor telemetry
by using qualitative observations in conjunction with
an onboard state model of the system to estimate the
current spacecraft state. It detects faults as
discrepancies between observed and expected system
behavior, based on the model and commands that
have been issued. When a fault is detected, ME
reasons through the probabilistic plant model to
determine the most likely current state of the system
that is consistent with the new observations.

More specifically, ME incrementally tracks the set of
system state trajectories that are consistent with the
plant model, the sequence of observations and the
control actions. The ME process is framed as an
instance of Hidden Markov Model belief state
update, which computes the probability associated
with being in a certain state at each time step. Since
the size of the set of possible current states is
exponential in the number of components,
computational resource limitations only allow a small
fraction of the state space to be explored in real time.
ME tracks only the most likely states using the OpSat
optimal constraint satisfaction engine.12

Mode Reconfiguration

The MR engine achieves configuration goals by
issuing a sequence of appropriate hardware
commands, based on the current estimated state from
ME, and the onboard state models of the hardware
components. MR accomplishes this through two
capabilities, the goal interpreter (GI) and reactive

planner (RP). GI uses the plant model and the most
likely current state to determine a reachable target
state that achieves the configuration goal, while
minimizing cost. RP takes the target state and a
current mode estimate, and generates a command
sequence that moves the plant to this target. RP
generates and executes this sequence one command
at a time, using ME to confirm the effects of each
command. It should be noted that GI also uses OpSat
in its search for a minimum-cost target state. Because
RP can generate repair plans for faults requiring
multiple-step repair actions, the MR engine provides
increased repairable fault coverage over previous
model-based recovery systems. RP, also called
Burton,11 is a sound, complete planner that generates
a control action of a valid plan in average case
constant time.

MISSION APPLICATION

Scenario Overview

The ST7-A study used a reference mission concept
consisting of a fully autonomous science spacecraft
in low earth orbit. The spacecraft incorporated
multiple science instruments and standard bus
functionality, including data recording, attitude
control, and ground communications.

To demonstrate the applicability of model-based
autonomy to real-world missions, plant models and
control programs for a number of scenarios depicting
ST7-A operations were developed. Two of these
scenarios will be described in this paper.

Scenario 1

Scenario 1 captures the operation of transmitting
stored data to the ground. This scenario, called
DownlinkDataBlock, demonstrates the capabilities of
the control sequencer and its interaction with the
deductive controller. The control sequencer is sent an
activity goal to downlink stored science data to the
ground. The sequencer responds by initiating a
ground communication activity in order to play back
the stored data and thereby free up onboard data
storage space. A ground communication activity
involves:

1 . determining which onboard omni antenna will
have line-of-sight coverage to the ground station;

2. configuring the onboard communications system
to transmit real-time telemetry out the
appropriate omni-directional antenna;

3. receiving communication confirmation from the
ground;

4. transmitting stored data from the solid-state data
recorder to the ground;

Commands

Configuration
goals

Observations

Flight System Control

RT Control Layer

State
estimates

System
ModelModel

Mode
Estimation

Mode
Reconfiguration

4

5. idling the transmitter once data transmission is
complete, and reporting success of the
DownlinkDataBlock activity.

This example uses a simplified model of the
communication subsystem for the ST7-A spacecraft
as shown in Figure 3. The subsystem consists of two
omni-directional antennas that are diametrically
opposed, providing 4-pi steradian coverage. A single
transmitter can be connected to either of the two
omni antennas via a switch. The position of the
switch is sensed and fed back to ME to determine
configuration status. When ME diagnoses off-
nominal system behavior, such as the switch being
stuck in the wrong position, the sequencer is notified,
which in turn fails the DownlinkDataBlock activity
and notifies a system-level planner such as Kirk. The
planner would then replan and invoke an alternate
control program, possibly involving spacecraft
reorientation, in order to achieve the downlink goal.

Figure 3. Scenario 1 Block Diagram

Scenario 2

Scenario 2 demonstrates the capabilities of the ME
and MR engines by providing more sophisticated
models for components of a command and data
handling subsystem and simulating nominal and
failed operations of these components. The
components in Scenario 2 consist of a prime and
redundant 1553 Bus Controller (BC), a single 1553
command/data bus, two remote terminals (RTs), and
two devices each connected to one of the remote
terminals, as shown in Figure 4. The bus controllers
are mutually exclusive: only one BC is on and
controlling the bus at any given time.

This scenario begins with BC-A controlling the bus,
and with the RTs and devices turned off. The Titan
sequencer receives an activity goal to activate the
devices, which involves systematically powering on
the RTs and the devices. As MR sends commands to
power on the boxes, ME monitors the system
behavior to determine nominal vs. off-nominal
conditions. Upon sensing off-nominal behavior, ME
notifies MR, which in turn attempts to achieve the
configuration goal through hardware reconfiguration;
e.g., resetting or power-cycling a non-responsive bus
controller. By evaluating observables in the system
such as comm/no-comm status from the devices, ME

diagnoses the state of the individual components,
distinguishing between BC failures and RT/device
failures. If the primary BC is determined to have
failed in a non-recoverable way, control of the bus
passes to the backup BC.

Figure 4. Scenario 2 Block Diagram

Plant Model Overview

A spacecraft engineer implements plant models for
the Titan deductive controller using Livingstone’s
modeling language, called the Model-based
Programming Language (MPL). MPL provides
constructs for defining plant models, which are
compiled into a format suitable for processing by the
Titan executive at runtime.

Plant modeling begins with the development of
individual component models using a first-principles
approach. These component models are then
logically combined to form the complete system
model. The Titan executive uses this aggregate
model at runtime to perform system-wide inference.
This component-based approach to model
development frees the spacecraft engineer from
having to explicitly anticipate and encode all possible
system-wide interactions a priori.

Figures 5 and 6 depict graphical representations of
Titan plant models. These individual component
models are defined in terms of operational states or
modes, which may be characterized as “nominal” or
“faulty”. In the figures, modes are represented by
labeled ellipses. A component occupies precisely
one mode at any single point in time. Each mode is
defined in terms of its modal constraints, which are
propositional logic statements specifying the
consistent plant behavior for that mode. Plant
behavior is gauged primarily in terms of observations
that have been gathered from system sensors.
Transitions, which are the arcs in the component
model diagrams, define the allowable trajectories
between component modes. Nominal, or
commanded, transitions are explicitly encoded by the
spacecraft engineer and have associated with them a
guard that specifies when these transitions are
enabled. Fault transitions are implicit in the model,
and use the probabilities and modal constraints

5

associated with fault modes, rather than guards, to
determine possible resultant states. The included
figures follow the convention of using a solid line to
depict nominal transitions and a dashed line to depict
fault transitions. Labels on the arcs correspond to the
guard associated with the transition.

Good modeling practice dictates that component
models should always contain an “unmodeled” or
“unknown” fault mode that has an extremely low
probability and no modal constraints. This is used as
a fallback in the event of a completely unanticipated
fault not covered by an explicitly encoded fault
mode. For brevity, this mode is sometimes omitted
from the graphical representation of the component
model.

Our plant models for Scenario 1 consist of a
Transmitter component and a Switch component. The
Transmitter component represents the aggregate
behavior of communication subsystem electronics
(including transponder, diplexer, and solid-state
recorder hardware, for example). The Transmitter
has three nominal modes of operation: “idle”, in
which the communication link is not established,
“streaming-rt-telem”, in which a low-rate
communication link with the ground is established,
and “downlinking-data”, in which playback data is
being transmitted to the ground at a high data rate.
The Switch can be in one of two nominal modes,
“enable-OmniA” or “enable-OmniB”, which
correspond to the switch positions enabling OmniA
or OmniB, respectively, for communication with the
ground.

The Switch model, depicted in Figure 5, is also
assumed to have two possible failure modes, stuck-
at-A and stuck-at-B, in which the switch is stuck in
position and cannot be reset.

enable-omniA

enable-omniB stuck-at-B

stuck-at-A

switch-cmd
=setA

switch-cmd
=setB

probability ε

probability ε

Figure 5. State transition model for Switch

The Transmitter and Switch component models
developed for Scenario 1 are, by design, simple
examples of first-principles model development. The
internal logic is straightforward, and the models
themselves map clearly to physical elements of the
underlying plant. However, Titan’s plant modeling
language is flexible and allows a spacecraft engineer

to produce more complicated models. For example,
the bus controller model developed for Scenario 2 is
implemented using three interrelated component
models: one “concrete” model of the bus controller
itself and two associated “pseudo-component”
models, which are used to record attempted recovery
actions and do not have a physical counterpart in the
underlying plant.

Figure 6 shows the concrete bus controller plant
model, which has the nominal modes “on” and “off”,
and has failures modes “resettable”, “power-
cycleable”, “broken” and “unknown”. A bus
controller in “on” mode is powered and is actively
managing data traffic on the 1553 bus, while “off”
mode corresponds to the powered down state. The
more interesting aspect of this component is the way
in which failures are modeled. In this case,
“resettable”, “power-cycleable” and “broken” form
an ordered sequence of cascading faults, ranked by
likelihood. All three are observationally
indistinguishable, and correspond to a lack of
communications capability on the 1553 bus.

Figure 6. Bus Controller Component Model

In the event of a bus controller failure, the
“resettable” mode will be selected as the most likely
state by the deductive controller, as it has the highest
probability. Once in “resettable” mode, the model
defines a transition back to the “on” mode by means
of issuing a “reset” command to the bus controller.
However, issuing this “reset” command also has a
side effect – one of the pseudo-component models
associated with the bus controller will change state as
well. Should this recovery action fail to restore
communications, the pseudo-component state will
indicate that a reset has already been attempted and a
constraint on the “resettable” mode of the bus
controller will preclude a repeated “resettable”
diagnosis. Thus, estimation falls to the next most

6

likely mode, which is “power-cycleable”. Like
“resettable”, “power-cycleable” has an associated
pseudo-component that tracks the number of repair
actions that have been initiated from this state. If
both the reset and power cycle repair actions fail to
restore communications, the bus controller falls into
the “broken” state, in which no further repair options
exist.

The mechanism described above is one of numerous
possible ways to encode this notion of cascading
faults in Titan. This particular approach exhibits the
property that it encodes aspects of the recovery
policy directly within the component plant model. It
also highlights the fact that component models are
applicable to more abstract notions beyond the
physical plant hardware. In addition to implementing
other plant modeling approaches for handling
cascading faults, the spacecraft engineer can elect to
delegate this functionality to the control program
instead. The Titan architecture and modeling
languages provide the flexibility to select the most
natural approach for a given application.

Control Program Overview

A control program is a deterministic, executable
specification of the desired spacecraft behavior,
expressed in terms of the spacecraft’s state variables.
It is written in a model-based programming language,
such as RMPL. RMPL provides standard
programming constructs for encoding various types
of behavior: conditional branching, iteration,
preemption, concurrency and sequential execution.

The RMPL control program in Figure 7 specifies
state trajectories for the DownlinkDataBlock
scenario. In addition to the state variables
corresponding to the above-mentioned component
modes, the control program also references other
system state variables: ‘omni-in-view’ (captures the
spacecraft’s knowledge of which Omni antenna has
the most direct view of the ground), ‘ground-
command’ (captures the current command received
from the ground), ‘ssr-playback’ (indicates
completion of solid state recorder playback), and
‘downlink-status’ (signals the success or failure of
the DownlinkDataBlock activity).

In order to execute the downlink activity, the
following actions must be performed:

1. Set the Switch to enable the appropriate Omni
antenna for downlink of streaming real-time
telemetry (based on ‘omni-in-view’ info obtained
from the attitude control subsystem, for
example.)

2. If the Switch gets stuck in the wrong position,
fail the DownlinkDataBlock activity.

3. Otherwise, set the Transmitter to start low-rate
streaming of real-time telemetry so that the
ground can establish the comm link.

4. When the “start-playback” command is received
from the ground, start the high-rate downlink of
onboard data.

5 . When the data downlink is finished, set the
transmitter to idle and report success of the
DownlinkDataBlock activity.

The control program in Figure 7 highlights several
different types of behavior:

• conditional branching – As indicated by the if-
thennext-elsenext construct (lines 4 & 20), the
control code must execute differently, depending
on whether OmniA or OmniB is in view. Also,
conditions on the switch-mode (line 7) and
ground-command variables (line 13) are checked
prior to initiating the streaming of telemetry and
downlinking of data, respectively. This
condition-checking is implicit in the when-
donext construct.

• iteration – Should the above conditions on
switch-mode and ground-command take some
time to be achieved, the control program should
wait for them to become true (lines 7 & 13),
requiring an iteration on the condition check
(again implicit in the when-donext construct).
Also, the always construct is used in this
program, to iteratively maintain the Transmitter
in “streaming-rt-telem” and “downlinking-data”
modes (lines 9 & 16).

• preemption – While the Transmitter is
“downlinking-data”, the control program needs
to be watching for the state ‘ssr-playback =
complete’ to become true, at which point the
“downlinking-data” goal can be terminated (line
17). Such preemption is enabled by the do-
watching construct.

• concurrency – As indicated by the parallel
construct (line 5), the following tasks are
performed concurrently: setting the Switch to the
appropriate mode (line 6); checking for the
correct Switch position prior to initiating
telemetry streaming (line 7); checking for the
Switch being stuck in the wrong position (line
11); and checking for receipt of the “start-
playback” ground command (line 13) .

• sequential execution – As indicated by the
sequence construct (line 14), the following tasks
are performed sequentially: maintaining the
Transmitter in “downlinking-data” mode until
the ‘ssr-playback = complete’ notification is
received (lines 15-17); setting the transmitter-
mode to “idle” (line 18); and reporting success of
the DownlinkDataBlock activity (line 19).

7

Figure 7. Control Program for DownlinkDataBlock Activity (ST7-A Scenario 1)

Figure 8. Control Program for maintainBCstatus Activity (ST7-A Scenario 2)

;; The following example uses these state variables and domains:
;; - omni-in-view has values [omniA omniB]
;; - transmitter-mode has values [idle streaming-rt-telem downlinking-data unknown]
;; - switch-mode has values [enable-omniA enable-omniB stuck-at-A stuck-at-B unknown]
;; - ground-command has values [no-cmd start-playback]
;; - ssr-playback has values [incomplete complete]
;; - downlink-status has values [undetermined succeeded failed]

DownlinkDataBlock()::
1 {do
2 {sequence
3 (downlink-status = undetermined)
4 {if (omni-in-view = omniA) thennext
5 {parallel
6 (switch-mode = enable-omniA)
7 {when (switch-mode = enable-omniA) OR (switch-mode = stuck-at-A) donext
8 {do
9 {always (transmitter-mode = streaming-rt-telem)}
10 watching (ground-command = start-playback)}}
11 {when (switch-mode = stuck-at-B) donext
12 (downlink-status = failed)}
13 {when (ground-command = start-playback) donext
14 {sequence
15 {do
16 {always (transmitter-mode = downlinking-data)}
17 watching (ssr-playback = complete)}
18 (transmitter-mode = idle)
19 (downlink-status = succeeded)}}}
20 elsenext ;; Similarly for the case where (omni-in-view = omniB)
21 {…
…
36 watching (downlink-status = failed) OR (downlink-status = succeeded)}

;; The following example uses these state variables and domains:
;; - bc_a has values [on off resettable power-cycleable broken unknown]
;; - bc_b has values [on off resettable power-cycleable broken unknown]
;; - maintainBCstatus has values [sustaining failed]

MaintainOneBCOn()::
1 {do
2 {sequence
3 (maintainBCstatus = sustaining)
4 {parallel
5 {do
6 {always
7 {parallel
8 (bc_a = on)
9 (bc_b = off)}}
10 watching (bc_a = broken) OR (bc_a = unknown)}
11 {do
12 {when (bc_a = broken) OR (bc_a = unknown) donext
13 {always
14 (bc_b = on)}}
15 watching (bc_b = broken) OR (bc_b = unknown)}
16 {when ((bc_a = broken) AND (bc_b = broken)) OR
17 ((bc_a = broken) AND (bc_b = unknown)) OR
18 ((bc_a = unknown) AND (bc_b = broken)) OR
19 ((bc_a = unknown) AND (bc_b = unknown))
20 donext (maintainBCstatus = failed)}}}
21 watching (maintainBCstatus = failed)}

8

These types of behaviors are common to embedded
programming. The key distinction in a model-based
control program is the direct referencing of hidden
state variables in the system. RMPL control programs
may be viewed as specifications of deterministic state
transition systems, which act on the plant by asserting
and checking constraints expressed in propositional
state logic. The propositions are assignments of state
variables to values within their domains. Reactive
constructs, such as do-watching, when-donext and
always, allow flexibility in expression of complex
system behavior and dynamic relations.

Figure 8 presents one of the control programs used in
the context of Scenario 2. This program encodes the
switch-over to ‘bc_b’ in the case of an unrecoverable
or unknown failure of ‘bc_a’. This example
demonstrates the use of control programs to
implement “state maintenance” activities intended to
run continuously as background processes on the
spacecraft processor. This is in contrast to the
DownlinkDataBlock control program (Figure 7),
which corresponds to a “dispatched” activity that is
executed periodically as part of a mission plan.

The control program starts up by initializing the
status flag variable ‘maintainBCstatus’ to the
nominal value “sustaining” (line 3). It then
continuously asserts the goals of keeping BC A on
and BC B off, within the context of an always
construct (lines 6-9). Note that recoverable failures of
BC A (of types “resettable” and “power-cycleable”)
are handled by the deductive controller without
straying from the nominal execution path through the
control program: by continuously asserting ‘bc_a =
on’ as a configuration goal, the deductive controller
will immediately respond by issuing the “reset”
command to BC A or by power cycling it, as
appropriate. Should the deductive controller’s ME
engine ever determine that BC A has failed in an
unrecoverable (“broken” mode) or unknown manner,
the control program preempts the assertion of ‘bc_a =
on’ and ‘bc_b = off’ (line 10), and switches over to
the redundant backup BC, by asserting the goal ‘bc_b
= on’ (lines 12-14). In the extremely unlikely event
that BC B also fails unrecoverably, the control
program will terminate, after signaling
‘maintainBCstatus = failed’ (lines 16-21).
Presumably, this would in turn trigger drastic action
via hard-wired onboard fault protection, such as entry
into safe mode, since communications over the data
bus is a mission-critical capability.

Test Plan and Results

In order to be viable, an autonomy system must
address a number of operational use cases, including

cases derived from experience gained on previous
missions such as DS-1. Generally speaking, at a high
level these can be categorized as either nominal
operations or operations in the presence of faults. It
is with these use cases in mind that the preceding
models and control programs were developed.
Though relatively simple, they cover a large subset of
desired features for autonomous spacecraft control.
The following sections briefly touch on some of these
use cases and how the developed test scenarios have
exercised them.

Nominal Operations

Successful monitoring and execution of nominal
spacecraft operations are clearly critical, as one
typically expects the majority of operations to be
conducted in the absence of faults. The nominal
operations use case can be further broken down into
three sub-categories, which map neatly to elements of
the Titan architecture described above. First, an
autonomy system must be able to accept high-level
activity goals or procedure invocations and
decompose them into an appropriate sequence of
detailed task assignments. This capability is best
exemplified in Scenario 1, described above, in which
the operator provides only the activity goal to
downlink science data. In this scenario, the Titan
control sequencer demonstrates the ability to
decompose this high-level activity into a valid series
of configuration goals for the deductive controller.

A second use case for any autonomy system is to
accept a configuration goal and generate an
appropriate sequence of atomic plant commands that
will achieve this goal. More specifically, an ideal
autonomy infrastructure will feature the ability to
produce both single-step and multi-step
reconfiguration sequences. Both Scenarios 1 and 2
highlight the ability of Titan’s deductive controller to
take configuration goals and produce correct
command sequences. While the configuration goals
generated in the context of Scenarios 1 and 2 tended
to be reachable with a single plant command, multi-
step nominal reconfiguration sequences have been
demonstrated in Titan using similar scenarios that fall
outside the scope of this paper.

Finally, an autonomy system must be able to perform
nominal mode tracking, or verifying that commands
that have been issued to the underlying plant were
successfully completed. While both Scenarios 1 and
2 demonstrate the ME engine performing nominal
model tracking to some degree, Scenario 2 is the
more compelling of the two. In Scenario 2, the
“comm” observations gathered from the device
components are used to positively reinforce the belief

9

that the bus controller was in fact successfully
transitioned from “off” to “on”.

Operations in the Presence of Faults

While the general expectation is for the bulk of
spacecraft operations to be conducted under nominal
operating conditions, the ability to autonomously
detect and correct faults is essential, especially in
environments where timely ground intervention is
impossible. Thus, there exist a number of important
use cases related to autonomous operations in the
presence of faults.

One core requirement is the ability to diagnose both
single and multiple faults. In the case of multiple
faults, they may occur simultaneously or in
succession over time. Titan’s ability to diagnose
component faults was tested in Scenario 1, where the
comm/no-comm status from the devices was used to
diagnose bus controller and RT/device faults, and in
Scenario 2, where observations were used to
diagnose the omni-switch failing to the “stuck-at-B”
mode. Another key consideration with respect to
fault diagnosis is the management of completely
unanticipated faults. This ability is represented in the
Titan plant models, which all contain a special
“unmodeled” or “unknown” state definition. This
state definition provides runtime robustness by
serving as a fallback for component failure modes not
explicitly encoded by the spacecraft engineer. This
feature was exercised in a test case of Scenario 1,
where a set of plant observations resulted in the
engine diagnosing an unmodeled transmitter failure.

Once faults have been detected, the autonomy system
must be able to take the necessary action to return to
nominal operations. One expectation is that an
autonomy system be able to effect recovery by
repairing the faulty component. This was
demonstrated in Scenario 2, where Titan attempts to
repair a faulty bus controller by first performing a
soft reset, and failing that, by performing a power
cycle of the bus controller. As directly repairing a
faulty component will not always be possible, an
autonomy system must also be able to take advantage
of physical or functional redundancy to address
faults. Again, Titan successfully demonstrated this
capability in Scenario 2, where the secondary bus
controller was brought online in response to an
irreparable failure of the primary bus controller.

Test Visualization

A portion of the scenario verification process also
involved a visual presentation of the spacecraft
configuration over time as the Titan executive
worked to achieve high-level activity goals. For this
purpose, the Helios visualization tool was employed

(Figure 9). Helios is a Java application in the spirit of
Stanley,13 the graphical interface to Livingstone.
This tool provides the capability to visualize the ME
and MR portions of a deductive controller both
graphically, in the form of a schematic display, and
textually, in tabular format. The data represented can
consist of multiple candidate trajectories over a series
of discrete time steps.

Figure 9. Helios Visualization Tool

CONCLUSIONS

Model-based execution bridges the gap between
mission level planning and real-time subsystem
commanding in an autonomous system. Titan is a
model-based executive that automates diagnosis and
commanding of onboard subsystems based on
common-sense engineering models of a spacecraft. It
provides robustness in the sense-decide-act loop,
necessary for operation in the harsh, unpredictable
environment of space. This capability can save time
and cost in spacecraft operations by decreasing the
level of detail needed to command the spacecraft, and
decreasing science down-time due to spacecraft
safing in response to recoverable faults.

The specification of desired spacecraft behavior in
terms of activity goals framed in terms of abstract
system state will be an enabling capability for future
space missions where high levels of onboard
autonomy are required for science optimization,
spacecraft safety, or overall cost reduction.

Model-based programming has the potential to
fundamentally impact the way future spacecraft
systems are conceived, designed, and implemented.
In order for this to occur, it will be important to
mature the technology with input from a broad range
of spacecraft engineering disciplines. The first step
in this maturation process is the implementation of
control and plant models based on existing spacecraft
systems. This effort is currently underway in two

10

mission areas: the DARPA/NASA-funded, MIT-
designed SPHERES formation flying and autonomy
testbed (to be deployed on the International Space
Station in 2003), and NASA’s MESSENGER
(MErcury Surface, Space ENvironment,
GEochemistry and Ranging) Discovery mission. In
both of these cases, Titan models and control
programs are being developed for existing system
designs and mission objectives. In the future, the full
benefit of model-based programming will be realized
when spacecraft engineers can use tools like Titan
and RMPL during mission conceptual and
preliminary design, optimizing parameters such as
redundancy, observability, and controllability to
exploit the full capability of run-time model-based
execution.

ACKNOWLEDGEMENTS

Development of the Titan executive was funded in
part by the DARPA MoBIES program under contract
F33615-00-C-1702 and NASA’s Cross Enterprise
Technology Development Program under contract
NAG2-1466. The modeling and scenario
development work was funded as part of NASA’s
New Millennium Program ST-7 Autonomy Concept
Definition Phase Study under NASA/JPL Grant
#1232487. The NASA Engineering for Complex
Systems Program provided funding for the
development of the Helios visualization tool under
contract number NAG2-1477.

The authors would like to thank Tony Barrett, Seung
Chung, Paul Elliott, Jaime Esper, Steve Marshall,
Rob Ragno, Rick Schnurr, Michael Van Steenberg,
and Andreas Wehowsky for their contributions to this
effort.

REFERENCES

1 . D. Bernard, et al., “Spacecraft Autonomy Flight
Experience: The DS1 Remote Agent Experiment”,
Proceedings of the AIAA Space Technology
Conference & Exposition, Albuquerque, NM, Sept.
28-30, 1999. AIAA-99-4512.

2 . M. Ingham, et al., “Autonomous Sequencing and
Model-based Fault Protection for Space
Interferometry”, Proceedings of the 6th International
Symposium on Artificial Intelligence and Robotics &
Automation in Space (ISAIRAS-01), 2001.

3 . C. Goodrich and J. Kurien, “Continuous
Measurements and Quantitative Constraints:
Challenge Problems for Discrete Modeling
Techniques”, Proceedings of the 6th International
Symposium on Artificial Intelligence and Robotics &
Automation in Space (ISAIRAS-01), 2001.

4. B. Williams and P. Nayak, “A Model-based Approach
to Reactive Self-Configuring Systems”, Proceedings
of the 15th National Conference on Artificial
Intelligence (AAAI-98), pp. 971-978, 1996.

5 . B.C. Williams and M.D. Ingham, “Model-based
Programming: Controlling Embedded Systems by
Reasoning About Hidden State”, to appear,
Proceedings of the 8th International Conference on
Principles and Practice of Constraint Programming
(CP-02), Ithaca, NY, September 2002.

6. R. Schnurr, et al., Autonomy Technology and Onboard
Processing Study – Space Technology 7-Autonomy
and Autonomy Pilot Project, Study report submitted to
the New Millennium Program and the Office of Space
Science by NASA Goddard Space Flight Center,
February 8, 2002, in press.

7 . B. Pell, et al., “A Hybrid Procedural/Deductive
Executive For Autonomous Spacecraft”, In
Proceedings of the 2nd International Conference on
Autonomous Agents (Agents ’98), Minneapolis, MI,
May 1998.

8. S. Chien, et al., “ASPEN - Automating Space Mission
Operations using Automated Planning and
Scheduling”, Proceedings of Space Operations 2000
Conference (SpaceOps 2000), Toulouse, France, June
2000.

9 . A.K. Jonsson, et al., “Planning in Interplanetary
Space: Theory and Practice”, in Proceedings of the 5th

International Conference on Artificial Intelligence
Planning Systems (AIPS-00), Breckenridge, CO, 2000.

10. P. Kim, B.C. Williams, and M. Abramson, “Executing
Reactive, Model-based Programs Through Graph-
based Temporal Planning”, Proceedings of the 17th
International Joint Conference on Artificial
Intelligence (IJCAI-01), Seattle, WA, 2001.

11. B. Williams and P. Nayak, “A Reactive Planner for a
Model-based Executive”, Proceedings of the 15th
International Joint Conference on Artificial
Intelligence (IJCAI-97), Nagoya, Japan, August 1997.

12. B.C. Williams and R.J. Ragno, “Conflict-Directed A*
and its Role in Model-based Embedded Systems”, to
appear, Journal of Discrete Applied Mathematics.

13. K. Rajan, et al., “Ground Tools for the 21st Century”,
Proceedings of IEEE Aerospace Conference, Big Sky,
MT, 2000.

