
Runtime Verification for Stochastic Systems

by

Cristina M. Wilcox
cwilcox@mit.edu

Submitted to the Department of Aeronautical and Astronautical
Engineering

in partial fulfillment of the requirements for the degree of

Masters of Science in Aerospace Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

c� Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Department of Aeronautical and Astronautical Engineering

May 21, 2010

Certified by. .
Brian C. Williams

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Eytan H. Modiano

Associate Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

2

Runtime Verification for Stochastic Systems

by

Cristina M. Wilcox

cwilcox@mit.edu

Submitted to the Department of Aeronautical and Astronautical Engineering
on May 21, 2010, in partial fulfillment of the

requirements for the degree of
Masters of Science in Aerospace Engineering

Abstract

We desire a capability for the safety monitoring of complex, mixed hardware/software
systems, such as a semi-autonomous car. The field of runtime verification has developed
many tools for monitoring the safety of software systems in real time. However, these
tools do not allow for uncertainty in the system’s state or failure, both of which are
essential for the problems we care about. In this thesis I propose a capability for
monitoring the safety criteria of mixed hardware/software systems that is robust to
uncertainty and hardware failure.

I start by framing the problem as runtime verification of stochastic, faulty, hidden-
state systems. I solve this problem by performing belief state estimation over a novel
set of models that combine Büchi automata, for modeling safety requirements, with
probabilistic hierarchical constraint automata, for modeling mixed hardware/software
systems. This method is innovative in its melding of safety monitoring techniques from
the runtime verification community with probabilistic mode estimation techniques
from the field of model-based diagnosis. I have verified my approach by testing it on
automotive safety requirements for a model of an actuator component. My approach
shows promise as a real-time safety monitoring tool for such systems.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics

3

4

Acknowledgments

To many friends and mentors thanks are due;
To Mom and Dad, your love has been a light
Upon my heart, your wisdom certain through
Uncertain times. You helped me win this fight.

For valued counsel, and for patience long,
Mere thanks, Advisor, can’t repay my debt.
For all my teachers, thanks cannot be wrong;
An ounce of learning I do not regret.

To all the names I couldn’t cram in verse;
Fiancè, Sibling, comrade labmates, friends;
Forgive me, though my gratitude is terse,
It issues from a source that never ends.

And last, for Him who loves me, my redeemer,
Soli Deo gloria et honor.

This research was supported in party by the Ford-MIT Alliance agreement of 2007,

and by a grant from the Office of Naval Research through John’s Hopkins University,

contract number 960101.

5

6

Contents

1 Introduction 15

1.1 Lifelong Runtime Verification of Stochastic,

Faulty Systems with Hidden State . 15

1.2 Architecture of the proposed solution 18

1.3 Related Work . 18

2 The Problem 21

2.1 Problem Statement . 21

2.2 Motivating the Problem . 21

2.2.1 Description of the SAFELANE 22

2.2.2 An Example Safety Requirement 23

2.2.3 A PHCA Plant Model . 24

2.3 Motivating the Approach . 26

2.3.1 A Directly Monitorable Safety Requirement 27

2.3.2 A Hidden-State Safety Requirement 28

2.3.3 A Safety Requirement for a Stochastic Plant 29

2.4 Discussion . 30

3 Calculating System Safety: Runtime Verification for Observable Sys-

tems 31

3.1 Runtime Verification . 32

3.2 Linear Temporal Logic . 33

3.2.1 An Informal Description of LTL 34

7

3.2.2 Examples . 36

3.2.3 LTL Formal Definition . 38

3.2.4 LTL Summary . 39

3.3 Büchi Automata . 39

3.3.1 BA Formal Definition . 39

3.3.2 Operation of BA . 42

3.3.3 BA Summary . 49

3.4 LTL to BA conversion . 49

3.4.1 An Informal Description of Compilation 50

3.4.2 A Procedural Description of Compilation 58

3.4.3 An Example of Compilation 60

3.5 Chapter Summary . 67

4 Estimating System Safety: Runtime Verification for Embedded Sys-

tems 69

4.1 Derivation of Exact Runtime Verification for Stochastic Systems . . . 69

4.1.1 Calculating Safety for Observable Systems 70

4.1.2 Extension to Hidden-State . 71

4.2 Calculating Safety Belief . 73

4.2.1 The Folly of Ignoring Conditional Dependencies 73

4.2.2 A Slow Approach: Counting Every Trajectory 74

4.2.3 A Good Approach: Combining Physical and Safety States . . 75

4.2.4 Section Summary . 79

4.3 The Probabilistic Hierarchical Constraint Automata Model 79

4.3.1 Motivation for PHCA . 79

4.3.2 PHCA Description . 80

4.3.3 Specifying PHCA in the Reactive Model-Based Programming

Language . 81

4.3.4 PHCA Formal Definition . 82

4.3.5 Calculating the Transition and Observation Probabilities . . . 84

8

4.4 Chapter Summary . 87

5 Validation and Conclusions 89

5.1 Validation . 89

5.1.1 Description of Implementation 90

5.1.2 Experimental Setup . 90

5.1.3 SAFELANE Actuator Example 90

5.1.4 Results . 92

5.2 Future Work . 93

5.2.1 Dealing with More Complex Models 93

5.2.2 Introducting MTL or TLTL 94

5.2.3 Diagnosis . 96

5.3 Chapter Summary . 96

9

10

List of Figures

2-1 The SAFELANE autonomous subsystem and its subcomponents. The

system is also comprised of a visual sensing unit that is observable, and

actuation units. The system’s purpose is to prevent unintentional lane

departures. 24

3-1 The Büchi Automaton for a safety requirement of the SAFELANE

example system. 44

3-2 The BA for an example liveness property. 47

3-3 The Büchi Automaton for a safety requirement of the SAFELANE

example system. This automaton is described in detail in Section 3.3.2. 49

3-4 Example of folding nodes together when adding a new node to a BA

under construction. After node N2 is completely processed, it is folded

into state q1 because they have the same next fields. 57

4-1 A graphical model of an embedded system. The commands into the

system are represented by c, observations z, physical system (hardware

and software) state is x, and safety state is q. Subscripts denote time. 71

4-2 Graphical model from Figure 4-1 with clustered state y = q ⊗ x . . . 76

4-3 SAFELANE actuator component PHCA model. 80

4-4 Examples of the mapping between RMPL constructs and PHCA format. 81

4-5 Example of an RMPLJ specification for a PHCA plant model. 82

5-1 A Deterministic Büchi Automaton for testing Requirement (5.1). . . . 91

5-2 SAFELANE actuator component PHCA model. 92

11

12

List of Tables

3.1 This table depicts the result of compilation of Equation (3.3) into a

Büchi Automaton. There are three states. Every line in the entry for a

state represents a transition into that state, from the indicated state,

guarded by the Guard. An equivalent automaton is shown in Figure 3-3. 50

3.2 Rules for decomposing an LTL formula f that was taken from the new

field of a node N1. For each type of formula, corresponding values

indicated for new and next are added to the existing new and next

sets of N1. If a new entry exists for N2, then a new node is cloned

from (the original) N1 and augmented with the new value for N2. . . 56

3.3 The list of states that is produced when Algorithm BA-compile is

performed on formula (3.3). 61

13

14

Chapter 1

Introduction

This thesis provides a capability for the safety monitoring of embedded systems with

stochastic behavior that have hidden state and may fail. I accomplish this by framing

the monitoring problem as that of Bayesian belief state update on a combined plant

and safety state. Knowledge of plant behavior is encoded as a stochastic model with

discrete states.

1.1 Lifelong Runtime Verification of Stochastic,

Faulty Systems with Hidden State

In this section I discuss the motivation behind runtime verification and elaborate on

its utility for complex embedded systems that include hardware and software. I also

introduce the need to handle stochastic systems and systems with hidden state. The

subsequent section sketches my approach to estimating safety for such systems, while

Section 1.3 discusses related work.

From Model Checking to Runtime Verification

Most complex software systems are deployed with bugs. The field of formal verification

strives to prove that software is correct through model checking, but the efficiency and

practicality of these methods are hindered by a problem of state explosion, also known

15

as the curse of dimensionality [4]. Though progress has been made and model checking

has proven to be a valuable tool for specific applications such as airline reservation

system software and space probe control software [4,8,12,25], these methods still do

not apply to a wide range of real world systems. In practice, extensive testing instead

is used to expose bugs. However, testing is never guaranteed to be exhaustive, and

many complex software systems are riddled with problems not caught at design time

that are addressed through frequent patches and service packs. Consequently, the

field of runtime verification [14] has emerged to check program correctness at runtime,

circumventing the combinatorial problem and thus providing complex systems with a

safety net for design time verification and testing.

Runtime verification complements testing methods by providing a framework for

automated testing that can be extended into a capability for monitoring a system

post-deployment. With a runtime verification capability in place, an operational

system can detect deviations from formally specified behavior and potentially take

corrective action. In this way, runtime verification complements testing methods and

provides a capability for fault-tolorance which is desirable for safety critical systems.

Formal Methods in Hardware Design and Operation

Formal verification techniques were developed for software systems, but the use of

these techniques as a part of hardware design has been advocated [33] and shown to

be feasible for electronic embedded systems such as logical circuits [5, 9, 11]. Formal

verification of hardware design is suitable for small systems that can be modeled

precisely and who’s inputs are known.

However, from a practical standpoint, complex hardware systems have operational

environments that may cause significant deviations from modeled behavior, rendering

formal verification of design ineffective. These systems can benefit from design

verification, but this does not prove that they will operate correctly when deployed.

Runtime verification has therefore extended formal verification of hardware systems

to deal with complex mixed systems, that is, systems that are a mix of hardware

and software [7,29]. Runtime verification of mixed systems provides a capability for

16

monitoring the behavior of a system in the field, with the potential for a corrective

functionality that acts based on the output of the monitor.

The Need for Hidden State

Runtime verification for mixed systems assumes observability of properties to be

monitored. This thesis argues that for complex hardware systems such as a space

probe or a car, the system’s state is generally unobservable, due to the high cost of

sensing all variables reliably. Hence, in order to perform general runtime verification

of these mixed systems, this thesis extends proven runtime verification techniques so

that they handle systems with hidden states.

To deal with hidden states, I draw upon inference techniques from the field of

Model-based diagnosis (MBD) [15,41], which require an accurate model of the system

components and constraints. MBD applies conflict-directed search techniques in order

to quickly enumerate system configurations, such as failure modes, that are consistent

with the model and observations. These techniques are suitable for mixed systems

and scale well [26–28,40].

Dealing with Systems that Fail

A second issue, not directly addressed by runtime verification, is that complex systems

with long life cycles experience performance degradation due to seemingly random

hardware failure. Many systems function well when manufactured, but may become

unsafe over time, especially when they are in use for longer than their intended life span.

For example, car owners occasionally fail to have their vehicles inspected promptly,

which can result in a component, such as the braking system, receiving more use than

it was designed for. We want to be able to detect any breaches of safety due to wear

and tear in such a situation.

Thus, this thesis advocates the use of a plant model that incorporates stochastic

behavior [40], allowing wear and tear to be modeled as stochastic hardware failure.

With such a model, specification violations resulting from performance degradation

can be detected online and recovery action can be taken, such as the removal of unsafe

17

functions.

1.2 Architecture of the proposed solution

This thesis proposes a capability for the monitoring of formal specifications for mixed

systems that are written in Linear Temporal Logic (LTL) [30]. Linear Temporal Logic

is a well studied logic that is similar to plain English and expressive enough to capture

many important high-level safety requirements. Additionally, the requirements are

allowed to be written over hidden system states.

This safety monitoring capability will also have a model of the stochastic, faulty

plant captured as a Probabilistic Hierarchical Constraint Automaton (PHCA) [40].

This automaton representation allows for the abstract specification of embedded

software, as well as the specification of discrete hardware modes, including known

failure modes. Additionally, stochastic transitions may be specified in order to model

random hardware failure. Such a model of the system allows the safety monitoring

capability to identify hidden system state, including in the case of sensor failure,

unmodeled failures, intermittent failures, or multiple faults.

Given sensory information, the safety monitoring capability will then compute

online the likelihood that the LTL safety requirements are being met. This is accom-

plished by framing the problem as an instance of belief state update over the combined

physical/safety state of the system, as described in Chapter 4.

Together, the use of LTL and PHCA provide a clean specification method for

performing safety monitoring of mixed stochastic systems. Viewing safety monitoring

as belief state update on a hybrid of BA and PHCA state provides an elegant framing

of the problem as an instance Bayesian filtering.

1.3 Related Work

Next, consider the work presented in this thesis compared to recent prior art.

Some examples of the successful application of runtime verification techniques in

18

software systems are JPaX by Havelund and Roşu [19] and DBRover by Drusinsky [16],

both shown to be effective monitors for a planetary rover control program [8]. Another

approach given by Kim et al., MaC [23], has proven effective at monitoring formations

of flying vehicles [22]. This thesis builds on such work by extending these techniques

to deal with mixed stochastic systems.

Peters and Parnas [29] and Black [7] have suggested monitors for runtime verification

of systems including hardware, but these works do not consider hidden state, which

this thesis does.

Techniques have been developed for the model checking of systems that exhibit

probabilistic behavior [4, 20, 34, 38]. While these methods are appropriate for random-

ized algorithms and have even been applied to biological systems [20], they are not

concerned with complex mixed systems, as these mixed systems operate in environ-

ments that may cause significant deviations from modeled behavior. Additionally, if a

mixed system is modeled having randomly occurring hardware failures, proving its

correctness becomes problematic because the model will fail by definition.

More recently, techniques have been demonstrated for the runtime verification

of systems that exhibit probabilistic behavior [32, 36]. Sistla and Srinivas present

randomized algorithms for the monitoring of liveness properties on simple software

systems given as hidden Markov models [36]. Their approach is subtly different from

the one presented in this thesis, as they focus on the probabilistic monitoring of

liveness properties. The properties they are concerned with are not written over

hidden states of the system, but instead over the observations that the system generates.

They employ counters and timeouts to probabilistically predict whether the system will

satisfy the liveness requirement. This thesis does not attempt to predict the satisfaction

of liveness requirements, because in doing so a monitor may reject system executions

that have not been proven to violate the requirements. Instead of attempting to

monitor liveness requirements, we would prefer to convert liveness properties into more

specific timed properties (see Chapter 5), making them more useful for specifying

the true requirements of the system. Unlike the approach presented in this thesis,

Sistla and Srinivas do not provide the capability to monitor safety properties that

19

are written over hidden system states, and thus their methods do not suffice for the

purpose of safety monitoring of mixed systems.

Sammapun et al. perform monitoring of quantitative safety properties for stochastic

systems that have periodic behaviors, such as soft real-time schedulers [32]. A

quantitative property says, for instance, that a bad thing e such as a missed deadline

must occur no more than n percent of the time. The authors statistically evaluate an

execution trace for conformance to the property by checking subsections of the trace

for occurrences of the proscribed event e, and counting the number of subsections

on which e occurs. If e occurs in five out of 100 subsections, for instance, then they

estimate that e occurred 5 percent of the time. In order to assert that a property has

been violated, their method must gain confidence in its estimation by evaluating a

sufficiently long history of program state. Therefore property violations that occur

early in the operation of the system will not be caught. Their approach for the

verification of quantitative properties is sound, but they do not monitor properties

written over hidden system states, which this thesis does. Additionally, their approach

is built on an assumption of periodic system behavior, which this thesis is not limited

by.

Runtime verification has been moving towards the monitoring of general properties

for mixed stochastic systems, but no work I know of has attempted to monitor

properties written over unobservable system states. Additionally, no work has employed

a system model appropriate for faulty hardware systems. This thesis provides these

novel capabilities.

The rest of this thesis is organized as follows: Chapter 3 details an approach

to runtime verification for observable systems. Chapter 4 then solves the problem

formally outlined in Chapter 2 by extending runtime verification methods into the

realm of stochastic, partially-observable systems. Chapter 5 presents and discusses

empirical validation as well as future work.

20

Chapter 2

The Problem

2.1 Problem Statement

This thesis provides a capability for performing runtime safety monitoring of an

embedded system which will fail over its lifetime. This capability should assume that

the system is partially observable and behaves stochastically. In addition, the system

is implemented as a combination of hardware and software. In order to provide this

capability, this thesis solves the following problem:

Given a safety specification in Linear Temporal Logic, a model of the

physical system as a Probabilistic Hierarchical Constraint Automaton, and

an observation and command history for the system from time 0 to t, for

each time t return the probability that the safety specification is satisfied

up to t. This estimate is to be performed online.

2.2 Motivating the Problem

Consider a car as a complex, safety-critical embedded system. The quantity of

software onboard cars has increased dramatically over the past decade and is expected

to continue increasing exponentially [1]. A luxury vehicle today is shipped with roughly

100 million lines of control code encompassing everything from the powertrain and

21

brakes to onboard entertainment systems. This number is expected to increase to 200

or 300 million lines of code in the near future. The complexity inherent in so great

a magnitude of software raises concerns about the safety and reliability of modern

automobiles.

Consider specifically the SAFELANE system [2], a module designed to prevent

unintentional lane departures due to operator inattention or fatigue. When active, this

module detects accidental lane departures, and either warns the operator or actively

corrects the vehicle’s trajectory. In order to perform course corrections, SAFELANE

must have the ability to steer the vehicle. Such a degree of control requires safety

measures, thus the design of SAFELANE should include every reasonable precaution

to avoid collisions, rollovers, and other dangerous control situations.

This type of semi-autonomous control of a vehicle, along with advanced longitudinal

controllers such as adaptive cruise control, has the potential to greatly improve

automobile safety and efficiency. Car manufacturers are slow to include these features

not because the technology does not exist, but because of the prohibitive liability

it represents. Cars are truly safety critical systems. Small design errors in such a

subsystem could have serious consequences, such as property damage or loss of human

life. These systems would be tested extensively, yet this provides no safety guarantees.

To supplement testing, this thesis proposes a capability for monitoring the safety

requirements of such an embedded system. With this capability, a system such as

a car can be monitored during operation, and violations of the formalized safety

requirements can be detected.

2.2.1 Description of the SAFELANE

Consider a model of SAFELANE contained within a simplified car, see Figure 2-1. This

car consists of a steering wheel, brake and gas pedal, SAFELANE, and a touchscreen

interface that a human operator may use to command SAFELANE (known as a

Human-Machine Interface or HMI). SAFELANE consists of a visual sensing system, a

decision function that calculates appropriate control actions, and actuation on steering,

brake and gas pedals. In addition to the main decision function of SAFELANE, a

22

redundant calculation occurs in parallel. This backup calculation is used as a sanity

check for the control system. SAFELANE can be overridden by certain driver actions,

like a steering action, and can be disabled by the human operator via the HMI. The

steering wheel, gas pedal, and brake pedal are all observable variables, as is the state

of the HMI and the visual sensing unit. The autonomous subsystem is able to request

control of brake, steering, and acceleration, and receive control based on results of an

arbitration between the driver inputs and all autonomous subsystem requests.

2.2.2 An Example Safety Requirement

For a system to behave in a ‘safe’ manner, it must not endanger the operator through

any action or lack of action. In cases where it would be unsafe to act, for instance, if

the system cannot determine the correct control action, then the system is excused

from its obligation to act.

This is a general description of safety in any system. For a specified system, we

can specialize and formalize this description. The main safety requirement of the

SAFELANE system is that the system must take appropriate corrective action if it

detects an imminent lane departure. Restated:

If ever the visual sensing system determines that the vehicle is experiencing

a lane departure, SAFELANE must request a control action appropriate

to the situation, or issue a warning signal.

To formalize this requirement, we write it in a logic known as Linear Temporal

Logic (LTL). This logic is described in Section 3.2. The formalized version of the

above requirement is:

�
�
visual sensing= imminent-departure →

SAFELANE=Requesting Control ∨ SAFELANE=Warning Signal
�

This is read as “For all time, if visual sensing detects an imminent departure, then

23

SAFELANE is requesting control or signaling a warning.” This requirement specifies

the correct functionality of SAFELANE.

2.2.3 A PHCA Plant Model

Figure 2-1: The SAFELANE autonomous subsystem and its subcomponents. The
system is also comprised of a visual sensing unit that is observable, and actuation
units. The system’s purpose is to prevent unintentional lane departures.

In order to estimate the current state of the system, our capability requires a model

of system behavior. Because the system consists of both hardware and software, the

model is of both hardware and software behavior. In Figure 2-1, I show a model of the

SAFELANE system as a Probabilistic Hierarchical Constraint Automaton. This type

of automaton, detailed in Section 4.3, captures the discrete modes of system operation

as sublocations. Transitions may occur probabilistically, component automata may

contain sub-automata, and locations within the automata may be constrained by

values of system variables or by the operational mode of other components.

In this model, the SAFELANE component may be ON or OFF, and may transition

between these modes based on the primitive command from the user of key-on()

24

or key-off(). Within the ON mode, the component may be Disabled, Enabled, or

there may be a Fault Detected. The user may toggle between Disabled and Enabled

with the HMI (Human-Machine Interface), represented by the primitive methods

HMI-enable() and HMI-disable(). If SAFELANE is Disabled, it is Idle if the

visual sensing unit determines that the vehicle is safely in lane, and will transition

into a state where it issues a warning signal if the visual sensing system detects a

potential lane departure. Similarly, within the Enabled mode, the system transitions

from Idle to Requesting Control if the visual system senses a potential lane departure.

Within this mode, SAFELANE may request different types of control actions. These

choices are constrained by A, B, and C, which are results of the decision function.

When control is granted to SAFELANE, it is in the Correcting mode. If ever the result

of the decision function does not match the result of the backup calculation, then the

system enters the Fault Detected mode. At all times the model may transition into

the Unknown mode with a small probability.

The visual sensing system has the following modes, which are observable:

1. Lanes Not Sensible - lns

2. In Lane - il

3. Imminent Departure - id

4. Intentional Lane Departure - ild

5. Unintentional Lane Departure - uld

Other observable variables include whether or not SAFELANE is requesting control

of the vehicle (Requesting Control or rqc), and whether or not SAFELANE’s control

request has been granted (control-request-granted or crg).

Example Execution Trace of Capability

Recall the problem statement from Section 2.1:

Given a safety specification in Linear Temporal Logic, a model of the

physical system as a Probabilistic Hierarchical Constraint Automaton, and

25

an observation (z) and command (c) history for the system from time 0

to t, for each time t return the probability that the safety specification is

satisfied up to t. This estimate is to be performed online.

Earlier in this section an example safety specification for the SAFELANE system

in LTL was presented, as well as a PHCA model of the system, completing the

information that the proposed capability requires before runtime.

At runtime, the capability takes in a command and observation history. For

example:

t 1 2 3 4 5

c1:t key-on() ∅ HMI-enable() ∅ ∅
z1:t lns il ild il {uld,rqc}

With these inputs, this capability will calculate that the probability of the system

meeting its safety requirement as follows:

t 1 2 3 4 5

P(safe) 1 1 1 1 1

If, however, the observation at time five does not include rqc:

z5 = {uld}

Then the capability will calculate P(safe) at t = 5 to be 0.

2.3 Motivating the Approach

In this section I present two examples of safety requirements to motivate the assump-

tions behind the approach taken. Those assumptions are that the plant state is hidden,

and that the plant hardware may fail stochastically. The first example demonstrates

the utility of runtime verification for a system such as SAFELANE when the safety

state can be directly observed. The second example illustrates the need to relax

the assumption of full system observability for hardware systems, and then further

demonstrates the utility of allowing a stochastic plant model.

26

2.3.1 A Directly Monitorable Safety Requirement

For the SAFELANE example system in Figure 2-1, one important safety measure

that can be enforced is to revoke SAFELANE’s control privileges when it appears to

be making a faulty calculation. If a fault is detected in the decision function (that

is, if the main and redundant control computations do not agree), then we require

that SAFELANE not be allowed to control the vehicle until it has been power cycled.

Restated:

If ever the result of the control calculation of the decision function does

not agree with the backup calculation, from that time on the subsystem

shall never receive control of the vehicle.1

This is a relatively conservative requirement, which assumes that a faulty computation

may have been caused by a component outside the decision function, and thus will not

be fixed by simply resetting SAFELANE. This requirement is revisited in Sections 3.2

and 3.3, see Equation (3.2).

The problem statement above assumes we are given the history of observations

and control actions. As this safety requirement is written solely over the observable

variables request-x, backup-calculation, and control-request-granted, it

is possible to check whether the given history logically satisfies the formal statement

of the safety requirement. In fact, this is exactly what the field of runtime verification

does.

In runtime verification, a safety monitor checks at each time step to see if the

formal specification is being satisfied by the system. For example, assume that the

following observations are received from the SAFELANE system:

t 1 ... n

z
safelane-request-brake=T,

backup-calc-req-brake=F
... control-request-granted=T

At time t = 1, a fault is observed, and so SAFELANE enters the fault-detected

mode. However, this does not violate the safety requirement, so the safety monitor

1
This statement assumes the monitor resets when the car is restarted.

27

returns a 1, indicating that the system is safe. At time t = n, control is granted to a

faulty SAFELANE, hence the safety monitor calculates that the requirement is being

violated and returns a 0.

2.3.2 A Hidden-State Safety Requirement

As was shown in the previous example, given requirements written over observable

and control variables, runtime verification is sufficient to provide a safety monitoring

capability. However, runtime verification does not currently address the problem of

incomplete sensing that is generally associated with hardware. Take, for example, the

following safety requirement:

If ever the brake, gas, or steering actuation fails, from that time on the

subsystem shall never receive control of the vehicle.

The requirement says that if any of the steering, brake, or gas pedal actuation

mechanisms fail, then SAFELANE should never receive control of any of them. This

will prevent the system from asserting control during situations that its controller was

not designed for.

Assume the safety monitor has access to the steering wheel encoder data, and to

the commands sent by SAFELANE to the steering actuator. Consider the scenario

in which SAFELANE commands the steering wheel to turn, and at the next time

step the encoder reports that the wheel has not turned. It seems clear that some

component of the system is not behaving correctly, but it is unclear whether the

actuator is at fault or the encoder.

In this example scenario the state of the actuator is hidden. Put another way, the

safety monitor cannot directly observe whether the actuator is failed or not. This

means that the safety requirement above is written over hidden states. Thus, the

runtime verification approach employed in the previous example will no longer suffice.

Instead, the safety monitor must be able to infer the values of these hidden variables.

To accomplish what the runtime verification approach could not, I introduce

inference techniques from the field of model-based diagnosis [15]. Intuitively, having a

28

model of system behavior provides a basis for reasoning over hidden system states.

For example, in the scenario described above, the model of correct actuator and

encoder behavior dictates that the encoder output mirror the actuator input. An

input of a “turn” command to the actuator and an output of “no turn occurred”

from the encoder are therefore inconsistent with the model of nominal behavior.

Thus the possible system configurations must include either actuator = failed or

encoder= failed. This type of model-based reasoning allows the safety monitoring

capability to identify system configurations that are consistent with the observed

information, and therefore address the problem of incomplete sensing associated with

hardware. The runtime verification approach described in the preceding example has

no faculty for reasoning over hidden states.

2.3.3 A Safety Requirement for a Stochastic Plant

Consider again the previous requirement:

If ever the brake, gas, or steering actuation fails, from that time on the

subsystem shall never receive control of the vehicle.

When a system includes a hidden system state, such as the operational mode of the

actuator, the observable information may allow for multiple consistent diagnoses. In

addition to inferring the set of possible system states, it is desirable to be able to infer

their relative likelihoods. If the system model is allowed to include stochastic behavior,

knowledge of the likelihood of random hardware failure can be encoded as a stochastic

transition to a failure mode. In this way, the safety monitor has information about the

relative likelihood of failure based on the relative magnitudes of modeled stochastic

transitions. Thus it is possible to infer a probability distribution over all possible

values of system state. This allows the safety monitor to calculate a probability that

the safety requirement is satisfied. The inference of this probability is described in

Section 4.2.

29

2.4 Discussion

This chapter has given three examples of safety requirements that can be monitored

for the example system, SAFELANE. These examples were used to highlight a series

of behaviors that a safety monitoring system should embody. In particular, in order

to monitor these requirements, a capability is required that augments traditional

runtime verification by handling systems which have a hidden state and may fail

stochastically. The problem then becomes that of estimating the probability that

the safety requirements are being satisfied, given observations and commands. This

problem can be solved using tools from model-based diagnosis in order to reason

probabilistically over hidden system states.

Chapter 3 describes the traditional runtime verification approach. This approach

allows for the monitoring of requirements written over observable system variables.

Chapter 4 augments the runtime verification approach with inference techniques

enabling the monitoring of safety requirements that are written over hidden states.

30

Chapter 3

Calculating System Safety:

Runtime Verification for

Observable Systems

x : Plant (physical) state

z : Observations

c : Commands

xt : x at time t

z1:t : short for {z1, z2, . . . , zt}

Λ : Formal safety specification

q : Safety state

α : An LTL statement

W : A word legible to a Büchi Automaton

T : the Boolean truth value

Recall that the specific problem solved by this thesis is that of taking a formal spec-

ification Λ of desired system behavior in Linear Temporal Logic (LTL), a description

Φ of the behavior of the system as a Probabilistic Hierarchical Constraint Automaton

(PHCA), as well as a series of commands c to and observations z from the system,

and then returning a probability that the system is consistent with Λ. I will perform

this calculation under the assumption that the system may behave stochastically and

has hidden states.

In this chapter I revisit the solution to the problem of runtime verification of a

system in which we assume full observability and deterministic behavior. In Chapter

4, I extend the runtime verification approach to an exact algorithm handling mixed

hardware/software systems by dealing with hidden-state and stochasticity.

31

Within this chapter I present the runtime monitoring approach in Section 3.1. I

then give an in depth introduction to Linear Temporal Logic in Section 3.2, then

Büchi Automata (BA), a representative state machine format for LTL, in Section 3.3.

I discuss the conversion from LTL to BA in Section 3.4.

3.1 Runtime Verification

The field of runtime verification [14] arose from the desire to check the correctness of

complex programs without needing to check every possible execution of the software.

This is in contrast to model checking methods [4, 13], where a mathematical model of

the system is checked against a formal specification in order to prove correctness before

a system is deployed. Model checking only proves that the given model of the program

meets the specification, as opposed to proving that the implementation is correct, and

is therefore only as good as the model. Additionally, model checking can also only

check those properties that do not depend on environmental input, as these inputs are

not known completely at design time. Lastly, these methods suffer from a problem of

state explosion related to the need to check every possible execution. There are serious

problems involved with enumerating all possible executions explicitly or symbolically,

and many of these executions are quite unlikely. Therefore runtime verification only

checks one relevant execution, that is, the one that actually occurs. Because this

execution is generated by the running system, verifying its correctness verifies that the

system is behaving correctly, not just the model. Additionally, properties dependent

on the environment may also be checked.

The goal of runtime verification is to determine, at every time step, if the system is

currently meeting its correctness requirement Λ. This description of system correctness

Λ is a set of formally specified, high-level and time-evolved behaviors that have been

determined to be necessary for safe system operation. Under the assumptions that

the system is fully observable and behaves deterministically, we can accomplish this

using the tools I present later in the chapter.

Section 3.2 describes Linear Temporal Logic (LTL), a logic that is suitable for

32

formally specifying the correct behavior of a reactive system; with this logic we can

write Λ. Section 3.3 then presents an automaton format that is equivalent to LTL, the

Büchi Automaton (BA). A Linear Temporal Logic statement is compiled into a Büchi

Automaton using the method presented in Section 3.4. When a Büchi Automaton

for an LTL statement Λ is run on a program execution trace, it will reject if Λ is

violated by the trace, and it will accept if the requirement is satisfied thus far by the

trace. Therefore, using the tools presented later in this chapter, we are able verify at

runtime that a system is behaving correctly.

3.2 Linear Temporal Logic

In this section I informally and formally describe Linear Temporal Logic [3,30] as well

as give some examples of important temporal properties that can be stated in LTL.

Temporal or tense logics were created in part by researchers wishing to ensure

program correctness [30]. These logics were and are used to describe correctness

criteria for computer programs, such as in [25]. It was shown that Linear Temporal

Logic is as expressive as first order logic [21]. This fact, combined with LTL’s similarity

to natural language, makes it a powerful yet concise and straightforward language for

representing desired operating criteria.

LTL extends standard Boolean logic to include the notion of time. The truth of

the propositions comprising an LTL statement Λ may vary over time. A set of truth

assignments to all propositions of Λ, for all time, is called a word W, and is said to

have infinite length. For example, if Λ is written over the proposition α, then is is

possible for α to be true at every time step, which we write:

W0 = α α α . . .

If W is such that the truth assignments to the propositions across time satisfy Λ,

then that word is said to be in the language of Λ. Hence the language of Λ is the

set of infinite-length words that satisfy the statement. For example, the language of

33

Λ0 = �α, which requires that α be true for all time, is exactly W0. If Λ is a statement

of system correctness, then the language of Λ represents all possible correct system

executions.

However, in runtime verification, we can never observe an infinite sequence of

system states, only a finite prefix W of that infinite execution W . The task of runtime

verification is then to determine whether or not the finite word W is in the language

of Λ. Without the infinite execution trace, this is not necessarily decidable. The

definition of LTL presented in this thesis is based on those provided by the recent

runtime verification literature [6, 18], which take into account our desire to decide the

membership of the finite word W in the language of Λ.

3.2.1 An Informal Description of LTL

LTL augments standard Boolean logic with temporal operators, and hence is comprised

of temporal and non-temporal (which can be thought of as spatial) operators. Boolean

operators describe relationships between the truth of propositions at a single point in

time. For instance, the formula α ∨ β says that currently, either α is true, or β is true.

If α and β are propositions, then one way to satisfy this formula is:

α=T

The other Boolean operators are included in LTL as well, such as conjunction (∧),

negation (¬), and implication (→).

Temporal operators describe relationships between propositions that span time.

One example is the temporal operator “eventually” (F , for future, or ♦), which requires

that at some time now or in the future its argument must be true. For instance,

the formula ♦α (read: “eventually alpha”) can be satisfied thusly, where the ellipses

indicate that the intervening values are similar to what precedes them, and the dash

indicates that the value of the variable does not matter:

t = 1 2 3 . . . n n + 1

α=F α=F α=F . . . α=T -

34

The dual of F is “always” (G or �), which says that a proposition must be true for

all time, or globally. So to satisfy �α, only this will do:

t = 0 1 . . . n . . . tend

α=T α=T . . . α=T . . . α=T

Intuitively, G is the dual of F because if α must always be false, then it is never the

case that it is eventually true:

�¬α = ¬♦α

The third temporal operator we consider is “until” (plain U or U). It is a binary

operator that says that its first argument must hold until the second is true, and the

second must eventually happen. The following values satisfy αUβ (read: “alpha until

beta”):

t = 1 2 . . . n n + 1

α=T α=T α=T α=F -

β =F β =F . . . β =T -

The ♦ operator can be written in terms of U , as well. For example, ♦α may also be

written:

TUα

The dual of U is “release” or R (sometimes written V). αRβ says that α becoming

true releases β from its obligation to be true at the next time step. This operator

does not require that α eventually be true, in contrast to the U operator. Thus, there

are two general ways for a R formula, such as αRβ, to be satisfied:

t = 1 2 . . . n n + 1

1
α=F α=F . . . α=T -

β =T β =T β =T β =T -

2
α=F α=F . . . α=F . . .

β =T β =T β =T β =T β =T

The first way is similar to U , with the difference that β must be true up to and at

the same time as the first time that α holds (at time n). After t = n, the formula is

satisfied and the values of neither matter. The second way for the example release

formula to be satisfied is simply for β to always be true.

35

The final temporal operator we introduce is called “next” (X or �). This operator

is different from the other temporal operators because it describes what must happen

at the next time step, and doesn’t constrain any other time steps. If �α holds at

t = 1, then the following satisfies the property:

t = 1 2 . . .

- α=T -

This type of property can be useful, but also introduces ambiguity into the

specification if the amount of real time between t = 1 and t = 2 is left unspecified. For

example, asserting the property turn-key → �car-on does not specify whether

the car should be on one second or one hour from when then key is turned. In other

words, it is unclear what system behavior will satisfy this formula. Additionally, as

noted by [18], this operator is problematic for finite execution traces because the

meaning of �α at the last state in the trace is undefined. Thus, in order to avoid the

ambiguity � causes, we do not allow it to appear explicitly in the safety specification

Λ. However, � is an essential concept, and we still use the notion when compiling

LTL statements into Büchi Automata.

3.2.2 Examples

In the temporal logic literature, safety properties are defined as those which say that

some “bad” thing must never occur [3]. Pure safety properties can be expressed by

using the always (�) operator. A simple safety property for your life might be:

�(¬car-accident)

Equivalently, we can say that something “good” must constantly be occurring. A

simple yet essential safety property for a graduate student is:

�(positive-thesis-progress)

A different type of property is a liveness property, which says that some “good”

36

thing must eventually happen. In a software system, important liveness properties

might include termination, that is, that a program will eventually return control:

♦(program-returns)

or responsiveness, that is, that a program will eventually respond when a request is

made:

�
�
receive-request → ♦(respond-to-request)

�

These types of statements can never be definitively violated, though they can be

completely satisfied at some point. In other words, there is always hope that the

required “good thing” may still happen. For a graduate student, the all-important

liveness statement is:

Λ1 = ♦(graduate) (3.1)

Alpern and Schneider [3] formally define safety and liveness, and show that the set

of all properties expressible by LTL is the union of all safety and all liveness properties.

For the SAFELANE example system presented in Chapter 2, we can describe some

important high-level desired properties in LTL. The example given in Section 2.3.1

was that we might wish an autonomous subsystem of an automobile to be denied

control of the vehicle if an error is detected in its calculations:

Λ2 = �(fault-monitor=T → �(control-request-granted=F)) (3.2)

For the same autonomous subsystem, we may require that the subsystem not command

an acceleration for a vehicle that has stopped unless the driver releases the brake,

depresses the gas pedal, or enables the system through the human-machine interface

(HMI):

�(vehicle-halts=T →

(brake=F ∨ gas-pedal=T ∨ hmi-enable=T)Rcontrol-granted=F)

37

These final two examples due in part to Black [7].

3.2.3 LTL Formal Definition

If p is a proposition (a statement that evaluates to T or F), then a well formed LTL

statement α is outlined by the the following grammar:

α = T

| p

| ¬α

| α ∧ α

| αUα

I also use the following standard abbreviations for LTL statements α and β:

α ∨ β ≡ ¬(¬α ∧ ¬β)

α → β ≡ ¬α ∨ β

♦α ≡ TUα

�α ≡ ¬(♦¬α)

αRβ ≡ ¬(¬αU¬β)

Say W is a finite word over time consisting of the individual letters (σ1σ2σ3 . . . σn),

where each σt represents an assignment to a set of propositions Σ at time t. Then the

original LTL operators are formally defined as follows, where W � α means that α is

entailed by W :

W � p iff p ∈ σ1

W � ¬α iff W � α

W � α ∧ β iff W � α and W � β

W � αUβ iff ∃k s.t. σk..σn � β and

σ1..σk−1 � α

This specifies that a word W satisfies a proposition p if the first letter of W satisfies

38

p. Restated, W satisfies p if p is in the set of propositions that hold at time t = 1. A

negated formula holds if its positive form does not hold. A conjunction holds if both

arguments hold individually. Lastly, a formula involving the until operator (αUβ) is

entailed by W if there is some partition of W into σ1..σk−1 and σk..σn, such that α is

entailed by the first substring (σ1..σk−1), and β is entailed by second (σk..σn).

3.2.4 LTL Summary

In this section I introduced Linear Temporal Logic informally and formally, and gave

some examples of different classes of properties expressible by LTL, as well as some

examples of properties that are relevant to the SAFELANE example system, presented

in Chapter 2. LTL is a simple yet expressive language that allows us to write formal

specifications of correct behavior for complex embedded systems. Next we explore an

executable form of LTL, which we use to monitor LTL statements at runtime.

3.3 Büchi Automata

Nondeterministic1 Büchi Automata (BA) extend nondeterministic finite automata

(NFA) [35] to operate on infinite-length words, allowing us to use a Büchi Automaton

to represent the language of a Linear Temporal Logic statement [4,39]. This provides us

with an executable form of an LTL statement. With a BA we can perform monitoring

of its corresponding LTL statement on some input. Recall that we are only interested

in finite-length state trajectories, as no infinite execution can be observed. Therefore

we will modify the accepting conditions of a canonical BA [10] to better represent our

interests. In this section I define the modified BA and give an example.

3.3.1 BA Formal Definition

A Nondeterministic Büchi Automaton is a tuple �Q, Q0, F, Σ, T � such that:

1
The set of properties expressible by Nondeterministic Büchi Automata is not the same as the set

expressible by Deterministic Büchi Automata. Specifically, the full set of ω-regular languages is not
expressible by the latter. In this chapter we work with Nondeterministic Büchi Automata, which I

abbreviate as simply “BA,” as is common.

39

Q Finite set of states

Q0 ⊆ Q Set of start states

F ⊆ Q Set of accepting states

Σ Input alphabet

T : Q× Σ → 2Q Transition function

States

The states Q of a BA can be thought of as representing abstract safety states of the

underlying physical system.2 A BA is a tool for tracking the progress of the system

through these meta-states. For instance, recall the example LTL statement, Equation

(3.1) given in Section 3.2.2:

Λ1 = ♦(graduate)

This example liveness requirement is modeled with two safety states: graduated and

have-not-graduated. Consequently, the BA corresponding to Λ1 has two states:

BAΛ1(Q) = {qg, qh} = {graduated,have-not-graduated}

The underlying physical system may have very complicated dynamics involving funding

and advising situation, class schedule, red tape, writer’s block, et cetera, but the BA

does not represent these dynamics, only the safety state of the system.

Start States

The start or initial states Q0 are the states that are marked before the automaton

begins execution. They represent the initial safety state of the system. The automaton

must have at least one start state. The BA for Λ1 starts in the have-not-graduated

state:

BAΛ1(Q0) = {qh}

2
This thesis refers to the states of the BA as safety states, whether or not the BA is constructed

to monitor a safety property as defined in Section 3.2.2.

40

Accepting States

The accepting states F represent safety states in which the LTL specifications corre-

sponding to the BA are being satisfied. The example Λ1 is satisfied upon graduation,

and not before. As soon as this liveness requirement is met once, it is satisfied

permanently. Therefore, the graduated state is the single accepting state for this

example:

BAΛ1(F) = {qg}

Alphabet

The alphabet Σ of a BA is the set of symbols that it may read in to advance the

safety state. Because the safety state of the system depends on the progression of the

system’s physical configurations, Σ will consist of all possible physical configurations.

We assume each configuration, or physical state, can be fully represented by a unique

set of literals. Returning to the example safety requirement Λ1, we can represent one

configuration of the underlying physical system with the set of literals:

σeg = {¬thesis-completed,class-requirements-satisfied,. . . }

where σeg ∈ Σ.

The size of the alphabet depends on the number of unique underlying system

configurations and is generally exponential in the number of system components.

Transition Function

The transition function T defines the transitions that are enabled from a certain state

by a certain letter in the alphabet. In nondeterministic automata, many transitions

may be enabled at once, or no transitions may be. Hence the resulting value of T is

in the power set of Q.

In the graduation example above, perhaps the transition between states qh =

have-not-graduated and qg = graduated is enabled by the following letter of

Σ:

41

σg = {thesis-completed,

class-requirements-satisfied,

advisor-signature}

Written another way, the transition function contains the entry:

T (qh, σg) = {qg}

3.3.2 Operation of BA

Büchi Automata operate in almost the same way that simple finite-state machines do;

they receive inputs one at a time, advance the currently marked states according to

their transition function T , and then either accept or reject at the end of the input.

In nondeterministic automata, more than one state may be marked at once and more

than one transition may be taken at each time step. Additionally, we allow unguarded

transitions, called ε-transitions in Sipser’s text [35]. We denote these as transitions

that are guarded by T.

Accepting condition

In contrast to nondeterministic finite automata, instead of determining acceptance by

the set of marked states at the end of the run, canonical BA accept if at least one

accepting state (one of F) is visited infinitely often during the run. However, since we

are considering only finite runs over the BA in this thesis, corresponding to the finite

state sequence generated by an embedded system, we alter the stopping condition

of a canonical BA. Therefore we say that we accept permanently if all eventualities

(liveness conditions) are satisfied and there are no safety conditions. We say that we

are are accepting at a time when all safety conditions are being met, and we say that

we reject if any safety condition is ever violated. Bauer et al. [6] define a three-valued

LTL for this purpose.3 Hence, our accepting states will be states that represent (1) the

satisfaction of eventualities, or (2) the perpetual fulfillment of a safety requirement.

3
The three values are {T, F, ?}, which the authors jocularly call the good, the bad, and the ugly.

42

Algorithm 1: BA-run

Algorithm 1 gives the formal description of running a Büchi Automaton.

Algorithm 1 BA-run

1: procedure BA-run(w1w2...wn, Q0, T, F)
2: Qm

0 ← Q0. � Initialize the set of marked states.
3: for each time t = 1..n do
4: Qm

t
= {}

5: for marked states q ∈ Qm

t−1 do
6: Qm

t
= Qm

t

�
T (q, wt)

7: end for
8: if Qm

t
= ∅ then � No transitions were enabled.

9: reject
10: else if ∃q st q ∈

�
Qm

t

�
F

�
T (q,T)

�
then � An accepting state with an

ε self-transition is marked.
11: accept
12: end if
13: end for
14: if Qm

n

�
F = ∅ then � No accepting state is marked.

15: reject
16: else
17: accept
18: end if
19: end procedure

Initially, the set of states in Q0 is marked (line 2). The algorithm then loops for

each input letter wt. The set of currently marked states Qm

t
is created in line 4. For

each previously marked state q, any states reachable from q with the input letter wt

are added to the set of currently marked states (line 6). If the algorithm finds in line

8 that no transitions were enabled by wt, then it rejects. This corresponds to a safety

requirement being violated at time t. On the other hand, if it finds in line 10 that one

of the currently marked states is an accepting state with a self-loop guarded by T,

then it accepts. This corresponds to the satisfaction of all eventualities (i.e. liveness

conditions that are described in Section 3.2.2).

Every time the end of the time loop (line 13) is reached without rejecting or

accepting, the automaton is accepting, but continues operating. This corresponds to

the indeterminate case in which membership of the input word in the language of

43

the automaton has not yet been proved or disproved. In this case, the system has

satisfied all safety requirements up to this point, but has not yet fulfilled all liveness

requirements. The automaton therefore accepts based on the fact that the system

is safe thus far, and then continue operating in order to continue monitoring the

requirements and in hopes that the liveness requirements will be met.

After all inputs have been read, the algorithm checks to see if any accepting

states are marked (line 14). If no accepting state is marked, then it rejects in line 15.

This corresponds to the failure of the system to satisfy a liveness condition. On the

other hand, if an accepting state is marked, then it accepts. In this case, all safety

requirements were met at all times, and so at the end of the system execution, the

system is deemed safe.

An Example of BA Execution: Monitoring a Safety Property

Consider again the example specification, Equation (3.2), given in Section 3.2.2:

Λ2 = �(fault-monitor=T → �(control-request-granted=F))

The corresponding Büchi Automaton for Λ2 is shown in Figure 3-1.

q1 q2
¬crg

¬fm

¬crg

Figure 3-1: The Büchi Automaton for a safety requirement of the SAFELANE example
system.

In Figure 3-1, the arrow coming from nowhere on the left indicates that state q1 is

the start state of the automaton. State q1 has a self transition that is guarded by the

requirement that fault-monitor=F, shortened to ¬fm. Similarly, the transition

from state q1 to q2 is guarded by control-request-granted = F, as is the self

transition on state q2. Accepting states are denoted with a double circle. In this

44

example, both states are accepting states.

Formally, the automaton is:

Q = {q1, q2}
q0 = {q1}
F = {q1, q2}
Σ = {fm∧crg = σ1,

fm∧¬crg = σ2

¬fm∧crg = σ3,

¬fm∧¬crg = σ4}

T =

{q1} for q1, σ3

{q1, q2} for q1, σ4

{q2} for q1, σ2

{q2} for q2, σ2,4

∅ otherwise

In the alphabet (Σ) specification, I introduce abbreviated names for each element

of the set, for example, σ1 for element fm ∧ crg.

To demonstrate the operation of the automaton, consider the input word:

W2 =

t = 1 2 3 4 5

¬fm ¬fm ¬fm fm ¬fm

crg ¬crg crg ¬crg crg

which could also be written:

W2 = σ3σ4σ3σ2σ3.

Next we examine BA-run(W2).

0. Initialization (t = 0) The first step of execution creates the initial set of marked

states, equal to the set of initial states. At the end of this step, the initial state is

marked. State marking can be thought of either graphically - state q1 is occupied - or

in terms of the set of marked states, Qm

0 . In the automata depicted below, transitions

taken at the current time step are bold, and the resulting marked states are blue.

Qm

0 = {q1} q1 q2
¬crg

¬fm

¬crg

1. First Iteration
�
t = 1, input σ3 = ¬fm ∧ crg

�
For each marked state, the

algorithm attempts to advance the automaton. The automaton has one marked state,

45

q1, and the input letter σ3 = ¬fm∧crg will enable one transition, the self loop on q1.

In other words, the transition function T outputs q1 for inputs {q1, σ3}.

Qm

1 ← q1 = T (q1, σ3) q1 q2
¬crg

¬fm

¬crg

For the physical system, this means that no fault was observed in the autonomous

subsystem and a control request was granted at this time step. Because this time

step ends with accept states marked, the system is currently satisfying the safety

requirement and therefore the automaton is accepting. This result makes sense because

the requirement is that the subsystem never have control if a fault is ever observed.

2. Second Iteration
�
t = 2, input σ4 = ¬fm ∧ ¬crg

�
At this time step, both

possible transitions are enabled, and the automaton is now in both states at once. No

fault has been observed, hence the automaton is accepting still.

Qm

2 ← {q1, q2} = T (q1, σ4) q1 q2
¬crg

¬fm

¬crg

3. Third Iteration
�
t = 3, input = ¬fm ∧ crg

�
This input letter (σ3) enables

the self transition on q1, but no others. Again, the automaton is accepting because

the safety property is being satisfied.

Qm

3 ← {q1}
�
{∅} = T (q1, σ3) + T (q2, σ3) q1 q2

¬crg

¬fm

¬crg

4. Fourth Iteration
�
t = 4, input = fm∧¬crg

�
For the fourth input letter σ2,

the sole transition enabled is the one from q1 to q2.

46

Qm

4 ← q2 = T (q1, σ2) q1 q2
¬crg

¬fm

¬crg

For the physical system, this means that a fault was observed in the autonomous

subsystem, but that no control request was granted to it. Requirement (3.2) has not

yet been violated, and so the automaton is accepting. However, the only way to satisfy

Equation (3.2) at this point is to never grant a control request to the autonomous

subsystem (�¬crg).

5. Final Iteration
�
t = 5, input = ¬fm∧crg

�
For the final letter, σ3 again, no

transitions are enabled.

Q
m

5 ← ∅ = T (q2, σ3)

The automaton now has no marked states, therefore the safety requirement has been

irrevocably violated. The automaton now rejects immediately.

Another Example of BA Execution: Monitoring a Liveness Property

Now consider the example liveness property (3.1) from Section 3.2.2:

Λ1 = ♦(graduate)

Section 3.3.1 describes the formal structure of the corresponding BA, represented in

Figure 3-2.

qh qg

σg

T

T

Figure 3-2: The BA for an example liveness property.

47

The automaton starts in qh, the state have-not-graduated. When the letter

σg is read, the automaton transitions to state qg, graduated. Recall that σg is the

system configuration:

σg = {thesis-completed,

class-requirements-satisfied,

advisor-signature}

Another letter in the alphabet of this automaton is σc = class-reqs-satisfied,

representing the configuration in which class requirements have been satisfied, but

neither thesis-completed nor advisor-signature is true. Consider the operation

of this automaton on W1 = σcσcσgσg. The automaton begins in qh:

Qm

0 = {qh} qh qg

σg

T

T

The first two input letters, both σc, only enable the self-transition on qh:

Qm

2 ← qh = T (qh, σc) qh qg

σg

T

T

The automaton “waits” in qh for the liveness requirement to be satisfied. As long as

monitoring is still occurring, there is hope that the property will be satisfied, and so

the automaton is accepting, even though no accepting states are marked.

The third input letter, σg, enables the transition from qh to qg:

Qm

3 ← qg = T (qh, σg) qh qg

σg

T

T

At this point, an accepting state with a true self-transition is marked, so the

automaton accepts permanently per line 10 of Algorithm 1. Even though the system

48

continues running, there is sufficient information to prove the membership of W1 in

Λ1.

3.3.3 BA Summary

In this section I introduced the Nondeterministic Büchi Automaton, a state machine

format that operates on infinite words. We saw that this is relevant to the runtime

verification of stochastic systems in that it allows us to monitor a formal requirement

written in LTL. I also presented an example of this monitoring. In the next section I

discuss how BA are obtained given an LTL statement.

3.4 LTL to BA conversion

In order to automate the monitoring of a Linear Temporal Logic statement Λ, we

convert it to a Büchi Automaton and execute it, as discussed above in Section 3.3.

For example, LTL conversion maps the statement:

Λ2 = �(fault-monitor=T → �(control-request-granted=F)) (3.3)

into the following automaton:

q1 q2
¬crg

¬fm

¬crg

Figure 3-3: The Büchi Automaton for a safety requirement of the SAFELANE example
system. This automaton is described in detail in Section 3.3.2.

To perform this conversion, I use the method specific to BA on finite inputs

described by Giannakopoulou and Havelund in [18], which is based on earlier work

[13,17,42] on converting LTL to a form of BA for the purposes of model checking. I

do not prove the correctness of this algorithm, for this the reader is referred to [18].

49

State
Transition

Source Guard

q0 ∅

q1

q0 ¬fm

q1 ¬fm

q2

q0 ¬crg

q1 ¬crg

q2 ¬crg ∧ ¬fm

q2 ¬crg

Table 3.1: This table depicts the result of compilation of Equation (3.3) into a Büchi
Automaton. There are three states. Every line in the entry for a state represents
a transition into that state, from the indicated state, guarded by the Guard. An
equivalent automaton is shown in Figure 3-3.

However, it can be seen intuitively that this compilation maps each element of an LTL

formula into an equivalent BA. Compilation will result specifically in a set of states,

each with a list of transitions that lead to it. In the example given above, compilation

produces the states shown in Table 3.1. Each line in the table represents a transition

that is from the “Source” location, to the “State” location, and is guarded by the

given “Guard”.

In the following sections I describe an algorithm for generating a BA that is usable

for monitoring an input formula Λ. This is done through repeated decomposition of Λ,

described below. I also briefly discuss a post-processing step that may be performed

in order to compactly encode the list of states; this results in an automata like the

one shown in Figure 3-3. Section 3.4.2 presents the psuedo code for this compilation

process. Section 3.4.3 provides a detailed example of compilation.

3.4.1 An Informal Description of Compilation

For monitoring purposes, it is not acceptable to have the following as an automaton

for Property (3.3):

q0 q1
�(fm → �¬crg)

50

While this automaton is technically correct, it is not useful because it requires that

the complete program trace be available at once in order to verify that the guard

is satisfied. In contrast, the automaton in Figure 3-3 is able tell at each time step

whether or not the property is currently being satisfied. Hence this automaton may

be used to track the safety state of the system, as was shown in Section 3.3.2.

The key insight here is that the two safety states of the automaton in Figure 3-3

represent the two different system behaviors that satisfy Property 3.3. Safety state

q1 represents the scenario in which a fault has not been detected. If no fault is ever

detected (�¬fm), then the automaton is always in state q1 and the property is satisfied.

State q2 represents the scenario in which a fault has been detected, but control has

not been granted. If control is never granted (�¬crg), then the automaton is always

in state q2 and the property is satisfied. The goal of compilation is to identify these

distinct behaviors that satisfy the input formula Λ and record these behaviors as

separate states in the automaton.

Therefore we decompose the input formula by creating nodes or graph nodes that

represent the different ways a formula may be satisfied, allowing us to associate states -

and therefore label transitions - with conjunctions of literals rather than more complex

temporal formulae. Once a node has been completely processed, it either becomes a

distinct state in the automaton, is folded into an existing state, or is discarded due to

a logical contradiction. After every node has been processed, all that remains is to

identify the accepting states.

Nodes

A node N has the following fields:

name: The unique name of the node.

incoming: A list of nodes that have transitions to this node.

new: Properties which must hold at this state, yet to be processed.

old: A list of properties which guard incoming transitions, already processed.

next: Properties to hold at immediately subsequent states.

51

A node N consists of a unique name, a field called incoming that contains a record

of every node that may transition to N , and three fields that contain LTL formulae.

First is the new field, which contains a set of LTL properties, yet to be processed, that

must hold at N . After formulae in new have been broken down into literals, they are

placed in the old field. These literals guard the transition from the incoming node

to node N . While a node is being processed, it only has one incoming node, but after

a node is added to the set of states it may have multiple incoming transitions, and

so old may then contain sets of literals, one set to guard each transition. Finally, the

next field contains LTL formulae that must hold at any state immediately following

the current.

I denote nodes as:

Nname

�
{Nincoming}, {Λnew}, {Λold}, {Λnext}

�

Initialization

We begin compilation by creating an initial node N0 to be the start state of the

automaton:4

N0

�
∅, ∅, ∅, ∅

�

This node, a convenience node for identifying the start states of the automaton, does

not need to be processed and is added directly to the set of states. Next, we create

the node that will contain the input formula and add it to the list of nodes to be

processed:

Ninput

�
N0,Λinput, ∅, ∅

�

Now the goal is to process every node by repeatedly decomposing the formulae

in the new field. This decomposition is accomplished by identifying the distinct

ways in which a formula may be satisfied and by creating new nodes to deal with

different satisfaction scenarios. A node is fully processed when its new field is empty.

4
In this section, subscripts such as N0 are used merely as an indexing number, the initial node,

rather than a time index, the node N at time 0.

52

Compilation ends when all nodes have been fully processed.

Processing Nodes

Our goal in processing a certain node N1 is to reduce all formulae in its new field to

literals. If a formula is encountered during processing that may be satisfied in more

than one way, then a new node N2 is created so that together, N1 and N2 represent

all possible ways that the formula may be satisfied. Any literals remaining in a node’s

old field after processing represent the literals that must hold at that node of the

automaton.

Spatial Processing Some formulae may be satisfied in two spatially distinct ways,

meaning that there two distinct assignments to literals at a certain time that will

satisfy the formula. For instance, the formula α ∨ β may be true if either α or β

is currently true. If we remove this formula from the new field of node N1 during

processing, we have N1 assert that α is true, and we also create a new node N2 that

asserts β rather than α. Because α and β might be formulae requiring additional

decomposition, we put α back into the new field of N1, and β into the new field of

the new node, N2.

N1

�
Ni, α ∨ β , Λold, Λnext

�
⇒

N1

�
Ni, α , Λold, Λnext

�

N2

�
Ni, β , Λold, Λnext

�

Notice that all other fields remain the same, including the incoming field.

This decomposition may be thought of in terms of the automaton as well. Before

decomposition, node N1 had an incoming transition guarded by α ∨ β, and by Λold.

qi N1

(α ∨ β) ∧ Λold

After decomposition, there exist two nodes, each with a non-deterministic incoming

transition guarded by either α or β, and Λold.

qi

N1

N2

α ∧ Λold

β ∧ Λ
old

53

Temporal Processing A formula may be satisfied in two temporally distinct ways,

meaning that there are two classes of assignments to literals across time that will

satisfy the formula. These types of formulae will be handled differently; temporal

obligations will be pushed down to the next node. For example, consider the case in

which we encounter the formula αUβ while processing a node N1. The decomposition

of this property relies on the following identity:

αUβ ≡ β ∨
�
α ∧�(αUβ)

�
(3.4)

This equivalence states “either β is true now, or α is true now and αUβ is true at the

next time step.” The two halves of the disjunction represent all ways in which αUβ

may be satisfied. If β is true now, then αUβ is satisfied for all time. If α is true now

then αUβ has not been violated, yet has not been permanently satisfied; therefore, it

must be enforced again at the next time step.

Following the algorithm for the α ∨ β case, we create a new node N2 to enforce

the first half of the disjunction in Equation (3.4), and leave N1 to enforce the second

half. The obligation represented by the “next” (�) portion of the formula is pushed

down to subsequent nodes by adding it to the next field of node N1.

N1

�
Ni, αUβ , ∅, Λnext

�
⇒

N1

�
Ni, α , ∅, Λnext

�
(αUβ)

�

N2

�
Ni, β , ∅, Λnext

�

When a node N1 is turned into a state, a new node is created to handle any unfulfilled

temporal obligations in its next field. This is discussed in the next section.

In terms of automata, this decomposition looks very similar to the case of a

disjunction.

qi N1

αUβ

Two nodes exist after decomposition, each with a nondeterministic incoming transition

guarded by either α or β. Additionally, node N1 records the fact that subsequent

nodes must enforce αUβ.

54

qi

N1

N2

α

αUβ ∧ Λnext

Λnext
β

Next consider the formula �α. If we encounter this property while processing

node N1, we decompose it according to the following:

�α ≡ α ∧�(�α)

This equivalence states that “at the current time, α must be true, and starting at the

next time, α must always be true.” A new node is not needed spatially because there

are not two ways at one time that this formula may be satisfied. Therefore, a new

node is not created. However, unfilled temporal obligations exist. These are pushed

down to subsequent nodes. α may require more processing, hence it is added back to

the list of properties in the new field.

N1

�
Ni, { �α , Λnew}, ∅, ∅

�
⇒ N1

�
Ni, {α , Λnew}, ∅, ∅

�
�α

�

Considered graphically, the transition between node Ni and N1 is simplified, and N1

records the temporal obligation:

qi N1 qi N1⇒�α ∧ Λnew α ∧ Λnew �α

A similar case analysis can be performed for each type of LTL operator. The rules

for all operators are summarized in Table 3.2. In this table we see both halves of a

conjunction must hold at a node, and so both are processed separately for the node.

The release operator R is decomposed in almost the same manner as U . Finally,

the operators → and ♦ are translated into equivalent statements using ∨ and U

respectively, from which decomposition proceeds as already described.

As formulae are processed, any literals are put directly into the old set. If ever

55

Table 3.2: Rules for decomposing an LTL formula f that was taken from the new

field of a node N1. For each type of formula, corresponding values indicated for new

and next are added to the existing new and next sets of N1. If a new entry exists
for N2, then a new node is cloned from (the original) N1 and augmented with the
new value for N2.

f new N1 next N1 new N2

α ∧ β {α, β} ∅
α → β ¬α ∨ β ∅

♦α TUα ∅
�α α �α

α ∨ β α ∅ β

αUβ α αUβ β

αRβ β αRβ {α, β}

there is a contradiction in old, that node is discarded.5 When the new field of a

node is empty, it has been fully processed.

Adding Nodes to the Set of States

After a node N1 has been fully processed, it may be folded into an existing state or

added to the set of states as a unique new member. A node N1 is folded together with

a state q1 if the next field of N1 is equivalent to the next field of q1. Otherwise, the

node is not equivalent to any existing state and is added as a new state. In either case,

the addition of a node to the set of states adds a new transition to the automaton,

which is guarded by the set of literals in the old field of N1.

Adding New States When a node N1 is added to the set of states, an incoming

transition is created from the state Ni in incoming. This transition is guarded by

the set of literals in old, as they represent everything that is true at N1. If the old

field is empty (∅), then the transition is unguarded, or equivalently, guarded by T.

To enforce the temporal obligations represented in the next field, a new node N2 is

5
The old field contains the literals that must be true in order to be in the current state, so if

there are contradictions in the old field, then we can never reach this state, and thus we can safely

discard it.

56

created that follows N1 and is added to the queue of nodes waiting to be processed:

N2

�
N1, ΛN1next, ∅, ∅

�

For example, consider a node N1(N0, ∅, α,�α). This node is fully processed because

the new field is empty, and so we add it to the set of states. We then create a node

N2 as described above:

N2

�
N1, �α, ∅, ∅

�

Graphically:

q0 N1 ⇒ q0 q1 N2
α �α α �α

Folding States Together Because two nodes with identical next fields represent

equivalent states6, we do not add a new state to the automaton if one already exists

with the same next field.7 Instead, we collapse the states together. For example, if

node N2

�
Nj, ∅, β,�α

�
has the same next field as the already existing state q1 that

was created from the node N1

�
Ni, ∅, α,�α

�
, then we incorporate the new information

by adding a new transition to state q1. This transition will be from N2’s incoming

state, to q1, and is guarded by N2’s old field.

qi

qj

q1

N2

⇒

qi

qj

q1

α �α

�αβ

α

β

�α

Figure 3-4: Example of folding nodes together when adding a new node to a BA under
construction. After node N2 is completely processed, it is folded into state q1 because
they have the same next fields.

When a node is folded into an existing state, no new node is added to the process

queue. Intuitively, this is why compilation will eventually halt.

6
Equivalent in the sense that they encode the same temporal obligations.

7
A node may not be equivalent to the initial state q0, even if it has the same next field (∅).

57

Wrapping Up

Finally, after all nodes have been processed and all states of the automaton obtained,

it remains to identify the accepting states. Intuitively, the Nondeterministic Büchi

Automaton operates by rejecting immediately as soon as any safety (�) constraint is

violated. Therefore any state qs representing the fulfillment of a safety constraint is

an accepting state. As long as qs is marked, the safety constraint is being met and

therefore the automaton is accepting. Compilation operates by pushing temporal

obligations into the next field, so any eventualities that have not been satisfied at a

state will reside in the next field. Additionally, these eventualities must be represented

by U due to the decomposition rule of converting “eventually” (♦) properties into a

U properties. Therefore any state qu with a formulae containing U in its next field

is not an accepting state; it represents an unfulfilled temporal obligation. This type

of state is a waiting state. All other states, except for the start state, are marked as

accepting states. Additionally, once construction is complete and accepting states are

identified, the next fields of states may be removed, as this information is only used

to identify equivalent states and accepting states.

In the next section I give a formal algorithm for compilation. In Section 3.4.3 I give

a detailed example of how compilation is performed on the example LTL requirement

(3.3), given at the beginning of this section.

3.4.2 A Procedural Description of Compilation

In this section I present pseudocode for the algorithm described in the preceding section,

for compiling an LTL statement Λinput into a Büchi Automaton. See Algorithms 2

and 3 on page 59.

Algorithm 2: BA-compile

The set of states Q is initialized in line 2 of BA-compile and the initial state q0 is

added to Q. The queue of nodes to be processed P is initialized in line 3 and the node

containing the input formula is added. The boolean trash (line 4) records whether or

58

Algorithm 2 : BA-compile

1: procedure BA-compile(Λinput)
2: Q ← N0

�
∅, ∅, ∅, ∅

�

3: P ← Ninput

�
N0, {Λinput}, ∅, ∅

�
� Create process queue and add Ninput

4: trash = F
5: while P �= ∅ do � While process queue is not empty
6: N ← dequeue(P)
7: while N.new �= ∅ do
8: [Nnew, trash] ← expand(N)
9: enqueue(P, Nnew) � add Nnew to process queue, may

have no effect if Nnew = ∅
10: end while
11: if trash then
12: continue � Node is discarded
13: end if
14: if ∃(q ∈ Q) st q.next = N .next then � State q is equivalent to N

15: q.incoming = q.incoming ∪N.incoming

16: q.old = q.old ∪ {N.old}
17: else � add N to states
18: add(Q, N)
19: Nnew =

�
N, N.next, ∅, ∅

�

20: enqueue(P, Nnew) � add Nnew to process queue
21: end if
22: end while
23: end procedure

Algorithm 3 : expand

1: procedure {N2, trash} = expand(N1)
2: N2 = {∅}
3: trash = F
4: f ← pop(N1.new)
5: if f is a literal then
6: N1.old = N.old ∪ f

7: if N1.old is unsatisfiable then
8: trash = T
9: end if

10: else if f is one of (∨, U , or R) then
11: N2 = N1 � clone node N1

12: [N,N2] ← table-3.2(f)

13: else � f is one of (∧,→, ♦, or �)
14: N1 ← table-3.2(f)

15: end if
16: return {N2, trash}
17: end procedure

59

not a node contains a contradiction and is to be discarded.

For each node N in P , the algorithm performs expand until N.next is empty.

expand returns T for trash if N is to be discarded, and may also return a new node

(line 8). If a new node is returned (Nnew �= ∅), then it is added to P in line 9. After

a node is fully processed (line 10), then it is either discarded in line 12, folded in with

equivalent state q in lines 15 and 16, or added to Q in line 18. In the last case, a new

node is created to process N.next in line 19, and is added to P . When all nodes have

been processed (line 22), the set of states Q contains all states of the BA.

After the procedure BA-compile is performed, accepting states of Q are identified

as described in the preceding section, and the next fields may be deleted.

Algorithm 3: expand

The expand procedure begins by removing its working formula f from the new field

of the input node N1 in line 4. If f is a literal, then no more processing is required, so

f is placed in N1.old (line 6) and N1.old is checked for satisfiability. If a conflict is

found, the trash flag is set to T (line 9), indicating that N1 is to be discarded. If f

is not a literal, then it is decomposed according to Table 3.2. If the operator of f is

either ∨, U , or R, a new node N2 is created with a unique name, and all its fields

are set equal to those of N1 in line 11. The new and next fields of nodes N1 and

N2 are then augmented according to the table in line 12. If f does not require a new

node, then only N1 is altered according to Table 3.2 in line 14. expand returns a

new node if one was created, and the trash flag indicating the presence or absence of

contradictions in N1.old.

3.4.3 An Example of Compilation

In this section I detail the compilation of an LTL property into a Büchi Automata

according to Algorithm 2. Compilation is applied to the property stated in Equation

(3.3), which is restated here:

Λ2 = �(fault-monitor=T → �(control-request-granted=F))

60

Recall that compilation of Property (3.3) produces the following list of states and

transitions:

State
Transition

incoming Guard

q0 ∅

q1

q0 ¬fm

q1 ¬fm

q2

q0 ¬crg

q1 ¬crg

q2 ¬crg ∧ ¬fm

q2 ¬crg

Table 3.3: The list of states that is produced when Algorithm BA-compile is

performed on formula (3.3).

Beginning with Algorithm 2, we create N0 and add it to the set of states. This

node is the initial state of the automaton. For the purposes of this example, states are

named after the node that they were created from, hence node N0 becomes state q0.

Q ={ N0

�
∅, ∅, ∅, ∅

�
} q0

Next we create N1 and add it to the to-process queue, per line 3 of the algorithm.

This node begins with the input formula Λ2 = �(fm → �¬crg) in its new field, and

has the start state q0 as its incoming state. For the purposes of this example, we

depict nodes graphically as members of the automaton, though they technically do

not become part of the automaton as states until they are fully processed. Transitions

are guarded by the contents of the new and old fields of a node. Recall nodes are

written Nname

�
incoming,new,old,next

�
.

P = { N1

�
N0,Λ2, ∅, ∅

�
} q0 N1

�(fm → �¬crg)

Now we expand node N1, which is the only node on the queue. First we remove

Λ2 from the new field. This formula is of the form �α, so according to Table 3.2, we

put (fm → �¬crg) back in the new field for further processing, and we put the full

61

formula, Λ2, into the next field.

P = { N1

�
N0, (fm → �¬crg), ∅,Λ2

�
} q0 N1

fm → �¬crg Λ2

Another expansion of N1 turns the implication into a disjunction:

P = { N1

�
N0, (¬fm ∨�¬crg), ∅,Λ2

�
} q0 N1

¬fm ∨�¬crg Λ2

The next expansion of N1 first removes the disjunction f = ¬fm ∨�¬crg from new.

According to Table 3.2, we must create a new node to enforce the second half of the

disjunction. This node, N2, is cloned from N1 after the removal of f , and then one

half of the formula is added to each new field.

P ={ N1

�
N0,¬fm, ∅,Λ2

�
,

N2

�
N0, �¬crg, ∅,Λ2

�
}

q0

N1

N2

¬fm

�¬crg

Λ2

Λ2

To finish processing N1, we remove f = ¬fm from the new field. Because f is a

literal, we put it directly into the old field; no further decomposition is required.

Now we may add N1 to the set of states. Additionally, because there are unfulfilled

temporal obligations in the next field of N1, we must create a new node N3 to

enforce them. This node is created downstream of N1, with Λ2 in its new field.

Q ={ N0

�
∅, ∅, ∅, ∅

�
,

N1

�
N0, ∅,¬fm,Λ2

�
}

P ={ N2

�
N0, �¬crg, ∅,Λ2

�
,

N3

�
N1,Λ2, ∅, ∅

�
}

q0

q1

N2

N3¬fm

�¬crg

Λ2

Λ2

After fully processing N1, the next node on the process queue P is N2. We remove

f = �¬crg from N2.new and decompose it as before, putting ¬crg in N2.new, and

all of f in N2.next. One more decomposition step moves the literal ¬crg to the old

field of N2, which completes the decomposition process for this node.

P ={ N2

�
N0, ∅,¬crg, {Λ2, �¬crg}

�
,

N3

�
N1,Λ2, ∅, ∅

�
}

q0

q1

N2

N3¬fm

¬crg

Λ2

Λ2 ∧
�¬crg

62

Now N2 is fully processed. Because it has a unique next field, it is also added to the

set of states and we create a new node N4 to enforce the contents of N2.next.

Q ={ N0

�
∅, ∅, ∅, ∅

�
,

N1

�
N0, ∅,¬fm,Λ2

�
,

N2

�
N0, ∅,¬crg, {Λ2, �¬crg}

�
}

P ={ N3

�
N1,Λ2, ∅, ∅

�
,

N4

�
N2, {Λ2, �¬crg}, ∅, ∅

�
}

q0

q1

q2

N3

N4

¬fm

¬crg

Λ2

Λ2 ∧
�¬crg

Next on the queue is N3. This node has same content that N1 did when it was first

added to P . Processing it will have a similar effect. First, the “always” (�) obligation

is pushed down to the next node, and the implication becomes a disjunction.

P ={ N3

�
N1,¬fm ∨�¬crg, ∅,Λ2

�
,

N4

�
N2, {Λ2, �¬crg}, ∅, ∅

�
}

q0

q1

q2

N3

N4

¬fm

¬crg

¬fm ∨�¬crg Λ2

Λ2 ∧
�¬crg

Then the node is split on the disjunction, spawning node N5.

P ={ N3

�
N1, ∅,¬fm,Λ2

�
,

N4

�
N2, {Λ2, �¬crg}, ∅, ∅

�
}

N5

�
N1, �¬crg, ∅,Λ2

�
}

q0

q1

q2

N3

N4

N5
¬fm

¬crg

¬fm

�¬crg

Λ2

Λ2

Λ2 ∧
�¬crg

Now N3 is fully processed. However, it is equivalent to the state q1, as they have

the same next fields. Hence we fold it in with q1, which means that we add the

incoming and old fields of N3 into those of q1 as parallel entries. In terms of the

automaton, this means that instead of a new state, we add a new transition from N1

to N3: a self transition.

Q ={ N0

�
∅, ∅, ∅, ∅

�
,

N1

�
{N0, N1}, ∅, {¬fm,¬fm},Λ2

�
,

N2

�
N0, ∅,¬crg, {Λ2, �¬crg}

�
}

P ={ N4

�
N2, {Λ2, �¬crg}, ∅, ∅

�

N5

�
N1, �¬crg, ∅,Λ2

�
}

q0

q1

q2
N4

N5
¬fm

¬crg

¬fm

�¬crg

Λ2

Λ2 ∧
�¬crg

63

The next node, N4, has two formulae in its new field. First we pop Λ2 = �(fm →

�¬crg) off the new field. Similar to the other times we decomposed this formula, we

push the always (�) obligation down, create a new node N6 for half of the disjunction,

and move the literal ¬fm to N4’s old field.

P ={ N4

�
N2, �¬crg,¬fm,Λ2

�

N5

�
N1, �¬crg, ∅,Λ2

�
}

N6

�
N2, {�¬crg, �¬crg}, ∅,Λ2

�
}

q0

q1

q2

N4

N5

N6

¬fm

¬crg

¬fm

�¬crg

Λ2

Λ2

Λ2
∧¬f

m�¬c
rg

�¬crg

We continue processing N4 by removing f = �¬crg from new, pushing the temporal

obligation down, and depositing ¬crg in the old field.

P ={N4

�
N2, ∅, {¬fm,¬crg}, {Λ2, �¬crg}

�

N5

�
N1, �¬crg, ∅,Λ2

�
}

N6

�
N2, {�¬crg, �¬crg}, ∅,Λ2

�
}

q0

q1

q2

N4

N5

N6

¬fm

¬crg

¬fm

�¬crg

Λ2

Λ2

�¬crg

Λ2
¬fm

¬cr
g
∧

�¬crg

Now we may add N4 to the set of states. However, N4 is equivalent to state q2, so

we fold N4 and q2 together, resulting in a self transition on q2. Note how the list of

states and their corresponding transitions, rewritten here as a table, is beginning to

resemble Table 3.3.

P ={ N5

�
N1, �¬crg, ∅,Λ2

�
}

N6

�
N2, {�¬crg, �¬crg}, ∅,Λ2

�
}

q0

q1

q2

N5

N6

¬fm

¬crg

¬fm

�¬crg Λ2

Λ2

¬fm ∧ ¬crg

�¬crg

64

State inc old next

q0 ∅

q1

q0 ¬fm
Λ2

q1 ¬fm

q2

q0 ¬crg
{Λ2, �¬crg}

q2 ¬fm ∧ ¬crg

The next node on the queue for processing is N5, which contains �¬crg in its

new field. As with many nodes before it, the temporal obligation will be pushed to

the next node and ¬crg is added to N5.old:

P ={ N5

�
N1, ∅,¬crg, {Λ2, �¬crg}

�
}

N6

�
N2, {�¬crg, �¬crg}, ∅,Λ2

�
}

q0

q1

q2

N5

N6

¬fm

¬crg

¬fm

¬crg Λ2

�¬crg

Λ2

¬fm ∧ ¬crg

�¬crg

Node N5 is equivalent to q2. Folding it into the automaton results in a transition from

q1 to N5 = q2.

P ={ N6

�
N2, {�¬crg, �¬crg}, ∅,Λ2

�
}

q0

q1

q2 N6

¬fm

¬crg

¬fm

¬crg

Λ2

¬fm ∧ ¬crg

�¬crg

The final node, N6, decomposes exactly as N5 did. N6 is also equivalent to q2,

hence results in another self transition on q2.

65

State inc old next

q0 ∅

q1

q0 ¬fm
Λ2

q1 ¬fm

q2

q0 ¬crg

{Λ2, �¬crg}
q2 ¬fm ∧ ¬crg

q1 ¬crg

q2 ¬crg

q0

q1

q2

¬fm

¬crg

¬fm

¬crg

¬fm ∧ ¬crg

¬c
r
g

All nodes have been processed. Now we identify the accepting states by examining the

content of the next fields for U formulae. Because no states contain a U formula in

next field, none represent a liveness condition that has not been met. Consequently,

both q1 and q2 are marked as accepting states. In general, the initial state may not be

accepting in case the input formula contains eventualities [18].

q0

q1

q2

¬fm

¬crg

¬fm

¬crg

¬fm ∧ ¬crg

¬c
r
g

This automaton is equivalent to the one presented in the BA operation example in

Section 3.3.2. We see this by combining the self transitions on state q2, and by removing

the start state q0. Combination of the transitions on q2 is simple enough: we create a

disjunction of the two guards, and then note that the sentence (¬fm∧¬crg)∨¬crg

can only be satisfied if crg = F. Removal of the start state is less trivial. This

thesis does not present a general method for doing so.8 In many cases, including this

8
In the construction presented by Gerth et al. [17], the init state is created solely to identify

the set of starting states Q0; every state that has init as its incoming state is a member of Q0.

The init state is not actually a state of the automata they build. When dealing with finite traces,

Giannakopoulou and Havelund [18] also discuss the removal of the start state but do not present a

general method.

66

one, the start state may be removed and all of the states it transitions to may be

marked as initial states of the automaton. In this case, marking q2 as an initial state

is unnecessary due to the configuration of the transitions, hence q1 becomes the sole

initial state.

q1 q2
¬crg

¬fm

¬crg

It is worth mentioning a few decomposition cases involving the empty set ∅ that

did not arise in this example.

1. If a node is added to the automaton as a state with an empty old field, then the

transition to this state is guarded by T. This transition is satisfied no matter what

the input to the automaton is, and so is taken automatically.

2. If a node has an empty next field when being added to the automaton, it is

equivalent to another state (not the start state) that has an empty next field, and

therefore if there exists such a state, the two should be folded together.

3.5 Chapter Summary

This chapter presented an automata-based approach to runtime verification. System

specifications are written in Linear Temporal Logic, compiled to an equivalent Büchi

Automaton, and the automaton is executed on the program trace at runtime. The

automaton is accepting if the specification is being met, and rejects if the specification

is violated.

The next chapter presents a novel approach to runtime verification that extends

the methods in this chapter, allowing for the monitoring of stochastic, faulty hardware

systems.

67

68

Chapter 4

Estimating System Safety:

Runtime Verification for

Embedded Systems

Φ : Plant model

x : Plant (physical) state

z : Observations

xt : x at time t

z1:t : short for {z1, z2, . . . , zt}

Λ : Formal safety specification

q : Safety state

c : Commands

W : A word legible to a Büchi Automaton

Qsafe : The set of safe states of a DBA

4.1 Derivation of Exact Runtime Verification for

Stochastic Systems

In the previous chapter I presented the solution to the problem of safety monitoring

of software systems in which state can be directly observed. In this chapter I extend

the problem to that of safety monitoring of mixed hardware / software systems that

can fail, and I solve this problem by incorporating stochastic behavior and hidden

state. I then present the exact equations needed to perform safety monitoring of these

embedded systems.

69

4.1.1 Calculating Safety for Observable Systems

This thesis presents a capability for monitoring the safety of complex hardware/software

embedded systems at runtime. Safety monitoring for purely software systems is

accomplished using the technique of runtime verification, presented previously. As

we saw in Chapter 3, runtime verification of a system involves monitoring the system

online and verifying that it behaves correctly, where the definition of “correctness”

is supplied as a formal specification. We also saw that we can build a capability for

runtime verification when this formal specification is written in Linear Temporal Logic.

This capability, denoted RV, takes as input a correctness specification Λ in LTL and

an incremental program trace W at runtime. W is a sequence of letters σi such that

each letter σi in W is a representation of the system state x at time i, abbreviated as

xi. At every time step, RV returns true if W is consistent with Λ, and false if it is

not.

Λ �� RV �� {1, 0}

W = x0:t

��

In Section 3.1 I described an algorithm that provides this function: LTL specifications

are compiled into Nondeterministic Büchi Automata (BA), which are then run on the

program trace. If any BA ever rejects, then the program is violating its corresponding

safety specification and is deemed unsafe. Thus the RV capability is realized through

the execution and monitoring of a BA, a function presented in Section 3.3.2.

Λ �� BA-compile(Λ) BA �� BA-run(W) �� {1, 0}

W = x0:t

��

We can apply the same method to mixed hardware/software systems if we assume

that the state of the hardware and software is directly observable. In this case, instead

of running on a software trace, the BA is run on the state history for the entire

hardware/software system. Practically, the difference is that the system state x is

70

extended to include hardware as well as software state.

However, due to incomplete or faulty sensing, it is not realistic to assume that the

state of an embedded system is generally observable. In the next section we consider

the case in which the system state x is hidden and Λ involves these hidden states.

Since the system state trajectory W can no longer be directly observed, we can no

longer directly calculate the safety of the system using traditional runtime verification.

Instead, we estimate the safety as a belief distribution.

4.1.2 Extension to Hidden-State

Similar to the case of an HMM, drawing the system as a time-evolving graphical

model is a compact way to represent variable dependences. See Figure 4-1:

. . . ����������qt−1 ����������qt
�� . . .

. . . ����������xt−1 ��

��

��

��������xt
��

��

��

. . .

. . .

��������ct−1

������ ��������zt−1

��������ct

������ ��������zt . . .

Figure 4-1: A graphical model of an embedded system. The commands into the
system are represented by c, observations z, physical system (hardware and software)
state is x, and safety state is q. Subscripts denote time.

In this graphical model, c represents commands sent to the system and z represents

observations received from the system, sometimes called the evidence. The state

of the physical system, including both hardware and software, is represented by x.

Additionally, q is the safety state of the system, defined as the state of the BA that

describes a safety constraint on the system. In a graphical model, arrows denote

conditional dependencies, so xt is conditionally dependent on ct and xt−1, but is

independent of all other variables given ct and xt−1. We make the standard simplifying

assumption that commands ct are independent of previous state xt−1.

Under the assumption that x is observable, it is apparent from Figure 4-1 that we

71

have all the information needed to calculate qt, the state of the BA at time t. However,

when we generalize this model and remove the assumption that x is observable, this

is no longer possible. The problem of safety monitoring can no longer be solved by

runtime verification methods alone.

Instead, we want a capability that will evaluate the safety of the system given the

available information: a safety specification Λ, a plant model Φ, the control sequence

c1:t, and observation sequence z1:t.1 Because we can no longer estimate qt precisely,

we instead estimate the probability that the system remains consistent with Λ, that is,

the probability that the system is safe.

Λ,Φ �� ? �� P(safe)

c1:t, z1:t

��

Let Q denote the set of states of the Deterministic Büchi Automaton (DBA) for Λ,

and let Qsafe denote the set Q/q∅. That is, Qsafe is the set Q with the trap state q∅

removed. This trap state is discussed at the end of Section 4.2.3. The probability

P(safe) is then equivalent to the probability of being in a safe state of the BA at

time t:2

P(safe) = P(qt ∈ Qsafe)

This probability can be derived from the probability distribution over states q of

the DBA at time t, given the commands and observations, by summing over the safe

states Qsafe:

P(safe) =
�

qj∈Qsafe

P(qj

t |z1:t, c1:t) (4.1)

Thus the problem of stochastic safety monitoring of embedded systems reduces to the

problem of finding the probability distribution over BA states q, conditioned on the

history of observations and commands. This probability distribution over q is often

1
Here subscripts denote time, hence xt denotes x at time t, and z1:t is the vector of z’s from time

1 to t.
2
Summing over all states of the automaton except the trap state is necessary for the correct

monitoring of liveness conditions.

72

called a belief state, hence we abbreviate it as B(qt).

The remainder of this chapter is concerned with the calculation of B(qt). Section

4.2 derives an expression for B(qt) in terms of the system model and the DBA

characteristics. Section 4.3 goes into more detail on the system model.

4.2 Calculating Safety Belief

This section presents a derivation for

B(qt) = P(qt|z1:t, c1:t) (4.2)

the belief state over states q of the Büchi Automaton at time t.

An intuitive but inefficient solution is presented first, followed by a more elegant

yet abstract solution in Section 4.2.3.

4.2.1 The Folly of Ignoring Conditional Dependencies

Given that we have mature capabilities for estimating system state on an appropriate

and expressive plant model [28,40], one might hope that such a capability could be

incorporated directly into the safety estimator developed for this thesis. Unfortunately,

this is not the case. In this section we briefly consider why.

Assume we are given the belief B(xt) = P(xt|z1:t, c1:t). Additionally, assume

P(qt|xt, qt−1), the DBA transition probability, is known. One might hope that B(qt)

could be obtained recursively as follows:

B(qt) =
�

xt

�

qt−1

P(qt|xt, qt−1)B(xt)B(qt−1) (4.3)

However, an attempt to derive Equation (4.3) from B(qt) = P(qt|z1:t, c1:t) fails. First,

summing over physical state xt and previous safety state qt−1 gives Equation (4.4),

applying the Chain Rule gives (4.5), and noting conditional independencies yields

73

(4.6):

P(qt|z1:t, c1:t) =
�

xt

�

qt−1

P(qt, xt, qt−1|z1:t, c1:t) (4.4)

=
�

xt

�

qt−1

P(qt|xt, qt−1, z1:t, c1:t)P(xt|qt−1, z1:t, c1:t)P(qt−1|z1:t, c1:t) (4.5)

=
�

xt

�

qt−1

P(qt|xt, qt−1)P(xt|qt−1, z1:t, c1:t)P(qt−1|z1:t, c1:t) (4.6)

Equation (4.6) is not in the recursive form of a belief state update equation as the

previous belief B(qt−1) = P(qt−1|z1:t−1, c1:t−1) does not appear. Neither does the

known quantity B(xt) appear. In order to equate Equations (4.6) and (4.3), the

following assumptions must be made:

1. P(xt|qt−1, z1:t, c1:t) ≈ P(xt|z1:t, c1:t) = B(xt)

2. P(qt−1|z1:t, c1:t) ≈ P(qt−1|z1:t−1, c1:t−1) = B(qt−1)

Figure 4-1 shows that these assumptions are incorrect for our system, therefore the

approach to safety estimation represented by Equation (4.3) is flawed.

In order to preserve the conditional dependencies illustrated in Figure 4-1 while

also separating estimation of the plant state x from estimation of the safety state q,

we need to keep a record of the history of state trajectories x0:t, as seen in the next

section.

4.2.2 A Slow Approach: Counting Every Trajectory

Alternatively, the desired safety monitoring capability could build on mature capa-

bilities for calculating a belief over system state trajectories, rather than system

state. That is, we assume that B(x0:t) = P(x0:t|z1:t, c1:t) is known. While this second

approach is technically correct, tracking trajectory history is expensive. This section

presents one approach for doing so.

To obtain a relation for B(qt), first we sum over all system state trajectories x0:t

in Equation (4.7), then apply the Chain Rule in Equation (4.8). Using Figure 4-1, we

74

note that qt is conditionally independent of commands and observations, given a state

history x0:t, hence Equation (4.9). We apply (4.1) to obtain the final relation (4.10).

P(qt|z1:t, c1:t) =
�

x0:t∈X0:t

P(qt, x0:t|z1:t, c1:t) (4.7)

=
�

x0:t∈X0:t

P(qt|x0:t, z1:t, c1:t)P(x0:t|z1:t, c1:t) (4.8)

=
�

x0:t∈X0:t

P(qt|x0:t)P(x0:t|z1:t, c1:t) (4.9)

P(safe) =
�

qj∈Qsafe

�

x0:t∈X0:t

P(qj

t |x0:t)P(x0:t|z1:t, c1:t) (4.10)

Intuitively, to calculate P(safe) by Equation (4.10), we count all of the state

trajectories x0:t ∈ X0:t that terminate in safe states q ∈ Qsafe and weight each

trajectory by its likelihood P(x0:t|z1:t, c1:t). However, while this approach is consistent

with the conditional dependencies illustrated in Figure 4-1, the cost of enumerating

all feasible state trajectories increases exponentially with time, a rather undesirable

quality.

To address this problem we note that the probability P(qt, x0:t|z1:t, c1:t) from

Equation (4.7) can be viewed as the belief over a combined system state < qt, x0:t >.

This combined state actually records more information than is necessary for safety

estimation. Analysis of the graphical model in Figure 4-1 reveals that there is a

cheaper combination of system states that will record the necessary information. We

exploit this analysis in the next section.

4.2.3 A Good Approach: Combining Physical and Safety

States

As is apparent in the graphical model of Figure 4-1, what makes this estimation

problem computationally expensive are the undirected cycles in the graph. Because

the physical state x and safety state q at each time are interdependent,3 they cannot

3
That is, they are not d-separated given observations and commands.

75

be estimated separately without expense, as in Equation (4.10). If we do not insist

that the plant state x and the safety state q are estimated separately, then we can

remove these cycles and therefore estimate over a much smaller space than < qt, x0:t >.

Let yt represent the complete system state < qt, xt > and let B(yt) denote the

belief over y at time t, that is B(yt) = P(qt, xt|z1:t, c1:t). The graphical model in

Figure 4-1, viewed in terms of y, is equivalent to a canonical hidden Markov model:

. . . ����������yt−1 ��

��

��������yt
��

��

. . .

. . .

��������ct−1

������ ��������zt−1

��������ct

������ ��������zt . . .

Figure 4-2: Graphical model from Figure 4-1 with clustered state y = q ⊗ x

The belief B(qt) is obtained by marginalizing xt out of B(yt) = P(qt, xt|z1:t, c1:t):

B(qt) = P(qt|z1:t, c1:t) =
�

xt

P(qt, xt|z1:t, c1:t) (4.11)

and B(yt) is obtained through standard HMM filtering. For completeness, Equations

(4.12)-(4.16) derive the Forward algorithm. Applying Bayes’ rule to (4.12) yields

(4.13), where η is a normalizing constant. Summing over previous state yt−1 gives

(4.14). By conditional independence of yt given yt−1 and ct, we have (4.16):

B(yt) = P(yt|z1:t, c1:t) = P(yt|zt, z1:t−1, c1:t) (4.12)

= ηP(zt|yt, z1:t−1, c1:t)P(yt|z1:t−1, c1:t) (4.13)

= ηP(zt|yt)
�

yt−1

P(yt, yt−1|z1:t−1, c1:t) (4.14)

= ηP(zt|yt)
�

yt−1

P(yt|yt−1, z1:t−1, c1:t)P(yt−1|z1:t−1, c1:t) (4.15)

B(yt) = ηP(zt|yt)
�

yt−1

P(yt|yt−1, ct)B(yt−1) (4.16)

Equation (4.16) computes the belief state over the combined system state y, which

can also be thought of as the combined BA / PHCA state. To obtain a relation

76

in terms of functions specified by these models, we manipulate (4.16) further by

expanding y in the observation probability P(zt|yt) and the transition probability

P(yt|yt−1, ct), giving us (4.17). Applying the Chain Rule and simplifying based on

conditional independence arguments yields (4.18):

B(yt) = ηP(zt|qt, xt)
�

yt−1

P(qt, xt|qt−1, xt−1, ct)B(yt−1) (4.17)

= η P(zt|xt)
�

yt−1

P(qt|xt, qt−1)P(xt|xt−1, ct) B(yt−1) (4.18)

Substituting Equation (4.18) into (4.11) produces the following, where η is a normal-

ization constant:

B(qt) = η

�

xt

P(zt|xt)
�

yt−1

P(qt|xt, qt−1)P(xt|xt−1, ct) B(yt−1) (4.19)

Equation (4.19), which computes the belief state over the BA, is similar to the

standard Forward algorithm for HMM belief state update (4.16). First, the next state

is stochastically predicted based on each previous belief B(yt) and on the transition

probabilities of the models, then this prediction is corrected based on the observations

received. An additional sum marginalizes out xt, and the result is normalized by η. The

observation probability P(zt|xt) and the transition probability P(xt|xt−1, ct) are both

functions of the model of the physical system. Section 4.3 discusses the calculation of

these probabilities in the case that the plant is modeled as a Probabilistic Hierarchical

Constraint Automaton. The transition probability P(qt|xt, qt−1) is a function of the

safety specification, and is computed according to (4.21), given in the next subsection.

The cost of computing (4.19) is entirely dependent on the sizes of Q and X. In

order to find the probability of each qt, we must loop twice over these sets. If n is the

size of the combined set, n = |Q×X|, then we have a time complexity of O(n2), and

a space complexity of O(n).

Finally, given the belief state determined by Equation (4.19), the probability that

77

the system is currently safe is given by:

P(safe) =
�

qt∈Qsafe

η

�

xt

P(zt|xt)
�

yt−1

P(qt|xt, qt−1)P(xt|xt−1, ct) B(yt−1) (4.20)

Deterministic Büchi Automata

The value of the transition probability P(qt|xt, qt−1) from Equation (4.19) depends

on the transition function T of the underlying Büchi Automaton for the safety

requirements. However, for a nondeterministic Büchi Automaton (NBA), T does

not represent a true probability distribution because
�

σ∈Σ T (q, σ) �= 1. One way to

address this is to convert the NBA to a Deterministic Büchi Automaton (DBA) for

the purposes of estimation.

It is known that canonical DBA on infinite inputs are not as expressive as their

nondeterministic counterparts (see [4], page 188), and therefore canonical NBA cannot

generally be converted to DBA. However, the NBA considered in this thesis are

modified to accept finite traces. For finite traces, these automata are equivalent to

nondeterministic finite automata (NFA) [18], which can be converted to an equivalent

deterministic finite automaton (DFA) without loss of expressiveness. This conversion,

known as subset construction or powerset construction, works by creating a state in

the DFA for every possible combination of states in the NFA [35].

After conversion, a DBA contains a special state q∅ that represents a violation of

the safety requirements. This state is the only state of the automaton that is not safe,

therefore the probability that the system is safe is found by summing the likelihood

of all other states, as Equation (4.1) shows. This ‘trap’ state q∅ represents the empty

configuration of the NBA or the configuration in which no states are marked, and has

a true self-loop, representing the fact that a failed computation on an NBA cannot

restart.

The transition probability P(qt|xt, qt−1) in Equation (4.19) can be obtained from

78

the transition function TD of the specified Deterministic Büchi Automaton as follows:

P(qt|xt, qt−1) =

1 if TD(qt−1, xt) = qt

0 otherwise
(4.21)

4.2.4 Section Summary

This section derived an equation for estimating the safety belief of a stochastic system.

The belief is calculated according to Equation (4.19) at each time step, and the overall

probability that the system is safe is calculated with Equation (4.20). The solution

represented by these equations can be obtained at each time step for a cost in time of

O(n2), where n is size of the combined state of the system |Q||X|.

The next section discusses the modeling formalism.

4.3 The Probabilistic Hierarchical Constraint Au-

tomata Model

This section details the Probabilistic Hierarchical Constraint Automata, a plant model

suitable for representing reactive hardware/software systems.

4.3.1 Motivation for PHCA

This thesis provides a capability for the lifetime verification of embedded systems.

These complex systems tend to suffer from performance degradation due to random

hardware failure over their long and arduous life cycles.

In order to concisely and accurately model these mixed hardware/software systems

that may fail, this thesis utilizes the Probabilistic Hierarchical Constraint Automaton

(PHCA) formalism. PHCA allow for probabilistic behavior, a reasonable model of

random hardware failure.

Section 4.3.2 introduces PHCA with an example. Section 4.3.3 discusses briefly

the Reactive Model-based Programming Language (RMPL), which is the specification

79

idle actuating

brokenunkown

.0001

.0001

.0001

d(error)
dt

>0
.1

de

dt
≤0

crg

1.0 .8999

¬(safelane=correcting) (safelane=correcting)

Figure 4-3: SAFELANE actuator component PHCA model.

language for PHCA. The formal definition of PHCA appears in Section 4.3.4. The

final section discusses estimation on PHCA, relating the formalism to Equation (4.19).

4.3.2 PHCA Description

A Probabilistic Hierarchical Constraint Automaton (PHCA) [40] is an automaton

that is designed to compactly and accurately model the behavior of complex systems

involving both hardware and software [28]. Like an HMM, PHCA may have hidden

states and transition probabilistically. Unlike an HMM, PHCA introduce the notion

of constraints on states as well as a hierarchy of component automata.

Systems are modeled as a set of individual PHCA components that communicate

through shared variables. Discrete modes of operation representing nominal and faulty

behavior are specified for each component. Components may transition between modes

probabilistically or based on system commands. Additionally, modes and transitions

may be constrained by the modes of other components.

Example PHCA

In Chapter 2, the SAFELANE example system is shown modeled as a PHCA. (See

Figure 2-1.) The same system could be modeled as an HMM, but the representation

would be far less compact, since all possible mode combinations would have to be

expanded.

As an example PHCA, an actuator component model is presented in Figure 4-3.

80

The actuator has two nominal and two failure modes. The nominal modes are idle and

actuating. The truth of crg and safelane=correcting is assumed to be observable

for the purposes of this example. Additionally, the error e = �φdesired−φactual�, where

φdesired is the command sent to the actuator, is known. If the time derivative of this

error is positive, then the actuator is assumed to be malfunctioning, or broken. The

system may escape the broken mode, but will be assumed to be in some unknown

operating mode perpetually if its behavior is ever inconsistent with its model.

4.3.3 Specifying PHCA in the Reactive Model-Based Pro-

gramming Language

Figure 4-4: Examples of the mapping between RMPL constructs and PHCA format.

PHCA are specified in the Reactive Model-based Programming Language (RMPL)

[41]. This section briefly introduces RMPL and its mapping to PHCA. See also [40,41]

for more detail on PHCA construction and background on RMPL.

RMPL consists of five primitive constructs. Many other, more complex constructs

can by derived from these five:

1. c : This constraint asserts that c is true at the initial time.

2. if c thennext A : This conditional branching construct causes A to begin
executing at the next time step if c is currently entailed.

3. A, B : This basic concurrency construct causes both A and B to begin executing
at the same time.

4. always A : This construct starts A at every time step

81

5. choose A with p, B with q : This is the basic probabilistic choice construct,
allowing for the encoding of probabilistic knowledge about the system.

The translation of these and other combinators to PHCA is given in Figure 4-4.

Example RMPL

Below I give an example of the RMPL for the PHCA in Figure 4-3. This example is

specified in RMPLJ , a Java-like derivative of RMPL, which includes many derived

combinators. See Figure 4-5.

Figure 4-5: Example of an RMPLJ specification for a PHCA plant model.

4.3.4 PHCA Formal Definition

Formally, a PHCA is defined as a tuple: C = �S,PΘ, Π, C,PT,PG,PO� [40].

S is the set of locations of the automaton, partitioned into Sp and Sc, which are

the set of primitive locations and composite locations, respectively. Primitive

locations have no sub-functions, whereas composite locations are sub-automata.

PΘ is the probability P(mi

0), which is the probability that mi is the initial marking

of the automaton. A marking is a set of locations m ∈ 2S, the powerset of S.

Π is a set of finite domain variables, where for each v ∈ Π, the domain is denoted

as the set Dv. This set includes observation variables O, dependent variables

D, and control variables C. Let φ be a full assignment to Π, that is to say, φ is

82

a set of assignments {v = u|∀v ∈ Π, such that u ∈ Dv}, and let Φ be the set of

full assignments. Let π be a partial assignment to finite domain variables, and

let the set of all partial assignments be denoted P .

C : Sp → A is a function that associates each primitive location s ∈ Sp with a finite

domain constraint a from the set of possible constraints A. That is to say, a

constrains the variables in its scope to take on only values from their domains

that are allowed by a’s relation. Constraints in this thesis are expressed in

propositional state logic. A constraint C(s) is enforced whenever s is marked.

PT : Sp × T → [0,1] is distribution over possible transition functions T : A → 2S.

That is to say, a function T maps constraint g ∈ A, also known as a guard

condition, into a marking m ∈ 2S. PT(s) denotes a probability distribution

over the transitions associated with a primitive location s, and PT(s, Ti) is the

probability of the transition Ti, which is a transition from s.

PG : A× P × 2S → [0,1]. This is the probability that a guard condition g ∈ A is

enabled given a partial assignment π to control, observable, and dependent

variables, and a marking m ∈ 2S. If π and m are such that g is satisfied or not,

then this probability is 1 or 0 respectively. In the case that some variables in

the scope of g are not known, PG is between 0 and 1.

PO : O ×X → [0,1] is the observation probability function. Given a state x which

includes a marking m and a full assignment to D, this function returns the

probability that an observation o is received, where o is a full assignment to O.

Example The example PHCA of an actuator in Figure 4-3 is formally written:

S = {idle, act, brk, unk}

PΘ(m) =

1 if m = {idle},

0 otherwise

C(s) =

slc = 0 if s = idle

slc = 1 if s = act

Π = {slc,crg,dedt} where

O = {dedt} Ddedt = {+, 0,−}

C = {crg}, Dcrg = {1, 0}

D = {slc}, Dslc = {1, 0}

83

PT(s, Ti) Ti s ∈ Sp g ∈ A m ∈ 2S

.9999 Tidlen idle
crg act

T idle

.0001 Tidlef
idle T unk

.9999 Tactn act
T {act, idle}
dedt brk

.0001 Tactf act T unk

0.1 Tbrk1 brk
dedt brk

¬dedt act

0.8999 Tbrk2 brk T brk

0.0001 Tbrkf
brk T unk

1 Tunk unk T unk

The specification of PG and PO is discussed in the next section.

4.3.5 Calculating the Transition and Observation Probabili-

ties

To perform safety monitoring, Equation (4.19) requires a transition probability and an

observation probability for the plant model. This section derives these probabilities for

a PHCA. The transition probability describes the likelihood of transitioning to a state

xt, given a previous state xt−1. This likelihood also depends on the values assigned

to finite domain variables. The observation probability describes the likelihood of

observing an assignment o to O, given that x is the current state.

The Transition Probability

We are interested in knowing P(xt|xt−1, ct), which is the probability of transitioning

from a state xt−1 to a state xt, given a control action. The state x of a PHCA consists

of a marking m and a full assignment to dependent variables D, denoted d. Recall

that a transition T is defined as a function A → 2S. That is, T maps a guard to

a marking. PT(s, Ti) is the probability of the transition Ti from primitive location

s. To compute the state transition probability, we assume that primitive transition

84

probabilities are conditionally independent, given the current marking.4 Hence, the

composite transition probability between two markings is computed as the product of

transition probabilities from each primitive location in the first marking to a subset of

the second marking.

Specifically, assume we are given a previous state xt−1, a current state xt, an

assignment ct to C and zt to O. Additionally, the state xt is composed of a marking

mt and an assignment to dependent variables dt. Together we denote ct and dt as π.

Then:

P(xt|xt−1, ct) =

�
s∈xt−1

P(s � mi ⊆ xt|π) if xt−1, ct can yield xt

0 else
(4.22)

where

P(s � m
i ⊆ xt|π) =

PT(s, Ti) ∗PG(g,π, mt−1) if ∃Ti(g) ⊆ mt

0 else
(4.23)

To compute p = P(xt|xt−1, ct) in equation (4), we compute the probability n =

P(s � rj ⊆ xt|π) for each primitive location s in xt−1 separately. Equation (4.23)

describes the computation of n: if there exists a transition Ti such that Ti(g) ⊆ xt,

then n is the probability of that transition, times the probability that the guard g is

satisfied, given the previous marking and π. If there exists no such transition Ti, then

p is 0. The probability p is then the product of n for all primitive locations s in xt−1.

However, if all satisfied transitions are insufficient to create the full marking xt, this

is, if there is a location in xt that cannot be reached through transitions satisfied by π

and mt−1, then p is 0. This computation is presented formally in Algorithm 4 below.

Specifying the Guard Probability

The guard probability PG(g,π, m) is the probability that a guard condition g ∈ A is

enabled given a partial assignment π to control, observable, and dependent variables,

4
This is analogous to the failure independence assumption from GDE and Livingstone [15], and is

reasonable for most engineered systems.

85

Algorithm 4 : Probability computation P(xt|xt−1, ct)
1: p = 1, m = ∅
2: for each primitive location s ∈ xt−1 do
3: n = 0
4: for all Ti from s do
5: if ∃Ti(g) = rj|rj ⊆ xt then � If the transition contains a resultant

marking rj, enabled by g, such that rj ⊆ xt.
6: m ∪ rj � Record the result in m.
7: n = PT(s, Ti) ∗PG(g, π, mt−1) � Compute the prob. of taking Ti.
8: break � Assume there is only one such Ti.
9: end if

10: end for
11: p = p ∗ n � If no transition was feasible, then p becomes 0.
12: end for
13: if m = xt then � Check to see if all locations in xt can be reached.
14: return p

15: else
16: return 0
17: end if

and a marking m ∈ 2S. The guard g may be written over control and dependent

variables, as well as markings. For g to be enabled, it must be (1) from a primitive

state s ∈ m, and (2) the constraint it represents must be satisfied by π and m. If π

and m are such that the satisfaction of g is known, then this probability is 1 or 0, and

is easily specified.

For example, for the actuator PHCA above:

PG(crg,crg=T, {idle}) = 1

PG(crg,crg=F, {idle}) = 0

PG(crg,crg=T, {unknown}) = 0

In cases where the values of variables within the scope of the guard are not known,

then the guard is indeterminate, and the guard probability is estimated in the same

manner as the observation probability, described below.

86

Specifying the Observation Probability

Instead of specifying the entire observation probability function along with the model,

we calculate approximately the observation function PO for a state xi similar to

GDE [15]. Given the constraints C(s ∈ xi) imposed by xi, we test if each observation

in oi is entailed or refuted, giving it probability 1 or 0, respectively. If no prediction

is made, then an a priori distribution on observables is assumed (e.g., a uniform

distribution of 1/n for n possible values).

See [26] for a detailed discussion of this calculation.

4.4 Chapter Summary

This chapter presented an approach to runtime verification for mixed stochastic

systems. Formal LTL safety specifications are converted to a Deterministic Büchi

Automaton (DBA), and safety is estimated via the combined state of this automaton

and the Probabilistic Hierarchical Constraint Automaton (PHCA) plant model. This

approach is summarized by Equation (4.19). The details of Büchi Automata were

presented in Chapter 3, and the details of PHCA were discussed in Section 4.3. The

next chapter presents empirical validation and discusses future work.

87

88

Chapter 5

Validation and Conclusions

In this chapter I evaluate the utility of the monitoring algorithm presented in Chapter

4, as well as discuss future work.

Section 5.1 describes the experiment that was performed to test the validity and

efficiency of the algorithm. Results are presented for the example. Section 5.2 presents

possibilities for future work.

5.1 Validation

With the experiment described in this section I seek to prove that my approach

provides a capability for real-time safety monitoring of complex mixed systems. In

order for a safety monitoring capability to be able to operate in real time, it should:

1. Be capable of estimating on large models with reasonable speed and space usage,

2. Detect safety violations quickly, and

3. Detect safety violations accurately.

Any experiments should therefore seek to characterize the time and space usage of

the algorithm as |X| grows, the latency of violation detection, and the accuracy of

violation detection.

89

The experiment performed verifies that the safety monitoring capability is able

to quickly and accurately detect safety violations on a small example. Future work

should more completely characterize the monitor’s performance on larger models.

5.1.1 Description of Implementation

The Büchi Automaton compilation and operation, the inference algorithms, and the

examples were all implemented in Java. The experiments were run on an Intel Core 2

Duo 2.16 GHz with 4 gigabytes of RAM.

5.1.2 Experimental Setup

For the experiment, I tested a small subset of the SAFELANE example from Chapter

2. This example was designed solely to validate the accuracy and speed of safety

violation detection. For this model, I tested nominal scenarios and faulty scenarios,

including both the case where the actuator experiences a modeled failure, and where

it experiences an unmodeled failure. In both cases, the safety monitor is able to detect

a safety violation.

5.1.3 SAFELANE Actuator Example

In this example I monitored the following safety statement:

�
�
actuator-fail → (�¬control-request-granted)

�
(5.1)

This statement was presented in Chapter 2 as an example of a safety statement written

over a hidden states of a stochastic plant. In this case, we require that if ever an

actuator fails, then the autonomous subsystem should not subsequently acquire control

of the vehicle. This is a good prototypical safety requirement. It is representative of

the kinds of statements that could be monitored, and is of typical complexity.

The Büchi Automaton for this statement is:

90

q1 q2
¬crg

¬af

¬crg

In this graphic, the proposition actuator-fail from Statement (5.1) is abbre-

viated as af, and the proposition control-request-granted is abbreviated as

crg. As mentioned in Chapter 4, this nondeterministic automaton is converted into

a deterministic automaton for the purposes of estimation. The automaton used in

estimation is the following:

q1 q2

q∅

a
f∧c

r
g

c
r
g

af∧
¬crg

¬af

¬crg

T

Figure 5-1: A Deterministic Büchi Automaton for testing Requirement (5.1).

PHCA Model

For this example, the actuator component of the SAFELANE system was modeled as

a Probabilistic Hierarchical Constraint Automaton. (See Figure 5-2.)

The proposition af in the above BA is true if the actuator is in either of the

failure modes, which are broken and unknown. In this PHCA, the truth of crg and

safelane= correcting is assumed to be observable for the purpose of this example.

Additionally, the error e = �φdesired − φactual�, where φdesired is the command sent

to the actuator, is known. If the time derivative of this error is positive, then the

actuator is assumed to be malfunctioning, or broken. The system may escape the

broken mode, but will be assumed to be in some unknown operating mode perpetually

if it ever behaves inconsistently with its model.

91

idle actuating

brokenunkown

.0001

.0001

.0001

d(error)
dt

>0
.1

de

dt
≤0

crg

1.0 .8999

¬(safelane=correcting) (safelane=correcting)

Figure 5-2: SAFELANE actuator component PHCA model.

This model exhibits probabilistic failure, as this thesis argued was necessary for

lifelong verification of mixed systems.

5.1.4 Results

For this model, the nominal observation sequences were estimated as meeting re-

quirement (5.1) with a probability greater than 99.99%. This requirement says that

SAFELANE should not receive control of the vehicle if the actuator has failed. A

nominal observation sequence is one in which a nominal system trajectory is consistent

with the observations. An example of a nominal observation sequence is the following:

�Znom =

t = 1 2 3 4

¬slc ¬slc ¬slc

¬crg ¬crg ¬crg . . .

¬de

dt
> 0 ¬de

dt
> 0 ¬de

dt
> 0

in which SAFELANE is never granted control and takes no corrective action.

Estimating a sequence like �Znom of 200,000 input observations took 7.2 seconds1, at

which time the belief over the BA was B(Q) = {q1 = 0.99997, q2 = 0.00003, q∅ = 0.0};

this is the steady-state belief for this observation sequence. The implementation

runtime is constant at each time step, as expected.

Fault sequences such as the two examples below are estimated as having violated

Requirement (5.1) with 100% probability. Fault sequences are those in which every

1
For reference, the “slow” estimation described in Section 4.2.2 fails after 9 input observations

due to insufficient memory space.

92

consistent trajectory contains a component failure.

�Zfault1 =

t = 1 2 3

¬slc slc slc

¬crg crg crg

¬de

dt
> 0 ¬de

dt
> 0 de

dt
> 0

�Zfault2 =

t = 1 2

¬slc ¬slc

¬crg crg

¬de

dt
> 0 ¬de

dt
> 0

Many permutations of observation sequences were tested, and all faulty sequences

were clearly shown to be violating the safety requirement.

This experiment showed that my approach and implementation are correct. Fur-

thermore, I observed no latency in safety violation detection for such a model. I

also observed an accuracy of safety violation detection of 1, meaning that every fault

sequence was estimated as being in violation with the requirement.

5.2 Future Work

This section future work that could extend the applicability of my approach to safety

monitoring.

5.2.1 Dealing with More Complex Models

Despite the encouraging results presented above, very complex systems may require

models of sufficient size to render the monitoring approach presented in this thesis

impractical. The estimation of system safety presented in this thesis has a time

complexity that is polynomial in the number of combined system states. Specifically,

the time required to update the safety estimate at each time is of order O
�
(|Q||X|)2

�
,

where |Q| is the number of states of the DBA representing the safety requirement, and

|X| is the number of unique configurations of the underlying physical system. For very

complex physical systems requiring millions of states to be modeled accurately, this

time complexity may prevent the safety monitoring capability from being useful as a

real-time safety net. Additionally, the monitoring algorithm has a space complexity

that is linear in the number of combined system states. For embedded systems with

meager resources, the space required may be the limiting factor.

93

For such systems requiring large models, an approximate belief state update method

may produce acceptably accurate estimates. Researchers in model-based estimation

have shown examples of fast and accurate belief state update for Probabilistic Con-

current Constraint Automata (PCCA) [27] and Probabilistic Hierarchical Constraint

Automata (PHCA) [40] using greedy methods. These approximations are based on a

partial enumeration of the state space, and show promising results in terms of time

and space savings.

If the time and space constraints of the system prevent the use of exact safety

monitoring, these approximate belief state update methods provide a good starting

point for an investigation into approximate safety estimation.

5.2.2 Introducting MTL or TLTL

In order to take advantage of the expressiveness of liveness properties, future work

should include an investigation of timed logics. Liveness properties as defined by

Alpern and Schneider [3] are those that can never be definitively violated. Liveness

properties represent a large and expressive set of LTL properties, but these properties

are not strictly monitorable [6]. The issue is that liveness can only proven for infinite

executions. Additionally, as many authors have pointed out, liveness properties are

not generally strong enough to specify the true requirements of a real-time system [29].

Despite the fact that liveness requirements are not usually strong enough and are not

monitorable, the idea of liveness is important for describing the desired functionality

of a reactive system.

For example, the requirement:

(control-granted ∧ unintentional-lane-departure) → ♦in-lane (5.2)

is descriptive of the desired functioning of the SAFELANE system. It is certainly

true that if SAFELANE is granted control of the vehicle during an unintentional

lane departure, it should eventually steer the car back into the lane. However, this

requirement is not strong enough. In reality, SAFELANE should quickly correct the

94

vehicle’s course. It might be more accurate to require that SAFELANE complete

course correction within three seconds, for example, but LTL provides no way to

express this requirement.

Furthermore, when performing runtime verification on Requirement (5.2) one

cannot ever make the statement that the requirement has been violated. Even if

three hours have passed without the vehicle being in-lane since the requirement was

triggered, there is still hope that the requirement will be satisfied in the future, and

therefore the system behavior is not inconsistent with the requirement.

To take advantage of the expressiveness of eventualities while maintaining the

strength and monitorability of safety properties, timed temporal logics such as Timed

LTL [31] and Metric Temporal Logic [24] introduce time bounds on the F and U

operators (♦ and U). With time bounds, these operators become much more useful

for expressing the requirements of a real-time system. Additionally, introducing time

bounds morphs a liveness statement into a monitorable form by allowing it to be

disprovable with a finite execution. In other words, adding time bounds to a liveness

property changes it from a property of the form some good thing α must eventually

happen, to a property of the form some bad thing - the passing of this finite time

interval without α - must never happen. Therefore time-bounded eventualities are

actually part of the class of safety properties defined by Alpern and Schneider [3].

TLTL and MTL are similarly expressive, but syntactically different. Requirement

(5.2) above could be expressed in MTL as follows:

�
�
(control-granted ∧ unintentional-lane-departure) → ♦≤3in-lane

�

where now the event in-lane is required to occur within 3 time units of the lane

departure. The same requirement is written in TLTL as:

�
�
(control-granted ∧ unintentional-lane-departure) → �in-lane ∈ [0, 3]

�

Researchers have proven the viability of performing runtime verification using

TLTL [6] and MTL [37]. Algorithms for converting both MTL and TLTL to equivalent

95

automata on finite inputs have been shown, therefore the estimation methods in this

thesis could be extended to use a timed temporal logic. The increased expressiveness

of timed logics does not come without price, however, and the complexity of such an

approach remains to be investigated.

5.2.3 Diagnosis

For safety monitoring to provide the most utility in a deployed system, the system

should be able to react to detected violations by removing unsafe functions or curtailing

mission objectives. This reactive functionality may be forced to severely restrict the

system’s functionality if it is unclear what components caused the safety violation. In

the worst case, the system may be forced to shut down entirely.

If a safety monitoring capability were able to not only detect safety violations, but

also to assign blame for the violation to one or more components, then the system

would have more options when choosing a safe configuration to transition to. However,

diagnosing the cause of a safety violation is an open area of research.

5.3 Chapter Summary

This chapter presented empirical results of runtime verification for mixed, faulty

systems. These results showed that the approach presented in this thesis is sound

and fast enough to be used in real-time for small and medium sized models. I believe

that this approach to safety monitoring is valuable as a safety net for embedded

systems post-deployment. Future work in this area should include investigation into

using larger models, employing timed logics, and providing a diagnosis capability to

supplement the safety monitoring.

96

Bibliography

[1] This Car Runs on Code, IEEE Spectrum article. Accessed online:.

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code. Last

accessed May, 2010.

[2] SAFELANE, part of the PReVENT project. Website. http://www.prevent-

ip.org/en/prevent subprojects/lateral support driver monitoring/safelane/. Last

accessed May, 2010.

[3] Bowen Alpern and Fred Schneider. Defining liveness. Technical report, Cornell

University Department of Computer Science, Ithaca, New York, October 1984.

[4] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT

Press, Cambridge, MA, 2008.

[5] F Balarin, H Hsieh, A Jurecska, L Lavagno, and A L Sangiovanni-Vincentelli.

Formal verification of embedded systems based on CFSM networks. In Proceedings

of the 33rd annual Design Automation Conference, pages 568–571, New York,

NY, 1996. ACM.

[6] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification

for LTL and TLTL. Technical Report TUM-I0724, TU München, 2007.

[7] Jennifer Black. System Safety as an Emergent Property. PhD thesis, Carnegie

Mellon University, Pittsburgh, PA, April 2009.

[8] G Brat, D Drusinsky, Dimitra Giannakopoulou, A Goldberg, K Havelund,

M Lowry, C Pasareanu, A Venet, W Visser, and R Washington. Experimental

97

evaluation of verification and validation tools on martian rover software. Formal

Methods in System Design, 25(2):167–198, 2004.

[9] M C Browne, Edmund M. Clarke, D L Dill, and B Mishra. Automatic verification

of sequential circuits using temporal logic. IEEE Transactions on Computers,

35(12):1035–1044, 1986.

[10] J R Büchi. On a decision method in restricted second order arithmetic. In Logic,

Methodology and Philosophy of Science (Proc. of the 1960 International Congr.),

pages 1–11, Stanford, CA, 1962. Stanford University Press.

[11] J R Burch, Edmund M. Clarke, K L McMillan, and D L Dill. Sequential circuit

verification using symbolic model checking. In Proceedings of the 27th ACM/IEEE

Design Automation Conference (DAC ’90), pages 46–51, New York, NY, 1990.

ACM.

[12] J R Burch, Edmund M. Clarke, K L McMillan, D L Dill, and L Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98(2):142–

170, 1992.

[13] Edmund M. Clarke, Ernest A. Emerson, and A P Sistla. Automatic verification

of finite-state concurrent systems using temporal logic specifications. ACM

Transactions on Programming Languages and Systems, 8(2):244–263, 1986.

[14] Séverine Coline and Loenardo Mariani. Runtime verification. In Model-Based

Testing of Reactive Systems, volume 3472 of Lecture Notes in Computer Science,

chapter 18, pages 525–555. Springer Berlin / Heidelberg, 2005.

[15] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial

Intelligence, 32:100–117, 1987.

[16] D Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model Checking

and Software Verification, volume 1885 of LNCS, pages 323–330. Springer, 2000.

98

[17] R Gerth, D Peled, M Y Vardi, and P Wolper. Simple on-the-fly automatic

verification of linear temporal logic. In IFIP Conference Proceedings, volume 38,

pages 3–18, 1995.

[18] Dimitra Giannakopoulou and Klaus Havelund. Automata-based verification of

temporal properties on running programs. In 16th IEEE International Conference

on Automated Software Engineering, San Diego, CA, 2001.

[19] K Havelund and Grigore Roşu. Java pathexplorer - a runtime verification tool.

In The 6th International Symposium on AI, Robotics and Automation in Space,

May 2001.

[20] S K Jha, Edmund M. Clarke, C J Langmead, A Legay, A Platzer, and P Zuliani.

A bayesian approach to model checking biological systems. In Proceedings of

the 7th International Conference on Computational Methods in Systems Biology

(CMSB ’09), pages 218–234, Berlin, Germany, 2009. Springer-Verlag.

[21] Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University

of California, Los Angeles, 1968.

[22] M Kim, S Kannan, I Lee, O Sokolsky, and M Viswanathan. Java-MaC: a

runtime assurance approach for Java programs. Formal Methods in System

Design, 24(2):129–155, March 2004.

[23] Moonjoo Kim and Mahesh Viswanathan. Formally specified monitoring of tem-

poral properties. In 11th Euromicro Conference on Real-Time Systems, 1999.

[24] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-

Time Systems, 2(4):255–299, 1990.

[25] Orna Kupferman and Moshe Y Vardi. Model checking of safety properties. Formal

Methods in System Design, 19:291–314, 2001.

[26] Oliver B. Martin, Seung H. Chung, and Brian C. Williams. A tractable approach

to probabilistically accurate mode estimation. In Proceedings of the 8th Interna-

99

tional Symposium on Artificial Intelligence, Robotics, and Automation in Space

(iSAIRAS-05), Munich, Germany, September 2005.

[27] Oliver B. Martin, Brian C. Williams, and Michel D. Ingham. Diagnosis as

approximate belief state enumeration for probabilistic concurrent constraint

automata. In Proc. of the 20th National Conference on Artificial Intelligence,

pages 321–326, Pittsburgh, PA, 2005.

[28] Tsoline Mikaelian, Brian C. Williams, and Martin Sachenbacher. Model-based

monitoring and diagnosis of systems with software-extended behavior. In Proceed-

ings of the Twentieth National Conference on Artificial Intelligence (AAAI-05),

pages 327–333, Pittsburgh, PA, July 2005.

[29] Dennis K. Peters and David Lorge Parnas. Requirements-based monitors for

real-time systems. IEEE Transactions on Software Engineering, 28(2), February

2002.

[30] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on

Foundations of Computer Science (FOCS 1997), pages 46–57, 1977.

[31] J-F Raskin. Logics, Automata and Classical Theories for Deciding Real-time.

PhD thesis, Namur, Belgium, 1999.

[32] U Sammapun, O Sokolsky, I Lee, and J Regehr. Statistical runtime checking of

probabilistic properties. In Proceedings of the 7th International Workshop on

Runtime Verification (RV 2007), volume 4839 of LNCS, pages 164–175. Springer,

2007.

[33] A L Sangiovanni-Vincentelli, Patrick C McGeer, and Alexander Saldanha. Verifi-

cation of electronic systems. In 33rd Annual Conference on Design Automation

(DAC), pages 106–111. ACM Press, 1996.

[34] K Sen, Mahesh Viswanathan, and G Agha. Statistical model checking of black-box

probabilistic systems. In Proceedings of the 16th Intl. Conf. on Computer Aided

100

Verification (CAV 2004), volume 3114 of Lecture Notes in Computer Science,

pages 202–215, Berlin, Germany, 2005. Springer-Verlag.

[35] Michael Sipser. Introduction to the Theory of Computation. Thomson Course

Technology, Boston, Massachusetts, 2nd edition, 2006.

[36] A P Sistla and Abhigna R Srinivas. Monitoring temporal properties of stochastic

systems. In Proc of 9th International Conference on Verification, Model Checking,

and Abstract Interpretation (VMCAI 2008), pages 294–308, 2008.

[37] Prasanna Thati and Grigore Roşu. Monitoring algorithms for metric temporal

logic specifications. Electronic Notes in Theoretical Computer Science, 113:145–

162, 2005.

[38] M Y Vardi. Automatic verification of probabilistic concurent finite-state programs.

In 26th IEEE Symposium on Foundations of Computer Science (FOCS), pages

327–338. IEEE Computer Society Press, 1985.

[39] Moshe Y Vardi and Pierre Wolper. An automata-theoretic approach to automatic

program verification. In First Symposium on Logic in Computer Science, pages

332–344, 1986.

[40] Brian Williams, Seung Chung, and Vineet Gupta. Mode estimation of model-

based programs: Monitoring systems with complex behavior. In Proceedings

of the International Joint Conference on Artificial Intelligence, pages 579–585,

Seattle, WA, 2001.

[41] Brian C. Williams, Michel Ingham, Seung H. Chung, and Paul H. Elliott. Model-

based programming of intelligent embedded systems and robotic space explorers.

In Proceedings of the IEEE: Special Issue on Modeling and Design of Embedded

Software, volume 91, pages 212–237, January 2003.

[42] Pierre Wolper. The tableau method for temporal logic: an overview. Logique et

Analyse, pages (110–111):119–136, 1985.

101

