
Oligonucleotide Design and Codon Optimization for PCR-based
Gene Synthesis

by

Paul Jamesen Steiner

S.B. Computer Science and Engineering
MIT, 2007

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Ful�llment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

Massachusetts Institute of Technology

September 2009

©2009 Massachusetts Institute of Technology.
All rights reserved.

Signature of Author:
Department of Electrical Engineering and Computer Science

August 3, 2009

Certi�ed by:
�omas F. Knight Jr.

Senior Research Scientist
�esis Supervisor

Certi�ed by:
Brian C. Williams

Professor
�esis Co-Supervisor

Accepted by:
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate�eses

2

Oligonucleotide Design and Codon Optimization for PCR-based
Gene Synthesis

by
Paul Jamesen Steiner

Submitted to the Department of Electrical Engineering and
Computer Science on August 3, 2009 in Partial Ful�llment of the
Requirements for the Degree of Master of Engineering in Electrical

Engineering and Computer Science.

Abstract
If synthetic biologists are to engineer novel biological functionality, they must be
able to fabricate the DNA encoding it. A number of companies synthesize DNA
for a fee, but their service is opaque. Researchers can alternatively perform their
own syntheses, but the process is time-consuming and error-prone. �is thesis
introduces a so�ware tool designed to make it simpler and more reliable.
DNA is synthesized from overlapping oligonucleotides by ligation or PCR;

this thesis focuses on PCR-based methods. Many sets of oligonucleotides can be
used to synthesize a given sequence; choosing the optimal set is a computational
problem. A number of so�ware tools for oligonucleotide design exist, but none
are adequate. Some employ poorly-designed algorithms, while others place un-
necessary restrictions on oligonucleotide length or overlap size.
An optimal set of oligonucleotides for PCR-based synthesis has no potential

for mispriming and has maximally uniform overlap melting temperatures. We
present an algorithm that �nds such a set. Unlike similar algorithms, it places no
restrictions on oligo length or overlap size except those given by the user. Mason,
a tool employing this algorithm, has been implemented in Common Lisp.

�e space of potential sets of oligos is much larger when the DNA to be syn-
thesized contains protein-coding regions; because the genetic code is degenerate,
a combinatorial number of di�erent sequences can encode the same protein. If
the primary concern is a protein sequence, codons can be changed to synony-
mous codons with little consequence, making it possible to remove problematic
repetitive elements. We show that our algorithm can theoretically be extended
and usedwith constraint optimization algorithms to solve themore di�cult prob-
lem of simultaneously optimizing codon usage and designing oligonucleotides for
synthesis.

�esis Supervisor:�omas F. Knight Jr.
Title: Senior Research Scientist

�esis Co-Supervisor: Brian C. Williams
Title: Professor

3

4

Acknowledgments

�anks to TomKnight formaking it obvious how exciting biology is and for being
always available with insight, wisdom, and a joke at the expense of the tasteless.

�anks to Brian Williams for introducing me to the world of constraints and for
reminding me to enjoy the opportunity to spend all my time thinking about in-
teresting problems.

�anks to Pete Carr and Dave Kong for advice when I started, and thanks to Dave
for pointing me to Tom.

Finally, thanks to my mother, my father, and my sisters: Margaret, Ramsey, and
Madeline.

5

6

Contents

1 Introduction 11

2 Background: Molecular Biology 13

3 Gene Synthesis 21

4 Previous Work & Available So�ware 27

5 �e Oligo Design Problem 33

6 An Algorithm for the Oligo Design Problem 41

7 Implementation: Mason 53

8 �e Codon Optimization Problem 55

9 Background: Constraint Satisfaction 59

10 An Algorithm for the Codon Optimization Problem 67

11 Conclusion & Future Work 77

References 79

7

List of Figures

2.1 DNA. 14
2.2 A DNA hairpin. 15
2.3 Primer extension. 18
2.4 Polymerase Chain Reaction. 19
3.1 Ligation assembly. 22
3.2 Polymerase Cycling Assembly. 23
3.3 Types of misannealing events. 25
5.1 A solution to the oligo design problem. 34
5.2 Overlapping oligos. 35
5.3 Mispriming. 36
6.1 Arrangement of nodes in the graph. 43
6.2 Edges in the graph. 44
6.3 A path through the graph. 45
6.4 Recursively �nding the shortest path. 46
9.1 Graph to be 3-colored. 60
9.2 Branch and bound search tree. 63
10.1 Input sequence with amino acids and variables. 67
10.2 Partial assignment to codons. 70
10.3 Replacing unde�ned regions with unique characters. 71

8

List of Tables

2.1 �e standard genetic code. 16

List of Algorithms

6.1 Shortest path algorithm. 47
6.2 Find all maximal repeats. 50
6.3 Finding mispriming oligos. 51
6.4 Finding self-priming hairpins. 52
9.1 General branch and bound algorithm. 62
9.2 Con�ict-directed A*. 65
10.1 Finding all maximal repeats in a partially unde�ned sequence. 71
10.2 Extracting con�icts for sequence constraints. 74
10.3 Extracting a minimal con�ict from a complete assignment. 75
10.4 Extracting minimal con�icts. 75

9

10

1 Introduction

�e ability to synthesize novel DNA is the most fundamental prerequisite for
synthetic biology. Engineering novel biological behavior is impossible if, at the
end of the day, it is too di�cult to synthesize the DNA encoding that behavior and
observe its performance in a living system. Despite its importance, the problem
of gene synthesis has not yet been solved, and synthetic biologists are �nding that
waiting for DNA is the rate-limiting step in their research.

�ere are two options for synthesizing DNA: paying a professional, or doing it
oneself. Commercial synthesis has the bene�ts of convenience and, increasingly,
a�ordability; however, the process is opaque and introduces an o�en unwanted
dependence on external companies. �e DIY approach has its own drawbacks:
existing synthesis methods are unreliable and can become major time sinks.
DNA is normally synthesized from sets of overlapping oligonucleotides using

ligation or PCR.�e selection of the oligonucleotides used is a major computa-
tional problem: an enormous number of di�erent sets can be used to synthesize
a given sequence, but many sets — maybe most — will not work at all. Many
oligonucleotide design tools exist, but those available are in�exible and employ
poorly-designed algorithms.

�is thesis presents and justi�es a well-designed algorithm for the design of
oligonucleotides for PCR-based gene synthesis. It introduces a so�ware tool, Ma-
son, that implements this algorithm. Finally, it discusses how the algorithm could
be extended to simultaneously perform codon optimization and oligonucleotide
design using constraint optimization.

�e remainder of this document is organized as follows:

◾ Chapter 2 introduces molecular biology, DNA thermodynamics, and PCR
for those unfamiliar with them.

11

◾ Chapter 3 discusses ligation-based and PCR-based DNA synthesis and the
di�culties associated with each method.

◾ Chapter 4 reviews some currently available so�ware for gene synthesis and
explains where each is lacking.

◾ Chapter 5 formally states the problem of oligonucleotide design for PCR-
based gene synthesis.

◾ Chapter 6 develops an algorithm that e�ciently solves that problem.
◾ Chapter 7 introduces Mason, a tool employing this algorithm.
◾ Chapter 8 formally states the problem of oligo design with codon optimiza-
tion.

◾ Chapter 9 introduces constraint satisfaction and constraint optimization
for those unfamiliar with those �elds of computer science.

◾ Chapter 10 discusses how to apply constraint optimization to the problem
of oligo design with codon optimization.

◾ Chapter 11 discusses future work and concludes.

�ough it takes a di�erent approach, this work is indebted toWozniak [2005],
previouswork on the development of awell-designed algorithm for oligonucleotide
design.

12

2 Background: Molecular Biology

�is chapter is a brief introduction to molecular biology, and should provide
the non-biologist with the background needed to understand the problem this
thesis solves. �ree topics are addressed: DNA, RNA, protein, and the central
dogma of molecular biology; DNA thermodynamics; and polymerase chain re-
action (PCR). For a more in depth introduction, see Watson et al. [1987].

�ose with a background in biology may want to skip this chapter.

2.1 Molecular Biology

2.1.1 DNA

DNA—deoxyribonucleic acid— is the molecule that stores the genetic informa-
tion in a cell. It can exist as single-stranded DNA (ssDNA) or as double-stranded
DNA (dsDNA or a duplex). A strand of DNA is a string of deoxyribonucleotides1

joined by phosphodiester links. Each deoxyribonucleotide is composed of two
units: a sugar (deoxyribose) with a phosphate group attached, and one of four
bases — adenine, thymine, guanine, or cytosine (A, T, G, or C). Strands of DNA
are directional: one end is called the 5’ end; the other is called the 3’ end.2

�e two strands of a DNA duplex run in opposite directions: one from 5’→ 3’,
one from 3’ → 5’. �ey are twisted in a double helix; and held together by loose
hydrogen bonds between the bases of paired nucleotides on opposite strands.
�is base pairing is only possible for two of the eight possible base permutations:

1‘Deoxyribonucleotide’ is o�en shortened to ‘nucleotide’, which is abbreviated ‘nt’.
25’ and 3’ refer to carbon atoms in the deoxyribose molecule. �e phosphodiester linkage

between nucleotides connects to the 5’ carbon of one deoxyribose molecule and to the 3’ carbon
of the next. �e nucleotide at the 5’ end of the strand has a phosphate group attached to its 5’
carbon, but this phosphate is not attached to any other nucleotide.�e nucleotide at the 3’ end of
the strand has no phosphate attached to its 3’ carbon.

13

adenine–thymine, and guanine–cytosine. �erefore, if an A (G) appears in one
strand, a T (C) must appear in the corresponding position on the other strand.
Figure 2.1 shows two common representations of DNA on paper.�at shown

in �gure 2.1b will be used throughout this thesis.

5’-AGTGGACCGAT-3’
3’-TCACCTGGCTA-5’

(a) Double-stranded DNA
shown textually.

5’ 3’

5’3’

(b) A schematic
representation of DNA.
Arrows appear at the 3’ ends
of each strand.

Figure 2.1 – Common paper representations of DNA.

Because each base can only pair with one other, the sequence of one strand
exactly speci�es the sequence of the other. If we read both from 5’ → 3’, the two
sequences are reverse complements: reversing one sequence and replacing each
base with its complement3 yields the other sequence. For this reason, normally
just one sequence is given for double-stranded DNA.�is sequence is always un-
derstood to be written from 5’ → 3’, and is called the top strand, plus strand, or
coding strand.4

DNAcan formmore complicated structures than a double-helix. Single-stranded
DNA is �exible enough to formdouble-strandedDNAby looping andbase-pairing
with itself. Such structures are called hairpins or stem-loops. �ey consist of
a double-stranded stem with a single-stranded loop at one end (see �gure 2.2).
More complicated structures formed from multiple strands of DNA with many
stems and loops are also possible.

2.1.2 RNA

RNA — ribonucleic acid — is a molecule very similar to DNA, but with a few
major di�erences:

1. Eachnucleotide inRNAcontains a ribosemolecule instead of a deoxyribose
molecule.

3A with T, T with A, G with C, C with G.
4�e other strand is, predictably, the bottom strand,minus strand, or non-coding strand.

14

A G
T A

5’-GAACCAGTGA G
3’-CTTGGTCACT G

C T
A T

(a) Shown textually.

(b) Shown
schematically.

Figure 2.2 – A DNA hairpin.

2. Naturally occurring RNA never contains thymine. Instead, it contains the
similar base uracil (U), which can also base pair with adenine.

3. Naturally occurring RNA is mostly single-stranded. However, RNA can be
double-stranded, and a single RNA strand can form a duplex with a single
DNA strand.

In cells, RNA acts as short-term storage: when the information stored in a
cell’s DNA is needed, a single-stranded RNA ‘working copy’ is made.

2.1.3 Protein

Proteins are chains of amino acids linked by peptide bonds.�ese chains fold into
complex, o�en compact, three-dimensional shapes in the cell. Twenty di�erent
amino acids appear in naturally occurring proteins.
Functionally, proteins are incredibly important: among other things, they act

as enzymes that catalyze the chemical reactions critical to life.

2.1.4 �e Genetic Code

�e major role of DNA is to store the sequences of the proteins cells must con-
tinually synthesize to grow and divide. Twenty di�erent amino acids appear in
naturally occurring proteins, but only four nucleotides appear in DNA.�ere-
fore, a minimum of three nucleotides is needed to uniquely represent each amino
acid.5 �e genetic code, the scheme by which DNA encodes protein sequences,

5One nucleotide can encode four amino acids (41 = 4); two nucleotides can encode sixteen
amino acids (42 = 16); three nucleotides can encode sixty-four amino acids (43 = 64).

15

works in exactly this way.
Each three-base unit in a sequence of DNA that encodes a protein is called a

codon. Codons are read in sequence, without gaps, from 5’→ to 3’.�is gives six
possible reading frames for a given sequence of DNA: a reading frame can be on
one of two strands, and at one of three o�sets within a strand.�e start of a protein
sequence is marked by the presence of the start codon (normally ATG); the end of
a protein sequence is marked by one of a few stop codons (normally TAA, TAG, and
TGA). A start codon, followed by any number of codons, and �nally followed by a
stop codon in the same frame is termed an open reading frame (ORF).
Table 2.1 shows the standard6 genetic code. Note that it is degenerate: because

there are sixty-four codons, but only twenty amino acids, most amino acids are
encoded by multiple codons.

T C A G

T

TTT }Phe TCT ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Ser

TAT }Tyr TGT }Cys T
TTC TCC TAC TGC C
TTA }Leu TCA TAA* TGA* A
TTG TCG TAG* TGG Trp G

C

CTT ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Leu

CCT ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Pro

CAT }His CGT ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Arg

T
CTC CCC CAC CGC C
CTA CCA CAA }Gln CGA A
CTG CCG CAG CGG G

A

ATT ⎫⎪⎪⎪⎬⎪⎪⎪⎭
Ile

ACT ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Thr

AAT }Asn AGT }Ser T
ATC ACC AAC AGC C
ATA ACA AAA }Lys AGA }Arg A
ATG† Met ACG AAG AGG G

G

GTT ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Val

GCT ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Ala

GAT }Asp GGT ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Gly

T
GTC GCC GAC GGC C
GTA GCA GAA }Gln GGA A
GTG GCG GAG GGG G

Table 2.1 – The standard genetic code. This table shows the mapping from
codons to amino acids. Standard three-letter abbreviations are used for
amino acids.

† The start codon.
* The stop codons.

6Organisms using non-standard codes exist.

16

2.1.5 �e Central Dogma; Transcription and Translation

�e central dogma of molecular biology states that information in biological sys-
tems is transferred from DNA to RNA to protein. DNA acts as long-term infor-
mation storage. To synthesize a protein, the cell makes a single-stranded RNA
copy of the relevant DNA.�is process is called transcription; the single-stranded
RNA that results is called messenger RNA (mRNA).�e protein is then synthe-
sized from the mRNA by a piece of cellular machinery called a ribosome; this
process is called translation.

2.2 DNAMelting Temperature

Complementary strands of DNA will automatically form double-stranded DNA.
However, when heated, double-stranded DNA can melt: the hydrogen bonds
holding the two strands together can break.�emelting temperature (or Tm) of a
DNA duplex is de�ned as the temperature at which half the strands that form a
duplex are bound and half are free (single-stranded) [SantaLucia, 1998].
We will �nd it important to be able to estimate DNA melting temperature,

which can be done using the enthalpy and entropy of duplex formation:

Tm = ∆H
∆S + R log CT

4

CT is the total concentration of the two strands that form the duplex (which are
assumed to be di�erent and to be present in equal concentrations — each at CT

2)
and R is the ideal gas constant [SantaLucia, 1998].7

�e nearest-neighbors method can be used to calculate ∆H and ∆S for DNA
duplex formation [SantaLucia and Hicks, 2004].�is method assumes the stack-
ing energies in the duplex— the energies between neighboring base pairs—make
additive contributions to both quantities. For example, ∆H of the duplex with top

7Suppose A and B are the two species forming the duplex, each present at [CT
2]. �en K =

[AB]
[A][B] .�e melting temperature is de�ned as the temperature at which half the strands are in the
duplex, i.e. where [A] = [B] = [AB] = CT

4 , so K =
4
CT
. In general, T =

∆H
∆S−R log K , plugging in

K =
4
CT
gives the above equation for Tm .

17

strand 5’-ATGGCAT-3’ would be calculated as:

∆Htot = ∆HAT
TA
+ ∆HTG

AC
+ ∆HGG

CC
+ ∆HGC

CG
+ ∆HCA

GT
+ ∆HAT

TA

. . . plus a term for initiation and a few other constant terms added only for some
sequences. ∆S is calculated the same way.

2.3 PCR

Polymerase chain reaction (PCR) is a technique used inmolecular biology to am-
plify (increase the concentration of) DNA already present in solution. It makes
use of DNA polymerase, a naturally occurring enzyme that is able to synthesize
a complementary strand onto single-stranded DNA in place. Polymerase cannot
start with single-stranded DNA alone: it requires a small part of the complemen-
tary strand, a primer, to already be bound to the longer single-stranded DNA, the
template. Given a primer, polymerase can add complementary nucleotides to its
3’ end one at a time until reaching the end of the template strand (see �gure 2.3).

template

primer

Figure 2.3 – Extension of a primer by DNA polymerase

PCR is performed on double-stranded DNA. Short primers that match the
5’ ends of both strands in the duplex (the top strand and the bottom strand) are
added to a solution containing the double-stranded DNA to be ampli�ed.�en,
the following steps are repeated many times:

1. �e solution is heated, causing the double-stranded DNA to melt into two
complementary pieces of single-stranded DNA.

2. �e solution is cooled, allowing duplexes to form again. Primers will anneal
to some full-length single strands, but some full-length duplexes will simply
reform.

3. �e solution is warmed slightly to a temperature at which the polymerase
is active. Each primer bound to a full-length strand is extended so that it
too becomes a full-length strand.

18

Each time a primer bound to the top strand is extended, a strand of DNA
complementary to it is produced, e�ectively duplicating the bottom strand. Like-
wise, each time a primer bound to the bottom strand is extended, the top strand
is duplicated. During each cycle, some fraction of the top and bottom template
strands are extended, so the amount of full double-stranded DNA is increased by
some factor.8 �ere is therefore exponential growth in the amount of full double-
stranded DNA over time. Figure 2.4 graphically illustrates a single cycle of PCR.

(a) The dsDNA to be amplified.

(b) The solution is heated, causing the DNA to melt.

(c) The solution is cooled; primers anneal to the single strands from the
DNA to be amplified.

(d) The solution is heated slightly; DNA polymerase extends the 3’ ends of
the primers.

(e) There are now two copies of the DNA.

Figure 2.4 – The steps of a single PCR cycle.

�ere is one important limitation to PCR: because primers complementary
to the 5’ ends of the top and bottom strands must be added, the sequence at both
ends of the full-length duplexmust be known.�is does not prevent ampli�cation
of sequences for which the interior region is unknown.

8�eoretically, the amount of full-length DNA could be doubled each cycle.

19

20

3 Gene Synthesis

Gene synthesis1, the de novo synthesis of large2 molecules of double-stranded
DNA, is critical for synthetic biology. Synthetic biologists need to:

◾ mix and match regulatory elements and protein coding regions,
◾ combine unrelated protein domains,
◾ alter codon usage, and
◾ recode genes for organisms with unusual genetic codes.

Sequence engineering has traditionally been performed using recombinant
DNA technology.�is technology has served biologists (and synthetic biologists
[Knight et al., 2003]) well, but does not provide the power needed to accomplish
the tasks just listed.

�e dominant approach to gene synthesis has been to assemble long double-
stranded DNA from oligonucleotides (oligos) — short pieces of single-stranded
DNA. Oligos are synthesized chemically (no biological machinery is used) one
nucleotide at a time [Caruthers, 1985]. Unfortunately, this places limits on their
length. With a constant e�ciency of nucleotide addition, the probability of pro-
ducing a correct product drops geometrically: even assuming 99.9% e�ciency,
less than 82% of two hundred-nucleotide oligos will be correct.�erefore, oligos
are generally somewhere between thirty and sixty nucleotides in length.

�ere are twomain strategies for assembly ofDNA fromoligos: ligation-based
methods and PCR-based methods. Both methods allow many di�erent sets of
oligos to be used to assemble a given sequence. However, not all such sets are
created equal: many will not work well, and many will not work at all.

1�e term ‘gene synthesis’ is something of a misnomer: it is perfectly common to synthesize
DNA that contains no genes.

2Large, in this case, means on the order of kilobases.

21

�is chapter introduces both synthesis techniques and discusses the consid-
erations that make oligo design challenging for each technique. It then explains
why this thesis will focus on PCR-based synthesis.

3.1 Ligation

�e ligation method of gene synthesis was one of the �rst methods used [Itakura
et al., 1977]. Using this technique, full-length double-stranded DNA is assembled
from overlapping oligos that together form the entire sequence.�ey are allowed
to assemble as in �gure 3.1 and are then joined by DNA ligase, an enzyme that can
repair single-stranded nicks in DNA (see �gure 3.1a).3 Ligase requires the 5’ ends
to be phosphorylated, so the entire pool of oligos used in the gene synthesis must
be phosphorylated before being ligated4.
Synthesis by ligation produces only a small amount of product, so PCR is typ-

ically performed a�er assembly.

ligase

(a) DNA ligase heals single-stranded nicks. The
circle on the 5’ end of the right oligo indicates
5’ phosphorylation.

(b) The full set of oligos. Together they form the entire desired
product, but with single-stranded nicks. Note that 5’ ends must be
phosphorylated.

(c) Ligation heals the nicks, yielding the desired double-stranded
DNA.

Figure 3.1 – Ligation assembly.

3A single-stranded nick is a break in one strand of double-stranded DNA. DNA ligase can also
heal double-stranded breaks, but that ability isn’t important here.

4It is also possible to purchase oligos with phosphorylated 5’ ends, but this can be expensive.

22

Challenges

�ismethod relies on the oligos self-assembling; if any unintended duplexes form,
an incorrect product could result. To avoid suchmisannealing events, every oligo
overlap must be su�ciently unique. Furthermore, oligos should not form hair-
pins or other structures that might compete with the formation of the desired
duplexes. Finally, the melting temperatures of the overlaps between oligos should
be as uniform as possible; this allows assembly to take place in stringent thermal
conditions, reducing the probability of unwanted duplexes forming [Stewart and
Burgin, 2005].

3.2 Polymerase Cycling Assembly

Polymerase cycling assembly (PCA), a second method of gene synthesis, is based
on PCR [Stemmer et al., 1995]. As in ligation assembly, the full DNA duplex is
assembled from overlapping oligos; however, the oligos used need not form the
entire double-stranded product — there can be gaps between oligos on the same
strand (see �gure 3.2a).

(a) The full set of oligos.

(b) Oligos annealing and extending.

(c) The longer duplexes formed.

(d) The longer duplexes melt and continue annealing and extending.

(e) The full product.

Figure 3.2 – The progression of PCA.

23

A solution containing all of the oligos (and DNA polymerase) is subjected to
the same thermal cycling as in PCR. During each cycle, pairs of oligos anneal and
the 3’ ends of each are extended, forming a duplex spanning the sequence be-
tween the extreme ends of the two overlapping oligos. During subsequent cycles,
these longer duplexes will melt and continue to anneal and extend. Larger and
larger duplexes will be formed; a�er many cycles, full-length duplexes will exist.
Figure 3.2 graphically illustrates this process.
Because DNA polymerase can only extend 3’ ends, the �rst5 oligo must be

on the top strand and the last6 oligo must be on the bottom strand. If the �rst
were on the bottom strand, the very beginning of the sequence would never be
synthesized; if the last were on the top strand, the very end of the sequence would
never be synthesized.
PCA as described does not result in exponential growth of the product. PCR

can be performed a�er the PCA reaction — a two-step synthesis [Stemmer et al.,
1995] — or PCR primers can be included in the PCA reaction itself — a one-step
synthesis [Wu et al., 2006].

Challenges

�e challenges of PCA oligo design are quite di�erent from the challenges of lig-
ation assembly oligo design. In ligation assembly, the concern is that the oligos
�t together correctly and that no thermodynamically stable competing structures
can form. In PCA, the concern is that only intentionally overlapping primers
anneal and extend — if two primers misanneal and then are extended, incorrect
DNAwill be produced. If suchmispriming happens frequently, incorrect products
of di�erent lengths will be formed in addition to the correct product, decreasing
yield and purity. Such events are not limited to those between two di�erent oligos
— hairpin-forming oligos that can self-prime are also problematic.
Mispriming events occur only when the 3’ end of an oligo can actually be ex-

tended; therefore, many possible duplexes or hairpins are perfectly acceptable.
Figure 3.3 illustrates the two situations: �gures 3.3a and 3.3c show mispriming

5Le�most in �gure 3.2a.
6Rightmost in �gure 3.2a.

24

(a) A problematic
misannealing event.

(b) An acceptable
misannealing event.

(c) A self-priming hairpin. (d) An acceptable hairpin.

Figure 3.3 – Types of misannealing events.

events; �gures 3.3b and 3.3d show misannealing events that can be tolerated be-
cause no extension is possible.
Like ligation assembly, PCA is most e�ective when the oligo overlaps have a

uniform melting temperature.

3.3 Important Di�erences

Ligation assembly and PCA are very di�erent techniques. �e set of oligos used
in ligation assembly must cover the entire sequence to be synthesized; the set of
oligos used in PCA can have gaps. �erefore, the number of sets that could be
used to synthesize a given sequence with PCA is orders of magnitude larger than
the number of sets that could be used with ligation.

�e challenges the two methods present are fundamentally di�erent. With
ligation, repeats anywhere in the sequence are a problem, but only if they are
thermodynamically stable at the chosen assembly temperature. With PCA, only
mispriming repeats are problematic, but those repeats do not need to be long. For
ligation, the trick is to avoid stable, undesired duplexes and secondary structures.
For PCA, the trick is to avoid any possible mispriming.

�e remainder of this thesis will be focused on the oligo design problem for
PCR-based gene synthesis. Because of the much larger number of possible sets,
design for PCR-based gene synthesis is, in one sense, a more di�cult problem.
However, the increased �exibility resulting from this larger number of possible
solutions also makes it more likely that some very good solution exists.

25

26

4 Previous Work & Available So�ware

A number of so�ware packages that can design oligos for gene synthesis are avail-
able; however, no available so�ware is su�ciently �exible and rigorous.�is sec-
tion provides a brief review of some currently available tools and notes the short-
comings of each.
Many of the tools here are intended to be complete gene design solutions.

Some can perform codon optimization and restriction site insertion; others o�er
the ability to split large sequences into smaller ‘synthons’ for synthesis. However,
every available tool lacks a carefully designed algorithm for oligo design. �is
chapter will focus on implementations of that functionality.

4.1 DNAWorks

DNAWorks is a web-based oligo design tool implemented in Fortran 90. �e
original version of the so�ware is described in Hoover and Lubkowski [2002].
�e currently available version is described in Hel [2009].
DNAWorks allows the user to provide either:

◾ an amino acid sequence and �anking nucleotide sequences, in which case
the amino acid sequence can be codon optimized, or

◾ a nucleotide sequence, which will not be codon optimized.

�e programs’ oligo design algorithm begins by dividing the sequence into
regions of relatively uniform Tm corresponding to oligo overlaps. In the original
version of the program, these regions were contiguous; in the currently available
version of the program, gaps between adjacent oligos on the same strand are per-
mitted.

27

�e algorithm then optimizes the section locations (and, for amino acid in-
put, codon usage) using a variant of simulated annealing.1 Individual sections are
scored using an objective function that incorporates:

◾ Tm,
◾ codons used,
◾ presence of repeats,
◾ potential for mispriming,
◾ GC content,
◾ AT content,
◾ length, and. . .
◾ presence of forbidden subsequences.

�e score of the full set of oligos and codon choices is the sum of the scores of all
regions.

�e program o�ers two modes. In one, all oligos designed (except the �rst
and last) are of the same length. In the other, oligo length is allowed to vary.
DNAWorks has two major problems: its objective function and its use of sim-

ulated annealing.�e form of the objective function is arbitrary, and no consid-
eration is given to the weights used for each factor it incorporates: by default,
each is given the weight 1.�e use of simulated annealing, a stochastic algorithm,
means that DNAWorks only explores a small subset of possible solutions; using
the option that allows oligo lengths to vary, three runs on the same input give
three di�erent results.

4.2 Gene2Oligo

Gene2Oligo is a web-based tool written in Java [Rouillard et al., 2004]. Unlike
DNAWorks, Gene2Oligo does not provide codon optimization functionality, nor
does it allow for gaps between oligos.
Gene2Oligo o�ers two major modes of operation:2 the �rst mode prioritizes

uniformity of oligo length, the second mode prioritizes uniformity of overlap
1Simulated annealing is a stochastic optimization algorithm that has nothing to do with the

annealing of DNA.
2A third mode simply cuts the sequence into oligos of equal size with no thought.

28

melting temperature.�e program adds �anking sequences to the input sequence
in order to increase the number of solutions; these sequences must be removed
by the user via PCR.
Gene2Oligo begins by computing the Tm of all possible overlaps in the se-

quence. It then uses blast to �nd candidate oligos that partially match other
places in the sequence and checks the Tm of the undesired duplexes that could be
formed; oligos that form stable undesired duplex are �agged.

�e program then selects the two best oligos that begin at each index in the
sequence.�is forms a binary tree: each oligo points to the index a�er its ending
index; this index points to two new oligos.�is tree is searched using depth-�rst
search with backup for a string of oligos covering the sequence. �is appears to
only design oligos for one strand; it is not clear how oligos for the other strand are
designed.

�ere are a few problems with the approach of Gene2Oligo. First, it is in�ex-
ible: oligo length cannot vary signi�cantly, and the program does not allow gaps
in the oligo set for PCR-based synthesis. Second, when it selects two oligos for
each index in the sequence, it removes many potentially good candidates. It is
therefore only exploring a small subset of the possible solution space, even given
its restrictions on oligo length.

4.3 GeMS

GeMS is a stand-alone complete gene design tool developed in Python [Jayaraj
et al., 2005]. It o�ers a number of features, including codon optimization and
restriction site insertion. Unfortunately, its oligo design functionality is simplistic.
Given a sequence produced by the codonoptimization, etc. modules ofGeMS,

the program designs a set of 40 nt oligos with 20 bp overlaps. Neither of these
numbers can be changed. �e lengths of the oligos at the extreme ends of the
sequence are variable.
GeMS designs such a set of nucleotides (there are only a few possible solutions

with such restrictive parameters) and then looks formispriming oligos. If an oligo
could misprime, two random base pairs are added to the end of the sequence and
a new oligo set is designed and checked for mispriming. If no solution is found,

29

codon optimization (a stochastic process in GeMS) is performed again.
With no variability in oligo length or overlap size, the algorithmused byGeMS

is clearly inadequate. It does not check for the presence of hairpins and, though it
checks for mispriming, its in�exibility prevents it from e�ectively avoiding mis-
priming.

4.4 GeneDesign

GeneDesign is a web-based complete gene design tool developed in Perl and C
[Richardson et al., 2006].�e oligo design module focuses on ≥ 60 nt oligos with
≥ 20 bp overlaps. GeneDesign automatically breaks large sequences into chunks
of ≈ 500 bp. �e chunk of DNA to be synthesized is broken up into an even
number of oligos of the given length, each with overlaps of the given size. �e
oligos are then adjusted in length to �t the size of the given sequence.
Next, the program determines a target Tm for overlaps in the chunk of DNA

to be synthesized.�en lengths of oligos are adjusted tomake the overlapmelting
temperatures approach this value.

�e most obvious problem with GeneDesign’s oligo design algorithm is that
it does not check for mispriming or hairpins. Without this feature, it is unlikely
the algorithm could be used to design oligo sets that assemble reliably.

4.5 Gene Composer

Gene Composer is a stand-alone complete gene design tool implemented in C++
[Lorimer et al., 2009]. Its oligo design module allows oligo length to range be-
tween two user-provided values and aims for overlaps of a user-provided size, but
does not allow for gaps.

�e algorithm randomly cuts the top strand into adjacent oligos of allowed
sizes. When it reaches the end of the sequence, the cuts are moved backwards
until the �nal oligo is of an allowed length. Bottom strand oligos are designed by
placing cuts approximately halfway between the cuts on the top strand.

�is oligo design step is repeated thousands of times. Candidate sets that in-
clude an oligo with a sequence similar to that of another oligo or include an oligo

30

that forms a stable hairpin are discarded3.�e ideal set is the set remaining with
the highest average overlap Tm and the lowest overlap Tm variance.

�e algorithm used by Gene Composer has many of the same problems as the
other algorithms discussed here. Its strategy of randomly assembling thousands
of solutions and returning the best found is poor, because there is an enormous
number of solutions (≫ 1000); this algorithm will never explore more than a tiny
portion of the search space.

4.6 TmPrime

TmPrime provides oligo design functionality for ligation-based synthesis or PCR-
based synthesis [Bode et al., 2009]. As it addresses bothmethods, it does not allow
gaps between adjacent oligos on the same strand.

�e program�rst divides the sequence into regions of relatively uniformmelt-
ing temperature; these regions correspond to overlaps between nucleotides. An
oligo set is then constructed by concatenating adjacent overlap regions.
TmPrime also has the ability to look formisannealing oligos andhairpin form-

ing oligos. �is functionality appears to be geared toward ligation-based assem-
blies.
Because it seems focused on ligation-based assembly and does not allow for

gaps between same-strand oligos, TmPrime is not an ideal tool for PCR-based
gene synthesis.

4.7 Summary

�is chapter has given just a brief overview of some available oligo design so�-
ware. However, it should be clear that synthetic biology is missing an oligo design
tool that employs a carefully designed, robust algorithm. Such a tool should:

◾ be focused on oligo design for either ligation-based synthesis or PCR-based
synthesis, as the two problems are very di�erent;

◾ be �exible, with no arti�cial restrictions on oligo length or overlap size; and
3�e algorithm also incorporates the ∆G of intramolecular folding. It is not clear how this

value is calculated nor how it is used.

31

◾ employ a well-designed algorithm that returns the same optimal answer
every time it is run.

�e next three chapterswill formalize the oligo-design problem for PCR-based
synthesis, present a carefully designed algorithm that solves that problem, and in-
troduce an so�ware tool employing that algorithm.

32

5 �e Oligo Design Problem

We now turn to the problem of designing oligo sets for gene synthesis. To begin,
we need to de�ne our task.�is chapter presents and justi�es a precise formula-
tion of the oligo design problem for PCR-based gene synthesis.

�roughout this section and the rest of this thesis, we will use the notation S
to represent the reverse complement of a DNA sequence S.

5.1 Basic Parameters

Our goal is to �nd a set of overlapping oligos that can be used to synthesize a DNA
sequence S of length L. Both the length of the oligos and the size of the overlaps
between oligos can vary. However, to make the problem tractable, we need limits
on oligo length and overlap size. At a minimum, we need four parameters:

p1. lmin �e minimum allowed oligo length.

p2. lmax �e maximum allowed oligo length.

p3. omin �e minimum allowed overlap between two oligos.

p4. omax �e maximum allowed overlap between two oligos.

Call our set of oligos S1, S2, S3, . . . SN .1 �e numbering is from le� to right —
the ith oligo overlaps the i + 1th oligo.
Any oligo used to synthesize S must be a subsequence of S or S. Recall from

chapter 3 that the �rst oligo in the set must be on the top strand (a subsequence
of S), the last oligo in the set must be on the bottom strand (a subsequence of S),

1N is not a �xed parameter, but is simply used as shorthand for the number of oligos in a given
set.

33

and that oligos must alternate between the top and bottom strands. �is makes
two things clear:

1. N , the number of oligos in our set {Si}, must be even, and
2. Si is on the top strand if i is odd, or on the bottom strand if i is even.

Knowing this, we can identify the position of each oligo Si with the starting
and ending indices of a subsequence of S— ai and bi . If i is even, Si is Sa i ...b i ; if i
is odd, Si is the reverse complement of Sa i ...b i .
We now write down a few constraints on {(ai , bi)}:

c1. a1 = 1
�e �rst oligo must begin at the beginning of the sequence.

c2. bN = L
�e last oligo must end at the end of the sequence.

c3. lmin ≤ bi − ai + 1 ≤ lmax , i = 1, 2, 3, . . .N
�e length of each oligo is between the minimum and maximum allowed
lengths.

c4. omin ≤ bi − ai+1 + 1 ≤ omax , i = 1, 2, 3, . . .N − 1
�e size of each overlap is between the minimum and maximum allowed
sizes.

Figure 5.1 shows a solution that satis�es these constraints.

a1 b1

a2b2

a3 b3 aN−3 bN−3

aN−2bN−2

aN−1 bN−1

aNbN

1 L

Figure 5.1 – A solution to the oligo design problem.

Note that the constraints do not actually prevent two adjacent primers on the
same strand (i.e. some Si and Si+2) from overlapping as in �gure 5.2 — such over-
lapping is not a problem for PCA.2

2An oligo will only anneal to one other oligo during a given cycle. Because S i and S i+2 will
never anneal to S i+1 simultaneously, their overlapping does not matter.

34

a i b i

b i+1a i+1

a i+2 b i+2

Figure 5.2 – Two adjacent oligos on the same strand overlapping.

A solution that satis�es the above constraints ‘makes sense’ — the oligos �t
together as they should — but will not necessarily assemble well.�e rest of this
chapter introduces parameters and constraints meant to ensure successful assem-
bly.

5.2 Overlap Melting Temperature

Recall from chapter 3 that PCA is most reliable when the melting temperatures
of all oligo overlaps are uniform. To account for this, we’ll add two additional
parameters to our formulation:

p5. T0 �e target overlap melting temperature.

p6. ∆T �e maximum allowed absolute deviation from T0.

. . . and we’ll add another constraint:

c5. ∣Tm (Si , Si+1) − T0∣ ≤ ∆T , i = 1, 2, 3, . . .N − 1
�e melting temperature of each overlap falls within ∆T of the target
melting temperature.
(Tm(Si , Si+1) is the melting temperature of the overlap between the ith and
i + 1th oligo.)

�e constraint ensures that no solution will have an oligo overlap with a melt-
ing temperature outside the target range.

5.3 Avoiding Mispriming

For PCA to work correctly, it is critical that the chance of mispriming is min-
imized (see chapter 3). Consider the conditions necessary for mispriming: an

35

oligo must misanneal in such a way that its 3’ end can be extended by DNA poly-
merase. Only the 3’ end needs to be part of a duplex for polymerase to extend
it.

�is can happen whenever the sequence at the 3’ end of an oligo occurs else-
where in S or in the reverse complement of S. If this is the case, the 3’ end of the
oligo will be able to anneal to the strand complementary to the other occurrence
and can then be extended. �e repeat must be long enough that the duplex it
forms is stable at the annealing phase of the PCR cycle — very short repeats are
not problematic.3 Figure 5.3 shows this process graphically.
Mispriming can also occur when the 5’ end of an oligo occurs elsewhere in S

or in its reverse complement. Suppose the 5’ end of Si is a repeated subsequence.
Some other oligo (either Si−1 or Si+1) will anneal to Si and be extended so that its
3’ end is complementary to the 5’ end of Si . Because that 5’ end was a repeat, its
complement is also a repeat4, so the 3’ end of the extended neighbor of Si will be
a repeated sequence that could misprime.

(a) A full sequence containing a repeated subsequence, indicated by the dashed
region.

1

2

3

4

5

6

(b) A set of oligos with a repeat at the 3’ end of one oligo.

4

2

(c) Oligo 4 anneals to oligo 2 and is extended: a mispriming event. Note that oligo 2
is not extended, because its extreme 3’ end is not a repeat.

Figure 5.3 –Mispriming illustrated. The incorrectly extended oligo 4 will now
be able to anneal and extend where only oligo 1 should, causing further er-
rors.

We conclude that neither the 3’ end nor the the 5’ end of any oligo can be a
repeated subsequence. In other words, no ‘long’ pre�x or su�x of any oligo in

3In fact, because there are only four possible bases, short repeats are unavoidable.
4We’re dealing with double-stranded DNA, so if a subsequence occurs twice, its complement

will also occur twice.

36

the set can occur anywhere else in S or S. To quantify ‘long’, we need another
parameter:

p7. Rmin �e shortest repeated subsequence that could cause
mispriming.

. . . and we’ll add one new constraint:

c6. /∃ (x , y) ∈ R s.t. (bi ≤ y and bi − x + 1 ≥ Rmin) or
(ai ≥ x and y − ai + 1 ≥ Rmin)
No oligo has a su�x or pre�x that is a repeat of length ≥ Rmin.

In the above constraint, R is the set of all regions corresponding to maximal
repeats longer than Rmin in S and S. A maximal repeat is one which could not be
extended to either the right or le� and remain a repeat [Gus�eld, 1997]. ‘In S and
S’ means that, of the two instances of a repeat:

1. both can be found in S,
2. both can be found in S, or. . .
3. one instance can be found in S and one can be found in S.

5.4 Avoiding Hairpins

Self-priming hairpins are just as problematic as mispriming oligos. A hairpin can
occur any time an inverted repeat — a subsequence followed soon a�er by its
reverse complement — occurs in the sequence. A oligo can form a self-priming
hairpin if:

1. the oligo contains an inverted repeat,
2. the oligo’s 3’ end is in one end of the repeat, and
3. the hairpin the oligo forms leaves room for 3’ extension.

Because the two repeat regions forming a hairpin stem are on the same oligo,
it is much more likely that they will anneal. It is therefore sensible to put a length
bound on repeats leading to self-priming hairpins that is even shorter than Rmin:

p8. Hmin �e minimum stem length of a self-priming hairpin we
consider a problem.

37

We also add a corresponding constraint:

c7. Si ∉ H, i = 1, 2, 3, . . .N
No oligos can form self-priming hairpins with stem length ≥ Hmin, where
H is the set of all such oligos.5

5.5 �e Optimal Solution

We now have a full set of parameters and a set constraints that must be satis�ed
by any acceptable set of oligos. Now, we have to evaluate each: which of the oligo
sets that satisfy the constraints given is best?

�e constraints listed in this chapter will prevent the majority of mispriming
events.�erefore, our biggest concern is ensuring that the melting temperatures
of all overlaps are uniform. Of the many ways to quantify uniformity, the most
appropriate is maximum absolute deviation from the target melting temperature:
N−1max
i=1

∣Tm (Si , Si+1) − T0∣. Other quantities — like mean deviation from T0 or vari-
ance around T0 — are problematic because they will be small in the undesirable
case where most overlaps have melting temperatures close to T0 but a few have
temperatures very far from T0.

5.6 Summary

�e oligo design problem for PCR-based synthesis is formally summarized below.
Given a sequence S and the following parameters:

p1. lmin

p2. lmax

p3. omin

p4. omax

p5. T0
p6. ∆T
p7. Rmin

5Writing a closed form expression to describe oligos that form self-priming hairpins is di�cult,
but �nding those oligos is not di�cult: see algorithm 6.4.

38

p8. Hmin

. . .�nd a set of oligos {(ai , bi)} = {Si} that minimizes max
i

∣Tm (Si , Si+1) − T0∣ , i =
1, 2, 3, . . .N−1 (whereN is the number of oligos in the set) subject to the following
constraints:

c1. a1 = 1
c2. bN = L
c3. lmin ≤ bi − ai + 1 ≤ lmax , i = 1, 2, 3, . . .N
c4. omin ≤ bi − ai+1 + 1 ≤ omax , i = 1, 2, 3, . . .N − 1
c5. ∣Tm (Si , Si+1) − T0∣ ≤ ∆T , i = 1, 2, 3, . . .N − 1
c6. /∃ (x , y) ∈ R s.t. (bi ≤ y and bi−x+1 ≥ Rmin) or (ai ≥ x and y−ai+1 ≥ Rmin)
c7. Si ∉ H, i = 1, 2, 3, . . .N

39

40

6 An Algorithm for the Oligo Design
Problem

�is chapter presents an algorithm for �nding the optimal set of oligos for PCR-
based synthesis of a DNA sequence S.�e algorithm casts the oligo design prob-
lem as a graph problem: it constructs a graph with a node for every possible oligo
and with an edge between any two nodes corresponding to oligos that could over-
lap. Acceptable sets of oligos correspond to paths through the graph.
Section 6.1 describes how to construct the graph given some basic inputs and

shows that paths through the graph correspond to sets of oligos. Section 6.2 gives
an algorithm for �nding optimal paths. Section 6.3 describes how the constraints
given in chapter 5 a�ect the graph and gives algorithms for the application of each
constraint.

6.1 Constructing�e Graph

We begin by describing the construction of a directed acyclic graph (DAG) given
an instance of the oligo design problem.�roughout this section, we’ll work with
the following example input:

S = GACATGACCA
lmin = 2
lmax = 5
omin = 2
omin = 3

�ese values are unrealistic, but will allow us to draw a graph on one page.1

1In a real problem, S might a kilobase in length, and we might have lmin = 40, lmax = 60,
omin = 10, and omax = 20.

41

6.1.1 Nodes

Recall that every possible oligo used to synthesize the sequence S is either a sub-
sequence of S or a subsequence of S. We can identify any such oligo as a triplet
(i , j, s), where i is the starting index of the oligo, j is the end of the oligo in S, and
s is + if the oligo is a subsequence of S or − if the oligo is a subsequence of S. In
our example, S/S is:

5’-GACATGACCA-3’
3’-CTGTACTGGT-5’

. . . so (3, 7,+) would be the oligo 5’-CATGA-3’ and (5, 10,−) would be the oligo
5’-TGGTCA-3’.
We now construct a graph with a node for every possible oligo (i , j,±) ar-

ranged as in �gure 6.1. �e nodes are split into two main groups: one for top
strand oligos (i , j,+) and one for bottom strand oligos (i , j,−). Within each
group, nodes are arranged in columns by the starting index of the oligos they
correspond to: every node in the xth column corresponds to an oligo (x , j,±).
Within each column, nodes are arranged by oligo length: the node correspond-
ing to the shortest oligo is at the top of the column; the node corresponding to
the longest oligo is at the bottom. Not all columns will be of the same length —
at the right end of the graph longer oligo lengths aren’t possible.

6.1.2 Edges

We now add an edge between every pair of oligos which could overlap given the
values of omin and omax .�e edge is directed from the le� to right (from the oligo
with the lower starting index to the oligo with the higher starting index). Because
overlapping oligos must be on opposite strands, all edges in the graph cross from
the top group of nodes to the bottom group, or vice versa. Figure 6.2, which con-
tinues the example begun in �gure 6.1, shows all outgoing edges from one node.

6.1.3 From A to Ω

At this point, paths through the graph correspond to sets of oligos that overlap
each other. However, recall constraints 1 and 2 from chapter 5: in acceptable sets
of oligos, the �rst oligo must be of the form (1, j,+) and the last oligo must be of

42

1 2 3 4 5 6 7 8 9

+

−

strand

strand

2

2

3

3

4

4

5

5

length

length

starting index

(3,5,+)

(7,10,-)

Figure 6.1 – Example arrangement of nodes in a graph for a sequence of
length 10 with lmin = 2 and lmax = 5. A few nodes are labeled to illustrate
naming.

the form (i , L,−). To make it easy to �nd all such sets, we add two special nodes
to the graph: A and Ω: A has an edge going to every node of the form (1, j,+); Ω
has an edge from every node of the form (j, L,−).
With this done, every path from A to Ω corresponds to a set of oligos for

the synthesis of the sequence S. �e graph contains a node for every possible
oligo and an edge for every possible overlap.�erefore, paths through the graph
correspond to coherent sets of overlapping oligos. Every valid set begins with an
oligo (1, j,+), so there is an edge from A to the �rst node in the corresponding
path. Every valid set ends with an oligo (j, L,−), so there must be an edge from
the last node in the corresponding path to Ω.�us, the set of all paths from A to
Ω is the set of all paths corresponding to valid sets of oligos. One path is shown

43

(2,5,+)

Figure 6.2 – Example edges out of one node in a graph for a sequence of
length 10 with lmin = 2, lmax = 5, omin = 2, and omax = 3. (These are again
unrealistic, but convenient, parameter values.)

in �gure 6.3.

6.1.4 Edge Weights and Optimal Solutions

It remains to add weights to each edge. Recall from chapter 5 that we are con-
cerned with the absolute deviation of the melting temperature of each overlap
from the target, T0.�is is the weight we’ll use: the edge between nodes α and β
has the weight ∣Tm(α, β) − T0∣, where Tm(α, β) is the melting temperature of the
overlap between the oligos corresponding to α and β.
Recall that we are trying to �nd a set of oligos that minimizes:

F = N−1max
i=1

∣Tm(Si , Si+1) − T0∣

Each path from A to Ω in our graph corresponds to a set of oligos; the value of
F for that set is the weight of the heaviest edge in the path.�erefore, an optimal
set of oligos is one that corresponds to a path from A to Ω that minimizes F —
we’ve reduced the oligo design problem to a path-�nding problem.

44

A Ω

(1,3,+)

(2,5,-)

(4,6,+)

(5,8,-)

(7,9,+)

(8,10,-)

Figure 6.3 – One path from A to Ω through the graph.

6.2 Finding the Optimal Solution

We now turn to the question of �nding such a path from A to Ω. Using the tech-
nique of dynamic programming, we can �nd this path in Θ(V +E) time (V is the
number of vertices in the graph, and E is the number of edges). �e algorithm
we’ll use is a variant of the shortest path algorithm for directed acyclic graphs
[Cormen et al., 2001].
For the remainder of this chapter, we’ll de�ne the ‘length’ of a path as themax-

imumweight of all edges in that path. Using this de�nition of length, the path we
are looking for is the shortest path from A to Ω.
Recall that the graph we have constructed is a directed acyclic graph (DAG)

— all edges are directed, and since edges always point from le� to right, no cycles
exist. Note the following property of shortest paths in DAGs: suppose {ui} is
the set of all vertices in a graph G with edges directed to some vertex v, and that
the weight of the edge between ui and v is wi . Assume that d[ui] is the length
of the shortest path from some vertex a to ui and that π[ui] is the predecessor
of ui in this path. �en the length of the shortest path from a to v that goes

45

through ui is max (d[ui],wi). Since all paths to v must go through some ui (no
other nodes have edges to v), the length of the shortest path from a to v — d[v]
— is min

i
[max (d[ui],wi)], and π[v] is equal to ui for the i chosen. Figure 6.4

graphically illustrates this property.

v

u13
2

u24 1

u32 1

u46 4

u55
3

Figure 6.4 – Recursively finding the shortest path from a to v. Wavy lines
are labeled with the length of the shortest path from a to each ui . The path
selected, with length 2, is drawn in bold.

�ere is a base case that will allow us to gain a foothold: the length of the
shortest path from a to a itself. De�ne that length, d[a], as 0, and de�ne π[a]
as Nil. With d[a] and π[a] de�ned, we can begin calculating d[u] and π[u] for
all other nodes u. �ere is one remaining di�culty: we must look at nodes in
the correct order. By the time we start calculating the shortest path to v, we must
already know the shortest path to every node with an edge to v.
Fortunately, a topological sort of the DAG orders the vertices in just the way

we need: it orders the vertices such that if there is an edge from u to v, then u ap-
pears before v in the ordering [Cormen et al., 2001]. Even better, the arrangement
of nodes �rst shown in �gure 6.1 easily yields a topological sort — we need only
read o� every node in a column from top to bottom for every column from le�
to right.

�e complete algorithm for �nding the shortest path between a and b in a
DAG G is shown in algorithm 6.1. We visit each node u in topologically sorted
order and lower d[v] for each node v to which u is adjacent if the path from a to v
through u is shorter than any path from a to v seen so far. Because the nodes are
visited in topologically sorted order, we will have performed this lowering step for

46

every node leading to a node u before visiting u, meaning we will have computed
min

i
[max (d[ui],wi)].

Algorithm 6.1 Shortest path algorithm. Finds the shortest path between a and b
in the DAG G.
Optimal-Path(G , a, b)
1 for all u in G
2 do d[u]←∞
3 π[u]← Nil
4 d[a]← 0
5 for u from a to b in topologically sorted order
6 do for all v adjacent to u with edge weight w
7 do if max (d[u],w) < d[v]
8 then d[v]←max (d[u],w)
9 π[v]← u

Because we are only interested in the shortest path from a to b, we only ex-
amine the nodes between a and b in the topologically sorted order (line 5).�ere
can be no edges from a to any nodes before it in this order, so no shortest path
from a to b can contain any such nodes. �ere can be no edges from any node
a�er b in this order to b, so no shortest path from a to b can contain any such
nodes.
Consider the running time of algorithm 6.1.�e loop starting on line 1 takes

Θ(V) time. Line 5 requires us to topologically sort the nodes ofG, which takes no
time at all given the structure of our graph.�e loop starting on line 5 runs once
for each vertex, and the loop starting on line 6 runs once for each edge outgoing
from it. Together, that is one iteration of lines 7–9 (which run in constant time)
for every edge in G. If there are more edges than nodes in the graph — which is
true in our case — the whole algorithm runs in Θ(E) time.
Suppose we say ∆l = lmax − lmin + 1 and ∆o = omax − omin + 1.�en there are

≤ 2L∆l nodes in the graph and each has ≤ ∆L∆o outgoing edges.�erefore, there
are ≤ 2L∆L2∆o edges in the graph, so the algorithm is O(L).

47

6.3 Applying Constraints

We now turn to the application of the constraints given in chapter 5. First, con-
sider how the application of each will a�ect the graph. We have a constraint on
overlaps:

c5. ∣Tm (Si , Si+1) − T0∣ ≤ ∆T , i = 1, 2, 3, . . .N − 1

Because overlaps correspond to edges in the graph, the application of this con-
straint corresponds to deletion of edges.
We also have constraints on oligos:

c6. /∃ (x , y) ∈ R s.t. (bi ≤ y and bi−x+1 ≥ Rmin) or (ai ≥ x and y−ai+1 ≥ Rmin)
c7. Si ∉ H, i = 1, 2, 3, . . .N

Because oligos correspond to nodes in the graph, the application of these con-
straints corresponds to deletion of nodes.
With that in mind, we now examine the application of each constraint in de-

tail.

6.3.1 Finding Repeats

Constraint 6 refers to R, the set of all maximal repeat regions in S and S with
length ≥ Rmin. Given a DNA sequence S, we must be able to compute this set
e�ciently; we can do so using a su�x tree [Gus�eld, 1997].
Recall that we are concerned not only with repeats that occur in the sequence

of the top strand, but with repeats that occur once in the top strand and once in the
bottom strand. For example, the sequence 5’-ATGGGACTTACCCAT-3’might not
appear to contain any repeats at �rst glance, but the complementary strand (its
bottom strand) is 5’-ATGGGTAAGTCCCAT-3’. �e two strands, taken together,
contain two repeats of length �ve.
In order to �nd such repeats, we construct a sequence S′ by concatenating

S and S, separated by a unique character which does not appear in either. We
then use the method described in Gus�eld [1997] to �nd all maximal pairs2 of

2A maximal pair is a pair of identical subsequences at di�erent locations in a sequence which
can not be extended to the le� or right and remain identical. For example, in ACATGCATT, CAT
(starting at positions 1 and 5) is a maximal pair, but CA (again starting at positions 1 and 5) is not.

48

length ≥ Rmin in S′. �e unique character ensures that no maximal pairs consist
of subsequences that cross the boundary between S and its reverse complement
in S′, which would be nonsensical. (Since the character only appears once in S′,
no repeat can contain it.)
Each maximal pair is computed as (i , j, l), where i and j are the starting in-

dices of the two instances of the repeat and l is the length of the repeat. We must
convert i and j, which are indices of S′, to indices of S—repeats found in the sec-
ond half of S′ are repeats in the bottom strand of S and must be mapped to their
location in S.�is is straightforward: any i ≤ L in S′ maps to i in S; i = L + 1 can-
not appear in any maximal pair, because it is a unique character; and any i > L+ 1
is a part of the reverse complement of S and maps to 2L + 3 − i − l .
We note one complexity: many repeats will appear multiple times in the list

of maximal pairs in S′. For any pair in which both instances occur in the top
strand (i , j ≤ L), there will be a second pair where both instances occur in the
bottom strand (i , j ≥ 2L+2)— any repeat in the top strand will necessarily have a
corresponding repeat in the bottom strand. Inverted repeats, where one instance
occurs in the top strand and on in the bottom strand, will also appear twice for
the same reason. To avoid duplicates, we adopt the convention of ignoring (i , j, l)
if both instances are in the bottom strand or if they are in di�erent strands and
(a�er conversion to S indices) j > i.
Algorithm 6.2 describes the function Find-Repeats, which �nds all maximal

repeats of length ≥ Rmin in S. It returns a set R = (i , j, l , d) of repeat regions in S,
where i and j are the starts of a repeated substring, l is that substring’s length, and
d is + if the repeats are in the same strand or − if the are from opposite strands
(an inverted repeat). �e algorithm ensures that i ≤ j. It assumes the existence
of a function Maximal-Pairs which returns a set of maximal pairs (i , j, l) in a
string, where i < j.3

Now that we can �nd all repeats in our DNA duplex, we can �nd all oligos
which could misprime or cause mispriming. Recall that an oligo is problematic
if either its 5’ end or its 3’ end includes a repeat of length ≥ Rmin. �erefore, we
must look for all oligos which include at least Rmin bases from any of the repeats
found by Find-Repeats.

3See Gus�eld [1997] for the details of implementing such a function.

49

Algorithm 6.2 Find all maximal repeats of length ≥ Rmin in both strands of S.
Find-Repeats(S , Rmin)
1 S′ ← S + Separator + S
2 P ←Maximal-Pairs(S′, Rmin)
3 R ← ∅
4 for all (i , j, l) ∈ P
5 do if i ≤ L and j ≤ L
6 then R ← R ∪ {(i , j, l ,+)}
7 if i ≤ L and j ≥ L + 2
8 then a ← i
9 b ← 2L + 3 − j − l
10 if a ≤ b
11 then R ← R ∪ {(a, b, l ,−)}
12 return R

Algorithm 6.3 illustrates this procedure in detail. Lines 2 through 4 �atten the
list of pairs returned by Find-Repeats into a list of individual repeat regions.�e
loop beginning on line 7 adds all oligos with rightmost ends inside a repeat; the
loop beginning on line 11 adds all oligos with le�most ends inside a repeat.

6.3.2 Finding Hairpins

We can also �nd all oligos that form self-priming hairpins using Find-Repeats.
We need only the inverted repeats — the repeats of the form (i , j, l ,−). Oligos
containing both regions comprising an inverted repeat placed in such a way as
to allow self-priming are then tagged as unusable (see algorithm 6.4). �e loop
beginning on line 9 �nds all oligos on the bottom strand that could self-prime due
to a given inverted repeat. �e loop beginning on line 15 �nds all oligos on the
top strand that could self-prime due to a given inverted repeat.

6.4 Generality and Extensibility

Chapter 5 presented a handful of constraints; each was addressed in this chapter.
However, it should be noted that the algorithm given here is completely general:
any constraint on individual oligos or on oligo overlaps can be enforced by delet-

50

Algorithm6.3Findingmispriming oligos. Returns the set of oligos {(i , j, s)} that
could misprime.
Find-Mispriming-Oligos(S , Rmin , lmin , lmax)
1 R ← Find-Repeats(S , Rmin)
2 R′ ← ∅
3 for (i , j, l , d) ∈ R
4 do R′ ← R′ ∪ {(i , i + l − 1), (j, j + l − 1)}
5 O ← ∅
6 for (i , j, l , d) ∈ R′
7 do for y from min (i + Rmin , L) to j
8 do for x from y − lmax to y − lmin
9 do if x > 0
10 then O ← O ∪ {(x , y,+), (x , y,−)}
11 for x from max (b − Rmin , 0) down to i
12 do for y from x + lmin to x + lmax
13 do if y ≤ L
14 then O ← O ∪ {(x , y,+), (x , y,−)}
15 return O

ing nodes or edges from the graph. Furthermore, the objective function optimized
can be changed: any function that results in a problem with the property of opti-
mal substructure can be used.4 �is algorithm is therefore an excellent framework
for solving the oligo design problem with arbitrary constraints.

4See Cormen et al. [2001] for a detailed discussion of optimal substructure. In short, a problem
with optimal substructure has the property that its optimal solution contains optimal solutions to
its subproblems.

51

Algorithm 6.4 Finding self-priming hairpins. Returns the set of oligos {i , j, s}
that could self-prime.
Find-Self-Priming-Hairpins(S ,Hmin , lmin , lmax)
1 R ← Find-Repeats(S ,Hmin)
2 H ← ∅
3 for (i , j, l , d) ∈ R
4 do if d = −
5 then a ← i
6 b ← i + l − 1
7 c ← j
8 d ← j + l − 1
9 for x from a to b −Hmin + 1
10 do for y from x + lmin − 1 to x + lmax − 1
11 do lhang ← y − (c + b − x)
12 lloop ← b + c − 2x − 2Hmin + 1
13 if lhang > 0 and lloop ≥ 3
14 then H ← H ∪ {(x , y,−)}
15 for y from c −Hmin + 1 to d
16 do for x from y − lmax + 1 to y − lmin + 1
17 do lhang ← (c + b − y) − x
18 lloop ← −b − c + 2y − 2Hmin + 1
19 if lhang > 0 and lloop ≥ 3
20 then H ← H ∪ {(x , y,+)}
21 return H

52

7 Implementation: Mason

�e algorithm described in chapter 6 has been implemented in the so�ware tool
Mason1, written in the programming language Common Lisp.

�e current version of Mason consists of a number of modules:

◾ graph

An implementation of a DAG and the DAG shortest path algorithm.
◾ util

Utility functions relating to DNA.
◾ thermo

DNA thermodynamics functions (Tm estimation).
◾ suffix-tree

A naive implementation of a su�x tree.
◾ repeats

Functions for �nding repeats, mispriming oligos, and self-priming hair-
pins.

◾ bl

�e top level program logic.

In addition, a suite of unit tests for each module is partially completed.
Future versions of Mason will be more modular, allowing easy integration of

custom constraints and easy use of alternative objective functions.

1Mason Assembles SyntheticOligonucleotides

53

54

8 �e Codon Optimization Problem

So far, we have addressed the problem of synthesizing an exact DNA sequence.
However, the DNA usually encodes a protein sequence and related features. Be-
cause the genetic code is degenerate, many DNA sequences exist that code for
a given protein sequence. If the protein is the primary concern, we are free to
change codons to di�erent but synonymous ones with little consequence.1 �is
might allow us to:

◾ remove problematic repeats,
◾ optimize melting temperatures,
◾ improve gene expression, or. . .
◾ avoid speci�c sequences (e.g. restriction sites).

�e next three chapters address a new a more di�cult problem: how can we
simultaneously change codons in a sequence while �nding a good set of oligos
with which to synthesize it? �is work is detailed, but theoretical: the algorithm
described has not yet been implemented in Mason.

8.1 Specifying Coding Regions

If we are to change codons in protein-coding regions, we must �rst know where
those regions are. We need another parameter:

p9. C �e set of codons in the input sequence that may be
changed.

�e exact formofC depends onhow the input sequence is provided.�e sequence
could be provided as a nucleotide sequence that is backtranslated:

TTATGAGCAGTGA
1But not without consequence — see section 8.2.1

55

. . . or as a hybrid of nucleotides and amino acids:

TTMetSerSerGA

8.2 �e Optimal Solution

We will need a new de�nition of an optimal solution for the codon optimization
problem. First, consider the form of a solution. It includes a set of oligos {Si} =
{(ai , bi)}. In addition, itmust include an assignment of three nucleotides to every
codon in the input sequence: c1 = v1, c2 = v2, c3 = v3, . . . c∣C∣ = v∣C∣, where ∣C∣ is the
number of codons in the sequence.
It would be di�cult to create ameaningful objective function of both {Si} and

{ci = vi}, so we must choose between two options:

1. Optimize a function of {Si}. We continue looking for the set of oligos
with a minimal maximum deviation from T0. (With the freedom to change
codons, the search space becomes much bigger; but, it also becomes possi-
ble to �nd better solutions.)

2. Optimize a function of {ci = vi}. We optimize some function of the codons
chosen. (We must also ensure we are able to �nd a good set of oligos for
synthesis.)

We will choose the second option and optimize a function of codon choice.
To guarantee any solution we choose has an acceptable set of oligos for syn-

thesis, we will use the parameter ∆T from the algorithm in chapter 6. ∆T was
included there to prune clearly undesirable oligo overlaps from the search space;
here we will use it to set a threshold for acceptable solutions. We add the con-
straint that a solution exists:

c8. Existence of a solution to the oligo design problem.
�ere is a solution to the oligo design problem for the sequence S that
results from all codon choices {ci = vi}.

Using ∆T in this way, we are guaranteed that any solution to the oligo design
problem is a good solution. We are free to optimize for codon choice.

56

Nowwede�ne our objective function, f ({ci}). For reasons explained in chap-
ter 9, we will want f to be in one of two forms:

f ({ci}) =
∣C∣
∑
i=1

h(ci) or f ({ci}) =
∣C∣
∏
i=1

h(ci)

�e value of our objective function for a set of codon choices {ci} is the sum or
product over all choices of some function h of a single choice. Our f will be of
the second form (a product). To understand why such an objective function is a
good choice, we need to discuss the usage of synonymous codons in genes.

8.2.1 Codon Preference

�ough amino acids can be encoded by as many as six codons (see table 2.1), not
all codons are created equal. Organisms show a marked preference for certain
codons over other synonymous ones: the use of rare codons is correlated with
lower gene expression [Gouy and Gautier, 1982].
Our objective function will assign a score to each of the sixty-four possible

codons; since genes are synthesized for expression in speci�c organisms, the score
for each codonwill be a function of that codon’s prevalence in the target organism.
�is requires two more parameters:

p10. M �e genetic code used by the target organism. Formally, an
injection from amino acids to codons.

p11. U A codon usage table for the target organism.�is table gives,
for each codon, the fraction of times that codon is used to
encode its amino acid.

Our function of individual codons will be h(c) = U[c], and our objective
function will be:

f ({ci}) =
∣C∣
∏
i=1

U[ci]

Intuitively, this objective function avoids very rare codons at all costs: a solu-
tion that uses mostly very common codons but a few very rare codons will have
a very poor score, while a solution that uses all moderately common codons will
have a decent score.

57

8.3 Avoiding Speci�c Subsequences

Because we can now change the input sequence, we have the ability to avoid spe-
ci�c subsequences in the modi�ed sequence we eventually choose. �is could
allow us to remove (or avoid introducing) restriction sites, or to avoid false ribo-
somal binding sites.
We therefore introduce a new parameter:

p12. X A list of sequences that may not appear in the �nal sequence.

. . . and a new constraint:

c9. ∀x ∈ X, x is not a subsequence of S.
No sequence in X appears in S, where S is the sequence produced by the
set of codon assignments {ci = vi}.

8.4 Summary

We’ve now completed our formulation of the codon optimization problem, which
is formally summarized below.
Given a sequence S and the following parameters:

p9. C
p10. M
p11. U
p12. X

. . .�nd a set of codons {ci} that maximizes:

f ({ci}) =
∣C∣
∏
i=1

U[ci]

. . .while satisfying the following constraints:

c8. Existence of a solution to the oligo design problem.
c9. ∀x ∈ X, x is not a subsequence of S.

58

9 Background: Constraint Satisfaction

In order to solve the oligo design problem with codon optimization, we’ll need to
take advantage of some algorithms commonly used in the �eld of constraint op-
timization. �is chapter brie�y introduces constraint satisfaction problems and
constraint optimization problems. It then describes two algorithms, branch and
bound and con�ict-directed A*, which could be used to solve the codon opti-
mization problem.

9.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a tuple ⟨X ,D,C⟩, where:

◾ X is a set of variables x1, x2, x3, . . . xn,
◾ D is an associated set of domains d1, d2, d3, . . . dn, and. . .
◾ C is a set of constraints.

Each variable xi can be assigned a single value from its domain di . An as-
signment is a mapping from variables to values. An assignment that maps every
variable to an element of its domain is a complete assignment; an assignment that
maps only some variables is a partial assignment. An assignment A is a subset of
an assignment B (A ⊆ B), if every assignment xi = v ∈ di in A is also in B.1

Each constraint c ∈ C consists of two parts:

◾ a subset of the CSP’s variables, and. . .
◾ a list of assignments to that subset.

An assignment A satis�es a constraint c if there exists an assignment B in c such
that B ⊆ A. A solution to a CSP is a complete assignment which satis�es all con-
straints. See Russell and Norvig [2002] for a more detailed introduction to CSPs.

1For example, if A = {x1 = 1, x2 = 2} and B = {x1 = 1, x2 = 2, x3 = 3}, then A ⊂ B.

59

As an example, consider the problem of 3-coloring the graph shown in �g-
ure 9.1. Our goal is to color each node red, green, or blue in such a way that no
adjacent nodes are the same color.

x1 x2 x3

Figure 9.1 – A graph to be 3-colored.

Formulating this problem as a CSP is straightforward. We have three vari-
ables: x1, x2, and x3. Each variable has the same domain: d1 = d2 = d3 = {R,G , B}.
Each edge introduces the constraint that the nodes it connects cannot have the
same color. We have two constraints:

c1 = ⟨{x1, x2},{
{x1 = R, x2 = G}, {x1 = R, x2 = B}, {x1 = G , x2 = R},
{x1 = G , x2 = B}, {x1 = B, x2 = R}, {x1 = B, x2 = G} }⟩

. . . and:

c2 = ⟨{x2, x3},{
{x2 = R, x3 = G}, {x2 = R, x3 = B}, {x2 = G , x3 = R},
{x2 = G , x3 = B}, {x2 = B, x3 = R}, {x2 = B, x3 = G} }⟩

�ere are many solutions to this CSP. One solution is {x1 = R, x2 = G , x3 = B}.
�ough this method of specifying constraints is simple and general, it is un-

wieldy. Normally, some mathematical language is de�ned that allows constraints
to be expressed more concisely. Using such a language, we might write the con-
straints above as x1 ≠ x2 and x2 ≠ x3.

9.2 Constraint Optimization Problems

A constraint optimization problem (COP) is a tuple ⟨X ,D,C , f ⟩. X, D, and C
comprise a CSP; f is a function that maps solutions of that CSP to real values.
�e goal is to �nd a solution which maximizes f , i.e. to �nd a solution Z such
that Z = argmax

σ∈Σ
f (σ), where Σ is the set of all solutions to the CSP [Tsang, 1993].

Suppose wemake the CSP above into a COP by adding the following objective
function:

f ({xi}) =
3
∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if xi = R
2 if xi = G
3 if xi = B

60

Each of themany solutions to the earlier CSP is now valued by this objective func-
tion. It is obvious that there is a single solution that maximizes f : {x1 = B, x2 =
G , x3 = B}, for which f = 8.

9.3 Solving Constraint Optimization Problems

�ough the example COP above was quite easy to solve by inspection, the general
problem of solving COPs is di�cult. �is section presents two algorithms that
solve that problem: branch and bound and con�ict-directed A*.

9.3.1 Branch and Bound

Branch and bound is a search technique used to solve many types of optimization
problems. It treats optimization as a tree search and accelerates the search by
using heuristics to prune entire subtrees all at once [Tsang, 1993].
Each node of the branch and bound search tree corresponds to an assignment:

the root node is the empty assignment, internal nodes are partial assignments,
and leaves are complete assignments. Generally, a level of the tree corresponds to
a single variable— an new assignment is constructed at each node in that level by
adding an assignment to that variable.
Branch and bound requires a heuristic function h that, for any partial assign-

ment A, returns an upper bound on the scores of all assignments B ⊇ A. In the
language of search trees, h estimates the best solution we could �nd in the sub-
tree rooted at a given node. For correct behavior, hmust be admissible — it must
always return an accurate upper bound.
Branch and bound is shown in algorithm 9.1. It maintains a lower bound on

the score of an optimal solution while performing a depth-�rst search on the tree.
�is bound is initialized to −∞ (line 3); it is updated whenever a solution better
than the best seen so far is found. Because of the check in line 14, any leaf visited
by the search corresponds to a solution. Whenever the algorithm visits a leaf, it
evaluates the corresponding solution using the objective function; if that solution
has a higher score than any other seen so far, the algorithm records it and raises
the lower bound (lines 6 – 9). Whenever the algorithm visits an internal node,

61

Algorithm 9.1 General branch and bound algorithm.
Branch-And-Bound(⟨X ,D,C , f ⟩ , h)
1 A← ∅
2 Z ← Nil
3 x ← −∞
4 Visit(⟨X ,D,C , f ⟩ , h,A, x)
5 return ⟨A, x⟩
Visit(⟨X ,D,C , F⟩ , h,A, x)
6 if A is a solution
7 then if f (A) > x
8 then Z ← A
9 x ← f (A)
10 elseif h(⟨X ,D,C , f ⟩ ,A) > x
11 then y ← the �rst variable in X not in A
12 for d ∈ the domain of y
13 do B ← A∪ {y = d}
14 if B violates no constraint c ∈ C
15 then Visit(⟨X ,D,C , f ⟩ , h, B, x)
16 else return

it evaluates the corresponding partial assignment using the heuristic function h.
If result is greater than the value of the best solution seen so far, the algorithm
continues exploring the subtree rooted at that node (lines 10–15). Otherwise, the
algorithm prunes the subtree rooted at that node: no leaf in that subtree could
possibly correspond to a solution better than the best already found (line 15).
As an example, we’ll solve the constraint optimization problem given in sec-

tion 9.2. Recall that we are trying to 3-color the graph given in �gure 9.1 while
maximizing the function:

f ({xi}) =
3
∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if xi = R
2 if xi = G
3 if xi = B

. . .where xi is the color of each node.
For branch and bound, we will need an admissible heuristic function h. �e

62

following simple function will work:

h({xi}) =
3
∑
i=1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if xi = R
2 if xi = G
3 if xi = B
3 if xi is unassigned

�is h scores each assigned variable correctly and assumes every unassigned
variable will make the largest possible contribution to the score; it is clearly an
upper bound for the scores of all supersets of a given assignment.
Figure 9.2 shows the search tree generated by branch and bound using the

heuristic h. Note that an optimal solution is found quickly, and two thirds of the
tree is pruned rather than searched.

x1

x2

x3

1

9
2

3
B

8
4

8
5

B
6
G

6
7

R

G

7
8

5
9

B

6
10
G

11
R

R

B

8
12
G

7
13

R

Figure 9.2 – Branch and bound search tree. Nodes are numbered in the order
they were visited and labeled with their score or score estimate. Black nodes
contain assignments that violate the constraints. Gray nodeswere pruned or
ignored. Nodes with bold borders replaced the best known solution when
visited.

9.3.2 Con�ict-directed A*

Con�ict-directed A* (CDA*) is a second algorithm for solving COPs [Williams
and Ragno, 2007]. �e algorithm takes an intuitive approach: it generates full
assignments in best-�rst order. If an assignment is a solution, CDA* returns it; if

63

it is not a solution, CDA* generalizes whatever causes it to violate the constraints
and does not generate solutions with the same problem in the future.
It accomplishes this by extracting con�icts from complete assignments that

violate constraints. A con�ict is an assignment A with the property that no as-
signment B ⊆ A could satisfy the constraints. Aminimal con�ict is a con�ict that
is not a con�ict if any one of its individual assignments is removed.
In our 3-coloring example, the assignment A = {x1 = B, x2 = B} is a con�ict:

no assignment B ⊆ A could satisfy the constraint x1 ≠ x2. Furthermore, A is a
minimal con�ict: neither {x1 = B} nor {x2 = B}— the two assignments we could
obtain by removing a single variable assignment from A— is a con�ict.
Because smaller con�icts allow us to skip over larger numbers of assignments,

it is in our interest to �nd the smallest con�icts possible: we want to �ndminimal
con�icts.
In order to e�ciently generate assignments that contain no con�icts, CDA*

imposes an additional restriction on the problem: it must possess the property
of mutual, preferential independence (MPI).�is property means that we max-
imize the objective function by choosing some best value for each variable, i.e.
we maximize the objective function by maximizing some function of single vari-
ables for each variable individually. Any COP with an objective function which is
the sum or product of a function evaluated on each variable individually exhibits
MPI.�is explains the choice of objective function in chapter 8.
A high-level picture of con�ict-directed A* is given in algorithm 9.2. Its be-

havior is simple: it generates the best complete assignment that contains none of
the con�icts discovered so far and checks if that assignment is a solution. If it is,
the algorithm is done; if it is not, the algorithm extracts minimal con�icts and
generates the next assignment.
Despite this apparent simplicity, the details ofCDA* are complex; seeWilliams

and Ragno [2007] for the details of implementing Next-Best-Assignment and
Merge-Conflicts. �e form of Extract-Conflicts depends on the type of
CSP being optimized. (It will be addressed in chapter 10.)
We’ll now illustrate the use of con�ict-directed A* on our 3-coloring example.

We won’t need to delve into the implementation details, because it will be easy to
list assignments in best-�rst order and to extract con�icts by inspection.

64

Algorithm 9.2 Con�ict-directed A*.
Conflict-directed-A*(⟨X ,D,C , f ⟩)
1 K ← ∅
2 while true
3 do A← Next-Best-Assignment(⟨X ,D,C , f ⟩ ,K)
4 if A satis�es all constraints in C
5 then return A
6 elseif A does not satisfy all constraints in C
7 then κ ← Extract-Conflicts(A)
8 K ←Merge-Conflicts(K , κ)
9 else return

�e best-scoring assignment is {x1 = x2 = x3 = B}, for which f = 9. �is
assignment violates both constraints: x1 ≠ x2 and x2 ≠ x3. Both are minimal
con�icts; we’ll arbitrarily choose to extract x1 = x2 = B.

�ere is a three-way tie for the next best scoring assignment. �e three as-
signments are:

{x1 = G , x2 = B, x3 = B},
{x1 = B, x2 = G , x3 = B}, and. . .
{x1 = B, x2 = B, x3 = G}

�e third assignment does not resolve our con�ict x1 = x2 = B, so we skip it.
We try {x1 = G , x2 = B, x3 = B}, but �nd that it violates the constraint x2 ≠ x3.
We extract the con�ict {x2 = B, x3 = B} and move to the next assignment, {x1 =
B, x2 = G , x3 = B}. �is assignment satis�es all constraints, so it is the optimal
solution.

65

66

10 An Algorithm for the Codon
Optimization Problem

We now to turn to the question of �nding the optimal solution to the oligo design
problem with codon optimization. We will frame the problem as a constraint op-
timization problem and then see howwe could use branch and bound or con�ict-
directed A* to solve it (see chapter 9).

10.1 Formulating the Problem

To begin, we’ll formulate the codon optimization problem as a COP.

10.1.1 Variables and Domains

�e variables will be {ci}, one variable for each codon in S named by C. Each
ci encodes a speci�ed amino acid; its domain di is the set of three-nucleotide
sequences that code for that amino acid according to the supplied genetic code
M.

GTGA???°???°???°???°???°???°???°GTAACAG???°???°???°???°???°???°AAAAG

Met Gly Leu Trp Ile Asp ◻ Met Lys Val Asp Gly ◻
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Figure 10.1 – An input sequence with two hypothetical protein-coding re-
gions and the corresponding amino acids and COP variables.

Figure 10.1 shows an example of the variables for a short input sequence with
two protein-coding regions. If M were the standard genetic code shown in table
2.1, the variable c2would have the domain {GGT, GGC, GGA, GGG}—the set of three-
nucleotide sequences that code for Gly.

67

For the rest of this chapter, the sequence of an assignment or solution will
refer to the sequence obtained by placing each codon’s assigned three-nucleotide
sequence in its position in S.

10.1.2 Constraints

Given a complete assignment to the variables {ci}, we must be able to check that
all the constraints listed in chapter 8 are satis�ed. �ere are two constraints: the
constraint on the presence of subsequences in the �nal sequence, and the con-
straint on the existence of a set of acceptable oligos for assembly of that sequence.
Checking the �rst constraint is simple. We construct S by �lling in each codon

ci with its assigned value. We then check for the presence of each x in S. Every
such check is an instance of the string matching problem, which is easily solved
[Cormen et al., 2001].
To check for the existence of an acceptable set of oligos for assembly, we exe-

cute the algorithm from chapter 6 on the sequence. If that algorithm returns an
answer, an acceptable set of oligos exists.

10.1.3 �e Objective Function

Recall from chapter 8 that our objective function is:

f ({ci}) =
∣C∣
∏
i=1

U[ci]

. . .whereC is a list of codon locations andU is a table of codon usage for the target
organism. Given assignments to each ci , evaluating this function is straightfor-
ward.

10.2 Using Branch and Bound

At this point, we can check that complete assignments satisfy our constraints, but
we cannot yet use either of the COP algorithms described in chapter 9. We’ll start
by extending our methods so that we can use branch and bound.
Branch and bound (algorithm 9.1) requires two things we cannot yet do:

68

1. line 10: evaluate the heuristic function for a partial assignment.
2. line 14: check a partial assignment for consistency with the constraints.

10.2.1 �e Heuristic

For the �rst, we need an admissible heuristic function. One optimistic estimate
assumes that each unassigned variable will have the codon in U with the largest
usage. We therefore de�ne our heuristic as:

h({ci}) =
⎧⎪⎪⎨⎪⎪⎩

U[ci] if ci is assigned
max
v∈d i

U[v] if ci is unassigned

It is clear that no assignment B that is a superset of an assignment A can have a
score higher than h(A)— the additional assignments in B will either lower h or
leave it unchanged — so h is an admissible heuristic.

10.2.2 Checking Partial Assignments

�e second extension, the ability to check partial assignments for consistency, is
more involved. We’ll address the constraint on the sequence and the constraint
on the set of oligos for synthesis separately.

10.2.3 �e Sequence Constraint

Our constraint is that no x ∈ X is a subsequence of the full sequence. We can
check a partial assignment against this constraint by constructing a sequence S in
which codons that are assigned are written out as nucleotides and codons that are
unassigned are written out as the three special non-nucleotide characters — ???

— that do not appear in any x ∈ X (�gure 10.2). We then search this sequence
for forbidden subsequences as though it was a full assignment. If an instance of
a forbidden subsequence is found, no assignment that is a superset of the assign-
ment we are checking could possibly satisfy the constraints — the forbidden sub-
sequence would appear in all such assignments. Otherwise, we can say nothing
de�nitive about assignments that are supersets of the assignment we’re checking:
it’s possible that some such assignments could satisfy the forbidden sequence con-
straint.

69

GTGAATG°GGT°???°???°ATT°???°TGA°GTAACAGAGT°???°???°???°GGG°???°AAAAG

Met Gly Leu Trp Ile Asp Stp Met Lys Val Asp Gly Stp
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Figure 10.2 – An example of a partial assignment to codon variables.

10.2.4 �e Solution Constraint

Checking for the potential existence of an acceptable set of oligos for synthesis
is more di�cult. We’ll use the algorithm from chapter 6 to �nd a solution, but
without a full assignment we don’t have a fully-de�ned sequence.�e solution is
to e�ectively ignore all nucleotides in the sequence that are unde�ned. We adopt
the following rules:

1. Unde�ned characters never contribute to repeats.
2. Unde�ned characters never contribute to the formation of self-priminghair-
pins.

3. Overlaps containing unde�ned nucleotides are assumed to have the target
melting temperature.

Modifying our algorithms to make these assumptions allow us to con�dently
state when a partial assignment A has no children B ⊂ A that are solutions.

10.2.4.1 Repeats

We need to modify our repeat �nding algorithm — if we simply ran it on a se-
quence full of ? characters as we did above, it would �ndmany repeats containing
those characters—exactlywhatwe do notwant. Instead, we replace each contigu-
ous region of ? characterswith a single unique character that appears nowhere else
in the sequence (�gure 10.3). Call these unique characters ?1, ?2, ?3,�ey will
serve the same purpose as the unique separator did in algorithm 6.2: they prevent
repeats from nonsensically spanning two unrelated places in the sequence.
We use a modi�ed version of algorithm 6.2 on this sequence to �nd all max-

imal repeats that do not include any unique characters ?i (algorithm 10.1). �e
main addition is the use of the function Replace-Undefined-Regions in line 1.
Because the mapping from indices in S to indices in S′ is muchmore complicated

70

GTGAATGGGT??????´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶ATT???°TGAGTAACAGAGT?????????´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶GGG???°AAAAG

?1 ?2 ?3 ?4××Ö
GTGAATGGGT?1ATT?2GTAACAG?3GGG?4AAAAG

Figure 10.3 – Replacing undefined regions with unique characters.

when using this function, we assume it returns a function g that implements that
mapping.�e rest of algorithm 10.1 is similar to algorithm 6.2.

Algorithm 10.1 Finding all maximal repeats in a partially unde�ned sequence.
Find-Repeats-With-Undefined-Regions(S , Rmin)
1 S′, g ← Replace-Undefined-Regions(S + Separator + S)
2 L ← (∣S′∣ − 1)/2
3 P ←Maximal-Pairs(S′, Rmin)
4 R ← ∅
5 for all (i , j, l) ∈ P
6 do if i ≤ L and j ≤ L
7 then R ← R ∪ {(g(i), (g(j), l ,+)}
8 if i ≤ L and j ≥ L + 2
9 then a ← i
10 b ← 2L + 3 − j − l
11 if a ≤ b
12 then R ← R ∪ {(g(a), (g(b), l ,−)}
13 return R

Why does this approach work? Suppose we have two assignments: A and
B ⊃ A. Further suppose we run algorithm 10.1 on SA and SB, the sequences cor-
responding to both assignments, yielding RA and RB. It is clear that every repeat
rA ∈ RA either appears in RB or is a subsequence of some some repeat rB ∈ RB —
every character in SA appears in SB, so every repeat in SA either occurs in SB or
becomes larger in SB.
Since RB contains every repeat in RA (or a larger one), every oligo from SA

with repeats at its ends will also have repeats at its ends in SB. Furthermore, be-
cause there could be larger repeats in RB, additional oligos from SB might be have
repeats at their ends.
Now consider the graphs the algorithm from chapter 6 constructs for each

71

sequence, GA and GB. Each node in a graph corresponding to an oligo that could
misprime is removed from that graph; since the set of mispriming oligos from SB
is a superset of the set of mispriming oligos in SA, the set of nodes inGB is a subset
of the set of nodes in GA.

10.2.4.2 Mispriming Oligos

We �ndmispriming oligos using algorithm 6.3, but we use Find-Repeats-With-
Undefined-Regions instead of Find-Repeats.

10.2.4.3 Hairpins

We �nd self-priming hairpins using algorithm 6.4, but we use Find-Repeats-
With-Undefined-Regions instead of Find-Repeats.

10.2.4.4 Overlaps

�emodi�cation for overlaps is simple: when constructing the graph, an edge that
corresponds to an overlap that contains unde�ned nucleotides is given a weight
of zero. We’ve already seen that, if B ⊇ A, then the set of nodes of GB is a subset
of the set of nodes of GA. Now consider the sets of edges of GA and GB, EA and
EB. Because B ⊃ A, there are as many or fewer unde�ned nucleotides in SB as
there are in SA. �erefore, any edge appearing in EB will also appear in EA with
the same or lower weight. Furthermore, because the nodes of GB are a subset of
the nodes of GA, we know that ∣EB∣ ≤ ∣EA∣.

10.2.4.5 Putting�em Together

Suppose we have two assignments, A and B ⊃ A, and that we use the algorithms
given above on them. We know a few things:

◾ �ere are at least as many nodes in GA as in GB.
◾ Every edge in GB also appears in GA, possibly with a lower weight.

Going from GA to GB means deleting nodes (thereby deleting some edges),
deleting some other edges, and increasing the weight of yet other edges. In other
words, it means removing some paths through the graph and increasing the cost

72

of others.�erefore, the shortest path throughGB is at least as long as the shortest
path through GA, so if no solution exists for A, no solution can exist for B.

10.2.5 Being Smart

We now have all the tools we need to use branch and bound to solve the codon
optimization problem. However, there are some things we can do to make the
algorithm more e�ective.

�e �rst is to assign codons in an intelligent order. Our search will be fastest
if the subtrees we prune are as large as possible. We therefore want our search
tree to branch as little as possible at the top— that way, when we �nd a subtree to
prune, we’ll eliminate a large number of solutions. It is best to start by assigning
the most restricted codons (those with the smallest domains) �rst.

�e second thing we can do is to always explore the best solutions �rst. �e
higher our upper bound, the more o�en we can prune subtrees. Because our
COP exhibits MPI, it is easy to search in best-�rst order — we simply pick the
best codon at each node.

10.3 Using Con�ict-directed A*

�is section describes how to use con�ict-directed A* to solve the codon opti-
mization problem.�ere is a single hurdle to jump: we need to be able to extract
con�icts from a complete assignment that does not satisfy some constraint (line 7
in algorithm 9.2). �is section examines the problem of con�ict extraction and
shows how to use CDA*.

10.3.1 Extracting Con�icts

Recall that we have two constraints: the sequence constraint and the oligo set con-
straint. We’ll need di�erent methods to extract minimal con�icts from complete
assignments that violate each.

73

10.3.1.1 Extracting Minimal Con�icts for Sequence Constraints

�e problem of extracting con�icts from an assignment that violates sequence
constraints is easily solved. Violations of sequence constraints are caused by the
presence of forbidden subsequences in the full sequence; the only variables par-
ticipating in such violations are those that correspond to nucleotides participating
in the formation of forbidden subsequences.
To �nd the smallest con�icts possible, we treat each instance of a forbidden

subsequence individually and construct a con�ict consisting only of the variable
assignments contributing to the formation of that instance. Algorithm 10.2 shows
this process in detail.

Algorithm 10.2 Extracting con�icts for sequence constraints.
Extract-Sequence-Min-Conflicts(⟨Problem⟩ ,A)
1 K ← ∅
2 for every instance z of a sequence x ∈ X
3 do k ← ∅
4 for every assignment ci = vi for which ci is part of z
5 do k ← k ∪ {ci = vi}
6 K ← K ∪ k
7 return K

10.3.1.2 Extracting Minimal Con�icts for the Solution Constraint

Many forms of CSP admit algorithms for extracting minimal con�icts from com-
plete assignments like that above; unfortunately, our graph formulation does not.
We therefore use algorithm 10.3, a more general method of minimal con�icts.

�is algorithm take a complete assignment A that contains a con�ict and con-
structs a minimal con�ict B ⊇ A. It does so by initializing B to A and walking
through each individual assignment to a variable, deleting those assignments that
don’t make B feasible when removed.
Why does this algorithm work? At each step, we form Q by removing the

next individual variable assignment v ∈ A from K, our set so far. At this point
in the iteration, K is infeasible and so must contain some minimal con�ict κ. If
removing v does not �x the problem, then v cannot be a part of κ, so we leave it

74

Algorithm 10.3 Extracting a minimal con�ict from a complete assignment.
Extract-Min-Conflict(⟨X ,D,C⟩ ,A)
1 K ← A
2 for each assignment xi = vi in A
3 do Q ← K ∖ {xi = vi}
4 if ⟨X ,D,C⟩ is not feasible for Q
5 then K ← Q
6 return K

out. If removing v does �x the problem, then it must be a part of κ, so we put it
back in. A�er all variable assignments have been examined, K = κ, the minimal
con�ict.

10.3.2 Our Con�ict Extraction Algorithm

Wenowhave the tools we need to use con�ict-directedA* to solve the codon opti-
mization problem. We use the algorithm as given in algorithm 9.2.�e particular
form of our implementation of Extract-Conflicts is shown in algorithm 10.4.

Algorithm 10.4 Extracting minimal con�icts.
Extract-Conflicts(⟨Problem⟩ ,A)
1 Kseq ← ∅
2 Ksol ← ∅
3 if A violates the sequence constraint
4 then Kseq ← Extract-Sequence-Min-Conflicts(⟨Problem⟩ ,A)
5 if A violates the oligo set constraint
6 then Ksol ← {Extract-Solution-Min-Conflict(⟨Problem⟩ ,A)}
7 return Kseq ∪ Ksol

10.4 Branch and Bound vs. Con�ict-directed A*

Wenow address the question of which of the twoCOP algorithmswe’ve discussed
is superior. Both work by excluding large portions of the search space, but their
methods di�er: branch andbound evaluates a heuristic function onpartial assign-
ments; con�ict-directed A* extracts con�icts from complete assignments. Branch

75

and bound �nds the best solution by proving that no unexplored assignments
could have a score higher than the optimal solution; con�ict-directed A* exam-
ines assignments in best-�rst order.
We must answer two questions:

1. Do most sequences have an acceptable set of oligonucleotides?
2. Can the algorithm from chapter 6 be run quickly?

If the answer to both questions is yes, then con�ict-directed A* is the superior
choice. If most sequences have solutions, then CDA* won’t have to explore many
states before �nding the best. If the algorithm from chapter 6 can be run quickly,
then exploring those few states will not take long.
If, on the other hand, the answer to both questions is no, branch and bound

may be superior. Algorithm 10.3 calls the algorithm from chapter 6many times; if
that algorithm is slow, con�ict extraction for CDA*will be slow. Ifmost sequences
don’t have an acceptable set of oligos, we’ll have to try many sequences before
�nding a solution, and CDA* will be even slower. Branch and boundmakes fewer
calls to the algorithm from chapter 6 and, because it tries partial assignments,
might rule out subtrees quickly.
In other situations, it is di�cult to predict how the algorithms will compare.

76

11 Conclusion & Future Work

�is thesis has introduced gene synthesis, explained its importance, and shown
that the so�ware tools available to address it are inadequate. It has formalized the
problem of oligonucleotide design for PCR-based gene synthesis, given an algo-
rithm that solves that problem, and presented Mason — a so�ware tool employ-
ing that algorithm. Finally, it has formalized the problem of codon optimization
with oligonucleotide design and shown that existing constraint optimization al-
gorithms could theoretically be combined with amodi�ed version of the oligonu-
cleotide design algorithm to solve that problem.
Moving forward, the �rst step is to begin synthesizing genes using the exist-

ing implementation of Mason. �is will provide validation that the constraints
described here are valid, and may suggest new constraints to be added.

�e next step is to extend Mason to solve the problem of codon optimization
with oligonucleotide design. �is requires a number of new or expanded algo-
rithms to be implemented, and requires integration with an existing constraint
solver, or implementation of a new one.
Eventually the combination of Mason and a COP-based codon optimization

framework could become a powerful tool for synthetic biologists, and one that
they are sorely lacking.

77

78

References

Marcus Bode, Samuel Khor, Hongye Ye, Mo-Huang Li, and Jackie Y. Ying. Tmprime:
fast, �exible oligonucleotide design so�ware for gene synthesis. Nucleic Acids
Research, 37(Web Server Issue):W214–W221, 2009.

Marvin H. Caruthers. Gene Synthesis Machines: DNA Chemistry and Its Uses. Science,
230(4723):281–285, 1985.

�omas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
Introduction to Algorithms. �e MIT Press, second edition, 2001.

M. Gouy and C. Gautier. Codon usage in bacteria: correlation with gene expressivity.
Nucleic Acids Research, 10(22):7055–7074, 1982.

Dan Gus�eld. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

Guide to DNAWorks version 3.1. Helix Systems, March 2009. URL
http://helixweb.nih.gov/dnaworks/dnaworks_help.html.

David M. Hoover and Jacek Lubkowski. DNAWorks: an automated method for
designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Research, 30
(10):e43, 2002.

Keiichi Itakura, Tadaaki Hirose, Roberto Crea, Arthur D. Riggs, Herbert L. Heyneker,
Francisco Bolivar, and Herbert W. Boyer. Expression in Escherichia coli of a
Chemically Synthesized Gene for the Hormone Somatostatin. Science, 198(4321):
1056–1063, 1977.

Sebastian Jayaraj, Ralph Reid, and Daniel V. Santi. GeMS: an advanced so�ware package
for designing synthetic genes. Nucleic Acids Research, 33(9):3011–3016, 2005.

Tom Knight, Randall Rettberg, Leon Chan, Drew Endy, Reshma Shetty, and Austin Che.
Idempotent Vector Design for the Standard Assembly of Biobricks. RFC 9,�e
BioBricks Foundation, 2003.

Don Lorimer, Amy Raymond, John Walchli, Mark Mixon, Adrienne Barrow, Ellen
Wallace, Rena Grice, Alex Burgin, and Lance Stewart. Gene composer: database
so�ware for protein construct design, codon engineering, and gene synthesis. BMC
Biotechnology, 9, 2009.

79

Sarah M. Richardson, Sarah J. Wheelan, Robert M. Yarrington, and Jef D. Boeke.
Genedesign: Rapid, automated design of multikilobase synthetic genes. Genome
Research, 16:550–556, 2006.

Jean-Marie Rouillard, Woonghee Lee, Gilles Truan, Xiaolian Gao, Xiaochuan Zhou, and
Erdogan Gulari. Gene2Oligo: oligonucleotide design for in vitro gene synthesis.
Nucleic Acids Research, 32(Web Server Issue):W176–W180, 2004.

Stuart J. Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach. Prentice
Hall, 2nd edition, 2002.

John SantaLucia, Jr. A uni�ed view of polymer, dumbbell, and oligonucleotide DNA
nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci., 95(4):1460–1465, 1998.

John SantaLucia, Jr. and Donald Hicks. �e Thermodynamics of DNA Structural
Motifs. Annu. Rev. Biophys. Biomol. Struct., 33:415–440, 2004.

William P. C. Stemmer, Andreas Crameri, Kim D. Ha,�omas M. Brennan, and
Herbert L. Heyneker. Single-step assembly of a gene and entire plasmid from large
numbers of oligodeoxyribonucleotides. Gene, 164(1):49–53, 1995.

Lance Stewart and Alex B. Burgin. Whole Gene Synthesis: A Gene-O-Matic Future.
Frontiers in Drug Design & Discovery, 1(1):297–341, 2005.

Edward Tsang. Foundations of Constraint Satisfaction. Academic Press Limited, 1993.

James D. Watson, Nancy H. Hopkins, Jeggrey W. Roberts, Joan Argetsinger Steitz, and
Alan M. Weiner. Molecular Biology of the Gene.�e Benjamin/Cummings Publishing
Company, 4th edition, 1987.

Brian C. Williams and Robert J. Ragno. Con�ict-directed A* and its role in model-based
embedded systems. Discrete Applied Mathematics, 155(12):1562–1595, 2007.

Amanda V. Wozniak. A Systematic and Extensible Approach to DNA Primer Design for
Whole Gene Synthesis. Master’s thesis, Massachusetts Institute of Technology, 2005.

Gang Wu, Julie B. Wolf, Ameer F. Ibrahim, Stephanie Vadasz, Muditha Gunasinghe, and
Stephen J. Freeland. Simpli�ed gene synthesis: A one-step approach to PCR-based
gene construction. Journal of Biotechnology, 124(3):496–503, 2006.

80

