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Chapter 1 
Introduction 

 

Motivation 

The demand for vehicles to carry out complex tasks with little or no supervision has 
motivated a great deal of past and current research in the area of intelligent autonomy.  
The ability for a vehicle to act autonomously would be advantageous in contexts where 
human supervision and control is not possible.  Onboard human control may be 
undesirable, for example, in a situation where the environment is dangerous or unknown, 
or it may be infeasible because the vehicle is physically unable to support a human.  In 
addition, remote control might not be an option if there is no means to support 
communication, or if the communication latency or unreliability simply renders it 
ineffective. 
 
Embedded autonomy has already proven both feasible and useful through successes such 
as the Remote Agent Experiment, which was conducted onboard NASA’s Deep Space 
One spacecraft in May 1999.  During this experiment, the Remote Agent control software 
was allowed to assume full command of the in-flight spacecraft, and demonstrated the 
robustness of its onboard planning, execution, and mode-identification capabilities [14]. 
 
There is also an emerging interest in multiple vehicle autonomy for applications that 
require capabilities that are impossible, inefficient, or not cost-effective using a single 
vehicle.  One such example is military combat missions, which are typically carried out 
by groups of vehicles because it increases the probability of successful completion while 
decreasing the likelihood of vehicle damage or destruction.  In the domain of space 
exploration, there has been recent interest in developing a tightly coordinated group of 
spacecraft to be used for long-range space interferometry, which would have a much 
greater range than current single-spacecraft interferometers. 
 
In order for a vehicle to autonomously perform the set of activities necessary to complete 
a mission, it needs to make decisions.  Autonomous systems achieve robustness by 
having at their disposal a range of alternative methods of performing activities.  
Whenever the vehicle encounters an activity that allows for several alternative methods, 
the vehicle must decide which one to employ.  Furthermore, if the vehicle has control 
over the time and duration of activities, then it must also decide when each activity 
should be performed and for how long of a period.  The problem is that there may be 
particular sets of decisions that lead to a state from which there is no possible way of 
successfully completing the mission.  Some reasons for failure include the exhaustion of 
some un-renewable resource, conflicting activities being scheduled to perform at the 
same time, or simply too little time left to complete all the necessary activities.  Planning, 
therefore, is an essential capability because it makes the decisions ahead of time to avoid 
failure situations. 
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The problem of planning for multiple-vehicle missions presents some major challenges.  
First, each mission plan must be expressive enough to fully describe complex coordinated 
behaviors.  For example, the plan must be able to express that two vehicles should meet 
at some location and proceed together, and that multiple vehicles should not be 
transmitting messages on a single communication channel at the same time.  Second, the 
plan must be flexible enough to handle variations in plan execution due to exogenous 
factors.  A plan could be represented as a set of time-stamped commands that indicate 
exactly when each activity must commence and complete, but this type of plan is too 
brittle because it may fail if even a single activity takes even slightly more or less time 
than expected.  The plan must also be able to express contingencies in order to be flexible 
with respect to uncontrollable factors.  Third, in order to support automated planning, 
there must be some way of capturing knowledge about the domain and about vehicle 
capabilities using a representation that is compact enough to be manageable and modular 
to support reusability.  Finally, the planner must be efficient enough to support reactive 
on-board re-planning over execution horizons ranging from as long as hours to as short as 
seconds. 

Application 

The target application of the research described in this thesis is the planning of 
Unmanned Combat Air Vehicle (UCAV) missions.  For the purposes of this research, a 
UCAV was broadly defined as an autonomous aircraft with the ability to deliver 
munitions to attack air or ground targets.  The actual form of the vehicle, its speed and 
maneuverability, and the specific resources available to it were abstracted out to a large 
degree.  Instead, the focus was on the types of missions in which they might be deployed 
and the types of coordination necessary to carry out those missions.  The information 
presented in this section is heavily based on UCAV mission requirements analysis presented in 
[27]. 

Multi-UCAV Missions 

The missions of interest include those missions currently conducted with multiple 
manned air vehicles.  These include Suppression of Enemy Air Defense, Close Air 
Support, Air-to-Air Combat, and Logistics Re-Supply.  In the first of these missions, a 
group of aircraft attacks an enemy air defense structure in order to make an area safer for 
other aircraft and ground troops.  The second mission mentioned entails aircraft attacking 
enemy targets that are in close range to friendly forces.  Air-to-Air Combat missions 
involve engagement with enemy aircraft.  Finally, Logistics Re-Supply missions require 
the delivery of supplies such as ammunition or food into a hostile and unpredictable 
environment.  The focus was not on the particular characteristics of each mission but on 
their common elements.  The models developed as part of the research attempted to 
capture these common elements as a library of reusable activity models.  For the 
development of these activity models, and also scenarios for testing the planner, the 
Suppression of Enemy Air Defense (SEAD) mission was used as the prototypical 
mission. 
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Scenario Example 

Consider a scenario in which friendly ground troops are about to be deployed into hostile 
territory.  Satellite surveillance of the area has revealed two objects that may or may not 
pose a threat to the friendly forces that are about to be sent out.  Rather than risk human 
lives, it is decided that a group of unmanned air vehicles should be sent to quickly 
identify whether the threats truly exist, and if so, to destroy them.  Two unmanned 
combat air vehicles, referred to as ONE and TWO, which are located on nearby aircraft 
carriers, are chosen for this mission. 
 
The vehicles takeoff from their respective positions, and they both fly towards a pre-
designated rendezvous location.  Vehicle ONE arrives, begins to listen for messages from 
the second vehicle while it broadcasts a beacon message to indicate that it has arrived, 
and waits in a holding pattern.  A short while later, vehicle TWO arrives, the two vehicles 
identify one another, and they proceed together to the area where the threats are thought 
to be located. 
 
There are three corridors available to fly from the rendezvous location to the target area 
of interest, each with access restricted to a particular time window because other air 
vehicles in the area are scheduled to use or cross through these corridors.  At the time of 
the rendezvous, all of the corridors are available, but only one of these will remain 
available until the vehicles can pass safely through, so this one is selected and the 
vehicles fly together through this corridor. 
 
Finally, they arrive on the border of enemy territory and indicate their arrival to a third 
friendly party, the forward air controller, who is in charge of dispatching vehicles into the 
area.  The vehicles are authorized to proceed immediately to the target location and attack 
all targets found within a specified area.  The vehicles proceed together to this area, 
assuming that only one target will be found, but as they approach, they sense the second 
target.  They immediately diverge so that vehicle ONE is continuing towards the first 
target following a pre-computed attack vector, while vehicle TWO continues towards the 
second target.  They independently bomb their respective targets, check that they have 
been destroyed, and then exit hostile territory.  The vehicles meet again and fly together 
back towards the original rendezvous point.  When they arrive, they separate to return to 
their respective home ships, and land. 

Mission Characteristics 

The SEAD mission scenario described in the previous section demonstrates some of the 
characteristic features of multiple vehicle missions.  First, these missions involve 
coordinated activities, including both activities that are performed together by a group of 
vehicles, such as flying together towards the target area, and activities that are performed 
separately but need to be synchronized, such as performing separate bombing runs and 
then rendezvousing.  Second, in these missions, the same activities are performed many 
times by individual vehicles as well as by the group.  For example, a simple activity 
repeatedly performed by an individual vehicle is flying to a waypoint, and the rendezvous 
activity, which is performed after takeoff and after the completion of the attack, is an 
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example of a repeated group activity.  Third, the mission activities are hierarchical in that 
complex activities can be described in terms of simpler ones composed in various ways.  
For example, flying along a corridor or path is composed of a series of fly to waypoint 
activities, and performing a bombing run is composed of flying along a path while 
concurrently targeting and releasing a bomb. 
 
The hierarchical structure of mission activities suggests that it is possible to describe 
multiple vehicle missions in terms of a set of modular activity models.  In other words, 
since a multiple vehicle mission can be reduced to a set of activities, which can be 
recursively reduced to a set of primitive activities, this implies that given a set of 
primitive activity models, one can develop a set of hierarchical activity models, which 
can ultimately be composed into a multiple vehicle mission model.  The fact that the 
missions involve many recurring activities also implies that this type of representation 
can be very compact, since in the best case, a mission can be composed of many 
instances of only a handful of primitive activities. 
 
While using hierarchical activity models addresses the issue of compactness and 
reusability, the non-trivial problem of developing the activity models remains.  It can be a 
tedious and time-consuming process to construct an activity model because although the 
corresponding activity may only consist of a few different sub-activities, they may be 
composed in very complex ways.  This makes it very desirable to develop a method for 
describing these compositions of activities that is intuitive and easy to understand. 
 
The fact that the missions consist of coordinated activities means the planner must not 
only be able to reason about which activities to perform given several choices, but it must 
also be able to reason about the implications of these choices on the timing requirements 
of the mission.  For example, the group of vehicles in the previous scenario had to decide 
which corridor to use when flying to the target area, but these corridors were only 
available for specified windows of time, and in the scenario above, only one of these was 
available over the entire time it would take to travel through it.  Furthermore, this 
temporal reasoning must be efficient enough so that onboard re-planning, which is 
necessary for reacting to unexpected conditions, is not debilitating.  This is important 
because it is impractical to develop a mission plan that can account for all, or even many, 
of the possible ways in which a mission may unfold. 

Problem Statement 

The research presented in this thesis concentrates on developing a model-based planning 
system for coordinated multiple unmanned combat air vehicle (UCAV) missions, to 
address the challenges of concisely representing domain and vehicle knowledge and 
efficiently developing plans that are both expressive and flexible.  The first contribution 
of this research is a novel method for developing activity models by extending reactive 
programming languages to express contingencies and metric time constraints, the second 
is a compact encoding of the activity models that facilitates efficient planning, and the 
third is an algorithm that uses these models to generate mission plans. 
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Activity Modeling Language 

There are well-researched, formal languages for describing complex reactive systems 
[9,25], such as spacecraft, telephone switching networks, and commercial plane avionics 
systems.  These languages describe the system in terms of its states, behaviors, and the 
effects of the behaviors on the state, and they are currently being explored for 
applications such as model-based mode-identification, diagnosis, execution, and reactive 
planning.  They also offer a clean underlying semantics in terms of a process algebra.  
The planning system described in this thesis leverages this past research in formal 
modeling languages to help address one of the primary challenges of planning, the 
problem of capturing and encoding knowledge about the complex behaviors and 
interactions of cooperative agents and their environment. 
 
A modeling language called the Activity Modeling Language (AML) was developed by 
extracting the useful expressive features of a constraint-based modeling language known 
as the Reactive Model-based Programming Language (RMPL) [25].  The Activity 
Modeling Language can be used to describe complex system behaviors using a set of 
intuitive combinators similar to those of procedural programming languages.  In order to 
support the modeling of coordinated, temporally extended behaviors, this language was 
extended to support the representation of continuous, metric time. 

Temporal Planning Network 

Once system models are described using RMPL, they are compiled to a compact 
representation as a set of hierarchical, concurrent, probabilistic automata (HCA) [25] that 
encode system behavior.  It was necessary to develop an analogous encoding for models 
described in AML. 
The HCA encoding could not be used because it relies on the assumption of synchronous, 
unit-delay transitions between states, which is insufficient for representing time-critical 
activities. 
 
Therefore, a different type of model encoding, called the Temporal Planning Network 
(TPN), was developed by merging some of the features of the HCA models with 
temporal constraint models known as Simple Temporal Networks (STN) [7].  The STN 
temporal constraint representation was adopted as the base representation of the encoding 
because it supports efficient temporal reasoning techniques, which have been well 
applied by other planners such as HSTS [12] and ASPEN [16].  The STN representation 
was then augmented with symbolic constraints to support the expression of non-temporal 
constraints, for example, constraints to represent usage of a shared resource for an 
interval of time, and decision nodes to model multiple alternatives for performing an 
activity. 
 
The resulting Temporal Planning Network activity models are able to represent plans 
involving concurrent, unconditional plans, as generated by discrete event planners like 
STRIPS [8] and temporal planners like ASPEN [16] and HSTS [12], and can additionally 
be used to express temporal duration of activities and maintenance conditions.  The 
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Temporal Planning Network activity models extend this representation to encode 
conditionality and protections. 

Model-based Temporal Planner 

Our planning algorithm employs a mixture of classical planning techniques and temporal 
reasoning to efficiently generate mission plans.  It takes as input an activity model, for 
example the SEAD mission model, and identifies a plan using a combination of network 
search, incremental temporal consistency checking, symbolic conflict discovery and 
repair, and hierarchical decomposition. 
 
The planning algorithm achieves efficiency through its use of activity models.  Because 
the activity models are hierarchical, this planner benefits by being able to plan 
hierarchically.  For example, when a high-level plan is found to be temporally 
inconsistent, the planner does not have to consider any plans that could result from the 
expansion of this plan.  Detecting inconsistencies at the higher levels of planning rules 
out large portions of the space of possible plans from examination, and therefore can 
significantly reduce the time necessary for planning. 
 
Furthermore, the planner presented in this thesis uses activity models, each of which 
encodes the possible behaviors of its corresponding activity by describing the set of valid 
executions.  Therefore, while classical partial order planners spend most of their time 
trying to compose activities to construct a valid execution, this planner simply searches 
over the pre-generated structures of the activity models to simply identify a valid 
execution.  This technique is similar to Graphplan [2] and SAT-plan [18] in that they also 
rely on pre-generated structures to simplify and speed up the run-time planning. 

Thesis Layout 

The next chapter provides background material in the areas of constraint-based modeling, 
temporal reasoning, and planning and scheduling from which the planner draws 
conceptually.  Chapter 3 presents the Activity Modeling Language used to describe the 
activity models and the mapping from the activity model descriptions to the Temporal 
Planning Network representation used by the planner, along with examples of models 
developed for the UCAV missions.  Chapter 4 explains the planning algorithm in detail, 
and includes examples to illustrate the process.  The final chapter presents results that 
demonstrate the planner’s capabilities, a discussion of planner performance, conclusions, 
and future work. 
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Chapter 2 
Background 

 

 
The planner presented in this thesis addresses the problem of planning for coordinated air 
vehicle missions.  In order to do this, the planner draws from three distinct research areas.  
The first of these is modeling reactive systems using constraint-based languages [25].  
The second area of research is temporal constraint modeling and reasoning using Simple 
Temporal Networks [7].   
These two areas form the foundation of the Activity Modeling Language and the 
Temporal Planning Networks introduced in Chapter 3.  The third research area is 
Artificial Intelligence Planning, which is drawn from extensively by the planning 
algorithm described in Chapter 4 [17,21]. 
 
The Reactive Model-based Programming Language [25] is a language originally 
developed to model the behavior of complex, mixed software and hardware systems 
consisting of many components.  The language is a form of process algebra [4] that 
provides a set of combinators for facilitating the description of the behaviors of these 
complex systems.  The reason this is relevant to the problem of multiple vehicle mission 
planning is that the challenge of modeling the behavior of complex reactive systems is 
the very similar to the challenge of modeling the coordinated activities of vehicles in a 
multiple vehicle mission.  Since the challenge of modeling reactive systems has been 
addressed by the development of RMPL and similar constraint-based languages, it is 
logical that a similar language can be used to facilitate the modeling of multiple vehicle 
mission activities. 
 
RMPL describes complex behaviors as the composition of less complex behaviors, which 
are implicitly coordinated through system constraints.  For example, two activities that 
assert conflicting constraints are implicitly coordinated in that they are never 
concurrently executed.  One limitation of RMPL is that it assumes the system can be 
modeled using discrete time steps.  This is a necessary assumption for tractability of 
problems addressed by RMPL models, including mode identification and diagnosis.  
However, RMPL’s notion of time makes it difficult to describe the explicit coordination 
of activities.  For example, RMPL cannot be used to express that one activity should 
follow another by a certain number of time units. 
 
The representation of temporal constraints is the strength of Simple Temporal Networks 
(STN) [7].  These networks provide a means of explicitly coordinating activities in terms 
of their times of execution and the time between different activities.  For example, this 
network representation can be used to express that an activity should execute for exactly 
30 seconds, and that the start of a second activity should precede the completion of the 
first by at least 5 seconds.  Furthermore, there are efficient techniques for reasoning about 
temporal constraints in Simple Temporal Network form.  For example, given a set of 
activities and temporal constraints as an STN, it is possible to determine whether it is 
possible to perform the activities such that no temporal constraints are violated, or 
compute the feasible times at which an activity may start. 
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Reactive Model-based Programming Language 

The Reactive Model-based Programming Language is a high-level language used to 
describe models of reactive systems.  The models specify the behaviors of a system in 
terms of its default behavior and also its possible actions and their effects on the system.  
For example, consider the RMPL code fragments in Figure 2.1, which are models from 
the Deep Space 1 spacecraft.  Figure 2.1a specifies the default behavior of the onboard 
MICAS camera, which functions normally most of the time, but fails with 1% probability 
at each time step.  Figure 2.1b describes the Auto Navigation activity, in which the 
spacecraft uses the MICAS camera to take several pictures and then uses these to correct 
its course. 
 

MICAS :: always { 

  choose { 

    if MICASon then { 

      if TurnMicasOff thennext  

        MICASoff 

      elsenext 

        MICASon, 

      if MICASoff then ..., 

      if MICASfail then ..., 

    }  

    with 0.99, 

    next MICASfail with 0.01 

  } 

} 

AutoNav() :: { 

  TurnMicasOn, 

  if IPSon thennext 

SwitchIPSStandBy, 

  do { 

    when IPSstandby∧MICASon donext 

{ 

      TakePicture(1); 

      . . . 

      { 

        TurnMicasOff, 

        OpticalNavigation() 

      } 

    } 

  } 

  watching 

MICASfail∨OpticalNavError, 

  when MICASfail donext { 

    fMICASReset, 

    AutoNav() 

  }, 

  when OpticalNavError donext { 

    AutoNavFailed 

  } 

} 

(a) (b) 

  Figure 2.1 RMPL examples.  (a) Default behavior of a component.  (b) Auto Navigation activity. 
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These models can be used by the system for execution, as well as to infer current state, 
diagnose problems, and develop plans to reconfigure itself into a desired state.  The 
benefit of RMPL is that it offers a simple and natural way of expressing complex 
behaviors. 
 
RMPL supports a set of combinators that provide an intuitive way to describe behaviors 
of reactive systems.  The types of behaviors that it is possible to express using these 
combinators include conditional execution, iteration, serial and parallel execution, 
preemption, probabilistic choice, and utility-based choice.  These combinators can be 
combined recursively to describe arbitrarily complex behaviors that can be factored down 
to the primitive set of expressible behaviors.  The list of combinators is provided in 
Figure 2.2. 
 

A := c | 
     if c thennext A | 

     unless c thennext A | 
     A, A’ | 
     A; A’ | 
     do A watching c | 
     always A | 
     choose-probability { A with p, A’ with p’, 
... } | 
     choose-reward { A with r, A’ with r’, ... } 
c := constraint 
p := probability 
r := reward 

 
Figure 2.2 RMPL combinators 

 
A modeler can use RMPL to define the behaviors of activities such as TakePicture() and 
OpticalNavigation(), and then define the behavior of higher-level activities such as 
AutoNav(), in terms of these other behaviors.  Models of simple components, such as 
valves and tanks, can also be composed to form more complex component models, such 
as a spacecraft propulsion system. 
 
RMPL describes system behaviors in terms their assertions of constraints.  For example, 
in the example of Figure 2.1a, MICASon, MICASoff, and MICASfail are constraints 
corresponding to the conditions that the MICAS camera is on, off, or in a failure state, 
respectively, and TurnMicasOff is a constraint representing the assertion that the MICAS 
camera should be turned off.  The Auto Navigation activity, for example, uses the 
MICAS camera and to take pictures and then asserts TurnMicasOff to turn it off. 

Hierarchical Constraint Automata 

Each model described in RMPL is compiled into the Hierarchical Constraint Automata 
representation consisting of a collection of states and transitions.  One slight difference 
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between HCA and traditional automata is that multiple states may be enabled, or marked, 
at any time.  More significantly, each state of HCA may be labeled with constraints that 
are asserted whenever the state is marked.  Transitions may also be labeled with 
constraints to indicate a guarded transition, or in other words, a transition that is 
conditioned on the presence or absence of a constraint assertion.  These constraints 
represent the interactions of the state variables of the system, and therefore provide a 
basis for system diagnosis and control. 
 

Figure 2.3 illustrates an example of a simple HCA consisting of three states and three 
transitions.  The labels in the states represent constraints that are asserted when that state 
of the automaton is marked. The transition that starts at no state and leads into the left-
most state signifies the left-most node to be a start state of this automaton.  This state is 
marked in the time step that the automaton execution is initiated, at which point it asserts 
the constraint c.  After this time step, this state is exited and the automaton transitions 
into the state containing b, only if constraint a is asserted externally by another 
automaton. 
 

The automata are hierarchical in that a state of an automaton may itself be an automaton, 
similar to State Charts [10].  This is illustrated in Figure 2.4.  The HCA representation 
can also be viewed as an encoding of a partially observable Markov decision problem 

Figure 2.3 Simple Hierarchical Constraint Automaton

c b

b

a

Figure 2.4 Example of an automaton serving as a state 

c

b

a
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since transitions have an associated probabilities and reward.  This allows HCA to model 
stochastic behaviors and the utility of alternative choices. 
 
The RMPL combinators each have an encoding as an HCA.  The mapping from RMPL to 
HCA, which is provided in [25], defines how RMPL descriptions are compiled into a set 
of HCA.  

Simple Temporal Networks 

Temporal constraints are used to specify requirements concerning the times of different 
events, where an event is defined as something that occurs at a single point in time.  For 
example, walking to the store is not an event because it occurs over an interval of time, 
but starting the walk and completing the walk are both events because they correspond to 
instants of time. 
 
 A unary temporal constraint restricts the time of an event to be within a specified 
absolute time range, while a binary temporal constraint restricts the duration between two 
events to be within a relative time range.  For example, in order to express that the walk 
to the store needs to be completed some time between 8:00am and 8:15am, one would 
introduce a unary temporal constraint on the completing the walk event with that absolute 
time range, [8:00am, 8:15am].  To express that the walk takes between 30 to 40 minutes, 
one would introduce a binary temporal constraint between the starting the walk and 
completing the walk events with the range [30,40] to indicate that the time between these 
events should be between 30 and 40 time units, which are minutes in this case. 
 
Temporal Constraint Networks [7] provide a formal framework for representing and 
reasoning about systems of temporal constraints.  There are two classes of problems 
addressed by this representation, Simple Temporal Problems (STP) and the more general 
Temporal Constraint Satisfaction Problems (TCSP).  Note that these are classes of 
problems that include specific problems such as checking whether a system of temporal 
constraints is consistent and computing the feasible time bounds for an event.  The 
difference is that TCSPs allow temporal constraints that specify multiple disjoint ranges 
whereas STPs represent only a single range per temporal constraint.  Although the 
difference may seem minor, Temporal Constraint Satisfaction Problems have been 
proven to be NP-hard [7] while Simple Temporal Problems can be solved using a variety 
of polynomial-time algorithms. 
 
Temporal Constraint Networks that only address Simple Temporal Problems are also 
known as Simple Temporal Networks (STN).  The activity models used by the planner 
use the STN representation to encode temporal information, and the planner uses STP 
techniques as part of the planning algorithm.  The following sub-sections will discuss 
relevant information about the Simple Temporal Network representation and solution 
techniques. 
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Representation 

A Simple Temporal Network consists of nodes and directed arcs with interval labels.  
Each node i represents an event, and each arc (i,j) between the nodes i and j 
represents a binary temporal constraint over their corresponding events.  The interval 
label on each arc indicates the single range specified for that temporal constraint.  For 
example, node 1 and node 2 in Figure 2.5 represent the events start walk to store and 
complete walk to store, respectively.  The directed arc (1,2) with interval label 
[30,40] represents the temporal constraint that the difference between the times of 
these two events should be between 30 and 40 minutes. 
 

More generally, a temporal constraint represented by the arc (i,j) with label [l,u] 
says that the time of event i must precede the time of event j by at least l time units and 
at most u time units.  Note, this temporal constraint could be represented alternatively by 
the arc (j,i) with the interval label [-u,-l], as in Figure 2.6. 
 

Unary temporal constraints can be represented in one of two ways.  The first way is for 
the node corresponding to the event to be labeled with the absolute time range as in 
Figure 2.7a.  Absolute time ranges are enclosed in angled brackets instead of square 
brackets to clarify the difference between them.  The second way for a unary temporal 
constraint to be represented is as a binary temporal constraint between the node 
corresponding to the event and an artificial node representing a fixed time point.  This is 
illustrated in Figure 2.7b, where an artificial node is added to represent the absolute time 
8:00am.  For any STN, there only needs to be one of these temporally anchored nodes 
against which any other event’s time may be referenced.  This anchored node is referred 
to as the origin node. 

2
[30,40]

1 

Figure 2.5 STN model of the walk to store activity 

j 
[-u,-

i

(b) 

j
[l,u] 

i 

(a) 

Figure 2.6 (a) Generic temporal constraint between event i and event j, (b) An alternative 

representation of the same temporal constraint 



 17

 
Finally, just as the walk to the store activity was represented in Figure 2.5, any activity 
occurring over an extended period can be represented by its start event, end event, and 
the duration constraint. 

Distance Graph Analog 

This section provides an overview of technical material much more thoroughly explained 
in “Temporal Constraint Networks” by Dechter, Meiri, and Pearl [7].  The reader is 
referred to this paper for a more formal treatment of the concepts presented here. 
 
Another way of representing a system of temporal constraints modeled as an STN is by 
using an equivalent distance graph.  In the distance graph, the nodes still correspond to 
temporal events, but the arcs are used slightly differently.  Instead of having interval 
labels, each directed arc holds a distance label.  If there is an arc (i,j) with a distance 
label d, this can be interpreted as restricting the time of event j to be at most d time units 
greater than the time of event i.  The distance labels are not restricted to be non-negative. 
 
Applying this interpretation of the distance graph, the binary temporal constraint 
represented by an STN arc (i,j) with label [l,u] could be rewritten using a pair of 
arcs in distance graph form.  In the distance graph, there would be an arc (i,j) with 
distance label u, representing the upper-bound constraint, and there would be an arc 
(j,i) with distance label l, representing the lower-bound constraint.  This is illustrated 
in Figure 4.8.  This is also consistent with the alternative STN representation of the same 
temporal constraint using the opposite arc (j,i).  In that case, the interval label on 
(j,i) would be [-u,-l], which would translate to the distance graph form as an arc 
(j,i) with distance –l and arc (i,j) with distance u. 

i 
[0,15

0

(b) 

i 

(a) 

<8:00,8:1

Figure 2.7 Event i can be constrained to occur between 8:00 and 8:15 using a unary 

constraint (a), or a binary constraint (b) where event 0 is anchored at 8:00 



 18

 
The distance graph representation leads to efficient techniques for solving a variety of 
questions or problems that one might have given a set of events and a system of temporal 
constraints over these events.  For example, one problem is determining whether a system 
of temporal constraints is consistent.  Another way to phrase this is, does there exist times 
that can be assigned to each event such that all temporal constraints are satisfied?  A 
second problem is to find the possible times at which an event can occur while not 
violating any constraints.  Solving both of these problems are critical to the planning 
algorithm described in Chapter 4.  The planner repeatedly solves this first problem to 
quickly detect whether the plan is invalid, and it solves the second problem in order to 
identify and resolve symbolic constraint inconsistencies. 
 
Both of these problems can be solved using common network-based algorithms.  

Determining whether a system of temporal constraints is consistent can be done by 
checking for negative cycles in the distance graph representation.  If a negative cycle 
exists, then the system of constraints is inconsistent [7].  To illustrate this, consider the 
impossible situation that event A is exactly one time unit before event B, event B is 
exactly one time unit before event C, and event C is exactly one time unit before event A.  
The distance graph representation of these events and temporal constraints contains a 
negative cycle as shown in Figure 2.9. 
 

Figure 2.8 (a) 2-node STN, and (b) its corresponding distance graph 

i j
[l,u

(a) 

i j 

-

u

(b)

A

C

B

-1

-1

-1

Figure 2.9 Example of a negative cycle 
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Consider the problem of determining the upper-bound time difference from node i to 
node j.  Even if there is a temporal constraint between them, this may not be the tightest 
constraint on the upper-bound time difference.  For example, consider the situation in 
Figure 2.10, in which the time of event j is constrained to be at most 8 time units after the 
time of event i.  However, the constraints between node i and node k, and between node k 
and node j, imply a tighter constraint on the upper-bound time difference between events 
i and j.  Now consider the problem of computing the lower-bound time difference from 
node i to node j.  Again, though there may exist an explicit lower-bound constraint as 
there is in the example of Figure 2.10, this may not be the tightest lower-bound 
constraint.  The actual lower-bound constraint is given by the implied constraint through 
event k.  This example gives some intuition into why the lower- and upper-bound time 
differences between two events can be computed by solving two single-source shortest 
path problems, whose correctness has been proven formally by Dechter, Meiri, and Pearl 
[7]. 
 
The range of feasible times for a given event can be determined by computing the lower- 
and upper-bounds on the temporal distance between the origin node, which is anchored to 

an absolute time, and the node corresponding to the event.  This means it is also possible 
to compute the feasible time bounds for all events by solving an all-pairs shortest path 
problem for this distance graph. 

Planning Overview 

The traditional planning problem consists of an agent that must decide which activities to 
perform to transition from an initial state to the goal state.  The agent is the virtual or 
embodied entity that performs the actions, which effect the state of the agent’s universe, 
including the agent itself.  In order for the agent to make decisions about which activities 
to perform, it must know at least what activities are available and their restrictions and 
effects.  This information is often distilled into simple activity models described in 
section 2.3.1.  Given this knowledge, the agent can employ a variety of planning methods 
to either generate a plan from scratch or repair an incomplete plan, as described in 
sections 2.3.2 through 2.3.4.  Section 2.3.5 shows some ways in which classical planning 
methods have been extended into newer temporal planning techniques. 

i

k

j

3

-4

3

8

-3-2

Figure 2.10 Example of how indirect distance bounds between two nodes may be tighter than 

direct bounds: distance(i,k)+distance(k,j) < distance(i,j) 
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STRIPS Activity Models 

STRIPS operators [8] are commonly used to represent an agent’s available actions or 
activities.  Each STRIPS operator models an activity in terms of a set of pre-conditions 
and post-conditions.  The pre-conditions define conditions that must be true in order for 
the activity to be used, and the post-conditions represent the activity’s effects by defining 
the set of conditions that are true after the activity completes.  These conditions are 
typically represented as a conjunction of literals, where each literal is simply a symbol 
corresponding to a condition that may be either true or false. 
 

 
   Op(ACTION: Takeoff(), 

      PRECOND: NOT(IN-AIR)∧TAKEOFF-OK, 

      EFFECT: IN-AIR) 

 

  (a)        (b) 
 

Figure 2.11 The STRIPS operator activity model for the Takeoff activity expressed (a) 

textually and (b) graphically, in the formats used by Russell and Norvig [17] 

 

For example, assume the agent is an air vehicle.  Then the condition that the vehicle is in 
the air might be represented by the literal IN-AIR, and the condition that the runway is 
clear for Takeoff might be represented by TAKEOFF-OK.  The agent might have the 
ability to Takeoff, which could be represented by a STRIPS operator with the pre-
conditions NOT(IN-AIR) ∧ TAKEOFF-OK and the post-condition IN-AIR.  This would 
mean that the Takeoff activity could only be used if the vehicle was not in the air and if 
the runway was clear, and after the Takeoff activity completed the vehicle would be in 
the air. 

 

The start and goal states can also be modeled as STRIPS operator activity models.  The 
start state activity model has no pre-conditions, but has as post-conditions those 
conditions that are true initially.  The goal state activity model has no post-conditions but 
represents the conditions of the goal state as pre-conditions.  Figure 2.12 shows how the 
start and goal states can be represented by activity models. 

Takeoff() 

NOT(IN-AIR), TAKEOFF-OK 

IN-AIR 

Start 

 

NOT(IN-AIR), TAKEOFF-OK

Goal

At(X)

 

Figure 2.12 Example of Start and Goal states represented as activity models 
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Partial Order Planning 

Given a set of STRIPS activity models, one way to plan is by constructing a path through 
the state-space connecting the start state with the goal state.  From the initial state of the 
agent’s universe, the planner can identify those activities that are enabled, meaning that 
their pre-conditions are satisfied by the conditions that are true in the initial state.  Then 
the planner can add one or more of these activities to the plan, which has the effect of 
transitioning the agent’s universe into a new state in which different conditions are true.  
From this new state, the planner can again check which activities are enabled from the 
current state, and select more activities to add to the plan, continuing until the conditions 
of the current state satisfy the conditions of the goal state. 
 
When the planner adds an activity, it must also introduce dependency links, often called 
causal links, to represent that the activity depends on other activities or the initial state to 
satisfy its preconditions.  For example, in Figure 2.13, the activity Takeoff has the pre-
conditions NOT(IN-AIR) ∧ TAKEOFF-OK, which are both asserted by the initial state, 
so a causal link is added from the initial state to the Takeoff activity for each of these 
conditions.  The Fly-to(X) activity has the pre-condition IN-AIR which is satisfied by the 
Takeoff activity, so a causal link is added from the Takeoff activity to the Fly-to(X) 
activity.  This causal link indicates that Takeoff must precede Fly-to(X). 
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An alternative way to construct a plan is to start from the goal state work back towards 
the start state.  The planner selects one or more activities whose post-conditions include 
the goal conditions and introducing a dependency from the goal state to each of these 
activities.  However, in order for these activities to be used, their pre-conditions must be 
satisfied, so the pre-conditions of these added activities are added to the set of goal 

conditions that must be satisfied.  The process is complete when all of the remaining goal 
conditions are satisfied by the start conditions.  This type of planning is known as 
regression planning because it starts at the goal state and works back to the start state, 
whereas the first approach described is called progression planning, because it builds 
forward from the start state towards the goal state. 
 
A plan produced by either progression or regression planning consists of an ordering of 
activities to be performed to get from the start state to the goal state.  These forms of 
planning produce a non-linear plan, consisting of activities and dependencies from 
activities to other activities that form a partial ordering.  Each activity has a dependency 
on zero or more other activities, and it cannot be performed until every activity upon 
which it has a dependency has been performed.  If the activities were totally ordered then 
the plan would be linear, consisting simply of a sequence of activities to be performed 
one after another.  However, in many cases a total ordering is not necessary or 

Start

 

NOT(IN-AIR), TAKEOFF-OK

Takeoff()

NOT(IN-AIR), TAKEOFF-OK

IN-AIR 

Goal

AT(X)

 

Fly-To(X)

IN-AIR

AT(X)

Figure 2.13 Example of a plan generated through Partial Order Planning 
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undesirable, because the planner must make ordering decisions even between activities 
that have no dependence on one another. 

Hierarchical Planning 

One problem with the planning technique described in the previous section is that it is 
slow in practice, especially with a large number of available activities.  A way to speed 
up planning is to compose the primitive activities into a set of higher-level activities or 
macro-activities, introducing a hierarchy to the activities.  Each macro-activity is 
essentially a partially ordered plan consisting of primitive activities, which can be 
composed into higher-level macro-activities that describe behaviors that are even more 
complex.  The planner can first construct a plan using the highest-level macro-activities, 
and then decompose each macro-activity until the plan includes only primitive activities. 
 
However, there is some additional work to be performed beyond decomposition, because 
decomposition may reveal a potential conflict between lower-level activities.  A conflict 
occurs if two activities prevent one another from performing correctly, due to conflicting 
post-conditions or pre-conditions.  Conflicts are resolved by ordering activities such that 
their conditions no longer interfere with one another.  A hierarchical planner first 
generates a plan using macro-activities, decomposes these macro-activities into primitive 
activities, and then repairs the plan to resolve any inconsistencies. 
 
There are two desirable properties of hierarchical activity models.  First, any valid high-
level plan should be decomposable to a primitive-level plan that is still valid, and second, 
for any valid primitive-level plan there is a corresponding highest-level plan.  The first is 
called the “downward solution” property and the second is called the “upward solution” 
property [17].  If one or both of these properties hold, then hierarchical planning provides 
a significant performance benefit over planning with the primitive activities because it 
prunes the search space. 

State-space and Plan-space Planning 

There are two general methods of planning, state-space planning and plan-space 
planning.  The partial order planning techniques described in section 2.3.2 fall into the 
realm of state-space planning, while hierarchical planning described in the previous 
section employs both state-space and plan-space planning methods.  The input to a 
typical state-space planning problem is a start state, a goal state, and a set of available 
activities, and the state-space planner incrementally adds activities to the plan until a path 
is found that can transition the agent from the start state to the goal state.  The reason this 
is called state-space planning is that the planner is searching over the space of possible 
states, moving from state to state, as it is adding activities to the plan. 
 
The input to a typical plan-space planning problem is an incomplete or inconsistent plan, 
and the plan-space planner iteratively adds activities or orderings and repairs the plan 
until it is both complete and consistent.  For example, the generic hierarchical planner 
described in the previous section took a high-level incomplete plan and repaired it by 
decomposing macro-activities and adding orderings to resolve conflicts between 
activities.  At each iteration, rather than deciding which activities to add to bridge the gap 



 24

between the start state and the goal state, the planner decides how to modify the current 
plan to move towards completeness and consistency.  It makes decisions over the set of 
possible plans, while the state-space planner makes decisions over the set of possible 
states. 

Temporal Planning 

The technique of partial order planning produces a plan that is an ordering of activities, 
but does not care about the duration of activities or the time between activities.  Many 
planners similarly rely on an abstract notion of time.  The justification for these methods 
is the assumption that timing issues can be addressed as a separate scheduling problem; a 
plan is first constructed without worrying about how long activities take to perform, and 
then the activities are scheduled, or assigned times, such that the activity dependencies 
are satisfied.  The problem with this is that even though a plan might be constructed 
relatively quickly, if the planner does not reason about temporal constraints, there may be 
no feasible way to schedule the activities to fulfill the timing requirements of the mission.  
Recent work in temporal planning has attempted to tackle exactly this problem by 
blurring this separation of planning and scheduling, and incorporating temporal reasoning 
into the planning process.  A good overview of research in this area is provided by [18]. 
 
One general technique for bringing together the problems of planning and scheduling is 
by casting them as resource-constrained project scheduling problems [18].  This type of 
problem assumes that there are resources that are consumed in some quantity by each of 
the activities, and that activities have a fixed, pre-determined duration.  It takes as input 
an ordering of activities, as would be produced by a partial order planner, and assigns 
start times to each activity to times such that all the ordering constraints are satisfied and 
no resource is over-consumed.  Well-known constraint satisfaction techniques, such as 
backtracking search or forward checking [17], can be used to find feasible assignments.  
However, because of the number of possible times to assign to each activity depends on 
the resolution of time, this problem requires a tradeoff between tractability and precision; 
with very fine time resolution the space of possible solutions becomes enormous, while 
using a more coarse resolution reduces this space but exaggerates the discretization of 
time. 
 
There has also been work with continuous planning, which addresses the issue of both 
continuous time and resource consumption.  The ZENO planner [15] uses more complex 
activity models that represent the conditions and effects of each activity using a set of 
metric constraints.  For example, using the ZENO representation, one could model that 
the consumption rate of fuel was equal to a specified value for the duration of the Fly-
to(X) activity.  These models also allow inequality constraints, for example, that the 
quantity of fuel must be greater than zero during flight.  The activity’s temporal duration 
can also be represented as a metric constraint between the start time and end time of the 
activity.  ZENO generates plans using the regression planning technique, starting with a 
set of goal conditions and introducing new activities and dependencies until there are no 
goals left to be satisfied.  Although very powerful, ZENO is admittedly practical for only 
toy problems because it is relatively slow. 
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The HSTS planning and scheduling system [13] takes a novel approach to the planning 
problem.  Instead of modeling the state of the planning subject and its environment as a 
set of conditions, it maintains an explicit set of variables each represented by a timeline 
over a finite time horizon.  Each timeline holds tokens, covering some portion of the 
timeline, which indicate the state of the variable or the invocation of an activity acting on 
the variable state over the duration corresponding to the timeline segment covered by the 
token.  For each type of token, there are associated constraints called compatibilities, 
which must be satisfied in order for the plan to be complete.  A compatibility might 
require the addition of tokens or it might impose a temporal constraints between itself and 
another token.  A planning goal state is represented by an incomplete plan consisting of a 
partially populated set of timelines representing the desired state of the variables at 
particular times.  The planner is then responsible for resolving compatibility conflicts by 
adding tokens and temporal constraints between tokens, or shifting tokens to enforce 
temporal constraints.  The planner also uses a Temporal Constraint Network data 
structure, also known as a Simple Temporal Network [12,7], to represent and perform 
temporal reasoning over a system of temporal constraints. 
 
While planners such as ZENO and HSTS address the issue of temporal planning, they do 
not adequately address the problem of planning for coordinated air vehicle missions for 
two reasons.  The first is that they do not provide a natural way to develop activity 
models used by the planner, which makes it very difficult to model activities involving 
complex coordinated behaviors of multiple vehicles.  The second problem is that these 
planners require much more time to generate plans than is allowable in the context of an 
unmanned combat air vehicle mission.  It is necessary for the planner to generate a plan 
in a few seconds rather than a few hours [3].  These issues are the primary focus of the 
remainder of this thesis. 
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Chapter 3 

Activity Models 
 

Overview 

In order for any planner to function, it needs knowledge about the abilities of the agents 
for which it is planning.  This information is conveyed to the planner through activity 
models.  As mentioned in chapter two, STRIPS operators provide a simple and compact 
means for a modeler to describe an activity in terms of what conditions must be true of 
the environment and the subject in order for the activity to be used, and also the effects of 
the activity.  However, in using STRIPS operator models, the modeler abstracts away a 
lot of information about activities. 
 
For the reasons stated in chapter one, the planning of multiple vehicle missions requires 
activity models that are rich enough to represent the requirements of coordinated 
behaviors, making STRIPS operators insufficient.  For example, the activity model of a 
rendezvous activity must be able to represent the requirement that all vehicles must meet 
somewhere at the same time.  An example of another type of coordination requirement is 
that multiple vehicles of a group should not transmit messages on a single 
communication channel at the same time.  Therefore, the activity models used for 
multiple vehicle missions must be able to express both timing requirements and resource 
constraint requirements.  Given these requirements on the expressive power of the 
requisite activity models, it is also important to be able to keep the activity models as 
simple, compact, and easily encodable as possible. 
 
The RMPL models of reactive systems described in chapter two offers two things to this 
end.  First, RMPL provides an expressive but simple process algebra that makes it easy to 
describe activities and the composition of activities.  Second, the HCA representation, 
into which the RMPL activity descriptions can be compiled, provides a compact 
encoding of concurrent behaviors in terms of the constraints they impose on the system, 
which can be used to model the resource constraint requirements of coordinated vehicle 
activities.  However, these models are deficient in their ability to express the timing 
requirements of coordinated activities. 
 
The STN representation provides a way of representing complex systems of temporal 
constraints, so this representation can be used to model the timing requirements of 
coordinated mission activities.  However, the STN representation was not designed to 
represent the resource constraint requirements necessary for modeling a coordinated 
activity.  In addition, it is tedious to construct an STN model of the temporal constraints 
of an activity, especially if the activity involves complex composition of many primitive 
activities. 
 
This chapter presents the result of blending these two representations to form the Activity 
Modeling Language, which extends RMPL to allow for the description of temporal 
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constraints, and the Temporal Planning Network, which unifies the expressive power of 
HCA and STN for representing activity models.  Because the Activity Modeling 
Language and the Temporal Planning Network activity models are based on the behavior 
models described by programming languages such as CC [9] and derivatives, and RMPL 
[25], it is possible to leverage off their past work and experience in the formal modeling 
of reactive systems. 
 
These and related languages have been used in the past to develop models used for 
simulation, system mode identification, diagnosis, and execution in real-world situations 
such as onboard the Deep Space One spacecraft [14].  As described in the previous 
chapter, RMPL provides a set of combinators that allow for the description of system 
behaviors modeled as concurrent hierarchical constraint automata.  These combinators 
can be used to express the assertion of constraints, parallel and serial composition, 
conditional execution, iteration, preemption, probabilistic transition, and utility-based 
transition.  The Activity Modeling Language borrows from RMPL the combinators useful 
for describing activity models for planning, and augments this subset with a means for 
representing temporal relations, including the duration of activities and the time between 
activities. 
 
Just as RMPL is used to describe the state and behavior of complex systems in terms of 
the composition of the states and behaviors of their components, AML can be used to 
describe complex coordinated activities in terms of the composition of component 
activities.  Hierarchical modeling not only helps to minimize the size and complexity of 
the models, but also aids in making the planner more efficient.  These models express 
alternate ways of performing activities explicitly as part of the activity models, rather 
than leaving these decisions to be inferred by the planner as in the case of classical partial 
order planners.  As mentioned in chapter one, this is necessary for planning UCAV 
missions because these types of choices are typically tightly controlled.  One resulting 
benefit of this type of representation is that the modeler can easily control the complexity 
of the planning problem; introducing many decisions allows for more variation and 
correspondingly more complexity, while incorporating few decisions means the mission 
will always be performed basically in the same way, but missions can be developed more 
quickly.  Note that even if there are no explicit decisions in the activity models, there are 
still many decisions regarding activity start times and durations.  While this kind of 
mission model is rigid in the sense that it is always performed using the same activities, 
there may remain a great deal of temporal flexibility in how the mission is performed 
given different requirements. 

Example 

Consider the SEAD mission scenario described in chapter one.  One of the activities 
performed during the mission was the Enroute activity, in which the group of vehicles 
flew together from the rendezvous point to the target area.  In this activity, the group 
selects one of two paths for traveling to the target area of interest, flies together along the 
path through a series of waypoints to the target position, and then transmits a message to 
the forward air controller to indicate their arrival, while waiting until the group receives 
authorization to engage the target. 
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The two paths available for travel to the target area are each only available for a 
predetermined window of time, which is important for the planner to consider when 
selecting one of these paths.  In addition, the Enroute activity will be bound in time by 
externally imposed requirements, for example, the mission must complete in 25-30 
minutes, while at least 20% of this time and at most 30% of this time is allotted to the 
Enroute activity.  Therefore, it is also useful for the activity to pass these time constraints 
down to its constituent sub-activities.  For example, 90% of the time available for the 
Enroute activity should be allotted to the sub-activity of flying along the selected path 
since that will probably require the most time of all sub-activities.  The desired behavior 
of this activity is captured in the AML code below. 
 

Group-Enroute()[l,u] = { 

   choose { 

      do { 

         Group-Fly-Path(PATH1_1,PATH1_2,PATH1_3,TAI_POS)[l*90%,u*90%]; 

      } maintaining PATH1_OK, 

      do { 

         Group-Fly-Path(PATH2_1,PATH2_2,PATH2_3,TAI_POS)[l*90%,u*90%]; 

      } maintaining PATH2_OK 

   }; 

   { 

      Group-Transmit(FAC,ARRIVED_TAI)[0,2], 

      do { 

         Group-Wait(TAI_HOLD1,TAI_HOLD2)[0,u*10%] 

      } watching ENGAGE_OK 

   } 

} 

Figure 3.1 AML description of the Enroute activity of a multiple vehicle SEAD mission 

 
Once the behavior of an activity is described in AML, this description can be compiled 
into a Temporal Planning Network model.  The Temporal Planning Network 
corresponding to this Enroute activity is graphically depicted in Figure 3.2.  Activity 
name labels are omitted to keep the figure clear, but the node pairs 4,5 and 6,7 represent 
the two Group-Fly-Path activity, and node pairs 9,10 and 11,12 correspond to the Group-
Wait and Group-Transmit activities, respectively.  Node 3 is a decision node that 
represents that there is a choice between the two methods for flying to the target area. 



 29

 

This is the Temporal Planning Network that would result if the mission were allowed to 
take between 25 and 30 minutes, and the Enroute activity were allowed 30% of this time.  
This network models the temporal constraints on the overall activity, as well as its sub-
activities.  The activity model constrains the time for the Enroute activity to be at least 
450 seconds and at most 540 seconds, it constrains the time for flying to the target area to 
at least 405 seconds and at most 486 time units (90% of the allotted time for the Enroute 
activity), and so on.  It also models the decision between the two paths to the target area, 
and it models the restrictions that each of the paths can only be used if they are available. 
 
Section 3.3 will describe the combinators of the Activity Modeling Language, and justify 
why they are necessary and useful.  The following section will describe in detail the 
Temporal Planning Network representation and the meaning of its constructs in terms of 
how it describes execution, and how they can encode activity models described in AML.  
The Enroute activity description and model in Figures 3.1 and 3.2 will be used as a 
running example through this chapter. 

Activity Modeling Language 

One reason for using any modeling language, including AML, is to add a layer of 
abstraction between the description of the behavior and its actual encoding, especially if 
the encoding can become incomprehensible.  This is certainly the case with the TPN 
encoding of activity models, which can be both tedious to directly encode and difficult to 
understand with complex activities.  There is no benefit of using a language if it is as 
difficult to describe the activities using the language as it is to encode the models directly, 
but at the same time, the language must be sufficiently expressive to be able to describe 
some minimal set of desired behaviors.  For AML, the sufficiency of its expressiveness 
was based on its ability to describe the necessary coordinated behaviors of multiple 
vehicle missions.  The basic combinators of the AML language are listed in Figure 3.3. 
 

A :=  A[l,u] | 

      activityinstance |  

      c |  

Figure 3.2 A possible instantiation of the Temporal Planning Network activity model 

for the Enroute activity 
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Ask(PATH1=OK)
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Ask(PATH2=OK)

8

[405,486] 

[0,0]

[0,0]

[0,0] [0,0] 

[450,540] 

Tell(¬ENGAGE=OK)
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      [l,u] | 

      if c then A | 

      do A watching c |  

      A; A’ | 

      A, A’ | 

      { A } | 

      choose { A, A’, … } 

activityinstance := activityname ( argumentlist ) 
c := proposition | Not(proposition) 

Figure 3.3 Basic AML combinators 

 
The Activity Modeling Language was modeled after the Reactive Model-based 
Programming Language [25] presented in section 2.1.  The main differences are that 
AML excludes the utility-based choice combinators of RMPL, replaces the probabilistic 
choice combinator (choose-reward) with non-probabilistic, non-deterministic choice 
(choose) used to express alternate ways for performing an activity, and AML augments 
this set with the interval construct used for the expression of temporal constraint. 

Basic Combinators 

In order to express timing requirements of coordinated activities, it is necessary to 
express temporal duration, for example, that the Enroute activity takes 10 minutes.  To 
accommodate the goal of flexibility it is also useful to simply bound the feasible 
execution time of an activity and let the planner determine the appropriate amount of time 
in which the activity should be performed.  Therefore, instead of saying that the Enroute 
activity must take 10 minutes, it might be better to say the Enroute activity must take 
between 9 minutes and 11 minutes.  In AML, this would be expressed as 
Enroute()[540,660], with the name of the activity instance followed by the 
allowed duration range specified by the lower and upper bound pair enclosed in square 
brackets.  By default, if an activity is not labeled with a duration bound, it is assumed that 
the activity may have any non-negative duration. 
  
In order to support the modeling of coordinated behavior, it is also necessary to describe 
the requirement and assertions of conditions.  This is necessary to make sure that the 
activities of the vehicles are consistent with one another and consistent with the 
conditions of the environment.  For example, the portion of the Enroute activity in which 
the group is flying along one of the paths to the target area requires that the path on which 
they are traveling is available.  This requirement needs to be described so that the 
execution behavior of the vehicles is consistent with the availability of the paths.  In order 
to assert the condition that the first path is available for 5 minutes, one can use the AML 
expression path1=ok[300,300].  The constraint path1=ok represents the 
condition that the first path is available, and it is qualified by the duration range 
[300,300] with the time units being seconds. 
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A condition may be required as a pre-condition or as a maintenance condition of an 
activity.  A precondition asks that a condition be true for the instant before an activity 
begins.  For example, the single vehicle Bomb(x,y) activity has the precondition that 
the vehicle has a bomb to use.  This precondition is represented in AML using the 
expression if c then A[l,u], where c represents the condition that is required, and 
A represents the activity whose execution is conditioned on constraint c.  The 
Bomb(x,y)[l,u] activity can then be described in AML as if bomb=ok then 
Drop-Bomb(x,y)[l,u], where bomb=ok represents the condition that the vehicle 
has a bomb, Drop-Bomb(x,y) is the activity of dropping the bomb, and [l,u] 
describes the duration bounds of the bombing activity. 
 

Bomb(x,y)[l,u] := { if bomb=ok then Drop-Bomb(x,y)[l,u] } 

Figure 3.4 AML definition of the Bomb activity  

 
A maintenance condition asks that a condition be true over the duration of an activity.  
For example, consider again the portion of the Enroute activity in which the group flies 
along either path one or path two to the target area.  If the group flies along path one, then 
this activity requires that over the duration of this flight, the condition that path one is 
available is maintained.  These maintenance requirements are expressed in AML as do 
A[l,u] maintaining c.  This says that the condition represented by c must be true 
over the duration of the activity represented by A.  Figure 3.5 shows the portion of the 
Engage activity description from Figure 3.1 that corresponds to the activity of flying 
along path one. 
 
   do { 

      Group-Fly-Path(PATH1_1,PATH1_2,PATH1_3,TAI_POS)[l*90%,u*90%]; 

   } maintaining PATH1=OK 

Figure 3.5 An example of the AML combinator for expressing maintenance conditions 

 
When describing complex activities, it is useful to describe them in terms of the 
composition of simpler activities.  For example, the activity of flying along a path can be 
described as the composition of several fly to waypoint activities.  AML describes 
sequential and parallel composition in the same way as RMPL, using two types of 
delimiters.  Semicolon are used to delimit activities to be executed in series, so the AML 
expression in Figure 3.6a describes the behavior that the vehicle should fly to a series of 
waypoints, one immediately after another. 
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      (a)   Fly-To(wpt1)[10,12]; Fly-To(wpt2)[12,12]; Fly-To(wpt3)[8,10] 

      (b)   Fly-To(wpt1)[5,20], Bomb(x,y)[3,8] 

Figure 3.6 An example of the AML (a) sequential composition combinator, and (b) the 

parallel composition combinator 

 
If activities are separated by commas, then this describes the behavior that they are 
performed in parallel.  For example, Fly-To(wpt1)[5,20], Bomb(x,y)[3,8] 
describes the behavior that the vehicle should fly to a waypoint while bombing a location.  
To be more precise, this describes the behavior that these activities start together and end 
together. 
 

Fly-To(wpt1)[8,10]; { Fly-To(wpt2)[5,10], Bomb(x,y)[3,6] 
} 

Figure 3.7 An example of activity grouping in AML 

 
Since neither delimiter is given precedence over the other, this might lead to ambiguous 
compositions.  For example, consider the AML fragment A[1,2], B[5,6]; 
C[2,3], D[3,3].  This could be describing that activity A and B should be in 
parallel, followed by C and D in parallel, or it could be saying that B and C are in series, 
and that they are execute parallel to both A and D.  In order to address this problem of 
ambiguity, brackets can be used to clearly group sections of an AML activity description, 
and each grouped section is treated as a sub-activity.  Figure 3.7 shows an example of 
how this grouping may be used.  This code fragment describes the behavior of a vehicle 
flying to a waypoint, then bombing a location while flying to a second waypoint. 
 
Transmit(ONE,ALL,STATUS)[1,1]; [58,62]; Transmit(ONE,ALL,STATUS)[1,1] 

Figure 3.8 Example of a temporal spacer 

 
In order to support the description of more complex coordination, it is useful to be able to 
express arbitrary temporal constraints between activities.  One example of where this is 
necessary is in expressing a delay between the activities executed in sequence; for 
example, if a vehicle is supposed to periodically broadcast status messages, it is 
necessary to describe the time between these broadcasts.  Figure 3.8 shows a description 
of this behavior with broadcasts approximately every minute.  The end of the first 
transmission is constrained to be at least 58 seconds and at most 62 seconds before the 
start of the second transmission activity. 
  
To express that there are several ways of performing an activity, AML incorporates a 
choice combinator.  This is also the key combinator for expressing contingent executions 
of an activity.  It can be used, for example, in the Enroute activity to represent that there 
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are two paths available for flying to the target area.  It is also used in the Transmit 
activity to represent the choice between multiple communication channels, as shown 
below in Figure 3.9. The choices are not associated with reward or probability as in 
RMPL, but instead choices are considered by the planner in the order they are listed.  
Therefore, for the Transmit activity, ch1 represents the default communication channel 
and ch2 represents the other available channel that is used if the first is unavailable. 
 

Transmit(from,to,msg)[l,u] := {  

   choose { 

      {ch1=from}[l,u], 

      {ch2=from}[l,u] 

   } 

} 

Figure 3.9 AML description of the Transmit activity 

Derived combinators 

The basic combinators are the minimal set needed to describe the coordinated behaviors 
for multiple vehicle missions.  However, a few more combinators can be derived from 
these that are useful for keeping AML descriptions easy to understand.  These derived 
combinators are listed in Figure 3.10. 
 

A  :=  do A[l,u] watching c |  

       repeat A[l,u] 

Figure 3.10 Derived AML combinators 

 

The do A[l,u] watching c combinator is similar to the do A[l,u] maintaining c 
except that it describes the behavior that activity A is executed until condition c becomes 
true.  While the analogous combinator in RMPL was used to express that an activity 
should be preempted when some condition became true, the AML version of this 
combinator simply expresses that the interval over which activity A executes must not 
overlap with any interval over which condition c is true.  The planner is responsible for 
ensuring that this condition is satisfied.  If c corresponds to an exogenous condition, there 
is no way for the planner to guarantee that the unconditional plan it generates will 
necessarily be consistent through execution.  This requires and instance of contingent 
planning that should be addressed in future work. 
 

The repeat A[l,u] combinator is used to model the repeated execution of activity A 
without specifying the number of executions.  During the compilation from AML to 
TPN, the compiler is responsible for determining the minimum and maximum number of 
time activity A may be performed, given A’s duration bounds and the duration bounds on 
the repeat A[l,u].  The compiler encodes this combinator with a decision node and the 
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appropriate number of choices.  For example, if the AML expression {repeat 
A[10,12]}[20,40] implies that activity A must be performed between one and four times, 
so this would be encoded into a TPN model by a decision node with four choices, one 
corresponding to a possible number of executions of A.  This defers the decision of how 
many times to perform A to the planner.  This is useful in combination with the 
preemption combinator to express the repeated execution of an activity until some 
condition becomes true. 
 

For example, the AML fragment do { repeat Wait(wpt1,wpt2,wpt3)[l,u]} watching 
group_arrived describes an activity in which a vehicle flies in a loop through three 
waypoints repeatedly until the other vehicles in the group have arrived.  One limitation of 
this combinator is that it will not accept a zero duration activity, A[0,0], as the activity to 
be repeated.  The reason, of course, is that an infinite number of these activities may be 
performed in any instant, which cannot be modeled using the Temporal Planning 
Network representation.  This should still be sufficient, however, because in reality most 
activities that need to be modeled have positive duration. 

Temporal Planning Network 

The Temporal Planning Network (TPN) serves as the representation of the activity 
models used by the planner described in this thesis.  A TPN activity model encodes the 
behavior of an activity by defining the set of feasible executions. TPN models don’t 
enumerate these executions, but instead constrain the set of valid executions by 
specifying both the temporal and symbolic constraints of the activity.  A temporal 
constraint restricts the behavior of an activity by bounding the duration of an activity, 
time between activities, or more generally the temporal distance between two events.  A 
symbolic constraint restricts the behavior of an activity by expressing the assertion or 
requirement of certain conditions by activities.  Both types of constraints must be 
satisfied in any valid execution of an activity. 
 
For example, consider some of the possible executions of the Enroute activity whose 
TPN model is shown in Figure 3.2.  One possible execution is that the group flies along 
path one to the target area in 420 time units (seconds in this case), transmits an arrival 
message to the forward air controller in one second, then waits for another 40 seconds to 
receive authorization to proceed.  Another possible execution is that the group selects the 
second path, flies to the target area in 500 seconds, takes 2 seconds to transmit the arrival 
message, and is authorized to proceed immediately.  If it were the case that path one was 
available from the time at which the Enroute activity started to at least the time that the 
group arrived at the target area, then the first execution is valid.  This is because it 
satisfies both the temporal constraints on the Enroute activity, and the requirement that 
path one is available for the duration of the flight along it.  The planning algorithm 
described in chapter four performs the identification of consistent activity executions. 
 
Each execution corresponds to a set of trajectories or paths through the TPN encoding of 
an activity.  In this sense, the TPN encoding can be understood to be an expansion of the 
set of possible executions.  This encoding is one of the reasons why the planner described 
in this thesis performs so quickly, but there is a slight downside to this.  The TPN 
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representation is not as compact as the HCA, because it cannot encode iterative behavior 
using a loop as illustrated in Figure 3.11a.  The TPN representation would model this 
behavior with a non-deterministic choice on the number of iterations to perform, as in 

Figure 3.11b.  In effect, the TPN encoding expands out the loop in time, which consumes 
more space, but saves the planner from performing this expansion at the time of planning.  
The reason that the activity encoding needs to be expanded in this way is that otherwise 
the planner cannot directly apply STN methods for temporal reasoning.  
 
A Temporal Planning Network is essentially a Simple Temporal Network that 
incorporates some features of Hierarchical Constraint Automata, in particular simple 
symbolic constraints and decision nodes, that make the representation sufficiently 
expressive for modeling coordinated activities.  Just as in Simple Temporal Networks, the 
nodes represent temporal events, and the arcs represent temporal relations that constrain 
the temporal distance between events.  Figure 3.12 gives an example of a Simple 
Temporal Network and a Temporal Planning Network. 
 

The first difference between the Simple Temporal Network and the Temporal Planning 
Network is while arcs in the STN are labeled with duration ranges, the arcs of the TPN 
are labeled with both duration ranges and symbolic constraints such as Tell(c) and 
Ask(c).  The symbolic constraints, which represent conditions regarding the state of the 
vehicles or their environment, have similar semantics as the constraints of Hierarchical 

[5,6 [1,1]

[0,∞ [4,5

[5,6
[1,1] 

[0,∞
[4,5

Tell(c) 

Ask(c)

(a (b

Figure 3.12 An example of a (a) Simple Temporal Network, and (b) a Temporal Planning 

Network with a decision node and symbolic constraints 

 a b

(a) 

a b

(b) 

a b a b

Figure 3.11 Iterative behavior encoded in (a) HCA form, and in (b) TPN form 
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Constraint Automata.  Just as HCA constraints were used to either assert or check for the 
assertion of a condition, the Tell(c) symbolic constraint in Figure 3.12b represents the 
assertion that the condition corresponding to c is true, and the Ask(c) symbolic 
constraint represents the requirement that the condition corresponding to c is true.  For 
example, the proposition PATH1=OK in the Enroute activity model corresponds to the 
condition that the first path is available, so Ask(PATH1=OK) represents the requirement 
that the path is available.  The usage and interpretation of symbolic constraints are 
described in section 3.4.1.  This representation is different from HCA in that there is no 
distinction made between states and transitions.  This uniformity of this representation 
serves to simplify the planning algorithm. 
 
The TPN also augments the STN with decision nodes that can be used to express a choice 
between a set of ways of performing some part of an activity.  For example, in Figure 
3.12b, the node with the double outline represents a decision node, and the dashed arcs 
out of that node represent the available choices, of which exactly one must be chosen.  In 
the Enroute activity example in Figure 3.2, node 3 is a decision node, which represents 
the decision between the two paths for the group to travel to the target area.  The dashed 
arc (3,4) represents the option to take path one, and the dashed arc (3,6) represents the 
option to take path two.  Section 3.4.2 discusses the decision node and related 
representational issues. 
 
One other subtle difference between the Temporal Planning Network and the Simple 
Temporal Network is that arcs represent both temporal constraints and dependencies or 
causal links.  While each temporal constraint in an STN can be reversed, with the 
modification of the duration label, it cannot be reversed in the Temporal Planning 
Network because it changes the direction of dependency.  The significance of this 
becomes more clear in chapter four with the description of the planning algorithm.  
Essentially, the planner discovers the plan by using a network search to explore 
trajectories or paths through the network, since the paths through the network correspond 
to executions of activities.  The direction of the arcs is important because the network 
search used by the planning algorithm only follows forward arcs, not reverse arcs, which 
is necessary for the correctness of the planning algorithm.  In addition, the arcs represent 
precedence constraints, so a directed path through the Temporal Planning Network 
defines a chronological ordering of activities that form an execution thread.  The 
interpretation of the directedness of these arcs becomes more problematic when negative 
temporal constraints are permitted.  This issue is discussed in the Future Work section of 
Chapter 5. 

Symbolic Constraints 

Recall that HCA models use constraint labels to represent both assertions and 
requirements.  If the constraint was attached to a state, then it represented an assertion of 
the condition corresponding to the symbolic constraint, but if the constraint was attached 
to an arc, then it represented a requirement that the corresponding condition be true in 
order to follow a transition.  Temporal Planning Networks also use this representation to 
model both the requirement and the assertion of conditions. 
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One difference is that, whereas in HCA the usage of the symbolic constraints was 
implicit in their placement on either a state or an arc, all symbolic constraints in a 
Temporal Planning Network are attached to arcs, so context cannot be used to distinguish 
one usage from the other.  Therefore, symbolic constraints in a Temporal Planning 
Network consist of two parts, a symbol and a type classifier.  The symbol represents a 
condition, or the negation of a condition if qualified by a Not.  The type classifier 
indicates what the symbolic constraint is saying about the condition corresponding to the 
symbol.  If the type is Ask, then the symbolic constraint represents the requirement that a 
condition be true.  If the type is Tell, then it represents the assertion that a condition is 
true. 
 

symbolic constraint = Tell(c) | Ask(c) 
c = proposition | Not(proposition) 

Figure 3.13 Symbolic constraints 

 
Symbolic constraints in a Temporal Planning Network must always be temporally 
qualified by being attached to an arc.  Since each arc represents an interval of time, the 
association of a symbolic constraint with an arc represents the requirement or assertion of 
a condition over this interval.  A Tell(c) label on an arc (i,j) would assert that the 
condition represented by c is true over the interval between the temporal events modeled 
by the nodes i and j. 

 
For example, consider the TPN model of the single vehicle Transmit activity in Figure 
3.14, where node 1 represents the start event of the activity, node 2 represents the end 
event, and [l,u] is the uninstantiated duration bound.  The Tell(CH1=FROM) 
symbolic constraint label on arc (4,5) asserts that the first communication channel is 
being used over the duration of the transmission activity.  This is similar to the concept of 
a token in most temporal planning systems, with the addition that the arc indicates what 
activities must precede and follow its corresponding activity. 
 

Figure 3.14 Model of the single vehicle Transmit activity (Note: zero-duration 

labels are omitted for clarity) 

4 5
[l,u]

Tell(CH1=FROM)

6 7
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Tell(CH2=FROM)

1 2
[l,u]

3



 38

Similarly, an Ask(c) label on an arc (i,j) would require that the condition 
represented by c is true over the interval represented by this arc.  For example, in Figure 
3.2, the Ask(PATH1=OK) label on the arc (3,4) represents the requirement for path one 
to be available for the interval of time corresponding to the interval of time between the 
temporal event modeled by node 3 and node 4.  These Ask-type symbolic constraints 
allow for the encoding of conditional execution in the network, which is a key extension 
beyond traditional planning representations. 

Decision Nodes 

The decision nodes are used to explicitly introduce choices in activity execution into the 
activity models.  These represent explicit decisions that the planner must make.  For 
example, in the Enroute activity presented at the beginning of this chapter, there are two 
choices of paths for the group to use for flying to the target area, path one and path two.  
The activity model captures the two choices as out-arcs of decision node, node 3 in 
Figure 3.2, graphically designated as a decision node by the double outline and dashed 
out-arcs.  All other nodes in this activity model are non-decision nodes. 

 
As mentioned briefly before in section 3.4, a TPN activity model can be viewed as an 
expansion of the possible executions of the activity, and executions consist of one or 
more paths through the network.  Decision nodes encode non-deterministic choice in this 
sense because they represent points in the network where executions may diverge in one 
case versus another.  This is the second key addition, besides the Ask-type symbolic 
constraints, that allow unconditional temporal plans to generalize to the full 
expressiveness of RMPL (with the exception of probabilistic and utility-based choice) 
and time constraints. 

Composition 

  

 

 

(a

  

 

 

(b

Figure 3.15  (a) Decision node, (b) Non-decision node 
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With the basic components of the Temporal Planning Network, it is possible to compose 
instances of very simple activity models, like those described in the previous section, into 
arbitrarily complex macro-activity models.  One simple way to compose simpler activity 
models is by placing them in series to model a higher-level activity that performs a 
sequence of simple activities.  Alternatively, these activity models can be placed in 
parallel to describe an activity in which multiple activities are performed at the same 
time. 
 

Serial composition and parallel composition rely on the introduction of temporal 
constraint connectors between instances of activity models, but depending on the actual 
constraint, the composition may have different meanings.  For example, constructing a 
sequence of two activities connected by zero duration arcs represents an activity that 
executes these activities one immediately after another. 

 
Labeling the intermediate arcs with a non-zero duration range (i.e. [l,u] is not 
[0,0]), changes this meaning.  Note, l and u must both be greater than or equal to 
zero, for reasons described in the Future Work section of Chapter 5.  This arc acts as a 
temporal spacer, separating the end of one activity from the start of another by at least l 
time units and at most u time units.  Similarly, in the case of the parallel composition of 
two activities, if only zero duration arcs are used as the connectors, then both activities 
must commence and complete at the same time.  By using positive duration arcs instead, 

[8,8] [8,8][0,0

(a)

[8,8]

[8,8]

[0,0

[0,0

[0,0

[0,0

(b)

Figure 3.16 (a) Series composition, (b) Parallel composition (Note: Sub-activities are outlined)

[8,8] [8,8][1,1

Figure 3.17 Example of a non-zero temporal constraint between activities 
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the parallel composition of the two activities means they should be performed 
asynchronously, although the activities may still begin and end at the same time. 

AML to TPN Mapping 

Given the behaviors that can be encoded by the Temporal Planning Network 
representation, it is possible to map each of the Activity Modeling Language combinators 
to a TPN model.  Once the combinators of AML are mapped to a TPN representation, it 
is possible to compile arbitrarily complex AML descriptions into a TPN activity model.  
These mappings are listed in Figure 3.18. 
 

Interval:  

[l,u] 

 

Interval + Assertion:  

c[l,u] 

 

Interval + Activity:  

A[l,u] 

 

Sequential Composition: 

A[l1,u1]; B[l2,u2] 

 

Parallel Composition: 

A[l1,u1], B[l2,u2] 

 

[l,u]

Tell(c

[l,u]

 

 
[l,u]

 

A.star A.end 

 
[l1,u1

A.star A.end

 
[l2,u2

B.star B.end

[0,0

 
[l1,u1

A.star A.end

 
[l2,u2

B.star B.end  
 [0,0]

[0,0] [0,0]

[0,0] 
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Conditional Execution:  

if c then A[l,u] 

 

Reactive Execution: 

when c then A[l,u] 

 

Condition Maintenance: 

do A[l,u] maintaining c 

 

Preemption: 

do A[l,u] watching c 

 

Iteration:  

repeat A[l,u] 

 

Choice:  

choose{ A[l1,u1], 

B[l2,u2] } 

 

 

Figure 3.18 Mapping from AML combinators to TPN representation 
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Many of the TPN representations of combinators in Figure 3.18 contain zero-duration 
temporal constraints.  For example, if two activities A and B are composed sequentially 
in the AML expression A; B then this maps to an TPN model in which the end-node of 
the TPN model of activity A is connected to the start-node of the TPN model of activity 
B with a zero-duration temporal constraint.  This constrains the start time of the end time 
of the activity to correspond to the same point in time.  This allows for the modeling of 
impossible behaviors such as c[0,0]; Not(c)[0,0] and if c then Not(c), but this is not a 
problem because the planner rejects executions containing these.  The planning algorithm 
rejects these behaviors because it is not possible for it to resolve the conflict introduced 
by these models, which require that two mutually exclusive propositions coexist at a 
point in time.  This is explained further in section 4.3.3. 
 
Note that in the TPN representation, the arcs represent closed intervals.  This means that 
if a Tell-type symbolic constraint were attached to an arc, the corresponding constraint 
would be asserted for the entire interval represented by the arc, including the time points 
corresponding to the end points.  This means that c[6,8]; Not(c)[3,3] asserts two 
conflicting symbolic constraints at the point in time corresponding to both the end time of 
the c[6,8] and the start time of Not(c)[3,3].  This also means that for the AML expression 
c[6,8]; if c then A[1,1], the pre-condition on the execution of activity A is always 
satisfied by the preceding c[6,8]. 
 
Consider for a moment the TPN encoding of the AML sequential composition 
combinator.  One problem with representing transitions between activities, as recognized 
by Muscettola, et al. [12], is the accumulation of latency in executing this plan.  The 
problem is that it takes time for the plan runner to compute which activity should be 
initiated next because it needs to perform updates to the plan based on when preceding 
activities have completed.  This latency can be made very small, but cannot be 
eliminated.  Currently, this latency is ignored by the TPN activity models on the 
assumption that this latency is negligible, but this may lead to inconsistent execution, 
especially with high latency or with very large plans, because this latency tends to be 
compounded with every activity that is executed.  This might make it impossible for an 
activity to be executed without violating the temporal constraints of the plan.  One fix for 
this might be to replace the [0,0] temporal constraints that currently represent transitions 
between activities with a [0,λ] temporal constraint, where λ is an upper bound estimate 
on system latency.  This solution, however, requires further examination. 

UCAV Activity Models 

This section describes some of the models generated for multiple UCAV mission 
planning.  The following sub-section introduces some extensions to AML to support the 
description of hierarchical, group activities.  Section 3.6.2 describes some of the primitive 
activities of a single UCAV, and illustrates how they are composed to form single vehicle 
macro-activities.  Next, these single vehicle activities can be combined to form more 
elaborate group activities, as described in following section.  The hierarchical 
composition of activities allows the modeler to easily construct very complex coordinated 
activities out of few lower-level activities.  An exhaustive list of AML activity 
descriptions is included in Appendix A. 
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AML Scoping 

In order to describe a group behavior as the coordinated behaviors of multiple vehicles, it 
is necessary to have a way to distinguish between the members of the group.  For 
example, in the group Fly-To activity, there is a leader that must navigate and one or 
more followers that simply listen for instructions and follow the leader.  This behavior is 
described for a group consisting of two vehicles, by the AML code in Figure 3.19. 
 

Group-Fly-To(x,y,z)[l,u] = { 
   ONE::Fly-To(x,y,z)[l,u], 
   { TWO::Follow(ONE)[l,u], TWO::Listen()[l,u] } 
} 

Figure 3.19 AML description of the group Fly-to activity 

 
In this activity description, the two vehicles are distinguished by prefixing an activity 
instance with a scope specifier that consists of the name of the vehicle and the “::“ 
delimiter.  In the example, ONE::Fly-To(x,y,z) specifies that vehicle ONE should 
navigate, while vehicle TWO should follow while listening for instructions. 

Relative Duration Bounds 

It is useful in describing an activity to be able to specify relative duration bounds.  For 
example, in the description of the Enroute activity in Figure 3.1, the Enroute activity’s 
duration is bounded to be between l and u time units, which are imposed externally by 
the duration bounds of the overall SEAD mission.  At the time of modeling, the particular 
lower and upper bounds are not known, but it is still useful to provide some guidance for 
the activity durations of sub-activities so that it can be determined more quickly whether 
or not the activity can be planned. 
 
AML allows the description of sub-activity durations to be relative to their containing 
activity.  In Figure 3.1, the Group-Fly-to activity is constrained to take at least 90% of the 
lower bound and at most 90% of the upper bound of the Enroute activity.  The alternative 
to specifying duration bounds in relative terms is to leave them unspecified.  The problem 
with this is that by not properly constraining activity durations it is possible for the 
planner to produce a valid plan with respect to the constraints modeled, but that the group 
of vehicles cannot execute.  Relative bounds provide one solution to this problem, but 
another is described in the Future Work section. 

Vehicle Activities 

It is important to make a distinction between activity model primitives and activity 
execution primitives.  For example, consider the single-vehicle Follow activity.  The 
activity model for Follow is not primitive because its behavior is described in terms of 
other activity, but Follow is an execution primitive because it is among the set of 
activities that the vehicle knows how to execute.  Note that although the vehicle knows 
how to execute the Follow activity, it is still necessary to model the Follow activity to 
represent its effects on the system.  For example, while vehicle one is following vehicle 
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two, it is necessary for vehicle one to be listening for messages on both communication 
channels, therefore it should not be permissible for vehicle one to send out any messages 
at any time during this activity.  Activity model primitives will be referred to as 
primitives, while activity execution primitives will be called execution primitives. 
 

Some of the single vehicle execution primitives include Fly-to(waypoint), 
Bomb(location), and Listen().  These models can be described in AML or 

directly encoded because they are very simple.  For illustration, both the TPN models of 
these execution primitives are provided in Figure 3.20. 

 
 

Fly-Path(wpt1,wpt2,wpt3)[l,u] := { 
   Fly-To(wpt1)[l*33%,u*34%]; 
   Fly-To(wpt2)[l*33%,u*34%]; 
   Fly-To(wpt3)[l*33%,u*34%] 
} 
 
Attack(entrypt,droppt,exitpt,targetpos)[l,u] := { 

   Fly-To(entrypt)[l*33%,u*34%]; 
   Fly-To(droppt)[l*33%,u*34%]; 
   { 
      { Bomb(targetpos)[1,3]; [0,∞] }, 
      Fly-To(exitpt)[l*33%,u*34%] 
   } 
} 

Figure 3.21 AML description of two single-vehicle macro-activities 
 

[l,u] 

Fly-To(wpt).start Fly-To(wpt).end [l,u]

Listen().start Listen().end 

 

[l,u]

Ask(¬CH2=id)
Ask(¬CH1=id),

[l,u]
Bomb(loc).start Bomb(loc).end 

[l,u]

Ask(Bomb=ok) 

Figure 3.20 The TPN encoding of activity models of the single vehicle primitives Fly-

To, Bomb, and Listen (Note: zero-duration bound labels are omitted for clarity) 
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With these primitives, it is possible to describe higher-level single vehicle activities.  For 
example, Fly-Path(wpt1,wpt2,wpt3) describes the behavior of a vehicle flying 
along a path defined by three waypoints in terms of three sequential Fly-
to(waypoint) activities.  The Attack activity is described in terms of a series of Fly-
To(waypoint) activities and a Bomb(location) activity, as shown in Figure 3.21.  Each of 
these can be compiled into a TPN encoding in which the activity is represented by the 
composition of these execution primitives, as shown in Figure 3.22 for the Attack 
activity. 

Group Activities 

Once the set of single-vehicle activities are modeled, they can be composed to describe 
multiple-vehicle activities.  The activity models described in this section involve only 
two vehicles, but there is no limit to the number of vehicles in a group.  Group-activities 
may be composed of any combination of single-vehicle activities.  For example, the 
Group-Attack activity is composed of the single-vehicle Attack activity and a Lookout 
activity.  These activities are assigned to the members of the group by using the scope 
operator.  In Figure 3.23, vehicle one is assigned the Attack activity 
(ONE::Attack(..)) and vehicle two is assigned the Lookout activity 
(TWO::Lookout(..)). 
 

Group-Attack(entrypt,droppt,exitpt,targetpos)[l,u] := { 

   
ONE::Attack(entrypt,droppt,exitpt,targetpos)[l,u], 
 TWO::Lookout(ONE)[l,u] 
} 

Figure 3.23 AML description of a multiple-vehicle activity 
 

[l,u]
Attack(..).start Attack(..).end 

[1,3] 

Bomb(targetpos).start Bomb(targetpos).end 

[l*33%,u*34%] 

Fly-To(wpt).start Fly-To(wpt).end 

[l*33%,u*34%] 

Fly-To(wpt).start Fly-To(wpt).end 
[l*33%,u*34%] 

Fly-To(wpt).start Fly-To(wpt).end 

Figure 3.22 TPN encoding of the single-vehicle Attack activity 
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For example, in the AML description of the Group-Attack activity in Figure 3.23 
specifies that vehicle one is responsible for attacking the target, and vehicle two serves as 
lookout for vehicle one.  The corresponding TPN network is shown in Figure 3.24. 

Summary 

The Activity Modeling Language extends reactive programming to handle the expression 
of time critical events and contingencies.  AML is a variant of the Reactive Model-based 
Programming Language [25] that inherits its combinators, with the exception of 
probabilistic and utility-based choice, and augments this set with an interval construct 
that is used to express temporal constraints.  The Temporal Planning Network brings 
together the representations of Hierarchical Constraint Automata [25] and temporal plans 
[7,6,24], by extending unconditional, concurrent, temporal plans to allow for the 
encoding of conditional execution and non-deterministic choice.  This provides a simple 
and elegant unification of domain modeling and planning. 
 

[l,u]
Group-Attack(..).start Group-Attack(..).end 

[l,u] 

ONE::Attack(..).start ONE::Attack(..).end 

[l,u] 

TWO::Lookout(ONE).start TWO::Lookout (ONE).end

Figure 3.24 TPN encoding of the multiple-vehicle Group-Attack activity 



 47

Chapter 4 
Planning Algorithm 

 

Overview 

The planner described in this thesis works by searching over the space of all plans to find 
one that is both complete and consistent.  A plan is complete if choices have been made 
for each relevant decision point and it contains only primitive-level activities, and a plan 
is consistent if it does not violate any of its temporal constraints or symbolic constraints.  
One problem with planning in general is the incredibly large search-space.  For 
generative planners [21,17], the search-space is exponential in the plan length because, in 
the worst-case, operators can be chained together in arbitrary orderings.  As with 
hierarchical planners [17], this planner uses activity models which restrict this type of 
explosion in the search-space of plans by specifying, at least partially, the precedence 
relations of activities and by limiting the choices of activities at explicitly defined 
decision points.  These algorithms are exponential in the depth of the hierarchy, which is 
typically shallow, and therefore perform significantly faster than non-hierarchical 
planners on non-trivial problems. 
 
However, this planner has the added complexity of dealing with metric time.  Even 
though the activity models cut down the number of possible plans, the expansion into the 
time dimension makes this space intractably large, which makes it time consuming for 
the planner to explore anything but a small portion of the space.  Therefore, rather than 
examining individual plans in the space, the planner uses ideas from abstract planning 
[17] to make decisions that, in effect, rule out sections of the plan-space until all the plans 
left in the plan-space are both complete and consistent.  If no feasible plan is found, then 
the planner backtracks and makes a new set of decisions that rule out different parts of 
the space, repeating until a plan is found or it is determined that no valid plan exists. 
 
This planning algorithm uses the same fast temporal reasoning techniques as other 
temporal planners such as HSTS, but gains additional efficiency by pre-generating 
networks, in the form of TPN models, representing the possible executions of activities, 
and searching over this pre-generated structure to identify valid executions.  This 
technique is faster than HSTS and similar temporal planners that employ classical partial 
order planning techniques [18] because it avoids having to compose the activities online 
to examine possible executions.  This concept of using pre-generated structures to gain 
run-time efficiency has emerged recently in Artificial Intelligence Planning with methods 
such as Graphplan [2], SAT-plan [18,20], and Livingstone [23], and has also been used in 
the verification community for model checking.  It is only beginning to be explored for 
temporal planning, most notably by Temporal Graphplan [26]. 
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The input to this planner is an incomplete plan in the form of a Planning Network, which 
describes the mission scenario.  A scenario consists of an activity model of the mission or 
other top-level activity and any mission-specific constraints.  For example, Figure 4.1 
illustrates a sample input to the planner, whose top-level activity (defined by nodes 1-13) 
is the Enroute activity from the previous chapter (Figure 3.2).  The scenario also defines 
the time ranges over which path one is available (defined by nodes 14 and 15) and the 
interval over which the vehicles are allowed to engage the target (defined by nodes 16 
and 17).  These intervals are defined with respect to the beginning of the scenario, which 
represents at a fixed time, such as 8:00AM. 
 
In general, the input network is an incomplete plan that encodes the explicit decisions and 
the implicit decisions that have to be made by the planner.  The explicit decisions are 
encoded as decision nodes in the Planning Network, and the implicit decisions, including 
decisions about when activities should be executed and decisions about how to satisfy 
symbolic constraints, are determined from the temporal and symbolic constraints of the 
network. 
 
As stated in the Chapter 3, each TPN encoding specifies the valid executions of an 
activity in terms of a set of temporal and symbolic constraints.  A path through the 
network, from the start-node to the end-node of the top-level activity, represents a thread 
of execution.  Since a plan simply describes a set of threads of execution, the output of 
the planner consists of a set of paths through the input network.  For example, Figure 4.2 
illustrates a possible plan for the Enroute activity.  The portions of the TPN input 
scenario model that the planner did not select for execution are shown in gray. 

Figure 4.1 A Temporal Planning Network activity model of a scenario 
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The paths s-1-3-4-5-8-9-10-13-2-e and s-14-15-16-17-e define a 
consistent execution of the scenario described in Figure 4.1.  The first path defines the 
execution of the group of vehicles, and the second path defines the execution of the rest 
of the world in terms of the assertion or requirement of relevant conditions over the 
duration of the scenario.  Note that the duration bounds on some of the arcs have been 
tightened, for example, the duration bound label on arc (4,5).  These bounds are tightened 
by the planning algorithm in order to be consistent with both temporal and symbolic 
constraints imposed by the scenario definition.  This particular duration bound on (4,5) is 
tightened in order for its Ask(PATH1=ok) symbolic constraint to be consistent with the 
Tell(PATH1=ok) constraint asserted over the interval defined by arc (14,15). 
 
The planning algorithm can be broken up into three phases.  The first phase resembles a 
network search that discovers the sub-network, or alternatively the set of paths, that 
constitute a feasible plan, while incrementally checking for temporal consistency.  The 
second phase is analogous to the repair step of a hierarchical planner, in which symbolic 
constraint conflicts are detected and resolved by promotion or demotion and open 
conditions are covered  [17].  The third phase performs the decomposition of macro-
activities and recursive planning of these activities.  The Planning Algorithm pulls these 
phases together as described in Figure 4.3.  The remainder of this chapter will describe 
these phases in more detail. 

Figure 4.2 Example of a plan (in black) for the scenario described in Figure 4.1 
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Figure 4.3 Flowchart representation of the Planning Algorithm 
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Phase One: Select Plan Execution 

Network Search 

This phase of the planning algorithm selects a set of paths from the start-node to the end-
node of the top-level activity (the activity which is being planned).  These paths 
correspond to threads of execution that together describe a plan for executing the top-
level activity.  The planner handles this execution selection problem as a network search 
rooted at the start-node of the TPN encoding of the top-level activity.  If there were no 
decision nodes, this search would incrementally extend a set of paths from the start-node, 
through all forward arcs, until all paths reached the end-node of the top-level activity.  
This search is slightly modified to handle decision nodes. 
 
As stated in Chapter 3, each node of a Temporal Planning Network is either a decision 

node or a non-decision node.  If a plan includes a non-decision node with multiple out-
arcs, then all of these arcs and their tail nodes are also included in the plan.  If a plan 
includes a decision node with multiple out-arcs, then the arcs represent alternate choices, 
and the planning algorithm selects exactly one. 
 
The first phase of the planning algorithm is complete only when all paths reach the end-
node of the top-level activity and all of these paths, which define a sub-network of the 
original Planning Network, are temporally consistent.  For now, assume that there is an 
efficient function for testing temporal consistency.  The first phase of the planning 
algorithm is summarized in pseudo-code as the Modified Network Search algorithm in 
Figure 4.6.  For comparison, a generic network search algorithm [1] that is used for 
network exploration and reachability analysis is presented in Figure 4.5.  The set A, is the 
set of active nodes, which are those nodes from which paths have yet to be fully 
extended.  The sets SN and SA are the sets of selected nodes and selected arcs, 
respectively. 
 

1 Network-Search( N ) 
2    A = { start-node of N }; 

  

 

 

(a

  

 

 

(b

Figure 4.4  (a) Decision node, (b) Non-decision node; Shaded 

nodes and bold arcs are selected. 
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3    SN = { start-node of N }; 
4    SA = { }; 
5    While ( A is not empty ) 
6       Node = Select and remove a member of A; 
7       For each Arc that is an out-arc of Node 
8          If ( tail of Arc is not in SN) 
9             Add Arc to SA and 
10             Add tail of Arc to A and SN; 
11          End-If 
12       End-For 
13    End-While 
14 End-Function 

 
Figure 4.5 A generic network search algorithm 

 
There are a few differences between the generic network search and the modified 
network search used for the first phase of the planning algorithm.  The first difference is 
that for a generic network search, every node is handled as a non-decision node (Figure 
4.5 lines 7-12), whereas this modified search has an added clause to handle decision 
nodes differently (Figure 4.6 lines 8-13 and lines 15-20), restricting the extension of 
paths through out-arcs to a single arc. 
 
The second difference is that at the end of each iteration of the main While-loop, the 
modified network search tests for temporal consistency (Figure 4.6 lines 24-26).  If the 
test fails, then the search calls the Backtrack(..) function in line 25 which reverts SN, SA, 
and A to their states before the most recent decision for which there remain unmarked 
choices, and selects a different out-arc.  In this planning algorithm, chronological 
backtracking is used but a wealth of more efficient search algorithms exist. 
 
Checking for temporal consistency after every iteration of the While-loop is unnecessary 
because as long as no cycles are induced in the network, there is no way for a temporal 
inconsistency to be induced (see next section for explanation).  Determining whether a 
cycle has been created can be done for each arc that is selected by checking whether the 
arc’s tail node has already been selected.  Since this can be done in constant time, this can 
be significantly more efficient than testing temporal consistency after every iteration, 
although in the worst case these two methods take the same asymptotic running time. 
 
 

1 Modified-Network-Search( N ) 
2    A = { start-node of N }; 
3    SN = { start-node of N }; 
4    SA = { }; 
5    While ( A is not empty ) 
6       Node = Select and remove a member of A; 
7       If ( Node is a decision-node ) 
8          Arc = Select any unmarked out-arc of Node and 
9          Mark Arc and 
10          Add Arc to SA; 
11          If ( tail of Arc is not in SN  ) 
12             Add tail of Arc to A and SN; 
13          End-If 
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14       Else 
15          For each Arc that is an out-arc of Node 
16             Add Arc to SA; 
17             If ( tail of Arc is not in SN  ) 
18                Add tail of Arc to A and SN; 
19             End-If 
20          End-For 
21       End-If 
22  
23       If ( Cycle-Induced(SN, SA) ) 
24          If ( Not(Temporally-Consistent(SN, SA)) ) 
25             Backtrack(SN, SA, A); 
26          End-If 
27       End-If 
28    End-While 
29 End-Function 

 
Figure 4.6 Planning Algorithm Phase One: Modified Network Search 

 
Finally, after a generic network search is complete, the set of selected nodes and arcs, SN 
and SA, define a tree rooted at the start-node of N and extending to all nodes that are 
reachable from it.   However, after a modified network search, the selected nodes and 
arcs instead define a set of paths from the start-node of N to the end-node of N.  This is 
why lines 10-13 and 16-19 of Figure 4.6 differ from the analogous lines of the generic 
network search algorithm, lines 8-11 of Figure 4.5. 
 
The modified network search algorithm in Figure 4.6 does not seem to fully extend paths 
from the start-node to the end-node.  In fact, it stops extending paths when it encounters a 
node that is already in SN.  However, the fact that this node is already in SN implies that 
two concurrent threads of execution have merged.  Continuing the search by extending 
both paths would lead to the redundant selection of the set of paths from this node to the 
end-node.  Since there is nothing gained by this redundant selection, fully extending only 
one of these paths is sufficient. 
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Figure 4.7 Example of the Modified Network Search Algorithm; (a) Initially, (b) After 3 

iterations, (c) Temporal inconsistency detected, (d) Complete 
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To illustrate the modified network search, consider the input network illustrated in Figure 
4.7a, in which node 1 is the start-node and node 2 is the end-node.  Initially, node 1 is 
selected, which is indicated by its darker shade, and it is active, which is indicated by its 
dashed outline.  In the first iteration, it chooses node 1 from the set of active nodes, and 
since node 1 is not a decision node, it selects all out-arcs and adds their tails to the 
selected and active set.  This continues until both node 5 and node 15 are selected as in 
Figure 4.7b.  At this point, the modified network search chooses node 5 from the active 
set.  Since node 5 is a decision node, the algorithm must choose either arc (5,7) or arc 
(5,10).  It selects arc (5,7) and continues extending until it reaches the state shown 
in Figure 4.7c. 
 
Note that arc (14,2) is selected in Figure 4.7c, forming the cycle, 1-3-4-5-7-8-9-
6-13-14-2-1, so the algorithm checks for temporal consistency.  In this example, this 
selected sub-network is temporally inconsistent, so the algorithm backtracks to the most 
recent decision point at which there are options that have not already been tried.  Node 5 
is the most recent decision node and out-arc (5,10) has not yet been tried, so the 
algorithm reverts the sets of selected nodes and arcs and the set of active nodes to their 
state before the last decision at node 5, as in Figure 4.7b.  The algorithm then selects the 
arc (5,10), extends the path through this arc to the end-node, and finally extends the 
path through arc (15,16) to the end-node, which results in the temporally consistent 
sub-network of selected nodes and arcs shown in Figure 4.7d. 

Temporal Constraint Consistency 

Consider any sub-network of a Planning Network.  Disregarding the symbolic constraint 
labels on the arcs, this sub-network of a Planning Network is a Simple Temporal 
Network.  Since this is the case, testing for temporal consistency of a partial or completed 
plan can be performed using the same methods as used for Simple Temporal Networks 
[7,19]. 

 
Recall from Section 2.2.2 that each STN can be represented as a distance graph, and an 
STN is temporally consistent if and only if its distance graph contains no negative cycles 
[7].  The existence of a negative cycle implies there is a set of temporal constraints that 
cannot be satisfied.  To illustrate a temporal consistency, consider the STN representation 
of an activity whose duration is lower-bounded by A time units and upper-bounded by B 
time units (Figure 4.8a).  Looking at the distance graph form of this STN in Figure 4.8b, 

[A,B

(a) 

B 

-A 

(b) 

Figure 4.8  Temporal constraint in (a) STN form, (b) Distance graph form 
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it is clear that there is a cycle formed by the forward arc and reverse arc, but as long as B 
is greater than or equal to A the cycle is non-negative.  However, if B is less than A, then 
this becomes a negative cycle.  This temporal inconsistency corresponds to the 
impossible condition of the activity duration’s upper bound being less than its lower 
bound. 

Negative Cycle Detection 

Fortunately, there are well known algorithms for detecting the presence of negative 
cycles in polynomial time.  The simplest method is to use an all-pairs shortest path 
algorithm, for example, Floyd-Warshall algorithm or the matrix-multiplication-based all-
pairs shortest path algorithm [5].  These algorithms return a distance matrix, D, of n rows 
and n columns, where n is the number of nodes in the network, such that the D[i][j] is 
the shortest path length from node i to node j.  Note that the diagonal elements 
(D[0][0], D[1][1], D[2][2], etc.) must always be zero, because there is no 
distance from a node to itself.  However, if there are negative cycles then some of these 
diagonal elements will be negative. 

 
The Floyd-Warshall algorithm takes Θ(n3) time and requires Θ(n2) space to store the 
distance matrix, and the matrix-multiplication-based all-pairs shortest path algorithm 
takes Θ(n3logn) time and requires Θ(n2) space as well.  However, there are methods of 
detecting negative cycles that are both faster and require less space.  The Bellman-Ford 
algorithm is used to compute single-source shortest paths [5] but also can be used to 
check for negative cycle in Θ(nm) time, where m is the number of arcs in the distance 
graph.  In addition, this algorithm only needs to maintain one distance label at each node, 
which only takes Θ(n) space.  A variant of this algorithm is used by HSTS [12] for fast 
inconsistency detection. 
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Figure 4.9  (a) Network with a negative cycle 0-1-2-0, (b) All-pairs shortest path 

distance matrix for this network returned by the Floyd-Warshall algorithm 
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The algorithm used by the planner described in this thesis is a particular implementation 
of the generic label-correcting single-source shortest-path algorithm [1], which takes 
O(nm) worst-case asymptotic running time, but performs faster in many situations.  This 
algorithm also requires only Θ(n) space.  It is very similar to the Bellman-Ford algorithm, 
which is just a different implementation of the label-correcting single-source shortest 
path algorithm, except that it uses a different strategy for examining nodes. 
 

Bellman-Ford (N,source) 
  For i = 1 to |nodes of 
N|-1 
    d(i) = +∞; 
  End-For 
  d(source) = 0; 
  For k = 1 to |nodes of 
N|-1 
    For each node i of N 
      For each arc (i,j) 
in N 
        If d(j) > 
d(i)+c(i,j) 
          d(j) = 
d(i)+c(i,j); 
        End-If 
      End-For 
    End-For  
  End-For 
End 

 FIFO-label-correcting (N,s) 
  For i = 1 to |nodes of N|-1
    d(i) = +∞; 
    examined_count(i) = 0; 
  End-For 
  d(source) = 0; 
  list = {source}; 
  While (list is not empty) 
    i = pop head of list; 
    examined_count++; 
    If examined_count(i) > n 
      print “Negative Cycle”;
      Exit-Function; 
    End-If 
    For each arc (i,j) in N 
      If d(j) > d(i)+c(i,j) 
        d(j) = d(i)+c(i,j); 
        If j is not in list 
          push j to end of 
list; 
        End-If 
      End-If 
    End-For 
  End-While 
End 

 
(a)   

(b) 

 

A label-correcting shortest path algorithm works by incrementally updating or correcting 
distance labels in a monotonically decreasing fashion until the single-source shortest path 
optimality condition is satisfied, that is, the distance label of every node must be less than 
or equal to the distance label of any other node plus the distance between them.  The 
Bellman-Ford algorithm always examines each of the nodes n times, performing distance 
label corrections, which is guaranteed to complete and return the shortest path distance 
labels as long as there are no negative cycles. 
 

Figure 4.10  Single-source shortest path algorithms: (a) Bellman-Ford, (b) FIFO label-correcting
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The FIFO implementation, which is used by this planner, of the label-correcting shortest 
path algorithm only examines each node as many times as the node’s distance label may 
be invalidated [1].  The distance label for node i becomes invalidated only if some node 
j is examined by the algorithm whose distance label plus the distance from node j to 
node i is less than the distance label of node i.  It is possible for nodes only to be 
examine a few times, although in the worst case all nodes are examined n times.  Another 
advantage of the FIFO implementation is that it can incrementally check for negative 
cycles and stop early if one is detected, whereas the Bellman-Ford algorithm must 
complete examining all the nodes n times before it can detect a negative cycle. 

Phase Two: Refine Plan 

Symbolic Constraint Consistency 

There are two types of symbolic constraint inconsistencies, incompatibilities and open 
conditions.  An incompatibility exists when there are two arcs in the network, 
representing overlapping intervals of time, which are labeled with symbolic constraints 
that conflict.  Two symbolic constraints conflict if one is either asserting or requesting 
that a condition is true, and the second is asserting or requesting that the same condition 
is false.  For example, Tell(Not(c)) and Ask(c) conflict, as do Ask(c) and 
Ask(Not(c)).  Clearly, since such condition pairs can never both be satisfied at the 
same time, they represent one form of plan inconsistency. 
 
The second type of symbolic constraint inconsistency is an open condition, which is 
defined as any unsatisfied condition.  In the Planning Network representation, open 
conditions appear as Ask constraints, which are used to model pre-conditions, post-
conditions, and conditional execution as described in the previous chapter.  An Ask 
constraint represents the need for some condition to be true over the interval of time 
represented by the arc labeled with the Ask constraint. 
 
The second phase of the planning algorithm finds these symbolic constraint 
inconsistencies and tries to resolve them.  If there is an inconsistency that cannot be 
resolved, then the planner returns to the first phase of planning which needs to make a 
new set of decisions. 

Conflict Detection 

Detection of open conditions can be done by scanning through all arcs and checking for 
Ask constraints.  Detecting incompatibilities requires more work because the planner 
must first compute the feasible time bounds for each temporal event (node) in the 
network, and then use these bounds to identify potentially overlapping intervals that are 
labeled with conflicting symbolic constraints. 
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As stated in section 2.2.2, these bounds can be computed by solving an all-pairs shortest-
path problem over the distance graph representation of the partially completed plan [7].  
The upper bound of the feasible time range for each temporal event is given by the 
shortest path distance from the origin node to the node representing the temporal event.  
The lower bound is given by the negative shortest path distance from the node 
representing the temporal event to the origin.  These bound the time of the event with 
respect to the fixed time of the origin node. 
 
For example, consider the plan fragment shown in Figure 4.11, in which node 0 is the 
artificially introduced origin node whose time is fixed to 8:00am, and the time units are 
minutes.  The feasible times for event 2 to begin are any time between 8:11am and 
8:12am, because the shortest path distance from the origin to node 2 is 12 time units, and 
the shortest path distance from node 2 to the origin is –11 time units, as shown with the 
analogous distance graph in Figure 4.12. 
 

2
[8,10

1

3

[2,3] [7,10

0 

[3,4] 

<0,0 <1,2

<3,4 <1,2

Figure 4.11  Plan fragment with feasible time bound labels 
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This planner uses the Floyd-Warshall algorithm for computing all-pairs shortest paths 
because of ease of implementation.  However, there are alternative algorithms that may 
outperform this one.  For example, Johnson’s algorithm (also for computing all-pairs 
shortest paths) has better asymptotic running time than Floyd-Warshall on networks in 
which the number of arcs is much less than O(n2).  While Floyd-Warshall runs in Θ(n3) 
time, Johnson’s algorithm [5] can be implemented to run in O(n2logn + mn), which 
becomes O(n2logn) if m=O(n).  Recall from section 2.2.2 that while temporal 
inconsistencies can be detected by solving a single-source shortest path, computing the 

feasible time bounds of temporal events requires solving an all-pairs shortest path 
problem. 
 
Once these feasible time ranges are determined, the planner can detect which arcs may 
overlap in time.  If there are two arcs that may overlap and that are labeled with 
conflicting symbolic constraints, then they are resolved by ordering the intervals if 
possible, as described in the next section.  However, it can be expensive to go through all 
pairs of arcs to check for conflicting constraints.  In fact, if there are s different symbols 
and m arcs in the network, then this method takes Θ(sm2) time. 
 
For each constraint in the network, the planner maintains an interval set data structure 
that keeps track of all of the intervals that assert or require the condition represented by 
that constraint or its negation.  In order to identify conflicts, the planner need only check 
each interval set for conflicts.  This takes O(si 2) asymptotic running time, where i is the 
maximum cardinality over all interval sets.  This is at least as good as the brute-force 
method described in the previous paragraph, since in the worst case i=O(m).  However, it 
performs much better in practice because most of the interval sets have very few 
elements. 
 
An alternative to the interval set that was not implemented is the interval tree data 
structure [5].  Interval trees are used to store a set of intervals keyed by their low 
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endpoint, and they support interval insertion, deletion, and overlap search in logn time, 
where n is the number of stored intervals.  Each arc is represented by an interval whose 
start-time is the earliest absolute time of either end-point of the arc, and whose end-time 
is the latest absolute time of either end-point of the arc.  Using this data structure results 
in the same worst-case running time of O(sm2), but may it may lead to even better 
performance in practice than using the interval set. 

Conflict Resolution 

Both incompatibilities and open conditions are handled by introducing additional 
temporal constraints into the plan.  Each incompatibility consists of two arcs that 
represent intervals of time that may overlap, but in some cases it is possible to further 
constrain the time ranges of the start- and end-points of the intervals to ensure that they 
will not overlap.  This is done by employing the standard threat resolution technique of 
hierarchical planners (promotion/demotion) [17,21], by introducing temporal constraints 
that force orderings. 
 

For example, consider the plan fragment containing two activities with conflicting 
symbolic constraints in Figure 4.13a, in which the feasible times for each event are 
contained in angled brackets at their corresponding nodes.  Both Figure 4.13b and Figure 
4.13c are valid executions of these planned activities according to the feasible time 

 
Ask(Not(c

A.star A.end
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B.star B.end
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Figure 4.13  (a) Plan fragment containing an incompatibility, (b) & (c) Two possible scenarios 

of how activities A and B may be performed 
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ranges of their start and end events.  Since Ask(Not(c)) and Tell(c) cannot both 
be satisfied over the period from time 5 to time 7, the execution illustrated in Figure 
4.13b is invalid.  However, the execution shown in Figure 4.13c is valid, which 
demonstrates that it is possible to resolve incompatibilities in some cases by further 
constraining the feasible time ranges of events. 
 
Rather than arbitrarily constraining the time ranges of the interval start- and end-points, 
the planner introduces orderings to resolve each incompatibility.  An ordering pushes one 
interval before another interval by adding a non-negative temporal constraint from the 
end-point of the first to the start-point of the second, or vice versa.  Note, the temporal 
constraint used to represent this ordering cannot have a zero lower bound because that 
would still allow for the end-time of the first activity to be the same as the start-time of 
the second.  Therefore, the temporal constraint used to represent the ordering has a lower 
bound of ε, where ε represents the granularity of the time representation.  For example, if 
time were represented in milliseconds, then ε would equal 1 millisecond.  The need for 
this positive ε is a limitation of this planner that might be resolved by incorporating a 
dense model of time; this is left for future work. 
 

Figure 4.14 shows an ordering, with ε = 1, which would have resolved the 
incompatibility in the plan fragment from Figure 4.13.  The other possible ordering in this 
example, which would force activity B after activity A, induces a temporal inconsistency 
so it is not an option in this case.  Using orderings to constrain the temporal events can 
repair a plan while retaining as much temporal flexibility as possible. 
 

 
Ask(Not(c

A.star A.end

 
Tell(c)

B.star B.end
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<4,5 <6,7
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<14,18> 
[1,∞]

Figure 4.14  The temporal constraint between B.end and A.start represents an ordering 

(with ε = 1) used to resolve the incompatibility illustrated in Figure 4.13 
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An open condition is represented by an arc labeled with an Ask constraint, which 
represents the request for a condition to be satisfied over the interval of time represented 
by the arc.  If this interval of time is contained by another interval over which the 
condition is asserted by a Tell constraint, then the open condition is satisfied or closed.  
Finding potentially overlapping intervals can be done using the same method as described 
in the previous section for detecting incompatibilities. 
 

Once an interval that may satisfy this open condition is found, temporal constraints can 
be added to force the interval to contain the interval of the open condition.  In classical 
partial order planners, open conditions are typically preconditions of activities, and each 
of these open conditions is closed by introducing a causal link from an activity that 
asserts the condition (as a post-condition) to the activity whose open precondition was 
satisfied.  The method of resolution is the same except that the open conditions may have 
extended temporal duration, and in order to be satisfied they must be covered by another 
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Figure 4.15  (a) Plan fragment in which activity B has an open maintenance condition, (b) 

Temporal constraints are introduced to satisfy the open condition 
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interval over which the condition is asserted.  This method of closing of open conditions 
is also closely related to the way that HSTS satisfies compatibilities [12]. 
 
In Figure 4.15a, activity B has a maintenance condition represented by the Ask(c) 
symbolic constraint label on the temporal constraint between the nodes corresponding to 
the start of B and the end of B.  Figure 4.15b shows how temporal constraints can be 
added to satisfy this open condition by forcing the interval over which condition c is 
asserted by the Tell(c) constraint to contain the interval of the Ask(c) constraint.  In 
this example, the start of B is constrained to be at the same time or after the start of A, 
and the end of B is constrained to be at the same time or after the end of A.  The gray, 
dashed arc from the Tell(c) to the Ask(c) indicates that the Ask(c) open condition 
was closed by this Tell(c). 

Phase Three: Hierarchical Decomposition 

The third phase of the planning algorithm performs the incremental decomposition of the 
portions of the plan representing macro-activities, similar to the decomposition 
performed by other hierarchical planners [17].  The current implementation of the planner 
applies this decomposition iteratively during planning, but an alternative would be to 
fully decompose the top-level TPN activity model offline so that during planning, the 
planner only needs to perform the network search and refinement (phases one and two).  
Performing the decomposition online saves memory but may take longer than pre-
expanding the top-level activity model if online expansion becomes the efficiency 
bottleneck.  Other methods of addressing this tradeoff should be considered in future 
work.  Only the iterative, online method of hierarchical decomposition is addressed in 
this section. 
 
All activities are represented in a Temporal Planning Network by a start- and end-node 
pair, labeled with the name of the activity.  The planning algorithm maintains a list of all 
macro-activity names, and after the first two phases of the planning algorithm complete, 
the planner scans through the name labels to identify any unexpanded macro-activities.  If 
an unexpanded macro-activity is recognized, then the planner selects a single macro-
activity, instantiates a copy of the TPN model of the activity, and merges this network 
into the partially completed plan.  The merge simply superimposes the expanded TPN 
activity model onto the plan, lining up the start- and end-nodes of the expanded activity 
model with the start- and end-nodes in the plan. 
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Figure 4.16 illustrates a plan containing the non-primitive Enroute activity, whose start- 
and end-events correspond to nodes 1 and 2 in the figure.  The planner scans through the 
partially complete plan, looking for non-primitive activities, and recognizes the Enroute 
activity whose name is among the set of macro-activity names.  The planner then 
performs a lookup to retrieve and instantiate a copy of the TPN activity model 
corresponding to the macro-activity.  A graphical depiction of the lookup table for the 

macro-activities is shown in Figure 4.17. 
 
The instantiation first constructs a new copy of the activity model network, and then 
binds variables, including the activity argument variables and the duration bound 
variables.  For example, the lower and upper duration bounds of the Enroute activity as 
defined in by the partially complete plan, are passed through to the sub-activities whose 
duration bounds were defined relatively.  The relative bounds for the Group-Fly-Path 
sub-activity of Enroute, for example, was [l*90%,u*90%], and would be instantiated 
to [405,486] in this case since l=450 and u=540 for this instance of the Enroute 
activity. 
 
Once the planner expands the macro-activity, by instantiating a copy of the 
corresponding activity model, it merges the expanded activity model into the network 
between the node pair representing the macro-activity’s start and end events.  For 
example, the planner would merge the Enroute()[450,540] activity model instance 
into the partial plan in Figure 4.16 between nodes 1 and 2, yielding the TPN shown in 
Figure 4.1, at the beginning of this chapter.  The final step of merging is adding the start-
node of the macro-activity to the set of active nodes maintained for the modified network 
search of phase one. 
 
 
 
 

Activity Name TPN Activity Model 

 Figure 4.16 A partially complete plan containing a macro-activity represented by nodes 1 and 2 
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Listen  

Enroute 

. . . . . . 

 
Figure 4.17 Partial macro-activity map maintained by the planner 

 
After the macro-activity is expanded and merged into the partial plan, the planning 
algorithm returns to phase one to search through the sub-network corresponding to the 
newly expanded macro-activity for a set of paths that define a valid execution of this 
macro-activity within the larger context of the plan.  The planning algorithm iteratively 
decomposes all macro-activities in the plan in this manner until they have all been fully 
expanded, and this plan is returned. 
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Chapter 5 
Conclusions 

 
 
The research described in this thesis focused on the development of a planning system for 
coordinated air vehicle missions.  In order to support this planning system, the Activity 
Modeling Language (AML) was created for facilitating the construction of complex 
coordinated activity models, by extending the Reactive Model-based Programming 
Language to allow the expression of metric time constraints.  Furthermore, a new 
encoding for the hierarchical activity models described in AML, the Temporal Planning 
Network (TPN), was introduced by drawing together ideas of temporal constraint 
representation and reasoning with Simple Temporal Networks [7] and hierarchical, 
constraint-based modeling with Hierarchical Constraint Automata [25].  These together 
provide a natural and expressive language for describing complex coordinated activities, 
and an encoding for the activity models that support efficient planning, respectively.  
Finally, this thesis describes a planning algorithm for rapidly generating multiple-UCAV 
mission plans.  This chapter provides a description of the implementation of Kirk, a 
planner that brings together these research contributions, and summarizes results of 
applying the planner to several mission scenarios. 
 
Kirk makes significant progress towards the goal of applying model-based programming 
techniques to the problem of planning for coordinated air vehicle mission planning.  
However, many issues remain to be explored.  Therefore, this chapter points the reader to 
a number of interesting and worthwhile research and implementation issues to be 
addressed in future work. 

Results 

Planner Implementation 

Kirk consists of three main functional modules as shown in Figure 5.1.  The Plan 
Manager performs the planning and related tasks, the Plan Runner takes a plan produced 
by the Plan Manager and executes it in a simulated environment, and the AML Compiler, 
which has not yet been implemented, is supposed to read in AML description files and 
compile AML activity descriptions into a set of TPN specification files. 
 

The PlanNet data structure was implemented to represent the TPN models that were 
described in Chapter 3.  This data structure maintains and supports the insertion, removal, 
and access of temporal events, temporal constraints, and symbolic constraints.  In 
addition, it supports operations for testing temporal consistency, computing feasible time 
bounds for each temporal event, and identifying symbolic constraint incompatibilities.  
Finally, it is augmented with methods that allow it to save and restore planning state. 
 
The Plan Manager is responsible for performing the tasks of the planning algorithm 
described in Chapter 4.  It can be used to construct a PlanNet object from a Temporal 
Planning Network specification file that describes a mission scenario, and apply the 
planning algorithm to this network to generate a plan, which is then passed to the Plan 
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Runner.  The Plan Manager also maintains additional information, such as the list of 
macro-activities, necessary to support the functions of the planning algorithm. 

 
The Plan Runner is used to execute a plan generated by the Plan Manager.  In order to do 
this, the Plan Runner interfaces with a multiple vehicle dynamics simulation and 
visualization system, which is used to simulate the state and behavior of a group of 
vehicles.  The Plan Runner relies on a basic implementation of the STN-plan dispatching 
algorithm that was used by HSTS [19] for plan execution.  The Plan Runner generates 
commands corresponding to the vehicle execution primitives in the plan, and performs 
incremental updates to ensure that execution is consistent with the plan. 
 
Kirk is implemented in ISO/ANSI compliant C++, with the exception of a small portion 
of the Plan Runner implementation responsible for communicating with the Simulation 

 
AML Compiler AML file

 

Plan Manager 

TPN file 

PlanNet Plan Runner 

Simulation / 

Visualization 

update 

comman

KIRK

Figure 5.1 Block diagram of the Kirk planning system 
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and Visualization module.  Currently, this communication relies on non-standard 
message passing libraries. 

Performance 

Kirk takes as input an activity instance and a lower and upper duration bound.  For 
example, Group-Rendezvous(1000,2000,1000)[130,180] would be a valid 
input.  For testing, Kirk was used to generate plans for various activities in the nominal 
case.  Given more time, it would have been better to construct more complex test 
scenarios that included additional externally imposed constraints on activities. 
 
The primary activity used for testing Kirk was the Group-Sead activity, which was 
based on descriptions of current manned combat air vehicle SEAD missions [27].  This 
activity was designed to model the mission described in section 1.2.2.  The AML 
description of the Group-Sead activity is included, along with the other activity 
descriptions, in Appendix A.  In the absence of the AML Compiler, these were compiled 
by hand into TPN files.  The TPN specification file format is described in Appendix B, 
along with the actual TPN specification for an example scenario.  The fully expanded 
TPN generated from the primary SEAD test case included 273 nodes.  A planner output 
dump that lists the states of each of these nodes after planning is provided in Appendix C. 
 
Figure 5.2 summarizes some quantitative performance results of having Kirk generate 
nominal plans for several different activities.  The testing platform was an IBM Aptiva 
E6U with an Intel 400Mhz Pentium II processor and 128MB of RAM, running Redhat 
Linux version 6.1. 
 
 
 
 
 

Activity 
Instance 

Number of  
Nodes   

Number of 
Activities 

Time for  
Planning 

Group-Sead() 273 47 404 s 

Group-Enroute() 112 19 16 s 

Group-Attack(..) 27 8 235 ms 

Follow(..) 4 1 4 ms 

 
Figure 5.2 Summary of Kirk’s runtime performance on several test cases 

 
The Activity Instance refers to the top-level activity that was being planned.  The 
Number of Nodes is the size of the expanded TPN after planning.  Usually, about half of 
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these were included in the final plan, with the rest corresponding to unselected 
executions.  The Number of Activities indicates the number of primitive activities 
included in the final plan.  Finally, the Time for Planning gives the time that it took for 
Kirk to generate a plan corresponding to each of these activities. 
 
The time required for planning in many cases was heavily dominated by the time required 
for phase two of the planning algorithm, and in particular the computation of feasible 
time bounds for events.  Section 5.2.3 addresses this issue by outlining some suggestions 
for future optimizations of the algorithm to avoid this performance degradation. 

Future Work 

This thesis has laid the groundwork for a variety of interesting future research.  This 
section describes some of the open research issues and some suggested extensions of the 
planner.  These suggestions for future work fall into three main categories.  The first 
category includes some ideas for making the planner more robust.  The second describes 
some potential limitations of AML and TPN and suggests ways to correct and improve 
the activity models.  The third category describes some methods for further improving the 
efficiency of the planning algorithm. 

Handling Contingencies 

One way that planners can be more robust is by planning for all, or at least many, 
possible contingencies [17].  Contingent planners, also referred to as conditional 
planners, plan for different contingencies by keeping track of different plans for each 
possible combination of uncontrollable events.  At the time of plan execution, the agents 
can query the state of the exogenous event to decide which plan should be executed.  The 
planner described in this thesis is able to support the description of contingencies, but the 
current version of the planning algorithm does not generate contingent plans.  In the 
context of this planner, contingent plans can be encoded along with the nominal mission 
plan using the choice operator that represent several different executions, each 
conditioned on a possible state of some exogenous factor, as shown in Figure 5.3.  In this 
example, depending on the number of enemy targets detected, the group performs a 
different type of attack.  In order to fully support contingency planning, it will be 
necessary to research the issues of accurately modeling sensing actions and incorporating 
these actions into the mission plans. 
 

choose { 
   { if target_count=1 then Group-Attack(target1) }, 
   { if target_count=2 then Group-Split-
Attack(target1,target2) } 
} 

 
Figure 5.3 Example of how the AML can represent contingent executions 

 
One shortcoming of the Simple Temporal Network plan representation used by this 
planner is that it assumes that activity durations are controllable to the degree that it is 
possible to execute each activity of the plan within the duration bounds specified by the 
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plan.  Although this provides more flexibility than a plan that predetermines the start 
times for every activity, it still may not adequately model the uncertainty of activity 
execution, especially for activities with a large variance in duration.  There has been 
recent research exploring how to handle this type of execution uncertainty both at plan-
time [20] and at execution-time [11], in the context of temporal planning with the STN.  
Since the Temporal Planning Network is a direct extension of the Simple Temporal 
Network, it should be possible to extend these methods to further enhance the robustness 
of this planner. 
 
Another way to increase the robustness of this planner is to incorporate the methods of 
continuous planning and iterative plan repair that can be used to resolve failures in the 
plan that arise during plan execution.  This method of fast, incremental repair is used by 
CASPER [3] to increase the reactivity of spacecraft to unexpected events, and it seems 
plausible to support fast plan repair given the ability of this planner to very quickly (less 
than a second) generate plans for very high-level activities of the mission.  The next step 
is to examine the issue of how to quickly and smoothly modify the current plan or 
transition to a new plan during plan execution.  Note, this poses an interesting problem 
because it isn’t possible to put the air vehicles into a safe-mode while performing the 
transition to the updated plan, especially if the vehicles are in hostile territory. 

Improving the Activity Models 

The correctness of a plan generated by any planner depends on the correctness of the 
activity models on which it relies.  This section describes some open representational 
issues of AML and TPN, and describes improvements to the activity models described in 
this thesis that may be explored in the future. 
 
At the level of abstraction at which activities were modeled for this planner, it was 
sufficient to encode the transitions between activities, for example, when two activities 
were composed serially, using zero-duration temporal constraints.  The effect of these 
temporal constraints was to constrain the start time of the second activity to be the same 
as the end time of the first.  The problem with this representation is that in any real 
system that is executing activities that are not fully controllable, there will always be a 
delay between the completion of one activity and the start of the next.  The reason for this 
is that it requires some time, however miniscule, for the system to process that the first 
activity has completed and to issue the command for the second to begin.  By not 
modeling this latency in the plan, it is possible for even small execution delays to 
accumulate and cause activities to run past their latest allowed completion times, as 
discovered by Muscettola, et al. [12].  Therefore, future research is necessary to explore 
first whether it is necessary to model this latency accumulation in the context of this 
planner, and second what implications this has on the TPN activity model encoding.  If it 
is found that zero-duration temporal constraints do not accurately model activity 
behavior, then these may be replaced with the estimated bounds on system latency. 
 
Another representational issue that was mentioned in Chapter 3 was the interpretation of 
the direction of arcs in the Temporal Planning Network.  Currently, the arcs signify both 
temporal constraints and also precedence relations, which allow for directed paths 
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through the network to represent a thread of execution composed of chronologically 
ordered temporal events.  However, the interpretation of the arc as both a temporal 
constraint and a precedence relation breaks down when negative temporal constraints are 
allowed, which might be useful for future activity modeling.  If this is the case, then this 
issue of the interpretation of arc direction must be revisited. 
 
One problem with the activity models used by this planner is that the models may not 
accurately represent the duration bounds of their respective activities.  For example, the 
duration of any instance of a Fly-To activity should be bounded roughly as 
[d/maxv,d/minv], where d=distance to the destination, minv=minimum velocity of 
the vehicle, and maxv=maximum velocity of the vehicle.  However, the current 
incarnation of the Fly-To activity model does not impose such bounds.  The compile-time 
computation of activity duration bounds based on system limitations would enhance the 
correctness of the activity, so it is certainly worth investigating in the future.  In addition, 
to support onboard replanning, it might be worthwhile to explore having the ability to 
estimate activity duration bounding as an online capability. 
 
Finally, the TPN activity model encoding does not currently support the representation of 
post-conditions.  While generative planners that use STRIPS activity models rely on pre- 
and post-conditions for constructing valid executions, the TPN activity models already 
encode these executions, so post-conditions are not necessary for this purpose.  However, 
post-conditions are important because they specify the correct behavior of activities, 
which is critical for execution monitoring.  Therefore, it may be useful to augment the 
TPN representation to support this in the future. 

Optimizing the Planner 

This section describes some potential optimizations that should be considered for future 
versions or implementations of the planner.  One of the qualitative observations on the 
performance of the planner during testing was that the bottleneck operation seemed to be 
the computation of feasible time bounds for all temporal events at the beginning of Phase 
Two of the planning algorithm.  This implies that if it is possible to speed up this 
operation, then this may significantly reduce the time it takes to generate a plan.  
Fortunately, several potentially powerful optimizations may be applied. 
 
Recall that computing the feasible time bounds for all temporal events is done by solving 
an all-pairs shortest path problem.  The current implementation of the planning algorithm 
uses the Floyd-Warshall algorithm for this, but as mentioned in section 4.3.2, the same 
problem is solved by Johnson’s all-pairs shortest paths algorithm, which has better 
asymptotic running time in sparse networks.  Since the TPN activity networks are 
typically sparse, using Johnson’s algorithm may significantly improve the planner’s 
running time. 
 
In the current implementation of the planning algorithm, after a macro-activity is 
expanded and merged into the partial plan, the planner computes the feasible time bounds 
of all temporal events.  This is more work than necessary in many cases because it may 
be possible to compute the time bounds of the macro-activity with respect to its start- and 
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end-nodes, and then separately re-compute the time bounds of the rest of the events in the 
rest of the plan.  This too may result in a significant improvement in planner 
performance, especially for iterations of the planning algorithm in which large macro-
activities (one with many nodes) are expanded. 
 
There is a simple method of contracting Simple Temporal Network plans, used by HSTS 
[12], which may also be applied to Temporal Planning Networks.  The contraction 
merges all nodes that correspond to the same point in time (i.e. those connected by zero-
duration temporal constraints) into a single node, and reasons about all of them together.  
This is very useful for when planning for activities whose models contain many zero-
duration temporal constraints. 
 
Finally, the current implementation of the planning algorithm relies on an interval set 
data structure for maintaining symbolic constraints of the Planning Network.  This data 
structure is used for detecting overlapping intervals for detecting symbolic constraint 
incompatibilities and for identifying possible ways to cover open conditions.  Replacing 
the interval set with an interval tree data structure [5] may improve running time in 
practice. 

Summary 

Although there remain many issues to be considered by future work, the research 
described in this thesis takes several steps toward the goal of applying model-based 
programming techniques to the problem of planning for coordinated vehicle missions.  
The Activity Modeling Language addresses the challenge of developing activity models 
by providing a natural and expressive means of describing complex coordinated 
activities.  The Temporal Planning Network serves as an encoding of the activity models 
that addresses the issue of compactness and, along with the planning algorithm presented 
in Chapter 4, addresses the challenge of efficient planning.  These contributions were 
brought together and implemented in the Kirk planning system, but future research will 
be required to more completely develop the ideas presented in this thesis. 
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Appendix A 
AML Activity Descriptions 

 
 

//-------------------------------------------- 
 
Sead-Scenario()[l,u] { 
  Group-Sead()[l*50%,u], 
  { PATH1=ok }[700,700], 
  { [300,300]; { PATH2=ok }[500,500] } 
} 
 
 
Group-Sead()[l,u] := { 
  Group-Enroute()[l*40%,u*40%]; 
  Group-Engage()[l*20%,u*20%]; 
  Group-Return()[l*40%,u*40%]; 
} 
 
 
//-------------------------------------------- 
 
Group-Takeoff()[l,u] { 
  { 
    { ONE::Takeoff()[l*25%,u*25%]; [0,+INF] }, 
    { TWO::Takeoff()[l*25%,u*25%]; [0,+INF] } 
  }; 
  Group-Rendezvous(RVPT)[l*75%,u*75%] 
} 
 
Group-Enroute()[l,u] := { 
  choose { 
    if PATH1=ok then { 
      Group-Move-to(PATH1_1)[l*20%,u*20%]; 
      Group-Move-to(PATH1_2)[l*20%,u*20%]; 
      Group-Move-to(PATH1_3)[l*20%,u*20%]; 
      Group-Move-to(TAI)[l*20%,u*20%] 
    }, 
    if PATH2=ok then { 
      Group-Move-to(PATH2_1)[l*20%,u*20%]; 
      Group-Move-to(PATH2_2)[l*20%,u*20%]; 
      Group-Move-to(PATH2_3)[l*20%,u*20%]; 
      Group-Move-to(TAI)[l*20%,u*20%] 
    } 
  }; 
  Group-Xmit(FAC,GROUP_ARRIVED_TAI)[3,5]; 
  do { 
    Group-Wait(TAI_HOLD1, TAI_HOLD2)[0,+INF] 
  } 
  watching GROUP::ENGAGE=ok 
} 
 
Group-Engage()[l,u] := { 
  choose { 
    if TARGET_COUNT=1 then { 
      Group-Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT, T1_POS)[l,u] 
    }, 
    if TARGET_COUNT=2 then { 
      { ONE::Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT, T1_POS)[l,u];  
        [0,+INF]  
      }, 
      { TWO::Attack(T2_ENTRY_PT, T2_DROP_PT, T2_EXIT_PT, T2_POS)[l,u];  
        [0,+INF]  
      } 
    }, 
    if TARGET_COUNT=2 then { 
      { TWO::Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT, T1_POS)[l,u];  
        [0,+INF]  
      }, 
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      { ONE::Attack(T2_ENTRY_PT, T2_DROP_PT, T2_EXIT_PT, T2_POS)[l,u];  
        [0,+INF]  
      } 
    }, 
    if TARGET_COUNT=2 then { 
      Group-Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT,  
T1_POS)[l*50%,u*50%]; 
      Group-Attack(T2_ENTRY_PT, T2_DROP_PT, T2_EXIT_PT,  
    T2_POS)[l*50%,u*50%] 
    }, 
    if TARGET_COUNT=2 then { 
      Group-Attack(T2_ENTRY_PT, T2_DROP_PT, T2_EXIT_PT,  
T2_POS)[l*50%,u*50%]; 
      Group-Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT,  
T1_POS)[l*50%,u*50%] 
    }, 
    if TARGET_COUNT=2 then { 
      Group-Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT, T1_POS)[l,u] 
    }, 
    if TARGET_COUNT=2 then { 
      Group-Attack(T2_ENTRY_PT, T2_DROP_PT, T2_EXIT_PT, T2_POS)[l,u]; 
    } 
  } 
} 
 
Group-Return()[l,u] := { 
  Group-Rendezvous(TAI); 
  choose { 
    if PATH1=ok then { 
      Group-Move-to(PATH1_3)[l*25%,u*25%]; 
      Group-Move-to(PATH1_2)[l*25%,u*25%]; 
      Group-Move-to(PATH1_1)[l*25%,u*25%]; 
    }, 
    if PATH2=ok then { 
      Group-Move-to(PATH2_3)[l*25%,u*25%]; 
      Group-Move-to(PATH2_2)[l*25%,u*25%]; 
      Group-Move-to(PATH2_1)[l*25%,u*25%]; 
    } 
  }; 
 
  { ONE::Move-to(HOME1)[l*25%,u*25%],  
    TWO::Move-to(HOME2)[l*25%,u*25%]  
   } 
} 
 
Group-Land()[l,u] { 
  ONE::Land()[.,u], 
  TWO::Land()[l,u] 
} 
 
//---------------------------------------- 
 
Group-Rendezvous(RVPT)[l,u] := { 
  { ONE::Move-to(RVPT)[l,u*90%]; 
    ONE::Xmit(ALL,ONE_RVPT_ARRIVED)[0,6]; 
    do { ONE::Hold(RVPT_HOLD1)[0,+U*5%], 
         ONE::Listen()[0,U*5%] 
    } watching TWO_RVPT_ARRIVED 
  }, 
  { TWO::Move-to(RVPT)[l,u*90%]; 
    TWO::Xmit(ALL,TWO_RVPT_ARRIVED)[0,6]; 
    do { TWO::Hold(RVPT_HOLD1)[0,+U*5%], 
         TWO::Listen()[0,U*5%] 
    } watching ONE_RVPT_ARRIVED 
  } 
} 
 
Group-Move-to(X,Y,Z)[l,u] := { 
  choose { 
    if NOT(ONE::NAV=DAMAGED) then { 
      ONE::Move-to(X,Y,Z)[l,u], 
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      TWO::Follow(ONE) 
      TWO::Listen[l,u] 
    }, 
    if NOT(TWO::NAV=DAMAGED) then { 
      TWO::Move-to(X,Y,Z)[l,u], 
      ONE::Follow(TWO)[l,u], 
      ONE::Listen[l,u] 
    } 
  } 
} 
 
Group-Xmit(Target,Message)[l,u] := { 
  choose { 
    if NOT(ONE::COMM=DAMAGED) then ONE::Xmit(Target,Message)[l,u], 
    if NOT(TWO::COMM=DAMAGED) then TWO::Xmit(Target,Message)[l,u] 
  } 
} 
 
Group-Attack(Entry_Pt, Drop_Pt, Exit_Pt, Target_Pos)[l,u] := { 
  choose { 
    if ONE::BOMB=ok then { 
      ONE::Attack(Entry_Pt, Drop_Pt, Exit_Pt, Target_Pos)[l,u], 
      TWO::Follow(ONE_ID)[l,u], 
      TWO::Sense()[l,u] 
    }, 
    if TWO::BOMB=ok then { 
      TWO::Attack(Entry_Pt, Drop_Pt, Exit_Pt, Target_Pos)[l,u], 
      ONE::Follow(TWO_ID)[l,u], 
      ONE::Sense()[l,u] 
    } 
  } 
} 
 
Group-Wait(Hold1, Hold2)[l,u] := { 
  ONE::Wait(Hold1)[l,u], 
  TWO::Wait(Hold2)[l,u] 
} 
 
//---------------------------------- 
 
Wait(Pt1, Pt2, Pt3)[l,u] := { 
  repeat { 
    Move-to(Pt1)[20,30]; 
    Move-to(Pt2)[20,30]; 
    Move-to(Pt3)[20,30]; 
  }[l,u] 
} 
 
Attack(Entry_Pt, Drop_Pt, Exit_Pt, Target_Pos)[l,u] := { 
  Move-to(Entry_Pt)[l*30%,u*30%]; 
  Move-to(Drop_Pt)[l*30%,u*30%]; 
  { { Bomb-at(Target_Pos)[20,30]; [0,+INF] }, 
    Move-to(Exit_Pt)[l*30%,u*30%] 
  } 
} 
 
//---------------------------------- 
 
Move-to(X,Y,Z)[l,u] := { 
  {ID::DST=set}[l,u] 
} 
 
Bomb-at(X,Y)[l,u] := { 
  if ID::BOMB=ok then { 
    Target()[l,u] 
  } 
} 
 
Follow(Target)[l,u] := { 
  Listen()[l,u], 
  Sense()[l,u], 
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  ID::DST_SET[l,u] 
} 
 
Xmit(Target,)[l,u] := { 
  choose { 
    {ch1=ID}[l,u], 
    {ch2=ID}[l,u] 
  } 
} 
 
Listen()[l,u] := { 
  NOT(ch1=ID)[l,u], 
  NOT(ch2=ID)[l,u] 
} 
 
Sense()[l,u] := { 
  {ID::Sensor=sense}[l,u] 
} 
 
Target()[l,u] := { 
  {ID::Sensor=target}[l,u] 
} 
 
Takeoff()[l,u] := { 
  {ID::DST=set}[l,u] 
} 
 
Land()[l,u] := { 
  {ID::DST=set}[l,u] 
} 
 
 
 



 81

Appendix B 

 

TPN specification format 
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TPN file := argument_name* 
            node_count 
            node_data* 
            arc_data* 
            -1 -1 
            symbolic_constraint_data*
 
 
 
 
 
node_data := decision_node? 
             node_name 
             activity? 
             start_node? 
             * 
 
 
 
 
arc_data := head_node_index 
            tail_node_index 
            forward_arc? 
            distance 
            * 
 
 
 
symbolic_constraint_data := 
            head_node_index 
            tail_node_index 
            proposition 
            type 
            * 
 

 
Each TPN file begins with a list of zero or more argument 
names (argument_name*). This is followed by an integer 
number of nodes in the network (node_count). For each node 
in the network, there must be a corresponding node 
description in the node_data format. Following the node 
descriptions must be a list of arc descriptions in the arc_data 
format. For each arc in the Temporal Planning Network 
described by the file, there is one forward and one backward 
arc in this list of arcs, corresponding to the two arcs in its 
distance graph representation. The list of arc descriptions is 
terminated by “-1 –1”. Finally, all the symbolic constraints in 
the network are listed. 
 
 
Each node description consists of four pieces of information 
delimited by whitespace.  First is a flag that indicates whether 
the node is a decision node (0=no, 1=yes).  Second is the 
node name.  Third is a flag that indicates whether the node 
corresponds to either the start or end event of an activity 
(0=no, 1=yes).  Fourth is a flag that is checked only if the 
activity? flag is 1.  It indicates whether the node corresponds 
to the start or the activity (0=end node, 1=start node).  All 
node descriptions are terminated by an asterisk. 
 
 
Each arc description begins with the indices of the head and 
tail nodes of the arc. This is followed by a flag that indicates 
whether the arc is a forward arc (0=backward arc, 1=forward 
arc). After this is the distance associated with the arc, which 
can be an integral value, positive or negative infinity, or a 
relative value. Arc descriptions are also terminated by an 
asterisk. 
 
 
Each symbolic constraint description also begins with head 
and tail node indices that specify with which arc the symbolic 
constraint is associated. Next is the proposition of the 
symbolic constraint, followed by a type which is one of the 
following: ASK, TELL, ASK_NOT, TELL_NOT. Each symbolic 
constraint description is terminated by an astersk. 
 
 
An example of a TPN specification file follows. 
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Sead-Scenario.tpn 
 
 
 

 
 
 
12 
 
0 Group-Sead()       1 1 * 
0 Group-Sead()       1 0 * 
0 Group-Enroute() 1 1 * 
0 Group-Enroute() 1 0 * 
0 Group-Engage() 1 1 * 
0 Group-Engage() 1 0 * 
0 Group-Return() 1 1 * 
0 Group-Return() 1 0 * 
0 PATH1_begin  0 0 * 
0 PATH1_end  0 0 * 
0 PATH2_begin  0 0 * 
0 PATH2_end  0 0 * 
 
0 1 1 +U * 
0 2 1 +0 * 
0 8 1 +0 * 
0 10 1 +300 * 
1 0 0 -L * 
1 7 0 -0 * 
2 0 0 -0 * 
2 3 1 +U*40% * 
3 2 0 -L*35% * 
3 4 1 +0 * 
4 3 0 -0 * 
4 5 1 +U*20% * 
5 4 0 -L*20% * 
5 6 1 +0 * 
6 5 0 -0 * 
6 7 1 +U*40% * 
7 1 0 -0 * 
7 6 0 -L*35% * 
8 0 0 -0 * 
8 9 1 +700 * 
9 8 0 -700 * 
10 0 0 -300 * 
10 11 1 +500 * 
11 10 0 -500 * 
-1 -1 
 
8 9  PATH1=OK TELL * 
10 11  PATH2=OK TELL * 

 
No arguments. 
 
node_count = 12 
 
12 node descriptions 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
 
 
Arc descriptions 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
. 
 
Arc data terminator 
 
Symbolic constraint descriptions 
. 
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Appendix C 
 
 

Raw Output Dump:  Sead-Scenario()[3000,3600] 
 
 
plan node[0]: {Group-Sead():0,0} decomposed?=1 isactivity?=1 isstart?=1 
plan node[1]: {Group-Sead():3000,3600} decomposed?=0 isactivity?=1 isstart?=0 
plan node[2]: {Group-Enroute():0,0} decomposed?=1 isactivity?=1 isstart?=1 
plan node[3]: {Group-Enroute():1108,1440} decomposed?=1 isactivity?=1 isstart?=0 
plan node[4]: {Group-Engage():1108,1440} decomposed?=1 isactivity?=1 isstart?=1 
plan node[5]: {Group-Engage():1708,2088} decomposed?=1 isactivity?=1 isstart?=0 
plan node[6]: {Group-Return():1708,2088} decomposed?=1 isactivity?=1 isstart?=1 
plan node[7]: {Group-Return():2816,3528} decomposed?=1 isactivity?=1 isstart?=0 
plan node[8]: {PATH1_begin():0,0} decomposed?=0 isactivity?=0 isstart?=0 
plan node[9]: {PATH1_end():700,700} decomposed?=0 isactivity?=0 isstart?=0 
plan node[10]: {PATH2_begin():300,300} decomposed?=0 isactivity?=0 isstart?=0 
plan node[11]: {PATH2_end():800,800} decomposed?=0 isactivity?=0 isstart?=0 
plan node[12]: {Decision-1():0,0} decomposed?=0 isactivity?=0 isstart?=0 
plan node[13]: {Group-Move-to(18000,28000,5000):0,0} decomposed?=1 isactivity?=1 isstart?=1 
plan node[14]: {Group-Move-to(18000,28000,5000):262,360} decomposed?=1 isactivity?=1 isstart?=0 
plan node[15]: {Group-Move-to(25000,30000,6000):262,360} decomposed?=1 isactivity?=1 isstart?=1 
plan node[16]: {Group-Move-to(25000,30000,6000):524,720} decomposed?=1 isactivity?=1 isstart?=0 
plan node[17]: {Group-Move-to(32000,30000,5000):524,720} decomposed?=1 isactivity?=1 isstart?=1 
plan node[18]: {Group-Move-to(32000,30000,5000):786,1080} decomposed?=1 isactivity?=1 isstart?=0 
plan node[19]: {Group-Move-to(15000,5000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[20]: {Group-Move-to(15000,5000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[21]: {Group-Move-to(25000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[22]: {Group-Move-to(25000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[23]: {Group-Move-to(36000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[24]: {Group-Move-to(36000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[25]: {Group-Move-to(40000,25000,4000):786,1080} decomposed?=1 isactivity?=1 isstart?=1 
plan node[26]: {Group-Move-to(40000,25000,4000):1048,1380} decomposed?=1 isactivity?=1 isstart?=0 
plan node[27]: {Group-Xmit(FAC,ARRIVED_TAI):1048,1380} decomposed?=1 isactivity?=1 isstart?=1 
plan node[28]: {Group-Xmit(FAC,ARRIVED_TAI):1048,1380} decomposed?=1 isactivity?=1 isstart?=0 
plan node[29]: {Group-Wait(41000,26000,5000,41000,24000,5000,39000,25000,5000,41000,26000,6000,41000,24000,6000,39000,25000,6000):1048,1380} 
decomposed?=1 isactivity?=1 isstart?=1 
plan node[30]: {Group-Wait(41000,26000,5000,41000,24000,5000,39000,25000,5000,41000,26000,6000,41000,24000,6000,39000,25000,6000):1108,1440} 
decomposed?=1 isactivity?=1 isstart?=0 
plan node[31]: {Intermediate-1():0,0} decomposed?=0 isactivity?=0 isstart?=0 
plan node[32]: {Intermediate-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[33]: {Decision-1():1108,1440} decomposed?=0 isactivity?=0 isstart?=0 
plan node[34]: {Group-Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):1108,1440} decomposed?=1 isactivity?=1 isstart?=1 
plan node[35]: {Group-Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):1708,2088} decomposed?=1 isactivity?=1 isstart?=0 
plan node[36]: {Choice1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[37]: {ONE::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[38]: {ONE::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[39]: {TWO::Attack(45000,22000,4000,49500,15500,3000,45000,15000,4000,50000,15000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[40]: {TWO::Attack(45000,22000,4000,49500,15500,3000,45000,15000,4000,50000,15000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[41]: {Group-Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[42]: {Group-Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[43]: {Group-Attack(45000,22000,4000,49500,15500,3000,45000,15000,4000,50000,15000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[44]: {Group-Attack(45000,22000,4000,49500,15500,3000,45000,15000,4000,50000,15000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[45]: {OR-1():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[46]: {OR-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[47]: {Decision-1():1708,2088} decomposed?=0 isactivity?=0 isstart?=0 
plan node[48]: {Group-Move-to(18000,28000,5000):1708,2088} decomposed?=1 isactivity?=1 isstart?=1 
plan node[49]: {Group-Move-to(18000,28000,5000):1970,2448} decomposed?=0 isactivity?=1 isstart?=0 
plan node[50]: {Group-Move-to(25000,30000,6000):1970,2448} decomposed?=1 isactivity?=1 isstart?=1 
plan node[51]: {Group-Move-to(25000,30000,6000):2232,2808} decomposed?=0 isactivity?=1 isstart?=0 
plan node[52]: {Group-Move-to(18000,28000,5000):2232,2808} decomposed?=1 isactivity?=1 isstart?=1 
plan node[53]: {Group-Move-to(18000,28000,5000):2494,3168} decomposed?=0 isactivity?=1 isstart?=0 
plan node[54]: {Group-Move-to(36000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[55]: {Group-Move-to(36000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[56]: {Group-Move-to(25000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[57]: {Group-Move-to(25000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[58]: {Group-Move-to(15000,5000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[59]: {Group-Move-to(15000,5000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[60]: {Group-Move-to(10000,22500,4000):2494,3168} decomposed?=1 isactivity?=1 isstart?=1 
plan node[61]: {Group-Move-to(10000,22500,4000):2756,3468} decomposed?=1 isactivity?=1 isstart?=0 
plan node[62]: {Group-Xmit(ATC,ARRIVED_HOME):2756,3468} decomposed?=1 isactivity?=1 isstart?=1 
plan node[63]: {Group-Xmit(ATC,ARRIVED_HOME):2756,3468} decomposed?=1 isactivity?=1 isstart?=0 
plan node[64]: {Group-Wait(11000,21500,5000,11000,23500,5000,9000,22500,5000,11000,21500,6000,11000,23500,6000,9000,22500,6000):2756,3468} 
decomposed?=1 isactivity?=1 isstart?=1 
plan node[65]: {Group-Wait(11000,21500,5000,11000,23500,5000,9000,22500,5000,11000,21500,6000,11000,23500,6000,9000,22500,6000):2816,3528} 
decomposed?=1 isactivity?=1 isstart?=0 
plan node[66]: {Intermediate-1():1708,2088} decomposed?=0 isactivity?=0 isstart?=0 
plan node[67]: {Intermediate-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[68]: {Decision-1():0,0} decomposed?=0 isactivity?=0 isstart?=0 
plan node[69]: {Choice-1-1():0,0} decomposed?=0 isactivity?=0 isstart?=0 
plan node[70]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[71]: {ONE::Move-to(18000,28000,5000):0,0} decomposed?=1 isactivity?=1 isstart?=1 
plan node[72]: {ONE::Move-to(18000,28000,5000):262,360} decomposed?=1 isactivity?=1 isstart?=0 
plan node[73]: {TWO::Follow(ONE):0,0} decomposed?=1 isactivity?=1 isstart?=1 
plan node[74]: {TWO::Follow(ONE):262,360} decomposed?=1 isactivity?=1 isstart?=0 
plan node[75]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[76]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[77]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[78]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[79]: {Decision-1():262,360} decomposed?=0 isactivity?=0 isstart?=0 
plan node[80]: {Choice-1-1():262,360} decomposed?=0 isactivity?=0 isstart?=0 
plan node[81]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[82]: {ONE::Move-to(25000,30000,6000):262,360} decomposed?=1 isactivity?=1 isstart?=1 
plan node[83]: {ONE::Move-to(25000,30000,6000):524,720} decomposed?=1 isactivity?=1 isstart?=0 
plan node[84]: {TWO::Follow(ONE):262,360} decomposed?=1 isactivity?=1 isstart?=1 
plan node[85]: {TWO::Follow(ONE):524,720} decomposed?=1 isactivity?=1 isstart?=0 
plan node[86]: {TWO::Move-to(25000,30000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[87]: {TWO::Move-to(25000,30000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[88]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[89]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[90]: {Decision-1():524,720} decomposed?=0 isactivity?=0 isstart?=0 
plan node[91]: {Choice-1-1():524,720} decomposed?=0 isactivity?=0 isstart?=0 
plan node[92]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[93]: {ONE::Move-to(32000,30000,5000):524,720} decomposed?=1 isactivity?=1 isstart?=1 
plan node[94]: {ONE::Move-to(32000,30000,5000):786,1080} decomposed?=1 isactivity?=1 isstart?=0 



 85

plan node[95]: {TWO::Follow(ONE):524,720} decomposed?=1 isactivity?=1 isstart?=1 
plan node[96]: {TWO::Follow(ONE):786,1080} decomposed?=1 isactivity?=1 isstart?=0 
plan node[97]: {TWO::Move-to(32000,30000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[98]: {TWO::Move-to(32000,30000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[99]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[100]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[101]: {Decision-1():786,1080} decomposed?=0 isactivity?=0 isstart?=0 
plan node[102]: {Choice-1-1():786,1080} decomposed?=0 isactivity?=0 isstart?=0 
plan node[103]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[104]: {ONE::Move-to(40000,25000,4000):786,1080} decomposed?=1 isactivity?=1 isstart?=1 
plan node[105]: {ONE::Move-to(40000,25000,4000):1048,1380} decomposed?=1 isactivity?=1 isstart?=0 
plan node[106]: {TWO::Follow(ONE):786,1080} decomposed?=1 isactivity?=1 isstart?=1 
plan node[107]: {TWO::Follow(ONE):1048,1380} decomposed?=1 isactivity?=1 isstart?=0 
plan node[108]: {TWO::Move-to(40000,25000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[109]: {TWO::Move-to(40000,25000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[110]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[111]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[112]: {Choice-1():1048,1380} decomposed?=0 isactivity?=0 isstart?=0 
plan node[113]: {ONE::Xmit(FAC,ARRIVED_TAI):1048,1380} decomposed?=1 isactivity?=1 isstart?=1 
plan node[114]: {ONE::Xmit(FAC,ARRIVED_TAI):1048,1380} decomposed?=1 isactivity?=1 isstart?=0 
plan node[115]: {TWO::Xmit(FAC,ARRIVED_TAI):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[116]: {TWO::Xmit(FAC,ARRIVED_TAI):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[117]: {ONE::Wait(41000,26000,5000,41000,24000,5000,39000,22500,5000):1048,1380} decomposed?=1 isactivity?=1 isstart?=1 
plan node[118]: {ONE::Wait(41000,26000,5000,41000,24000,5000,39000,22500,5000):1108,1440} decomposed?=1 isactivity?=1 isstart?=0 
plan node[119]: {TWO::Wait(41000,26000,6000,41000,24000,6000,39000,25000,6000):1048,1380} decomposed?=1 isactivity?=1 isstart?=1 
plan node[120]: {TWO::Wait(41000,26000,6000,41000,24000,6000,39000,25000,6000):1108,1440} decomposed?=1 isactivity?=1 isstart?=0 
plan node[121]: {Decision-1():1108,1440} decomposed?=0 isactivity?=0 isstart?=0 
plan node[122]: {Choice-1-1():1108,1440} decomposed?=0 isactivity?=0 isstart?=0 
plan node[123]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[124]: {ONE::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):1108,1440} decomposed?=1 isactivity?=1 isstart?=1 
plan node[125]: {ONE::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):1708,2088} decomposed?=1 isactivity?=1 isstart?=0 
plan node[126]: {TWO::Follow(0):1108,1440} decomposed?=1 isactivity?=1 isstart?=1 
plan node[127]: {TWO::Follow(0):1708,2088} decomposed?=1 isactivity?=1 isstart?=0 
plan node[128]: {TWO::Sense():1108,1440} decomposed?=1 isactivity?=1 isstart?=1 
plan node[129]: {TWO::Sense():1708,2088} decomposed?=1 isactivity?=1 isstart?=0 
plan node[130]: {TWO::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[131]: {TWO::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[132]: {ONE::Follow(1):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[133]: {ONE::Follow(1):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[134]: {ONE::Sense():-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[135]: {ONE::Sense():-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[136]: {Decision-1():1708,2088} decomposed?=0 isactivity?=0 isstart?=0 
plan node[137]: {Choice-1-1():1708,2088} decomposed?=0 isactivity?=0 isstart?=0 
plan node[138]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[139]: {ONE::Move-to(18000,28000,5000):1708,2088} decomposed?=1 isactivity?=1 isstart?=1 
plan node[140]: {ONE::Move-to(18000,28000,5000):262,360} decomposed?=1 isactivity?=1 isstart?=0 
plan node[141]: {TWO::Follow(ONE):1708,2088} decomposed?=1 isactivity?=1 isstart?=1 
plan node[142]: {TWO::Follow(ONE):262,360} decomposed?=1 isactivity?=1 isstart?=0 
plan node[143]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[144]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[145]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[146]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[147]: {Decision-1():1970,2448} decomposed?=0 isactivity?=0 isstart?=0 
plan node[148]: {Choice-1-1():1970,2448} decomposed?=0 isactivity?=0 isstart?=0 
plan node[149]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[150]: {ONE::Move-to(25000,30000,6000):1970,2448} decomposed?=1 isactivity?=1 isstart?=1 
plan node[151]: {ONE::Move-to(25000,30000,6000):524,720} decomposed?=0 isactivity?=1 isstart?=0 
plan node[152]: {TWO::Follow(ONE):1970,2448} decomposed?=1 isactivity?=1 isstart?=1 
plan node[153]: {TWO::Follow(ONE):524,720} decomposed?=1 isactivity?=1 isstart?=0 
plan node[154]: {TWO::Move-to(25000,30000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[155]: {TWO::Move-to(25000,30000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[156]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[157]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[158]: {Decision-1():2232,2808} decomposed?=0 isactivity?=0 isstart?=0 
plan node[159]: {Choice-1-1():2232,2808} decomposed?=0 isactivity?=0 isstart?=0 
plan node[160]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[161]: {ONE::Move-to(18000,28000,5000):2232,2808} decomposed?=1 isactivity?=1 isstart?=1 
plan node[162]: {ONE::Move-to(18000,28000,5000):262,360} decomposed?=0 isactivity?=1 isstart?=0 
plan node[163]: {TWO::Follow(ONE):2232,2808} decomposed?=1 isactivity?=1 isstart?=1 
plan node[164]: {TWO::Follow(ONE):262,360} decomposed?=1 isactivity?=1 isstart?=0 
plan node[165]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[166]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[167]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[168]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[169]: {Decision-1():2494,3168} decomposed?=0 isactivity?=0 isstart?=0 
plan node[170]: {Choice-1-1():2494,3168} decomposed?=0 isactivity?=0 isstart?=0 
plan node[171]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[172]: {ONE::Move-to(10000,22500,4000):2494,3168} decomposed?=1 isactivity?=1 isstart?=1 
plan node[173]: {ONE::Move-to(10000,22500,4000):2756,3468} decomposed?=1 isactivity?=1 isstart?=0 
plan node[174]: {TWO::Follow(ONE):2494,3168} decomposed?=1 isactivity?=1 isstart?=1 
plan node[175]: {TWO::Follow(ONE):2756,3468} decomposed?=0 isactivity?=1 isstart?=0 
plan node[176]: {TWO::Move-to(10000,22500,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[177]: {TWO::Move-to(10000,22500,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[178]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[179]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[180]: {Choice-1():2756,3468} decomposed?=0 isactivity?=0 isstart?=0 
plan node[181]: {ONE::Xmit(ATC,ARRIVED_HOME):2756,3468} decomposed?=1 isactivity?=1 isstart?=1 
plan node[182]: {ONE::Xmit(ATC,ARRIVED_HOME):2756,3468} decomposed?=1 isactivity?=1 isstart?=0 
plan node[183]: {TWO::Xmit(ATC,ARRIVED_HOME):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[184]: {TWO::Xmit(ATC,ARRIVED_HOME):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[185]: {ONE::Wait(11000,21500,5000,11000,24000,5000,9000,22500,5000):2756,3468} decomposed?=1 isactivity?=1 isstart?=1 
plan node[186]: {ONE::Wait(11000,21500,5000,11000,24000,5000,9000,22500,5000):2816,3528} decomposed?=1 isactivity?=1 isstart?=0 
plan node[187]: {TWO::Wait(11000,21500,6000,11000,23500,6000,9000,22500,6000):2756,3468} decomposed?=1 isactivity?=1 isstart?=1 
plan node[188]: {TWO::Wait(11000,21500,6000,11000,23500,6000,9000,22500,6000):2816,3528} decomposed?=1 isactivity?=1 isstart?=0 
plan node[189]: {TWO::Listen():0,0} decomposed?=1 isactivity?=1 isstart?=1 
plan node[190]: {TWO::Listen():262,360} decomposed?=1 isactivity?=1 isstart?=0 
plan node[191]: {TWO::Listen():262,360} decomposed?=1 isactivity?=1 isstart?=1 
plan node[192]: {TWO::Listen():262,360} decomposed?=1 isactivity?=1 isstart?=0 
plan node[193]: {TWO::Listen():524,720} decomposed?=1 isactivity?=1 isstart?=1 
plan node[194]: {TWO::Listen():524,720} decomposed?=1 isactivity?=1 isstart?=0 
plan node[195]: {TWO::Listen():786,1080} decomposed?=1 isactivity?=1 isstart?=1 
plan node[196]: {TWO::Listen():786,1080} decomposed?=1 isactivity?=1 isstart?=0 
plan node[197]: {ONE::decision-1():1048,1380} decomposed?=0 isactivity?=0 isstart?=0 
plan node[198]: {ONE::intermediate-1():1048,1380} decomposed?=0 isactivity?=0 isstart?=0 
plan node[199]: {ONE::intermediate-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[200]: {ONE::Decision-1():1048,1380} decomposed?=0 isactivity?=0 isstart?=0 
plan node[201]: {ONE::Move-to(41000,26000,5000):1048,1380} decomposed?=1 isactivity?=1 isstart?=1 
plan node[202]: {ONE::Move-to(41000,26000,5000):1068,1400} decomposed?=1 isactivity?=1 isstart?=0 
plan node[203]: {ONE::Move-to(41000,24000,5000):1068,1400} decomposed?=1 isactivity?=1 isstart?=1 
plan node[204]: {ONE::Move-to(41000,24000,5000):1088,1420} decomposed?=1 isactivity?=1 isstart?=0 
plan node[205]: {ONE::Move-to(39000,22500,5000):1088,1420} decomposed?=1 isactivity?=1 isstart?=1 
plan node[206]: {ONE::Move-to(39000,22500,5000):1108,1440} decomposed?=1 isactivity?=1 isstart?=0 
plan node[207]: {ONE::Move-to(41000,26000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[208]: {ONE::Move-to(41000,26000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
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plan node[209]: {ONE::Move-to(41000,24000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[210]: {ONE::Move-to(41000,24000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[211]: {ONE::Move-to(39000,22500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[212]: {ONE::Move-to(39000,22500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[213]: {TWO::Decision-1():1048,1380} decomposed?=0 isactivity?=0 isstart?=0 
plan node[214]: {TWO::Move-to(41000,26000,6000):1048,1380} decomposed?=1 isactivity?=1 isstart?=1 
plan node[215]: {TWO::Move-to(41000,26000,6000):1068,1400} decomposed?=1 isactivity?=1 isstart?=0 
plan node[216]: {TWO::Move-to(41000,24000,6000):1068,1400} decomposed?=1 isactivity?=1 isstart?=1 
plan node[217]: {TWO::Move-to(41000,24000,6000):1088,1420} decomposed?=1 isactivity?=1 isstart?=0 
plan node[218]: {TWO::Move-to(39000,25000,6000):1088,1420} decomposed?=1 isactivity?=1 isstart?=1 
plan node[219]: {TWO::Move-to(39000,25000,6000):1108,1440} decomposed?=1 isactivity?=1 isstart?=0 
plan node[220]: {TWO::Move-to(41000,26000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[221]: {TWO::Move-to(41000,26000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[222]: {TWO::Move-to(41000,24000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[223]: {TWO::Move-to(41000,24000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[224]: {TWO::Move-to(39000,25000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[225]: {TWO::Move-to(39000,25000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[226]: {ONE::Move-to(45000,22000,4000):1108,1440} decomposed?=1 isactivity?=1 isstart?=1 
plan node[227]: {ONE::Move-to(45000,22000,4000):1288,1656} decomposed?=1 isactivity?=1 isstart?=0 
plan node[228]: {ONE::Move-to(49500,20500,3000):1288,1656} decomposed?=1 isactivity?=1 isstart?=1 
plan node[229]: {ONE::Move-to(49500,20500,3000):1492,1872} decomposed?=1 isactivity?=1 isstart?=0 
plan node[230]: {ONE::Bomb-at(50000,20000):1492,1872} decomposed?=1 isactivity?=1 isstart?=1 
plan node[231]: {ONE::Bomb-at(50000,20000):1492,1892} decomposed?=1 isactivity?=1 isstart?=0 
plan node[232]: {ONE::Move-to(50000,25000,4000):1492,1872} decomposed?=1 isactivity?=1 isstart?=1 
plan node[233]: {ONE::Move-to(50000,25000,4000):1708,2088} decomposed?=1 isactivity?=1 isstart?=0 
plan node[234]: {TWO::Listen():1108,1440} decomposed?=1 isactivity?=1 isstart?=1 
plan node[235]: {TWO::Listen():1708,2088} decomposed?=1 isactivity?=1 isstart?=0 
plan node[236]: {TWO::Listen():1708,2088} decomposed?=1 isactivity?=1 isstart?=1 
plan node[237]: {TWO::Listen():1048,1380} decomposed?=1 isactivity?=1 isstart?=0 
plan node[238]: {TWO::Listen():1970,2448} decomposed?=1 isactivity?=1 isstart?=1 
plan node[239]: {TWO::Listen():262,360} decomposed?=1 isactivity?=1 isstart?=0 
plan node[240]: {TWO::Listen():2232,2808} decomposed?=1 isactivity?=1 isstart?=1 
plan node[241]: {TWO::Listen():524,720} decomposed?=1 isactivity?=1 isstart?=0 
plan node[242]: {TWO::Listen():2494,3168} decomposed?=1 isactivity?=1 isstart?=1 
plan node[243]: {TWO::Listen():262,360} decomposed?=0 isactivity?=1 isstart?=0 
plan node[244]: {ONE::decision-1():2756,3468} decomposed?=0 isactivity?=0 isstart?=0 
plan node[245]: {ONE::intermediate-1():2756,3468} decomposed?=0 isactivity?=0 isstart?=0 
plan node[246]: {ONE::intermediate-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0 
plan node[247]: {ONE::Decision-1():2756,3468} decomposed?=0 isactivity?=0 isstart?=0 
plan node[248]: {ONE::Move-to(11000,21500,5000):2756,3468} decomposed?=1 isactivity?=1 isstart?=1 
plan node[249]: {ONE::Move-to(11000,21500,5000):2776,3488} decomposed?=1 isactivity?=1 isstart?=0 
plan node[250]: {ONE::Move-to(11000,24000,5000):2776,3488} decomposed?=1 isactivity?=1 isstart?=1 
plan node[251]: {ONE::Move-to(11000,24000,5000):2796,3508} decomposed?=1 isactivity?=1 isstart?=0 
plan node[252]: {ONE::Move-to(9000,22500,5000):2796,3508} decomposed?=1 isactivity?=1 isstart?=1 
plan node[253]: {ONE::Move-to(9000,22500,5000):2816,3528} decomposed?=1 isactivity?=1 isstart?=0 
plan node[254]: {ONE::Move-to(11000,21500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[255]: {ONE::Move-to(11000,21500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[256]: {ONE::Move-to(11000,24000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[257]: {ONE::Move-to(11000,24000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[258]: {ONE::Move-to(9000,22500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[259]: {ONE::Move-to(9000,22500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[260]: {TWO::Decision-1():2756,3468} decomposed?=0 isactivity?=0 isstart?=0 
plan node[261]: {TWO::Move-to(11000,21500,6000):2756,3468} decomposed?=1 isactivity?=1 isstart?=1 
plan node[262]: {TWO::Move-to(11000,21500,6000):2776,3488} decomposed?=1 isactivity?=1 isstart?=0 
plan node[263]: {TWO::Move-to(11000,23500,6000):2776,3488} decomposed?=1 isactivity?=1 isstart?=1 
plan node[264]: {TWO::Move-to(11000,23500,6000):2796,3508} decomposed?=1 isactivity?=1 isstart?=0 
plan node[265]: {TWO::Move-to(9000,22500,6000):2796,3508} decomposed?=1 isactivity?=1 isstart?=1 
plan node[266]: {TWO::Move-to(9000,22500,6000):2816,3528} decomposed?=1 isactivity?=1 isstart?=0 
plan node[267]: {TWO::Move-to(11000,21500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[268]: {TWO::Move-to(11000,21500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[269]: {TWO::Move-to(11000,23500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[270]: {TWO::Move-to(11000,23500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[271]: {TWO::Move-to(9000,22500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1 
plan node[272]: {TWO::Move-to(9000,22500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0 
plan node[273]: {ONE::Have-Bomb?():1492,1872} decomposed?=0 isactivity?=0 isstart?=0 
 

 


