
 1

*

Model-based Planning for Coordinated Air
Vehicle Missions

 by

Philip K. Kim

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August 8, 2000

Copyright 2000 Philip K. Kim. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author__
 Department of Electrical Engineering and Computer Science
 August 8,2000

Certified by__
 Brian C. Williams
 Thesis Supervisor

Accepted by___
 Arthur C. Smith
 Chairman, Department Committee on Graduate Theses

 2

Acknowledgements

This thesis could not have been completed without the help of several important people.

First, I would like to thank Professor Brian Williams for providing technical guidance

and for sacrificing so much of his personal time, especially in the final hours, to help me

complete this work. I would also like to express my gratitude to the members of the

Decision Systems Group at Draper Laboratory for sharing with me their knowledge of

unmanned combat air vehicle missions. In particular, I greatly appreciate the help of

Mark Abramson for not only helping me to understand the requirements of UCAV

missions, but also for giving me valuable feedback and helping to keep me on track.

Finally, I am grateful to my family and friends for their love and support throughout this

past year.

This thesis also could not have been completed without the sponsorship of the Office of

Naval Research under contract N00014-99-1080, MIT contract number 6890056.

Philip Kim

August 2000

 3

Table of Content

ACKNOWLEDGEMENTS ... 2

TABLE OF CONTENT.. 3

CHAPTER 1.. 5

INTRODUCTION... 5
MOTIVATION.. 5
APPLICATION ... 6

Multi-UCAV Missions... 6
Scenario Example ... 7
Mission Characteristics .. 7

PROBLEM STATEMENT ... 8
Activity Modeling Language ... 9
Temporal Planning Network... 9
Model-based Temporal Planner ... 10

THESIS LAYOUT ... 10

CHAPTER 2.. 11

BACKGROUND ... 11
REACTIVE MODEL-BASED PROGRAMMING LANGUAGE.. 12

Hierarchical Constraint Automata ... 13
SIMPLE TEMPORAL NETWORKS ... 15

Representation .. 16
Distance Graph Analog .. 17

PLANNING OVERVIEW.. 19
STRIPS Activity Models .. 20
Partial Order Planning... 21
Hierarchical Planning .. 23
State-space and Plan-space Planning .. 23
Temporal Planning ... 24

CHAPTER 3.. 26

ACTIVITY MODELS .. 26
OVERVIEW ... 26
EXAMPLE ... 27
ACTIVITY MODELING LANGUAGE.. 29

Basic Combinators.. 30
Derived combinators... 33

TEMPORAL PLANNING NETWORK .. 34
Symbolic Constraints .. 36
Decision Nodes ... 38
Composition .. 38

AML TO TPN MAPPING .. 40
UCAV ACTIVITY MODELS .. 42

 4

AML Scoping... 43
Relative Duration Bounds... 43
Vehicle Activities... 43
Group Activities .. 45

SUMMARY.. 46

CHAPTER 4.. 47

PLANNING ALGORITHM .. 47
OVERVIEW ... 47
PHASE ONE: SELECT PLAN EXECUTION ... 51

Network Search... 51
Temporal Constraint Consistency... 55
Negative Cycle Detection.. 56

PHASE TWO: REFINE PLAN .. 58
Symbolic Constraint Consistency ... 58
Conflict Detection ... 58
Conflict Resolution.. 61

PHASE THREE: HIERARCHICAL DECOMPOSITION ... 64

CHAPTER 5.. 67

CONCLUSIONS ... 67
RESULTS .. 67

Planner Implementation.. 67
Performance.. 69

FUTURE WORK .. 70
Handling Contingencies.. 70
Improving the Activity Models .. 71
Optimizing the Planner ... 72

SUMMARY.. 73

REFERENCES.. 74

APPENDIX A.. 77

AML ACTIVITY DESCRIPTIONS ... 77

APPENDIX B .. 81

TPN specification format .. 81

APPENDIX C.. 84

 5

Chapter 1
Introduction

Motivation

The demand for vehicles to carry out complex tasks with little or no supervision has
motivated a great deal of past and current research in the area of intelligent autonomy.
The ability for a vehicle to act autonomously would be advantageous in contexts where
human supervision and control is not possible. Onboard human control may be
undesirable, for example, in a situation where the environment is dangerous or unknown,
or it may be infeasible because the vehicle is physically unable to support a human. In
addition, remote control might not be an option if there is no means to support
communication, or if the communication latency or unreliability simply renders it
ineffective.

Embedded autonomy has already proven both feasible and useful through successes such
as the Remote Agent Experiment, which was conducted onboard NASA’s Deep Space
One spacecraft in May 1999. During this experiment, the Remote Agent control software
was allowed to assume full command of the in-flight spacecraft, and demonstrated the
robustness of its onboard planning, execution, and mode-identification capabilities [14].

There is also an emerging interest in multiple vehicle autonomy for applications that
require capabilities that are impossible, inefficient, or not cost-effective using a single
vehicle. One such example is military combat missions, which are typically carried out
by groups of vehicles because it increases the probability of successful completion while
decreasing the likelihood of vehicle damage or destruction. In the domain of space
exploration, there has been recent interest in developing a tightly coordinated group of
spacecraft to be used for long-range space interferometry, which would have a much
greater range than current single-spacecraft interferometers.

In order for a vehicle to autonomously perform the set of activities necessary to complete
a mission, it needs to make decisions. Autonomous systems achieve robustness by
having at their disposal a range of alternative methods of performing activities.
Whenever the vehicle encounters an activity that allows for several alternative methods,
the vehicle must decide which one to employ. Furthermore, if the vehicle has control
over the time and duration of activities, then it must also decide when each activity
should be performed and for how long of a period. The problem is that there may be
particular sets of decisions that lead to a state from which there is no possible way of
successfully completing the mission. Some reasons for failure include the exhaustion of
some un-renewable resource, conflicting activities being scheduled to perform at the
same time, or simply too little time left to complete all the necessary activities. Planning,
therefore, is an essential capability because it makes the decisions ahead of time to avoid
failure situations.

 6

The problem of planning for multiple-vehicle missions presents some major challenges.
First, each mission plan must be expressive enough to fully describe complex coordinated
behaviors. For example, the plan must be able to express that two vehicles should meet
at some location and proceed together, and that multiple vehicles should not be
transmitting messages on a single communication channel at the same time. Second, the
plan must be flexible enough to handle variations in plan execution due to exogenous
factors. A plan could be represented as a set of time-stamped commands that indicate
exactly when each activity must commence and complete, but this type of plan is too
brittle because it may fail if even a single activity takes even slightly more or less time
than expected. The plan must also be able to express contingencies in order to be flexible
with respect to uncontrollable factors. Third, in order to support automated planning,
there must be some way of capturing knowledge about the domain and about vehicle
capabilities using a representation that is compact enough to be manageable and modular
to support reusability. Finally, the planner must be efficient enough to support reactive
on-board re-planning over execution horizons ranging from as long as hours to as short as
seconds.

Application

The target application of the research described in this thesis is the planning of
Unmanned Combat Air Vehicle (UCAV) missions. For the purposes of this research, a
UCAV was broadly defined as an autonomous aircraft with the ability to deliver
munitions to attack air or ground targets. The actual form of the vehicle, its speed and
maneuverability, and the specific resources available to it were abstracted out to a large
degree. Instead, the focus was on the types of missions in which they might be deployed
and the types of coordination necessary to carry out those missions. The information
presented in this section is heavily based on UCAV mission requirements analysis presented in
[27].

Multi-UCAV Missions

The missions of interest include those missions currently conducted with multiple
manned air vehicles. These include Suppression of Enemy Air Defense, Close Air
Support, Air-to-Air Combat, and Logistics Re-Supply. In the first of these missions, a
group of aircraft attacks an enemy air defense structure in order to make an area safer for
other aircraft and ground troops. The second mission mentioned entails aircraft attacking
enemy targets that are in close range to friendly forces. Air-to-Air Combat missions
involve engagement with enemy aircraft. Finally, Logistics Re-Supply missions require
the delivery of supplies such as ammunition or food into a hostile and unpredictable
environment. The focus was not on the particular characteristics of each mission but on
their common elements. The models developed as part of the research attempted to
capture these common elements as a library of reusable activity models. For the
development of these activity models, and also scenarios for testing the planner, the
Suppression of Enemy Air Defense (SEAD) mission was used as the prototypical
mission.

 7

Scenario Example

Consider a scenario in which friendly ground troops are about to be deployed into hostile
territory. Satellite surveillance of the area has revealed two objects that may or may not
pose a threat to the friendly forces that are about to be sent out. Rather than risk human
lives, it is decided that a group of unmanned air vehicles should be sent to quickly
identify whether the threats truly exist, and if so, to destroy them. Two unmanned
combat air vehicles, referred to as ONE and TWO, which are located on nearby aircraft
carriers, are chosen for this mission.

The vehicles takeoff from their respective positions, and they both fly towards a pre-
designated rendezvous location. Vehicle ONE arrives, begins to listen for messages from
the second vehicle while it broadcasts a beacon message to indicate that it has arrived,
and waits in a holding pattern. A short while later, vehicle TWO arrives, the two vehicles
identify one another, and they proceed together to the area where the threats are thought
to be located.

There are three corridors available to fly from the rendezvous location to the target area
of interest, each with access restricted to a particular time window because other air
vehicles in the area are scheduled to use or cross through these corridors. At the time of
the rendezvous, all of the corridors are available, but only one of these will remain
available until the vehicles can pass safely through, so this one is selected and the
vehicles fly together through this corridor.

Finally, they arrive on the border of enemy territory and indicate their arrival to a third
friendly party, the forward air controller, who is in charge of dispatching vehicles into the
area. The vehicles are authorized to proceed immediately to the target location and attack
all targets found within a specified area. The vehicles proceed together to this area,
assuming that only one target will be found, but as they approach, they sense the second
target. They immediately diverge so that vehicle ONE is continuing towards the first
target following a pre-computed attack vector, while vehicle TWO continues towards the
second target. They independently bomb their respective targets, check that they have
been destroyed, and then exit hostile territory. The vehicles meet again and fly together
back towards the original rendezvous point. When they arrive, they separate to return to
their respective home ships, and land.

Mission Characteristics

The SEAD mission scenario described in the previous section demonstrates some of the
characteristic features of multiple vehicle missions. First, these missions involve
coordinated activities, including both activities that are performed together by a group of
vehicles, such as flying together towards the target area, and activities that are performed
separately but need to be synchronized, such as performing separate bombing runs and
then rendezvousing. Second, in these missions, the same activities are performed many
times by individual vehicles as well as by the group. For example, a simple activity
repeatedly performed by an individual vehicle is flying to a waypoint, and the rendezvous
activity, which is performed after takeoff and after the completion of the attack, is an

 8

example of a repeated group activity. Third, the mission activities are hierarchical in that
complex activities can be described in terms of simpler ones composed in various ways.
For example, flying along a corridor or path is composed of a series of fly to waypoint
activities, and performing a bombing run is composed of flying along a path while
concurrently targeting and releasing a bomb.

The hierarchical structure of mission activities suggests that it is possible to describe
multiple vehicle missions in terms of a set of modular activity models. In other words,
since a multiple vehicle mission can be reduced to a set of activities, which can be
recursively reduced to a set of primitive activities, this implies that given a set of
primitive activity models, one can develop a set of hierarchical activity models, which
can ultimately be composed into a multiple vehicle mission model. The fact that the
missions involve many recurring activities also implies that this type of representation
can be very compact, since in the best case, a mission can be composed of many
instances of only a handful of primitive activities.

While using hierarchical activity models addresses the issue of compactness and
reusability, the non-trivial problem of developing the activity models remains. It can be a
tedious and time-consuming process to construct an activity model because although the
corresponding activity may only consist of a few different sub-activities, they may be
composed in very complex ways. This makes it very desirable to develop a method for
describing these compositions of activities that is intuitive and easy to understand.

The fact that the missions consist of coordinated activities means the planner must not
only be able to reason about which activities to perform given several choices, but it must
also be able to reason about the implications of these choices on the timing requirements
of the mission. For example, the group of vehicles in the previous scenario had to decide
which corridor to use when flying to the target area, but these corridors were only
available for specified windows of time, and in the scenario above, only one of these was
available over the entire time it would take to travel through it. Furthermore, this
temporal reasoning must be efficient enough so that onboard re-planning, which is
necessary for reacting to unexpected conditions, is not debilitating. This is important
because it is impractical to develop a mission plan that can account for all, or even many,
of the possible ways in which a mission may unfold.

Problem Statement

The research presented in this thesis concentrates on developing a model-based planning
system for coordinated multiple unmanned combat air vehicle (UCAV) missions, to
address the challenges of concisely representing domain and vehicle knowledge and
efficiently developing plans that are both expressive and flexible. The first contribution
of this research is a novel method for developing activity models by extending reactive
programming languages to express contingencies and metric time constraints, the second
is a compact encoding of the activity models that facilitates efficient planning, and the
third is an algorithm that uses these models to generate mission plans.

 9

Activity Modeling Language

There are well-researched, formal languages for describing complex reactive systems
[9,25], such as spacecraft, telephone switching networks, and commercial plane avionics
systems. These languages describe the system in terms of its states, behaviors, and the
effects of the behaviors on the state, and they are currently being explored for
applications such as model-based mode-identification, diagnosis, execution, and reactive
planning. They also offer a clean underlying semantics in terms of a process algebra.
The planning system described in this thesis leverages this past research in formal
modeling languages to help address one of the primary challenges of planning, the
problem of capturing and encoding knowledge about the complex behaviors and
interactions of cooperative agents and their environment.

A modeling language called the Activity Modeling Language (AML) was developed by
extracting the useful expressive features of a constraint-based modeling language known
as the Reactive Model-based Programming Language (RMPL) [25]. The Activity
Modeling Language can be used to describe complex system behaviors using a set of
intuitive combinators similar to those of procedural programming languages. In order to
support the modeling of coordinated, temporally extended behaviors, this language was
extended to support the representation of continuous, metric time.

Temporal Planning Network

Once system models are described using RMPL, they are compiled to a compact
representation as a set of hierarchical, concurrent, probabilistic automata (HCA) [25] that
encode system behavior. It was necessary to develop an analogous encoding for models
described in AML.
The HCA encoding could not be used because it relies on the assumption of synchronous,
unit-delay transitions between states, which is insufficient for representing time-critical
activities.

Therefore, a different type of model encoding, called the Temporal Planning Network
(TPN), was developed by merging some of the features of the HCA models with
temporal constraint models known as Simple Temporal Networks (STN) [7]. The STN
temporal constraint representation was adopted as the base representation of the encoding
because it supports efficient temporal reasoning techniques, which have been well
applied by other planners such as HSTS [12] and ASPEN [16]. The STN representation
was then augmented with symbolic constraints to support the expression of non-temporal
constraints, for example, constraints to represent usage of a shared resource for an
interval of time, and decision nodes to model multiple alternatives for performing an
activity.

The resulting Temporal Planning Network activity models are able to represent plans
involving concurrent, unconditional plans, as generated by discrete event planners like
STRIPS [8] and temporal planners like ASPEN [16] and HSTS [12], and can additionally
be used to express temporal duration of activities and maintenance conditions. The

 10

Temporal Planning Network activity models extend this representation to encode
conditionality and protections.

Model-based Temporal Planner

Our planning algorithm employs a mixture of classical planning techniques and temporal
reasoning to efficiently generate mission plans. It takes as input an activity model, for
example the SEAD mission model, and identifies a plan using a combination of network
search, incremental temporal consistency checking, symbolic conflict discovery and
repair, and hierarchical decomposition.

The planning algorithm achieves efficiency through its use of activity models. Because
the activity models are hierarchical, this planner benefits by being able to plan
hierarchically. For example, when a high-level plan is found to be temporally
inconsistent, the planner does not have to consider any plans that could result from the
expansion of this plan. Detecting inconsistencies at the higher levels of planning rules
out large portions of the space of possible plans from examination, and therefore can
significantly reduce the time necessary for planning.

Furthermore, the planner presented in this thesis uses activity models, each of which
encodes the possible behaviors of its corresponding activity by describing the set of valid
executions. Therefore, while classical partial order planners spend most of their time
trying to compose activities to construct a valid execution, this planner simply searches
over the pre-generated structures of the activity models to simply identify a valid
execution. This technique is similar to Graphplan [2] and SAT-plan [18] in that they also
rely on pre-generated structures to simplify and speed up the run-time planning.

Thesis Layout

The next chapter provides background material in the areas of constraint-based modeling,
temporal reasoning, and planning and scheduling from which the planner draws
conceptually. Chapter 3 presents the Activity Modeling Language used to describe the
activity models and the mapping from the activity model descriptions to the Temporal
Planning Network representation used by the planner, along with examples of models
developed for the UCAV missions. Chapter 4 explains the planning algorithm in detail,
and includes examples to illustrate the process. The final chapter presents results that
demonstrate the planner’s capabilities, a discussion of planner performance, conclusions,
and future work.

 11

Chapter 2
Background

The planner presented in this thesis addresses the problem of planning for coordinated air
vehicle missions. In order to do this, the planner draws from three distinct research areas.
The first of these is modeling reactive systems using constraint-based languages [25].
The second area of research is temporal constraint modeling and reasoning using Simple
Temporal Networks [7].
These two areas form the foundation of the Activity Modeling Language and the
Temporal Planning Networks introduced in Chapter 3. The third research area is
Artificial Intelligence Planning, which is drawn from extensively by the planning
algorithm described in Chapter 4 [17,21].

The Reactive Model-based Programming Language [25] is a language originally
developed to model the behavior of complex, mixed software and hardware systems
consisting of many components. The language is a form of process algebra [4] that
provides a set of combinators for facilitating the description of the behaviors of these
complex systems. The reason this is relevant to the problem of multiple vehicle mission
planning is that the challenge of modeling the behavior of complex reactive systems is
the very similar to the challenge of modeling the coordinated activities of vehicles in a
multiple vehicle mission. Since the challenge of modeling reactive systems has been
addressed by the development of RMPL and similar constraint-based languages, it is
logical that a similar language can be used to facilitate the modeling of multiple vehicle
mission activities.

RMPL describes complex behaviors as the composition of less complex behaviors, which
are implicitly coordinated through system constraints. For example, two activities that
assert conflicting constraints are implicitly coordinated in that they are never
concurrently executed. One limitation of RMPL is that it assumes the system can be
modeled using discrete time steps. This is a necessary assumption for tractability of
problems addressed by RMPL models, including mode identification and diagnosis.
However, RMPL’s notion of time makes it difficult to describe the explicit coordination
of activities. For example, RMPL cannot be used to express that one activity should
follow another by a certain number of time units.

The representation of temporal constraints is the strength of Simple Temporal Networks
(STN) [7]. These networks provide a means of explicitly coordinating activities in terms
of their times of execution and the time between different activities. For example, this
network representation can be used to express that an activity should execute for exactly
30 seconds, and that the start of a second activity should precede the completion of the
first by at least 5 seconds. Furthermore, there are efficient techniques for reasoning about
temporal constraints in Simple Temporal Network form. For example, given a set of
activities and temporal constraints as an STN, it is possible to determine whether it is
possible to perform the activities such that no temporal constraints are violated, or
compute the feasible times at which an activity may start.

 12

Reactive Model-based Programming Language

The Reactive Model-based Programming Language is a high-level language used to
describe models of reactive systems. The models specify the behaviors of a system in
terms of its default behavior and also its possible actions and their effects on the system.
For example, consider the RMPL code fragments in Figure 2.1, which are models from
the Deep Space 1 spacecraft. Figure 2.1a specifies the default behavior of the onboard
MICAS camera, which functions normally most of the time, but fails with 1% probability
at each time step. Figure 2.1b describes the Auto Navigation activity, in which the
spacecraft uses the MICAS camera to take several pictures and then uses these to correct
its course.

MICAS :: always {

 choose {

 if MICASon then {

 if TurnMicasOff thennext

 MICASoff

 elsenext

 MICASon,

 if MICASoff then ...,

 if MICASfail then ...,

 }

 with 0.99,

 next MICASfail with 0.01

 }

}

AutoNav() :: {

 TurnMicasOn,

 if IPSon thennext

SwitchIPSStandBy,

 do {

 when IPSstandby∧MICASon donext

{

 TakePicture(1);

 . . .

 {

 TurnMicasOff,

 OpticalNavigation()

 }

 }

 }

 watching

MICASfail∨OpticalNavError,

 when MICASfail donext {

 fMICASReset,

 AutoNav()

 },

 when OpticalNavError donext {

 AutoNavFailed

 }

}

(a) (b)

 Figure 2.1 RMPL examples. (a) Default behavior of a component. (b) Auto Navigation activity.

 13

These models can be used by the system for execution, as well as to infer current state,
diagnose problems, and develop plans to reconfigure itself into a desired state. The
benefit of RMPL is that it offers a simple and natural way of expressing complex
behaviors.

RMPL supports a set of combinators that provide an intuitive way to describe behaviors
of reactive systems. The types of behaviors that it is possible to express using these
combinators include conditional execution, iteration, serial and parallel execution,
preemption, probabilistic choice, and utility-based choice. These combinators can be
combined recursively to describe arbitrarily complex behaviors that can be factored down
to the primitive set of expressible behaviors. The list of combinators is provided in
Figure 2.2.

A := c |
 if c thennext A |

 unless c thennext A |
 A, A’ |
 A; A’ |
 do A watching c |
 always A |
 choose-probability { A with p, A’ with p’,
... } |
 choose-reward { A with r, A’ with r’, ... }
c := constraint
p := probability
r := reward

Figure 2.2 RMPL combinators

A modeler can use RMPL to define the behaviors of activities such as TakePicture() and
OpticalNavigation(), and then define the behavior of higher-level activities such as
AutoNav(), in terms of these other behaviors. Models of simple components, such as
valves and tanks, can also be composed to form more complex component models, such
as a spacecraft propulsion system.

RMPL describes system behaviors in terms their assertions of constraints. For example,
in the example of Figure 2.1a, MICASon, MICASoff, and MICASfail are constraints
corresponding to the conditions that the MICAS camera is on, off, or in a failure state,
respectively, and TurnMicasOff is a constraint representing the assertion that the MICAS
camera should be turned off. The Auto Navigation activity, for example, uses the
MICAS camera and to take pictures and then asserts TurnMicasOff to turn it off.

Hierarchical Constraint Automata

Each model described in RMPL is compiled into the Hierarchical Constraint Automata
representation consisting of a collection of states and transitions. One slight difference

 14

between HCA and traditional automata is that multiple states may be enabled, or marked,
at any time. More significantly, each state of HCA may be labeled with constraints that
are asserted whenever the state is marked. Transitions may also be labeled with
constraints to indicate a guarded transition, or in other words, a transition that is
conditioned on the presence or absence of a constraint assertion. These constraints
represent the interactions of the state variables of the system, and therefore provide a
basis for system diagnosis and control.

Figure 2.3 illustrates an example of a simple HCA consisting of three states and three
transitions. The labels in the states represent constraints that are asserted when that state
of the automaton is marked. The transition that starts at no state and leads into the left-
most state signifies the left-most node to be a start state of this automaton. This state is
marked in the time step that the automaton execution is initiated, at which point it asserts
the constraint c. After this time step, this state is exited and the automaton transitions
into the state containing b, only if constraint a is asserted externally by another
automaton.

The automata are hierarchical in that a state of an automaton may itself be an automaton,
similar to State Charts [10]. This is illustrated in Figure 2.4. The HCA representation
can also be viewed as an encoding of a partially observable Markov decision problem

Figure 2.3 Simple Hierarchical Constraint Automaton

c b

b

a

Figure 2.4 Example of an automaton serving as a state

c

b

a

 15

since transitions have an associated probabilities and reward. This allows HCA to model
stochastic behaviors and the utility of alternative choices.

The RMPL combinators each have an encoding as an HCA. The mapping from RMPL to
HCA, which is provided in [25], defines how RMPL descriptions are compiled into a set
of HCA.

Simple Temporal Networks

Temporal constraints are used to specify requirements concerning the times of different
events, where an event is defined as something that occurs at a single point in time. For
example, walking to the store is not an event because it occurs over an interval of time,
but starting the walk and completing the walk are both events because they correspond to
instants of time.

 A unary temporal constraint restricts the time of an event to be within a specified
absolute time range, while a binary temporal constraint restricts the duration between two
events to be within a relative time range. For example, in order to express that the walk
to the store needs to be completed some time between 8:00am and 8:15am, one would
introduce a unary temporal constraint on the completing the walk event with that absolute
time range, [8:00am, 8:15am]. To express that the walk takes between 30 to 40 minutes,
one would introduce a binary temporal constraint between the starting the walk and
completing the walk events with the range [30,40] to indicate that the time between these
events should be between 30 and 40 time units, which are minutes in this case.

Temporal Constraint Networks [7] provide a formal framework for representing and
reasoning about systems of temporal constraints. There are two classes of problems
addressed by this representation, Simple Temporal Problems (STP) and the more general
Temporal Constraint Satisfaction Problems (TCSP). Note that these are classes of
problems that include specific problems such as checking whether a system of temporal
constraints is consistent and computing the feasible time bounds for an event. The
difference is that TCSPs allow temporal constraints that specify multiple disjoint ranges
whereas STPs represent only a single range per temporal constraint. Although the
difference may seem minor, Temporal Constraint Satisfaction Problems have been
proven to be NP-hard [7] while Simple Temporal Problems can be solved using a variety
of polynomial-time algorithms.

Temporal Constraint Networks that only address Simple Temporal Problems are also
known as Simple Temporal Networks (STN). The activity models used by the planner
use the STN representation to encode temporal information, and the planner uses STP
techniques as part of the planning algorithm. The following sub-sections will discuss
relevant information about the Simple Temporal Network representation and solution
techniques.

 16

Representation

A Simple Temporal Network consists of nodes and directed arcs with interval labels.
Each node i represents an event, and each arc (i,j) between the nodes i and j
represents a binary temporal constraint over their corresponding events. The interval
label on each arc indicates the single range specified for that temporal constraint. For
example, node 1 and node 2 in Figure 2.5 represent the events start walk to store and
complete walk to store, respectively. The directed arc (1,2) with interval label
[30,40] represents the temporal constraint that the difference between the times of
these two events should be between 30 and 40 minutes.

More generally, a temporal constraint represented by the arc (i,j) with label [l,u]
says that the time of event i must precede the time of event j by at least l time units and
at most u time units. Note, this temporal constraint could be represented alternatively by
the arc (j,i) with the interval label [-u,-l], as in Figure 2.6.

Unary temporal constraints can be represented in one of two ways. The first way is for
the node corresponding to the event to be labeled with the absolute time range as in
Figure 2.7a. Absolute time ranges are enclosed in angled brackets instead of square
brackets to clarify the difference between them. The second way for a unary temporal
constraint to be represented is as a binary temporal constraint between the node
corresponding to the event and an artificial node representing a fixed time point. This is
illustrated in Figure 2.7b, where an artificial node is added to represent the absolute time
8:00am. For any STN, there only needs to be one of these temporally anchored nodes
against which any other event’s time may be referenced. This anchored node is referred
to as the origin node.

2
[30,40]

1

Figure 2.5 STN model of the walk to store activity

j
[-u,-

i

(b)

j
[l,u]

i

(a)

Figure 2.6 (a) Generic temporal constraint between event i and event j, (b) An alternative

representation of the same temporal constraint

 17

Finally, just as the walk to the store activity was represented in Figure 2.5, any activity
occurring over an extended period can be represented by its start event, end event, and
the duration constraint.

Distance Graph Analog

This section provides an overview of technical material much more thoroughly explained
in “Temporal Constraint Networks” by Dechter, Meiri, and Pearl [7]. The reader is
referred to this paper for a more formal treatment of the concepts presented here.

Another way of representing a system of temporal constraints modeled as an STN is by
using an equivalent distance graph. In the distance graph, the nodes still correspond to
temporal events, but the arcs are used slightly differently. Instead of having interval
labels, each directed arc holds a distance label. If there is an arc (i,j) with a distance
label d, this can be interpreted as restricting the time of event j to be at most d time units
greater than the time of event i. The distance labels are not restricted to be non-negative.

Applying this interpretation of the distance graph, the binary temporal constraint
represented by an STN arc (i,j) with label [l,u] could be rewritten using a pair of
arcs in distance graph form. In the distance graph, there would be an arc (i,j) with
distance label u, representing the upper-bound constraint, and there would be an arc
(j,i) with distance label l, representing the lower-bound constraint. This is illustrated
in Figure 4.8. This is also consistent with the alternative STN representation of the same
temporal constraint using the opposite arc (j,i). In that case, the interval label on
(j,i) would be [-u,-l], which would translate to the distance graph form as an arc
(j,i) with distance –l and arc (i,j) with distance u.

i
[0,15

0

(b)

i

(a)

<8:00,8:1

Figure 2.7 Event i can be constrained to occur between 8:00 and 8:15 using a unary

constraint (a), or a binary constraint (b) where event 0 is anchored at 8:00

 18

The distance graph representation leads to efficient techniques for solving a variety of
questions or problems that one might have given a set of events and a system of temporal
constraints over these events. For example, one problem is determining whether a system
of temporal constraints is consistent. Another way to phrase this is, does there exist times
that can be assigned to each event such that all temporal constraints are satisfied? A
second problem is to find the possible times at which an event can occur while not
violating any constraints. Solving both of these problems are critical to the planning
algorithm described in Chapter 4. The planner repeatedly solves this first problem to
quickly detect whether the plan is invalid, and it solves the second problem in order to
identify and resolve symbolic constraint inconsistencies.

Both of these problems can be solved using common network-based algorithms.

Determining whether a system of temporal constraints is consistent can be done by
checking for negative cycles in the distance graph representation. If a negative cycle
exists, then the system of constraints is inconsistent [7]. To illustrate this, consider the
impossible situation that event A is exactly one time unit before event B, event B is
exactly one time unit before event C, and event C is exactly one time unit before event A.
The distance graph representation of these events and temporal constraints contains a
negative cycle as shown in Figure 2.9.

Figure 2.8 (a) 2-node STN, and (b) its corresponding distance graph

i j
[l,u

(a)

i j

-

u

(b)

A

C

B

-1

-1

-1

Figure 2.9 Example of a negative cycle

 19

Consider the problem of determining the upper-bound time difference from node i to
node j. Even if there is a temporal constraint between them, this may not be the tightest
constraint on the upper-bound time difference. For example, consider the situation in
Figure 2.10, in which the time of event j is constrained to be at most 8 time units after the
time of event i. However, the constraints between node i and node k, and between node k
and node j, imply a tighter constraint on the upper-bound time difference between events
i and j. Now consider the problem of computing the lower-bound time difference from
node i to node j. Again, though there may exist an explicit lower-bound constraint as
there is in the example of Figure 2.10, this may not be the tightest lower-bound
constraint. The actual lower-bound constraint is given by the implied constraint through
event k. This example gives some intuition into why the lower- and upper-bound time
differences between two events can be computed by solving two single-source shortest
path problems, whose correctness has been proven formally by Dechter, Meiri, and Pearl
[7].

The range of feasible times for a given event can be determined by computing the lower-
and upper-bounds on the temporal distance between the origin node, which is anchored to

an absolute time, and the node corresponding to the event. This means it is also possible
to compute the feasible time bounds for all events by solving an all-pairs shortest path
problem for this distance graph.

Planning Overview

The traditional planning problem consists of an agent that must decide which activities to
perform to transition from an initial state to the goal state. The agent is the virtual or
embodied entity that performs the actions, which effect the state of the agent’s universe,
including the agent itself. In order for the agent to make decisions about which activities
to perform, it must know at least what activities are available and their restrictions and
effects. This information is often distilled into simple activity models described in
section 2.3.1. Given this knowledge, the agent can employ a variety of planning methods
to either generate a plan from scratch or repair an incomplete plan, as described in
sections 2.3.2 through 2.3.4. Section 2.3.5 shows some ways in which classical planning
methods have been extended into newer temporal planning techniques.

i

k

j

3

-4

3

8

-3-2

Figure 2.10 Example of how indirect distance bounds between two nodes may be tighter than

direct bounds: distance(i,k)+distance(k,j) < distance(i,j)

 20

STRIPS Activity Models

STRIPS operators [8] are commonly used to represent an agent’s available actions or
activities. Each STRIPS operator models an activity in terms of a set of pre-conditions
and post-conditions. The pre-conditions define conditions that must be true in order for
the activity to be used, and the post-conditions represent the activity’s effects by defining
the set of conditions that are true after the activity completes. These conditions are
typically represented as a conjunction of literals, where each literal is simply a symbol
corresponding to a condition that may be either true or false.

 Op(ACTION: Takeoff(),

 PRECOND: NOT(IN-AIR)∧TAKEOFF-OK,

 EFFECT: IN-AIR)

 (a) (b)

Figure 2.11 The STRIPS operator activity model for the Takeoff activity expressed (a)

textually and (b) graphically, in the formats used by Russell and Norvig [17]

For example, assume the agent is an air vehicle. Then the condition that the vehicle is in
the air might be represented by the literal IN-AIR, and the condition that the runway is
clear for Takeoff might be represented by TAKEOFF-OK. The agent might have the
ability to Takeoff, which could be represented by a STRIPS operator with the pre-
conditions NOT(IN-AIR) ∧ TAKEOFF-OK and the post-condition IN-AIR. This would
mean that the Takeoff activity could only be used if the vehicle was not in the air and if
the runway was clear, and after the Takeoff activity completed the vehicle would be in
the air.

The start and goal states can also be modeled as STRIPS operator activity models. The
start state activity model has no pre-conditions, but has as post-conditions those
conditions that are true initially. The goal state activity model has no post-conditions but
represents the conditions of the goal state as pre-conditions. Figure 2.12 shows how the
start and goal states can be represented by activity models.

Takeoff()

NOT(IN-AIR), TAKEOFF-OK

IN-AIR

Start

NOT(IN-AIR), TAKEOFF-OK

Goal

At(X)

Figure 2.12 Example of Start and Goal states represented as activity models

 21

Partial Order Planning

Given a set of STRIPS activity models, one way to plan is by constructing a path through
the state-space connecting the start state with the goal state. From the initial state of the
agent’s universe, the planner can identify those activities that are enabled, meaning that
their pre-conditions are satisfied by the conditions that are true in the initial state. Then
the planner can add one or more of these activities to the plan, which has the effect of
transitioning the agent’s universe into a new state in which different conditions are true.
From this new state, the planner can again check which activities are enabled from the
current state, and select more activities to add to the plan, continuing until the conditions
of the current state satisfy the conditions of the goal state.

When the planner adds an activity, it must also introduce dependency links, often called
causal links, to represent that the activity depends on other activities or the initial state to
satisfy its preconditions. For example, in Figure 2.13, the activity Takeoff has the pre-
conditions NOT(IN-AIR) ∧ TAKEOFF-OK, which are both asserted by the initial state,
so a causal link is added from the initial state to the Takeoff activity for each of these
conditions. The Fly-to(X) activity has the pre-condition IN-AIR which is satisfied by the
Takeoff activity, so a causal link is added from the Takeoff activity to the Fly-to(X)
activity. This causal link indicates that Takeoff must precede Fly-to(X).

 22

An alternative way to construct a plan is to start from the goal state work back towards
the start state. The planner selects one or more activities whose post-conditions include
the goal conditions and introducing a dependency from the goal state to each of these
activities. However, in order for these activities to be used, their pre-conditions must be
satisfied, so the pre-conditions of these added activities are added to the set of goal

conditions that must be satisfied. The process is complete when all of the remaining goal
conditions are satisfied by the start conditions. This type of planning is known as
regression planning because it starts at the goal state and works back to the start state,
whereas the first approach described is called progression planning, because it builds
forward from the start state towards the goal state.

A plan produced by either progression or regression planning consists of an ordering of
activities to be performed to get from the start state to the goal state. These forms of
planning produce a non-linear plan, consisting of activities and dependencies from
activities to other activities that form a partial ordering. Each activity has a dependency
on zero or more other activities, and it cannot be performed until every activity upon
which it has a dependency has been performed. If the activities were totally ordered then
the plan would be linear, consisting simply of a sequence of activities to be performed
one after another. However, in many cases a total ordering is not necessary or

Start

NOT(IN-AIR), TAKEOFF-OK

Takeoff()

NOT(IN-AIR), TAKEOFF-OK

IN-AIR

Goal

AT(X)

Fly-To(X)

IN-AIR

AT(X)

Figure 2.13 Example of a plan generated through Partial Order Planning

 23

undesirable, because the planner must make ordering decisions even between activities
that have no dependence on one another.

Hierarchical Planning

One problem with the planning technique described in the previous section is that it is
slow in practice, especially with a large number of available activities. A way to speed
up planning is to compose the primitive activities into a set of higher-level activities or
macro-activities, introducing a hierarchy to the activities. Each macro-activity is
essentially a partially ordered plan consisting of primitive activities, which can be
composed into higher-level macro-activities that describe behaviors that are even more
complex. The planner can first construct a plan using the highest-level macro-activities,
and then decompose each macro-activity until the plan includes only primitive activities.

However, there is some additional work to be performed beyond decomposition, because
decomposition may reveal a potential conflict between lower-level activities. A conflict
occurs if two activities prevent one another from performing correctly, due to conflicting
post-conditions or pre-conditions. Conflicts are resolved by ordering activities such that
their conditions no longer interfere with one another. A hierarchical planner first
generates a plan using macro-activities, decomposes these macro-activities into primitive
activities, and then repairs the plan to resolve any inconsistencies.

There are two desirable properties of hierarchical activity models. First, any valid high-
level plan should be decomposable to a primitive-level plan that is still valid, and second,
for any valid primitive-level plan there is a corresponding highest-level plan. The first is
called the “downward solution” property and the second is called the “upward solution”
property [17]. If one or both of these properties hold, then hierarchical planning provides
a significant performance benefit over planning with the primitive activities because it
prunes the search space.

State-space and Plan-space Planning

There are two general methods of planning, state-space planning and plan-space
planning. The partial order planning techniques described in section 2.3.2 fall into the
realm of state-space planning, while hierarchical planning described in the previous
section employs both state-space and plan-space planning methods. The input to a
typical state-space planning problem is a start state, a goal state, and a set of available
activities, and the state-space planner incrementally adds activities to the plan until a path
is found that can transition the agent from the start state to the goal state. The reason this
is called state-space planning is that the planner is searching over the space of possible
states, moving from state to state, as it is adding activities to the plan.

The input to a typical plan-space planning problem is an incomplete or inconsistent plan,
and the plan-space planner iteratively adds activities or orderings and repairs the plan
until it is both complete and consistent. For example, the generic hierarchical planner
described in the previous section took a high-level incomplete plan and repaired it by
decomposing macro-activities and adding orderings to resolve conflicts between
activities. At each iteration, rather than deciding which activities to add to bridge the gap

 24

between the start state and the goal state, the planner decides how to modify the current
plan to move towards completeness and consistency. It makes decisions over the set of
possible plans, while the state-space planner makes decisions over the set of possible
states.

Temporal Planning

The technique of partial order planning produces a plan that is an ordering of activities,
but does not care about the duration of activities or the time between activities. Many
planners similarly rely on an abstract notion of time. The justification for these methods
is the assumption that timing issues can be addressed as a separate scheduling problem; a
plan is first constructed without worrying about how long activities take to perform, and
then the activities are scheduled, or assigned times, such that the activity dependencies
are satisfied. The problem with this is that even though a plan might be constructed
relatively quickly, if the planner does not reason about temporal constraints, there may be
no feasible way to schedule the activities to fulfill the timing requirements of the mission.
Recent work in temporal planning has attempted to tackle exactly this problem by
blurring this separation of planning and scheduling, and incorporating temporal reasoning
into the planning process. A good overview of research in this area is provided by [18].

One general technique for bringing together the problems of planning and scheduling is
by casting them as resource-constrained project scheduling problems [18]. This type of
problem assumes that there are resources that are consumed in some quantity by each of
the activities, and that activities have a fixed, pre-determined duration. It takes as input
an ordering of activities, as would be produced by a partial order planner, and assigns
start times to each activity to times such that all the ordering constraints are satisfied and
no resource is over-consumed. Well-known constraint satisfaction techniques, such as
backtracking search or forward checking [17], can be used to find feasible assignments.
However, because of the number of possible times to assign to each activity depends on
the resolution of time, this problem requires a tradeoff between tractability and precision;
with very fine time resolution the space of possible solutions becomes enormous, while
using a more coarse resolution reduces this space but exaggerates the discretization of
time.

There has also been work with continuous planning, which addresses the issue of both
continuous time and resource consumption. The ZENO planner [15] uses more complex
activity models that represent the conditions and effects of each activity using a set of
metric constraints. For example, using the ZENO representation, one could model that
the consumption rate of fuel was equal to a specified value for the duration of the Fly-
to(X) activity. These models also allow inequality constraints, for example, that the
quantity of fuel must be greater than zero during flight. The activity’s temporal duration
can also be represented as a metric constraint between the start time and end time of the
activity. ZENO generates plans using the regression planning technique, starting with a
set of goal conditions and introducing new activities and dependencies until there are no
goals left to be satisfied. Although very powerful, ZENO is admittedly practical for only
toy problems because it is relatively slow.

 25

The HSTS planning and scheduling system [13] takes a novel approach to the planning
problem. Instead of modeling the state of the planning subject and its environment as a
set of conditions, it maintains an explicit set of variables each represented by a timeline
over a finite time horizon. Each timeline holds tokens, covering some portion of the
timeline, which indicate the state of the variable or the invocation of an activity acting on
the variable state over the duration corresponding to the timeline segment covered by the
token. For each type of token, there are associated constraints called compatibilities,
which must be satisfied in order for the plan to be complete. A compatibility might
require the addition of tokens or it might impose a temporal constraints between itself and
another token. A planning goal state is represented by an incomplete plan consisting of a
partially populated set of timelines representing the desired state of the variables at
particular times. The planner is then responsible for resolving compatibility conflicts by
adding tokens and temporal constraints between tokens, or shifting tokens to enforce
temporal constraints. The planner also uses a Temporal Constraint Network data
structure, also known as a Simple Temporal Network [12,7], to represent and perform
temporal reasoning over a system of temporal constraints.

While planners such as ZENO and HSTS address the issue of temporal planning, they do
not adequately address the problem of planning for coordinated air vehicle missions for
two reasons. The first is that they do not provide a natural way to develop activity
models used by the planner, which makes it very difficult to model activities involving
complex coordinated behaviors of multiple vehicles. The second problem is that these
planners require much more time to generate plans than is allowable in the context of an
unmanned combat air vehicle mission. It is necessary for the planner to generate a plan
in a few seconds rather than a few hours [3]. These issues are the primary focus of the
remainder of this thesis.

 26

Chapter 3

Activity Models

Overview

In order for any planner to function, it needs knowledge about the abilities of the agents
for which it is planning. This information is conveyed to the planner through activity
models. As mentioned in chapter two, STRIPS operators provide a simple and compact
means for a modeler to describe an activity in terms of what conditions must be true of
the environment and the subject in order for the activity to be used, and also the effects of
the activity. However, in using STRIPS operator models, the modeler abstracts away a
lot of information about activities.

For the reasons stated in chapter one, the planning of multiple vehicle missions requires
activity models that are rich enough to represent the requirements of coordinated
behaviors, making STRIPS operators insufficient. For example, the activity model of a
rendezvous activity must be able to represent the requirement that all vehicles must meet
somewhere at the same time. An example of another type of coordination requirement is
that multiple vehicles of a group should not transmit messages on a single
communication channel at the same time. Therefore, the activity models used for
multiple vehicle missions must be able to express both timing requirements and resource
constraint requirements. Given these requirements on the expressive power of the
requisite activity models, it is also important to be able to keep the activity models as
simple, compact, and easily encodable as possible.

The RMPL models of reactive systems described in chapter two offers two things to this
end. First, RMPL provides an expressive but simple process algebra that makes it easy to
describe activities and the composition of activities. Second, the HCA representation,
into which the RMPL activity descriptions can be compiled, provides a compact
encoding of concurrent behaviors in terms of the constraints they impose on the system,
which can be used to model the resource constraint requirements of coordinated vehicle
activities. However, these models are deficient in their ability to express the timing
requirements of coordinated activities.

The STN representation provides a way of representing complex systems of temporal
constraints, so this representation can be used to model the timing requirements of
coordinated mission activities. However, the STN representation was not designed to
represent the resource constraint requirements necessary for modeling a coordinated
activity. In addition, it is tedious to construct an STN model of the temporal constraints
of an activity, especially if the activity involves complex composition of many primitive
activities.

This chapter presents the result of blending these two representations to form the Activity
Modeling Language, which extends RMPL to allow for the description of temporal

 27

constraints, and the Temporal Planning Network, which unifies the expressive power of
HCA and STN for representing activity models. Because the Activity Modeling
Language and the Temporal Planning Network activity models are based on the behavior
models described by programming languages such as CC [9] and derivatives, and RMPL
[25], it is possible to leverage off their past work and experience in the formal modeling
of reactive systems.

These and related languages have been used in the past to develop models used for
simulation, system mode identification, diagnosis, and execution in real-world situations
such as onboard the Deep Space One spacecraft [14]. As described in the previous
chapter, RMPL provides a set of combinators that allow for the description of system
behaviors modeled as concurrent hierarchical constraint automata. These combinators
can be used to express the assertion of constraints, parallel and serial composition,
conditional execution, iteration, preemption, probabilistic transition, and utility-based
transition. The Activity Modeling Language borrows from RMPL the combinators useful
for describing activity models for planning, and augments this subset with a means for
representing temporal relations, including the duration of activities and the time between
activities.

Just as RMPL is used to describe the state and behavior of complex systems in terms of
the composition of the states and behaviors of their components, AML can be used to
describe complex coordinated activities in terms of the composition of component
activities. Hierarchical modeling not only helps to minimize the size and complexity of
the models, but also aids in making the planner more efficient. These models express
alternate ways of performing activities explicitly as part of the activity models, rather
than leaving these decisions to be inferred by the planner as in the case of classical partial
order planners. As mentioned in chapter one, this is necessary for planning UCAV
missions because these types of choices are typically tightly controlled. One resulting
benefit of this type of representation is that the modeler can easily control the complexity
of the planning problem; introducing many decisions allows for more variation and
correspondingly more complexity, while incorporating few decisions means the mission
will always be performed basically in the same way, but missions can be developed more
quickly. Note that even if there are no explicit decisions in the activity models, there are
still many decisions regarding activity start times and durations. While this kind of
mission model is rigid in the sense that it is always performed using the same activities,
there may remain a great deal of temporal flexibility in how the mission is performed
given different requirements.

Example

Consider the SEAD mission scenario described in chapter one. One of the activities
performed during the mission was the Enroute activity, in which the group of vehicles
flew together from the rendezvous point to the target area. In this activity, the group
selects one of two paths for traveling to the target area of interest, flies together along the
path through a series of waypoints to the target position, and then transmits a message to
the forward air controller to indicate their arrival, while waiting until the group receives
authorization to engage the target.

 28

The two paths available for travel to the target area are each only available for a
predetermined window of time, which is important for the planner to consider when
selecting one of these paths. In addition, the Enroute activity will be bound in time by
externally imposed requirements, for example, the mission must complete in 25-30
minutes, while at least 20% of this time and at most 30% of this time is allotted to the
Enroute activity. Therefore, it is also useful for the activity to pass these time constraints
down to its constituent sub-activities. For example, 90% of the time available for the
Enroute activity should be allotted to the sub-activity of flying along the selected path
since that will probably require the most time of all sub-activities. The desired behavior
of this activity is captured in the AML code below.

Group-Enroute()[l,u] = {

 choose {

 do {

 Group-Fly-Path(PATH1_1,PATH1_2,PATH1_3,TAI_POS)[l*90%,u*90%];

 } maintaining PATH1_OK,

 do {

 Group-Fly-Path(PATH2_1,PATH2_2,PATH2_3,TAI_POS)[l*90%,u*90%];

 } maintaining PATH2_OK

 };

 {

 Group-Transmit(FAC,ARRIVED_TAI)[0,2],

 do {

 Group-Wait(TAI_HOLD1,TAI_HOLD2)[0,u*10%]

 } watching ENGAGE_OK

 }

}

Figure 3.1 AML description of the Enroute activity of a multiple vehicle SEAD mission

Once the behavior of an activity is described in AML, this description can be compiled
into a Temporal Planning Network model. The Temporal Planning Network
corresponding to this Enroute activity is graphically depicted in Figure 3.2. Activity
name labels are omitted to keep the figure clear, but the node pairs 4,5 and 6,7 represent
the two Group-Fly-Path activity, and node pairs 9,10 and 11,12 correspond to the Group-
Wait and Group-Transmit activities, respectively. Node 3 is a decision node that
represents that there is a choice between the two methods for flying to the target area.

 29

This is the Temporal Planning Network that would result if the mission were allowed to
take between 25 and 30 minutes, and the Enroute activity were allowed 30% of this time.
This network models the temporal constraints on the overall activity, as well as its sub-
activities. The activity model constrains the time for the Enroute activity to be at least
450 seconds and at most 540 seconds, it constrains the time for flying to the target area to
at least 405 seconds and at most 486 time units (90% of the allotted time for the Enroute
activity), and so on. It also models the decision between the two paths to the target area,
and it models the restrictions that each of the paths can only be used if they are available.

Section 3.3 will describe the combinators of the Activity Modeling Language, and justify
why they are necessary and useful. The following section will describe in detail the
Temporal Planning Network representation and the meaning of its constructs in terms of
how it describes execution, and how they can encode activity models described in AML.
The Enroute activity description and model in Figures 3.1 and 3.2 will be used as a
running example through this chapter.

Activity Modeling Language

One reason for using any modeling language, including AML, is to add a layer of
abstraction between the description of the behavior and its actual encoding, especially if
the encoding can become incomprehensible. This is certainly the case with the TPN
encoding of activity models, which can be both tedious to directly encode and difficult to
understand with complex activities. There is no benefit of using a language if it is as
difficult to describe the activities using the language as it is to encode the models directly,
but at the same time, the language must be sufficiently expressive to be able to describe
some minimal set of desired behaviors. For AML, the sufficiency of its expressiveness
was based on its ability to describe the necessary coordinated behaviors of multiple
vehicle missions. The basic combinators of the AML language are listed in Figure 3.3.

A := A[l,u] |

 activityinstance |

 c |

Figure 3.2 A possible instantiation of the Temporal Planning Network activity model

for the Enroute activity

3

6

4 5[0,0] [405,486]

[0,0]

Ask(PATH1=OK)

1 2

7

Ask(PATH2=OK)

8

[405,486]

[0,0]

[0,0]

[0,0] [0,0]

[450,540]

Tell(¬ENGAGE=OK)

11

9 10 [0,0]
[0,54]

[0,0]
12

13

[0,2]

[0,0]

[0,∞]

 30

 [l,u] |

 if c then A |

 do A watching c |

 A; A’ |

 A, A’ |

 { A } |

 choose { A, A’, … }

activityinstance := activityname (argumentlist)
c := proposition | Not(proposition)

Figure 3.3 Basic AML combinators

The Activity Modeling Language was modeled after the Reactive Model-based
Programming Language [25] presented in section 2.1. The main differences are that
AML excludes the utility-based choice combinators of RMPL, replaces the probabilistic
choice combinator (choose-reward) with non-probabilistic, non-deterministic choice
(choose) used to express alternate ways for performing an activity, and AML augments
this set with the interval construct used for the expression of temporal constraint.

Basic Combinators

In order to express timing requirements of coordinated activities, it is necessary to
express temporal duration, for example, that the Enroute activity takes 10 minutes. To
accommodate the goal of flexibility it is also useful to simply bound the feasible
execution time of an activity and let the planner determine the appropriate amount of time
in which the activity should be performed. Therefore, instead of saying that the Enroute
activity must take 10 minutes, it might be better to say the Enroute activity must take
between 9 minutes and 11 minutes. In AML, this would be expressed as
Enroute()[540,660], with the name of the activity instance followed by the
allowed duration range specified by the lower and upper bound pair enclosed in square
brackets. By default, if an activity is not labeled with a duration bound, it is assumed that
the activity may have any non-negative duration.

In order to support the modeling of coordinated behavior, it is also necessary to describe
the requirement and assertions of conditions. This is necessary to make sure that the
activities of the vehicles are consistent with one another and consistent with the
conditions of the environment. For example, the portion of the Enroute activity in which
the group is flying along one of the paths to the target area requires that the path on which
they are traveling is available. This requirement needs to be described so that the
execution behavior of the vehicles is consistent with the availability of the paths. In order
to assert the condition that the first path is available for 5 minutes, one can use the AML
expression path1=ok[300,300]. The constraint path1=ok represents the
condition that the first path is available, and it is qualified by the duration range
[300,300] with the time units being seconds.

 31

A condition may be required as a pre-condition or as a maintenance condition of an
activity. A precondition asks that a condition be true for the instant before an activity
begins. For example, the single vehicle Bomb(x,y) activity has the precondition that
the vehicle has a bomb to use. This precondition is represented in AML using the
expression if c then A[l,u], where c represents the condition that is required, and
A represents the activity whose execution is conditioned on constraint c. The
Bomb(x,y)[l,u] activity can then be described in AML as if bomb=ok then
Drop-Bomb(x,y)[l,u], where bomb=ok represents the condition that the vehicle
has a bomb, Drop-Bomb(x,y) is the activity of dropping the bomb, and [l,u]
describes the duration bounds of the bombing activity.

Bomb(x,y)[l,u] := { if bomb=ok then Drop-Bomb(x,y)[l,u] }

Figure 3.4 AML definition of the Bomb activity

A maintenance condition asks that a condition be true over the duration of an activity.
For example, consider again the portion of the Enroute activity in which the group flies
along either path one or path two to the target area. If the group flies along path one, then
this activity requires that over the duration of this flight, the condition that path one is
available is maintained. These maintenance requirements are expressed in AML as do
A[l,u] maintaining c. This says that the condition represented by c must be true
over the duration of the activity represented by A. Figure 3.5 shows the portion of the
Engage activity description from Figure 3.1 that corresponds to the activity of flying
along path one.

 do {

 Group-Fly-Path(PATH1_1,PATH1_2,PATH1_3,TAI_POS)[l*90%,u*90%];

 } maintaining PATH1=OK

Figure 3.5 An example of the AML combinator for expressing maintenance conditions

When describing complex activities, it is useful to describe them in terms of the
composition of simpler activities. For example, the activity of flying along a path can be
described as the composition of several fly to waypoint activities. AML describes
sequential and parallel composition in the same way as RMPL, using two types of
delimiters. Semicolon are used to delimit activities to be executed in series, so the AML
expression in Figure 3.6a describes the behavior that the vehicle should fly to a series of
waypoints, one immediately after another.

 32

 (a) Fly-To(wpt1)[10,12]; Fly-To(wpt2)[12,12]; Fly-To(wpt3)[8,10]

 (b) Fly-To(wpt1)[5,20], Bomb(x,y)[3,8]

Figure 3.6 An example of the AML (a) sequential composition combinator, and (b) the

parallel composition combinator

If activities are separated by commas, then this describes the behavior that they are
performed in parallel. For example, Fly-To(wpt1)[5,20], Bomb(x,y)[3,8]
describes the behavior that the vehicle should fly to a waypoint while bombing a location.
To be more precise, this describes the behavior that these activities start together and end
together.

Fly-To(wpt1)[8,10]; { Fly-To(wpt2)[5,10], Bomb(x,y)[3,6]
}

Figure 3.7 An example of activity grouping in AML

Since neither delimiter is given precedence over the other, this might lead to ambiguous
compositions. For example, consider the AML fragment A[1,2], B[5,6];
C[2,3], D[3,3]. This could be describing that activity A and B should be in
parallel, followed by C and D in parallel, or it could be saying that B and C are in series,
and that they are execute parallel to both A and D. In order to address this problem of
ambiguity, brackets can be used to clearly group sections of an AML activity description,
and each grouped section is treated as a sub-activity. Figure 3.7 shows an example of
how this grouping may be used. This code fragment describes the behavior of a vehicle
flying to a waypoint, then bombing a location while flying to a second waypoint.

Transmit(ONE,ALL,STATUS)[1,1]; [58,62]; Transmit(ONE,ALL,STATUS)[1,1]

Figure 3.8 Example of a temporal spacer

In order to support the description of more complex coordination, it is useful to be able to
express arbitrary temporal constraints between activities. One example of where this is
necessary is in expressing a delay between the activities executed in sequence; for
example, if a vehicle is supposed to periodically broadcast status messages, it is
necessary to describe the time between these broadcasts. Figure 3.8 shows a description
of this behavior with broadcasts approximately every minute. The end of the first
transmission is constrained to be at least 58 seconds and at most 62 seconds before the
start of the second transmission activity.

To express that there are several ways of performing an activity, AML incorporates a
choice combinator. This is also the key combinator for expressing contingent executions
of an activity. It can be used, for example, in the Enroute activity to represent that there

 33

are two paths available for flying to the target area. It is also used in the Transmit
activity to represent the choice between multiple communication channels, as shown
below in Figure 3.9. The choices are not associated with reward or probability as in
RMPL, but instead choices are considered by the planner in the order they are listed.
Therefore, for the Transmit activity, ch1 represents the default communication channel
and ch2 represents the other available channel that is used if the first is unavailable.

Transmit(from,to,msg)[l,u] := {

 choose {

 {ch1=from}[l,u],

 {ch2=from}[l,u]

 }

}

Figure 3.9 AML description of the Transmit activity

Derived combinators

The basic combinators are the minimal set needed to describe the coordinated behaviors
for multiple vehicle missions. However, a few more combinators can be derived from
these that are useful for keeping AML descriptions easy to understand. These derived
combinators are listed in Figure 3.10.

A := do A[l,u] watching c |

 repeat A[l,u]

Figure 3.10 Derived AML combinators

The do A[l,u] watching c combinator is similar to the do A[l,u] maintaining c
except that it describes the behavior that activity A is executed until condition c becomes
true. While the analogous combinator in RMPL was used to express that an activity
should be preempted when some condition became true, the AML version of this
combinator simply expresses that the interval over which activity A executes must not
overlap with any interval over which condition c is true. The planner is responsible for
ensuring that this condition is satisfied. If c corresponds to an exogenous condition, there
is no way for the planner to guarantee that the unconditional plan it generates will
necessarily be consistent through execution. This requires and instance of contingent
planning that should be addressed in future work.

The repeat A[l,u] combinator is used to model the repeated execution of activity A
without specifying the number of executions. During the compilation from AML to
TPN, the compiler is responsible for determining the minimum and maximum number of
time activity A may be performed, given A’s duration bounds and the duration bounds on
the repeat A[l,u]. The compiler encodes this combinator with a decision node and the

 34

appropriate number of choices. For example, if the AML expression {repeat
A[10,12]}[20,40] implies that activity A must be performed between one and four times,
so this would be encoded into a TPN model by a decision node with four choices, one
corresponding to a possible number of executions of A. This defers the decision of how
many times to perform A to the planner. This is useful in combination with the
preemption combinator to express the repeated execution of an activity until some
condition becomes true.

For example, the AML fragment do { repeat Wait(wpt1,wpt2,wpt3)[l,u]} watching
group_arrived describes an activity in which a vehicle flies in a loop through three
waypoints repeatedly until the other vehicles in the group have arrived. One limitation of
this combinator is that it will not accept a zero duration activity, A[0,0], as the activity to
be repeated. The reason, of course, is that an infinite number of these activities may be
performed in any instant, which cannot be modeled using the Temporal Planning
Network representation. This should still be sufficient, however, because in reality most
activities that need to be modeled have positive duration.

Temporal Planning Network

The Temporal Planning Network (TPN) serves as the representation of the activity
models used by the planner described in this thesis. A TPN activity model encodes the
behavior of an activity by defining the set of feasible executions. TPN models don’t
enumerate these executions, but instead constrain the set of valid executions by
specifying both the temporal and symbolic constraints of the activity. A temporal
constraint restricts the behavior of an activity by bounding the duration of an activity,
time between activities, or more generally the temporal distance between two events. A
symbolic constraint restricts the behavior of an activity by expressing the assertion or
requirement of certain conditions by activities. Both types of constraints must be
satisfied in any valid execution of an activity.

For example, consider some of the possible executions of the Enroute activity whose
TPN model is shown in Figure 3.2. One possible execution is that the group flies along
path one to the target area in 420 time units (seconds in this case), transmits an arrival
message to the forward air controller in one second, then waits for another 40 seconds to
receive authorization to proceed. Another possible execution is that the group selects the
second path, flies to the target area in 500 seconds, takes 2 seconds to transmit the arrival
message, and is authorized to proceed immediately. If it were the case that path one was
available from the time at which the Enroute activity started to at least the time that the
group arrived at the target area, then the first execution is valid. This is because it
satisfies both the temporal constraints on the Enroute activity, and the requirement that
path one is available for the duration of the flight along it. The planning algorithm
described in chapter four performs the identification of consistent activity executions.

Each execution corresponds to a set of trajectories or paths through the TPN encoding of
an activity. In this sense, the TPN encoding can be understood to be an expansion of the
set of possible executions. This encoding is one of the reasons why the planner described
in this thesis performs so quickly, but there is a slight downside to this. The TPN

 35

representation is not as compact as the HCA, because it cannot encode iterative behavior
using a loop as illustrated in Figure 3.11a. The TPN representation would model this
behavior with a non-deterministic choice on the number of iterations to perform, as in

Figure 3.11b. In effect, the TPN encoding expands out the loop in time, which consumes
more space, but saves the planner from performing this expansion at the time of planning.
The reason that the activity encoding needs to be expanded in this way is that otherwise
the planner cannot directly apply STN methods for temporal reasoning.

A Temporal Planning Network is essentially a Simple Temporal Network that
incorporates some features of Hierarchical Constraint Automata, in particular simple
symbolic constraints and decision nodes, that make the representation sufficiently
expressive for modeling coordinated activities. Just as in Simple Temporal Networks, the
nodes represent temporal events, and the arcs represent temporal relations that constrain
the temporal distance between events. Figure 3.12 gives an example of a Simple
Temporal Network and a Temporal Planning Network.

The first difference between the Simple Temporal Network and the Temporal Planning
Network is while arcs in the STN are labeled with duration ranges, the arcs of the TPN
are labeled with both duration ranges and symbolic constraints such as Tell(c) and
Ask(c). The symbolic constraints, which represent conditions regarding the state of the
vehicles or their environment, have similar semantics as the constraints of Hierarchical

[5,6 [1,1]

[0,∞ [4,5

[5,6
[1,1]

[0,∞
[4,5

Tell(c)

Ask(c)

(a (b

Figure 3.12 An example of a (a) Simple Temporal Network, and (b) a Temporal Planning

Network with a decision node and symbolic constraints

 a b

(a)

a b

(b)

a b a b

Figure 3.11 Iterative behavior encoded in (a) HCA form, and in (b) TPN form

 36

Constraint Automata. Just as HCA constraints were used to either assert or check for the
assertion of a condition, the Tell(c) symbolic constraint in Figure 3.12b represents the
assertion that the condition corresponding to c is true, and the Ask(c) symbolic
constraint represents the requirement that the condition corresponding to c is true. For
example, the proposition PATH1=OK in the Enroute activity model corresponds to the
condition that the first path is available, so Ask(PATH1=OK) represents the requirement
that the path is available. The usage and interpretation of symbolic constraints are
described in section 3.4.1. This representation is different from HCA in that there is no
distinction made between states and transitions. This uniformity of this representation
serves to simplify the planning algorithm.

The TPN also augments the STN with decision nodes that can be used to express a choice
between a set of ways of performing some part of an activity. For example, in Figure
3.12b, the node with the double outline represents a decision node, and the dashed arcs
out of that node represent the available choices, of which exactly one must be chosen. In
the Enroute activity example in Figure 3.2, node 3 is a decision node, which represents
the decision between the two paths for the group to travel to the target area. The dashed
arc (3,4) represents the option to take path one, and the dashed arc (3,6) represents the
option to take path two. Section 3.4.2 discusses the decision node and related
representational issues.

One other subtle difference between the Temporal Planning Network and the Simple
Temporal Network is that arcs represent both temporal constraints and dependencies or
causal links. While each temporal constraint in an STN can be reversed, with the
modification of the duration label, it cannot be reversed in the Temporal Planning
Network because it changes the direction of dependency. The significance of this
becomes more clear in chapter four with the description of the planning algorithm.
Essentially, the planner discovers the plan by using a network search to explore
trajectories or paths through the network, since the paths through the network correspond
to executions of activities. The direction of the arcs is important because the network
search used by the planning algorithm only follows forward arcs, not reverse arcs, which
is necessary for the correctness of the planning algorithm. In addition, the arcs represent
precedence constraints, so a directed path through the Temporal Planning Network
defines a chronological ordering of activities that form an execution thread. The
interpretation of the directedness of these arcs becomes more problematic when negative
temporal constraints are permitted. This issue is discussed in the Future Work section of
Chapter 5.

Symbolic Constraints

Recall that HCA models use constraint labels to represent both assertions and
requirements. If the constraint was attached to a state, then it represented an assertion of
the condition corresponding to the symbolic constraint, but if the constraint was attached
to an arc, then it represented a requirement that the corresponding condition be true in
order to follow a transition. Temporal Planning Networks also use this representation to
model both the requirement and the assertion of conditions.

 37

One difference is that, whereas in HCA the usage of the symbolic constraints was
implicit in their placement on either a state or an arc, all symbolic constraints in a
Temporal Planning Network are attached to arcs, so context cannot be used to distinguish
one usage from the other. Therefore, symbolic constraints in a Temporal Planning
Network consist of two parts, a symbol and a type classifier. The symbol represents a
condition, or the negation of a condition if qualified by a Not. The type classifier
indicates what the symbolic constraint is saying about the condition corresponding to the
symbol. If the type is Ask, then the symbolic constraint represents the requirement that a
condition be true. If the type is Tell, then it represents the assertion that a condition is
true.

symbolic constraint = Tell(c) | Ask(c)
c = proposition | Not(proposition)

Figure 3.13 Symbolic constraints

Symbolic constraints in a Temporal Planning Network must always be temporally
qualified by being attached to an arc. Since each arc represents an interval of time, the
association of a symbolic constraint with an arc represents the requirement or assertion of
a condition over this interval. A Tell(c) label on an arc (i,j) would assert that the
condition represented by c is true over the interval between the temporal events modeled
by the nodes i and j.

For example, consider the TPN model of the single vehicle Transmit activity in Figure
3.14, where node 1 represents the start event of the activity, node 2 represents the end
event, and [l,u] is the uninstantiated duration bound. The Tell(CH1=FROM)
symbolic constraint label on arc (4,5) asserts that the first communication channel is
being used over the duration of the transmission activity. This is similar to the concept of
a token in most temporal planning systems, with the addition that the arc indicates what
activities must precede and follow its corresponding activity.

Figure 3.14 Model of the single vehicle Transmit activity (Note: zero-duration

labels are omitted for clarity)

4 5
[l,u]

Tell(CH1=FROM)

6 7
[l,u]

Tell(CH2=FROM)

1 2
[l,u]

3

 38

Similarly, an Ask(c) label on an arc (i,j) would require that the condition
represented by c is true over the interval represented by this arc. For example, in Figure
3.2, the Ask(PATH1=OK) label on the arc (3,4) represents the requirement for path one
to be available for the interval of time corresponding to the interval of time between the
temporal event modeled by node 3 and node 4. These Ask-type symbolic constraints
allow for the encoding of conditional execution in the network, which is a key extension
beyond traditional planning representations.

Decision Nodes

The decision nodes are used to explicitly introduce choices in activity execution into the
activity models. These represent explicit decisions that the planner must make. For
example, in the Enroute activity presented at the beginning of this chapter, there are two
choices of paths for the group to use for flying to the target area, path one and path two.
The activity model captures the two choices as out-arcs of decision node, node 3 in
Figure 3.2, graphically designated as a decision node by the double outline and dashed
out-arcs. All other nodes in this activity model are non-decision nodes.

As mentioned briefly before in section 3.4, a TPN activity model can be viewed as an
expansion of the possible executions of the activity, and executions consist of one or
more paths through the network. Decision nodes encode non-deterministic choice in this
sense because they represent points in the network where executions may diverge in one
case versus another. This is the second key addition, besides the Ask-type symbolic
constraints, that allow unconditional temporal plans to generalize to the full
expressiveness of RMPL (with the exception of probabilistic and utility-based choice)
and time constraints.

Composition

(a

(b

Figure 3.15 (a) Decision node, (b) Non-decision node

 39

With the basic components of the Temporal Planning Network, it is possible to compose
instances of very simple activity models, like those described in the previous section, into
arbitrarily complex macro-activity models. One simple way to compose simpler activity
models is by placing them in series to model a higher-level activity that performs a
sequence of simple activities. Alternatively, these activity models can be placed in
parallel to describe an activity in which multiple activities are performed at the same
time.

Serial composition and parallel composition rely on the introduction of temporal
constraint connectors between instances of activity models, but depending on the actual
constraint, the composition may have different meanings. For example, constructing a
sequence of two activities connected by zero duration arcs represents an activity that
executes these activities one immediately after another.

Labeling the intermediate arcs with a non-zero duration range (i.e. [l,u] is not
[0,0]), changes this meaning. Note, l and u must both be greater than or equal to
zero, for reasons described in the Future Work section of Chapter 5. This arc acts as a
temporal spacer, separating the end of one activity from the start of another by at least l
time units and at most u time units. Similarly, in the case of the parallel composition of
two activities, if only zero duration arcs are used as the connectors, then both activities
must commence and complete at the same time. By using positive duration arcs instead,

[8,8] [8,8][0,0

(a)

[8,8]

[8,8]

[0,0

[0,0

[0,0

[0,0

(b)

Figure 3.16 (a) Series composition, (b) Parallel composition (Note: Sub-activities are outlined)

[8,8] [8,8][1,1

Figure 3.17 Example of a non-zero temporal constraint between activities

 40

the parallel composition of the two activities means they should be performed
asynchronously, although the activities may still begin and end at the same time.

AML to TPN Mapping

Given the behaviors that can be encoded by the Temporal Planning Network
representation, it is possible to map each of the Activity Modeling Language combinators
to a TPN model. Once the combinators of AML are mapped to a TPN representation, it
is possible to compile arbitrarily complex AML descriptions into a TPN activity model.
These mappings are listed in Figure 3.18.

Interval:

[l,u]

Interval + Assertion:

c[l,u]

Interval + Activity:

A[l,u]

Sequential Composition:

A[l1,u1]; B[l2,u2]

Parallel Composition:

A[l1,u1], B[l2,u2]

[l,u]

Tell(c

[l,u]

[l,u]

A.star A.end

[l1,u1

A.star A.end

[l2,u2

B.star B.end

[0,0

[l1,u1

A.star A.end

[l2,u2

B.star B.end
 [0,0]

[0,0] [0,0]

[0,0]

 41

Conditional Execution:

if c then A[l,u]

Reactive Execution:

when c then A[l,u]

Condition Maintenance:

do A[l,u] maintaining c

Preemption:

do A[l,u] watching c

Iteration:

repeat A[l,u]

Choice:

choose{ A[l1,u1],

B[l2,u2] }

Figure 3.18 Mapping from AML combinators to TPN representation

[0,0]

Ask(c

[l,u]

A.star A.end

[l,u]

A.star A.end

[0,0]

Ask(c

[0,∞

[l1,u1

A.star A.end

[l2,u2

B.star B.end

 [0,0]

[0,0] [0,0]

[0,0]

[l,u]

Tell(Not(c

A.star A.end

[l,u]

A.star A.end

[l,u]

A.star A.end

[l,u]

A.star A.end
[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[l,u]

Ask(c)

A.star A.end

 42

Many of the TPN representations of combinators in Figure 3.18 contain zero-duration
temporal constraints. For example, if two activities A and B are composed sequentially
in the AML expression A; B then this maps to an TPN model in which the end-node of
the TPN model of activity A is connected to the start-node of the TPN model of activity
B with a zero-duration temporal constraint. This constrains the start time of the end time
of the activity to correspond to the same point in time. This allows for the modeling of
impossible behaviors such as c[0,0]; Not(c)[0,0] and if c then Not(c), but this is not a
problem because the planner rejects executions containing these. The planning algorithm
rejects these behaviors because it is not possible for it to resolve the conflict introduced
by these models, which require that two mutually exclusive propositions coexist at a
point in time. This is explained further in section 4.3.3.

Note that in the TPN representation, the arcs represent closed intervals. This means that
if a Tell-type symbolic constraint were attached to an arc, the corresponding constraint
would be asserted for the entire interval represented by the arc, including the time points
corresponding to the end points. This means that c[6,8]; Not(c)[3,3] asserts two
conflicting symbolic constraints at the point in time corresponding to both the end time of
the c[6,8] and the start time of Not(c)[3,3]. This also means that for the AML expression
c[6,8]; if c then A[1,1], the pre-condition on the execution of activity A is always
satisfied by the preceding c[6,8].

Consider for a moment the TPN encoding of the AML sequential composition
combinator. One problem with representing transitions between activities, as recognized
by Muscettola, et al. [12], is the accumulation of latency in executing this plan. The
problem is that it takes time for the plan runner to compute which activity should be
initiated next because it needs to perform updates to the plan based on when preceding
activities have completed. This latency can be made very small, but cannot be
eliminated. Currently, this latency is ignored by the TPN activity models on the
assumption that this latency is negligible, but this may lead to inconsistent execution,
especially with high latency or with very large plans, because this latency tends to be
compounded with every activity that is executed. This might make it impossible for an
activity to be executed without violating the temporal constraints of the plan. One fix for
this might be to replace the [0,0] temporal constraints that currently represent transitions
between activities with a [0,λ] temporal constraint, where λ is an upper bound estimate
on system latency. This solution, however, requires further examination.

UCAV Activity Models

This section describes some of the models generated for multiple UCAV mission
planning. The following sub-section introduces some extensions to AML to support the
description of hierarchical, group activities. Section 3.6.2 describes some of the primitive
activities of a single UCAV, and illustrates how they are composed to form single vehicle
macro-activities. Next, these single vehicle activities can be combined to form more
elaborate group activities, as described in following section. The hierarchical
composition of activities allows the modeler to easily construct very complex coordinated
activities out of few lower-level activities. An exhaustive list of AML activity
descriptions is included in Appendix A.

 43

AML Scoping

In order to describe a group behavior as the coordinated behaviors of multiple vehicles, it
is necessary to have a way to distinguish between the members of the group. For
example, in the group Fly-To activity, there is a leader that must navigate and one or
more followers that simply listen for instructions and follow the leader. This behavior is
described for a group consisting of two vehicles, by the AML code in Figure 3.19.

Group-Fly-To(x,y,z)[l,u] = {
 ONE::Fly-To(x,y,z)[l,u],
 { TWO::Follow(ONE)[l,u], TWO::Listen()[l,u] }
}

Figure 3.19 AML description of the group Fly-to activity

In this activity description, the two vehicles are distinguished by prefixing an activity
instance with a scope specifier that consists of the name of the vehicle and the “::“
delimiter. In the example, ONE::Fly-To(x,y,z) specifies that vehicle ONE should
navigate, while vehicle TWO should follow while listening for instructions.

Relative Duration Bounds

It is useful in describing an activity to be able to specify relative duration bounds. For
example, in the description of the Enroute activity in Figure 3.1, the Enroute activity’s
duration is bounded to be between l and u time units, which are imposed externally by
the duration bounds of the overall SEAD mission. At the time of modeling, the particular
lower and upper bounds are not known, but it is still useful to provide some guidance for
the activity durations of sub-activities so that it can be determined more quickly whether
or not the activity can be planned.

AML allows the description of sub-activity durations to be relative to their containing
activity. In Figure 3.1, the Group-Fly-to activity is constrained to take at least 90% of the
lower bound and at most 90% of the upper bound of the Enroute activity. The alternative
to specifying duration bounds in relative terms is to leave them unspecified. The problem
with this is that by not properly constraining activity durations it is possible for the
planner to produce a valid plan with respect to the constraints modeled, but that the group
of vehicles cannot execute. Relative bounds provide one solution to this problem, but
another is described in the Future Work section.

Vehicle Activities

It is important to make a distinction between activity model primitives and activity
execution primitives. For example, consider the single-vehicle Follow activity. The
activity model for Follow is not primitive because its behavior is described in terms of
other activity, but Follow is an execution primitive because it is among the set of
activities that the vehicle knows how to execute. Note that although the vehicle knows
how to execute the Follow activity, it is still necessary to model the Follow activity to
represent its effects on the system. For example, while vehicle one is following vehicle

 44

two, it is necessary for vehicle one to be listening for messages on both communication
channels, therefore it should not be permissible for vehicle one to send out any messages
at any time during this activity. Activity model primitives will be referred to as
primitives, while activity execution primitives will be called execution primitives.

Some of the single vehicle execution primitives include Fly-to(waypoint),
Bomb(location), and Listen(). These models can be described in AML or

directly encoded because they are very simple. For illustration, both the TPN models of
these execution primitives are provided in Figure 3.20.

Fly-Path(wpt1,wpt2,wpt3)[l,u] := {
 Fly-To(wpt1)[l*33%,u*34%];
 Fly-To(wpt2)[l*33%,u*34%];
 Fly-To(wpt3)[l*33%,u*34%]
}

Attack(entrypt,droppt,exitpt,targetpos)[l,u] := {

 Fly-To(entrypt)[l*33%,u*34%];
 Fly-To(droppt)[l*33%,u*34%];
 {
 { Bomb(targetpos)[1,3]; [0,∞] },
 Fly-To(exitpt)[l*33%,u*34%]
 }
}

Figure 3.21 AML description of two single-vehicle macro-activities

[l,u]

Fly-To(wpt).start Fly-To(wpt).end [l,u]

Listen().start Listen().end

[l,u]

Ask(¬CH2=id)
Ask(¬CH1=id),

[l,u]
Bomb(loc).start Bomb(loc).end

[l,u]

Ask(Bomb=ok)

Figure 3.20 The TPN encoding of activity models of the single vehicle primitives Fly-

To, Bomb, and Listen (Note: zero-duration bound labels are omitted for clarity)

 45

With these primitives, it is possible to describe higher-level single vehicle activities. For
example, Fly-Path(wpt1,wpt2,wpt3) describes the behavior of a vehicle flying
along a path defined by three waypoints in terms of three sequential Fly-
to(waypoint) activities. The Attack activity is described in terms of a series of Fly-
To(waypoint) activities and a Bomb(location) activity, as shown in Figure 3.21. Each of
these can be compiled into a TPN encoding in which the activity is represented by the
composition of these execution primitives, as shown in Figure 3.22 for the Attack
activity.

Group Activities

Once the set of single-vehicle activities are modeled, they can be composed to describe
multiple-vehicle activities. The activity models described in this section involve only
two vehicles, but there is no limit to the number of vehicles in a group. Group-activities
may be composed of any combination of single-vehicle activities. For example, the
Group-Attack activity is composed of the single-vehicle Attack activity and a Lookout
activity. These activities are assigned to the members of the group by using the scope
operator. In Figure 3.23, vehicle one is assigned the Attack activity
(ONE::Attack(..)) and vehicle two is assigned the Lookout activity
(TWO::Lookout(..)).

Group-Attack(entrypt,droppt,exitpt,targetpos)[l,u] := {

ONE::Attack(entrypt,droppt,exitpt,targetpos)[l,u],
 TWO::Lookout(ONE)[l,u]
}

Figure 3.23 AML description of a multiple-vehicle activity

[l,u]
Attack(..).start Attack(..).end

[1,3]

Bomb(targetpos).start Bomb(targetpos).end

[l*33%,u*34%]

Fly-To(wpt).start Fly-To(wpt).end

[l*33%,u*34%]

Fly-To(wpt).start Fly-To(wpt).end
[l*33%,u*34%]

Fly-To(wpt).start Fly-To(wpt).end

Figure 3.22 TPN encoding of the single-vehicle Attack activity

 46

For example, in the AML description of the Group-Attack activity in Figure 3.23
specifies that vehicle one is responsible for attacking the target, and vehicle two serves as
lookout for vehicle one. The corresponding TPN network is shown in Figure 3.24.

Summary

The Activity Modeling Language extends reactive programming to handle the expression
of time critical events and contingencies. AML is a variant of the Reactive Model-based
Programming Language [25] that inherits its combinators, with the exception of
probabilistic and utility-based choice, and augments this set with an interval construct
that is used to express temporal constraints. The Temporal Planning Network brings
together the representations of Hierarchical Constraint Automata [25] and temporal plans
[7,6,24], by extending unconditional, concurrent, temporal plans to allow for the
encoding of conditional execution and non-deterministic choice. This provides a simple
and elegant unification of domain modeling and planning.

[l,u]
Group-Attack(..).start Group-Attack(..).end

[l,u]

ONE::Attack(..).start ONE::Attack(..).end

[l,u]

TWO::Lookout(ONE).start TWO::Lookout (ONE).end

Figure 3.24 TPN encoding of the multiple-vehicle Group-Attack activity

 47

Chapter 4
Planning Algorithm

Overview

The planner described in this thesis works by searching over the space of all plans to find
one that is both complete and consistent. A plan is complete if choices have been made
for each relevant decision point and it contains only primitive-level activities, and a plan
is consistent if it does not violate any of its temporal constraints or symbolic constraints.
One problem with planning in general is the incredibly large search-space. For
generative planners [21,17], the search-space is exponential in the plan length because, in
the worst-case, operators can be chained together in arbitrary orderings. As with
hierarchical planners [17], this planner uses activity models which restrict this type of
explosion in the search-space of plans by specifying, at least partially, the precedence
relations of activities and by limiting the choices of activities at explicitly defined
decision points. These algorithms are exponential in the depth of the hierarchy, which is
typically shallow, and therefore perform significantly faster than non-hierarchical
planners on non-trivial problems.

However, this planner has the added complexity of dealing with metric time. Even
though the activity models cut down the number of possible plans, the expansion into the
time dimension makes this space intractably large, which makes it time consuming for
the planner to explore anything but a small portion of the space. Therefore, rather than
examining individual plans in the space, the planner uses ideas from abstract planning
[17] to make decisions that, in effect, rule out sections of the plan-space until all the plans
left in the plan-space are both complete and consistent. If no feasible plan is found, then
the planner backtracks and makes a new set of decisions that rule out different parts of
the space, repeating until a plan is found or it is determined that no valid plan exists.

This planning algorithm uses the same fast temporal reasoning techniques as other
temporal planners such as HSTS, but gains additional efficiency by pre-generating
networks, in the form of TPN models, representing the possible executions of activities,
and searching over this pre-generated structure to identify valid executions. This
technique is faster than HSTS and similar temporal planners that employ classical partial
order planning techniques [18] because it avoids having to compose the activities online
to examine possible executions. This concept of using pre-generated structures to gain
run-time efficiency has emerged recently in Artificial Intelligence Planning with methods
such as Graphplan [2], SAT-plan [18,20], and Livingstone [23], and has also been used in
the verification community for model checking. It is only beginning to be explored for
temporal planning, most notably by Temporal Graphplan [26].

 48

The input to this planner is an incomplete plan in the form of a Planning Network, which
describes the mission scenario. A scenario consists of an activity model of the mission or
other top-level activity and any mission-specific constraints. For example, Figure 4.1
illustrates a sample input to the planner, whose top-level activity (defined by nodes 1-13)
is the Enroute activity from the previous chapter (Figure 3.2). The scenario also defines
the time ranges over which path one is available (defined by nodes 14 and 15) and the
interval over which the vehicles are allowed to engage the target (defined by nodes 16
and 17). These intervals are defined with respect to the beginning of the scenario, which
represents at a fixed time, such as 8:00AM.

In general, the input network is an incomplete plan that encodes the explicit decisions and
the implicit decisions that have to be made by the planner. The explicit decisions are
encoded as decision nodes in the Planning Network, and the implicit decisions, including
decisions about when activities should be executed and decisions about how to satisfy
symbolic constraints, are determined from the temporal and symbolic constraints of the
network.

As stated in the Chapter 3, each TPN encoding specifies the valid executions of an
activity in terms of a set of temporal and symbolic constraints. A path through the
network, from the start-node to the end-node of the top-level activity, represents a thread
of execution. Since a plan simply describes a set of threads of execution, the output of
the planner consists of a set of paths through the input network. For example, Figure 4.2
illustrates a possible plan for the Enroute activity. The portions of the TPN input
scenario model that the planner did not select for execution are shown in gray.

Figure 4.1 A Temporal Planning Network activity model of a scenario

3

6

4 5
[405,486]

Ask(PATH1=OK)

1 2

7

Ask(PATH2=OK)

8

[405,486]

[450,540]

Tell(¬ENGAGE=OK)

11

9 10
[0,54]

12

13

[0,2]

[0,∞]

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(ENGAGE=OK)

[200,200]

s e
[500,800]

[10,10] [0,∞]

[0,∞] [0,∞]

 49

The paths s-1-3-4-5-8-9-10-13-2-e and s-14-15-16-17-e define a
consistent execution of the scenario described in Figure 4.1. The first path defines the
execution of the group of vehicles, and the second path defines the execution of the rest
of the world in terms of the assertion or requirement of relevant conditions over the
duration of the scenario. Note that the duration bounds on some of the arcs have been
tightened, for example, the duration bound label on arc (4,5). These bounds are tightened
by the planning algorithm in order to be consistent with both temporal and symbolic
constraints imposed by the scenario definition. This particular duration bound on (4,5) is
tightened in order for its Ask(PATH1=ok) symbolic constraint to be consistent with the
Tell(PATH1=ok) constraint asserted over the interval defined by arc (14,15).

The planning algorithm can be broken up into three phases. The first phase resembles a
network search that discovers the sub-network, or alternatively the set of paths, that
constitute a feasible plan, while incrementally checking for temporal consistency. The
second phase is analogous to the repair step of a hierarchical planner, in which symbolic
constraint conflicts are detected and resolved by promotion or demotion and open
conditions are covered [17]. The third phase performs the decomposition of macro-
activities and recursive planning of these activities. The Planning Algorithm pulls these
phases together as described in Figure 4.3. The remainder of this chapter will describe
these phases in more detail.

Figure 4.2 Example of a plan (in black) for the scenario described in Figure 4.1

3

6

4 5
[405,450]

Ask(PATH1=OK)

1 2

7

Ask(PATH2=OK)

8

[405,486]

[450,540]

Tell(¬ENGAGE=OK)

11

9 10
[0,45]

12

13

[0,2]

[0,∞]

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(ENGAGE=OK)

[200,200]

s e
[500,800]

[10,10] [0,∞]

[10,∞] [40,385]

[1,∞]

[0,∞]

[0,∞]

 50

Figure 4.3 Flowchart representation of the Planning Algorithm

Select plan

Temporally

Consistent?

Backtrack

No

Symbolica

Yes

Fully

Yes

Success

Yes

Select
(Potential)

Resolvabl

Resolve

No

Yes

No

Expand
Macro-

No

Can
Backtrack?

Yes

Failure

No

PHASE 2

PHASE 1

PHASE 3

Merge into
Partial Plan

 51

Phase One: Select Plan Execution

Network Search

This phase of the planning algorithm selects a set of paths from the start-node to the end-
node of the top-level activity (the activity which is being planned). These paths
correspond to threads of execution that together describe a plan for executing the top-
level activity. The planner handles this execution selection problem as a network search
rooted at the start-node of the TPN encoding of the top-level activity. If there were no
decision nodes, this search would incrementally extend a set of paths from the start-node,
through all forward arcs, until all paths reached the end-node of the top-level activity.
This search is slightly modified to handle decision nodes.

As stated in Chapter 3, each node of a Temporal Planning Network is either a decision

node or a non-decision node. If a plan includes a non-decision node with multiple out-
arcs, then all of these arcs and their tail nodes are also included in the plan. If a plan
includes a decision node with multiple out-arcs, then the arcs represent alternate choices,
and the planning algorithm selects exactly one.

The first phase of the planning algorithm is complete only when all paths reach the end-
node of the top-level activity and all of these paths, which define a sub-network of the
original Planning Network, are temporally consistent. For now, assume that there is an
efficient function for testing temporal consistency. The first phase of the planning
algorithm is summarized in pseudo-code as the Modified Network Search algorithm in
Figure 4.6. For comparison, a generic network search algorithm [1] that is used for
network exploration and reachability analysis is presented in Figure 4.5. The set A, is the
set of active nodes, which are those nodes from which paths have yet to be fully
extended. The sets SN and SA are the sets of selected nodes and selected arcs,
respectively.

1 Network-Search(N)
2 A = { start-node of N };

(a

(b

Figure 4.4 (a) Decision node, (b) Non-decision node; Shaded

nodes and bold arcs are selected.

 52

3 SN = { start-node of N };
4 SA = { };
5 While (A is not empty)
6 Node = Select and remove a member of A;
7 For each Arc that is an out-arc of Node
8 If (tail of Arc is not in SN)
9 Add Arc to SA and
10 Add tail of Arc to A and SN;
11 End-If
12 End-For
13 End-While
14 End-Function

Figure 4.5 A generic network search algorithm

There are a few differences between the generic network search and the modified
network search used for the first phase of the planning algorithm. The first difference is
that for a generic network search, every node is handled as a non-decision node (Figure
4.5 lines 7-12), whereas this modified search has an added clause to handle decision
nodes differently (Figure 4.6 lines 8-13 and lines 15-20), restricting the extension of
paths through out-arcs to a single arc.

The second difference is that at the end of each iteration of the main While-loop, the
modified network search tests for temporal consistency (Figure 4.6 lines 24-26). If the
test fails, then the search calls the Backtrack(..) function in line 25 which reverts SN, SA,
and A to their states before the most recent decision for which there remain unmarked
choices, and selects a different out-arc. In this planning algorithm, chronological
backtracking is used but a wealth of more efficient search algorithms exist.

Checking for temporal consistency after every iteration of the While-loop is unnecessary
because as long as no cycles are induced in the network, there is no way for a temporal
inconsistency to be induced (see next section for explanation). Determining whether a
cycle has been created can be done for each arc that is selected by checking whether the
arc’s tail node has already been selected. Since this can be done in constant time, this can
be significantly more efficient than testing temporal consistency after every iteration,
although in the worst case these two methods take the same asymptotic running time.

1 Modified-Network-Search(N)
2 A = { start-node of N };
3 SN = { start-node of N };
4 SA = { };
5 While (A is not empty)
6 Node = Select and remove a member of A;
7 If (Node is a decision-node)
8 Arc = Select any unmarked out-arc of Node and
9 Mark Arc and
10 Add Arc to SA;
11 If (tail of Arc is not in SN)
12 Add tail of Arc to A and SN;
13 End-If

 53

14 Else
15 For each Arc that is an out-arc of Node
16 Add Arc to SA;
17 If (tail of Arc is not in SN)
18 Add tail of Arc to A and SN;
19 End-If
20 End-For
21 End-If
22
23 If (Cycle-Induced(SN, SA))
24 If (Not(Temporally-Consistent(SN, SA)))
25 Backtrack(SN, SA, A);
26 End-If
27 End-If
28 End-While
29 End-Function

Figure 4.6 Planning Algorithm Phase One: Modified Network Search

Finally, after a generic network search is complete, the set of selected nodes and arcs, SN
and SA, define a tree rooted at the start-node of N and extending to all nodes that are
reachable from it. However, after a modified network search, the selected nodes and
arcs instead define a set of paths from the start-node of N to the end-node of N. This is
why lines 10-13 and 16-19 of Figure 4.6 differ from the analogous lines of the generic
network search algorithm, lines 8-11 of Figure 4.5.

The modified network search algorithm in Figure 4.6 does not seem to fully extend paths
from the start-node to the end-node. In fact, it stops extending paths when it encounters a
node that is already in SN. However, the fact that this node is already in SN implies that
two concurrent threads of execution have merged. Continuing the search by extending
both paths would lead to the redundant selection of the set of paths from this node to the
end-node. Since there is nothing gained by this redundant selection, fully extending only
one of these paths is sufficient.

 54

[formatting]

1 2

3 4 5 6

7 8 9

10 11 12

13 14

15 16 17 18

(a)

(b)

(c)

(d)

Figure 4.7 Example of the Modified Network Search Algorithm; (a) Initially, (b) After 3

iterations, (c) Temporal inconsistency detected, (d) Complete

 55

To illustrate the modified network search, consider the input network illustrated in Figure
4.7a, in which node 1 is the start-node and node 2 is the end-node. Initially, node 1 is
selected, which is indicated by its darker shade, and it is active, which is indicated by its
dashed outline. In the first iteration, it chooses node 1 from the set of active nodes, and
since node 1 is not a decision node, it selects all out-arcs and adds their tails to the
selected and active set. This continues until both node 5 and node 15 are selected as in
Figure 4.7b. At this point, the modified network search chooses node 5 from the active
set. Since node 5 is a decision node, the algorithm must choose either arc (5,7) or arc
(5,10). It selects arc (5,7) and continues extending until it reaches the state shown
in Figure 4.7c.

Note that arc (14,2) is selected in Figure 4.7c, forming the cycle, 1-3-4-5-7-8-9-
6-13-14-2-1, so the algorithm checks for temporal consistency. In this example, this
selected sub-network is temporally inconsistent, so the algorithm backtracks to the most
recent decision point at which there are options that have not already been tried. Node 5
is the most recent decision node and out-arc (5,10) has not yet been tried, so the
algorithm reverts the sets of selected nodes and arcs and the set of active nodes to their
state before the last decision at node 5, as in Figure 4.7b. The algorithm then selects the
arc (5,10), extends the path through this arc to the end-node, and finally extends the
path through arc (15,16) to the end-node, which results in the temporally consistent
sub-network of selected nodes and arcs shown in Figure 4.7d.

Temporal Constraint Consistency

Consider any sub-network of a Planning Network. Disregarding the symbolic constraint
labels on the arcs, this sub-network of a Planning Network is a Simple Temporal
Network. Since this is the case, testing for temporal consistency of a partial or completed
plan can be performed using the same methods as used for Simple Temporal Networks
[7,19].

Recall from Section 2.2.2 that each STN can be represented as a distance graph, and an
STN is temporally consistent if and only if its distance graph contains no negative cycles
[7]. The existence of a negative cycle implies there is a set of temporal constraints that
cannot be satisfied. To illustrate a temporal consistency, consider the STN representation
of an activity whose duration is lower-bounded by A time units and upper-bounded by B
time units (Figure 4.8a). Looking at the distance graph form of this STN in Figure 4.8b,

[A,B

(a)

B

-A

(b)

Figure 4.8 Temporal constraint in (a) STN form, (b) Distance graph form

 56

it is clear that there is a cycle formed by the forward arc and reverse arc, but as long as B
is greater than or equal to A the cycle is non-negative. However, if B is less than A, then
this becomes a negative cycle. This temporal inconsistency corresponds to the
impossible condition of the activity duration’s upper bound being less than its lower
bound.

Negative Cycle Detection

Fortunately, there are well known algorithms for detecting the presence of negative
cycles in polynomial time. The simplest method is to use an all-pairs shortest path
algorithm, for example, Floyd-Warshall algorithm or the matrix-multiplication-based all-
pairs shortest path algorithm [5]. These algorithms return a distance matrix, D, of n rows
and n columns, where n is the number of nodes in the network, such that the D[i][j] is
the shortest path length from node i to node j. Note that the diagonal elements
(D[0][0], D[1][1], D[2][2], etc.) must always be zero, because there is no
distance from a node to itself. However, if there are negative cycles then some of these
diagonal elements will be negative.

The Floyd-Warshall algorithm takes Θ(n3) time and requires Θ(n2) space to store the
distance matrix, and the matrix-multiplication-based all-pairs shortest path algorithm
takes Θ(n3logn) time and requires Θ(n2) space as well. However, there are methods of
detecting negative cycles that are both faster and require less space. The Bellman-Ford
algorithm is used to compute single-source shortest paths [5] but also can be used to
check for negative cycle in Θ(nm) time, where m is the number of arcs in the distance
graph. In addition, this algorithm only needs to maintain one distance label at each node,
which only takes Θ(n) space. A variant of this algorithm is used by HSTS [12] for fast
inconsistency detection.

(a)

-8

2

10

0

1

-2

3

9

-7
-1 8 1

-11 -2 -9

-3 6 -1

(b)

Figure 4.9 (a) Network with a negative cycle 0-1-2-0, (b) All-pairs shortest path

distance matrix for this network returned by the Floyd-Warshall algorithm

 57

The algorithm used by the planner described in this thesis is a particular implementation
of the generic label-correcting single-source shortest-path algorithm [1], which takes
O(nm) worst-case asymptotic running time, but performs faster in many situations. This
algorithm also requires only Θ(n) space. It is very similar to the Bellman-Ford algorithm,
which is just a different implementation of the label-correcting single-source shortest
path algorithm, except that it uses a different strategy for examining nodes.

Bellman-Ford (N,source)
 For i = 1 to |nodes of
N|-1
 d(i) = +∞;
 End-For
 d(source) = 0;
 For k = 1 to |nodes of
N|-1
 For each node i of N
 For each arc (i,j)
in N
 If d(j) >
d(i)+c(i,j)
 d(j) =
d(i)+c(i,j);
 End-If
 End-For
 End-For
 End-For
End

 FIFO-label-correcting (N,s)
 For i = 1 to |nodes of N|-1
 d(i) = +∞;
 examined_count(i) = 0;
 End-For
 d(source) = 0;
 list = {source};
 While (list is not empty)
 i = pop head of list;
 examined_count++;
 If examined_count(i) > n
 print “Negative Cycle”;
 Exit-Function;
 End-If
 For each arc (i,j) in N
 If d(j) > d(i)+c(i,j)
 d(j) = d(i)+c(i,j);
 If j is not in list
 push j to end of
list;
 End-If
 End-If
 End-For
 End-While
End

(a)

(b)

A label-correcting shortest path algorithm works by incrementally updating or correcting
distance labels in a monotonically decreasing fashion until the single-source shortest path
optimality condition is satisfied, that is, the distance label of every node must be less than
or equal to the distance label of any other node plus the distance between them. The
Bellman-Ford algorithm always examines each of the nodes n times, performing distance
label corrections, which is guaranteed to complete and return the shortest path distance
labels as long as there are no negative cycles.

Figure 4.10 Single-source shortest path algorithms: (a) Bellman-Ford, (b) FIFO label-correcting

 58

The FIFO implementation, which is used by this planner, of the label-correcting shortest
path algorithm only examines each node as many times as the node’s distance label may
be invalidated [1]. The distance label for node i becomes invalidated only if some node
j is examined by the algorithm whose distance label plus the distance from node j to
node i is less than the distance label of node i. It is possible for nodes only to be
examine a few times, although in the worst case all nodes are examined n times. Another
advantage of the FIFO implementation is that it can incrementally check for negative
cycles and stop early if one is detected, whereas the Bellman-Ford algorithm must
complete examining all the nodes n times before it can detect a negative cycle.

Phase Two: Refine Plan

Symbolic Constraint Consistency

There are two types of symbolic constraint inconsistencies, incompatibilities and open
conditions. An incompatibility exists when there are two arcs in the network,
representing overlapping intervals of time, which are labeled with symbolic constraints
that conflict. Two symbolic constraints conflict if one is either asserting or requesting
that a condition is true, and the second is asserting or requesting that the same condition
is false. For example, Tell(Not(c)) and Ask(c) conflict, as do Ask(c) and
Ask(Not(c)). Clearly, since such condition pairs can never both be satisfied at the
same time, they represent one form of plan inconsistency.

The second type of symbolic constraint inconsistency is an open condition, which is
defined as any unsatisfied condition. In the Planning Network representation, open
conditions appear as Ask constraints, which are used to model pre-conditions, post-
conditions, and conditional execution as described in the previous chapter. An Ask
constraint represents the need for some condition to be true over the interval of time
represented by the arc labeled with the Ask constraint.

The second phase of the planning algorithm finds these symbolic constraint
inconsistencies and tries to resolve them. If there is an inconsistency that cannot be
resolved, then the planner returns to the first phase of planning which needs to make a
new set of decisions.

Conflict Detection

Detection of open conditions can be done by scanning through all arcs and checking for
Ask constraints. Detecting incompatibilities requires more work because the planner
must first compute the feasible time bounds for each temporal event (node) in the
network, and then use these bounds to identify potentially overlapping intervals that are
labeled with conflicting symbolic constraints.

 59

As stated in section 2.2.2, these bounds can be computed by solving an all-pairs shortest-
path problem over the distance graph representation of the partially completed plan [7].
The upper bound of the feasible time range for each temporal event is given by the
shortest path distance from the origin node to the node representing the temporal event.
The lower bound is given by the negative shortest path distance from the node
representing the temporal event to the origin. These bound the time of the event with
respect to the fixed time of the origin node.

For example, consider the plan fragment shown in Figure 4.11, in which node 0 is the
artificially introduced origin node whose time is fixed to 8:00am, and the time units are
minutes. The feasible times for event 2 to begin are any time between 8:11am and
8:12am, because the shortest path distance from the origin to node 2 is 12 time units, and
the shortest path distance from node 2 to the origin is –11 time units, as shown with the
analogous distance graph in Figure 4.12.

2
[8,10

1

3

[2,3] [7,10

0

[3,4]

<0,0 <1,2

<3,4 <1,2

Figure 4.11 Plan fragment with feasible time bound labels

 60

This planner uses the Floyd-Warshall algorithm for computing all-pairs shortest paths
because of ease of implementation. However, there are alternative algorithms that may
outperform this one. For example, Johnson’s algorithm (also for computing all-pairs
shortest paths) has better asymptotic running time than Floyd-Warshall on networks in
which the number of arcs is much less than O(n2). While Floyd-Warshall runs in Θ(n3)
time, Johnson’s algorithm [5] can be implemented to run in O(n2logn + mn), which
becomes O(n2logn) if m=O(n). Recall from section 2.2.2 that while temporal
inconsistencies can be detected by solving a single-source shortest path, computing the

feasible time bounds of temporal events requires solving an all-pairs shortest path
problem.

Once these feasible time ranges are determined, the planner can detect which arcs may
overlap in time. If there are two arcs that may overlap and that are labeled with
conflicting symbolic constraints, then they are resolved by ordering the intervals if
possible, as described in the next section. However, it can be expensive to go through all
pairs of arcs to check for conflicting constraints. In fact, if there are s different symbols
and m arcs in the network, then this method takes Θ(sm2) time.

For each constraint in the network, the planner maintains an interval set data structure
that keeps track of all of the intervals that assert or require the condition represented by
that constraint or its negation. In order to identify conflicts, the planner need only check
each interval set for conflicts. This takes O(si 2) asymptotic running time, where i is the
maximum cardinality over all interval sets. This is at least as good as the brute-force
method described in the previous paragraph, since in the worst case i=O(m). However, it
performs much better in practice because most of the interval sets have very few
elements.

An alternative to the interval set that was not implemented is the interval tree data
structure [5]. Interval trees are used to store a set of intervals keyed by their low

-8

2

10

1

3

-2

3

10

-7

0

-3

4

(a) (b)

0 -10-8

10 0 2

8 -20

-11

-1

-3

12 2 4 0

Figure 4.12 (a) Distance graph representation of temporal constraint system, (b) All-pairs

shortest path distance matrix

 61

endpoint, and they support interval insertion, deletion, and overlap search in logn time,
where n is the number of stored intervals. Each arc is represented by an interval whose
start-time is the earliest absolute time of either end-point of the arc, and whose end-time
is the latest absolute time of either end-point of the arc. Using this data structure results
in the same worst-case running time of O(sm2), but may it may lead to even better
performance in practice than using the interval set.

Conflict Resolution

Both incompatibilities and open conditions are handled by introducing additional
temporal constraints into the plan. Each incompatibility consists of two arcs that
represent intervals of time that may overlap, but in some cases it is possible to further
constrain the time ranges of the start- and end-points of the intervals to ensure that they
will not overlap. This is done by employing the standard threat resolution technique of
hierarchical planners (promotion/demotion) [17,21], by introducing temporal constraints
that force orderings.

For example, consider the plan fragment containing two activities with conflicting
symbolic constraints in Figure 4.13a, in which the feasible times for each event are
contained in angled brackets at their corresponding nodes. Both Figure 4.13b and Figure
4.13c are valid executions of these planned activities according to the feasible time

Ask(Not(c

A.star A.end

Tell(c)

B.star B.end

<2,3

<4,5 <6,7

<5,8 <10,15

<12,1

(a)

A

B

4 5 7 15

(b)

A

B

4 6 8 14

(c)

Figure 4.13 (a) Plan fragment containing an incompatibility, (b) & (c) Two possible scenarios

of how activities A and B may be performed

 62

ranges of their start and end events. Since Ask(Not(c)) and Tell(c) cannot both
be satisfied over the period from time 5 to time 7, the execution illustrated in Figure
4.13b is invalid. However, the execution shown in Figure 4.13c is valid, which
demonstrates that it is possible to resolve incompatibilities in some cases by further
constraining the feasible time ranges of events.

Rather than arbitrarily constraining the time ranges of the interval start- and end-points,
the planner introduces orderings to resolve each incompatibility. An ordering pushes one
interval before another interval by adding a non-negative temporal constraint from the
end-point of the first to the start-point of the second, or vice versa. Note, the temporal
constraint used to represent this ordering cannot have a zero lower bound because that
would still allow for the end-time of the first activity to be the same as the start-time of
the second. Therefore, the temporal constraint used to represent the ordering has a lower
bound of ε, where ε represents the granularity of the time representation. For example, if
time were represented in milliseconds, then ε would equal 1 millisecond. The need for
this positive ε is a limitation of this planner that might be resolved by incorporating a
dense model of time; this is left for future work.

Figure 4.14 shows an ordering, with ε = 1, which would have resolved the
incompatibility in the plan fragment from Figure 4.13. The other possible ordering in this
example, which would force activity B after activity A, induces a temporal inconsistency
so it is not an option in this case. Using orderings to constrain the temporal events can
repair a plan while retaining as much temporal flexibility as possible.

Ask(Not(c

A.star A.end

Tell(c)

B.star B.end

<2,3

<4,5 <6,7

<7,8> <12,15>

<14,18>
[1,∞]

Figure 4.14 The temporal constraint between B.end and A.start represents an ordering

(with ε = 1) used to resolve the incompatibility illustrated in Figure 4.13

 63

An open condition is represented by an arc labeled with an Ask constraint, which
represents the request for a condition to be satisfied over the interval of time represented
by the arc. If this interval of time is contained by another interval over which the
condition is asserted by a Tell constraint, then the open condition is satisfied or closed.
Finding potentially overlapping intervals can be done using the same method as described
in the previous section for detecting incompatibilities.

Once an interval that may satisfy this open condition is found, temporal constraints can
be added to force the interval to contain the interval of the open condition. In classical
partial order planners, open conditions are typically preconditions of activities, and each
of these open conditions is closed by introducing a causal link from an activity that
asserts the condition (as a post-condition) to the activity whose open precondition was
satisfied. The method of resolution is the same except that the open conditions may have
extended temporal duration, and in order to be satisfied they must be covered by another

Tell(c)

A.star A.end

Ask(c)

B.star B.end

<0,0

<1,3 <7,9

<1,2 <8,10>

<9,12

(a
)

Tell(c)

A.star A.end

Ask(c)

B.star B.end

<0,0

<1,3 <7,9

<1,2 <8,10>

<9,12

(b
)

[0,∞] [0,∞]

Figure 4.15 (a) Plan fragment in which activity B has an open maintenance condition, (b)

Temporal constraints are introduced to satisfy the open condition

 64

interval over which the condition is asserted. This method of closing of open conditions
is also closely related to the way that HSTS satisfies compatibilities [12].

In Figure 4.15a, activity B has a maintenance condition represented by the Ask(c)
symbolic constraint label on the temporal constraint between the nodes corresponding to
the start of B and the end of B. Figure 4.15b shows how temporal constraints can be
added to satisfy this open condition by forcing the interval over which condition c is
asserted by the Tell(c) constraint to contain the interval of the Ask(c) constraint. In
this example, the start of B is constrained to be at the same time or after the start of A,
and the end of B is constrained to be at the same time or after the end of A. The gray,
dashed arc from the Tell(c) to the Ask(c) indicates that the Ask(c) open condition
was closed by this Tell(c).

Phase Three: Hierarchical Decomposition

The third phase of the planning algorithm performs the incremental decomposition of the
portions of the plan representing macro-activities, similar to the decomposition
performed by other hierarchical planners [17]. The current implementation of the planner
applies this decomposition iteratively during planning, but an alternative would be to
fully decompose the top-level TPN activity model offline so that during planning, the
planner only needs to perform the network search and refinement (phases one and two).
Performing the decomposition online saves memory but may take longer than pre-
expanding the top-level activity model if online expansion becomes the efficiency
bottleneck. Other methods of addressing this tradeoff should be considered in future
work. Only the iterative, online method of hierarchical decomposition is addressed in
this section.

All activities are represented in a Temporal Planning Network by a start- and end-node
pair, labeled with the name of the activity. The planning algorithm maintains a list of all
macro-activity names, and after the first two phases of the planning algorithm complete,
the planner scans through the name labels to identify any unexpanded macro-activities. If
an unexpanded macro-activity is recognized, then the planner selects a single macro-
activity, instantiates a copy of the TPN model of the activity, and merges this network
into the partially completed plan. The merge simply superimposes the expanded TPN
activity model onto the plan, lining up the start- and end-nodes of the expanded activity
model with the start- and end-nodes in the plan.

 65

Figure 4.16 illustrates a plan containing the non-primitive Enroute activity, whose start-
and end-events correspond to nodes 1 and 2 in the figure. The planner scans through the
partially complete plan, looking for non-primitive activities, and recognizes the Enroute
activity whose name is among the set of macro-activity names. The planner then
performs a lookup to retrieve and instantiate a copy of the TPN activity model
corresponding to the macro-activity. A graphical depiction of the lookup table for the

macro-activities is shown in Figure 4.17.

The instantiation first constructs a new copy of the activity model network, and then
binds variables, including the activity argument variables and the duration bound
variables. For example, the lower and upper duration bounds of the Enroute activity as
defined in by the partially complete plan, are passed through to the sub-activities whose
duration bounds were defined relatively. The relative bounds for the Group-Fly-Path
sub-activity of Enroute, for example, was [l*90%,u*90%], and would be instantiated
to [405,486] in this case since l=450 and u=540 for this instance of the Enroute
activity.

Once the planner expands the macro-activity, by instantiating a copy of the
corresponding activity model, it merges the expanded activity model into the network
between the node pair representing the macro-activity’s start and end events. For
example, the planner would merge the Enroute()[450,540] activity model instance
into the partial plan in Figure 4.16 between nodes 1 and 2, yielding the TPN shown in
Figure 4.1, at the beginning of this chapter. The final step of merging is adding the start-
node of the macro-activity to the set of active nodes maintained for the modified network
search of phase one.

Activity Name TPN Activity Model

 Figure 4.16 A partially complete plan containing a macro-activity represented by nodes 1 and 2

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(ENGAGE=OK)

[200,200]

s e
[500,800]

[10,10] [0,∞]

[0,∞] [0,∞]

1 2

Enroute().endEnroute().start

[450,540]

 66

Listen

Enroute

.

Figure 4.17 Partial macro-activity map maintained by the planner

After the macro-activity is expanded and merged into the partial plan, the planning
algorithm returns to phase one to search through the sub-network corresponding to the
newly expanded macro-activity for a set of paths that define a valid execution of this
macro-activity within the larger context of the plan. The planning algorithm iteratively
decomposes all macro-activities in the plan in this manner until they have all been fully
expanded, and this plan is returned.

 67

Chapter 5
Conclusions

The research described in this thesis focused on the development of a planning system for
coordinated air vehicle missions. In order to support this planning system, the Activity
Modeling Language (AML) was created for facilitating the construction of complex
coordinated activity models, by extending the Reactive Model-based Programming
Language to allow the expression of metric time constraints. Furthermore, a new
encoding for the hierarchical activity models described in AML, the Temporal Planning
Network (TPN), was introduced by drawing together ideas of temporal constraint
representation and reasoning with Simple Temporal Networks [7] and hierarchical,
constraint-based modeling with Hierarchical Constraint Automata [25]. These together
provide a natural and expressive language for describing complex coordinated activities,
and an encoding for the activity models that support efficient planning, respectively.
Finally, this thesis describes a planning algorithm for rapidly generating multiple-UCAV
mission plans. This chapter provides a description of the implementation of Kirk, a
planner that brings together these research contributions, and summarizes results of
applying the planner to several mission scenarios.

Kirk makes significant progress towards the goal of applying model-based programming
techniques to the problem of planning for coordinated air vehicle mission planning.
However, many issues remain to be explored. Therefore, this chapter points the reader to
a number of interesting and worthwhile research and implementation issues to be
addressed in future work.

Results

Planner Implementation

Kirk consists of three main functional modules as shown in Figure 5.1. The Plan
Manager performs the planning and related tasks, the Plan Runner takes a plan produced
by the Plan Manager and executes it in a simulated environment, and the AML Compiler,
which has not yet been implemented, is supposed to read in AML description files and
compile AML activity descriptions into a set of TPN specification files.

The PlanNet data structure was implemented to represent the TPN models that were
described in Chapter 3. This data structure maintains and supports the insertion, removal,
and access of temporal events, temporal constraints, and symbolic constraints. In
addition, it supports operations for testing temporal consistency, computing feasible time
bounds for each temporal event, and identifying symbolic constraint incompatibilities.
Finally, it is augmented with methods that allow it to save and restore planning state.

The Plan Manager is responsible for performing the tasks of the planning algorithm
described in Chapter 4. It can be used to construct a PlanNet object from a Temporal
Planning Network specification file that describes a mission scenario, and apply the
planning algorithm to this network to generate a plan, which is then passed to the Plan

 68

Runner. The Plan Manager also maintains additional information, such as the list of
macro-activities, necessary to support the functions of the planning algorithm.

The Plan Runner is used to execute a plan generated by the Plan Manager. In order to do
this, the Plan Runner interfaces with a multiple vehicle dynamics simulation and
visualization system, which is used to simulate the state and behavior of a group of
vehicles. The Plan Runner relies on a basic implementation of the STN-plan dispatching
algorithm that was used by HSTS [19] for plan execution. The Plan Runner generates
commands corresponding to the vehicle execution primitives in the plan, and performs
incremental updates to ensure that execution is consistent with the plan.

Kirk is implemented in ISO/ANSI compliant C++, with the exception of a small portion
of the Plan Runner implementation responsible for communicating with the Simulation

AML Compiler AML file

Plan Manager

TPN file

PlanNet Plan Runner

Simulation /

Visualization

update

comman

KIRK

Figure 5.1 Block diagram of the Kirk planning system

 69

and Visualization module. Currently, this communication relies on non-standard
message passing libraries.

Performance

Kirk takes as input an activity instance and a lower and upper duration bound. For
example, Group-Rendezvous(1000,2000,1000)[130,180] would be a valid
input. For testing, Kirk was used to generate plans for various activities in the nominal
case. Given more time, it would have been better to construct more complex test
scenarios that included additional externally imposed constraints on activities.

The primary activity used for testing Kirk was the Group-Sead activity, which was
based on descriptions of current manned combat air vehicle SEAD missions [27]. This
activity was designed to model the mission described in section 1.2.2. The AML
description of the Group-Sead activity is included, along with the other activity
descriptions, in Appendix A. In the absence of the AML Compiler, these were compiled
by hand into TPN files. The TPN specification file format is described in Appendix B,
along with the actual TPN specification for an example scenario. The fully expanded
TPN generated from the primary SEAD test case included 273 nodes. A planner output
dump that lists the states of each of these nodes after planning is provided in Appendix C.

Figure 5.2 summarizes some quantitative performance results of having Kirk generate
nominal plans for several different activities. The testing platform was an IBM Aptiva
E6U with an Intel 400Mhz Pentium II processor and 128MB of RAM, running Redhat
Linux version 6.1.

Activity
Instance

Number of
Nodes

Number of
Activities

Time for
Planning

Group-Sead() 273 47 404 s

Group-Enroute() 112 19 16 s

Group-Attack(..) 27 8 235 ms

Follow(..) 4 1 4 ms

Figure 5.2 Summary of Kirk’s runtime performance on several test cases

The Activity Instance refers to the top-level activity that was being planned. The
Number of Nodes is the size of the expanded TPN after planning. Usually, about half of

 70

these were included in the final plan, with the rest corresponding to unselected
executions. The Number of Activities indicates the number of primitive activities
included in the final plan. Finally, the Time for Planning gives the time that it took for
Kirk to generate a plan corresponding to each of these activities.

The time required for planning in many cases was heavily dominated by the time required
for phase two of the planning algorithm, and in particular the computation of feasible
time bounds for events. Section 5.2.3 addresses this issue by outlining some suggestions
for future optimizations of the algorithm to avoid this performance degradation.

Future Work

This thesis has laid the groundwork for a variety of interesting future research. This
section describes some of the open research issues and some suggested extensions of the
planner. These suggestions for future work fall into three main categories. The first
category includes some ideas for making the planner more robust. The second describes
some potential limitations of AML and TPN and suggests ways to correct and improve
the activity models. The third category describes some methods for further improving the
efficiency of the planning algorithm.

Handling Contingencies

One way that planners can be more robust is by planning for all, or at least many,
possible contingencies [17]. Contingent planners, also referred to as conditional
planners, plan for different contingencies by keeping track of different plans for each
possible combination of uncontrollable events. At the time of plan execution, the agents
can query the state of the exogenous event to decide which plan should be executed. The
planner described in this thesis is able to support the description of contingencies, but the
current version of the planning algorithm does not generate contingent plans. In the
context of this planner, contingent plans can be encoded along with the nominal mission
plan using the choice operator that represent several different executions, each
conditioned on a possible state of some exogenous factor, as shown in Figure 5.3. In this
example, depending on the number of enemy targets detected, the group performs a
different type of attack. In order to fully support contingency planning, it will be
necessary to research the issues of accurately modeling sensing actions and incorporating
these actions into the mission plans.

choose {
 { if target_count=1 then Group-Attack(target1) },
 { if target_count=2 then Group-Split-
Attack(target1,target2) }
}

Figure 5.3 Example of how the AML can represent contingent executions

One shortcoming of the Simple Temporal Network plan representation used by this
planner is that it assumes that activity durations are controllable to the degree that it is
possible to execute each activity of the plan within the duration bounds specified by the

 71

plan. Although this provides more flexibility than a plan that predetermines the start
times for every activity, it still may not adequately model the uncertainty of activity
execution, especially for activities with a large variance in duration. There has been
recent research exploring how to handle this type of execution uncertainty both at plan-
time [20] and at execution-time [11], in the context of temporal planning with the STN.
Since the Temporal Planning Network is a direct extension of the Simple Temporal
Network, it should be possible to extend these methods to further enhance the robustness
of this planner.

Another way to increase the robustness of this planner is to incorporate the methods of
continuous planning and iterative plan repair that can be used to resolve failures in the
plan that arise during plan execution. This method of fast, incremental repair is used by
CASPER [3] to increase the reactivity of spacecraft to unexpected events, and it seems
plausible to support fast plan repair given the ability of this planner to very quickly (less
than a second) generate plans for very high-level activities of the mission. The next step
is to examine the issue of how to quickly and smoothly modify the current plan or
transition to a new plan during plan execution. Note, this poses an interesting problem
because it isn’t possible to put the air vehicles into a safe-mode while performing the
transition to the updated plan, especially if the vehicles are in hostile territory.

Improving the Activity Models

The correctness of a plan generated by any planner depends on the correctness of the
activity models on which it relies. This section describes some open representational
issues of AML and TPN, and describes improvements to the activity models described in
this thesis that may be explored in the future.

At the level of abstraction at which activities were modeled for this planner, it was
sufficient to encode the transitions between activities, for example, when two activities
were composed serially, using zero-duration temporal constraints. The effect of these
temporal constraints was to constrain the start time of the second activity to be the same
as the end time of the first. The problem with this representation is that in any real
system that is executing activities that are not fully controllable, there will always be a
delay between the completion of one activity and the start of the next. The reason for this
is that it requires some time, however miniscule, for the system to process that the first
activity has completed and to issue the command for the second to begin. By not
modeling this latency in the plan, it is possible for even small execution delays to
accumulate and cause activities to run past their latest allowed completion times, as
discovered by Muscettola, et al. [12]. Therefore, future research is necessary to explore
first whether it is necessary to model this latency accumulation in the context of this
planner, and second what implications this has on the TPN activity model encoding. If it
is found that zero-duration temporal constraints do not accurately model activity
behavior, then these may be replaced with the estimated bounds on system latency.

Another representational issue that was mentioned in Chapter 3 was the interpretation of
the direction of arcs in the Temporal Planning Network. Currently, the arcs signify both
temporal constraints and also precedence relations, which allow for directed paths

 72

through the network to represent a thread of execution composed of chronologically
ordered temporal events. However, the interpretation of the arc as both a temporal
constraint and a precedence relation breaks down when negative temporal constraints are
allowed, which might be useful for future activity modeling. If this is the case, then this
issue of the interpretation of arc direction must be revisited.

One problem with the activity models used by this planner is that the models may not
accurately represent the duration bounds of their respective activities. For example, the
duration of any instance of a Fly-To activity should be bounded roughly as
[d/maxv,d/minv], where d=distance to the destination, minv=minimum velocity of
the vehicle, and maxv=maximum velocity of the vehicle. However, the current
incarnation of the Fly-To activity model does not impose such bounds. The compile-time
computation of activity duration bounds based on system limitations would enhance the
correctness of the activity, so it is certainly worth investigating in the future. In addition,
to support onboard replanning, it might be worthwhile to explore having the ability to
estimate activity duration bounding as an online capability.

Finally, the TPN activity model encoding does not currently support the representation of
post-conditions. While generative planners that use STRIPS activity models rely on pre-
and post-conditions for constructing valid executions, the TPN activity models already
encode these executions, so post-conditions are not necessary for this purpose. However,
post-conditions are important because they specify the correct behavior of activities,
which is critical for execution monitoring. Therefore, it may be useful to augment the
TPN representation to support this in the future.

Optimizing the Planner

This section describes some potential optimizations that should be considered for future
versions or implementations of the planner. One of the qualitative observations on the
performance of the planner during testing was that the bottleneck operation seemed to be
the computation of feasible time bounds for all temporal events at the beginning of Phase
Two of the planning algorithm. This implies that if it is possible to speed up this
operation, then this may significantly reduce the time it takes to generate a plan.
Fortunately, several potentially powerful optimizations may be applied.

Recall that computing the feasible time bounds for all temporal events is done by solving
an all-pairs shortest path problem. The current implementation of the planning algorithm
uses the Floyd-Warshall algorithm for this, but as mentioned in section 4.3.2, the same
problem is solved by Johnson’s all-pairs shortest paths algorithm, which has better
asymptotic running time in sparse networks. Since the TPN activity networks are
typically sparse, using Johnson’s algorithm may significantly improve the planner’s
running time.

In the current implementation of the planning algorithm, after a macro-activity is
expanded and merged into the partial plan, the planner computes the feasible time bounds
of all temporal events. This is more work than necessary in many cases because it may
be possible to compute the time bounds of the macro-activity with respect to its start- and

 73

end-nodes, and then separately re-compute the time bounds of the rest of the events in the
rest of the plan. This too may result in a significant improvement in planner
performance, especially for iterations of the planning algorithm in which large macro-
activities (one with many nodes) are expanded.

There is a simple method of contracting Simple Temporal Network plans, used by HSTS
[12], which may also be applied to Temporal Planning Networks. The contraction
merges all nodes that correspond to the same point in time (i.e. those connected by zero-
duration temporal constraints) into a single node, and reasons about all of them together.
This is very useful for when planning for activities whose models contain many zero-
duration temporal constraints.

Finally, the current implementation of the planning algorithm relies on an interval set
data structure for maintaining symbolic constraints of the Planning Network. This data
structure is used for detecting overlapping intervals for detecting symbolic constraint
incompatibilities and for identifying possible ways to cover open conditions. Replacing
the interval set with an interval tree data structure [5] may improve running time in
practice.

Summary

Although there remain many issues to be considered by future work, the research
described in this thesis takes several steps toward the goal of applying model-based
programming techniques to the problem of planning for coordinated vehicle missions.
The Activity Modeling Language addresses the challenge of developing activity models
by providing a natural and expressive means of describing complex coordinated
activities. The Temporal Planning Network serves as an encoding of the activity models
that addresses the issue of compactness and, along with the planning algorithm presented
in Chapter 4, addresses the challenge of efficient planning. These contributions were
brought together and implemented in the Kirk planning system, but future research will
be required to more completely develop the ideas presented in this thesis.

 74

References

[1] R. Ahuja, T. Magnanti, J. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, 1993.

[2] A.L. Blum, M. Furst. Fast planning through planning graph analysis. Artificial

Intelligence, 90(1-2):281-300, 1997.

[3] S. Chien, R. Knight, A. Stechert, R. Sherwood, G. Rabideau. Using Iterative

Repair to Increase the Responsiveness of Planning and Scheduling for
Autonomous Spacecraft. Proc. 5th International Conference on Artificial
Intelligence Planning and Scheduling (AIPS2000), Breckenridge, CO, April 2000.

[4] L. Console, C. Picardi, M. Ribaudo. Diagnosis and diagnosibility analysis using

Process Algebras. Proc. 11th International Workshop On Principles of Diagnosis,
Morelia, Mexico, June 2000.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms. MIT press,

Cambridge, MA, 1990.

[6] T. Dean, B. McDermott. Temporal Database Management. Artificial Intelligence,

1-56, 1987.

[7] R. Dechter, I. Meiri, J. Pearl. Temporal Constraint Networks. Artificial

Intelligence, 49:61-95, May 1991.

[8] R.E. Fikes, N.J. Nilsson. STRIPS: a new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 2(3-4):189-208.

[9] V. Gupta, R. Jagadeesan, V. Saraswat. Models for Concurrent Constraint

Programming. Proc. of CONCUR'96: Concurrency Theory, edited by Ugo
Montanari and Vladimiro Sassone, LNCS 1119, Springer Verlag, 1996.

[10] D. Harel. Statecharts: A visual approach to complex systems. Science of

Computer Programming, 8:231-274, 1987.

[11] P. Morris, N. Muscettola. Execution of Temporal Plans with Uncertainty. Proc.

16th National Conference on Artificial Intelligence (AAAI-99), Orlando, FL, 1999.

[12] N. Muscettola, P. Morris, B. Pell, B. Smith. Issues in Temporal Reasoning for

Autonomous Control Systems. Proc. 2nd International Conference on
Autonomous Agents, Minneapolis, MI, 1998.

[13] N. Muscettola, B. Smith, S. Chien, C. Fry, G. Rabideau, K. Rajan, D. Yan. On-

board planning for autonomous spacecraft. Proc. 4th International Symposium on
Artificial Intelligence, Robotics, and Automation for Space (ISAIRAS), July 1997.

 75

[14] N. Muscettola, P.P. Nayak, B. Pell, B. Williams. Remote Agent: To boldly go

where no AI system has gone before. Artificial Intelligence, 103(1-2):5-48,
August 1998.

[15] J. Pentherby, D. Weld. Temporal planning with continuous change. Proc. 12th

National Conference on Artificial Intelligence (AAAI-94), Seattle, WA, 1994.

[16] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A. Govindjee. Iterative Repair

Planning for Spacecraft Operations in the ASPEN System. International
Symposium on Artificial Intelligence Robotics and Automation in Space
(ISAIRAS), Noordwijk, The Netherlands, June 1999.

[17] S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

[18] D. Smith, J. Frank, A.K. Jonsson. Bridging the Gap Between Planning and

Scheduling. Knowledge Engineering Review, Volume 15, Number 1, 2000.

[19] I. Tsamardinos, N. Muscettola, P. Morris. Fast transformation of temporal plans

for efficient execution. Proc.15th National Conference on Artificial Intelligence
(AAAI-98), Madison, WI, 1998.

[20] T. Vidal. Dealing with Temporal Uncertainty and Reactivity in a space mission

plan. Proc. 2nd NASA International Workshop on Planning and Scheduling for
Space.

[21] D. Weld. An Introduction to Least Commitment Planning. AI Magazine, 27-61,

Winter 1994.

[22] D. Weld. Recent Advance in AI Planning. AI Magazine, 93-123, Spring 1999.

[23] B.C. Williams, P.P. Nayak. A Model-based Approach to Reactive Self-

Configuring Systems. Proc. 13th National Conference on Artificial Intelligence
(AAAI-96), Portland, OR, 1996.

[24] B.C. Williams. Doing Time: Putting Qualitative Reasoning on Firmer Ground.

Proc. 5th National Conference on Artificial Intelligence (AAAI-86), Philadelphia,
PA, August 1986.

[25] B.C. Williams, V. Gupta. Unifying Model-based and Reactive Programming in a

Model-based Executive. Proc. 10th International Workshop on Principles of
Diagnosis, Scotland, June 1999.

 76

[26] S. Wolfman, D. Weld. Temporal Planning with Mutual Exclusion Reasoning.
Proc. 16th International Joint Conference on Artificial Intelligence.

[27] "Hierarchical Decomposition of Autonomy Requirements for Naval UCAVs", for

the Uninhabited Combat Air Vehicle Demonstrations, prepared for Office of
Naval Research (under subcontract to Scientific Systems Company Incorporated),
Charles Stark Draper Laboratory Document Control #387031, July, 2000.

 77

Appendix A
AML Activity Descriptions

//--

Sead-Scenario()[l,u] {
 Group-Sead()[l*50%,u],
 { PATH1=ok }[700,700],
 { [300,300]; { PATH2=ok }[500,500] }
}

Group-Sead()[l,u] := {
 Group-Enroute()[l*40%,u*40%];
 Group-Engage()[l*20%,u*20%];
 Group-Return()[l*40%,u*40%];
}

//--

Group-Takeoff()[l,u] {
 {
 { ONE::Takeoff()[l*25%,u*25%]; [0,+INF] },
 { TWO::Takeoff()[l*25%,u*25%]; [0,+INF] }
 };
 Group-Rendezvous(RVPT)[l*75%,u*75%]
}

Group-Enroute()[l,u] := {
 choose {
 if PATH1=ok then {
 Group-Move-to(PATH1_1)[l*20%,u*20%];
 Group-Move-to(PATH1_2)[l*20%,u*20%];
 Group-Move-to(PATH1_3)[l*20%,u*20%];
 Group-Move-to(TAI)[l*20%,u*20%]
 },
 if PATH2=ok then {
 Group-Move-to(PATH2_1)[l*20%,u*20%];
 Group-Move-to(PATH2_2)[l*20%,u*20%];
 Group-Move-to(PATH2_3)[l*20%,u*20%];
 Group-Move-to(TAI)[l*20%,u*20%]
 }
 };
 Group-Xmit(FAC,GROUP_ARRIVED_TAI)[3,5];
 do {
 Group-Wait(TAI_HOLD1, TAI_HOLD2)[0,+INF]
 }
 watching GROUP::ENGAGE=ok
}

Group-Engage()[l,u] := {
 choose {
 if TARGET_COUNT=1 then {
 Group-Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT, T1_POS)[l,u]
 },
 if TARGET_COUNT=2 then {
 { ONE::Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT, T1_POS)[l,u];
 [0,+INF]
 },
 { TWO::Attack(T2_ENTRY_PT, T2_DROP_PT, T2_EXIT_PT, T2_POS)[l,u];
 [0,+INF]
 }
 },
 if TARGET_COUNT=2 then {
 { TWO::Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT, T1_POS)[l,u];
 [0,+INF]
 },

 78

 { ONE::Attack(T2_ENTRY_PT, T2_DROP_PT, T2_EXIT_PT, T2_POS)[l,u];
 [0,+INF]
 }
 },
 if TARGET_COUNT=2 then {
 Group-Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT,
T1_POS)[l*50%,u*50%];
 Group-Attack(T2_ENTRY_PT, T2_DROP_PT, T2_EXIT_PT,
 T2_POS)[l*50%,u*50%]
 },
 if TARGET_COUNT=2 then {
 Group-Attack(T2_ENTRY_PT, T2_DROP_PT, T2_EXIT_PT,
T2_POS)[l*50%,u*50%];
 Group-Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT,
T1_POS)[l*50%,u*50%]
 },
 if TARGET_COUNT=2 then {
 Group-Attack(T1_ENTRY_PT, T1_DROP_PT, T1_EXIT_PT, T1_POS)[l,u]
 },
 if TARGET_COUNT=2 then {
 Group-Attack(T2_ENTRY_PT, T2_DROP_PT, T2_EXIT_PT, T2_POS)[l,u];
 }
 }
}

Group-Return()[l,u] := {
 Group-Rendezvous(TAI);
 choose {
 if PATH1=ok then {
 Group-Move-to(PATH1_3)[l*25%,u*25%];
 Group-Move-to(PATH1_2)[l*25%,u*25%];
 Group-Move-to(PATH1_1)[l*25%,u*25%];
 },
 if PATH2=ok then {
 Group-Move-to(PATH2_3)[l*25%,u*25%];
 Group-Move-to(PATH2_2)[l*25%,u*25%];
 Group-Move-to(PATH2_1)[l*25%,u*25%];
 }
 };

 { ONE::Move-to(HOME1)[l*25%,u*25%],
 TWO::Move-to(HOME2)[l*25%,u*25%]
 }
}

Group-Land()[l,u] {
 ONE::Land()[.,u],
 TWO::Land()[l,u]
}

//--

Group-Rendezvous(RVPT)[l,u] := {
 { ONE::Move-to(RVPT)[l,u*90%];
 ONE::Xmit(ALL,ONE_RVPT_ARRIVED)[0,6];
 do { ONE::Hold(RVPT_HOLD1)[0,+U*5%],
 ONE::Listen()[0,U*5%]
 } watching TWO_RVPT_ARRIVED
 },
 { TWO::Move-to(RVPT)[l,u*90%];
 TWO::Xmit(ALL,TWO_RVPT_ARRIVED)[0,6];
 do { TWO::Hold(RVPT_HOLD1)[0,+U*5%],
 TWO::Listen()[0,U*5%]
 } watching ONE_RVPT_ARRIVED
 }
}

Group-Move-to(X,Y,Z)[l,u] := {
 choose {
 if NOT(ONE::NAV=DAMAGED) then {
 ONE::Move-to(X,Y,Z)[l,u],

 79

 TWO::Follow(ONE)
 TWO::Listen[l,u]
 },
 if NOT(TWO::NAV=DAMAGED) then {
 TWO::Move-to(X,Y,Z)[l,u],
 ONE::Follow(TWO)[l,u],
 ONE::Listen[l,u]
 }
 }
}

Group-Xmit(Target,Message)[l,u] := {
 choose {
 if NOT(ONE::COMM=DAMAGED) then ONE::Xmit(Target,Message)[l,u],
 if NOT(TWO::COMM=DAMAGED) then TWO::Xmit(Target,Message)[l,u]
 }
}

Group-Attack(Entry_Pt, Drop_Pt, Exit_Pt, Target_Pos)[l,u] := {
 choose {
 if ONE::BOMB=ok then {
 ONE::Attack(Entry_Pt, Drop_Pt, Exit_Pt, Target_Pos)[l,u],
 TWO::Follow(ONE_ID)[l,u],
 TWO::Sense()[l,u]
 },
 if TWO::BOMB=ok then {
 TWO::Attack(Entry_Pt, Drop_Pt, Exit_Pt, Target_Pos)[l,u],
 ONE::Follow(TWO_ID)[l,u],
 ONE::Sense()[l,u]
 }
 }
}

Group-Wait(Hold1, Hold2)[l,u] := {
 ONE::Wait(Hold1)[l,u],
 TWO::Wait(Hold2)[l,u]
}

//----------------------------------

Wait(Pt1, Pt2, Pt3)[l,u] := {
 repeat {
 Move-to(Pt1)[20,30];
 Move-to(Pt2)[20,30];
 Move-to(Pt3)[20,30];
 }[l,u]
}

Attack(Entry_Pt, Drop_Pt, Exit_Pt, Target_Pos)[l,u] := {
 Move-to(Entry_Pt)[l*30%,u*30%];
 Move-to(Drop_Pt)[l*30%,u*30%];
 { { Bomb-at(Target_Pos)[20,30]; [0,+INF] },
 Move-to(Exit_Pt)[l*30%,u*30%]
 }
}

//----------------------------------

Move-to(X,Y,Z)[l,u] := {
 {ID::DST=set}[l,u]
}

Bomb-at(X,Y)[l,u] := {
 if ID::BOMB=ok then {
 Target()[l,u]
 }
}

Follow(Target)[l,u] := {
 Listen()[l,u],
 Sense()[l,u],

 80

 ID::DST_SET[l,u]
}

Xmit(Target,)[l,u] := {
 choose {
 {ch1=ID}[l,u],
 {ch2=ID}[l,u]
 }
}

Listen()[l,u] := {
 NOT(ch1=ID)[l,u],
 NOT(ch2=ID)[l,u]
}

Sense()[l,u] := {
 {ID::Sensor=sense}[l,u]
}

Target()[l,u] := {
 {ID::Sensor=target}[l,u]
}

Takeoff()[l,u] := {
 {ID::DST=set}[l,u]
}

Land()[l,u] := {
 {ID::DST=set}[l,u]
}

 81

Appendix B

TPN specification format

 82

TPN file := argument_name*
 node_count
 node_data*
 arc_data*
 -1 -1
 symbolic_constraint_data*

node_data := decision_node?
 node_name
 activity?
 start_node?
 *

arc_data := head_node_index
 tail_node_index
 forward_arc?
 distance
 *

symbolic_constraint_data :=
 head_node_index
 tail_node_index
 proposition
 type
 *

Each TPN file begins with a list of zero or more argument
names (argument_name*). This is followed by an integer
number of nodes in the network (node_count). For each node
in the network, there must be a corresponding node
description in the node_data format. Following the node
descriptions must be a list of arc descriptions in the arc_data
format. For each arc in the Temporal Planning Network
described by the file, there is one forward and one backward
arc in this list of arcs, corresponding to the two arcs in its
distance graph representation. The list of arc descriptions is
terminated by “-1 –1”. Finally, all the symbolic constraints in
the network are listed.

Each node description consists of four pieces of information
delimited by whitespace. First is a flag that indicates whether
the node is a decision node (0=no, 1=yes). Second is the
node name. Third is a flag that indicates whether the node
corresponds to either the start or end event of an activity
(0=no, 1=yes). Fourth is a flag that is checked only if the
activity? flag is 1. It indicates whether the node corresponds
to the start or the activity (0=end node, 1=start node). All
node descriptions are terminated by an asterisk.

Each arc description begins with the indices of the head and
tail nodes of the arc. This is followed by a flag that indicates
whether the arc is a forward arc (0=backward arc, 1=forward
arc). After this is the distance associated with the arc, which
can be an integral value, positive or negative infinity, or a
relative value. Arc descriptions are also terminated by an
asterisk.

Each symbolic constraint description also begins with head
and tail node indices that specify with which arc the symbolic
constraint is associated. Next is the proposition of the
symbolic constraint, followed by a type which is one of the
following: ASK, TELL, ASK_NOT, TELL_NOT. Each symbolic
constraint description is terminated by an astersk.

An example of a TPN specification file follows.

 83

Sead-Scenario.tpn

12

0 Group-Sead() 1 1 *
0 Group-Sead() 1 0 *
0 Group-Enroute() 1 1 *
0 Group-Enroute() 1 0 *
0 Group-Engage() 1 1 *
0 Group-Engage() 1 0 *
0 Group-Return() 1 1 *
0 Group-Return() 1 0 *
0 PATH1_begin 0 0 *
0 PATH1_end 0 0 *
0 PATH2_begin 0 0 *
0 PATH2_end 0 0 *

0 1 1 +U *
0 2 1 +0 *
0 8 1 +0 *
0 10 1 +300 *
1 0 0 -L *
1 7 0 -0 *
2 0 0 -0 *
2 3 1 +U*40% *
3 2 0 -L*35% *
3 4 1 +0 *
4 3 0 -0 *
4 5 1 +U*20% *
5 4 0 -L*20% *
5 6 1 +0 *
6 5 0 -0 *
6 7 1 +U*40% *
7 1 0 -0 *
7 6 0 -L*35% *
8 0 0 -0 *
8 9 1 +700 *
9 8 0 -700 *
10 0 0 -300 *
10 11 1 +500 *
11 10 0 -500 *
-1 -1

8 9 PATH1=OK TELL *
10 11 PATH2=OK TELL *

No arguments.

node_count = 12

12 node descriptions
.
.
.
.
.
.
.
.
.
.

Arc descriptions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Arc data terminator

Symbolic constraint descriptions
.

 84

Appendix C

Raw Output Dump: Sead-Scenario()[3000,3600]

plan node[0]: {Group-Sead():0,0} decomposed?=1 isactivity?=1 isstart?=1
plan node[1]: {Group-Sead():3000,3600} decomposed?=0 isactivity?=1 isstart?=0
plan node[2]: {Group-Enroute():0,0} decomposed?=1 isactivity?=1 isstart?=1
plan node[3]: {Group-Enroute():1108,1440} decomposed?=1 isactivity?=1 isstart?=0
plan node[4]: {Group-Engage():1108,1440} decomposed?=1 isactivity?=1 isstart?=1
plan node[5]: {Group-Engage():1708,2088} decomposed?=1 isactivity?=1 isstart?=0
plan node[6]: {Group-Return():1708,2088} decomposed?=1 isactivity?=1 isstart?=1
plan node[7]: {Group-Return():2816,3528} decomposed?=1 isactivity?=1 isstart?=0
plan node[8]: {PATH1_begin():0,0} decomposed?=0 isactivity?=0 isstart?=0
plan node[9]: {PATH1_end():700,700} decomposed?=0 isactivity?=0 isstart?=0
plan node[10]: {PATH2_begin():300,300} decomposed?=0 isactivity?=0 isstart?=0
plan node[11]: {PATH2_end():800,800} decomposed?=0 isactivity?=0 isstart?=0
plan node[12]: {Decision-1():0,0} decomposed?=0 isactivity?=0 isstart?=0
plan node[13]: {Group-Move-to(18000,28000,5000):0,0} decomposed?=1 isactivity?=1 isstart?=1
plan node[14]: {Group-Move-to(18000,28000,5000):262,360} decomposed?=1 isactivity?=1 isstart?=0
plan node[15]: {Group-Move-to(25000,30000,6000):262,360} decomposed?=1 isactivity?=1 isstart?=1
plan node[16]: {Group-Move-to(25000,30000,6000):524,720} decomposed?=1 isactivity?=1 isstart?=0
plan node[17]: {Group-Move-to(32000,30000,5000):524,720} decomposed?=1 isactivity?=1 isstart?=1
plan node[18]: {Group-Move-to(32000,30000,5000):786,1080} decomposed?=1 isactivity?=1 isstart?=0
plan node[19]: {Group-Move-to(15000,5000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[20]: {Group-Move-to(15000,5000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[21]: {Group-Move-to(25000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[22]: {Group-Move-to(25000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[23]: {Group-Move-to(36000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[24]: {Group-Move-to(36000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[25]: {Group-Move-to(40000,25000,4000):786,1080} decomposed?=1 isactivity?=1 isstart?=1
plan node[26]: {Group-Move-to(40000,25000,4000):1048,1380} decomposed?=1 isactivity?=1 isstart?=0
plan node[27]: {Group-Xmit(FAC,ARRIVED_TAI):1048,1380} decomposed?=1 isactivity?=1 isstart?=1
plan node[28]: {Group-Xmit(FAC,ARRIVED_TAI):1048,1380} decomposed?=1 isactivity?=1 isstart?=0
plan node[29]: {Group-Wait(41000,26000,5000,41000,24000,5000,39000,25000,5000,41000,26000,6000,41000,24000,6000,39000,25000,6000):1048,1380}
decomposed?=1 isactivity?=1 isstart?=1
plan node[30]: {Group-Wait(41000,26000,5000,41000,24000,5000,39000,25000,5000,41000,26000,6000,41000,24000,6000,39000,25000,6000):1108,1440}
decomposed?=1 isactivity?=1 isstart?=0
plan node[31]: {Intermediate-1():0,0} decomposed?=0 isactivity?=0 isstart?=0
plan node[32]: {Intermediate-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[33]: {Decision-1():1108,1440} decomposed?=0 isactivity?=0 isstart?=0
plan node[34]: {Group-Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):1108,1440} decomposed?=1 isactivity?=1 isstart?=1
plan node[35]: {Group-Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):1708,2088} decomposed?=1 isactivity?=1 isstart?=0
plan node[36]: {Choice1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[37]: {ONE::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[38]: {ONE::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[39]: {TWO::Attack(45000,22000,4000,49500,15500,3000,45000,15000,4000,50000,15000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[40]: {TWO::Attack(45000,22000,4000,49500,15500,3000,45000,15000,4000,50000,15000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[41]: {Group-Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[42]: {Group-Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[43]: {Group-Attack(45000,22000,4000,49500,15500,3000,45000,15000,4000,50000,15000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[44]: {Group-Attack(45000,22000,4000,49500,15500,3000,45000,15000,4000,50000,15000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[45]: {OR-1():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[46]: {OR-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[47]: {Decision-1():1708,2088} decomposed?=0 isactivity?=0 isstart?=0
plan node[48]: {Group-Move-to(18000,28000,5000):1708,2088} decomposed?=1 isactivity?=1 isstart?=1
plan node[49]: {Group-Move-to(18000,28000,5000):1970,2448} decomposed?=0 isactivity?=1 isstart?=0
plan node[50]: {Group-Move-to(25000,30000,6000):1970,2448} decomposed?=1 isactivity?=1 isstart?=1
plan node[51]: {Group-Move-to(25000,30000,6000):2232,2808} decomposed?=0 isactivity?=1 isstart?=0
plan node[52]: {Group-Move-to(18000,28000,5000):2232,2808} decomposed?=1 isactivity?=1 isstart?=1
plan node[53]: {Group-Move-to(18000,28000,5000):2494,3168} decomposed?=0 isactivity?=1 isstart?=0
plan node[54]: {Group-Move-to(36000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[55]: {Group-Move-to(36000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[56]: {Group-Move-to(25000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[57]: {Group-Move-to(25000,4000,4500):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[58]: {Group-Move-to(15000,5000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[59]: {Group-Move-to(15000,5000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[60]: {Group-Move-to(10000,22500,4000):2494,3168} decomposed?=1 isactivity?=1 isstart?=1
plan node[61]: {Group-Move-to(10000,22500,4000):2756,3468} decomposed?=1 isactivity?=1 isstart?=0
plan node[62]: {Group-Xmit(ATC,ARRIVED_HOME):2756,3468} decomposed?=1 isactivity?=1 isstart?=1
plan node[63]: {Group-Xmit(ATC,ARRIVED_HOME):2756,3468} decomposed?=1 isactivity?=1 isstart?=0
plan node[64]: {Group-Wait(11000,21500,5000,11000,23500,5000,9000,22500,5000,11000,21500,6000,11000,23500,6000,9000,22500,6000):2756,3468}
decomposed?=1 isactivity?=1 isstart?=1
plan node[65]: {Group-Wait(11000,21500,5000,11000,23500,5000,9000,22500,5000,11000,21500,6000,11000,23500,6000,9000,22500,6000):2816,3528}
decomposed?=1 isactivity?=1 isstart?=0
plan node[66]: {Intermediate-1():1708,2088} decomposed?=0 isactivity?=0 isstart?=0
plan node[67]: {Intermediate-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[68]: {Decision-1():0,0} decomposed?=0 isactivity?=0 isstart?=0
plan node[69]: {Choice-1-1():0,0} decomposed?=0 isactivity?=0 isstart?=0
plan node[70]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[71]: {ONE::Move-to(18000,28000,5000):0,0} decomposed?=1 isactivity?=1 isstart?=1
plan node[72]: {ONE::Move-to(18000,28000,5000):262,360} decomposed?=1 isactivity?=1 isstart?=0
plan node[73]: {TWO::Follow(ONE):0,0} decomposed?=1 isactivity?=1 isstart?=1
plan node[74]: {TWO::Follow(ONE):262,360} decomposed?=1 isactivity?=1 isstart?=0
plan node[75]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[76]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[77]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[78]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[79]: {Decision-1():262,360} decomposed?=0 isactivity?=0 isstart?=0
plan node[80]: {Choice-1-1():262,360} decomposed?=0 isactivity?=0 isstart?=0
plan node[81]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[82]: {ONE::Move-to(25000,30000,6000):262,360} decomposed?=1 isactivity?=1 isstart?=1
plan node[83]: {ONE::Move-to(25000,30000,6000):524,720} decomposed?=1 isactivity?=1 isstart?=0
plan node[84]: {TWO::Follow(ONE):262,360} decomposed?=1 isactivity?=1 isstart?=1
plan node[85]: {TWO::Follow(ONE):524,720} decomposed?=1 isactivity?=1 isstart?=0
plan node[86]: {TWO::Move-to(25000,30000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[87]: {TWO::Move-to(25000,30000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[88]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[89]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[90]: {Decision-1():524,720} decomposed?=0 isactivity?=0 isstart?=0
plan node[91]: {Choice-1-1():524,720} decomposed?=0 isactivity?=0 isstart?=0
plan node[92]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[93]: {ONE::Move-to(32000,30000,5000):524,720} decomposed?=1 isactivity?=1 isstart?=1
plan node[94]: {ONE::Move-to(32000,30000,5000):786,1080} decomposed?=1 isactivity?=1 isstart?=0

 85

plan node[95]: {TWO::Follow(ONE):524,720} decomposed?=1 isactivity?=1 isstart?=1
plan node[96]: {TWO::Follow(ONE):786,1080} decomposed?=1 isactivity?=1 isstart?=0
plan node[97]: {TWO::Move-to(32000,30000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[98]: {TWO::Move-to(32000,30000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[99]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[100]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[101]: {Decision-1():786,1080} decomposed?=0 isactivity?=0 isstart?=0
plan node[102]: {Choice-1-1():786,1080} decomposed?=0 isactivity?=0 isstart?=0
plan node[103]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[104]: {ONE::Move-to(40000,25000,4000):786,1080} decomposed?=1 isactivity?=1 isstart?=1
plan node[105]: {ONE::Move-to(40000,25000,4000):1048,1380} decomposed?=1 isactivity?=1 isstart?=0
plan node[106]: {TWO::Follow(ONE):786,1080} decomposed?=1 isactivity?=1 isstart?=1
plan node[107]: {TWO::Follow(ONE):1048,1380} decomposed?=1 isactivity?=1 isstart?=0
plan node[108]: {TWO::Move-to(40000,25000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[109]: {TWO::Move-to(40000,25000,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[110]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[111]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[112]: {Choice-1():1048,1380} decomposed?=0 isactivity?=0 isstart?=0
plan node[113]: {ONE::Xmit(FAC,ARRIVED_TAI):1048,1380} decomposed?=1 isactivity?=1 isstart?=1
plan node[114]: {ONE::Xmit(FAC,ARRIVED_TAI):1048,1380} decomposed?=1 isactivity?=1 isstart?=0
plan node[115]: {TWO::Xmit(FAC,ARRIVED_TAI):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[116]: {TWO::Xmit(FAC,ARRIVED_TAI):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[117]: {ONE::Wait(41000,26000,5000,41000,24000,5000,39000,22500,5000):1048,1380} decomposed?=1 isactivity?=1 isstart?=1
plan node[118]: {ONE::Wait(41000,26000,5000,41000,24000,5000,39000,22500,5000):1108,1440} decomposed?=1 isactivity?=1 isstart?=0
plan node[119]: {TWO::Wait(41000,26000,6000,41000,24000,6000,39000,25000,6000):1048,1380} decomposed?=1 isactivity?=1 isstart?=1
plan node[120]: {TWO::Wait(41000,26000,6000,41000,24000,6000,39000,25000,6000):1108,1440} decomposed?=1 isactivity?=1 isstart?=0
plan node[121]: {Decision-1():1108,1440} decomposed?=0 isactivity?=0 isstart?=0
plan node[122]: {Choice-1-1():1108,1440} decomposed?=0 isactivity?=0 isstart?=0
plan node[123]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[124]: {ONE::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):1108,1440} decomposed?=1 isactivity?=1 isstart?=1
plan node[125]: {ONE::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):1708,2088} decomposed?=1 isactivity?=1 isstart?=0
plan node[126]: {TWO::Follow(0):1108,1440} decomposed?=1 isactivity?=1 isstart?=1
plan node[127]: {TWO::Follow(0):1708,2088} decomposed?=1 isactivity?=1 isstart?=0
plan node[128]: {TWO::Sense():1108,1440} decomposed?=1 isactivity?=1 isstart?=1
plan node[129]: {TWO::Sense():1708,2088} decomposed?=1 isactivity?=1 isstart?=0
plan node[130]: {TWO::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[131]: {TWO::Attack(45000,22000,4000,49500,20500,3000,50000,25000,4000,50000,20000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[132]: {ONE::Follow(1):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[133]: {ONE::Follow(1):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[134]: {ONE::Sense():-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[135]: {ONE::Sense():-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[136]: {Decision-1():1708,2088} decomposed?=0 isactivity?=0 isstart?=0
plan node[137]: {Choice-1-1():1708,2088} decomposed?=0 isactivity?=0 isstart?=0
plan node[138]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[139]: {ONE::Move-to(18000,28000,5000):1708,2088} decomposed?=1 isactivity?=1 isstart?=1
plan node[140]: {ONE::Move-to(18000,28000,5000):262,360} decomposed?=1 isactivity?=1 isstart?=0
plan node[141]: {TWO::Follow(ONE):1708,2088} decomposed?=1 isactivity?=1 isstart?=1
plan node[142]: {TWO::Follow(ONE):262,360} decomposed?=1 isactivity?=1 isstart?=0
plan node[143]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[144]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[145]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[146]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[147]: {Decision-1():1970,2448} decomposed?=0 isactivity?=0 isstart?=0
plan node[148]: {Choice-1-1():1970,2448} decomposed?=0 isactivity?=0 isstart?=0
plan node[149]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[150]: {ONE::Move-to(25000,30000,6000):1970,2448} decomposed?=1 isactivity?=1 isstart?=1
plan node[151]: {ONE::Move-to(25000,30000,6000):524,720} decomposed?=0 isactivity?=1 isstart?=0
plan node[152]: {TWO::Follow(ONE):1970,2448} decomposed?=1 isactivity?=1 isstart?=1
plan node[153]: {TWO::Follow(ONE):524,720} decomposed?=1 isactivity?=1 isstart?=0
plan node[154]: {TWO::Move-to(25000,30000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[155]: {TWO::Move-to(25000,30000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[156]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[157]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[158]: {Decision-1():2232,2808} decomposed?=0 isactivity?=0 isstart?=0
plan node[159]: {Choice-1-1():2232,2808} decomposed?=0 isactivity?=0 isstart?=0
plan node[160]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[161]: {ONE::Move-to(18000,28000,5000):2232,2808} decomposed?=1 isactivity?=1 isstart?=1
plan node[162]: {ONE::Move-to(18000,28000,5000):262,360} decomposed?=0 isactivity?=1 isstart?=0
plan node[163]: {TWO::Follow(ONE):2232,2808} decomposed?=1 isactivity?=1 isstart?=1
plan node[164]: {TWO::Follow(ONE):262,360} decomposed?=1 isactivity?=1 isstart?=0
plan node[165]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[166]: {TWO::Move-to(18000,28000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[167]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[168]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[169]: {Decision-1():2494,3168} decomposed?=0 isactivity?=0 isstart?=0
plan node[170]: {Choice-1-1():2494,3168} decomposed?=0 isactivity?=0 isstart?=0
plan node[171]: {Choice-1-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[172]: {ONE::Move-to(10000,22500,4000):2494,3168} decomposed?=1 isactivity?=1 isstart?=1
plan node[173]: {ONE::Move-to(10000,22500,4000):2756,3468} decomposed?=1 isactivity?=1 isstart?=0
plan node[174]: {TWO::Follow(ONE):2494,3168} decomposed?=1 isactivity?=1 isstart?=1
plan node[175]: {TWO::Follow(ONE):2756,3468} decomposed?=0 isactivity?=1 isstart?=0
plan node[176]: {TWO::Move-to(10000,22500,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[177]: {TWO::Move-to(10000,22500,4000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[178]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[179]: {ONE::Follow(TWO):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[180]: {Choice-1():2756,3468} decomposed?=0 isactivity?=0 isstart?=0
plan node[181]: {ONE::Xmit(ATC,ARRIVED_HOME):2756,3468} decomposed?=1 isactivity?=1 isstart?=1
plan node[182]: {ONE::Xmit(ATC,ARRIVED_HOME):2756,3468} decomposed?=1 isactivity?=1 isstart?=0
plan node[183]: {TWO::Xmit(ATC,ARRIVED_HOME):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[184]: {TWO::Xmit(ATC,ARRIVED_HOME):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[185]: {ONE::Wait(11000,21500,5000,11000,24000,5000,9000,22500,5000):2756,3468} decomposed?=1 isactivity?=1 isstart?=1
plan node[186]: {ONE::Wait(11000,21500,5000,11000,24000,5000,9000,22500,5000):2816,3528} decomposed?=1 isactivity?=1 isstart?=0
plan node[187]: {TWO::Wait(11000,21500,6000,11000,23500,6000,9000,22500,6000):2756,3468} decomposed?=1 isactivity?=1 isstart?=1
plan node[188]: {TWO::Wait(11000,21500,6000,11000,23500,6000,9000,22500,6000):2816,3528} decomposed?=1 isactivity?=1 isstart?=0
plan node[189]: {TWO::Listen():0,0} decomposed?=1 isactivity?=1 isstart?=1
plan node[190]: {TWO::Listen():262,360} decomposed?=1 isactivity?=1 isstart?=0
plan node[191]: {TWO::Listen():262,360} decomposed?=1 isactivity?=1 isstart?=1
plan node[192]: {TWO::Listen():262,360} decomposed?=1 isactivity?=1 isstart?=0
plan node[193]: {TWO::Listen():524,720} decomposed?=1 isactivity?=1 isstart?=1
plan node[194]: {TWO::Listen():524,720} decomposed?=1 isactivity?=1 isstart?=0
plan node[195]: {TWO::Listen():786,1080} decomposed?=1 isactivity?=1 isstart?=1
plan node[196]: {TWO::Listen():786,1080} decomposed?=1 isactivity?=1 isstart?=0
plan node[197]: {ONE::decision-1():1048,1380} decomposed?=0 isactivity?=0 isstart?=0
plan node[198]: {ONE::intermediate-1():1048,1380} decomposed?=0 isactivity?=0 isstart?=0
plan node[199]: {ONE::intermediate-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[200]: {ONE::Decision-1():1048,1380} decomposed?=0 isactivity?=0 isstart?=0
plan node[201]: {ONE::Move-to(41000,26000,5000):1048,1380} decomposed?=1 isactivity?=1 isstart?=1
plan node[202]: {ONE::Move-to(41000,26000,5000):1068,1400} decomposed?=1 isactivity?=1 isstart?=0
plan node[203]: {ONE::Move-to(41000,24000,5000):1068,1400} decomposed?=1 isactivity?=1 isstart?=1
plan node[204]: {ONE::Move-to(41000,24000,5000):1088,1420} decomposed?=1 isactivity?=1 isstart?=0
plan node[205]: {ONE::Move-to(39000,22500,5000):1088,1420} decomposed?=1 isactivity?=1 isstart?=1
plan node[206]: {ONE::Move-to(39000,22500,5000):1108,1440} decomposed?=1 isactivity?=1 isstart?=0
plan node[207]: {ONE::Move-to(41000,26000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[208]: {ONE::Move-to(41000,26000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0

 86

plan node[209]: {ONE::Move-to(41000,24000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[210]: {ONE::Move-to(41000,24000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[211]: {ONE::Move-to(39000,22500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[212]: {ONE::Move-to(39000,22500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[213]: {TWO::Decision-1():1048,1380} decomposed?=0 isactivity?=0 isstart?=0
plan node[214]: {TWO::Move-to(41000,26000,6000):1048,1380} decomposed?=1 isactivity?=1 isstart?=1
plan node[215]: {TWO::Move-to(41000,26000,6000):1068,1400} decomposed?=1 isactivity?=1 isstart?=0
plan node[216]: {TWO::Move-to(41000,24000,6000):1068,1400} decomposed?=1 isactivity?=1 isstart?=1
plan node[217]: {TWO::Move-to(41000,24000,6000):1088,1420} decomposed?=1 isactivity?=1 isstart?=0
plan node[218]: {TWO::Move-to(39000,25000,6000):1088,1420} decomposed?=1 isactivity?=1 isstart?=1
plan node[219]: {TWO::Move-to(39000,25000,6000):1108,1440} decomposed?=1 isactivity?=1 isstart?=0
plan node[220]: {TWO::Move-to(41000,26000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[221]: {TWO::Move-to(41000,26000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[222]: {TWO::Move-to(41000,24000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[223]: {TWO::Move-to(41000,24000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[224]: {TWO::Move-to(39000,25000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[225]: {TWO::Move-to(39000,25000,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[226]: {ONE::Move-to(45000,22000,4000):1108,1440} decomposed?=1 isactivity?=1 isstart?=1
plan node[227]: {ONE::Move-to(45000,22000,4000):1288,1656} decomposed?=1 isactivity?=1 isstart?=0
plan node[228]: {ONE::Move-to(49500,20500,3000):1288,1656} decomposed?=1 isactivity?=1 isstart?=1
plan node[229]: {ONE::Move-to(49500,20500,3000):1492,1872} decomposed?=1 isactivity?=1 isstart?=0
plan node[230]: {ONE::Bomb-at(50000,20000):1492,1872} decomposed?=1 isactivity?=1 isstart?=1
plan node[231]: {ONE::Bomb-at(50000,20000):1492,1892} decomposed?=1 isactivity?=1 isstart?=0
plan node[232]: {ONE::Move-to(50000,25000,4000):1492,1872} decomposed?=1 isactivity?=1 isstart?=1
plan node[233]: {ONE::Move-to(50000,25000,4000):1708,2088} decomposed?=1 isactivity?=1 isstart?=0
plan node[234]: {TWO::Listen():1108,1440} decomposed?=1 isactivity?=1 isstart?=1
plan node[235]: {TWO::Listen():1708,2088} decomposed?=1 isactivity?=1 isstart?=0
plan node[236]: {TWO::Listen():1708,2088} decomposed?=1 isactivity?=1 isstart?=1
plan node[237]: {TWO::Listen():1048,1380} decomposed?=1 isactivity?=1 isstart?=0
plan node[238]: {TWO::Listen():1970,2448} decomposed?=1 isactivity?=1 isstart?=1
plan node[239]: {TWO::Listen():262,360} decomposed?=1 isactivity?=1 isstart?=0
plan node[240]: {TWO::Listen():2232,2808} decomposed?=1 isactivity?=1 isstart?=1
plan node[241]: {TWO::Listen():524,720} decomposed?=1 isactivity?=1 isstart?=0
plan node[242]: {TWO::Listen():2494,3168} decomposed?=1 isactivity?=1 isstart?=1
plan node[243]: {TWO::Listen():262,360} decomposed?=0 isactivity?=1 isstart?=0
plan node[244]: {ONE::decision-1():2756,3468} decomposed?=0 isactivity?=0 isstart?=0
plan node[245]: {ONE::intermediate-1():2756,3468} decomposed?=0 isactivity?=0 isstart?=0
plan node[246]: {ONE::intermediate-2():-INF,+INF} decomposed?=0 isactivity?=0 isstart?=0
plan node[247]: {ONE::Decision-1():2756,3468} decomposed?=0 isactivity?=0 isstart?=0
plan node[248]: {ONE::Move-to(11000,21500,5000):2756,3468} decomposed?=1 isactivity?=1 isstart?=1
plan node[249]: {ONE::Move-to(11000,21500,5000):2776,3488} decomposed?=1 isactivity?=1 isstart?=0
plan node[250]: {ONE::Move-to(11000,24000,5000):2776,3488} decomposed?=1 isactivity?=1 isstart?=1
plan node[251]: {ONE::Move-to(11000,24000,5000):2796,3508} decomposed?=1 isactivity?=1 isstart?=0
plan node[252]: {ONE::Move-to(9000,22500,5000):2796,3508} decomposed?=1 isactivity?=1 isstart?=1
plan node[253]: {ONE::Move-to(9000,22500,5000):2816,3528} decomposed?=1 isactivity?=1 isstart?=0
plan node[254]: {ONE::Move-to(11000,21500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[255]: {ONE::Move-to(11000,21500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[256]: {ONE::Move-to(11000,24000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[257]: {ONE::Move-to(11000,24000,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[258]: {ONE::Move-to(9000,22500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[259]: {ONE::Move-to(9000,22500,5000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[260]: {TWO::Decision-1():2756,3468} decomposed?=0 isactivity?=0 isstart?=0
plan node[261]: {TWO::Move-to(11000,21500,6000):2756,3468} decomposed?=1 isactivity?=1 isstart?=1
plan node[262]: {TWO::Move-to(11000,21500,6000):2776,3488} decomposed?=1 isactivity?=1 isstart?=0
plan node[263]: {TWO::Move-to(11000,23500,6000):2776,3488} decomposed?=1 isactivity?=1 isstart?=1
plan node[264]: {TWO::Move-to(11000,23500,6000):2796,3508} decomposed?=1 isactivity?=1 isstart?=0
plan node[265]: {TWO::Move-to(9000,22500,6000):2796,3508} decomposed?=1 isactivity?=1 isstart?=1
plan node[266]: {TWO::Move-to(9000,22500,6000):2816,3528} decomposed?=1 isactivity?=1 isstart?=0
plan node[267]: {TWO::Move-to(11000,21500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[268]: {TWO::Move-to(11000,21500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[269]: {TWO::Move-to(11000,23500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[270]: {TWO::Move-to(11000,23500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[271]: {TWO::Move-to(9000,22500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=1
plan node[272]: {TWO::Move-to(9000,22500,6000):-INF,+INF} decomposed?=0 isactivity?=1 isstart?=0
plan node[273]: {ONE::Have-Bomb?():1492,1872} decomposed?=0 isactivity?=0 isstart?=0

