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Abstract 

 
 In order for a team of autonomous agents to successfully complete its 
mission, the agents must be able to quickly re-plan on the fly as unforeseen 
events arise in the environment.  This requires temporally flexible plans that allow 
the agent to adapt to execution uncertainties by not overcommitting on time 
constraints, and a continuous planner that replans at any point when the current 
plan fails.  To achieve both of these requirements, planners must have the ability 
to reason quickly about timing constraints. 
 This thesis provides a fast incremental algorithm, ITC, for determining the 
temporal consistency of temporally flexible plans.  Additionally, the temporal 
reasoning capability of ITC is able to return the conflict or the nature of the 
inconsistency to the planner, such that the planner can resolve inconsistencies 
quickly and intelligently.  The ITC algorithm combines the speed of shortest-path 
algorithms known to network optimization with the spirit of incremental algorithms 
such as Incremental A* and those used within truth maintenance systems (TMS).  
The algorithm has been implemented and integrated into a temporal planner, 
called Kirk.  It has demonstrated an order of magnitude speed increase on 
cooperative air vehicle scenarios.  
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Chapter 1 

Introduction 
 

1.1 Motivation 

 Autonomous robots and vehicles are quickly becoming an integral part of 

modern society.  These autonomous agents have long been building and 

assembling our automobiles and some are even beginning to perform more 

everyday tasks, such as mowing our lawns and vacuuming our floors.  In the 

future, these agents will perform even more complex tasks, such as exploring 

and analyzing the Martian landscape and flying unmanned aerial vehicle (UAV) 

missions for search and rescue.  Due to the dynamic and unpredictable nature of 

these planning environments, complex autonomous missions will require 

planners that are capable of continuous planning [5].  Continuous planners, such 

as ASPEN [10], developed by JPL, are capable of quickly generating time critical 

maneuvers given that a change in environment breaks the current mission plan.  

For example, excessive temperatures can cause hardware to begin to fail.  A 

new plan needs to be devised quickly to prevent further damage to that hardware 

component.  A downside to these continuous planners is that they do not allow 

for temporal flexibility, as they assign hard execution times to activities.  For 

example, these planners schedule a fixed time in the plan for charging batteries.  

However, if the charging process actually takes a little longer because of a 

decreased charging rate, then this plan would break because activities scheduled 

to be performed later in the plan would not be able to start on time.  Temporally 

flexible planners, such as HSTS [16], allow these smaller perturbations to not 

break the entire plan.  These planners impose temporal constraints that 

guarantee a plans success, but delay assigning fixed times to activities until 

execution.  The temporal constraints only constrain activities to a minimum and 

maximum duration.  Least commitment gives a temporally flexible planner the 

ability to adapt to unknown environments and execution uncertainties during plan 
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execution and scheduling because some slack is allowed for when activities must 

occur. 

1.2 Preliminary Problem Statement 

 For an autonomous agent to be robust to minor uncertainties such as time 

delays and also operate in dynamic environments where plans can fail, a 

continuous temporally flexible planner must be enabled. 

1.3 Mission to the Goal 

To motivate the need and use for temporally flexible continuous planning, 

we introduce a soccer scenario involving autonomous robotic players.  In 

addition, we will return to this example later in the thesis, to illustrate the 

representations and algorithms necessary for determining temporal consistency.   

Teams of autonomous robots have already demonstrated their versatility 

by playing games of soccer against other teams of autonomous robots.  These 

robotic soccer teams are able to plan optimal strategies based on models of the 

opponents [8].  Consider a scenario in which two Blue autonomous robotic 

soccer players are on a 2-on-1 breakaway, ready to attack the Red goal (Figure 

1). 

Blue1

Blue2

Red1 RedG

ball

 

Figure 1 – Breakaway 2-on-1 
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 In this scenario, there are two Blue robots, Blue1 and Blue2, and two Red 

robots, Red1 and RedG.  RedG is the goalie for the Red team.  Figure 1 shows 

the desired paths of the autonomous players with solid black lines and the paths 

of the ball in dashed lines.   

Blue1 attempts to drive the ball towards the goal, but Red1 challenges 

Blue1 and forces Blue1 to dribble the ball towards the sideline away from the 

goal.  Blue1 anticipates this action by Red1 and tries to race towards the corner, 

beating Red1, and then centering the ball to Blue2.  Blue2 receives the centering 

pass and shoots the ball into the goal for the score.   

This is a common soccer strategy, however to be successful it is essential 

that the robotic soccer players coordinate properly so that Blue2 can take the 

shot.  In addition, suppose that Red1 decides not to decisively challenge Blue1 

and instead defend a little closer towards Blue2 in order to try and prevent the 

quick centering pass.  The Blue team must change its plan of attack in order to 

compensate for this change in Red’s strategy.  The planner must be quick and 

agile enough to continuously plan and recover from this change.    

1.4 Enabling Continuous Temporally Flexible Planning 

1.4.1 Temporal Consistency Requirement 
A key task that must be performed by a temporally flexible continuous 

planner is to evaluate a candidate plan to determine whether or not an 

autonomous agent has sufficient time to complete all of the assigned activities, 

given the timing constraints.  This is referred to as the temporal consistency of a 

plan.  For example, an autonomous rover begins work at 9am and needs to 

sample and analyze a deep layer of the Martian soil before sunset at 7pm.  The 

activities of drilling and analyzing together are constrained to last no more than 

11 hours, giving the rover a flexible window to perform the activities.  However, if 

it takes at least 12 hours to drill for samples, the rover will inevitably fail its 

mission, since the constraint on drilling time conflicts with the constraint of 

finishing before sunset.  The requested plan is temporally inconsistent. 
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1.4.2 Achieving Continuous Temporally Flexible Planning 
All planners, put simply, generate a plan and then test this plan for validity 

before it is executed.  This allows for two ways to support continuous planning 

with temporal flexibility.  Increase the speed of the testing phase by speeding up 

the temporal consistency checking algorithm and increase the speed of the 

candidate plan selection process by identifying the subset of temporal constraints 

that lead to temporal inconsistency. Knowledge of these inconsistent temporal 

constraints can then be used by the plan generator to intelligently select the next 

candidate plan.  

1.5 Problem Statement 
 To enable a planner to be continuous and temporally flexible, this thesis 

will create a fast temporal consistency algorithm with conflict extraction. 

1.6 Approach 
 Our approach to enabling a continuous temporally flexible planner is 

developed in the context of the Kirk temporally flexible planner.  In this section 

we present Kirk and analyze what is needed to make Kirk fast. 

 The planning process for a temporally flexible planner contains four basic 

phases, as shown in Figure 2.  First, high level goals are specified.  Second, 

candidate plans are chosen.  Third, the candidate plan is verified and checked for 

consistency.  Steps 2 and 3 are repeated until a consistent plan is found.  Finally, 

the consistent plan is passed down to the plan executive for execution. 

Temporal planners repeatedly ask whether candidate plans are temporally 

consistent as they search to find a feasible plan.  As shown in Figure 2, plan 

inconsistencies and execution failures, common to dynamic environments, 

require numerous iterations through the plan selection and plan verification 

phases.  Therefore, optimizing the algorithm that performs temporal consistency 

checking in the plan verification phase and focusing the ability of the plan 

selection phase to choose consistent plans would significantly improve the 

performance of the planning process. 
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Plan Specification
(High-level Goals) 

Plan Selection
(Choose Execution Thread)

Plan Verification
(Perform Consistency Check)

Plan Execution
(Execute On-board Hardware)

Execution 
Failure

Inconsistency

TPN

STN

STN

 

Figure 2 – Planning Process 

1.6.1 Fast Temporal Consistency with Incremental Methods 
 The speed of the temporal consistency checking algorithm can be 

significantly increased by using incremental methods to remember previous work 

that need not be recomputed.  Since all plans chosen in the plan selection phase 

in Figure 2 are derived from the same set of high-level goals in the plan 

specification phase, the candidate plan involved in successive queries to plan 

verification differs only incrementally.  Hence, It is not necessary to start the 

temporal consistency check from scratch, but to only check constraints that differ 

from the previous candidate.  To achieve this, we monitor the difference from 

candidate plan to candidate plan and check the temporal consistency by 

computing only from the differences.  Figure 3 below shows the modified 

planning process with incremental temporal consistency checking. 
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Plan Specification
(High-level Goals)

Execution 
Failure

Inconsistency
with 

Conflict

Goals and Domain Specifications

Candidate Plan

Consistent Plan

Update
Rules

Plan Selection
(Choose Execution Thread)

Plan Verification
(Perform Consistency Check)

Plan Execution
(Execute On board Hardware)

Incremental
Data Values

 

Figure 3 – Planning Process with Incremental Temporal Consistency 

 The additional module in Figure 3 is added to store the data values 

calculated to determine temporal consistency by the plan verification phase.  

When a new plan is selected in the plan selection stage, the algorithm monitors 

the parts of the plan network that has changed from the previous candidate plan 

and then modifies the incremental data values with update rules.  The update 

rules guide the incremental temporal consistency algorithm to perform less work. 

1.6.2 Continuous Temporally Flexible Planning through Conflict Extraction 
 A temporally flexible planner can increase the speed in which candidate 

plans are found through the use of conflict extraction.   A conflict is a set of 

temporal constraints that force a candidate plan to be temporally inconsistent.  

The conflict can be used to guide the plan selection of successive plans.  These 

plans resolve, or do not contain these conflicts, and consequently are more likely 

to be verified as consistent by the temporal consistency algorithm.  Focused 

search over the plan space reduces the number of iterations through the 

generate and test loop of the planning process and thus helps enable continuous 

temporally flexible planning. 



 

15 

1.6.3 Solution 
In this thesis, we introduce and explain a fast incremental algorithm for 

checking temporal consistency in order to support temporally flexible continuous 

planning, called ITC (Incremental Temporal Consistency).  It uses modifications 

of a fast shortest-path algorithm from network optimization, FIFO label-correcting 

algorithm, and incremental update rules in the spirit of incremental search 

algorithms such as Incremental A* [8] and TMS [4] to accelerate the temporal 

reasoning process.  Additionally, if a candidate plan is inconsistent, ITC uses a 

built in conflict extraction mechanism to return temporal constraints responsible 

for the inconsistency.  This guides the plan generation phase to resolve or return 

candidate plans without these conflicts, ultimately increasing overall planning 

speed. 

1.7 Thesis Outline 

 The following chapters first give a background of a temporal planner, Kirk, 

capable of planning with temporal flexibility and then explain how temporal 

consistency is determined within this planner.  Next, an overview of the general 

approach of how to determine temporal consistency is given.  In Chapter 4, the 

ITC algorithm is introduced and demonstrated.  Chapter 5 shows the 

experimental results of the speed improvements of temporal planning using this 

incremental method.  It also summarizes the thesis and suggests ideas for future 

work. 
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Chapter 2 

Temporal Consistency in Flexible Temporal 
Planning 
 

This thesis introduces an incremental temporal consistency algorithm for 

temporally flexible planners.  In order to understand how temporal consistency 

fits into temporally flexible planners, we provide an overview of Kirk [7] and the 

basic structures and algorithms it uses for temporally flexible planning.  

Kirk takes as input a high-level goal specification program written in 

RMPL, converts this program to a Temporal Plan Network (TPN) which 

represents possible threads of execution, selects threads of execution from the 

TPN, resolves symbolic constraints, and finally takes this resulting Simple 

Temporal Network (STN) and executes it on low-level hardware.  The 

subsequent sections explain the Kirk planning structures and how they fold into 

Kirk planning. 

2.1 RMPL – Reactive Model-based Programming Language 

 As input, Kirk takes an RMPL program specifying high-level goals.  RMPL 

includes constructs that allow mission designers to express maintenance 

conditions, concurrency, synchronization, metric constraints, and contingencies 

when creating plans for autonomous robotic teams.  An RMPL program written to 

control the two Blue robotic soccer players from the example soccer scenario in 

Section 1.3 would look as shown in Figure 4. 

Score-Goal()
(parallel

(sequence 
(Blue1.goto(corner)[1,8])
(choose

(Blue1.centeringpass-low()[2,2])
(Blue1.centeringpass-high()[9,9])))

(sequence
(Blue2.goto(goal)[1,5])
(Blue2.wait()[0,5])))

(Blue2.shoot()[1,1])

 
Figure 4 – RMPL Program for Soccer Scenario 
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This example RMPL program shows two concurrent sequences of 

activities for the mission Score-Goal(),  one for Blue1 and one for Blue2.  Each 

sequence has a series of activities that needs to be successfully completed in 

order for the Blue team to score the goal.  Every activity has time bounds 

associated with it, specified in brackets, [l,u].  A time bound constrains a 

particular activity to last at least l time units and at most u time units.  The parallel 

RMPL construct constrains the two sequences of activities for Blue1 and Blue2 to 

start and finish at the same time.  This eventual synchronization of Blue1 and 

Blue2’s activity threads means that Blue2 must finish waiting for the ball as soon 

as the centering pass reaches the front of the goal.  The choose RMPL construct 

allows the planner to make a non-deterministic choice between two alternative 

sets of activities.  In this example, Blue1 has the option of kicking either a low 

centering pass or a high centering pass to Blue2.  Additional details about RMPL 

and the supported constructs can be found in [5]. 

2.2 Temporal Networks 
Kirk converts the RMPL program into a graph, called a Temporal Plan 

Network (TPN) that represents the possible threads of execution and timing 

constraints between activities.  It uses the TPN in order to select threads of 

execution (what Kirk considers planning), to check the execution feasibility, and 

finally to schedule activities to be executed on the fly.  Timing constraints are 

represented as a Simple Temporal Network (STN), defined in Section 2.2.1.  

These pre-compiled graph structures allow for a compact and easily 

understandable representation of the plan, support temporal flexibility, and allow 

for fast and easy search through the space of possible plans.  The objective of 

this thesis is to support efficient temporal reasoning and to enable continuous, 

but temporally flexible planning.  To accomplish this, we will focus on fast 

algorithms for reasoning on STNs. 

2.2.1 Simple Temporal Network (STN) 
An STN has three basic components, nodes, arcs, and binary time 

constraints.  Each node represents a point in time, such as beginning to turn the 

car key when starting a car.  An arc represents the existence of a time constraint 



 

19 

between two nodes, where the head of the arc represents a timepoint and is later 

in time than the node at the tail of the arc.  Binary time constraints are enclosed 

within brackets, [l,u], similar to the RMPL example, and are shown above the arc.  

These represent the absolute lower and upper bounds of the duration between 

two timepoints.  For an activity engine-start()[1,5], the STN structure would look 

as shown in Figure 5. 

Begin-
engine-start

[1,5] End-
engine-start

 
Figure 5 – Example STN 

 Based on the time constraint on the activity, the duration between the two 

timepoints Begin-engine-start and End-engine-start must be less than or equal to 

5 time units and greater than or equal to 1 time unit. 

2.2.2 Temporal Plan Network (TPN) 
 A TPN extends an STN by adding decision nodes as well as symbolic 

constraints.    

Decision nodes allow TPNs to represent the multiple feasible threads of 

execution specified in an RMPL program.  The planner must select the best path 

as it is trying to determine a consistent plan of execution.  For example, if a Mars 

exploration rover has an option to explore a mountainous region or a flatland 

region, based on the constraints on the agent, the planner must choose a path 

that will be executable.  The TPN will represent this as a decision node branching 

to a sequence of mountainous activities and a sequence of flatland activities.   

A symbolic constraint is used within a mission plan to express conditions 

that must be true in order for an activity to be executed.  For example, in order for 

a UAV to attack a target, the condition must be true that the munitions are armed.  

Thus, the planner for the UAV must determine that it needs to arm the missiles 

before the missiles can be launched.  This is specified within an RMPL program 

and in a corresponding TPN by an Ask(condition) and a complementary 

Tell(condition).  These Ask and Tell conditions are attached to the arcs of a TPN, 
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which constrains each Ask and Tell to have the duration specified by the arc.  An 

example TPN is shown in Figure 6. 

[1,5]
Tell(Switch-

ON)

[0,∞]

Ask(Battery-
Charged)

A

C

D

B

[1,1]

[4,4]

 
Figure 6 – Example TPN 

 In this TPN example, node A is a decision node, specified by the double 

lines forming the oval.  The planner has the option of either choosing to take path 

ACD or path ABD, but not both.  Arcs CD and AB have symbolic constraints 

associated with them.  The symbolic constraint on arc AB specifies that during 

the time between timepoint A and timepoint B, we must have the condition 

Battery-Charged for some amount of time.  The symbolic constraint on arc CD 

specifies that during the time between timepoint C and timepoint D we will assert 

the condition Switch-ON for at least 1 time unit, but for no more than 5 time units. 

2.2.3 Example TPN for Soccer Example 
 The TPN for the soccer scenario described in Section 1.3 of the 

Introduction is shown in Figure 7.  The TPN for this scenario does not contain 

any symbolic constraints; however, it does contain a decision node specifying 

that Blue1 needs to choose the type of centering pass it will kick. 
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[0,0]

[0,0] [0,0]

Start

[l,8]

[l,5]
[0,0]

[0,5]

Begin-Blue1
goto-corner

End-Blue1
goto-corner

End-Blue2
goto-goal End-Blue2

wait

Begin-Blue2
shoot End-Blue2

shoot[1,1]

Begin-Blue2
goto-goal Begin-Blue2

wait

End-Blue1
centeringpass-

low

[0,0][2,2]Begin-Blue1
centeringpass-

low

End-Blue1
centeringpass-

high

[0,0]

[0,0]
[9,9]

Begin-Blue1
centeringpass-

high

Choose

[0,0]

End-
Choose

[0,0]

[0,0]

 
Figure 7 – TPN of Soccer Scenario 

 In this TPN, the Start node is not a decision node; hence the two parallel 

sequences emanating from it must be selected for execution and started 

simultaneously.  However, the node labeled Choose is a decision node, 

designated by the double lines.  For this scenario, the planner must choose one 

of the two threads emanating from the Choose node, corresponding to the two 

types of centering passes that Blue1 can kick.  The graph also contains many 

[0,0] timing constraints.  These [0,0] constraints mean that the next timepoint 

following the constraint happens instantaneously after its predecessor.  For 

example, as soon as Blue1 is near the corner, it will immediately kick the ball to 

be centered in front of the goal.  The goal state is the last node in the graph, 

since it has no outarcs, signifying the end of the plan.  In this example, the goal 

state is the node containing the event End-Blue2-shoot. 

2.2.4 Example Candidate STN for Soccer Scenario 
 

 Figure 8 shows an example of the data structure that Kirk generates as 

candidate plans.  From the TPN in Figure 7, since there are no symbolic 

constraints, we just need to ensure that decisions have been made.  For this 

soccer scenario, we will have Kirk make the decision for Blue1 to kick a low 
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centering pass.  In Figure 8, the resulting candidate plan is shown with selected 

nodes outlined in bold. 

 

[l,8]

[l,5]

[0,0]

[0,0]

[0,0]

Start

[0,0]

[0,5]

Begin-Blue1
goto-corner

End-Blue1
goto-corner

End-Blue2
goto-goal End-Blue2

wait

Begin-Blue2
shoot [1,1]

Begin-Blue2
goto-goal

Begin-Blue2
wait

End-Blue1
centeringpass-

low

[0,0][2,2]Begin-Blue1
centeringpass-

low

End-Blue1
centeringpass-

high

[0,0]

[0,0]
[9,9]

Begin-Blue1
centeringpass-

high

Choose

[0,0]

End-
Choose

[0,0]

[0,0]

End-Blue2
shoot

 
Figure 8 – Soccer Scenario Candidate STN 

 

2.3 Kirk – A Temporally Flexible Planner 
Now that we have described the basic representations manipulated by 

Kirk, this section explains how Kirk uses these representations for planning, with 

particular focus on how temporal reasoning interacts with plan generation.  The 

basic Kirk Planning architecture is shown in Figure 9. 
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query

boolean
Temporal 
Consistency
Checker

Phase 1

Phase 2

Phase 3

Incremental Plan 
Selection

Symbolic Consistency Checker
With Resolution

Macro Decomposition 
With Expansion and Insertion

STN

TPN (converted from RMPL control 
program)

Selected Plan
query

boolean

Backtracking

Consistent Plan

Decomposed
TPN

 
Figure 9 – Kirk Planning Architecture 

In Phase 1 of Kirk planning, a TPN, generated from a high-level RMPL 

program specifying mission objectives, is searched in order to find a temporally 

consistent plan.  In Phase 2, Kirk resolves symbolic constraints and ensures this 

resolution is temporally consistent.  In the final phase, Kirk decomposes high-

level macro activities into lower-level primitive activities.   

The backtracking arrow leading from Phase 2 to Phase 1, allows Kirk to 

make new decisions for a new candidate plan if the current plan is found to be 

inconsistent, either temporally or symbolically.  The arrow leading from Phase 3 

to Phase 1 allows Kirk to select and examine the new nodes that have been 

introduced into the network from the decomposition step.  The final plan output of 

Kirk has all decision nodes and symbolic constraints resolved and is executed in 

the plan runner as described in [13]. 

Recall that this thesis focuses on developing an incremental temporal 

reasoning capability for temporally flexible planning, thus we are concerned 

primarily with Phase 1 of Kirk planning.  This phase is where Kirk creates 

candidate plans, constantly requesting a temporal consistency check, and thus 

this phase can benefit the most from a fast incremental temporal consistency 

algorithm.  This is explained in the Section 2.4 and 2.5.  Additional, details 
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regarding the algorithms found in the other phases of Kirk TPN planning not 

discussed in this thesis can be found in [5]. 

2.4 Temporal Consistency and Candidate Plan Generation 
  
 In order to understand, how an incremental temporal consistency 

algorithm can be incorporated into Kirk TPN planning, we must first understand 

how temporal consistency is integrated into Kirk plan generation.  This section 

describes exactly how Kirk selects a candidate plan and ensures its temporal 

consistency. 

 Phase 1 of Kirk TPN planning chooses a candidate plan by searching 

through the TPN graph.  Beginning with the start node of the graph, the algorithm 

checks whether the node is a decision or non-decision node.  If it is a non-

decision node, the algorithm simply extends the plan to the head node of all 

outgoing arcs and adds these nodes to the set of nodes to be examined later.  If 

the node is a decision node, then the algorithm decides on one particular 

outgoing arc and extends the mission plan to the head of this arc.  The algorithm 

terminates when there are no more nodes left to expand, meaning that all 

branching paths have reached the final goal node.  The candidate plan is then 

passed on to the next phase.  

As the candidate plan is built up node by node and arc by arc, it must be 

checked for temporal consistency.  Temporal consistency means that there 

exists an assignment of times to each timepoint in the temporal network such 

that all of the temporal constraints are satisfied.  For example, in the STN shown 

in Figure 10, we would like our Mars exploration rover to take a picture of the 

sunset as seen from Mars.   
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Figure 10 – STN for photographing Martian sunset 

 
We know that the sunset on Mars lasts for exactly 20 minutes, however it 

takes the rover at least 25 minutes to drive to a location where it can prepare the 

camera and take the picture.  Thus we know that if we try to execute the STN 

shown in Figure 10, where the rover begins preparations for the photo at the 

same time the sunset begins, the plan is guaranteed to fail.  This is called  

temporal inconsistency since it is impossible for the rover to take the photograph 

of the sunset, given the requirement that it must start preparation as soon as the 

rover sees the Martian sunset beginning. 

Within Phase 1 of Kirk, candidate plans are checked for temporal 

consistency every time two paths in the search converge, indicating that there is 

a synchronization in the plan.  This ensures that there will exist a possible 

assignment of times to timepoints such that an autonomous agent will be able to 

complete its mission task.  If Kirk finds a partial candidate plan to be temporally 

inconsistent, it will backtrack, select a different branch at a decision node and 

test this new partial candidate for consistency.  It is useless to continue to build 

up a partial candidate plan that is inconsistent, because the candidate will remain 

inconsistent, no matter how many nodes or arcs are added. 

 

2.5 Incremental Temporal Consistency on Candidate STNs 
 

As described in the previous section, candidate plans are tested for 

temporal consistency as a plan is built up, every time two paths converge.  

Because these candidates are incrementally constructed, successive candidate 

plans are very similar to the preceding candidate, often differing only by a few 
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nodes and arcs.  The new or changed nodes and arcs typically comprise of a 

small percentage of the overall candidate plan.  This suggests that when 

checking for temporal consistency, it is unnecessary to check the entire 

candidate starting from scratch.  The consistency of successive plans can be 

determined by storing the data values used to calculate the consistency of the 

previous graph, by analyzing how the new candidate differs from the previous 

candidate and by updating only those affected data values.  This mechanism is in 

the spirit of a range of incremental algorithms such as Incremental A* [8], where 

the best start distance at each node is carried over from search to search, and 

truth maintenance systems where logical consequences are carried over, as 

clauses are added and removed from the propositional theory [4]. 

An incremental temporal consistency algorithm that returns the minimum 

set of constraints that result in the temporal inconsistency can also speed up 

candidate plan generation.  The plan generator can be much more focused in 

finding a temporally consistent plan by making use of conflicts, the minimum 

subset of constraints that lead to inconsistency.  If every time the incremental 

algorithm discovers an inconsistency, then the planner is capable of focusing its 

plan generation by not choosing plans containing the conflict.  This strategy can 

further improve the performance of the incremental algorithm used to speed up 

Phase 1 of Kirk planning. 
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Chapter 3 

Temporal Consistency Checking Algorithms 
 
 
 For enabling continuous temporal planning, the planner needs a fast 

algorithm to test for temporal consistency.  This chapter begins by describing 

exactly how temporal consistency is determined.  It then introduces two groups of 

algorithms that can be used to check for consistency; specifically, all-pairs 

shortest-path algorithms (APSP) and single-source shortest-path algorithms 

(SSSP).  The chapter gives a more in-depth treatment of the SSSP label-

correcting algorithm since the incremental temporal consistency algorithm, 

developed in Chapter 4, is based on this SSSP algorithm.  The subsequent 

chapter discusses how this algorithm is generalized to perform incremental 

temporal consistency checking. 

3.1 Determining Temporal Consistency of an STNs 
 

The temporal constraints of a candidate plan are expressed as an STN.  

An STN is checked for temporal consistency by first converting the STN to an 

equivalent representation, called a distance graph.  The STN is temporally 

consistent if and only if its corresponding distance graph does not contain a 

negative cycle [3].  

3.1.1 An STN and its Distance Graph 
 An STN and its distance graph have the same nodes. The STN is 

converted to a distance graph by mapping each arc of the STN to two arcs in the 

distance graph, one in the forward direction and one in the reverse direction.  

The forward arc is labeled with the value of the upper time bound and the reverse 

arc is labeled with the negative of the lower time bound value.  Figure 11 shows 

this conversion. 
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Figure 11 – STN to Distance Graph Conversion 

 The nodes in a distance graph represent timepoints just like in an STN.  

The arcs in the distance graph, however, correspond to an upper bound on the 

distance between the two timepoints.  For every arc, the difference in time 

between the timepoint at the head of the arc and the timepoint at the tail of the 

arc must differ by a value less than or equal to the distance on that arc.  The 

equation below shows specifies how each timepoint constraint for an STN is 

converted to a constraint for the distance graph for an arbitrary arcij. 

 

[ ]
Graph    DistanceSTN

, lTTuTTulTT jiijij −≤−∩≤−⇒∈−

 
 

As an example, in Figure 11, timepoint B is executed at most u time units 

after timepoint A.  Similarly, since timepoint A occurs before timepoint B, 

timepoint A must be executed at most -l time units after timepoint B, or 

equivalently, timepoint A must be executed at least l time units before timepoint 

B. 

Figure 12 shows the distance graph of the soccer scenario candidate 

STN, given in Section 2.6. 
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Figure 12 – Distance Graph of Soccer Scenario 

 

3.1.2 Detecting Temporal Inconsistency through Negative Cycle Detection 
As mentioned above, in order for an STN to be temporally consistent, the 

equivalent distance graph of the STN must not contain a negative cycle.  This is 

proved rigorously in [3].  Intuitively, since the edge weights in the distance graph 

represent the amount of time that an event must happen before another event 

(i.e. event B must happen at least l time units after event A and event A must 

happen at least u time units before B), then a negative cycle in the distance 

graph would correspond to having a temporal constraint saying that a timepoint 

must happen at most some positive time units before the same timepoint (i.e. 

event A must happen at least 5 time units before event A).  Having a constraint 

such as this makes little sense and is the basis for the intuitive argument. 

3.2 Negative Cycle Detection Algorithms 
 Several algorithms exist for detecting negative cycles in graphs that 

contain negative edges.  Many of these methods are applied to network 

optimization problems in which it is possible that, as an arc is traversed, some of 

the cost that has already been accumulated can be regained or decreased.  In 

this section, we review two classes of negative cycle detection algorithms, All-
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Pairs Shortest-Path (APSP) and Single-source Shortest-Path (SSSP).  A more 

thorough treatment is given to the SSSP label-correcting algorithm, since it is the 

basis for the incremental temporal consistency checking algorithm contributed by 

this thesis. 

3.2.1 All-pairs Shortest-path Algorithms  
 An all-pairs shortest-path algorithm returns the shortest-path from u to v 

for every pair of nodes u and v in a graph.  This information can be represented 

in the form of an N by N matrix, where N is the number of nodes in the graph and 

each element aij in the matrix represents the shortest path from node i to node j.  

Figure 13 shows on the right the matrix that is returned when an APSP algorithm 

is run on the distance graph shown on the left. 

A B

-2
Distance Graph

C

5

0

10

A B C

A 3 5 15

B -2 3 10

C -2 0 13

APSP Matrix
 

Figure 13 – APSP Example 

  
 For an APSP algorithm, a negative cycle is detected if a diagonal element 

of the APSP matrix, aii, is less than zero.  In the example shown in Figure 13, we 

see that there are not any negative values in the diagonal elements of the matrix, 

and consequently, this graph is temporally consistent.  Thus, to determine 

temporal consistency, any APSP algorithm can be run, such as Floyd-Warshall’s 

algorithm, and the resulting APSP matrix can be scanned for negative diagonal 

elements.  A detailed presentation of Floyd-Warshall’s algorithm and other APSP 

algorithms can be found in [2]. 

3.2.2 Single-source Shortest-Path Algorithms 
 In order to find a negative cycle in the distance graph, it is unnecessary to 

compute the shortest-path for every pair of nodes, as compiled by APSP 

algorithms.  If a negative cycle exists, it can be detected by just computing the 
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shortest-paths from one single node to all the other nodes, SSSP.  The reason 

only a SSSP needs to be performed is because if a node is involved in a 

negative cycle, then the shortest-path to that node from any source node 

connected to it is −∞.  This is because a shortest-path can continually loop along 

the negative cycle, reducing path distance indefinitely.   

Using only a SSSP algorithm offers significant saving over an APSP 

algorithm algorithm.  As an example, the runtime for Floyd-Warshall’s APSP 

algorithm is θ(n3), where n is the number of nodes in the graph.  The SSSP 

algorithm given in Section 3.2.3, the FIFO label-correcting algorithm, has a worst-

case runtime of O(nm), where n is the number of nodes and m is the number of 

arcs in the graph.  Before fully introducing the FIFO label-correcting algorithm, 

this section first discusses the generic label-correcting algorithm and then gives 

insight into a modified label-correcting algorithm. 

Generic Label-Correcting Algorithm  
 The basic pseudo-code for the generic label-correcting algorithm is shown 
below.   
 

Generic Label-Correcting 
Algorithm(Graph G)

{01} for all s ∈ V(G) 
{02}    d(s) = ∞
{03} d(sstart) = 0
{04} while some arc(i,j) is 

violating,
{05}    d(j) = d(i) + c(i,j)

Definitions: 

d(i): the best known start distance or the temporary 
distance from the start node to node i before termination 
of the algorithm.

d*(i): the true shortest path distance from the start 
node to node i.

V(G): the nodes of graph G.

Violating arc: any arc(i,j) where d(j) > d(i) + c(i,j). 
 

Figure 14 – Pseudo Code fore Generic Label-Correcting Algorithm 

The generic label-correcting algorithm computes an upper bound on the 

shortest-path distances and then iteratively tightens these bounds [1], based on 

the violating arcs in the graph.  A violating arc is an arc(i,j) that has d(j) > d(i) + 

c(i,j) and identifies to the algorithm where these shortest-path distance may be 

updated.  If there are not any violating arcs, then the algorithm is finished and d(i) 

= d*(i), meaning that we have found the shortest-path from the start node to all 

other nodes. 
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Looking at the code, the generic label-correcting algorithm starts off by 

first initializing all start distances to the largest upper bound possible, ∞, since at 

the start, it is unknown what the path length to each node is (lines {01-02}).  The 

start distance for the start node is then initialized to 0, since the best distance 

from the start to itself must be 0 (line {03}).  In the iterative step, lines {04-05}, 

the algorithm continually updates the start distances for the nodes at the head of 

violating arcs until there are no longer any violating arcs.  When the loop exits, 

the algorithm is finished and the shortest-paths have been found. 

A B

-3

2

d(A) = 0 d(B) = 2

 

Figure 15 – Simple Example of the Generic Label-Correcting Algorithm 

 The example in Figure 15 shows the first iteration step of the generic 

label-correcting algorithm on a simple distance graph.  The start node, A, has an 

initial start distance of 0.  This start distance is then propagated along the first 

violating arc, AB, and therefore updating the start distance value at B to be 2.  

Figure 15 shows the snapshot of the algorithm at this point, after one update 

step.  The dashed line shows which arcs are violating and still need updating. 

Termination Conditions 
 The generic label-correcting algorithm terminates when no more violating 

arcs exist.  If the distance graph contains a negative cycle, the algorithm will 

never terminate.   Instead, it will continuously update the nodes on violating arcs 

forever since the absolute shortest-path for a path containing a negative cycle is 

−∞ 
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Figure 16 – Violating Arcs from Distance Graph with Negative Cycle 

 For example, in the above simple distance graph, Figure 16, currently arc 

AB is violating.  If we update d(B) to equal 1, d(A) + c(arcAB), then arc BA will 

then become violating.  The algorithm will then update d(A) to equal -2.  Now, 

again arc AB is violating.  Therefore, since there exists a negative cycle, either 

arc AB or arc BA will always be violating arc and the generic label-correcting 

algorithm will continually update the start distance values of nodes A and B. 

 There are a few basic ways to terminate the generic label-correcting 

algorithm given that the search graph contains a negative cycle.  One such 

method is to stop the algorithm as soon as a shortest-path distance, d, becomes 

smaller than a specified lower bound.  Generically, for any graph, the lower 

bound –nC can be used, where n is the number of nodes in the graph and C is 

the max( | cij | ), or in other words, the maximum absolute value of a cost on an 

arc.  The value –nC is the lower bound because the greatest cost acyclic path for 

a graph can have at most n-1 arcs.  If there exists a shortest path to a node with 

cost less than -nC, and the largest possible return path to the source node has 

cost nC, then there must exist a negative cycle.  Thus, the algorithm can 

terminate if any distance value is less than this bound. 

Termination for STNs Chosen From TPNs 
The magnitude of the bound affects how long the SSSP algorithm must 

cycle before it terminates and detects the negative cycles.  A concern about the 

bound –nC is that it can be quite conservative.  In this section we show that for 

STNs selected and built from TPNs, a tighter lower bound of 0 can be used. 

When running the label-correcting algorithm on a distance graph 

converted from an STN that was selected from a TPN, the distance values do not 

need to reach all the way down to –nC for the algorithm to terminate, the 
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algorithm can stop when any shortest-path distance value for any node reaches 

below zero.  The property of these STNS that allows for zero to be the lower 

bound is that STNs always contain timepoints (excluding the start) that must be 

assigned times that are equal to or later than the start node.  A network 

containing a timepoint that is constrained to happen before the start node is not 

allowed as input. 

A B C

-1

2

3

-3

start

 
Figure 17 – Illegal Distance Graph of STN of a Plan 

 Figure 17 shows a distance graph that is not allowed in Kirk planning.  

This network constrains node C to happen at least 1 time unit before the start 

node since the shortest path from node A to node C is -1.  Since node C 

precedes A, a correct STN would need to label C as the start node.  STNs 

selected from TPNs naturally have this start node and therefore constrains all 

other nodes to happen after the start. 

 Given that all timepoints of candidate STNs of plans must occur after the 

start node, it guarantees that all timepoints have a negative cost path back to the 

start node.  Thus, if the shortest-path distance value at a node or timepoint is 

computed to be negative during some iteration of the SSSP algorithm, then since 

there exists a negative cost path back to the start node from the argument stated 

above, then we are guaranteed to have a negative cycle.  Because of this 

property of candidate STNs created from TPN plans, the algorithm can terminate 

as soon as it discovers a distance value less than zero. 

Generic Label-Correcting Algorithm as a Consistency Procedure 
 There are a few modifications that need to be made in order to change the 

generic label-correcting algorithm to be a consistency procedure for STNs.  

Generally, the algorithm either calculates the SSSP or it fails and returns that 

there is a negative cycle.  In this thesis, we need a temporal consistency 
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procedure to return true or false indicating the temporal consistency of the input 

graph.  The procedure should return true if the graph does not have a negative 

cycle and false if the graph does contain a negative cycle.  In the remainder of 

the thesis, the consistency procedure version of the label-correcting algorithm will 

always be referred to when the label-correcting algorithm is mentioned. 

 
Generic Label-correcting Example with Soccer Candidate STN 
  
 The figure below shows the first few steps of the generic label-correcting 

algorithm run on a part of the distance graph from the soccer scenario.  In the 

initial step, all of the d-values are initialized to ∞ except for the start node which is 

initialized to a value of 0.  All violating arcs in the graph are represented by 

dotted and dashed lines.  The arbitrary arc chosen for update is shown with 

dotted lines and all other violating arcs are shown in dashed lines. 
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Figure 18 – Generic Label-Correcting Algorithm On Partial Soccer Scenario STN  

 

 At step (1), there are two violating arcs, the arc between Start and Begin-

Blue2-goto-goal and the arc between Start and Begin-Blue1-goto-corner.  The 

first violating arc is arbitrarily chosen for update and Begin-Blue1-goto-corner is 

updated and assigned d=0.  Once this violating arc is updated (step (2)), 

additional arcs may also become violating.  In this scenario, only the arc between 

Begin-Blue1-goto-corner and End-Blue1-goto-corner becomes a newly violating 

arc.  In step (3), we choose to update this newly violating arc, assigning d=8 to 

End-Blue1-goto corner.  The algorithm continues until there are either no more 

violating arcs or a termination condition has occurred. 
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3.2.3 Modified Label-Correcting Algorithm 
 A key issue for label-correcting algorithms is finding an effective 

mechanism for implementing it efficiently.  For label-correcting algorithms, the 

efficiency is dependent on the process of searching for violating arcs.  At the 

simplest level, the algorithm can simply scan all the arcs in the graph until it finds 

one that is violating.  This process is repeated for every violated arc until 

termination.  However, this is very time consuming since a large number of non-

violating arcs are scanned.  To support fast temporal consistency detection, we 

build upon the modified label-correcting algorithm, that implements violated arc 

detection very efficiently.  We will also use the same idea underlying this 

modification as the basis for our incremental algorithm. 

 The modified label-correcting algorithm simply refers to an implementation 

of the generic label-correcting algorithm where a queue of updated nodes is 

maintained, in order to check for outgoing arcs that might be potentially violating.  

Consider why only the updated nodes need to be examined.  If during a 

particular iteration of the algorithm, the d-value for a node was not updated, then 

no new information is learned about the shortest-path to that node.  Any arc 

emanating from that node that was not violating before the update is still not 

violating after the update, and need not be scanned.  Conversely, if an update 

occurs for a particular node i, then d(i) + c(i,j) may have become less than d(j), 

hence any out arc (i,j) may have become violated.  Hence to find violated arcs, it 

is sufficient to add each update node to a queue and then examine all the 

outarcs of any node on the queue. 

At initialization of the modified label-correcting algorithm, only the start 

node’s outarcs are potential violating arcs because the other node’s start 

distances are set to ∞.  Thus, only the start node is put initially into the queue.  

As nodes are taken out of the queue and updates occur, theses updated nodes 

are added to the queue, requiring additional examination of the outarcs of the 

queued node.  Once the queue is empty and consequently no violating arcs 

remain, we have the optimal shortest-path solution. 
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 The worst-case running time for a label-correcting algorithms is much 

faster than any all-pairs shortest-path algorithm, O(nm) versus O(n2logn + nm) of 

Johnson’s APSP algorithm.  However, using the modified label-correcting 

algorithm with an efficient implementation of the update queue, the average case 

runtime of the algorithm can be reduced significantly, sometimes to O(m) [1]. 

In this thesis, we build upon a variant of the modified label-correcting 

algorithm that is implemented with a FIFO (first-in first-out) queue to perform 

negative-cycle detection for temporal consistency.  The FIFO queue removes 

nodes from the queue in the same order that they were added into the queue.   

We choose the FIFO label-correcting algorithm since it is the fastest available 

polynomial time algorithm for determining shortest-path. 

Generic 
Label-Correcting Algorithm
(Graph G)

{01} for all s ∈ V(G)
{02}    d(s) = ∞
{03} d(sstart) = 0

{04} while some arc(i,j) 
is violating,
d(j) > d(i) + c(i,j)

{05}    d(j) = d(i) + c(i,j)

{06}    if d(j) < 0
{07}       return false;
{08} return true;

Update

Modified 
Label-Correcting Algorithm
With FIFO Queue
(Graph G)

{01}  for all s ∈ V(G) 
{02}     d(s) = ∞
{03a}  d(sstart) = 0
{03b} insert(Sstart)
{04a} while !Q.empty()
{04b}  u = Q.pop()

{05a}    for v ∈ Succ(u)
{05b}      dval = Update(u,v)
{06}        if(dval) < 0
{07} return false;
{08}  return true;

value Update(p,x)
{09}  if (d(x) > d(p) + c(p,x))
{10}     d(x) := d(p) + c(p,x);
{11}     Q.Insert(x, d(x));
{12}  return d(x);

Violating 
Arcs

Initialize

 
Figure 19 – Pseudo Code for Modified Label Correcting Algorithm 

This pseudo-code for the FIFO modified label-correcting algorithm has the 

same basic structure as the generic label-correcting algorithm.  There is an 

initialization where all distance values are initialized to ∞ (lines {01-02}), and the 

start node d-value is set to 0 (line {03}).  In the modified label-correcting 

algorithm, there is an additional initialization step of adding the start node into the 
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queue, since the start node is the only node that contains outarcs that are 

potentially violating at the start.  Both algorithms continue to update d-values by 

selecting violating arcs, for the generic label-correcting algorithm via arc 

examination and for the modified label-correcting algorithm via removing nodes 

from the queue, until there are no more violating arcs.  In both cases, if a d-value 

falls below the threshold for negative cycles, the algorithms returns false, 

signifying an inconsistency.  If the graph is consistent, both of the algorithms 

terminate, either after the queue is empty for the modified label-correcting case 

or and no violating arcs exist for the generic label-correcting case.   

3.3 Temporal Consistency of “Mission to the Goal” Scenario 
 Consider the application of the label-correcting algorithm to the soccer 

example.  When applied to the “Mission to the Goal” candidate STN, shown in 

Figure 8, the label-correcting algorithm determines that the graph is temporally 

consistent.  We can verify this visually by looking at the paths that lead up to the 

synchronization node in Figure 8, Begin-Blue2-shoot.  At this synchronization 

timepoint, Blue1 must have centered the ball from the corner and Blue2 must be 

at that destination point of the centered ball.  If we add up the upper and lower 

time constraints for Blue1 to perform its task by the synchronization node, we see 

that it must take Blue1 at least 3 time units and at most 10 time units to complete 

all the activities.  Similarly, it must take Blue2 at least 1 time unit and at most 10 

time units to complete its tasks.  Thus, there is a consistent overlap where, if we 

force Blue1 and Blue2 to execute within 3 and 10 time units, then the mission will 

succeed. 

 Figure 20 demonstrates the beginning three steps of the FIFO label-

correcting algorithm run on the STN for the soccer scenario candidate plan.  As 

before, only part of the candidate STN will be used to illustrate how the algorithm 

operates.  The dotted lines in this figure show which arcs will be updated or need 

to be examined for update on the next iteration. 
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Figure 20 – FIFO Label-Correcting Algorithm On Soccer Scenario STN 
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 The example shows that at initialization (Step 1, Figure 20), only the start 

node has been inserted into the queue, meaning that all outarcs from the start 

node need to be examined for violation.  Once the algorithm is finished checking 

the outarcs and updates the heads of the violated arcs, it removes the start node 

from the queue and adds the updated nodes into the queue.  In this case, since 

both Begin-Blue1 goto-corner and Begin-Blue2 goto-goal were updated in Step 

1, both nodes are added into the queue.  Step 2 expands the node Begin-Blue1 

goto-corner.  For this expansion, only End-Blue1 goto-corner needs to be 

updated and is therefore added to the queue.  The arc leading from Begin-Blue1 

goto-corner back to the Start does not improve the shortest-path value of the 

Start node, therefore, the Start node is neither updated nor added to the queue.  

For Step 4 (not shown), Begin-Blue2 goto-goal would be expanded next, 

resulting in additional nodes being added to the queue.  As previously stated, this 

graph is temporally consistent and therefore the algorithm terminates with non-

negative start distances, d-values, when the queue is empty. 
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Chapter 4 

The Incremental Temporal Consistency Algorithm 
(ITC)  
 

Incremental algorithms can significantly increase the speed of a task 

because much of the work that was performed for previous calls tasks can be 

reused in successive searches.  These algorithms are most advantageous when 

the successive tasks that the incremental algorithm is run on are similar to 

previous tasks.   

As a simple example of where an incremental algorithm can be useful, 

consider a planning task for an autonomous taxi that navigates through a large 

metropolitan city.  Suppose the autonomous taxi has planned a route from the 

airport to a hotel.  However, early on in the drive, the taxi learns of a road block in 

the city near where the hotel is located.  The taxi must plan a new path in order 

to reach its destination.  It would be wasteful to throw away what is currently 

known to be the best path to the hotel and start a new search from scratch, since 

the path has only changed near the hotel and not near the airport.  A new search 

would require re-examination of all paths going from the airport to the hotel.  This 

is how a non-incremental algorithm works on the taxi problem.  It has no 

mechanism to remember what has been computed previously.   

It would be much more efficient to start with the optimal path that is 

already known from the airport to the hotel, and then update the parts of the path 

affected by the road block in the city.  Incremental algorithms for path planning 

problems exist, such as Incremental A* [8] and D*[15].  Reusing previous work is 

the main idea behind incremental algorithms, and consequently the ITC algorithm 

develops this idea for STNs.  

This chapter first introduces the ITC algorithm.  It then gives a quick 

introduction to truth maintenance systems (TMS) and discusses how concepts 

from TMSs and the modified label-correcting algorithm (Section 3.2.3) are 

combined in order to achieve the ITC algorithm.  This is followed by an example 
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of how the ITC algorithm detects negative cycles and extracts the conflicts, which 

summarize temporal inconsistencies. 

4.1 The ITC Algorithm Overview 
 

The Kirk temporal planner requests temporal consistency checks on STNs 

of candidate plans as they are built up node by node (Section 2.4).  As a result, 

the STN of the new plan differs from the previous STN only by a few arcs and 

nodes.  This means that only the previously computed shortest-path values that 

are affected by the newly chosen arcs and nodes need to be updated.   Temporal 

consistency of an STN can therefore be determined with fewer node updates.   

Sometimes, this results in an order of magnitude in savings, as is empirically 

demonstrated in Chapter 5.  Additionally, if the ITC algorithm finds that a 

candidate STN is inconsistent it will return a set of simple temporal constraints 

that result in the inconsistency, referred to as a conflict.  The conflict tells the plan 

generation algorithm which decisions contributed to the inconsistency.  This 

allows it to make more informed decisions about what candidate to consider next 

in order to resolve the inconsistency.  This ultimately speeds up the planner’s 

ability to find a consistent candidate plan.  A discussion of conflict extraction 

algorithms for optimal search together with a performance analysis can be found 

in [14].   

New or Modified
Constraints

(Arcs)

Incremental Temporal Consistency 
Checking Algorithm

Candidate Plan Generation

Inconsistency  
And Conflict

Update Rules Shortest-path Values(d)
Back Pointers(b)

Figure 21 – Diagram of ITC Algorithm 
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 Figure 21 shows how the ITC algorithm interacts with the Kirk temporal 

planner, as it performs incremental temporal consistency.  Once a candidate plan 

is initially generated by the plan generation phase, it is sent to the ITC algorithm 

to be checked for temporal consistency.  The ITC algorithm either finds the 

candidate plan temporally consistent and the planner passes the consistent plan 

to its next stage or it finds the candidate temporally inconsistent and returns a 

conflict, consisting of simple temporal constraints.  The plan generation phase 

can then use the conflict to find a new candidate plan that resolves the conflict.  

As plan generation makes modifications to the plan, it communicates these 

changes to the ITC algorithm.  ITC uses this information to determine which 

nodes need their start distances updated when consistency is checked and 

which ones do not. 

4.2 Insufficiency of Modified-label Correcting to Perform ITC 
In order to perform any type of temporal consistency checking, we must 

use an algorithm that is capable of detecting negative cycles.  As discussed in 

Section 3.1, the FIFO modified-label correcting algorithm is a good choice 

because it is very fast, and consequently supports the needs of a fast continuous 

planner.  It also has some of the capabilities needed to perform incremental 

updates.  In particular, the modified label-correcting algorithm can handle an arc 

that improves a node’s shortest-path distance since all it needs to do is add this 

node to the queue and propagate down the line.  However, the modified-label 

correcting algorithm is not capable of handling cases in which an edge distance 

increases the shortest-path to a node and as a consequence a new shortest-path 

must be found.  To handle this case, a new strategy of keeping track of which 

shortest-paths distances on nodes affect each other needs to be incorporated.  

We develop this strategy in Section 4.4.  However, we first examine the 

incremental update methods of a truth maintenance system (TMS), since a TMS 

deals with an analogous issue for truth updates when clauses are removed.  
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4.3 Truth-Maintenance Systems and Unit Propagation 
 Truth maintenance systems (TMS) [4], developed in the late-1970s, were 

widely used in the AI community for solving problems where the truth of facts are 

added and then later retracted.  A TMS determines the truth of propositions.  It 

provides justifications for its conclusions, recognizes inconsistencies, remembers 

previous derivations, and guides searching by identifying propositions 

responsible for inconsistencies.   TMS have been used frequently in applications 

for system analysis, diagnosis, and other deductive tasks [6].  The incremental 

temporal consistency algorithm described in this thesis offers and analogous set 

of four capabilities, and uses concepts analogous to a TMS’ set of supports in 

order to intelligently reuse previous calculations.  This section describes how a 

truth maintenance system works, specifically, LTMS [9].  Later on in Section 

4.3.4, we show how this algorithm is analogous to the incremental temporal 

consistency algorithm. 

4.3.1 LTMS 
 LTMS operates on propositional sentences, containing clauses and 

literals.  A literal is a proposition, representing a fact, or the proposition’s 

negation, (e.g. Q or ¬Q).  A clause is a disjunction of literals (e.g. X∨Y∨Z).  

Lastly, a propositional sentence is a conjunction of clauses (e.g. (¬X∨M∨¬C) ∧ 

(¬J∨¬K∨M) ∧ (X∨J∨Z)).  For additional details on propositional logic, see [12]. 

The job of an LTMS is to maintain and return the truth of propositions, 

given some initial premise.  Therefore, LTMS has two basic tasks.  First, given a 

propositional sentence and the premises, it must be able to identify those literals 

that must be true.  Second, once it has determined the truth of the propositions, 

whenever a clause is added or removed, it quickly determines how this change 

alters the truth of the propositions.  An LTMS achieves these tasks with two 

functions, propagate and unsupport. 

4.3.2 Unit Propagation and Support 
 If some literal in a sentence is known to be true, then the consequences of 

this knowledge must be propagated to all clauses containing this literal.  
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Additionally, an LTMS also keeps track of how a literal was assigned a truth 

value by storing which clause entailed this literal.  This clause is called a support.  

The pseudo-code for this propagation step is shown in Figure 22. 

procedure propagate(clause A)
{01}   if all literals in A are false except l, and l is   

unassigned   
{02}   then assign true to l and 
{03}        record A as a support for l and
{04}   for each clause C mentioning “not l”, 
{05}        propagate(C)  

Figure 22 – Pseudo Code for Propagation in LTMS 

  
 The first line updates clause A by searching for an unassigned literal of 

clause A that must be assigned to true.  If the literal exists, it is set to true and the 

algorithm remembers that clause A is the support for why literal l is true.  This 

truth assignment is then propagated by updating any clause containing the literal 

¬l, which has just become false (line {05}).  At the completion of running this 

procedure, any literal that is true by unit resolution on the clauses will be set to 

true.  Additionally, the clause that determined the truth of each literal will be 

stored as the support for that literal. 

4.3.3 Clause Deletion and Unsupport 
 If a clause is deleted, then just as in the support case above, this 

information is propagated to in order to update which literals are true. 

procedure unsupport(clause D)
{01} if D supports some proposition p
{02} then delete p’s support and truth assignment;
{03} for each  support C containing p   // Delete consequences
{04} unsupport(C);
{05} for each clause A containing p   //Resupport p 
{06} then propagate(A);

 

Figure 23 – Pseudo Code for Unsupport in LTMS 

 
 In this procedure, if removing a clauses unsupports proposition, p, then 

clauses that contain p and support other propositions may no longer be a valid 

support.  Unsupport is run on each of these clauses to recursively invalidate the 

truth of all propositions that they support (lines {03-04}).  Hence, Lines {05-
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06} try to re-support each proposition that lost its support, once all the 

consequences of that proposition are unsupported. 

4.3.4 Incremental Ideas from LTMS 
 We see from the pseudo-code for an LTMS that a key method that the 

system uses to determine what needs to be updated is through a tree of support.  

The truth of a proposition is supported by the clause that entailed the truth.  

When that clause is removed, the proposition that it supported is no longer 

entailed from that clause, therefore all clauses that contain this proposition need 

to be re-examined.  With this method, a TMS can quickly find all clauses and 

propositions that depend on the removed clause to derive the current truth 

assignments.  If the removed clause does not support any propositions as 

identified by the unsupport function, then when the clause is removed no update 

is required beyond just removing this clause.  

Through the use of supports, the algorithm finds the exact number of 

clauses that need to be reconsidered when unit propagation step is restarted, 

thus saving a significant amount of recomputation. 

4.3.5 ITC analogs to LTMS 
 The ITC algorithm needs to maximize speed by minimizing work, thus in a 

negative cycle detection algorithm this means speeding up the SSSP algorithm, 

by reducing the number of distances that need to be calculated.  This can be 

achieved in much the same way as LTMS uses support to find invalidated 

clauses.  For ITC, it uses its support tree to find invalidated shortest-paths. 

We begin to develop the analogy between the two algorithms by first 

stating that updating a truth value for a proposition is analogous to assigning a 

shortest-path distance to a node.  Both must determine if the new value should 

replace the old.  In addition, removing a clause that supports a proposition 

thereby invalidating its truth assignment, is similar to removing or increasing the 

distance on an arc in the distance graph, such that the distance value assigned 

to that node is invalidated (it becomes more than the shortest-path distance).  

For both the LTMS and ITC, all consequences that depend on an invalidated 

truth assignment or distance value must also be invalidated.  With this parallel, 
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ITC can use a recursive unsupport function similar to that for the LTMS, in order 

to invalidate all shortest-paths that have been invalidated by the changed arc.  

This procedure quickly identifies which nodes needs to be re-evaluated in order 

for the algorithm to find the shortest-path distances; saving the work of re-

examining all nodes. 

4.4 ITC Algorithm’s Incremental Update Rules 
ITC’s incremental update rules for an arc change are divided based on 

how the arc change affects the shortest-path distance at its head node, when an 

edge weight changes.  There are three types of effects that can occur, (1) no 

effect to the current shortest-path, (2) improving the shortest-path, and (3) 

invalidating the current shortest-path.   

First, the arc can change in such a way that the shortest-path to a node is 

unaffected.  This may be the case either with an arc increase or decrease.  The 

graph in this case requires no updates because the shortest-path distances have 

not changed.  

 Second, a decrease in an arc distance can improve the shortest-path 

distance to a node such that it is now better to traverse through that arc.  The 

improved arc can either previously be in the shortest-path of the node or not be 

in the previous shortest-path.  This case can be handled using the modified-label 

correcting algorithm strategy for updates because the improved distance at this 

node can be propagated further down the graph simply by adding it to the queue 

and checking for violating arcs.   

Lastly, an increase in arc distance can alter the value on the shortest-path 

to a node such that the shortest-path is now worse than what it was before.  This 

case cannot be handled by the modified label-correcting algorithm.  The modified 

label-correcting algorithm requires that all start distance values be upper bounds, 

however, when the arc distance increases, this is no longer guaranteed.  To get 

on track we must identify the start distance values that are no longer valid 

because of the edge cost increase.  In particular, all paths that depend on the 

previous shortest-path through the node also have incorrect distance values.  For 

this case, the strategy used in a TMS of tracing the set of support to determine 
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consequences can be applied.  ITC must recursively invalidate all start distances 

that are supported by the invalid distance on the node directly affected by the arc 

increase and all successor nodes that depend on this node.  

To allow for successors to be invalidated recursively, the ITC algorithm 

adds a predecessor pointer, p, to every node.  The predecessor pointer of a 

particular node n points to the node that directly precedes node n in the best 

known shortest-path.  For example, suppose that reaching node Y from the start 

node in the shortest manner requires traversing through arc XY, then the 

predecessor pointer for node Y would be set to X.  This tells us that in the best 

path to node Y from the start node, node X must be visited directly prior to 

visiting node Y.  This is equivalent to saying node Y is supported by node X in 

the TMS terminology.  If it is unknown how to get to a particular node, then that 

node’s predecessor is set to unknown. 

 The next three subsections describe how the ITC algorithm deals with the 

three cases previously outlined. 

4.4.1 Arc Change without Effect to Shortest-Path 
 Recall that the first case involves any arc change that does not affect the 

shortest-path of the head node.  The arc distance can increase as long as it is 

not on the current shortest-path of the head node.  It can decrease as long as the 

path through this edge to the head node is better than the current shortest-path 

at the head node.  Figure 24 shows the instance of this case where an arc 

increases in its distance. 
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Figure 24 – Arc Change without Improvement or Effect 
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In Figure 24, the current best way to get to node j is to go through node g, 

as specified by the predecessor pointer of node j.  This path reaches node j with 

a cost of 7.  The figure indicates that arcij increases from a cost of 2 to a cost of 

3.  With the distance increased, the d-value for node j for a path through the 

newly changed arc would be 9.  This value is still worse than the current best 

value of 7, therefore, the d-value at node j does not need to be updated.  If no d-

values are affected by an arc change, then no further updates need to be 

performed.  All start distances are up-to-date and the consistency of the graph is 

preserved. 

The pseudo-code for this case is shown in Figure 25, however, in the 

complete pseudo-code for the ITC algorithm in Section 4.5, this case is not 

shown because it performs no action. 
{01} if (d(arc.head) < d(arc.tail) + c) AND
        p(arc.head) ≠ arc.tail) 

{02}     return;  

Figure 25- Pseudo Code for Arc Change without Affecting Shortest-Path 

 

 The first condition in line {01} tests that the start distance for the head 

node has not improved.  The second condition tests that the arc is not on the 

current shortest-path for the head node.  If both conditions are true, then we have 

the situation as described above, and no action is performed. 

4.4.2 Arc Change Improves Shortest-Path 
 Frequently, an arc change will improve the cost of an arc, and 

consequently the shortest-path to one or more nodes.  This can happen both 

when the changed arc is on the current shortest-path or not on the current 

shortest-path to the head node.  In either case, the rules are applied the same 

way.  The distance value of the node at the head of the arc needs to be updated 

appropriately and this updated distance value propagated to successor nodes.  

Figure 26 below shows the case when the arc that improves the distance value 

at the head node is not on the shortest-path for that node.   
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Figure 26 – Arc Change Improves Shortest-Path 

 
The figure shows arcij reducing in cost from 2 to 0.  With this change, the 

shortest-path distance to node j can be decreased from 7 to 6, by first going 

through node i.  Both the d-value and the predecessor pointer for node j therefore 

need to be updated.  The predecessor pointer should now point to node i instead 

of node g, representing that we should traverse through node i, in the shortest 

path to node j and the d-value should be updated to represent this new shortest-

path of distance of 6.  As a final update step, since the successor nodes of node j 

can be affected by the improvement to node j’s d-value, node j is added to the 

algorithm’s update queue.  When the node is subsequently dequeued, the 

outgoing arcs from node j are examined for updates.  The pseudo-code for this 

case is shown in Figure 27. 

{01} if (d(arc.head) > d(arc.tail) + c)
{02}     d(arc.head) := d(arc.tail) + c;
{03}     p(arc.head) := arc.tail;  
{04}     Insert(arc.head);

 

Figure 27 – Pseudo Code for Arc Change Improves Shortest-Path 

  

The code starts by testing whether the start distance value has improved 

for the node at the head of the arc (line {01}).  If it has, then ITC first updates the 

head node’s d-value (line {02}) sets the predecessor pointer to the node at the 

tail of the arc,(line {03}) and then inserts the changed head node so that the 

successors are updated (line {04}). 
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4.4.3 Arc Change Invalidates Shortest-Path 
 In the final case, an increase in the distance worsens the current shortest-

path to a node.  In this case, the node at the tail of the arc is the predecessor for 

the node at the head of the arc.  The set of parent nodes for the changed arc’s 

head node must then be re-examined to determine the new best shortest-path.  

Additionally, since all nodes supported by this affected node also have invalid 

shortest-path distances, a recursive function must be called to invalidate all 

nodes supported in the chain.  Once the d-values have been updated, the 

parents of the affected node can be enqueued and a new start distance may be 

propagated from this node.  Figure 28 below shows this scenario. 
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Figure 28 – Arc Change without Improvement and Shortest-Path Affected 

 
Again arcij has increased in value, but this time it cannot be treated as just 

an arc increase with no affect.  Since node j’s d-value of 6 was calculated by 

traversing through the changed arc, the value at j is no longer valid.  An update 

must be performed on all of node j’s parents in order to find the new shortest-

path distance to node j.  This is done by adding all of node j’s parents to the 

queue.  Additionally, since node j, may support other nodes elsewhere in the 

graph, ITC must recursively invalidate the d-values and predecessor pointers of 

all nodes that use node j in their shortest-path, as well as the d-values and 

predecessor pointers of node j.  This is done by setting their d-values to ∞ and 

changing the predecessor pointers to unknown.  When the temporal consistency 

algorithm is restarted and nodes are evaluated from the queue, the algorithm 
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calculates and updates node j with the new best path since node j’s parents are 

in the queue.  The pseudo-code for this case is given in Figure 29. 

{01}   if (d(arc.head) < d(arc.tail) + c) AND
{02}       p(arc.head) == arc.tail
{03}       d(arc.head) := ∞;
{04}       p(arc.head) := unknown
{05}       InvalidateSupports(arc.head);
{06}       InsertParents(arc.head);  

Figure 29 – Pseudo Code for Arc Change Invalidates Shortest-Path 

  

Line {01} of the pseudo-code checks that the path for the changed arc is 

longer than the shortest-path.  Additionally, line {02} checks that this path was on 

the shortest-path of the head node.  If both conditions are true then, in line {03}, 

ITC resets the distance value of the head node and in line {04}, the 

predecessor pointer is set to unknown.  Lines {05-06} perform the recursive 

invalidation of supported successors and insert the invalidated node’s parents 

into the queue. 

4.4.4 Addition and Removal Arcs 
 Often the change in the graph is not a changed arc distance, but an 

addition of a new arc or the removal of an existing arc.  With additions and 

removals one of the above three scenarios above can still be applied by mapping 

the arc addition and removal to a distance decrease and increase.   

If a new arc is added, then the new arc distance is treated as being 

previously set to ∞ and now changed to a the arc distance.  Then the arc addition 

can fall into either the case where the shortest-path distance to a node is 

improved (Section 4.4.2) or the case where the shortest-path to a node is 

unaffected (Section 4.4.1).   

If an arc is removed, then the new arc distance is treated as being set to ∞ 

from a previous value.  The arc removal case can then fall into either the case 

where nothing is affected by the removal of the arc, Section 4.4.1, or the case 

where a new path to the head node of the arc must be found, Section 4.4.3.   
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4.5 Incremental Temporal Consistency Algorithm Pseudo-Code 
 

 When the planner requires a temporal consistency check on an STN of a 

candidate plan, G, it will call CheckTemporalConsistency.  Depending on 

whether the consistency check is starting from scratch or incrementally, the 

planner will call either Initialize or ModifyConstraint, respectively, before the call 

to CheckTemporalConsistency.  When CheckTemporalConsistency returns, it will 

either return a conflict if there is an inconsistency or it will return no conflict if the 

graph is consistent. 
 

void 
Initialize()
{01} Q := ∅
{02} for all s∈V(G) 
{03} d(s) = ∞;
{04} p(s) = unknown;
{05} d(sstart) = 0;
{06} Q.Insert(sstart);

Conflict 
CheckTemporalConsistency(G)
{07} while !Q.empty()
{08} u = Q.pop()
{09} for v ∈ Succ(u)
{10} dval = Update(u,v)
{11} if(dval) < 0 
{12} c = CompletedCycle(v);
{13} if(c)
{14} return ExtractConf(c, ∅);
{15} return 0;

value 
Update(p,x)
{16} if (d(y) > d(x) + c(x,y))
{17} d(y) := d(x) + c(x,y);
{18} p(y) := x;
{19} Q.Insert(y);
{20} return d(y);

Node
CompletedCycle(v)
{21} if L.contains(v)
{22} return v;
{23} else
{24} L.add(v)
{25} return 0;

void
ModifyConstraint(x,y,l,u)
{26} ModifyArc(arc(y,x),-l)
{27} ModifyArc(arc(x,y),u)

Conflict
ExtractConflict(c,l)
{28} if l.contains(c)
{29} return l;
{30} else
{31} l.add{c};
{32} ExtractConflict(p(c),l);

void
ModifyArc(arc,c)
{33} setCost(arc,c);
{34} if (d(arc.head > d(arc.tail) + c)
{35} d(arc.head) := d(arc.tail) + c;
{36} p(arc.head) := arc.tail;  
{37} Insert(arc.head);
{38} elseif (d(arc.head) < d(arc.tail) + c)

AND (p(arc.head) == arc.tail))
{39} d(arc.head) := ∞;
{40} p(arc.head) := unknown;
{41} InvalidateSupports(arc.head);
{42} InsertParents(arc.head);

void 
InsertParents(n)
{43} for all m ∈ Pred(n)
{44} Insert(m);
{45} if(p(m) == n)
{46} if(m == sstart)
{47} d(m) := 0; 
{48} else 
{49} d(m) := ∞;
{50} p(m) := unknown;
{51} InsertParents(m);

void
InvalidateSupports(n)
{52} for s ∈ Succ(n)
{53} if(p(s) == n)
{54} d(n) := ∞;
{55} p(n) := unknown;
{56} InsertParents(s);
{57} InvalidateSupports(s);

Figure 30 – ITC Algorithm Pseudo Code 
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 The Initialize function empties the queue, Q, resets all d-values to be ∞, 

and resets all predecessor pointers, p(i), to be unknown, lines {01-04}.  It then 

sets the start node’s d-value to be 0 and adds the start node into the queue, lines 

{05-06}.  This sets up the algorithm data structures such that when 

CheckTemporalConsistency is called, it is a completely new run and all paths to 

nodes need to be examined. 

 The CheckTemporalConsistency function will return either the conflict 

resulting in inconsistency or no conflict when the graph is consistent.  It is called 

whenever temporal consistency needs to be determined.  In line {11}, the 

function checks for the termination condition to see if the lower bound is reached 

signifying a negative cycle.  Once the lower bound is reached, the algorithm 

calls CompletedCycle at every update step (line {12}).  CompletedCycle adds 

the node that is currently being updated to a list so that it can be checked 

whether the algorithm has finished walking through the negative cycle.  When 

CompletedCycle discovers a cycle it will return the first node discovered in the 

negative cycle, otherwise it will return null.   Line {13} checks if a node is 

returned by CompletedCycle and allows the algorithm to call ExtractConf (line 

{14}) with this so that the negative cycle can be determined and returned by the 

algorithm.   

The Update function performs the update step as in the modified label-

correcting algorithm.  If there is a better path to a node y by going through node 

x, as checked by line {16}, then the function sets the predecessor pointer of 

node y to traverse through node x and also updates the d-value at node y to the 

new cost of traversing through node x (lines {17-18}).  The insert step at line 

{19}, allows the algorithm to update successors of this node by adding them to 

the queue.  Returning the d-value in the final step is important for the termination 

step, where the d-value is checked to make sure it has not dropped below zero 

as described in Section 3.2.2. 

The function, ModifyArc, is the main function involved with the incremental 

temporal consistency algorithm.  Given a changed arc, it updates this arc and 

performs the appropriate steps, as illustrated in the discussion in Section 4.4, to 
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initialize Q, d-values, and p(i) in such a way that a call to 

CheckTemporalConsistency will return a correct answer quickly.  For each 

changed arc, this function must be called separately. 

 InsertParents is a helper function to the ModifyArc function.  As discussed 

in the previous section, sometimes the shortest-path to a node needs to be re-

determined because the previous shortest-path was altered by changing the 

distance on an arc.  InsertParents inserts all of a node’s parents into the queue ( 

lines {43-44}), such that they will all be examined by the algorithm and a new 

shortest-path to that node can be determined.  Built into the code beginning at 

line {46} is a special case condition where while inserting a parent node we find 

that the predecessor pointer, p(i), points to the node whose parents we are 

inserting.  The potential for this is frequent with the distance graphs of temporal 

networks because every temporal constraint has both a forward arc and a return 

arc, representing the upper and lower bounds.  If this happens, the algorithm 

needs to reset all the values of this particular parent and insert the parent’s 

parents into the queue.  If this parent is the start node, we can automatically set 

the d-value to 0 as opposed to ∞, since the distance to the start node is always 0.  

Simply, if we want to know what the shortest-path to a node is, we check its 

parents.  If we do not know what the shortest-path to the parent is then we check 

the parent’s parent and so on. 

 The InvalidateSupports function performs the recursive call to invalidate all 

nodes dependent on a node whose start distance value is no longer valid.  It 

checks all the children of the node that is invalidated, resets their d-values and 

predecessor pointers if the successor node uses the invalidated node as a 

support (lines {53-55}).  It then calls InsertParents on all nodes that have 

invalidated d-values so that new shortest-paths can be found to these nodes (line 

{56}).   Lastly, it performs the recursive call to InvalidateSupports on the child 

node so that the successors of the successors can be invalidated (line {57}).  

 The function CompletedCycle returns a node contained in a negative cycle 

if the algorithm has finished walking through the cycle.  It returns a 0 node 

otherwise.  CompletedCycle detects cycles simply by storing each updated node 
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in a list and compares successive updated nodes with this list.  If the node is 

contained in the list, then that node is returned as a member of the negative 

cycle.  If it is not contained in the list, the node is added and a 0 is returned 

meaning that no cycle was found. 

 ModifyConstraints takes as input two nodes and the upper and lower 

bound constraints between them.  This function is a convenience function that 

allows the planner to change constraints on the STN of the candidate plan.  

ModifyConstraints translates STN constraints to distance graph constraints as 

described in Section 3.1.1.  It then calls ModifyArc on these distance graph 

constraints. 

 ExtractConf is a conflict extraction function that returns the nodes involved 

in the negative cycle.  It takes as input an initial node within the cycle and 

recursively walks the predecessor pointers at each point, adding the current node 

to a list of nodes already traversed.  It detects a cycle by checking whether the 

current node being walked is in the list of nodes already traversed.  This list is 

returned as the conflict. 

4.6 Negative Cycle Detection with Conflict Extraction 
 ITC detects negative cycles in the same manner that the modified-label 

correcting algorithm detects negative cycles.  The difference for ITC is that it cuts 

off as soon as a d-value becomes negative, rather than less than –nC (Section 

3.2.2).  As ITC updates the start distances of each node, it checks to see if that 

updated start distance has surpassed the lower bound of zero.  Once this lower 

bound is surpassed the algorithm continues until a negative cycle has been 

completely traversed.  The set of inconsistent edges can the be found by 

following the predecessor pointers.  Consider the inconsistent graph shown 

below in Figure 31.  It shows the values just after a negative cycle has been 

detected.  ITC has stopped at node B because the d-value has fallen below zero. 
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Figure 31 – Example ITC Negative Cycle Detection  

 Notice that in this graph, the set of edges involved in the inconsistency 

cannot be extracted by following the predecessor pointers.  This is because the 

negative loop has not yet been closed at arc BA.  The reason the loop has not 

been closed is because the negative cycle was detected early due to an 

extremely negative edge, DB, which plunges the d-value dramatically.  The 

algorithm stops here because of the property discussed in Section 3.2.2 on why 

termination can occur for temporal networks at a lower bound of zero.  Thus, the 

negative cycle has not been completely traversed.   

In order to extract the nodes involved in the conflict, ITC needs to continue 

walking the negative cycle until it comes back to the node at which it detected the 

inconsistency.   This will set all predecessor pointers so that the source of the 

conflict can be identified.  Figure 32 shows the state of the algorithm once the 

conflict extraction step has been performed. 
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Figure 32 – Example ITC After Conflict Extraction 

 As the figure above shows, node A’s predecessor pointer now points to B, 

completing the cycle.  We can now extract the conflict with the predecessor 

pointers and report that this graph was found to be inconsistent with the negative 

cycle ACDBA.  Notice that once ITC initially detects a negative cycle, it shifts 

gears from a shortest-path algorithm to a conflict extraction algorithm. Therefore, 

the start distance values that are computed in the extraction step only help to 

identify the negative cycle.  The values themselves are useless to the shortest-

path algorithm because they will never converge since the shortest-path to a 

node in the graph connected to a negative cycle has the distance −∞ (Section 

3.2.2). 

4.7 Inconsistency Resolution 
 A planner will take the conflict from the ITC algorithm and intelligently 

select a new candidate plan that does not contain this inconsistency.  Consider 

how ITC performs an incremental update after a planner has shifted from an 

inconsistent candidate plan to a new candidate.  For example, imagine in Figure 

31, the planner changes activity CD so that its upper bound is increased to 10.  

This corresponds to an increase in the distance of CD from 3 to 10.  Using the 

update rules, from Section 4.4, the resulting values for the ITC algorithm is 

shown in Figure 33. 
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Figure 33 – ITC Algorithm After Inconsistency Repair 

 ITC detects that the new CD arc has invalidated the shortest-path distance 

to node D.  Thus, it first invalidates D by setting its start distance value to ∞ and 

predecessor pointer to unknown and then goes on to invalidate all nodes 

supported by D, in this case node B.  Since node B supports no other nodes, 

once it is invalidated the invalidation algorithm terminates.  For every node that is 

invalidated a new shortest-path for that node must be found.  Thus, the parents 

of both B and D are added into the queue as seen in Figure 33. 

 Since changing arc CD to 10 greatly increased the path that was on the 

negative cycle, this altered graph is temporally consistent.  The ITC algorithm will 

return this answer after it has updated and removed all nodes from the queue.  

4.8 Algorithm Analysis 
 
  The label-correcting algorithm is guaranteed to find the shortest-path 

distances and negative cycles given that the d-values are always an upper bound 

to the true shortest-path distance and the final graph does not contain any 

violating arcs [1].  Since ITC uses exactly the same mechanism that the label-

correcting algorithm uses to detect temporal inconsistencies, then as long as the 

update rules for ITC maintain d-values to be upper bounds on the true shortest-

path distance, and do not miss potential violating arcs, then ITC will also be 

guaranteed to find the shortest-path distances and negative cycles.  In the 

paragraphs below, we will give informal arguments to why this is true for ITC.   
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 ITC guarantees that violating arcs will always be examined.  The only way 

for an arc that is not violating to become violating is for the d-value at the tail of 

the arc to decrease or if the d-value at the head of the arc to increase.  Given a 

decrease in the d-value at the tail of the arc, ITC update rules add the tail node to 

the queue meaning that the arc will later be examined later.  Given an increase at 

the head of the arc, ITC adds all the parents of this node into the queue in order 

to examine potential violating arcs going into this node.  Additionally, since an 

increase at the head node can potentially increase the d-values of nodes 

supported by this head node, a recursive check must be performed on each an 

every node that is supported.  This ensures that nodes that need to be updated 

are added to the queue. 

 ITC guarantees that d-values are always upper bounds, or the true start 

distance.  When an arc changes, the d-values at nodes can potentially no longer 

be the upper bound on the true start distance.  When ITC no longer knows how a 

d-value is calculated, meaning that that node is no longer supported, ITC will 

recursively invalidate that node and all nodes supported by it.  Invalidation sets 

each d-value to ∞, restoring the upper bound guarantee. 

4.9 ITC Algorithm on “Mission to the Goal” 
 
 The ITC algorithm can save a significant amount of computation when the 

planner has to re-determine the temporal consistency of a similar STN graph.  To 

illustrate this on a larger planning domain then the examples given above, let us 

consider ITC on another candidate STNs from the soccer scenario described in 

Section 1.3. 

The Red defender decides that it will change its strategy to try and 

confuse the Blue team.  Red1 now decides to play closer to Blue2 instead of 

challenging Blue1’s attack on the goal.  This new strategy prevents Blue1 from 

sending a quick centering pass to Blue2 because Red1 would be able to 

intercept it.  However, if Blue1 can predict this move by Red1 and re-plan such 

that the centering pass is made by kicking the ball high over Red1, then the plan 

to score a goal would again succeed.   



 

63 

The difference is that this type of centering pass takes significantly more 

time to complete, resulting in changed temporal bounds on the centering pass 

activity.  The TPN illustrating both STNs is shown in Figure 34, with the new 

contingency plan represented with the shaded nodes. 
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Figure 34 – “Mission to the Goal” with New Temporal Bounds 

 The new temporal bounds on the high centering pass constrain the pass 

to take 9 time units, which is about 5 times longer then the previous low centering 

pass.  However with the temporal bounds specified for the “mission to the goal”, 

the mission is still feasible even with the high floating centering pass selected. 

 First, we can again visually inspect the STN and determine that it is 

temporally consistent and the “mission to the goal” may succeed.  Adding up 

temporal bounds again before the synchronization node shows that Blue1 now 

must complete its set of activities no sooner than 10 time units and no later 17 

time units.  Blue2’s time constraints have not changed from the previous STN 

and must complete its set of activities no sooner than 1 time unit and no later 

than 10 time units.  Again, there is a non-empty overlap (even though much 

smaller) and we can see that if both Blue robots complete there task in exactly 10 

time units then the mission will succeed. 
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 Using ITC, we find that only a few nodes need to be updated in order to 

determine the temporal consistency of the new plan.  The figures below shows 

which nodes need to be examined in order to determine the temporal 

consistency of the newly revised STN given that we have already calculated the 

consistency of the previous mission plan. 
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Figure 35 – Examined Nodes for  

Non-Incremental Algorithm 
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Figure 36 – Examined Nodes for  

Incremental Algorithm 

 
In Figure 35 and Figure 36, the darker ovals are nodes that require 

examination and the lighter ovals are those that are not examined.  Figure 35 

shows that only the nodes directly affected by the change in the centering-pass 

activity need to be updated.  In this robotic soccer scenario, the ITC algorithm 

performed 77% less work than if a non-incremental algorithm.  However, for 

larger more complex STN graphs, the savings can be much more dramatic when 

using an incremental temporal consistency algorithm.  Chapter 5 will empirically 

demonstrate this claim. 

Next consider the case where the centering pass takes longer than 9 time 

units, in which case the mission plan, the plan to score a goal, would become 

temporally infeasible.  The reason is because the mission can succeed only if 

Blue1’s pass reaches Blue2 when Blue2 is in front of the goal.  If the pass takes 

any longer, Blue2 will no longer be waiting for the pass in front of the goal and 

thus will not be able to shoot the ball.  A visual inspection by adding up the timing 

constraint for Blue1 and Blue2 shows that there is no overlap between possible 

execution times, if the centering pass takes longer than 9 time units. Figure 37 
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below shows the number of nodes that the ITC algorithm will traverse in order to 

determine this temporal inconsistency. 
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Figure 37 – Examined Nodes for Incremental Algorithm with Inconsistency 

Although, the savings is less significant for this scenario when the 

centering-pass activity produces an inconsistency, only 8%, the one node not 

remained unexamined demonstrates the exact motivation behind incremental 

algorithms.  All of the nodes that need to be re-examined in Figure 37 are exactly 

the nodes that are involved in the temporal inconsistency.  In general, it is the 

case that temporal inconsistencies will see less savings then successive 

searches that return temporal consistency because inconsistencies usually have 

to be propagated through the cycle before it to be detected.  However, with 

incremental candidate generation as described in Section 2.4 and conflict 

direction, the majority of candidate plans will be consistent and a smaller fraction 

will be inconsistent. 
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Chapter 5 

Discussion 
 
 This chapter describes how the ITC algorithm is implemented and then 

integrated into the Kirk Flexible Temporal Planner.  It then gives the performance 

data of the ITC algorithm compared to previous temporal consistency algorithms.  

The chapter then concludes with a summary of the main contributions in the 

thesis and some suggestions for future work. 

5.1 Implementation 
 The ITC algorithm is implemented in C++ and integrated into the Kirk 

Temporal Planner/Executive.  The algorithm is implemented as a separate stand-

alone module, with its own STN representation.  Thus, the module is capable of 

returning the temporal consistency of any input STN and does not have to be run 

through Kirk.   

5.2 Performance 
  

The incremental algorithm was tested on a real world cooperative air 

vehicle scenario, where UAVs attack two targets.  In the scenario, each UAV is 

required to destroy two targets but has a choice between two different sets of 

targets.  The planner must choose one set of targets for each UAV to attack.  

Once this choice is made, each UAV performs five activities, (1) fly to target1, (2) 

attack target1, (3) fly to target2, (4) attack target2, (5) return to base.   

Figure 38 shows that the size of the plan on which the two algorithm were 

tested on.  Notice that it grows linearly with the number of UAVs being 

considered because each added UAV performs a constant number of activities.   
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Figure 38 – Number of Nodes in TPN for MICA scenario 

The data shown in Figure 38 gives the basic idea of the size the planning 

structure that Kirk is dealing with.  

The number of UAVs versus the number of queue insertions for the 

corresponding plan is graphed in Figure 39.  The thesis claims that the ITC 

algorithm reduces the amount of work a temporal consistency algorithm has to 

perform by examining fewer nodes than the modified label-correcting algorithm.  

The number of queue insertions is directly proportional to the number of nodes 

examined. 
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Figure 39 – Queue Insertion Comparison 

  Figure 39 shows that the trend for both the incremental and non-

incremental temporal consistency algorithm is that the number of queue 
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insertions increase as the number of UAVs is increased.  This is because the 

resulting graph of the plan given to the algorithm becomes larger and larger as 

shown in Figure 38.  Additional UAVs add additional activity sequences, resulting 

in more nodes and arcs, which ultimately leads to added examination when 

determining temporal consistency.  For the ITC algorithm, the number of queue 

insertions grows much slower than for the non-incremental algorithm. 

Figure 40 shows the time it took the algorithms to determine the temporal 

consistency of each plan. 
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Figure 40 – Runtime Comparison 

 Figure 40 shows that both algorithms again increase in runtime in the 

same manner as they increase in the number of queue insertion when the 

number of UAVs in the scenario is increased.  (The jagged edges in the graph 

corresponds to context switching between processes on the test computer.)  

The graph in Figure 40 is consistent with the graph in Figure 39 because 

the number of queue insertions should be directly proportional to the amount of 

time the algorithm takes.  This is because the majority of time spent determining 

temporal consistency is in examining nodes from the queue.  Again, the ITC 

algorithm has a much slower rate of growth. 

Both graphs show at least an order of magnitude improvement on ITC vs 

repeated FIFO label-correcting algorithm on this particular planning domain. 
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5.3 Future Work 
 The future work that needs to be performed can be broken up into three 

sections, (1) ITC implementation work, (2) ITC evaluation work, and (3) 

innovative ideas that improve ITC further.  

5.3.1 ITC Implementation Work 
The interface into Kirk translates the Kirk TPN planning object with 

selected activities and converts it into a complementary C++ data structure that 

the ITC algorithm can understand.  This is not the optimal method to integrate the 

algorithm into Kirk since the translation process takes a significant amount of 

time, especially on very large input graphs.  However, this implementation is 

sufficient to evaluate the performance of Kirk over the current temporal 

consistency algorithm, FIFO label-correcting algorithm.  The ITC algorithm will 

need to be integrated into Kirk so that Kirk can take full advantage of ITC’s 

capabilities.   

The interface into the Kirk plan selection process is also yet to be 

implemented.  Interfaces and protocols at both the Kirk plan generation and ITC 

conflict extraction phase first need to be determined. 

5.3.1 ITC Evaluation Work 
 It would be very interesting to see if the conflict returned by the ITC 

algorithm is capable of significantly speeding up the plan generation step by 

focusing the search.  However, the algorithm for how the Kirk planner would 

resolve inconsistencies has not yet been determined.  This algorithm involves 

deciding which decisions to change given the set of temporal conflicts.   

 A true random plan generator needs to be implemented so that 

performance evaluations on ITC are not so domain specific.  Currently, the plans 

tested on the ITC program increased breadth of the graph as the size of the 

graph increases.  More insight on the performance of ITC might be gained by 

evaluating larger sized graphs with increased depth.  

5.3.1 ITC Improvement Work 
 For the ITC algorithm, in the case where a shortest-path distance value 

becomes invalidated, many nodes are added to the queue because both nodes 
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containing distance values supported by this changed shortest-path, and the 

parents of these nodes need to be re-reexamined.  With this many nodes, the 

ITC algorithm could achieve additional time savings by being able to determine 

which node would be best to be examined first.  There is an ordering of these 

nodes for which the ITC algorithm performs the least amount of arc and node 

examinations.  The ITC algorithm currently uses a FIFO queue, which just pops 

the node that has been in the queue the longest.  However, a use of a priority 

queue could be provide additional speed savings. 

5.3 Conclusion 
 The ITC algorithm has been shown to be capable of enabling continuous 

temporally flexible planning.  Based on the results shown in Section 5.1, ITC 

achieves fast temporal reasoning by reusing work as demonstrated with Figure 

39, graphing the number of queue insertions.  This is demonstrated empirically 

by the order of magnitude cost savings that ITC has over non-incremental 

algorithms for temporal consistency.   

ITC combines a fast shortest-path and negative cycle detection algorithm 

from network optimization along with the incremental update rules based from 

incremental algorithms such as Incremental A* and truth maintenance systems.  

This allows ITC to quickly determine the temporal feasibility of a candidate plan, 

thus speeding up the verification phase of a temporally flexible planner.   

Additionally, ITC also guides temporally flexible planners to choose 

candidate plans that are more likely to be temporally consistent, by returning to 

the planner the minimum set of temporal constraints, or conflict, that caused a 

previously considered candidate plan to be temporally inconsistent.  The plan 

generation phase of a temporally flexible planner can then use this information to 

bias the search against candidate plans that contain the conflicting temporal 

constraints. 
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