
Flexible Execution of Plans with Choice and

Uncertainty

by

Patrick Raymond Conrad

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

c� Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Department of Aeronautics and Astronautics

August 19, 2010

Certified by. .
Brian C. Williams

Professor
Thesis Supervisor

Accepted by .
Eytan H. Modiano

Associate Professor of Aeronautics and Astronautics,
Chair, Graduate Program Committee

2

Flexible Execution of Plans with Choice and Uncertainty

by

Patrick Raymond Conrad

Submitted to the Department of Aeronautics and Astronautics
on August 19, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Dynamic plan execution strategies allow an autonomous agent to respond to uncer-
tainties, while improving robustness and reducing the need for an overly conservative
plan. Executives have improved robustness by expanding the types of choices made
dynamically, such as selecting alternate methods. However, in some approaches to
date, these additional choices often induce significant storage requirements to make
flexible execution possible. This paper presents a novel system called Drake, which
is able to dramatically reduce the storage requirements in exchange for increased
execution time for some computations.

Drake frames a plan as a collection of related Simple Temporal Problems, and
executes the plan with a fast dynamic scheduling algorithm. This scheduling al-
gorithm leverages prior work in Assumption-based Truth Maintenance Systems to
compactly record and reason over the family of Simple Temporal Problems. We also
allow Drake to reason over temporal uncertainty and choices by using prior work in
Simple Temporal Problems with Uncertainty, which can guarantee correct execution,
regardless of the uncertain outcomes. On randomly generated structured plans with
choice, framed as either Temporal Plan Networks or Disjunctive Temporal Problems,
we show a reduction in the size of the solution set of around four orders of magnitude,
compared to prior art.

Thesis Supervisor: Brian C. Williams
Title: Professor

3

4

Acknowledgments

After two years, I finally get to write the last words of this thesis. It has been a

long process, but it has been every bit as rewarding as I hoped at the outset. I could

not have finished this work without the constant personal and technical support of

everyone in the Model-based, Embedded and Robotics Systems group. Specifically,

I need to thank Professor Williams for introducing me to model-based autonomy,

pointing me in the right direction for this research, and providing guidance along the

way.

A special thank you goes to Julie Shah for providing the inspiration behind this

work, helping me brainstorm numerous technical ideas, and providing some solutions

to me outright. To everyone else who spent time in the group with me, David, Bobby,

Shannon, Hui, Hiro, Cristi, Henri, Larry, Alborz, Stephanie, Gustavo, Andrew, An-

dreas, and Seung, thank you for helping to make the experience exciting, fun, and

technically engaging. I am grateful to all of you for your insights and a rather large

stack of edited drafts.

Additionally, I could not have finished without my friends and family to keep me

going. You will finally stop getting updates on my thesis, for a little while, anyway.

Finally, I would like to thanks my sponsors, NSF and the Department of Defense,

for their generous fellowships that supported me during this work.

5

6

Contents

1 Introduction 9

1.1 Desired Behavior . 10

1.2 Overview of the Method . 12

1.2.1 Labeled Distance Graphs and Compilation 13

1.2.2 Dispatching the Labeled Representation 15

1.3 Related Work . 16

2 Background and Related Work 21

2.1 Temporal Plan Networks . 21

2.2 Simple Temporal Problems . 23

2.3 Disjunctive Temporal Problems . 26

2.4 Fast Dynamic Dispatching of TCSPs 27

3 Compilation of Plans with Choice 29

3.1 Introduction to Value Sets and Labeling 33

3.2 Forming Labeled Distance Graphs . 38

3.3 Environments and Conflicts . 42

3.4 Labeled Value Sets . 48

3.5 Labeled All-Pairs Shortest Path . 56

3.6 Pruning the Labeled Distance Graph 62

3.7 Summary of Compilation Algorithm 67

4 Dispatching Plans with Choice 69

7

4.1 Dispatching Overview . 71

4.2 Labeled Execution Windows . 78

4.3 Selecting Events to Execute . 82

4.4 Finding Violated Bounds . 89

4.5 Dispatching Activities . 90

4.6 Conclusion . 97

5 Plans with Choice and Uncertainty 99

5.1 Background on Simple Temporal Problems with Uncertainty 101

5.2 Defining Plans with Uncertainty . 104

5.3 Compiling Plans with Uncertainty . 107

5.4 Dispatching Plans with Uncertainty 113

5.5 Conclusions . 117

6 Experimental Results 121

6.1 Generating Random DTPs . 122

6.2 Generating Random TPNs . 123

6.3 Numerical Results . 124

7 Conclusions and Future Work 135

A Reference on Fast Dynamic Controllability 141

8

Chapter 1

Introduction

Model-based executives strive to elevate the level of programming for autonomous

systems to intuitive, goal-directed commands, providing guarantees of correctness.

For example, the user can direct a rover to complete a series of activities, to drive

and collect samples, and provide temporal constraints on those instructions. Using

a model-based executive, a user can provide a specification of the correct behavior

of the robot and leave it to a program, the executive, to determine an appropriate

course of action that will meet those goals. Engineers are then alleviated of the need

to program a specific set of routines for each robot that can meet those requirements

at run-time.

Ideally, model-based executives should be reactive to disturbances and faults. One

useful strategy for creating executives that are robust to disturbances is to delay deci-

sion making until run-time. This allows an executive to make decisions for a later part

of a plan with the benefit of knowing what happened during earlier portions of that

plan. In contrast, a system that makes all decisions before execution must predict

what outcomes might happen and cannot adjust if something unexpected happens.

Therefore, delaying decision making and following a strategy of least commitment can

improve system robustness, improve guarantees of correctness, and reduce unneces-

sary conservatism. This manuscript develops Drake, a plan executive that delays the

scheduling of events and the selection of discrete choices until run-time.

First, this chapter provides an overview of the desired behavior of the system.

9

Section 1.2 provides an intuitive overview of Drake’s techniques. Finally, Section 1.3

discusses related work.

1.1 Desired Behavior

To begin describing Drake’s desired behavior, consider an example of a flexible plan

that contains flexible durations and one discrete choice.

Example 1.1 A rover has 100 minutes to work before a scheduled contact with its

operators. Before contact, the rover must traverse to the next landmark, taking

between 30 and 70 minutes. To fill any remaining time, the rover has two options:

collect some samples or charge its batteries. Collecting samples consistently takes 50

to 60 minutes, whereas charging the batteries can be usefully done for any duration

up to 50 minutes. �

This work develops Drake, an executive that allows the rover to select, as the plan

is executed, among all types of available choices of activities and durations. This

plan describes the rover’s activities and the temporal requirements placed on them.

The length of the actions are represented with intervals to show flexibility in the

rover’s capabilities and possibly some uncertainty. Drake is able to delay selecting

between charging the batteries and collecting samples until it learns whether the

drive is short enough to make collecting samples feasible. This dynamic execution

style contrasts with planners that commit to a precise course of action and durations

at the outset of the plan. Since Drake considers all potential executions and efficiently

makes commitments as the execution unfolds, it can often switch plans if something

unexpected happens, without a costly re-planning step. Furthermore, we also allow

Drake to reason about an explicit model of uncertainty. If we provide Drake with

an explicit set of durations that it cannot control, but which are selected by nature,

Drake can prove whether or not it is robust to all the possible outcomes.

The appeal of dynamic executives is simple: making decisions later means that

more information is available, allowing the executive to react to real-world outcomes

10

and make decisions with less uncertainty, reducing the conservatism required to guar-

antee correctness. The challenge, however, is that Drake must make decisions quickly

enough to satisfy the demands of real-time execution, while guaranteeing that it does

not violate any of the constraints set forward in the original plan. Muscettola showed

that the temporal constraint reasoning performed by an on-line executive can be made

efficient by a pre-processing step referred to as compilation [10]. A dispatcher then

uses the compiled form of the problem to make decisions at run-time. Essentially,

the compilation step makes explicit the consequences of different courses of action

available to the dispatcher, allowing it to swiftly make decisions without a risk of

overlooking indirect consequences of the input plan. Furthermore, when uncertainty

is explicitly modeled, dynamic executives can correctly execute plans that a static

executive cannot [9].

The rover scenario demonstrates an example of an implicit constraint that the

executive must reveal to correctly dispatch the plan. The entire plan must complete

in under 100 minutes and collecting samples takes at least 50 minutes. This leaves

only 50 minutes to drive, but the plan specifies that driving may take 70 minutes.

Although Drake could theoretically derive this implicit restriction on the driving

duration at run-time, real-time decision making latency can be reduced by requiring

that this and all other constraints are explicitly recorded, so that choices can be made

without searching the entire plan.

These dispatching techniques depend upon a temporal constraint representation

called Simple Temporal Problems (STPs), or Simple Temporal Problems with Uncer-

tainty (STPUs), and a corresponding set of algorithms [4]. These formalisms allow for

efficient reasoning about the scheduling of events given temporal constraints and mod-

els of uncertainty. However, STPs do not model choices between constraints, which is

a crucial aspect of plan descriptions. The most common strategy for reasoning about

choices within temporal constraints is to create a family of STPs [16, 11, 19]. Within

the family of STPs, there is a component STP for each possible choice, which specifies

all temporal constraints for that choice. This strategy creates a large expansion in

the encoding of the plan. We build on prior work in dynamic dispatching for plans

11

with choice by introducing a compact representation of the compiled form, making it

more tractable for embedded systems in terms of memory usage.

To characterize the benefits of Drake, we implemented it in Lisp and evaluated

its performance on randomly generated problems. Note that our implementation

is substantively the same as the algorithms presented in this thesis and performs

identical computation, but does not organize the computation with the same data

structures or functional divisions. Our results show that Drake’s compact encoding

can reduce the size of the compiled representation by around four orders of magnitude

for problems with 10,000 component STPs. Overall, Drake trades off the compact

storage for an increase in processing time at run-time and compile-time. The compile-

time is often improved by several orders of magnitude, but is occasionally worse by

about two orders of magnitude. The run-time latency is typically much worse than

prior work, but is generally less than a second for most moderately sized problems,

making it feasible for real systems.

The next section presents a broad overview of our method.

1.2 Overview of the Method

Our objective is to develop a system that can dynamically execute plans with choice,

represented as families of STPs, or STPUs if there is a model of uncertainty. This

section gives an overview of our method by walking through the essential steps of

preparing and dynamically executing the problem from Example 1.1. Furthermore,

it illustrates the compact representation that underlies this work and provides an

intuition for why the representation is compact. For simplicity, we will not include

uncertainty in this description.

When the executive makes decisions in real-time, it ensures that every decision

it makes satisfies every constraint of the plan. If the proposed decision does not

violate any constraints, then it can be acted upon; otherwise, the proposition is

discarded. This technique is fast, because such tests are easily performed on the

temporal constraints, but unless we are careful about the form of the problem, this

12

system might incorrectly schedule some events.

Example 1.2 uses the rover example to explain an incorrect execution and how

compilation can prevent this problem.

Example 1.2 In the plan described in Example 1.1, all activities must complete

in under 100 minutes and collecting samples takes at least 50 minutes. This leaves

only 50 minutes to drive, yet driving is listed as having a flexible duration of up to

70 minutes. When making scheduling decisions, a proposed duration of 60 minutes

would appear acceptable, even though it is not feasible. Muscettola showed that

this issue can be solved by reasoning about the constraint ahead of time, and by

modifying the duration to explicitly state that the drive duration can be a maximum

of 50 minutes if it intends to collect samples[10]. More generally, the limitation on the

driving duration is an implicit constraint of the problem. The compilation process

must make every implicit constraint explicit in order to allow efficient dispatching.�

A dispatchable form is defined as a reformulation of the plan such that local tests

are sufficient to guarantee that the dispatcher, the run-time component of the execu-

tive, will not violate any constraints of the input plan during execution. Converting

from the original input problem to a dispatchable form is done through a reasoning

step called compilation. Intuitively, the executive thinks through the consequences of

every possible decision during compilation and records those results in a readily ac-

cessible way. With these consequences readily available in the dispatchable form, the

executive can easily look up whether any given decision is feasible, thus simplifying

the task at run-time.

1.2.1 Labeled Distance Graphs and Compilation

In Simple Temporal Problems, which only place fixed bounds on the time elapsed

between executing events, creating a dispatchable form is simple. The problem is to

make explicit all implicit constraints between events. Reasoning over the constraints

can be restated as solving a shortest path problem. The All-Pairs Shortest Path

graph of the input STP is the dispatchable form of the problem [10].

13

Adding discrete choices complicates compilation because the dispatchable form

must then include the implications of the temporal decisions and the discrete choices.

Recall that in the rover example, the discrete choice is between collecting samples and

charging the batteries. Each set of possible discrete choices creates a single component

STP, which can be dispatched with the standard STP techniques. However, each set

of discrete choices has a different STP, which the executive must record. A simple way

to consider the consequences of the discrete choices, and the technique adopted by

Tsamardinos, is to separately record every combination of discrete choices [19]. This

method is easily understood, but inefficient because it assumes that every combination

of choices is completely different from all others; however, this is rarely the case.

Example 1.3 Consider what happens when the rover example is split into compo-

nent STPs, as shown in Figure 1-1. Observe that while the STPs are different, many

nodes, representing events, and edges, representing activities, are common to both

sub-plans. Most of the events and constraints are directly taken from the original

problem, except for the drive duration, which is modified to represent the limitation

imposed when collecting samples. �

Although the redundancy between the components STPs in Figure 1-1 is limited

because there are only two component STPs, the number of copies can scale exponen-

tially with the number of choices. Furthermore, this redundancy is carried through

the compilation and dispatching algorithms, leading to a great deal of redundant

work and storage. This work explores the idea of merging the separate component

STPs into a single representation. It takes full advantage of their similarities to allow

compact storage and efficient reasoning.

The challenge of unifying the two STPs is that we need a lossless compression;

we require a way to avoid duplicating the identical elements without losing the power

to represent every difference between them. Our solution is to introduce a labeling

scheme, inspired by prior work on Assumption-based Truth Maintenance Systems

(ATMS); by annotating those edges that correspond to the general problem and

those that are specific to sample collecting and charging [2].

14

Example 1.4 Figure 1-2 gives an informal version of what our labeling scheme looks

like. The colors and Greek letters represent the different possible scenarios: blue and

α for collecting samples, green and β for charging the batteries, and black and γ

for universal constraints. This diagram avoids the repetition of identical constraints

without confusing which edges correspond to which choices. Note that the driving

edge is replaced with two copies, the original constraint and the tightened one for the

sample collecting case. �

After creating the representation of the component STPs, we need to compile

them. The figures already show the compiled versions. In Tsamardinos’s approach,

explicitly enumerating the component STPs, each one is independently compiled.

Specifically, Figure 1-1a originally would have had a drive duration of [30, 70], as

specified in the original plan. Then the compiler reasons that this duration must

be tightened because of the overall deadline of 100 minutes and the restriction that

sample collecting takes at least 50 minutes. Figure 1-1a is unchanged from the initial

form, because the necessary constraints are already recorded explicitly in the plan.

The labeled version must replicate these reasoning steps. Specifically, it uses

edge (A,F), with weight [0, 100], γ, and the collecting samples duration [50, 60]α to

derive the restriction on the drive duration. These two constraints have different

labels, so the tightest of them is placed on the new constraint, [30, 50]α. This new

constraint does not replace the old one, because the existing [30, 70]γ covers the

charging situation also, which the new one does not. This compiled form directly

records all the constraints the dispatcher needs to obey at run-time, as described in

the next sub-section.

1.2.2 Dispatching the Labeled Representation

Dispatching using Drake’s labeled representation requires updating the STP dispatch-

ing algorithm so that it handles the labels; this is a straightforward process. The fol-

lowing example describes a few steps of Drake’s dispatching process on this example

in order to demonstrate the difference.

15

Example 1.5 Assume that the start event, A, in Figure 1-2, is executed at t = 0.

At some later time, t = 40, the executive needs to determine if it should execute an

event. The event B’s predecessor, A has been executed, so it may be executed. The

other events have B as a predecessor and must wait for it to execute. At time t = 40,

Drake considers executing B. This time satisfies both constraints on B’s execution,

given by edges (A,C), [30, 70]γ and [30, 50]α. Therefore, B can be executed at t = 40

without any consideration of whether the rover will collect samples or charge.

In contrast, if Drake repeated the same decision process at t = 60, it would

notice that the constraint for collecting samples was violated, because 60 /∈ [30, 50]α.

Therefore, collecting samples is no longer possible, and Drake would know that it

must charge the batteries and follow all remaining constraints for that option. �

The compact representation provided by the labeling system is suitable for dis-

patching because it is still possible to determine the implications of all choices, just

as it was possible by representing the choices as separate STPs.

This section has provided an intuitive sense of why labels are helpful and sug-

gested a form they might take. This thesis formally develops labels, proves that they

indeed offer the lossless compression we seek, and modifies the compilation and dis-

patching algorithms to use this new formalism. The labeling formalism results in a

data structure we call labeled value sets, which perform quite well for the linear con-

straints used in these plans. This efficient representation mechanism provides a clean

abstraction, making it relatively simple to update constraint reasoning algorithms in

order to work with labeled value sets.

The next section discusses related work and concludes with an outline of this

thesis

1.3 Related Work

As a dynamic executive, Drake is derived from prior research on dynamic execution

of TPNs and DTPs. Muscettola first proposed the separation of the compiler and

dispatcher for efficient run-time reasoning on STPs [10]. Then Morris et al. expanded

16

the dispatcher to provide guarantees of correctness for STPUs, proving that a dynamic

strategy can correctly execute plans that a static strategy cannot [9]. Tsamardinos

added choice to the dispatcher, executing DTPs, by expanding the DTP encoding

into one STP per choice [19].

Kirk is a dynamic executive for TPNs [8]. Kirk performs optimal method selection

just before run-time, assigning the discrete choices and then dispatching the resulting

STP with Muscettola’s work. If some outcome invalidates the STP that Kirk chose,

then Kirk performs a re-planning step, selecting a new STP consistent with the exe-

cution thus far. Further research developed incremental techniques to allow Kirk to

re-plan with lower latency, making it more feasible for an on-line system [13].

As an executive, Drake is designed to be similar to Kirk, in that it is a dynamic

executive for TPNs. However, Drake is differentiated in that it uses a compilation

strategy to defer commitment to both event times and discrete choices as long as

possible and therefore avoids an explicit re-planning step or Kirk’s tentative commit-

ment to choices. Unfortunately, avoiding the re-planning step makes some run-time

reasoning slower than the reasoning for dispatching an STP, creating a trade-off be-

tween nominal and off-nominal performance that we do not address further in this

thesis.

Drake’s technique builds from Tsamardinos’s approach and leverages ideas from

Assumption-based Truth Maintenance Systems (ATMS) to make the representation

more compact [2]. Drake derives an interesting feature from its heritage in ATMSs,

that it is simple to reason about hypothetical choices, because the consequences of all

possible choices are explicitly and compactly represented. In contrast, Kirk is guar-

anteed to find another plan if one exists, but does not track what other possibilities

might exist. Future work may be able to exploit these hypothetical situations to add

capabilities to Drake.

Finally, Drake’s use of the ATMS is inspired by Shah’s prior work on the compact

representation of disjunctive temporal plans for efficient plan execution [12].

The rest of this thesis is organized as follows. Chapter 2 reviews the plan spec-

ifications and scheduling frameworks Drake uses and presents the fundamentals of

17

dispatchable execution that Drake builds upon. Chapter 3 develops the fundamental

elements of our compact representation and our compilation algorithm for the de-

terministic case. Chapter 4 develops the dispatching algorithm for the deterministic

case. Chapter 5 applies the ideas behind the deterministic compact representation

to extend Drake to handle finite, bounded temporal uncertainty. Finally, we present

some performance benchmarks in Chapter 6 and some conclusions and future work

in Chapter 7.

18

Figure 1-1: The component STPs of the rover problem.

(a) Collect Samples Component

C

A B E F

D

Drive [30, 50]

[0, 100]

[0, 0]

Collect
Samples
[50, 60] [0, 0]

(b) Charge Component

C

A B E F

D

Drive [30, 70]

[0, 100]

[0, 0]

Charge [0, 50] [0, 0]

19

Figure 1-2: A labeled version of component STPs of the rover problem.

C

A B E F

D
Collect Sample

Charge Batteries

Universal

α

β

γ

[30, 70]γ

[30, 50]α

[0, 100]γ

[0, 0]γ

[50, 60]α [0, 0]α

[0, 50]β [0, 0]β

20

Chapter 2

Background and Related Work

Drake builds upon prior work in plan representation for temporal reasoning and dis-

patchable execution. While a reader familiar with TPNs, STNs, DTPs, and dynamic

execution may wish to skip the following background, it is intended to briefly provide

some formal definitions and introduce the reader to the terms used in the literature.

Significantly more details of the prior work are given in later chapters, as needed.

First, Section 2.1 defines Temporal Plan Networks, one of the input plan formats

employed by Drake. Next, Section 2.2 discusses STPs, the underlying scheduling

framework for this work. Section 2.3 introduces Disjunctive Temporal Problems, the

other input plan format. Finally, Section 2.4 discusses some motivating prior work

into dispatching plans with choice effectively.

2.1 Temporal Plan Networks

To develop the details of delaying decision making and dynamically making choices

and schedules, we need a formal way to describe the problems that the executive needs

to dispatch. A Temporal Plan Network is a graphical representation for contingent

temporal plans introduced by Kim, Williams, and Abramson [8]. The primitive ele-

ment in a TPN is an activity, comprised of two events connected by a simple interval

constraint.

21

Figure 2-1: This TPN depicts the example from Example 1.1. The rover needs to
drive, then collect samples or charge its batteries within a certain time limit.

Drive [30, 70]

[0, 100]

[0, 0]

Collect
Samples
[50, 60] [0, 0]

Charge [0, 50] [0, 0]

Definition 2.1 (Event) An instantaneous event in a plan is represented as a real-

valued variable, whose value is the execution time of the event. �

Definition 2.2 (Simple Interval Constraint) A simple interval constraint between

two events X and Y requires that l ≤ y − x ≤ u, denoted [l, u]. �

Simple interval constraints specify that the difference between the execution times

of two activities must lie within a particular interval [l, u]. Networks are then created

by hierarchically composing sub-networks of activities in series, in parallel, or by

providing a choice between them. TPNs allow resource constraints in the form of

“ask” and “tell” constraints on activities, although Drake does not include algorithms

to perform this resource de-confliction. It is also possible, although less common,

to place constraint edges between arbitrary nodes in the graph. A TPN therefore

provides a rich formalism for expressing plans composed of choices, events, temporal

constraints, and activities.

The rover example is depicted as a TPN in graphical form in Figure 2-1. Each

of the activities is placed on an arc between the circles, representing events. The

double circle node represents a choice between outgoing paths, meaning that one set

of following activities and events, in the form of a sub-TPN must execute according

22

to the constraints. The left-most node is the start node and both outgoing arcs

denote necessary constraints, representing the drive activity and the overall duration

limit. Throughout, the flexible durations are labeled with the [l, u] notation for the

lower and upper bound, respectively. The arcs on the right labeled with [0, 0] connect

simultaneous events and are present to conform to the hierarchical structure of a

TPN.

In prior work, Kim et al. presented Kirk, an executive that dynamically makes the

scheduling decisions from a TPN [8]. However, Kirk selects a set of choice nodes just

before run-time and only makes the scheduling decisions within that choice flexibly.

As needed, Kirk triggers a search step to revise the choices. Our work develops a tech-

nique for avoiding this tentative commitment to choices until run-time. Before we can

describe our dynamic execution strategies, we must develop machinery for reasoning

over the temporal constraints, so we now turn to Simple Temporal Problems.

2.2 Simple Temporal Problems

Simple Temporal Networks provide a framework for efficiently reasoning about a lim-

ited form of temporal constraint and are the basis of the dynamic execution literature

our work builds from. A simple temporal network is defined as a set of events and

temporal constraints among them. Events are real-valued time point variables V

corresponding to instantaneous events [4]. The time of execution of these events is

constrained through a collection of pairwise simple interval constraints as described

in Definition 2.2. This constraint is often depicted as [l, u] in Figure 2-2a, where

l ≤ u. By convention, u is non-negative. The lower bound, l may be positive if there

is a strict ordering of the events, or negative if there is no strict ordering. Each pair

of events is either unconstrained or has exactly one constraint. Positive or negative

infinities may be used in the bounds to represent an unconstrained relationship.

A Simple Temporal Network is referred to as a Simple Temporal Problem when

the objective is to find a set of real-valued assignments that respects all the constraints

of the network. This set of assignments is called a solution, and a STP is consistent

23

Figure 2-2: Conversion of a simple STP constraint graph fragment into a distance
graph.

(a) Constraint graph

[1, 7]

(b) Distance graph

7

−1

if and only if it has at least one solution. Dechter showed that to find a solution

or determine consistency, we can reformulate the temporal constraint reasoning as a

shortest path problem on a graph [4].

The first step of compiling an STP is to convert the constraints into a weighted

graph �E, V �, where E is the set of weighted edges and V is the set of vertices

representing events. First, each event is converted into a node of the graph. Second,

the constraints are represented as weighted edges, where each constraint of the form

Y −X ≤ bXY (2.1)

is represented by a weighted edge from X to Y with weight bXY . Intervals specified

in [l, u] form, are represented in the distance graph as two edges, one in the forward

direction, with weight u and a second in the reverse direction, with weight −l. This

process is illustrated in Figure 2-2. The distance graph provides a natural expression

of the linear constraints because any path length between two events is equivalent

to algebraic manipulation on the inequalities. The shortest path between two events

specifies the tightest constraint derivable from the algebraic expressions.

Dechter proved that an STP is consistent if and only if its associated distance

graph has no negative cycles, which corresponds to an unsatisfiable constraint [4].

This condition can be tested efficiently by computing the Single Source Shortest Path

(SSSP) or All-Pairs Shortest Path (APSP) graph. Although the SSSP algorithm is

faster, we focus on the Floyd-Warshall APSP algorithm because it is a necessary

component of the dispatching process [4, 10]. Note that Dijkstra’s Algorithm is

unsuitable to compute the APSP graph because the distance graph may have negative

24

edge weights.

Floyd-Warshall works by stepping through triples of nodes in the graph and look-

ing for shortcuts in the graph. For reference, the algorithm is provided in Algorithm

2.1.

Algorithm 2.1 The Floyd-Warshall All-Pairs Shortest Path algorithm.

1: procedure APSP(V,E)
2: for i ∈ V do

3: for j, k ∈ V do

4: w ← Eji − Eik

5: if w ≤ Ejk then

6: Ejk ← w
7: end if

8: end for

9: end for

10: return E
11: end procedure

To prepare the STP for real-time execution, we need to pre-process it so that the

dispatcher does not need to perform expensive computations at run-time. Muscettola

showed that the STP can be compiled into a dispatchable form, where all constraints

implicit in the original problem are made explicit, so that the network can be dis-

patched with only local inference [10]. Since the run-time process only requires local

checks, the process is efficient enough to run in real time. Specifically, the run-time

algorithm avoids inference over the entire graph.

The APSP form of the distance graph is dispatchable, meaning that a dispatcher

can make scheduling decisions on-line while only performing propagation to immedi-

ate neighbors to guarantee a solution [4]. Since all the constraints implicit in the set C

are explicitly enumerated by the APSP graph, the dispatcher can make assignments

to the variables without global inference. During execution, the dispatcher tracks ex-

ecution windows that summarize the constraints on each event, which are updated by

the local propagations. Some edges imply a strict ordering on which events must be

executed first, creating a predecessor and successor relationship between some events;

we call these enablement constraints. For example, Figure 2-2 depicts ordered events

because the right node must occur at least one time unit after the left event. At each

25

step of dispatching, the dispatcher attempts to finds an event whose predecessors

have all been executed and whose execution window includes the current time [10].

Muscettola et al. showed that the APSP contains redundant information, in that

groups of edges are guaranteed to propagate the same bound, causing extra work for

the dispatcher. Specifically, an edge is said to be dominated by another edge, if the

dominated edge always propagates the same constraint and therefore is not needed

by the dispatcher [10]. These redundant edges may be trimmed after consistency

is determined, resulting in a minimal dispatchable network. This step reduces the

number of edges in the graph and makes run-time processing faster.

2.3 Disjunctive Temporal Problems

A formalism that directly modifies STPs to allow choice is the Disjunctive Temporal

Problem (DTP). We use DTPs as a possible problem specification for Drake, because

it can provide a family of STPs. Formally, the definition of events are identical to

STPs, but each constraint Ci ∈ C is allowed to be a disjunction

ci1 ∨ ci2 ∨ ... ∨ cin, (2.2)

where n may be any positive integer [4]. The disjunctions expand the language of

constraints expressible in STNs, allowing new concepts to be expressed, such as non-

overlapping intervals. As before, a solution is a set of assignments to each time point

in V while meeting at least one simple interval clause of each disjunction in C. The

disjunctive constraints make DTPs an expressive formulation, allowing encoding of

problems with choices and resources, to name a few important capabilities.

Most modern approaches for determining consistency for DTPs are derived from

the observation that a DTP can be viewed as a set of component STPs, where the

DTP is consistent if and only if at least one of the component STPs is consistent

[16, 11, 18]. The component STPs are formed by selecting exactly one simple interval

constraint from each disjunctive constraint in the DTP. A solution to any of the

26

component STPs is a solution of the DTP because it satisfies the simple interval

constraints selected from the disjunctions to create the component STP. Therefore,

consistency tests can be performed by searching through the possible combinations

of disjuncts, in order to find a consistent component STP.

Tsamardinos presented a flexible dispatcher for DTPs that first enumerates all

consistent component STPs and then uses them in parallel for decision making [19].

At run-time, the dispatcher propagates timing information in all STPs simultaneously.

The dispatcher may make scheduling decisions that violate timing constraints in some

of the component STPs, making it impossible to use the corresponding choices, as

long as it never invalidates all remaining possible STPs, thus removing all possible

choices from the DTP. Drake inherits this strategy for selecting between choices.

2.4 Fast Dynamic Dispatching of TCSPs

Shah et al. approached the problem of dispatching Temporal Constraint Satisfaction

Problems, a special case of DTPs, by removing redundant storage and calculations

performed by Tsamardinos’s algorithm [12, 19]. Temporal Constraint Satisfaction

Problems (TCSPs) are DTPs with restricted structure, where for one constraint Ci,

every simple interval constraint per DTP constraint involves the same two events, so

each constraint can only represent choices between different execution bounds for a

given pair of events. It cannot express some DTP concepts, such as non-overlapping

constraints. We discuss the details of solving TCSPs further because the insights

from their approach inspires Drake’s methods.

Shah points out that the component STPs of real-world TCSPs often differ by

only a few constraints, hence the space required to store the dispatchable represen-

tation can be reduced to keeping only the differences between them. These changes

are represented as constraint tightenings on a STP computed by relaxing the orig-

inal TCSP. These tightenings are computed with an incremental algorithm, called

Dynamic Back-Propagation Rules introduced by Stedl and Williams, which only cal-

culate the changes required to maintain dispatchability [15]. Their technique is able

27

to separate the consequences of certain sets of choices from the overall plan. This

technique, although distinct, bears some resemblance to an Assumption Based Truth

Maintenance System (ATMS). Shah describes Chaski, an executive that uses these

techniques. By avoiding redundant records of shared constraints, Shah’s results show

dramatic reductions in the size of the dispatchable TCSP [12]. Their dispatching

algorithm uses the compact encoding to reduce execution latencies by several orders

of magnitude for medium sized problems. Our work is partially inspired by this suc-

cess, and we explore modifying Chaski’s strategy to use a full ATMS labeling scheme,

allowing the executive to represent partial assignments to choices. Since DTPs have

less common structure than TCSPs, we expect a DTP algorithm would benefit from

identifying the shared elements without using a relaxed form of the plan as a base.

The next chapter builds upon the work reviewed in this chapter to develop Drake’s

compact representation and compilation algorithms. Chapter 4 presents Drake’s dis-

patching algorithms for labeled dispatchable graphs.

28

Chapter 3

Compilation of Plans with Choice

Recall that Drake is a dynamic executive for Temporal Plan Networks (TPN) or

Disjunctive Temporal Problems (DTP), meaning that it selects choices and sched-

ules activities just before execution. Drake does this efficiently by converting either

representation into a labeled distance graph and then compiling it into a dispatch-

able form off-line, reducing the reasoning required at run-time. The dispatchable

form is computed by applying a variant of the DTP compilation algorithm to the la-

beled distance graphs. This chapter presents an algorithm that transforms TPNs and

DTPs to a compact representation and introduces a novel compilation algorithm that

compiles this representation into dispatchable form. The new compilation algorithm

adapts Muscettola’s STP compilation algorithm to work on a compact representation

made possible by a labeling scheme, which is inspired by the Assumption-based Truth

Maintenance System [10, 2]. The labeling scheme allows Drake to avoid unnecessary

repetition in the compiled form of the plans, resulting in a compact form that is more

tractable to store and reason over.

Our novel algorithm is presented in the context of Tsamardinos’s compilation algo-

rithm for DTPs [19]. Tsamardinos’s algorithm proceeds in three steps: (1) enumerate

every component STP, (2) compile each component STP into dispatchable form, and

(3) filter each component STP of unnecessary edges. The latter two steps use the

standard STP compilation method developed by Muscettola [10]. This prior work

introduced the first compiler and dynamic executive for DTPs. All of the essential

29

steps of the reasoning are directly repeated in our work. Unfortunately, Tsamardi-

nos’s compilation procedure is inefficient because each component STP is stored and

compiled individually, regardless of any similarities between the STPs that might

make some storage or reasoning steps redundant. The enumeration performed in the

first step is exponential in the number of choices in the DTP, resulting in a large

storage requirement. Drake addresses this problem by exploiting similarities between

the component STPs to create an equivalent representation that is substantially more

compact.

Drake introduces a labeling scheme to the constraint storage system, inspired by

Assumption-based Truth Maintenance Systems, to efficiently store and perform com-

putations on the constraints [2]. Constraints are annotated with environments, which

denote a partial assignment to the choices of the input problem. This partial assign-

ment represents the minimal choices from which the constraint logically follows. Since

the STPs have similarities, labeling allows Drake to compactly encode the effects of

choices on the constraints. Figure 3-1 shows how Tsamardinos’s technique indepen-

dently records every constraint for every complete combination of choices. In the

rover scenario, we can instead record the general deadline constraints only once, and

then note separately the implications if the rover decides to collect samples, shown in

Figure 3-2. In this figure, we use assignments to the variable x to denote the possible

outcomes of the choice. The annotation in curly brackets, for example, {x = 1},

is an environment specifying that the attached constraint corresponds to a certain

assignment to the variables representing the choices. In this case, {x = 1} represents

collecting samples. We annotate the initial constraints with environments that specify

when each constraint holds and then carry the environments through the reasoning

steps of compilation. To perform this reasoning, we develop a powerful data struc-

ture called labeled distance graphs, which stores the values on edges in labeled value

sets, applying the general framework of labeling and environments provided by the

ATMS to take advantage of the structure of the constraints for our application. This

formalism allows us to create a compact representation of the temporal constraints

and easily modify the existing algorithms to work on the compact representation.

30

Figure 3-1: The component STN distance graphs of the TPN in Figure 2-1.

(a) Collect Sample Component STN

C

A B E F

D

70

-30

100

0

0

0

60

-50

0

0

(b) Charge Component STN

C �

A� B� E � F �

D�

70

-30

100

0

0

050

0

0

0

To provide a high-level overview of the compilation algorithm we begin with the

high-level pseudo-code, presented in Algorithm 3.1. The input to the algorithm is

a DTP or TPN, provided as a labeled distance graph described by events V , edges

W , and variables X. It either reformulates this graph into a minimal dispatchable

form, or signals that the plan is infeasible. A minimal dispatchable form is defined

by Muscettola as a form where local propagations are sufficient to perform real-time

decision making [10]. First, Line 2 prepares a data structure to hold the conflicts of the

labeled distance graph, compactly specifying inconsistent, component STPs. Second,

Line 3 compiles the distance graph into dispatchable form with the Labeled-APSP

algorithm. This step reveals all the implicit constraints of the problem, recording

all the requirements of the input plan explicitly, so that the dispatcher only needs

to perform local constraint propagations at run-time. Finally if there are still some

31

Figure 3-2: The labeled distance graph corresponding to the TPN of Figure 2-1. All
edges not drawn are implicitly valued (∞, {}). The variable x denotes the choice and
has domain {1, 2}.

C

A B E F

D

(70, {})

(−30, {})

(100, {})

(0, {})

(0, {})

(0, {})
(50, {x

=
2})

(0, {x = 2})
(0
, {x

=
2})

(0, {x = 2})

(60, {x = 1})

(−
50
, {x

=
1})

(0, {x = 1})(0, {x
=
1})

consistent component STPs, Line 7 filters the dispatchable graph of unnecessary

edges. Some edges are unnecessary because they are guaranteed to propagate the

same information at run-time, but the dispatcher only needs to propagate the unique

values once, so the redundancy is avoided by removing those edges. This chapter

carefully defines both of these phases of the compilation process, which are directly

taken from Muscettola [10]. This process creates a compact representation because

it avoids the expansion step of Tsamardinos’s work, but instead performs algorithms

analogous to the STP ones, directly on the compact representation given by the

labeled distance graph [19].

This chapter presents the compilation algorithm as follows. First, Section 3.1

motivates the benefits of a labeled encoding with a simple example and provides

an overview of some of the necessary formalism. Next, Section 3.2 develops the

conversion method from TPNs or DTPs to labeled distance graphs, the high-level

representation Drake uses to store and reason over the plans, which uses labeled value

32

Algorithm 3.1 Compilation algorithm for Labeled Distance Graphs

1: procedure Compile(V,W,X)
2: S ← InitConflictDatabase(X)
3: W,S ← Labeled-APSP(V,W, S)
4: if EnvironmentsRemain?(S) then
5: return null
6: else

7: W ← FilterSTN(V,W)
8: return W,S
9: end if

10: end procedure

sets to efficiently store the edge weights of the graph that encode constraints. We then

develop the formalism for using these techniques. Section 3.3 develops environments

to compactly encode the assignments that entail a value. Section 3.4 uses these

to create labeled value sets, which Drake uses to store constraints that depend on

choices. Finally, we develop the two major steps of the compilation algorithm itself,

which use this compact representation. Section 3.5 provides a labeled analog to the

APSP algorithm Muscettola uses to compile STPs to dispatchable form. Section 3.6

then removes extra edges the compiler does not need at run-time to create a minimal

dispatchable labeled distance graph.

3.1 Introduction to Value Sets and Labeling

Drake’s key innovation is the compact representation it uses to represent the fam-

ily of component STPs. We observe that for real problems, the edge weights of the

distance graph encoding each component STP are not unique for each component

problem. Rather, the values are loosely coupled to the choices selected for the plan.

Therefore, we can avoid the explicit representation of each complete combination of

choices explicitly and unify the values for each edge into a single structure called

a value set. The function of the value set is to losslessly store the values provided

and answer queries about the value for that edge for any particular set of choices.

Although the value set in general could exactly mimic the expansion Tsamardinos’s

33

work uses, we take the opportunity provided by the unified representation to make

that data structure more compact by developing an implementation called a labeled

value set. Then we represent the entire family of component STPs as a single graph,

where each edge has a labeled value set instead of a numeric value. We can easily

recreate every component STP by querying all the labeled value sets, but in prac-

tice, Drake performs further computations directly on the value sets. By providing

generic methods for operating on the labeled value sets, we can easily modify the

standard STP compilation routine developed by Muscettola to simultaneously derive

the implicit constraints of the problem and the interaction of those constraints with

the choices.

The labeled value sets are made efficient by introducing ideas from the Assumption-

based Truth Maintenance System (ATMS). That work develops environments, which

specify a subset of the choices. Each numeric value is labeled with an environment

that specifies the minimal conditions that logically entail the value. Therefore, we

can avoid repetitively recording a value that is implied by only a subset of choices.

For example, if a particular edge weight has only two unique values and depends

on the assignment to only one choice, we can record this with exactly two values,

instead of repeating those two values with an exponential number of copies, for every

combination of assignments to the other choices. Furthermore, the ATMS provides

guidance on how to perform operations with labeled values, directly carrying the

choices through the computations that Drake’s compiler and dispatcher must per-

form.

As an introduction to value sets and labeling techniques, we present two examples

that motivate their use. First, we identify how Tsamardinos’s algorithm performs

redundant storage and calculations, show how Drake uses value sets to reduce the

size of the representation. Second, we provide a simple linear algebraic system that

includes computations similar to those Drake performs, and use labeling to trace the

dependencies of the values through the computations.

Example 3.1 Consider the first step of compiling the TPN in Figure 2-1 with

Tsamardinos’s algorithm. This step creates a distance graph for each component

34

STP that is implied by a complete set of choices, as shown in Figure 3-3. There

are only two component STNs, but in general the number of component STPs is ex-

ponential in the number of choices, requiring significant expansion. Some repetitive

elements in the two graphs are immediately apparent. For example, the events are

all copied between the two graphs and some constraints are identical, such as (A,B)

and (A�, B�). In fact, only the edges touching events C or D are different. An unusual

feature of this graph is that events D and C � are not connected to any events through

edges; this means that their execution time is unconstrained.

The next step of Tsamardinos’s algorithm is to compute the All-Pairs Shortest

Path of each graph. Since many of the edges in the two graphs are identical, the

APSP will redundantly derive many edge lengths, performing unnecessary work. For

example, it will have to independently derive that w(A,E) = w(A�, E �) = 100 twice,

once for each component STP, even though every step in the computation is identical.

The value of choosing between the two component STPs lies in the weights that change

between the two graphs, such as those on (B,C). �

Creating an independent distance graph for each component STP provides a sim-

ple mechanism to encode the values of the edges for each complete set of choices, but

does so at the cost of redundantly storing and reasoning over any similarities of the

graphs. Combining the edge weights of each graph into a single graph with value

sets eliminates these redundancies without reducing Drake’s ability to encode every

implication of the possible choices.

The labeled value set is a general data structure used to record values, where

the values are differentiated by their value and the environment the value is labeled

with. Our implementation needs to define three basic operations: adding a value,

querying for a value, and performing a binary operation on two value sets. During

the addition of new values, our implementation maintains minimality of the value set,

by pruning the set of any values that the query operator can no longer return. The

ability to perform computations directly on the labeled value sets during compilation

and dispatch, and then store them minimally is crucial for labeled value sets to form

the basis of our compact representation.

35

Figure 3-3: The component STN distance graphs of the TPN in Figure 2-1.

(a) Collect Sample Component STN

C

A B E F

D

70

-30

100

0

0

0

60

-50

0

0

(b) Charge Component STN

C �

A� B� E � F �

D�

70

-30

100

0

0

050

0

0

0

Labeled value sets use environments to compactly represent the assignments to

choices that logically entail a value, following their use in the Assumption Based

Truth Maintenance Systems (ATMS). In the ATMS, de Kleer creates environments

to minimally describe the dependence of propositions on assumptions and to derive

the dependencies of new propositions [2]. By working with the minimal dependence

of the values on choices, we avoid redundancy in both storage and computations.

Before rigorously defining the labeling system used by Drake, Example 3.2 illustrates

how to use environments to track dependencies through some calculations that are

similar to those performed during compilation.

Example 3.2 (Environments and Algebra) Consider a set of real valued vari-

36

ables, w, x, y, and z, which are related through the equations

y = w + 5

z = y − x

If we need to repeatedly compute y and z for various pairs of inputs (w, x) we might

consider caching values for later use. For example, if we compute that (w = 2, x =

1) → (y = 7, z = 6) we could cache the value for y. However, we need to remember

what the value for y depends on, so that we do not incorrectly re-use the value.

Here, y depends only on w, so we might record this as “y = 7 when {w = 2}.” The

sufficient conditions for the value and the assumptions it depends on, are placed in

curly brackets and are called the environment under which y = 2.

Then suppose a query is made of the form (w = 2, x = a). We can immediately

see that y = 7 because the assignment in the environment is shared with the query,

regardless of what particular value a might have. The environment {w = 2} is said

to subsume the inputs because all the assignments match, making the attached fact

true. Likewise, if w changes to some novel value, it is clear that we must compute a

new value for y.

The variable z has a more complex dependence on the other values and thus has

a more complex environment. Any value computed for z is dependent upon both w

and x and is labeled with both input values. Hence, the value inherits the union of

the environments for y and x, leading to labels of the form {w = a, x = b}. For

example, the previous query for (w = 2, x = 1) → (y = 7, z = 6) would store the

value z = 6 with label {w = 2, x = 1} because z depends on x directly and on w

through its dependence on y. �

In this example the caching has limited utility because we provided a small prob-

lem. However, Drake expands this technique to a deep linear system with many

layered computations, where separating the dependence saves many redundant op-

erations and reduces the space required to represent all necessary values. The two

primary operations Drake performs on environments are union and tests for sub-

37

sumption, which we formally define shortly. Note that if every set of choices implies

a unique STP, there would be no similarities for this scheme to exploit and the envi-

ronments would be useless. As we will demonstrate, DTPs display enough common

structure for labeling to provide a compact encoding.

3.2 Forming Labeled Distance Graphs

Drake dynamically executes TPNs and DTPs by reasoning about them as families

of component STPs, differentiated by a set of discrete choices. Drake is similar to

Tsamardinos’s work, in that both perform operations on STPs encoded as weighted

distance graphs. However, Drake instead uses labeled value sets to efficiently store

the edge weights and the variation in the weights caused by the choices of the input

problem. We use this new compact encoding scheme to make Tsamardinos’s compila-

tion technique more efficient. First, this section presents an encoding for the choices

of the input problem and define the labeled distance graph, the top level data struc-

ture used in Drake’s compilation technique. We then describe methods for creating

these graphs from TPNs and DTPs. The following section will then build the labeling

formalism this representation requires.

Both types of input problems are defined by families of component STPs, where

the differences between the components are defined by a set of choices. Drake uses

choice variables to formally encode the choices.

Definition 3.3 (Choice Variables) Each choice of the input problem is denoted

by a finite domain variable xi. The variable associated with a choice has one domain

element dij for each possible outcome. X is the set of all the variables for a particular

problem. �

Example 3.4 In the rover TPN in Figure 2-1, there is one choice. We can replace

this with a single variable x. The two choices, collecting samples and charging the

batteries, are encoded with the assignments x = 1 and x = 2, respectively, as seen in

Figure 3-2. �

38

The simple interval constraints of a TPN or DTP have the usual correspondence

to a distance graph. We now define labeled distance graphs, which consist of the

weights of the distance graph associated with the input plan, and the dependence of

the weights on the choices.

Definition 3.5 (Labeled Distance Graph) A labeled, weighted distance graph G

is a pair �V,W �. V is a list of vertices and W is a group of labeled value sets

(see Definition 3.14) with domination function f(a, a�) := (a < a�) (see Definition

3.13), representing the weight function that maps the ordered vertex pair and an

environment (see Definition 3.7) to weights: V × V × E → R, for any vertex pair

(i, j) ∈ V ×V and environment e ∈ E . The set of edges E contains those pairs where

w(i, j) �= ∞, w ∈ W , for some environment. All the labeled value sets in W are

initialized with the pair (∞, {}). �

This definition uses labeled value sets, which are an efficient storage mechanism

for values that vary with different assignments to the choice variables. Differences in

the choices are recorded in environments, summarizing the set of assignments to the

choice variable that entail some consequence. These are formally defined in the next

sections.

The distance graph needs to store only the shortest known path between vertices,

hence the domination function f is the less-than inequality. STP reasoning in gen-

eral requires shortest paths because each path represents an inequality between two

time points, and only the tightest bound is important. Again, we define domination

functions for labeled value sets carefully in the next section, but the key idea is that

the labeled value set exploits the importance of small values to improve efficiency.

Note the choice of the strict inequality; the labeled value set must store exceptions

to the existing values and selecting f(a, a�) ← (a ≤ a�) needlessly creates apparent

exceptions.

Building upon this definition, we now explain how to create a labeled distance

graph representing a TPN. Recall that a TPN consists of a set of events, constraints,

and choices. Algorithm 3.2 converts a TPN into a labeled distance graph. First, Line

39

2 creates the nodes of the graph to be the same as the nodes of the TPN. Second,

Line 3 creates one choice per choice node, and a value for each corresponding to the

outgoing arcs from those choice nodes. Finally, Lines 4-6 encode each simple interval

constraint into the labeled weight function. As usual, each temporal constraint [l, u],

where l and u are real numbers, produces one forward edge with weight u and one

backward edge with weight −l.

The difference between this algorithm and the process of converting a STP into its

distance graph is that here we add environments to each edge. The next section will

define environments formally, but an environment specifies a partial set of choices from

which the constraint logically follows. Setting the environments correctly in the initial

formulation ensures that the following algorithms derive the correct dependencies of

constraints on the choices. Remembering that TPNs are generally hierarchical, the

environment for an edge must specify the assignment for all choices that occur higher

in the hierarchy. This technique ensures that the entire sub-plans of a choice are

mutually exclusive, as required by a TPN.

Algorithm 3.2 Convert a TPN into a labeled distance graph

1: procedure TPNToDGraph(TPN)
2: V ← events of TPN
3: X ← CreateChoiceVariables(TPN)
4: for each temporal constraint in TPN do

5: add weights to W, labeled with all choices higher in the hierarchy
6: end for

7: return V,W, S,X
8: end procedure

Continuing our example from the rover TPN, we demonstrate running TPNToD-

Graph on it.

Example 3.6 The first step of compiling the TPN in Figure 2-1 is to transform it

into a labeled distance graph. The final result is shown in Figure 3-4. The choice node

requires a variable, denoted x, with possible values x = 1 corresponding to collecting

samples, and value x = 2 for charging. The constraints are transformed into distance

graph edges in the usual way: upper bounds are positive distances in the forward

40

direction and lower bounds are negated on backward edges. However, edges along

the path of choices are labeled with the environment for the choice that activates

those edges. Therefore, edges (B,C) and (C,E) are labeled with x = 1, and edges

(B,D) and (D,E) are labeled with x = 2. The other edges are not conditioned on

any choices and are given an empty label to indicate that they represent constraints

that must hold regardless of the which option is selected. Both of the component

distance graphs in Figure 3-3 can be recovered from this compact form, yet there are

no duplicated constraints, as seen in Figure 3-3. �

Figure 3-4: The labeled distance graph corresponding to the TPN of Figure 2-1. All
edges not drawn are implicitly valued (∞, {}). The variable x denotes the choice and
has domain {1, 2}.

C

A B E F

D

(70, {})

(−30, {})

(100, {})

(0, {})

(0, {})

(0, {})
(50, {x

=
2})

(0, {x = 2})
(0
, {x

=
2})

(0, {x = 2})

(60, {x = 1})

(−
50
, {x

=
1})

(0, {x = 1})(0, {x
=
1})

Converting a DTP into a labeled distance graph requires a nearly identical process.

The choices from a DTP are created from the disjunctive clauses. A DTP uses

inclusive-or operators, indicating that the executive needs to enforce at least one

disjunct for the execution to be correct. We can accommodate by creating a variable

for each disjunctive clause and one value for that variable for each disjunct. For

example, if some DTP has a disjunction

41

(A− B ≤ 5) ∨ (A− B ≥ 3) ∨ (A− C ≤ 3) (3.1)

then we could create a single variable x for this choice, with a domain {1, 2, 3}, for

each disjunct, respectively. The choice variable notation implies an exclusive choice,

implying that it must commit to a single disjunct, which is not implied by a DTP.

This strategy is correct, however, because the choice selects the single disjunct, Drake

satisfies to ensure correctness, without prohibiting any of the other disjuncts from be-

ing satisfied incidentally. For example, if x = 1, then Drake commits to satisfying

the first constraint, which does not generally prohibit Drake from satisfying the third

constraint. If the executive needed to explicitly reason over satisfying multiple dis-

juncts from a disjunctive clause, we could instead create a value for each combination

of satisfied clauses. For example, we could create domain values {4, 5, 6} to explicitly

consider satisfying pairs of disjuncts, although Drake does not do this.

With the variables defined, the constraints from DTPs are simply converted into

the labeled distance graph. Non-disjunctive constraints are labeled with empty en-

vironments, specifying that they must always be satisfied. Each disjunctive clause is

labeled with an environment specifying the single variable and value that corresponds

to that disjunct.

This section gave an algorithm to convert TPNs or DTPs into labeled distance

graphs. This step mirrors the first part of Tsamardinos’s compilation algorithm:

to create distance graphs for all the component STPs. Our compact representation

allows Drake to efficiently reason over the choices and temporal constraints. With

this high level goal in mind, the next section provides a full development of labeled

value sets.

3.3 Environments and Conflicts

This section provides the formal definition of an environment and defines the essen-

tial operations performed on them. Drake uses environments to minimally specify the

choices that imply a constraint and to derive the dependence of implicit constraints on

42

the choices. The subsumption operation is used to determine if a particular environ-

ment contains the assignments specified by another, which Drake uses to determine

if a value is compatible with a certain scenario. The union operator is necessary for

computations involving labeled values. The definitions in this section exactly follow

de Kleer’s work and are necessary background to develop the efficient implementation

of labeled value sets described in Section 3.4 [2].

An environment is an assignment to a subset of the choice variables that sum-

marizes the sufficient conditions for some derivation or computation to hold. The

following definition is loosely based on de Kleer’s notation [2]. Drake builds environ-

ments with assignments to choice variables. We do not allow an environment to assign

a multiple distinct values to any variable, in order to maintain logical consistency.

Definition 3.7 (Environment) An environment is a list of assignments to a subset

of the variables in X, written {xi = dij, ...}. There may be at most one assignment to

each variable; hence, an environment of the form {xi = dij, xi = dij� , ...} is forbidden.

A complete environment provides exactly one assignment to each variable in X. An

empty environment provides no assignments and is written {}. We denote the set of

possible environments as E and the set of complete labels as Ec. The length of an

environment is the number of assigned variables, denoted |e|. �

Example 3.8 Given one variable x with a domain of two values (1, 2), the set of

possible environments is E = {{}, {x = 1}, {x = 2}}. This set includes the empty

environment, which makes no assignments, and every possible partial and full assign-

ment to all of the variables. In this case, there are no partial assignments and only two

full assignments. The set of complete environments is both non-empty environments

E� = {{x = 1}, {x = 2}}. �

In the ATMS, a proposition may be labeled by a set of environments, where

each environment logically entails that proposition [2]. Drake gives each proposition

exactly one environment, but the proposition may occur multiple times. This design

decision is made for ease of implementation, and while sufficient for our purposes, is

not required. In fact, de Kleer’s ATMS maintains unique propositions because they

43

simplify some ATMS operations and may provide performance benefits, and therefore,

reintroducing them to our work is an avenue for future research.

Subsumption and union are the fundamental operations Drake performs on en-

vironments. Subsumption is used to determine if one environment provides the re-

quirements of another. Union is the primary way to combine environments to create

new ones.

Definition 3.9 (Subsumption of Environments) An environment e subsumes e�

if for every assignment {xi = dij} ∈ e, the same assignment exists in e�, denoted

{xi = dij} ∈ e�. �

This definition only specifies the inclusion of the assignments from e in e�, but

does not prohibit other assignments to e� for variables which are unassigned in e.

Example 3.10 Given variables x1, x2 with domains (1, 2), then:

• {x1 = 1} subsumes {x1 = 1, x2 = 2}, because the only requirement is that the

subsumed environment has the assignment x1 = 1 from the first environment.

• {x1 = 1} subsumes {x1 = 1}, because the assignments are exactly the same.

• {} subsumes {x1 = 1}, because the first provides no assignments and therefore

there are no requirements on the subsumed environment.

• {x1 = 1, x2 = 1} does not subsume {x1 = 1}, because one of the assignments

of the subsuming label x2 = 1 is not present.

• {x1 = 1, x2 = 1} does not subsume {x1 = 1, x2 = 2}, because the labels disagree

on the assignment to x2. �

From the definition of subsumption, a few useful properties arise. First, all envi-

ronments subsume themselves. Second, every environment is subsumed by an empty

environment, because an empty environment imposes no assignments. Finally, a

complete environment subsumes only itself because every distinct environment of the

44

same length must differ in one or more assignments, and any shorter environment

must not assign one of the variables assigned in the complete environment.

The union operation is used when performing an operation on labeled values,

because the union creates a new environment that contains the assignments of two

environments.

Definition 3.11 (Union of Environments) The union of environments, denoted

e ∪ e� is the union of all the assignments of both environments. If e and e� assign

different values to some variable xi, then there is no valid intersection and the empty

set, ∅, is returned instead. The empty set signifies that there is no environment where

both e and e� hold simultaneously. �

Example 3.12 Let there be variables x1, x2 with domains (1, 2).

• {x1 = 1} ∪ {x2 = 2} = {x1 = 1, x2 = 2}

• {x1 = 1} ∪ {x1 = 1} = {x1 = 1}

• {x1 = 1} ∪ {} = {x1 = 1}

• {x1 = 1} ∪ {x1 = 1, x2 = 2} = {x1 = 1, x2 = 2}. Intersecting an environment

with one that subsumes it always produces the subsumed environment.

• {x1 = 2} ∪ {x1 = 1, x2 = 2} = ∅, because they disagree on the assignment to

x1. �

An important function of an ATMS is the ability to track inconsistent environ-

ments. In our case, an inconsistent environment signals an inconsistent component

STP. Drake must keep track of choices that are inconsistent with one another and

which component STPs are still possible. The standard strategy in an ATMS is to

keep a list of minimal conflicts or no-goods [2]. Tsamardinos’s approach maintained

a list of the valid component STPs. The conflict strategy, which uses environments

to keep a minimal summary of the inconsistent environments, is much more compact.

A conflict is an environment that states the minimal conditions necessary to en-

tail an inconsistency [22]. For example, the compilation process might determine

45

that x1 = 1 and x2 = 1 are contradictory, such that they cannot both be selected,

regardless of any other assignments to other choices. Then, {x1 = 1, x2 = 1} is a

conflict of the system. All environments subsumed by this conflict also contain the

inconsistency and are invalid. For example, {x1 = 1, x2 = 1, x3 = 1} is inconsistent

because it is subsumed by the conflict. All environments not subsumed by the conflict

do not contain the inconsistency and are not known to be invalid. Therefore, conflicts

are used to summarize the inconsistent environments.

In contrast, kernels summarize the environments that are currently known to be

valid. An environment subsumed by a kernel, by definition, is not subsumed by any

conflicts and therefore is consistent [22]. A kernel must differ from each conflict by at

least one assignment to ensure that no environment is subsumed by both a conflict

and a kernel. The minimal kernels of the conflict {x1 = 1, x2 = 1} are {x1 = 2} and

{x2 = 2}, assuming that both variables have domains {1, 2}, because they represent

the two ways of avoiding the conflict. In this example, {x1 = 2, x3 = 1} is consistent

because it is subsumed by the kernel {x1 = 2}.

The other important function of the conflict database is to determine if all the

complete environments have been invalidated, or of a certain conflict would do so. For

example, assume there is a variable x1 ∈ {1, 2}. If both {x1 = 1} and {x1 = 2} are

conflicts, then regardless of any other variables in the problem, there are no complete

assignments possible, because neither possible assignment for a variable is feasible.

Therefore, the entire problem is inconsistent. During compilation and dispatch, Drake

must keep track of whether there are choices available so it can avoid failure where

possible, and signal the failure if necessary.

Our algorithms use a database of conflicts and kernels to determine if an environ-

ment is known to be valid. In our pseudo-code, we call the conflict database data

structure S. This database keeps a set of minimal conflicts and updates the kernels to

be consistent with the conflicts. The database is used throughout the algorithms to

test for environment consistency. We now define the functions Drake uses to interact

with the conflict database, but leave details of the algorithms required to Williams

et al. [22].

46

The two fundamental operations in Drake are testing an environment for con-

sistency and adding conflicts. EnvironmentValid?(S, e) returns false only if the

environment e is subsumed by a conflict and is inconsistent. Otherwise it returns

true. AddConflicts(S, e) adds the environment e as a conflict. It returns true if

there are no remaining consistent complete environments, otherwise it returns false.

The function EnvironmentsRemain?(S) returns a Boolean value, and returns

true if any consistent complete environments remain. This is easily testable because it

is true exactly when there is at least one kernel of the system. ConflictsPossible?(S, l)

queries the database of whether making conflicts from the environments in list l would

invalidate all the complete environments. For example, when there are no conflicts,

{x1 = 1} can be a conflict without removing all the options because {x1 = 2} is still

available. Then later, {x1 = 2} is not a possible conflict because, as described before,

that would remove all the possible complete environments. This function would then

allow Drake to avoid creating that conflict. The function takes a list of environments

because the dispatcher may need to test whether it is allowed to add multiple conflicts

simultaneously.

CommitToEnv(S, e) modifies the conflict database to ensure that all the re-

maining consistent, complete environments are subsumed by e. To accomplish this,

the function creates conflicts as necessary. For example, if there were no conflicts

and the dispatcher took an action that required {x1 = 1}, then it would commit to

that environment and remove any contradictory options from consideration. In this

example, this requires creating a conflict for {x1 = 2}.

The function InitConflictDatabase(X) simply initializes a new conflict database

to have no conflicts for variable descriptions X.

Environments provide a technique for Drake to succinctly state the dependence

of a proposition on the choices of the plan. The subsumption and union operations

are used when determining if a labeled value is appropriate and during computations

on labeled values, respectively. Similarly, the conflict database provides an efficient

mechanism to determine which component STPs are consistent and to reason about

steps that might invalidate them. With this formalism defined, we can explain the

47

implementation of labeled value sets.

3.4 Labeled Value Sets

This section describes in detail the implementation of labeled value sets. We describe

this implementation carefully before moving on to the compilation algorithm because

the compact representation is the core contribution of this work. This also allows us

to explain where the details of the implementation impact the higher level algorithms.

The purpose of the labeled value sets is to allow Drake to compactly map from choices

in the input problem to constraints implied by those choices. This section provides

a formal definition and gives algorithms for manipulating the labeled value sets. We

also prove the correctness of the algorithms. With the tools from this section, the

derivation of the compilation algorithm in the remaining sections proceeds naturally.

Section 3.2 informally explained that the labeled value sets only need to keep the

tightest constraints, which are given by the smallest edge weights. Each edge weight

represents an inequality, where for some pair of events A and B and an edge weight

l, B − A ≤ l. If there are two bounds l and l�, where l < l�, then l� specifies a looser

constraint and is not needed. This feature of handling inequalities in an ATMS is

developed by Goldstone, who hibernates propositions that are unnecessary, keeping

them from redundantly entering into computations [7]. We use the same idea to

prune weaker inequalities, when permitted by the environments associated with the

inequalities.

Labeled distance graphs only need the less-than inequality, but at dispatch, ex-

ecution windows also require labeled value sets with the greater-than inequality to

keep the tightest lower bound, which is the largest value. Therefore, we define a

general domination function that specifies the inequality. We say that a tighter value

dominates a looser value.

Definition 3.13 (Domination Function) The domination function f(a, a�) pro-

vides a total ordering over all possible values of a, returning true if a dominates a�.

f(a, a) returns false. For any pair of distinct values a and a�, either f(a, a�) or f(a�, a)

48

must return true. �

Drake only uses strict inequalities for the domination function, which clearly pro-

vide a total ordering over all real numbers. We specify that calling the domination

function with identical arguments should return false because this would allow iden-

tical values to appear different.

Now we can present the definition of a labeled value set. Intuitively, it is a list of

values that are labeled with environments.

Definition 3.14 (Labeled Value Set) A labeled value set for domination function

f(a, a�) is a set A of pairs (a, e) where a is a value and e ∈ E is an environment. �

Drake interacts with labeled value sets through three operations: query, add,

and binary operations. The first two operations read and store to the value set,

respectively. Binary operations are used to derive new labeled value sets from existing

ones.

The query operator is designed to find the dominating value that is appropriate

for some environment. A value might be returned if its environment subsumes the

input environment. Of the possible values, the dominant value is returned. Formally:

Definition 3.15 (Labeled Value Set Query) The query operator A(e) returns ai

from the pair (ai, ei) ∈ A where ei subsumes e and f(ai, aj) = true, for all ej present

in any pair of A where ej subsumes e. If no environment ej subsumes e, then A(e)

returns ∅. �

Adding to the labeled value sets simply requires placing the new labeled value

into the set.

Definition 3.16 (Adding to Labeled Value Sets) Adding the labeled value (a, e),

with value a and environment e to the value set, requires updating the labeled value

set A ← A ∪ (a, e). �

At this stage, the labeled value sets may not be compact because the set might

contain redundant values. The following example illustrates how the structure of

49

domination and subsumption can help prune the value set. We then use this structure

to design an algorithm to add values to the labeled value set that also maintains the

minimality of each set.

Example 3.17 Again, consider variables x1, x2 with domains (1, 2) where A uses

f(a, a�) := a < a�

and is initialized to A = {(5, {})}. A call to A(e) for any environment e ∈ E produces

five because every environment is subsumed by the empty environment. Then suppose

add to the value set that x1 = 1 is a sufficient condition for the value to be three.

Adding the value produces

A = {(3, {x1 = 1}), (5, {})}.

Any query environment that contains x1 = 1 is subsumed by both environments

in the labeled value set, making both values possible candidates. However, three is

dominant over five, and is therefore returned. Querying the labeled value set for other

environments matches the empty environment and returns five. Now imagine that

we add the labeled value (2, {x1 = 1}). Similarly, the new pair is added to the set.

A = {(2, {x1 = 1}), (3, {x1 = 1}), (5, {})}

Notice that A(e) does not return three for any input environment e, because any

e subsumed by the environment of three is also subsumed by the two’s identical

environment, and two dominates three. The value A can be accurately represented

with only the two and five terms, consequently saving space and search time for

queries. �

Now we give a theorem stating that this form answers queries with no loss of

information and prove the correctness of the uniqueness criteria.

50

Theorem 3.18 (Minimality of Value Sets) A valued label set may be pruned of

all subsumed non-dominant values, leaving a minimal set, without changing the result

of any possible query A(e). �

Proof For a labeled value set A, assume for contradiction that there is some pair

(ai, ei) that fails the uniqueness criteria, but cannot be discarded because it is required

to correctly answer the query A(e). If it fails the uniqueness criteria then there is

another pair (aj, ej) where ej subsumes ei and f(aj, ai) = T. The i pair can only

influence the query if it provides the correct returned value. If ai is the proper

returned value, then by definition, ei subsumes e. However, ej must also subsume

e because subsumption is transitive, as is easily demonstrated by considering the

assignments implied by subsumption. Then, both ai and aj are candidates responses,

and we would select the dominant value, aj. Since ai would not be selected for any

environment e, it could have been discarded, which contradicts the assumption. �

Algorithm 3.3 provides an incremental update rule for adding values to labeled

value sets, maintaining a minimal representation by removing all values that cannot

be returned by any query, as motivated by Example 3.17. The input to the function

is an existing labeled value set A, the new labeled value set B, which may be non-

minimal, and the domination function f for A. The output is the labeled value set,

updated with the new labeled value if it is useful and can be returned, and any values

the new value supersedes are pruned. The outer loop simply processes each value of

the new value set B.

To illustrate this algorithm, reconsider the last step of Example 3.17. In that

example, the labeled value set is {(3, {x1 = 1}), (5, {})} and we need to add the value

(2, {x1 = 1}). The algorithm proceeds in two steps. First, Lines 3 - 7 search through

the existing set and make sure that the new value’s environment is not subsumed by

the environment of any dominant values. If so, the new value is not needed and the

algorithm returns without modifying A. The environment of the new value, {x1 = 1}

is subsumed by the identical environment in the labeled value set, but the value 3 is

not dominant over 2, so this condition is not triggered and the value is useful, and

51

should be added to the set.

If the value needs to be kept, Lines 7 - 12 find and remove any pairs whose

environments are subsumed by the new value’s environment and dominated by the

new value. In this example, the new labeled value subsumes the environment and

dominates the value (3, {x1 = 1}) from the labeled value set because the environments

are identical, and 2 < 3. Therefore, this value is removed from the labeled value set

after the new value is added. The labeled value (5, {}) remains because {x1 = 1}

does not subsume {}. Finally, Line 13 adds the new value to the possibly reduced

set, and returns, producing the expected result given in Example 3.17.

Drake uses this function whenever values are added to labeled value sets to main-

tain the compactness of their representation.

Algorithm 3.3 Add new elements to a labeled value set, maintaining minimality.

1: procedure AddCandidates(A,B, f) � Add labeled values in B to A
2: for (bi, ei) ∈ B do � Loop over new values
3: for (aj, ej) ∈ A do � Test if new value is needed
4: if (ej subsumes ei)&&(f(aj, ai) == T) then
5: continue A � Not needed, continue to next value
6: end if

7: end for

8: for (aj, ej) ∈ A do � Check all old values
9: if (ei subsumes ej)&&(f(ai, aj) == T) then
10: A ← A \ (aj, ej) � Old value redundant, prune
11: end if

12: end for

13: A ← A ∪ (ai, ei)
14: end for

15: return A
16: end procedure

The final step in developing the formalism for these structures as an efficient value

storage technique is to define operations on them. We require a way to calculate

C = g(A,B) for arbitrary functions g where A,B, and C are all labeled value sets.

During compilation, Drake uses the value sets to store edge weights and needs to

compute C = A+B. However, we develop this operation generally because Chapter

5 uses it to apply several different propagation rules. First, we show a technique for

52

performing operations on individual pairs of values with environments. This technique

is directly inspired from de Kleer’s work [2].

Theorem 3.19 (Operations on Values with Environments) For some pair of

labeled values (a, ea) and (b, eb) from the labeled value sets A and B, any deterministic

function of two inputs g produces a labeled pair (g(a, b), ea ∪ eb). �

Proof If ea is an environment for a, meaning that ea entails a, and likewise eb is an

environment for b, then any deterministic function of a and b is entailed by the union

of all the assignments in ea and eb. �

The union of the input environments may produce an empty set if the environ-

ments for a and b have contradictory assignments, indicating that the value g(a, b) is

never logically consistent. For example,

(4, {x = 1}) + (2, {y = 1}) = (6, {x = 1, y = 1})

In this case, the new value of 6 is labeled with a new environment that requires

the assignments to both x and y given by the input environments. In contrast,

(4, {x = 1}) + (2, {x = 2}) = (6, ∅)

The environment is not possible because the two input environments assign the

variable x to have different values. Therefore, this value is never appropriate and the

pair should be discarded. In general, the new value results from applying the function

g to the input values and that the new environment is always the union of the two

input environments.

Applying binary operations to entire labeled value sets requires taking the cross

product of the input sets. This is justified by Theorem 3.20.

Theorem 3.20 (Binary Operations on Labeled Values) For two labeled value

sets A and B containing complete representations of their respective values, a set

53

C = g(A,B) for some deterministic function g is defined by the set of candidate

values (g(ai, bj), eai ∪ ebj) for all i, j. �

Proof Since the list of values ai and bj are the only possible values under any

environment, the output of a deterministic function must come from the evaluation

of the cross product of those lists. As given in Theorem 3.19, the union of their

environments is the environment for each new value. Alternatively, the definition of

the correct values for C is

C(e) = g(A(e), B(e))

where for an input environment e we query for the correct values of A and B, then

compute function g. To pre-compute the result for all environments, setting e =

eai ∪ ebj puts the least possible requirements on e while being certain that the input

values are entailed by the environment of the result. �

We need one further step to derive an algorithm for performing binary operations

on labeled value sets; Theorem 3.19 specifies the new labeled values that define the

new set, but does not specify how to create a minimal representation of C that consid-

ers the domination function for C. However, this is precisely what AddCandidates

is designed to do. We compute the candidate values by applying g to the cross prod-

uct of the values of the two input sets and incrementally add the candidate values to

a new set. Algorithm 3.4 implements this technique for labeled value sets, computing

all the terms of the cross product with a double loop and adding each value with a

valid environment into a minimal set. Line 2 initializes C with an empty value set.

To illustrate this algorithm, consider performing the operation

{(5, {}), (3, {x = 1})}+ {(6, {}), (5, {x = 1}), (3, {y = 1}), (2, {x = 2})}

where the domination function is f :=< and {x = 1, y = 1} is a conflict of the

system. Lines 3-11 loop over all pairs of values from A and B to create the cross

54

product of values. The actual candidate value provided by the function g and the

union of the environments are computed on Lines 5.-6. In this case, the candidates

are:

(11, {}), (10, {x = 1}), (9, {x = 1}), (8, {x = 1}), (7, {x = 2}), (8, {y = 1}), (5, ∅), (6, {x = 1, y = 1})

The next step is to ensure that we only add values to the new set if the environ-

ment is not known to be invalid. In this example, the value (6, {x = 1, y = 1}) has

an environment that subsumes the conflict of the system, so this value is discarded.

Additionally, non-existent environments are also removed, so (5, ∅) is removed at this

stage. Line 7 checks both these conditions before Line 8 updates C. Finally, the can-

didates are added to the new labeled value set, and during this process (10, {x = 1})

and (9, {x = 1}) are discarded because they is not needed in a minimal representation

of a labeled value set because of the value (8, {x = 1}). Therefore, the final result is:

C = {(11, {}), (8, {x = 2}), (7, {x = 2}), (8, {y = 1})}

Algorithm 3.4 Calculate the results of a binary operation on a minimal dominant
labeled value set.
1: procedure LabeledBinaryOp(A,B, f, g, S) � Compute C ← g(A,B)
2: C ← {}
3: for (ai, ei) ∈ A do

4: for (bj, ej) ∈ B do

5: cij = g(ai, bj) � Calculate the candidate
6: eij = ei ∪ ej
7: if (eij �= ∅) ∧ EnvironmentValid?(eij) then � Keep if valid
8: C ←AddCandidates(C, {(cij, eij)}, f)
9: end if

10: end for

11: end for

12: return C
13: end procedure

This section has defined labeled value sets, a compact representation for values

55

that depend on assignments to discrete values. These structures also use the ordering

of the value, formalized as domination, to represent the labeled value sets with a

minimal set of labeled values. We also defined how to add to value sets, query them

for values, and perform mathematical operations on them, while maintaining the

minimality of the representation. With these definitions, we have defined all the

necessary tools to derive Drake’s compilation algorithm. Labeled value sets are a

powerful representation for ordered values, which we use to store the edge weights

in labeled distance graphs and other temporal bounds used during compilation and

dispatch. This data structure relies heavily on prior work in ATMS, and underlies

the compact representation that provides the performance improvements of this thesis

[2, 7]. Furthermore, the operations we have defined here allow us to simply integrate

this data structure into existing algorithms. The following section uses these functions

to define a variant of the All-Pairs Shortest Path algorithm for labeled distance graph,

which we use as the first phase of the compilation algorithm.

3.5 Labeled All-Pairs Shortest Path

Next, we consider how to compute the dispatchable form of labeled distance graph.

Recall that Muscettola proved that compiling to dispatchable form involves making

all the temporal relationships between the events explicit. Then we trim redundant

constraints where, at compile-time, we can remove some edges without affecting the

deductions made by the dispatcher. The constraints are exposed by applying a variant

of the Floyd-Warshall All-Pairs Shortest Path algorithm, which is developed in this

section [1]. The labeled distance graph is a compact representation of all the initial

component STPs, so a single run of this new algorithm compactly computes all the

compiled component STPs in a single step, replacing Tsamardinos’s need to compile

them individually. The standard Floyd-Warshall algorithm is almost sufficient to

perform these computations; we only modify it to interact with the labeled value sets

using the operators developed in Section 3.4. Section 3.6 describes the edge filtering

process.

56

One important aspect of Tsamardinos’s technique is that some of the component

STPs may be marked invalid if negative cycles are found by the APSP algorithm,

because a negative cycle implies an inconsistency in the constraints such that the

STP has no solution. Drake identifies these inconsistencies on the fly and creates

conflicts for them. This allows Drake to terminate immediately if all the solutions

are removed and avoid computations only relevant to known inconsistent component

STPs. Avoiding computations for inconsistent environments is a standard technique

for improving efficiency in an ATMS [2]. Recall that the plan is dispatchable if at

least one component STP is dispatchable.

Algorithm 3.5 Labeled APSP Algorithm

1: procedure Labeled-APSP(V,W, S)
2: for i ∈ V do � Cycle through triangles
3: for j, k ∈ V do

4: Cjk ← Wji +Wik � Apply “+” with 3.4
5: if j == k then � Self-loop update
6: S ← CheckForNegCycles(Cjk, S)
7: else � Non-self-loop update
8: Wjk ← AddCandidates(Wjk, Cjk,� <�) � Alg. 3.3
9: end if

10: end for

11: end for

12: return W,S
13: end procedure

14: procedure CheckForNegCycles(Cjk, S)
15: for (ai, ei) ∈ Wjk where ai < 0 do � for all negative cycles
16: S ← AddConflict(S, ei) � find inconsistent environments, Sec. 3.3
17: if EnvironmentsRemain?(S) then � Sec. 3.3
18: signal inconsistent DTP
19: end if

20: RemoveFromAllEnv(ei)
21: end for

22: return S
23: end procedure

The Labeled All-Pairs Shortest Path Algorithm is based on the Floyd-Warshall

and is shown in Algorithm 3.5. Recall that the Floyd-Warshall algorithm updates

the shortest paths by looking for a route j → i → k that provides a smaller weight

57

than the weight on the existing edge j → k. The base Labeled-APSP algorithm

is nearly identical to the standard Floyd-Warshall algorithm [1]. There are three

differences. First, the addition required to derive new path lengths is computed on

labeled value sets, so the labeled value set operation is used. Second, self-loops are

not stored, but are checked for negative cycles to find inconsistent component STPs.

Third, the non-self-loop candidates are added to existing labeled value sets with the

AddCandidates operation.

Figure 3-5: A simple example of running Labeled-APSP. Unlabeled values have an
implicit empty environment. For example, 10 represents (10, {})

(a) Input labeled distance graph

A B

C

5

0, (−2, {x = 1})

3

4, (3, {x = 2})

10

(3, {x = 2}), 4
(2, {x = 1}),

(b) Output APSP labeled distance graph

A B

C

5

0, (−2, {x = 1})

3

4, (3, {x = 2})

8

(3, {x = 2}), 4
(2, {x = 1}),

We can illustrate this algorithm by compiling the small distance graph in Figure

3-5 with a single choice x ∈ {1, 2}. Stepping through each step of the Floyd-Warshall

algorithm is tedious for even three nodes, so we present selected steps. The outer

58

for-loops iterate through triangles of the graph, deriving shorter path lengths. Line

4 computes the path lengths that two sides of the triangle imply for the third with

the labeled binary operation function given by LabeledBinaryOp, instead of the

scalar operation. Line 6 checks for negative cycles when creating self-loops to detect

inconsistencies. Finally, Line 8 stores any derived values not on self-loops, by updating

the old labeled value set with the newly derived values.

In our example, consider the non-self-loop update steps. Only the labeled value

sets on edges (A,C) and (C,A) are revised. First, w(A,C) is revised with w(A,B) +

w(B,C). The only candidate pair is (8, {}), which has a shorter path than the existing

value (10, {}), while having the same environment, so the old value is replaced. Now

w(C,A) is revised with w(C,B) + w(B,A). Each of those weights has two labeled

values, leading to the candidate values in the following table

Source (wCB, lCB) Source (wBA, lBA) Candidate (wCA, lCA)

(4, {}) (0, {}) (4, {})

(3, {x = 2}) (0, {}) (3, {x = 2})

(4, {}) (−2, {x = 1}) (2, {x = 1})

(3, {x = 2}) (−2, {x = 1}) (1, ∅)

The first line shows the derivation of a 4 with an empty environment, where the

empty environment is inherited from both the inputs. The second and third line

show the propagation of a labeled value through a value with an empty environ-

ment, producing a labeled value with the sum of the values and the same non-empty

environment. The final line does not receive an environment because the two envi-

ronments give competing values for x and their union is therefore the empty set. The

remaining three pairs are first stored in Cjk and are then merged into the labeled

value set for w(C,A). Note that the value of 4 in the table is not strictly necessary,

because the component STPs actually assign x to have some value. Since both values

of x have dominant entries in the table, no actual component STP uses the value of

4. Therefore, (4, {}) is not necessary in a minimal representation, but our algorithms

do not identify this, because this conclusion requires reasoning about more than two

59

labeled values simultaneously. We do not repair this shortcoming, but we give some

further discussion of this issue in Chapter 7.

No further propagations update any of the labeled value sets and the updated

graph is shown in Figure 3-5. To illustrate the self-loop update, consider computing

the self-loops for C created by following the path to B. This path induces (7, {})

and (6, {x = 2}) self-loop candidates for C. Since neither one is negative, there are

no inconsistencies found by CheckForNegCycles. If there was a negative edge

weight, Line 16 would make a conflict for it, and then return failure if all the environ-

ments are inconsistent. If there remain consistent environments, signaling that some

component STPs may be dispatchable, then Line 20 calls RemoveFromAllEnv,

which we do not provide pseudo-code for, but which removes from every labeled value

set, every labeled value whose environment is subsumed by the new conflict to avoid

storing information about inconsistent STPs.

This variant of the Floyd-Warshall algorithm does not have polynomial run-time

because the number of pairs in the labeled value sets is not polynomially bounded.

Instead, the worse case bound is the number of component STPs of the input plan,

multiplied by the O
�
N3

�
of Floyd Warshall.

Now we can prove the correctness of this algorithm. The proof is somewhat clearer

if we consider running the APSP algorithm first, then performing the post-processing

as first suggested. However, the version presented is more efficient because it avoids

performing any propagations with values for inconsistent component STPs.

Theorem 3.21 The Labeled-APSP function shown in Algorithm 3.5 produces a

labeled representation of the APSP of all the consistent component STPs of the input

DTP. �

Proof The computation of the APSP form of the graph depends only upon the cor-

rectness of the Floyd-Warshall algorithm and on the operations of labeled value sets.

The requirement to derive the shortest paths by definition means that all edge weights

are dominant with f(a, a�) ← a < a�. The only operation required on labeled sets is

addition, which is proved correct by Theorem 3.19. All the invalid component STPs

60

are identified and discarded by negative self-loop edge weights, as in the unlabeled

case. �

Having completed our presentation of the labeled APSP algorithm, it is instructive

to re-interpret Tsamardinos’s algorithm within the new terminology. Tsamardinos’s

technique separates the representation of the STP for each complete environment,

removing any need to explicitly represent the environments. The benefit of handling

the environments in the new method, however, is that each calculation done with a

partial environment derives the same information as repeating that propagation in all

the component STPs whose complete environments are subsumed by the incomplete

environment. In general, this can lead to exponential savings in the number of com-

putations, where the exponent is the number of unassigned variables in the partial

environment. Therefore, we can think of each propagation performed by the labeled

algorithm on a partial environment to be equivalent to a batch of operations across

the component STPs.

The idea of batching leads to a characterization of the performance of the la-

beled algorithm. If there are N choices of order d, then Tsamardinos’s algorithm

immediately creates dN component STPs individually. Instead, the labeled algorithm

only splits the environments as necessary to represent distinct values. In the worst

case, the labeled algorithm might derive a different weight for each complete envi-

ronment for every edge, leading to the same storage requirement as Tsamardinos’s

work. However, as we show empirically later, most real problems include limited in-

teractions between the constraints because the component STPs are often related and

not tightly constrained. Instead, the number of distinct environments in the graph,

and therefore the number of values in the labeled value sets, is only exponential in

the length of the longest label in the compiled graph, O
�
dmax |e|�. If the choices do

not interact to create unique component STPs, the environments might be short,

leading to a small number of total values in each edge’s labeled value sets. Dechter

quantifies a similar effect in general constraint satisfaction problems by computing

the tree-width of a constraint problem, representing the true complexity of the inter-

actions of the constraints. While constraint problems are easily solved in time and

61

space exponential in the total number of variables, advanced and/or search graph al-

gorithms can be reduced in both time and space complexity to be exponential in only

the tree-width [3]. Compiling a plan for dispatch is simply constraint propagations,

so it seems reasonable that a more complex algorithm than Tsamardinos’s explicit

expansion, like Drake’s, can see similar reduction in the exponent.

This section used labeled value sets to derive an efficient algorithm to compute

the All-Pairs Shortest Path of a graph with weights that depend on the selection of a

set of choices from a TPN. We also showed the simplicity of modifying the standard

Floyd-Warshall algorithm to work with the compact representation. We also gave

some theoretical evidence for its performance benefits over prior work.

3.6 Pruning the Labeled Distance Graph

Muscettola et al. developed a post-processing step for dispatchable networks to prune

redundant edges [10]. Although the APSP form of the graph is dispatchable, at run-

time, many edges are guaranteed to re-propagate the same values in a way that can

be identified at compile time. Pruning these edges can drastically reduce the space

needed to store the solution and the number of propagations necessary at run-time,

without affecting the correctness of the dispatcher. This section develops a direct

extension of this useful technique for the labeled graphs [10].

The following theorem, reproduced from Muscettola’s work, identifies the edges

that may be removed. Essentially, whenever there is a triangle in the graph that has

the same weights on one edge as on the sum of the other two edges, then one of the

edges is not necessary.

Example 3.22 For example, Figure 3-6 shows a small graph fragment. In this graph,

edge (A,C) is dominated by edge (B,C), because the same bound is propagated.

Specifically, say A is executed at time t = 0. Then, B must be executed before t = 5

and C must be executed before t = 8. Whenever B is executed, the outgoing edge

produces a constraint that C happens within three time units, which ensures that C

executes before time t = 8. The bound of 8 cannot be broken without first executing

62

B, and a tighter bound is created through the edge (B,C). Therefore, the edge (A,C)

is not needed for correct run-time deductions. �

Figure 3-6: An example of edge domination. Edge (A,C) is dominated by the other
edges of the triangle.

A B

C

5

38

Generally, we can summarize domination with the following theorem:

Theorem 3.23 (Edge Domination[10]) Consider a consistent STN where the as-

sociated distance graph satisfies the triangle inequality.

1. A non-negative edge (A,C) is upper-dominated by another non-negative edge

(B,C) if and only if w(A,B) + w(B,C) = w(A,C).

2. A negative edge (A,C) is lower-dominated by another negative edge (A,B) if

and only if w(A,B) + w(B,C) = w(A,C). �

This theorem is summarized by Figure 3-8. Intuitively, upper domination holds

if the weight propagated through positive weight path A → C is exactly propagated

through some other path A → B → C and if the propagation is guaranteed to create

the bound in time for the executive to enforce it. The non-negativity ensures that

the propagation from B to C actually happens before it is needed. Lower domination

is the inverse. The APSP form of the dispatchable graph always satisfies the triangle

rule, so the domination test is a sufficient condition to allow edge pruning. The only

necessary extension Drake requires is to derive the equivalent rule in the labeled case,

as demonstrated in Example 3.24.

63

Example 3.24 If we add environments to the previous example, as shown in Figure

3-7, the domination is unchanged. The propagation through the 5 and 3 edges creates

a bound with an empty environment, which is at least as tight as the one created by

the 8. Since the 8 bound has an environment subsumed by the union of the other

two value’s environments, we know that the domination holds in all the component

STPs where (A,C) is entailed. �

Figure 3-7: An example of labeled edge domination. Edge (A,C) is dominated by
the other edges of the triangle.

A B

C

(5,{})

(3,{})(8, {x = 1})

We generalize this to a new theorem.

Theorem 3.25 (Labeled Edge Domination) Consider a consistent labeled dis-

tance graph that satisfies the triangle inequality. Consider a triangle of edge weights,

(wAB
i , eAB

i) ∈ W (A,B), (wAC
j , eAC

j) ∈ W (A,C), and (wBC
k , eBC

k) ∈ W (B,C).

Figure 3-8: Schematic of edge pruning rules for STPs.

(a) Upper Domination. Non-

negative edge AC is upper-

dominated by non-negative edge

BC if w(A,B) + w(B,C) =

w(A,C)

A

B

C

+

+

(b) Lower Domination. Nega-

tive edge AC is lower-dominated

by edge weight AB if w(A,B) +

w(B,C) = w(A,C)

A

B

C

−

−

64

1. A non-negative, non-zero edge weight wAC
i is upper-dominated by another pos-

itive, non-zero edge weight wBC
k if and only if wAB

i + wBC
k = wAC

j and (eAB
i ∪

eBC
k) subsumes eAC

j

2. A negative, non-zero edge weight wAC
i is upper-dominated by another nega-

tive, non-zero edge weight wAB
k if and only if wAB

i + wBC
k = wAC

j and (eAB
i ∪

eBC
k) subsumes eAC

j �

Proof The edge is dominated if the triangle equality is exactly met under all neces-

sary environments. Since we seek to dominate edge (A,C), in both cases we need the

environment of both sides of the equality to hold in at least all the edges of the value

used for (A,C). As shown previously, the environment of the sum of two labeled

values is given by the union of their environments. Subsumption tests whether this

union holds for all the necessary labels. �

We add the non-zero clause to the domination requirement to ensure that our

dispatcher is guaranteed to obey the ordering for the constraint propagations.

Except for the alteration of the domination theorem, the filtering algorithm is

identical to the one given in Muscettola’s work, presented in Algorithm 3.6 for com-

pleteness. The algorithm searches for dominated edges. A subtle point is that the

entire searching process must complete before removing any edges. Edges are not

deleted immediately because one edge may be dominated by another edge that is

scheduled for removal, and maximal filtering does not occur if the edges are removed

immediately after they are identified.

The algorithm proceeds as follows. Line 2 searches over all edges with a shared

vertex. If the two edges are mutually dominant, then Lines 3-6 arbitrarily mark

one for deletion, unless one was marked previously, in which case the marking is

left unchanged. Otherwise, Lines 7-9 mark the single dominated edge for deletion.

Finally, Line 11 removes all the marked edges.

Example 3.26 We illustrate the filtering algorithm by continuing from the APSP

labeled distance graph shown in Figure 3-5. Again, because of space considerations

65

Algorithm 3.6 Filter the compiled Labeled APSP graph of unnecessary edges [10].

1: procedure FilterSTN(V,W)
2: for each pair of intersecting edges weights in G do

3: if both dominate each other then
4: if neither is marked then

5: arbitrarily mark one for elimination
6: end if

7: else if one dominates the other then
8: mark dominated edge for elimination
9: end if

10: end for

11: remove all marked edge weights from graph
12: return W
13: end procedure

we only identify the dominated edges. First, W (C,A) = (8, {}) is dominated by the

path C → B → A because the weights are the same and all the environments are

empty. Likewise, the 4 on (C,B) and the 0 on (B,A) dominate the 4 on (C,A).

Considering the labeled edges, the weight 3 on (C,A) is dominated by the 0 on

(B,A) and the 3 on (C,B) because the weights satisfy the triangle inequality and

({} ∪ {x = 2}) subsumes {x = 2}. Each of these edges is not mutually dominated,

so each is marked during the search process and then deleted at the end. As in this

case, it is common for many of the derived weights of the labeled APSP graph to be

removed through this filtering process, resulting in Figure 3-9. �

Figure 3-9: The filtered DTP from Example 3.26.

A B

C

5

0, (−2, {x = 1})

3

4, (3, {x = 2})(2, {x = 1})

To summarize, Muscettola’s filtering algorithm is a post-processing step for dis-

66

patchable networks, designed to reduce the space required to store the dispatchable

graph and the number of propagations required during dispatching [10]. This sec-

tion adapts that algorithm to work on labeled distance graphs. Note that there is

another algorithm for STPs, which interleaves the APSP computation and edge fil-

tering, avoiding the expansion and contraction that is characteristic of the APSP

and filtering process [17]. This other algorithm could likely be modified with our

labeling technique, and we briefly discuss the possibility in Chapter 7. We did not

base our implementation on this algorithm because it requires a more complex graph

algorithm, but that algorithm has a lower run-time. This filtering process completes

our development of a compilation algorithm for labeled distance graphs.

3.7 Summary of Compilation Algorithm

This chapter has developed an efficient technique for compiling TPNs or DTPs into a

dispatchable form. This method uses a labeling system to provide a compact repre-

sentation of the dependence of the temporal constraints of the problem on the choices

in the input problem. We developed a formalism for the compact representation, la-

beled distance graphs and labeled value sets, from prior work on the ATMS [2]. Using

these data structures, we developed a compilation algorithm that required relatively

simple modifications to the standard STP dispatcher developed by Muscettola, yet is

equivalent in expressivity to the explicit enumeration Tsamardinos performs [10, 19].

67

68

Chapter 4

Dispatching Plans with Choice

This chapter presents Drake’s dispatching technique for DTPs and TPNs, where the

input plan is represented as a family of possible STPs, differentiated by discrete

choices. Drake is able to make the discrete choices dynamically, such as selecting

between collecting samples and charging in our rover example. Drake does this by

following Tsamardinos’s strategy of executing the possible compiled, component STPs

in parallel, making it possible for the executive to consider the possible alternatives

[19]. Drake is differentiated by its use of labeled distance graph formalism developed

in Chapter 3 to compactly represent the compiled form of the component STPs.

In this chapter, we describe how to take the original STP dispatcher developed

by Muscettola and update it to work with labeled value sets and labeled distance

graphs [10], yielding Drake’s dispatching algorithm for deterministic problems. This

dispatcher uses labeled value sets to compactly encode the temporal bounds required

for dispatching, in addition to using the labeled distance graph representation of

the dispatchable form. This chapter also modifies Muscettola’s STP dispatcher to

schedule activities, which are components of TPNs used to represent some real-world

processes [8]. Activities require a minor departure from the STP formalism, but are

more realistic in some cases because they specify that durations might need to be

scheduled ahead of time, rather than after the duration is already complete.

Recall that Drake interprets its input plan as a collection of component STPs and

is responsible for scheduling the events of the plan, such that all the constraints of at

69

least one component STP are satisfied. We wish to delay the selection of choices so the

dispatcher is more robust to disturbances at run-time, which requires a more complex

procedure. Tsamardinos approached this problem by maintaining every compiled

STP in memory and by updating them all in parallel, allowing the executive to

immediately determine which choices any particular scheduling decision is consistent

with. Thereby, the executive can begin the execution with all its options available,

and incrementally select between them as the execution unfolds. Crucially, it can

perform this selection without any risk of unknowingly removing all the remaining

choices. Tsamardinos’s changes to Muscettola’s dispatcher maintain the property that

the dispatcher only needs to perform local reasoning for run-time decision making.

Drake adopts this broad strategy, implemented with labeled distance graphs.

The objective of this chapter is to present Drake’s dispatching algorithm for deter-

ministic problems. This algorithm takes as input a labeled distance graph, which has

been compiled and found dispatchable as described in Chapter 3. The output of this

algorithm is an execution of the problem, where each event is scheduled dynamically,

such that all the constraints of one complete set of choices are satisfied. Put another

way, at the end of the execution, Drake must select a single component STP from the

labeled distance graph, where it has satisfied every constraint in that component STP.

Drake should select this component STP dynamically, avoiding committing to choices

earlier than necessary. Finally, the dispatcher restricts itself to local reasoning steps

to keep dispatching tractable, as both Muscettola’s and Tsamardinos’s dispatchers

do.

We present Drake’s dispatching algorithms as follows. First, Section 4.1 reviews

Muscettola’s dispatcher and provides the top-level algorithm for Drake. Then, Sec-

tion 4.2 discusses the techniques Drake uses to compute and store execution windows,

a fundamental operation for STP dispatchers. Section 4.3 presents the algorithms for

selecting which events to execute, providing the second principal part of the dis-

patcher. Section 4.4 describes test for identifying missed execution windows, which is

necessary for flexible execution. Next, Section 4.5 discusses the extensions required

to handle activities. Finally, Section 4.6 concludes.

70

4.1 Dispatching Overview

Muscettola proved that an STP dispatcher can guarantee the correct execution of a

compiled STP through a greedy reasoning process that only performs one-step prop-

agation of temporal bounds [10]. This top level algorithm is quite simple. Essentially,

it loops, searching for events to execute, until either every event is executed or a fail-

ure is detected. Determining if an event is executable only requires determining if the

constraints between the event and its neighbors are satisfied, which is performed in

two steps: testing that the quantitative relationships encoded in the distance graph

are satisfied and testing that the ordering constraints are satisfied.

Recall that in a STP encoded as a weighted distance graph, each edge represents

an inequality between the execution time of two events, specifying the quantitative

relationships in the problem. The compilation process reveals implicit constraints

that the dispatcher needs to obey, also which are discovered and explicitly encoded

as edges. For example, if there is an edge from event A to B with a weight of five,

then that edge represents the inequality

B − A ≤ 5. (4.1)

If, for example, event A is executed at time t = 3, then the dispatcher can substi-

tute in that execution time and rearrange the inequality

B − 3 ≤ 5 (4.2)

B ≤ 8 (4.3)

The result of the rearrangement is an upper bound on the execution time of event

B, created by propagating the execution time of event A one step through the graph.

Propagating through an edge in the other direction yields a lower bound, for example,

if B executed before A. In general, the dispatcher performs this propagation efficiently

by incrementally revising execution windows for each event. Execution windows are

71

the tightest upper and lower bounds found for each event through the propagation of

execution times. Checking that an event is within its execution window is sufficient

to ensure the quantitative constraints are met, if the ordering constraints are also

satisfied. This incremental strategy allows us to propagate the constraints once, rather

than testing all the constraints at each time step an event is tested for executability.

Testing whether the ordering constraints of an event are satisfied is called testing

for enablement. A simple temporal constraint between two events may imply a strict

ordering or may be unordered. For example, a constraint [5, 10] between two events

A and B specifies that B must happen between five and ten time units after A. This

implies ordering, so there is no possibility that A could legally occur before B. On the

other hand, if we place a constraint [−10, 10] between events C and D, this specifies

that the two events must occur within ten time units of each other, but does not

care whether C or D happens first. The dispatcher must test enablement of an event

independently from the execution windows to ensure that all the propagations that

must update the execution windows actually occur before the execution window is

used to justify the execution time of an event.

Drake’s dispatcher relies on these two fundamental tests, developed by Muscet-

tola, for whether an event is executable. Drake adds support for the compact data

structures developed in Chapter 3, storing execution windows in labeled value sets

and using the temporal constraints represented in a labeled distance graph. Drake

also adds reasoning steps to allow it to consider the possible choices available and to

select between them. This is similar to Tsamardinos’s overall approach, but imple-

mented with a conflict database. Finally, it adds support to search for and execute

activities.

Algorithm 4.1 provides pseudo-code for the Drake’s top level dispatcher, called

DispatchLabeledDGraph. The dispatcher uses functions developed throughout

this chapter. The input to the dispatcher is the compiled version of the input problem,

and is specified by the list of events V , the labeled value sets representing the edge

weights, W , and the conflict database, S. It also takes a specification of the activities,

Act, which is defined fully in Section 4.5. Essentially, the activity structure specifies

72

which constraints of the original plan are activities, their environments, and some

identifier of what physical activity it represents. The result of applying the algorithm

is that either the events and activities are executed according to the specification of

at least one of the component STPs or that an error is detected and signaled. We

use the following example to walk through the dispatching process.

Example 4.1 Let us consider dispatching the labeled distance graph corresponding

to the TPN in Figure 2-1, which is replicated in Figure 4-1. Although this graph has

not been compiled into dispatchable form, which is generally a prerequisite for the

dispatcher, it is simpler to draw and still allows us to walk through the algorithm.

Recall that the edge (A,B) is the drive activity of this plan, which would be encoded

in the Act data structure. �

Figure 4-1: The labeled distance graph corresponding to the TPN of Figure 2-1. All
edges not drawn are implicitly valued (∞, {}). The variable x denotes the choice and
has domain {1, 2}.

C

A B E F

D

(70, {})

(−30, {})

(100, {})

(0, {})

(0, {})

(0, {})
(50, {x

=
2})

(0, {x = 2})
(0
, {x

=
2})

(0, {x = 2})

(60, {x = 1})

(−
50
, {x

=
1})

(0, {x = 1})(0, {x
=
1})

The first step of the algorithm, which is on Line 2, initializes sets to hold the

events that have been executed and events that are still waiting on activities. Also,

the initial time is set to zero, arbitrarily, as is typical in the literature. Lines 4-7

73

Algorithm 4.1 The top level dispatching algorithm.

1: procedure DispatchLabeledDGraph(V,W, S,Act,∆t)
2: Vexec, Vwaiting ← ∅ � Initialize event sets
3: t ← 0
4: for i ∈ V do � Initialize execution windows
5: Bu

i ← (∞, {})
6: Bl

i ← (−∞, {})
7: end for

8: (B, S, Vexec, v) ← ExecuteIfPossible(V,W, Vexec, S, B, Vstart, 0) � Execute
start event

9: Vwaiting ← Vwaiting ∪ v

10: while V �= Vexec do

11: S ← CheckUpperBounds(V,W, Vexec, S, B, t) � Alg. 4.4, find violated
upper bounds

12: Vfinished ← GetFinishedActivities()
13: Vwaiting ← Vwaiting \ Vfinished

14: for i ∈ V \ Vexec \ Vwaiting do � Try to events
15: (B, S, Vexec, v) ← ExecuteIfPossible(V,W, Vexec, S, B, i, t)
16: Vwaiting ← Vwaiting ∪ v � store starting activities
17: end for

18: t ← t+∆t � Increment time
19: wait ∆t
20: end while

21: end procedure

22: procedure ExecuteIfPossible(V,W, Vexec, S, B, i, t)
23:

24: if Sremoved ← EventExecutable?(V,W, Vexec, S, B, i, t) then � Alg. 4.3
25: B ← PropagateBounds(V, Vexec,W, S,B, i, t) � Alg. 4.2
26: (S, Vwaiting) ← BeginActivities(V, Vexec,W, S,B, i, t) � Alg. 4.5
27: Vexec ← Vexec ∪ i � Store execution
28: end if

29: return B, S, Vexec, Vwaiting

30: end procedure

74

initialize the upper and lower bounds for all events to provide no restrictions on their

execution times. For example, the start event, A, is given a lower bound of (−∞, {})

and an upper bound of (∞, {}), as are all the other events. The last initialization

step is to execute the start event, A in our example, as shown on Line 8 by calling

ExecuteIfPossible. Although the start event is executable by definition, this

function is used to first determine if an event is executable and greedily execute it if

so. The execution is greedy because this function immediately executes any event it

proves is executable.

The function ExecuteIfPossible is responsible for selecting events to execute

and actually schedule them. First, Line 24 calls EventExecutable?, developed

in Section 4.3, which determines if the event is executable by applying the modified

versions of Muscettola’s criteria, described above. At any time, executing a particular

event might be consistent with all the possible choices, none of the choices, or some of

the choices, which function determines through operations on the conflict database.

For example, if the start event A is executed at time t = 0, then B is not executable

at time t = 10, because the lower bound induced by the edge weight (−30, {}) is

not met. Therefore, this scheduling decision is not consistent with any of the choices

because the bound that is not met has an empty environment, which subsumes all

possible choices. If executing the event at the current time is not consistent with any

of the choices, then it cannot be executed and the algorithm and moves on. In this

example, B cannot be executed at t = 10, and the algorithm moves on.

If the scheduling the event at the given time is consistent with all remaining

possible choices, then no conflicts are added and the event may be executed without

making any commitments. For example, if the executive waits until t = 40, then B

can be executed without removing any choices. However, if the scheduling decision

is only consistent with some of the remaining choices, then conflicts are added to

the database to represent those excluded choices, which the dispatcher removes from

future consideration. For example, the executive might schedule event C out of turn,

before B has executed, which it may only do if it creates a conflict for {x = 1},

signaling that the dispatcher has invalidated that choice.

75

If the event is deemed executable, ExecuteIfPossible continues with the steps

required to actually execute the event. First, Line 25 updates the execution windows

of all neighboring events by performing one-step constraint propagations using an

algorithm developed in Section 4.2. When the start event A is executed in this

example, the connected events, the end of the drive B and event F , would be updated.

Now the dispatcher can search for and execute activities that begin with the

start event, A. Line 26 calls BeginActivities, developed in Section 4.5, which is

responsible for finding any events that begin with the event currently being executed,

and are consistent with the choices available. In this case, the dispatcher finds the

drive activity, which must begin with the start event regardless of which choices the

dispatcher makes. Drake tells the system to asynchronously begin the drive activity,

using the smallest possible time duration of 30 time units, and to return event B

when the drive is complete. Activities are executed asynchronously, so the dispatcher

may continue to schedule events while this activity occurs, but adds B to the list

Vwaiting, because that event cannot be executed until the activity is done. Later, Line

12 performs a system call that polls whether any activities are complete, signaled by

returning B. Line 13 removes the returned event B from Vwaiting, allowing the system

to execute it.

The final step of ExecuteIfPossible is to add the newly executed event to Vexec

to indicate that is has been executed.

Returning to the top level function DispatchLabeledDGraph, the remainder

of the function is a while loop that allows time to pass until all the events are executed.

At each time step, several functions are run. First, Line 11 determines whether any

choices have become invalid because of a missed upper bound on an event. One reason

for this might be an unexpected delay in an activity that prevents an event from being

executed on time. When an upper bound is missed, it may eliminate possible choices

or may cause dispatch to fail. The function CheckUpperBounds is developed in

Section 4.3. For example, if Drake failed to execute B within 70 minutes of executing

event A, it has missed an upper bound that causes the execution to fail because

the bound is necessary for every component STP. Then Drake checks for finished

76

activities as mentioned above. The block beginning on Line 14 searches through the

events that might be executable, specifically, those that have not been executed and

are not waiting on activities to finish, and executes them if possible. Finally, the time

is incremented and the dispatcher waits for time to elapse before beginning again.

In this example, between times t = 0 and t = 30, no events may be executed,

because only B has all its ordering constraints met, but it is still waiting for the drive

to complete. If the activity completes at t = 32, then B is removed from Vwaiting,

and is scheduled at the same time step. Its execution time is then propagated to its

neighbors. Then this sequence repeats until all the the other events are executed. Note

that all events are executed, even though the two paths in this example are considered

mutually exclusive in a TPN. This is acceptable because the activities, which specify

real actions, are only initiated after checking the environments and choices for this

exclusivity. Therefore, while the events for unselected paths become unconstrained

and may be executed at arbitrary times, they remain within the dispatcher for book-

keeping purposes only, and the dispatcher does not accidentally start any real actions

because of them. For example, if event C is executed out of turn, this invalidates

the option to collect samples. Therefore, when B is executed, the dispatcher does

not initiate an that activity because its environment is inconsistent. See Section 4.5

for a more detailed development of the activity reasoning algorithms. Also note that

a DTP does not encode exclusive execution paths so every execution must contain

every event.

The remaining sections of this chapter fill in the details of this top level algo-

rithm. The standard STP-based reasoning is described in two sections. First, Section

4.2 develops mechanisms for performing constraint propagation on labeled distance

graphs, which is needed to compute the execution windows for events. Second, Section

4.3 uses those windows to determine when events may be executed. Third, Section

4.4 presents the tests for violated upper bounds. Finally, we develop the additional

components required for activity dispatching.

77

4.2 Labeled Execution Windows

Drake requires a labeled analogue to the execution windows, developed by Muscettola,

to dispatch events. In STP dispatcher, the execution windows are maintained as

a single upper and lower bound on each event’s execution time [10]. In a DTP,

Tsamardinos computed and stored bounds independently for each component of STP

[19]. Drake modifies these strategies to use labeled value sets, in order to compactly

represent the bounds for all component STPs. These labeled execution windows are

directly computable from the compact representation of the compiled STPs provided

by the labeled distance graph. In an STP, a single value bound is computed by

propagating an execution time through a weighted edge. In Drake, the compact form

of the bound is directly computable by propagating an execution time through and

edge of a labeled distance graph, which is a labeled value set itself, produces another

labeled value set. This representation shows the dependence of the execution windows

and the choices, which the dispatcher uses to determines if an event can be executed

at a particular time.

As with the constraints expressed on edges, Drake only needs to maintain the

tightest bounds for each possible choice, making them naturally expressible through

our concept of dominance. The upper and lower bounds have different dominance

conditions for their labeled value sets; the temporal reasoning Drake performs is only

affected by the lowest known upper bound and the highest known lower bound, which

is why the dominance functions are < and >, respectively. The initial bounds are set

as loose as possible, positive and negative infinity for the upper and lower bounds,

respectively.

Definition 4.2 (Labeled Execution Windows) For a labeled distance graph G,

Drake represents the times each event may be executed with labeled value sets Bl
i

and Bu
i for the lower and upper bounds, respectively. For each event i ∈ V , Bl

i

is a labeled value set with f(a, a�) ← (a > a�) and Bu
i is a labeled value set with

f(a, a�) ← (a < a�). The bounds are collectively referred to as B. All bounds are

initialized with Bl
i = (−∞, {}) and Bu

i = (∞, {}). �

78

Example 4.3 An event might have Bl = ((5, {x = 1}), (2, {x = 2})) and Bu =

((10, {x = 1}), (4, {x = 2})). In this case, there are two possible execution windows.

If the executive selects {x = 1}, the event may be executed in the window [5, 10],

otherwise if {x = 2}, then the window is [2, 4]. �

When an event is executed, Drake updates the execution windows of neighboring

events, reflecting the constraints represented in the graph. In an STP, executed event

times are propagated through outgoing edges to update the upper bounds of neighbor-

ing events and through incoming edges to update lower bounds [10]. Drake performs

the same propagations, substituting labeled operations as necessary. Algorithm 4.2

performs this operation, updating the structure containing the execution windows,

B, with the consequences of executing event i at time t. The other inputs specify the

labeled distance graph, V , W , and S, and the current state of the execution, Vexec

and B. To illustrate this algorithm in action, consider the scenario presented by the

following example.

Example 4.4 Consider the compiled labeled distance graph from Example 3.26,

computed in Chapter 3 and replicated in Figure 4-2. Assume that event A is the

first event to execute, at t = 3, and propagateBounds is called. We also assume

that all the bounds begin with their initial infinite values. The upper and lower

bounds for events A, B, and C are summarized in Table 4.1, before and after the

function call, and are derived below. �

As first step of PropagateBounds, Line 2 sets the upper and lower bound for

the executed event to be the execution time with an empty environment, {}, meaning

that the execution time holds for all choices. In this example, since event A is executed

at time t = 3, its upper and lower bound are both replaced with (3, {}). Next, Lines 3-

6 loop through every other non-executed event, updating the lower and upper bounds.

The addition or subtraction operations are carried out with LabeledBinaryOp, as

appropriate for labeled value sets. MergeCandidates from Algorithm 3.5 ensures

that all of the bounds represented are useful for some possible execution, according

79

Figure 4-2: The filtered, labeled distance graph from Example 3.26.

A B

C

5

0, (−2, {x = 1})

3

4, (3, {x = 2})(2, {x = 1})

to the conflict database S. Note that the domination functions Drake uses to merge

values differs for upper and lower bounds, as specified in Definition 4.2.

In our example, the for-loop block updates the upper and lower bounds of events

B and C in turn. First consider updating the lower bound of event B. The lower

bound is updated with the edge weight on (B,A), subtracted from the execution

time. We can perform the computation of the new bounds as

(3, {})− ((0{}), (−2, {x = 1})) = ((3, {}), (5, {x = 1})) (4.4)

This new labeled value set is merged with the existing one, (−∞, {}), by the

function MergeCandidates, replacing the old value with the new one. The newly

computed pair (3, {}) replaces the old negative infinity because it has the same envi-

ronment and is strictly a tighter constraint. The value of five dominates three, but

the environment is more specific, so the five does not allow us to prune the three. The

upper bound of B is computed as the sum of two values with empty environments,

{}, producing the value of (8, {}) that replaces the old infinity.

Only the lower bound of event C is updated during this function call, because

there is no edge (A,C) to update the upper bound. The lower bound adds a new pair

(1, {x = 1}) to the labeled value set, but does not remove the old value (−∞, {}),

because the environment {x = 1} does not subsume the empty environment.

Theorem 4.5 (Compact Execution Windows) The labeled value sets stored in

80

Algorithm 4.2 Propagate bounds for an executed event.

1: procedure PropagateBounds(V, Vexec,W, S,B, i, t)
2: Bl

i = Bu
i = (t, {})

3: for j �= i, j ∈ V \ Vexec do

4: Bl
j ← MergeCandidates(Bl

j, B
l
i −Wji, S, >) � Alg. 3.3 and Alg. 3.4

5: Bu
j ← MergeCandidates(Bu

j , B
u
i +Wij, S, <) � Alg. 3.3 and Alg. 3.4

6: end for

7: return B
8: end procedure

Table 4.1: The execution windows before and after the update for Example 4.4.

Bound Before After
Bl

A (−∞, {}) (3, {})
Bu

A (∞, {}) (3, {})
Bl

B (−∞, {}) ((5, {x = 1}), (3, {}))
Bu

B (∞, {}) (8, {})
Bl

C (−∞, {}) ((−∞, {}), (1, {x = 1}))
Bu

C (∞, {}) (∞, {})

B and computed with Algorithm 4.2 provide a compact representation for the execu-

tion windows stored on the component STPs. This representation provides the same

information as if the STPs were dispatched individually. �

We can prove this by arguing that the labeled distance graph is a compact repre-

sentation of the constraints, and that our operations on labeled value sets are correct.

Therefore, the labeled propagations derive the correct bounds.

Proof Theorem 3.21 shows that the labeled distance graph is a compact representa-

tion of all the constraints of the compiled, component STPs created by Tsamardinos’s

approach. Therefore, our propagation step begins with all the necessary constraints.

The time of execution is correctly given an empty environment because the execution

time is fixed without requiring any assumptions about which choices are selected.

The propagation computation performs addition or subtraction on the labeled value

sets, which is proved correct by Theorem 3.20, calculating the same candidates as

performing the simple addition or subtraction for each component STP. Finally, the

candidate bounds are stored in labeled value sets, which are lossless by 3.18. The

81

bounds of the component STPs are recoverable by querying the labeled value sets

with the complete environments associated with the component STPs, so the bounds

structures are a complete, compact representation of the execution windows. �

This algorithm provides a way to compute and store execution windows using

Drake’s compact representation of the distance graph. Labeled value sets allow us to

avoid representing the bound independently for each component STP, but instead we

can compactly record the dependence of the bounds on choices. Drake’s propagation

algorithm is essentially the same as Muscettola’s STP one-step propagation algorithm,

except that we have replaced the scalar values with labeled value sets and substituted

in the proper operations. Furthermore, we have proved that they store the same

information as if the STPs were executed independently, as in Tsamardinos’s work.

4.3 Selecting Events to Execute

This section develops the algorithm that Drake repeatedly calls to determine if a

particular event is executable at the current time, given the compiled form of the

input plan and the execution sequence thus far. The execution criteria that Drake

uses are essentially Muscettola’s criteria for executing events in STPs, combined with

Tsamardinos’s technique for selecting choices. These methods from the literature

are adapted to our compact, labeled representations and presented in the function

EventExecutable? in Algorithm 4.3.

Within the STP dispatching framework, Muscettola showed that an event is exe-

cutable if the current time is within its execution window and all its predecessors have

also been executed. These two criteria remain intact in Drake. However, Drake can

select between different possible component STPs at run-time, which might be con-

tradictory, such that no execution can satisfy all of them. Typically, as an execution

unfolds, Drake must make incremental commitments, narrowing from a large array

of initially feasible component STPs, down to one, or a few, that it actually executes

and satisfies all the constraints of. It is possible that Drake might reach the end of an

execution having satisfied the requirements of several component STPs, having some

82

choices that are unresolved, but we consider that a happy coincidence the system

does not care about. We defined correctness as satisfying at least one component

STP and there is no apparent benefit from satisfying more than one component STP

simultaneously, although it is not problematic either. To make these decisions while

guaranteeing correctness, we use Tsamardinos’s strategy. Drake is allowed to execute

an event at any time that time is consistent with at least one of the remaining com-

ponent STPs. After scheduling the event, the component STPs that are inconsistent

with this scheduling are removed from consideration by creating conflicts. If only one

component STP remains, Drake must follow it exactly. If, because of some external

event or unexpected delay all remaining STPs are invalidated, then the execution has

failed and Drake throws an error, requiring re-planning at a higher level.

The prior literature provides sufficient guidance for how to make the execution de-

cisions at run-time; we simply need a strategy for performing this reasoning correctly

and efficiently with our compact encodings. Identifying which remaining component

STPs satisfy Muscettola’s event execution requirements is complicated by the com-

pact encoding, because each component STP’s execution windows are not explicitly

stored. Therefore, we develop an algorithm that tests the execution windows di-

rectly on the compact encoding, using the conflict database to determine whether the

scheduling decision is consistent with any remaining STPs.

Example 4.6 Let us return to Example 4.3, where we consider a single event. If

the executive selects {x = 1}, the event may be executed in the window [5, 10];

otherwise if {x = 2}, then the window is [2, 4]. These two execution windows are

mutually exclusive, so dispatching this event requires the executive to make a decision

between them. For example, executing the event at time t = 4 satisfies the {x = 2}

window, but violates the lower bound for the window corresponding to {x = 1}, thus

invalidating any possibility for selecting that choice. The executive can record this

fact by creating a conflict for {x = 1}. �

This example illustrates that the dispatcher narrows the possible choices at run-

time, by creating conflicts when it violates constraints. There are two types of con-

83

straints that might be violated: activation constraints that specify a strict ordering of

event executions and execution windows. For example, the rover has an ordering con-

straint indicating that the end of the drive, B, may not execute before the start of the

drive, A. From the example above, executing the event outside of the window [2, 4]

violates a constraint. If Drake violates a constraint at run-time, the environments of

those violated constraints become conflicts. For instance, violating the window [2, 4]

from the example above requires creating the conflict {x = 2}, because this is the

environment for the violated constraint. The conflict exactly summarizes which com-

ponent STPs are invalidated by that execution. Instead of finding the STPs where a

particular execution is allowed, Drake determines whether it can create all necessary

conflicts for that execution without invalidating all possible environments. Determin-

ing if an event is executable, then, requires collecting the environments of activation

constraints and execution windows that would be violated by executing the event,

and testing whether they can all be removed as potential options.

Example 4.7 We continue the execution process for Example 4.4, where the labeled

distance graph is replicated in Figure 4-3. The execution windows, after event A is

executed, are summarized in Table 4.1. Assume that A was executed at t = 3. If we

executed B at t = 4, that would violate the lower bound (5, {x = 1}) on B. Recall

that this constraint states that if {x = 1}, then the execution time of B must come

later than t = 5. Executing B at time t = 4, therefore, implies that the dispatcher

must not select {x = 1}, which we note by creating a conflict.

We may schedule this event and create the corresponding conflict, if doing so leaves

us at least one possible option. If there is not at least one remaining option, then

the scheduling decision requires making all remaining component STPs inconsistent,

causing the execution to fail. In this case, {x = 2} remains a viable option. Therefore,

we are free to execute B at t = 4 and create the conflict. Since {x = 2} is the only

remaining option, the dispatcher needs to satisfy all associated constraints.

Instead of executing B at t = 4, we might consider a later time, t = 9. However,

every possible choice requires the upper bound of 8, so waiting until a time later than

t = 8 would invalidate every possible choice. Therefore, the dispatcher cannot select

84

that time. �

Figure 4-3: The filtered, labeled distance graph from Example 3.26.

A B

C

5

0, (−2, {x = 1})

3

4, (3, {x = 2})(2, {x = 1})

Algorithm 4.3 performs the complete task of testing whether an event is executable

at the current time. The function EventExecutable? is called on an event just

before it might be executed, and asks whether the dispatcher may execute the event

at the current time. Its inputs are the weighted graph, the list of executed nodes,

the constraint database, the bounds, the event in question, and the current time.

The output is either true, signaling that the event should be executed at the current

time and that the conflict database has been updated accordingly, or false, signaling

that the event may not be executed yet. During the discussion of the pseudo-code,

we reconsider Example 4.7, determining whether event B may be executed at time

t = 4.

The first phase of the algorithm is to identify all constraints that would be vio-

lated by executing event i at time t. Line 2 initializes eviolated, a set that will hold

the environments of violated constraints. Then, Lines 3-8 search through the upper

bounds on the event i and store any environments for bounds lower than t. For ex-

ample, the lower bound on B is (8, {}), which is not violated by executing B at t = 4.

Similarly, the following block, Lines 8-12 perform the same operation on the lower

bounds. In our example, this process finds that while the bound (3, {}) is not vio-

lated, (5, {x = 1}) is, because executing B at time 4 is sooner than the lower bound.

Therefore, the environment {x = 1} is added to the set of violated environments.

85

To complete the first phase, Lines 13-19 search for negative outgoing weights

from i to non-executed events, as these imply strict ordering constraints that are not

currently met. For example, B requires that A is executed first if {x = 1}, because

of the negative value (−2, {x = 1}) on the edge (B,A). However, A was executed,

hence no constraint is violated.

Having collected all the labels of violated constraints, the second phase of the

algorithm removes from future consideration all component STPs that contain these

constraints. Line 20 queries the conflict database to determine if the environments can

become conflicts without invalidating all possible environments. If that returns true,

then the conflicts are created and the algorithm returns true, indicating that the event

should be executed. Otherwise, no action is taken and the algorithm returns false.

Completing our example, eviolated has only the environment {x = 1}. No conflicts

have been created yet, and there is another possible option if {x = 1} is a conflict,

so ConflictsPossible? returns true on Line 20. Therefore, the dispatcher creates

a conflict for environment {x = 1} on Line 21, and then commits to scheduling the

event B at t = 4 by returning true. This action commits the dispatcher to select the

only other option, {x = 2}.

To illustrate that empty environments correspond to universally mandatory con-

straints, assume a situation exists, in which the set eviolated includes the empty environ-

ment, {}. By definition, the empty environment subsumes all possible environments,

so making it a conflict necessarily invalidates all possible environments. Therefore,

the dispatcher is never allowed to violate a constraint with an empty environment.

This method is the core reasoning method used to schedule events, as the dis-

patcher can repeatedly query whether the events are executable as time passes and

execute each one when the function indicates they can. We need to prove that fol-

lowing this algorithm produces correct executions.

Theorem 4.8 (Event Selection) The algorithm for EventExecutable? only

indicates that the input event is executable if it is executable in one of the consistent

component STPs. �

86

Algorithm 4.3 Determine if an event is executable.

1: procedure EventExecutable?(V,W, Vexec, S, B, i, t)
2: eviolated ← {}
3: for (aj, ej) ∈ Bu

i do � Test upper bounds
4: if aj < t then
5: eviolated ← eviolated ∪ ej
6: end if

7: end for

8: for (aj, ej) ∈ Be
i do � Test lower bounds

9: if aj > t then
10: eviolated ← eviolated ∪ ej
11: end if

12: end for

13: for j ∈ V \ Vexec do � Test activation
14: for (ak, ek) ∈ Wij do

15: if ak < 0 then

16: eviolated ← eviolated ∪ ek
17: end if

18: end for

19: end for

20: if ConflictsPossible?(eviolated) then � Test for remaining solutions
21: AddConflicts(eviolated)
22: return true

23: else

24: return false

25: end if

26: end procedure

87

Proof The labeled distance graph and the execution windows are a condensed ver-

sion of all the weights and execution bounds of all the component STPs, as proved

by Theorem 3.21 and Theorem 4.5. The algorithm finds all the violated constraints

and collects their environments. If the event is executed at time t, then the environ-

ments of the violated constraints are conflicts, because every component STP whose

complete environments is subsumed by one of the violated environments contains a

violated constraint. The function EventExecutable? only returns that the event

is executable if constraint database reports that there are still valid complete envi-

ronments, meaning that there is at least one STP where the execution decision is

legal. �

Note that this theorem specifies that Drake replicates the dispatching decisions

of an STP dispatcher, indicating that Drake inherits the guarantees that an STP

dispatcher can successfully execute a dispatchable STP.

There is an important design decision implicit in this algorithm, however, in that

it generally commits to executing an event at the earliest time that it is possible to do

so. Although Tsamardinos provides methods to determine whether a delay is possible

or when the event might be executed in the future, Drake simply executes events as

soon as possible to simplify the activity algorithm, as discussed in Section 4.5. While

we do not explore the possibility here, it should be possible mirror Tsamardinos’s

reasoning about future execution times.

This section presented the algorithm for determining if an event may be executed

at the current time. It closely follows the strategies provided by Muscettola and

Tsamardinos for performing the reasoning, while adapting the steps to our represen-

tations. In short, an event is executable if the environment for every constraint and

bound violated by the proposed execution can become conflicts, without invalidating

all possible environments.

88

4.4 Finding Violated Bounds

By selecting events to execute, the dispatcher is allowed to directly violate the con-

straints within some component STPs as long as there are alternative STPs where

no constraints are violated. However, in a dynamic execution system, there may be

unexpected delays that violate constraints. The dispatcher needs to identify these

delays and appropriately handle the violated constraints. As during event selection,

violated constraints create conflicts to represent the invalid STPs. However, since the

dispatcher is not necessarily in control of these violated constraints, it is possible that

all remaining component STPs would be invalidated, thus signaling a failure.

Specifically, as time passes, the upper bound of some event might pass, signaling an

invalidated STP or possibly that the execution has failed. At every time step, Drake

needs to check for upper bounds that have been violated and prune them from future

consideration. The function CheckUpperBounds, called every iteration from the

top level dispatcher and presented in Algorithm 4.4, performs this test. Note that

the code is similar in structure to the algorithm for EventExecutable?.

Algorithm 4.4 Find and prune violated upper bounds.

1: procedure CheckUpperBounds(V,W, Vexec, S, B, t)
2: eviolated ← {}
3: for i ∈ V \ Vexec do

4: for (aj, ej) ∈ Bu
i do � Test upper bounds

5: if aj < t then
6: eviolated ← eviolated ∪ ej
7: end if

8: end for

9: end for

10: if AddConflicts(eviolated) then � Test for remaining solutions
11: signal failure

12: else

13: return

14: end if

15: end procedure

Lines 3-9 searches through the list of non-executed events and look for upper

bounds that have been violated by the passing of time. The environments for any

89

violated bounds are collected to create conflicts, in a nearly identical fashion as in

EventExecutable?. The crucial difference from EventExecutable? occurs at

the end of the function; these constraints have already been violated by the passage of

time and the inaction of the dispatcher, hence there is no decision about whether or

not to proceed in this fashion. Therefore, AddConflicts is called immediately on

eviolated, without testing whether those conflicts make all the complete environments

inconsistent. If the new conflicts invalidate all complete environments, the algorithm

must signal that the dispatch has failed, shown on Line 11. Otherwise, it returns and

dispatch continues.

Example 4.9 Consider Example 4.7 again, where event A was executed at t = 3.

Event B has an upper bound (8, {}). If the dispatcher waited until t = 9 without

executing event B, it would discover the failure when it called CheckUpperBounds

at that time-step. The label of the violated bound is an empty environment, which

subsumes every possible complete environment, invalidating all of them. Therefore,

there are no remaining consistent STPs, and there is no possible execution. �

This section presented a simple, but important addition to the dispatching proce-

dure. Although this additional check for missed execution windows is not necessary

in a fully controllable world, it provides a crucial feedback mechanism for real world

applications, in which there may be unexpected delays in the system. This check

allows Drake to notice that a choice is no longer valid and to switch to alternate

choices if some alternate is possible, or to notice plan failure as quickly as possible,

allowing a re-planning step to determine a new plan.

4.5 Dispatching Activities

Dispatching a Temporal Plan Network with activities requires different temporal se-

mantics than Simple Temporal Problems, because an activity’s duration must be set

when it begins. Within a STP, activities are typically modeled with a start and an

end event. A STP assumes that all time points can be instantaneously scheduled if

90

its requirements are met, giving the dispatcher complete flexibility to execute the end

event of a process once the minimum time bound and other requirements are met.

This assumption is not realistic in all cases; often the duration of physical activities

need to be determined when they start and cannot be terminated arbitrarily at run-

time. For example, in the rover example, the drive activity cannot arbitrarily end

with the rover at the goal location, but must be scheduled in advance. In light of

the different semantics, this section proposes a method for modifying a STP based

dispatcher to handle this case. Specifically, we develop a function BeginActivities,

which is called when an event is executed, and whose purpose is to select the dura-

tions of activities at their start time. Essentially, we select the durations following

a strategy of “hurry up and wait,” which selects the shortest possible duration and

then inserts waits as necessary.

The following example highlights the issue with STP activity semantics.

Example 4.10 The running rover example begins with a drive and then might in-

clude a period in which the rover charges the battery. It is quite reasonable that

once the rover begins charging its batteries, it could stop charging on demand, thus

meeting the STP semantics. The drive activity, however, is less flexible. If there is a

pre-determined destination, the flexibility in the drive activity implies that the rover

might be able to go faster or slower. However, it is not reasonable to assume that

the drive activity can be terminated at any time. For example, say that the rover

set out at a speed that allows it to arrive in about 60 minutes. After 30 minutes the

temporal constraints would be met, so under the STP model the dispatcher could

require the event to end immediately, even though the rover is only halfway to its

destination. Although the STP dispatcher is allowed to instantly execute the end

event, for this to correspond to the physical world, the rover would have to teleport

to the end location. To be physically meaningful, the rover needs to plan ahead what

the drive duration should be and set the drive speed accordingly. �

In early research on STP dispatching, Vidal refers to the two types of control-

lable intervals as End Controllable and Begin Controllable, denoting whether the

91

dispatcher can select the duration at the end of the interval or whether it must do

so at the beginning, respectively [21]. Later on, STP dispatchers adopted end con-

trollable durations throughout, but many physical systems can only be reasonably

modeled with begin controllable durations. Temporal Plan Networks use activities to

model physical processes, that typically require the begin controllable semantics [8].

Drake only allows begin controllable activities, but it would be simple to schedule

end controllable activities without the advance duration selection.

To formally specify the activities in a plan, we define a data structure.

Definition 4.11 (Activities) The activities of a plan are specified in Act, a list of

activity specifications. Each activity is specified by one item, act, which has fields l

and u for the lower and upper bound, e for the environment, and primitive for the

actual activity to execute. There are also fields for the start and end events. These

activities are separately handled as simple interval constraints and are represented in

the labeled distance graph along with all the other constraints of the STP. �

Example 4.12 In the rover example, the Act data structure would specify that the

first activity specifies a drive, with duration [30, 70], and an empty environment, since

it must always happen. �

With this definition in place, we propose a method for adapting STP based dis-

patchers that allows the plan to follow a “hurry up and wait” strategy. When the

duration must be selected in advance, providing tight synchronization on the ends of

activities is difficult, without scheduling events in advance, giving up flexibility. In an

STP, nothing stops us from scheduling events ahead of time, thus allowing us to pick

the duration of the activity at its beginning, since all the events are fully controllable.

However, we want Drake to perform dynamic dispatching so that the executive could

be robust to minor disturbances. Selecting the duration ahead of time removes that

flexibility for activities. Unfortunately, the STP formalism cannot simultaneously

provide flexible execution and advance scheduling, so we slightly relax the definition

of a correct execution.

92

Therefore, we separate the end of the actual physical process of the activity and

the execution time of the end event. This allows us to select the duration of the actual

activity when the start event is executed, without giving up flexibility on the execution

time of the end event. Once the activity is complete, the end event of the activity

is executed as soon as is feasible. To make this possible, we allow the dispatcher

to insert a delay between the end of the actual activity and the end event, thus,

relaxing the constraint in a way that seems reasonable for many cases. This strategy

is always self-consistent, because aiming for the shortest possible execution means

that any updates to the execution windows that happen during the activity can only

require that the end be delayed. This delay is exactly what we have empowered the

dispatcher to do. Now we give the formal modification to the execution requirement.

Definition 4.13 (Activity Execution) In a TPN, consider an activity between

events X and Y , specifying that the duration Y −X ∈ [l, u], where u ≥ l ≥ 0. The

activity is correctly executed if the texec ∈ [l, u] and texec + twait ∈ [l, u], where texec

is the time from the beginning of the start event to when the actual activity ends

and twait is the duration between the end of the activity and when the end event Y

executes. �

The lower bound of the activity is required to be positive so that it provides a

strict ordering, stating that X is the deterministic start event of the activity and Y

is the end event. The definition states that the activity duration must be within the

original bounds and also that the duration plus any wait inserted must lie within the

original bounds.

Example 4.14 Consider the drive activity from the rover example, which has tem-

poral bounds [30, 70]. If the drive actually takes 40 minutes, the dispatcher may wait

up to 30 minutes to execute the event that signals the end of the drive. However,

the drive cannot take 20 minutes and then be padded with a 10 minute wait because

then the activity itself would not have been within the original constraint. �

With this relaxed definition, we can prove a simple, method for selecting the

execution time of activities.

93

Theorem 4.15 (Dynamically Selecting Earliest Activity Completion) Consider

a dispatcher committed to executing an activity between events X and Y , specifying

that the duration Y −X ∈ [l, u], where u ≥ l ≥ 0. Then, without loss of generality,

the dispatcher may always select texec = max(l, lower bound(Y) − tcurr) when X is

executed. If the later terms are not available, omit them from the maximization. �

Proof If the plan is dispatchable and the activity is necessary for the completion of

the plan, when X = tcurr, then by definition of the compiled form and the dispatch-

ing execution windows Y − tcurr ≥ max(l, lower bound(Y)− tcurr). Although parallel

threads may change the bounds on Y , the lower bound can only be raised during

execution, meaning that this strategy always produces a duration that is too short,

allowing the dispatcher to insert waits correctly. Therefore, the theorem’s choice of

texec does not remove any flexibility from the plan and Y may be scheduled according

to the STP based dispatcher. The maximization step is necessary because the ac-

tual edge weight representing the activity might have been pruned from the labeled

distance graph. This step ensures that it is considered correctly. �

This theorem specifies that the dispatcher always chooses the shortest activity

duration. We can only suggest that while not applicable to all situations, proceeding

as quickly as possible is a reasonable choice. The proof requires that the activity

must be mandatory because, otherwise, the dispatcher might be allowed to eliminate

the choice requiring the activity, before the activity ends. If the activity is part of a

choice, the dispatcher can satisfy this requirement by committing to the choice when

the activity begins. Normally the dispatcher only commits to choices by discarding

intervals, but when the executive selects a choice that begins an activity, it has

naturally committed itself.

Example 4.16 Consider a pair of events X and Y with an activity between them

with duration constraint [5, 10]. If X is executed at time tcurr = 4 and at that time

Y has a lower bound of 11, then the duration between them must be at least seven.

Therefore, we can minimize the wait time by starting the activity with length seven.�

94

This technique for selecting execution times can be summarized in Algorithm

4.5. Its inputs are the compiled problem and the execution windows. It outputs

the revised conflict database and any events that are the end of activities that have

started. This function may also begin some activities. This function is called when

event i is executed, at time t. The function loops over all activities that begin with

this event, on Line 3.

Essentially, the algorithm determines if each activity should execute, and if so,

how long it should take. Line 4 tests that the environment is still valid. If so, the

activity can be executed and the first step is to commit to its environment on Line 5

by calling CommitToEnv. For example, when beginning an execution of the rover

problem, the dispatcher would see that the empty environment attached to the drive

activity is still valid, and that committing to it has no effect. In contrast, beginning

the charge activity when B executes requires committing to {x = 2}.

Next, the function determines the correct activity execution time. The execution

time is either the lower bound of the activity from the original problem or the least

restrictive valid lower bound on the end event, whichever is greater. This is computed

on Lines 6 - 12. In the rover problem, in general, the execution duration will be the

lower bound of the activity, 30 time units. No other edges could tighten the lower

bound of the end event of the drive, so we need only consider the duration of the

activity.

Line 13 calls the function BeginActivity, which tells the system to actually

execute activity act with a duration of texec, and to return event act.end to the top

level dispatcher when the activity completes, to release the end event for execution.

Finally, Line 14 marks that the event act.end is the end of an ongoing activity and

that the dispatcher must wait for it to complete. Forcing the dispatcher to actually

wait for the completion of the activity, before executing the end event, is necessary

for the dispatcher to be reactive to delays in the real world, although without a model

of uncertainty, there are no guarantees that unexpected delays will not cause the plan

to fail. Here we assume that this activity is the only one ending at this event.

To recapitulate, this strategy for handling activities, intuitively called “hurry up

95

Algorithm 4.5 A function to begin activities starting with a given event.

1: procedure BeginActivities(V, Vexec,W, S,B, i, t, Act)
2: Vwaiting ← ∅

3: for acts.t.(act.start = i) ∈ Act do
4: if EnvironmentValid?(S, act.e) then
5: CommitToEnv(S, act.e) � Commit to activity

6: texec ← ∞

7: for (a, e) ∈ Bl
act.end do � Find the loosest lower bound

8: if EnvironmentValid?(e) then
9: texec ← min(texec, a)
10: end if

11: end for

12: texec ← max(texec − t, act.e)

13: BeginActivity(act, texec, act.end) � Start the activity
14: Vwaiting ← Vwaiting ∪ act.end
15: end if

16: end for

17: return S, Vwaiting

18: end procedure

96

and wait,” is one simple method for modifying the STP framework to handle activities

with durations that must be set at the activity’s start time. Although it does remove

some guarantees about the synchronization of the execution, it is self-consistent and

works without requiring a vast departure from the STP literature. The event selection

algorithm and the activity scheduling algorithm are the remaining elements required

for the dispatching algorithm. The next chapter completes our discussion.

4.6 Conclusion

This chapter completes our presentation of Drake’s deterministic dispatching algo-

rithm. When paired with the compilation techniques from Chapter 3, we have pro-

vided sufficient tools to dynamically dispatch a TPN, or DTP, as desired by this

work. The dispatching algorithm handles the reasoning on temporal elements and the

choices available by efficiently storing the constraints in minimal dominant labeled

value sets. This chapter provided algorithms for temporal constraint propagation,

event selection, constraint updates, and activity selection. The dispatcher handles

activities and simplifies reasoning by greedily selecting the fastest options available.

The greedy selection mechanism does restrict the solutions that the dispatcher can

create.

While the deterministic STP compilation and dispatch algorithms introduce the

important concepts and innovations behind Drake, we still need to introduce temporal

uncertainty into the model. The next chapter follows the same themes, taking advan-

tage of the compact labeled representation, while making relatively simple updates to

the prior work, giving Drake the capability to handle explicit models of uncertainty.

97

98

Chapter 5

Plans with Choice and Uncertainty

Morris et al. demonstrated that the great strength of compilation and dispatchable

execution is its ability to provide explicit guarantees about whether it can successfully

execute a plan, even if some of the durations are not controllable by the executive

[9]. Furthermore, reasoning about set-bounded uncertainty in this model is possible

in polynomial time. Specifically, this prior work demonstrated that Simple Temporal

Problems can be extended to include bounded uncertain durations in the problem

specification, creating Simple Temporal Plans with Uncertainty (STPU). Then the

executive can analyze the problem in order to determine whether it can execute the

plan correctly, thus guaranteeing robustness to the modeled uncertainty in the real-

valued execution times of events. This chapter outlines techniques to replace STPs

with STPUs as Drake’s underlying temporal model, allowing Drake to dynamically

select between a family of STPUs, thus providing a guarantee of robustness to the

uncertain outcomes for the component STPUs.

Adding explicitly modeled uncertainty into the problem is another way of handling

activities and other uncertainties that arise when the executive interacts with the real

world. While the intention of this thesis is to develop an executive that is robust to

disturbances, the approach described in Chapters 3 and 4 provide robustness that is

unpredictable. While this strategy is less fragile than a static schedule, it is difficult

to know what range of uncontrollable delays it can handle for any particular problem.

On the other hand, an explicit model of uncertainty directly allows the executive to

99

prove robustness at compile-time. Providing this guarantee requires the executive

to be extremely conservative because it assumes that every uncontrollable duration

resolves in the least favorable way. This conservatism is evident in both the limited

scope of problems that are found feasible and in the execution time selected. However,

as a designer of autonomous systems, it is a valuable tool to be able to specify

particular uncertain outcomes and have a guarantee that the dispatcher cannot fail

because of those outcomes.

Example 5.1 (Rover Example with Uncertainty) To illustrate the utility of un-

certainty in dynamic execution, we can make the drive activity of the rover scenario

of Example 1.1 uncontrollable. This modeling choice makes sense because at the

outset of the drive, the rover does not know how many obstacles it will encounter or

how quickly surface conditions will allow it to drive. Therefore, we indicate that any

outcome in the range [30, 70] is possible and must be handled by the system. The

charging option provides enough flexibility to meet the deadline constraint regardless

of the outcome of the drive duration. This is because it allows any duration from 0 to

50 minutes and can fill any duration remaining before the deadline of 100 minutes. In

contrast, sampling is only acceptable if the drive is short, because sampling takes at

least 50 minutes and the drive might take 70, which does not fit into the 100 minute

deadline. �

This example illustrates the approximation Drake makes: instead of compiling

the DTPU as a whole, Drake flexibly chooses between options inducing consistent

component STPUs. In this case, Drake would discard the option to collect samples at

compile time, conservatively restricting its options. This solution is somewhat limited,

because collecting samples is not totally useless and need not be discarded completely;

if the drive does resolve quickly, it is feasible, and charging provides an acceptable

backup if the drive is slow. Another executive might be able to take advantage of the

complementary nature of these two options, reducing the conservatism at compile-

time, but we do not explore this idea further. Instead, our aim is to leverage the

compact representations developed for Drake to simply handle families of STPUs.

100

Labeled value sets provide a compact and efficient representation for reasoning

about related STPs. This chapter extends Drake to reason about families of related

STPUs, facilitating an approximate dynamic controllability and dispatching algo-

rithm for plans with uncertainty. As in the deterministic case, our strategy is to use

labeled value sets to efficiently represent the interaction of the choices of the input

plan with the temporal constraints. The process is remarkably simple: the constraint

reasoning steps required for uncontrollable durations, as provided by prior work, are

augmented with environment processing steps and the dispatcher is enhanced to han-

dle the new type of constraints created by the STPU compilation process, that is,

conditional constraints. These are constraints that specify an edge weight until an

uncontrollable event executes, but constraint is removed once the uncontrollable event

executes. Conditional constraints are required for the correct execution of STPUs.

The result is a compilation algorithm for uncontrollable problems with choice and a

dispatcher that can dynamically select the choices while respecting the uncontrollable

durations.

This chapter begins by introducing some of the challenges of reasoning about

uncontrollable durations in Section 5.1. Next, we define the uncertain versions of the

possible input problems and our representation for reasoning about them in Section

5.2. Then, Section 5.3 outlines the compilation technique. Next, Section 5.4 describes

the minor additions to dispatching required for the uncontrollable durations. Finally,

Section 5.5 provides some concluding thoughts.

5.1 Background on Simple Temporal Problems with

Uncertainty

Before giving our detailed approach, we provide an intuitive overview of Drake’s

compile-time and run-time processes. An STPU compiler is similar to a STP com-

piler, except that the compiler must prove that at run-time, the dispatcher never

needs to restrict the execution time of the uncontrollable durations. Instead, the

101

dispatcher must be able to solve the STPU regardless of what value nature selects

for the uncontrollable durations. At run-time, the dispatching algorithm is nearly

identical to the STP dispatcher, except that handling the uncontrollable durations

requires an additional type of constraint, called a conditional constraint, and which

requires a minor addition to the dispatching routine.

Informally, a STPU is an STP where some of the constraints are marked as rep-

resenting uncontrollable durations. This means that after the start of the constraint

is executed, the end event executes automatically sometime during the feasible dura-

tion, but is outside the control of the executive. We illustrate the types of reasoning

required at compile-time with the following example.

Example 5.2 Again, consider converting the drive activity of the rover example into

an uncontrollable duration. There is a simple temporal constraint between the start

and end events of the activity, with value [30, 70], except that this constraint is marked

as an uncontrollable duration. Once the start event executes, the activity begins, and

may end at any time within the bounds of the activity’s duration. This outside of

the executive’s control. In this case, the drive may take anywhere from 30 to 70

minutes. The executive only observes at each step whether the activity has finished

and is given no estimates of when that will occur. To execute this uncontrollable

duration correctly, the executive must not restrict the times when the end event may

execute beyond the restriction imposed by the [30, 70] constraint. This is because the

executive is prohibited from influencing the outcome of the duration and therefore

the executive is not able to enforce such a tightening.

There are two possible ways the executive might restrict the execution time of

the end event. First, at compile time, computing the dispatchable form of the graph

might tighten the weights of the edges from [30, 70] to some tighter value. Arbitrarily,

say the edges representing this constraint are tightened to [35, 60]; this modification is

not allowed because the executive cannot dictate this duration, and cannot guarantee

that the duration will fall within these bounds at run-time. However, if this tightening

is an unavoidable consequence of the constraints of the plan, then the plan is infeasible

according to the requirements of dispatchable execution for this model of uncertainty.

102

Checking for this type of problem is called testing for pseudo-controllability [9].

The second type of restriction an executive might impose is tightening the execu-

tion window of the end event at run-time. Assume that the start of the drive occurs

at t = 10. Propagating this execution time through the activity’s constraint leads to

the conclusion that the end event must occur in the interval [40, 80]. If some other

propagation attempted to tighten this window, for example closing the window to

[40, 70], that would signal another unacceptable restriction, although this type hap-

pens at run-time. To determine that a problem is dynamically dispatchable, meaning

that the executive can successfully execute the plan with uncertainty, the compila-

tion process must prove that neither of these types of restrictions on the execution of

uncontrollable durations can occur. �

Section 5.3 defines and provides algorithms for these reasoning steps.

The dispatch algorithms are largely similar to those presented in Chapter 4. This

strategy essentially works because, by successfully reformulating the STPU into a

dispatchable form, the compiler proved that the dispatcher could schedule the rest of

the plan almost as before, while giving up control over the uncontrollable durations,

without causing a failure. Morris proved that doing this correctly only require in-

serting or modifying simple temporal constraints of the system and possibly adding

conditional constraints to the problem [9]. A conditional constraint provides a sim-

ple temporal constraint that the dispatcher must enforce in scheduling a particular

event in order to avoid squeezing an uncontrollable duration, unless some specified

uncontrollable event has already executed. For example, we might constrain an event

Y to happen at least 20 time units after X, unless Z has already happened, in which

case the inequality does not matter because the execution of Z removes the need

for conservatism in the scheduling of Y . The dispatcher adds reasoning about these

constraints to the handling of execution windows and event orderings it already does,

which is sufficient to manage the uncertainty correctly. Section 5.4 expands these

ideas and describes the necessary algorithms. Drake adapts the algorithms designed

for STPUs to consider the impact of discrete choices by representing families of re-

lated STPUs with the labeled data structures developed in this work and augmenting

103

the prior work to function on this representation.

5.2 Defining Plans with Uncertainty

In this section we define uncontrollable extensions for both TPNs and DTPs, both

of Drake’s basic representations. These uncontrollable varieties are denoted TPNUs

and DTPUs, respectively. Since some of our most important innovations stem from

the representation Drake uses to reason over the plans, we also present the necessary

modifications to labeled distance graphs.

A TPNU is a TPN where some of the activities are marked as uncontrollable1To

perform constraint reasoning, we transform the TPNU into a Disjunctive Temporal

Problem with Uncertainty, following Venable and Smith [20]. The deterministic DTP

definition is augmented with uncontrollable events and edges. Prior literature often

use alternate terminology, referring to durations as requirement or contingent links.

Definition 5.3 (Disjunctive Temporal Problem with Uncertainty [20]) ADTPU

is a tuple �Vc, Vu, Rd, Ru, C�, where Vc and Vu are the controllable and uncontrollable

events, respectively. Rc and Ru are the controllable and uncontrollable edges and C

is the finite disjunctive constraints of the edges. �

We view both these formats as a means for specifying a family of related com-

ponent STPUs. As before, the objective of this chapter is to develop the techniques

required to dynamically dispatch either of these types of problems, determining the

execution times and making choices regarding which of the component STPUs to

execute on the fly.

A crucial step of this work for the deterministic case was the development of the

labeled distance graph to represent the family of STPs in Chapter 3. Similarly, we

represent uncontrollable problems with a similar data structure. Before we can do

so, we formally define conditional constraints, which the new representation must

include.
1We assume that discrete choices are always controllable. See Effinger et al. for TPNs with

uncontrollable discrete choices [6].

104

Definition 5.4 (Conditional Constraint) A conditional constraint of the form

�t, B� on directed edge (C,A) specifies that either B must execute before C or else

A− t ≤ C. �

Morris demonstrated that the addition of conditional constraints, which were first

formulated as wait constraints, into the compiled form is sufficient to dispatch dynam-

ically controllable STPUs. The compilation process for a STPU terminates with a

distance graph that may include some conditional constraints. The key innovation of

this section is to provide a constraint storage mechanism for uncertain constraints and

conditional constraints, defined below as Conditional Labeled Distance Graphs with

Uncertainty. First, the definition divides the events into controllable and uncontrol-

lable ones. Second, it provides an annotation for weights of the graph, representing

that the durations are either controllable or uncontrollable. Note that while the

weights are annotated with their controllability, the domination function does not

consider these annotations, because Drake only needs the tightest bounds known of

either type. Finally, the new structure creates labeled value sets for conditional con-

straints. The conditional constraints can be stored in labeled value sets because they

are distances in the graph and only the tightest known ones need to be kept. Drake

maintains a separate labeled value set for each triple of events, indicating the start,

end, and conditional events of the constraint.

Definition 5.5 (Conditional Labeled Distance Graph with Uncertainty) A la-

beled weighted distance graph G is a tuple �Vc, Vu,W,C�. V is a list of vertices

partitioned into controllable events Vc and uncontrollable ones Vu. W is a group of

labeled value sets for the weights and the marking of the controllability of the edge

f((a, b), (a�, b�)) ← (a < a�), where a is the weight and b is either C for controllable

or U for uncontrollable. This group of value sets represents the weight function that

maps vertex pairs and an environment to a weight and a controllability annotation:

V × V × E → R× {U,C} for any vertex pair (i, j) ∈ V × V and environment e ∈ E .

The set of edges E is those pairs where w(i, j) �= ∞ ∈ W for some environment. All

the labeled value sets for weights are initialized with the pair ((∞, C), {}). C is a

105

group of conditional constraints mapping triples (i, j, k) ∈ V × V × V of events into

labeled value sets. The first two indicate the direction of the inequality, and the third

what the edge is conditional on. The conditional constraints are initialized with no

elements. �

Converting from an input TPNU or DTPU to a conditional labeled distance graph

with uncertainty is almost identical to the method for deterministic plans, given in

Section 3.2. Essentially, the events and constraints are directly mapped between the

representations, where an environment summarizes whether the constraint is part

of a choice (see Example 3.6). The only difference for uncontrollable plans is that

some events and constraints are annotated as uncontrollable in the conditional labeled

distance graph. An event is considered uncontrollable if any uncontrollable duration,

with any environment, ends at that event.

In the controllable problems, we developed the activity data structure to help

the dispatcher reason about when activities begin, whether events are waiting for

an activity to complete, and whether the dispatcher is committed and should begin

an activity. This separate representation also provides the dispatcher with a cen-

tral repository to search for the activities, regardless of whether the simple temporal

constraints representing the duration was pruned away at compile-time. Since uncon-

trollable durations are similar in spirit to activities, and these same considerations

apply, it is convenient to treat all uncontrollable durations as activities, where we aug-

ment the act data structure from 4.5, with a controllable? field, containing a Boolean

value that indicates whether the activity is controllable. This mechanism simplifies

our code by avoiding unnecessary duplication of steps.

With these data structures defined, our task is relatively simple. We can adapt

prior algorithms for STPUs to handle choices by storing the plan in the conditional

labeled distance graph with uncertainty and replacing all the operations from those

algorithms with their labeled equivalents. These modifications are described in more

detail in the next sections.

106

5.3 Compiling Plans with Uncertainty

Morris showed that a STPU can be reformulated into a dispatchable form through

a polynomial time algorithm that transforms the input plan, replacing uncontrol-

lable durations with controllable durations and conditional constraints that prevent

squeezing of the uncontrollable durations at run-time [9]. This process is completed by

repeatedly modifying certain pre-defined small sub-graph structures, thereby prop-

agating the effects of the uncontrollability throughout the constraint graph. Stedl

developed an efficient technique for achieving the same result by re-ordering the prop-

agations and by modifying the rules for altering the graph [14]. This section presents

the application of Stedl’s method to our compact representation for families of ST-

PUs, conditional labeled distance graphs with uncertainty. We do not change the

core algorithm from Stedl’s work, except to replace the operations with their labeled

equivalents and by adding steps to record conflicts specifying infeasible component

problems. Therefore, we give an overview of the strategy and some algorithms here,

but other details are left to Appendix A, where we have duplicated, with permission,

the chapter of Stedl’s thesis that includes the derivations of the propagation rules.

Stedl’s compilation algorithm for STPUs functions in two basic steps. The first

step ignores the uncertainty and compiles the problem as if it were an STP. This com-

pilation provides a dispatchable form of the problem that forms the base of the second

step. Before concluding the first step, the algorithm checks for pseudo-controllability,

ensuring that the constraints of the STPU do not imply a tightening of the activity

durations. The second step modifies the graph to ensure that the execution windows

of uncontrollable events are not tightened at run-time. It does this by applying a

set of back-propagation rules, designed to update an STPU to maintain dispatchabil-

ity if, for some reason, the dispatcher needs to change a constraint. Specifically, it

takes the uncontrollable durations, which were treated as controllable in the first step,

and propagates all changes needed in the dispatchable form to handle the fact that

the durations are actually uncontrollable. Although Morris’s iterative approach was

the first proven to have polynomial run-time, Stedl’s incremental strategy structures

107

the computations in a more efficient way, which is why we adopt it for this work.

The back-propagation process either yields a new dispatchable form that handles

the uncertainty, or an inconsistency is found. The back-propagation phase is when

conditional constraints might be added to the problem.

Stedl’s top level fast dynamic controllability algorithm for STPUs works to compile

families of STPUs, with only accommodations for storing the edge weights in labeled

value sets. The pseudo-code is shown in Algorithm 5.1. The method proceeds in two

main phases: (1) compile the problem, treating every constraint as controllable, and

test for pseudo-controllability, and then (2) propagate the effects of the uncontrollable

durations. It takes as input a conditional labeled distance graph with uncertainty,

formed from an input DTPU or TPNU, and either compiles it to dispatchable form

or finds it infeasible.

Algorithm 5.1 Compilation algorithm for Temporal Plan Networks with Uncertainty

1: procedure CompileTPNU(Vc, Vu,W, S, C)
2: W,S ← Labeled-APSP(V,W)
3: if (S == ∅) ∨ ¬PseudoControllable?(V,W, S) then � Alg. 5.2
4: return null
5: end if

6: W ← FilterSTN(V,W) � Alg. 3.6

7: for v ∈ Vu do � propagate uncontrollable
8: if ¬BackPropagateInit(V,W, S, C, v) then � Appendix A.
9: return null
10: end if

11: end for

12: if ¬PseudoControllable?(V,W, S) then � Alg. 5.2
13: return null
14: end if

15: W ← FilterSTN(V,W) � Alg. 3.6

16: return W,S
17: end procedure

We use the following example to illustrate the compilation algorithm.

Example 5.6 Consider the drive activity from the rover example, while making the

108

drive an uncontrollable duration. We also add a requirement that the rover warm

up the science package, but not more than 10 minutes before the drive ends, to

avoid wasting power. This fragment of the plan is depicted in Figure 5-1a. Event A

starts the drive, event B ends the drive, and C issues the command to warm up the

science package. Controllable edges are denoted with open arrows and uncontrollable

constraints are drawn with filled arrows. The event on the end of the drive, B, is

uncontrollable, denoted by the square node. �

The first phase of the algorithm produces a dispatchable network for the fully-

controllable version of the STPU and tests it for pseudo-controllability. A STPU

is pseudo-controllable if the implicit constraints of the network do not prohibit any

values from the uncertain durations. This condition is necessary but not sufficient

for dynamic controllability because the executive cannot select which value any the

uncontrollable duration receives, and the executive must allow any possible value. To

test pseudo-controllability, Line 2 runs LabeledAPSP on the graph to explicitly

reveal all the implicit constraints of the problem. If APSP finds a negative cycle,

then the problem is inconsistent, as before, because re-introducing the uncertainty

makes the problem strictly harder and is certainly inconsistent. Then Line 3 actually

performs the pseudo-controllability check on the compact representation of all the

STPUs, invalidating any component STPUs that contain restricted uncontrollable

durations. Assuming that at least some of the component STPUs are still feasible,

the first phase concludes by filtering the network of redundant edges on Line 6, pro-

ducing a minimal dispatchable form of the STPUs that passes pseudo-controllability,

as needed for the next step. The filtering step must follow the pseudo-controllability

check because the reason for running the APSP algorithm is to expose all the con-

straints and filtering removes them, potentially hiding the evidence that the problem

is not pseudo-controllable.

The result of running the labeled APSP algorithm on Example 5.6 is shown in

Figure 5-1b. The input graph has few edges, so only one new edge, (A,C) is created.

No negative cycles are found, so the algorithm continues. The uncontrollable dura-

tions are not squeezed by any new edges, so the problem is pseudo-controllable. After

109

testing for pseudo-controllability, the graph is pruned, and edge (A,C) is pruned, be-

cause it is dominated by the other two. A controllable edge may be dominated by

an uncontrollable edge. In contrast, we cannot remove any uncontrollable edges from

the graph at this stage, because they need to be propagated in the next step.

The second phase of compilation considers the effects of propagating timing infor-

mation at run-time and ensures that the dispatcher never tightens the uncontrollable

durations incorrectly. Stedl developed a set of back-propagation rules that specify a

method for updating a network to maintain dispatchability when a constraint changes.

Line 8 performs the primary reasoning step. This step changes the uncontrollable du-

rations, which the first phase treated as controllable, back into uncontrollable ones

and recursively propagate the necessary timing changes throughout the network. We

do not review the back-propagation rules in detail, but leave their derivation to Ap-

pendix A. The back-propagation rules detect inconsistencies caused by the revisions

to the network that are performed to avoid execution window tightening, creating

conflicts for violating component STPUs, as usual. Afterward, Line 12 re-checks that

pseudo-controllability was not violated during back-propagation. Finally, the com-

pact, dispatchable representation of the consistent STPUs is pruned of redundant

edges on Line 15, in order to make dispatching more efficient. At this stage, uncon-

trollable durations may be pruned, as any uncontrollable durations the dispatcher

needs are stored in the activity data structure.

Although this chapter does not review the back-propagation rules used during

the second phase of compilation in detail, the following example demonstrates the

derivation of a conditional constraints derived by a back-propagation rule.

Example 5.7 The conditional constraint is derived as follows. The drive might last

between 30 and 70 minutes and the time between warming up the science package and

the drive ending must not be more than 10 minutes. The drive might end at any time

during the allowable uncertain duration. Therefore, scheduling the warming event 40

minutes into the drive might cause an error as the executive cannot guarantee that the

drive will end less than 50 minutes into the execution. Once the rover is 60 minutes

into the drive the executive may conclude that it can warm up the science package

110

because the drive is guaranteed to end in less than 10 minutes, so all the requirements

will be met, regardless of the possible remaining outcomes. However, if the drive does

end at some earlier time, the executive need not be so conservative; once the drive is

over, this constraint is satisfied and the science package warm-up may be scheduled

at any time, subject to other constraints of the plan. A conditional constraint is

created to encode this knowledge: after the drive it started, the executive must not

start warming up the science package until either 60 minutes have passed or the

drive completes, whichever is first, denoted �−60, B�. The dashed line in Figure 5-1c

depicts this new constraint. Previous literature used wait constraints, which invert

the duration, encoding the same constraint as �60, B� instead [10]. Stedl changed the

notation into conditional constraints to make it consistent with the semantics of the

distance graph, which we adopt here. �

Using the back-propagation rules on labeled values simply involves placing the

union of the two input environments on the new value. In the above example, say the

70 minute constraint had an empty environment, {}, and the 10 minute constraint

had environment {x = 1}. Then the resulting conditional constraint, �−60, B�, would

have their union, {x = 1}, as its environment. The back-propagation rules are applied

to edges with the function LabeledBinaryOp, presented in Algorithm 3.4, which

performs this environment operation.

Since pseudo-controllability is an important part of STPU compilation, we provide

Algorithm 5.2, which demonstrates the minor adaptation necessary for the labeled

representation. The essential idea is that in all valid STPUs, the uncontrollable

durations must not be replaced by tighter durations. Line 2 loops over every un-

controllable duration in the original specification, searching for violations. The inner

loop on Line 3 considers every edge between the same events as the uncontrollable

one under investigation. Any smaller weights indicate a tightening that might violate

pseudo-controllability. The tighter weight means that the dispatcher cannot simulta-

neously satisfy the environment of the uncontrollable duration and the lower weight

edge. Therefore, Line 4 computes the union of those two environments and invalidates

it by creating a conflict. Finally, Line 10 returns that the problem is controllable if

111

at least some complete environments remain valid.

Algorithm 5.2 Algorithm for testing pseudo-controllability on Drake’s compact rep-
resentation and updating valid set of environments.

1: procedure PseudoControllable?(V,W,S)
2: for every uncontrollable edge (w, e) from event i to j do

3: for (wij, eij) ∈ Wij do

4: if (wij < w) ∧ (e subsumes eij) then
5: AddConflicts(S, eij) � Section 3.3
6: RemoveFromAllEnv(eij)
7: end if

8: end for

9: end for

10: if EnvironmentsRemain?(S) then � return true if some STPUs are left
11: return false

12: else

13: return true

14: end if

15: end procedure

Example 5.8 Figure 5-2 shows two small graph segments we use to illustrate the

pseudo-controllability algorithm. First, Figure 5-2a has exactly one uncontrollable

edge. The algorithm would look for any violating edges, immediately finding the

only other edge from event A to B, which has a smaller weight. Therefore, the

environments of the edge weight {x = 1} is now a conflict. However, the DTPU is

still valid if there are other complete environments.

Figure 5-2b shows an interesting similar case, with the same edge weights, sug-

gesting that some solutions should be marked as invalid. However, the uncontrollable

edge and the tighter bound do not co-occur in any environments because they differ

in their assignment to the variable x. The algorithm determines this incompatibility

by computing that {x = 2} does not subsume {x = 1}. Therefore, the algorithm

draws no new conclusions from this fragment. �

This completes our description of the compilation algorithm for problems with

temporal uncertainty. We have explained the top level dispatching algorithms, adapt-

ing Stedl’s technique for STPU compilation to consider the effects of choices through a

112

labeling scheme. The compilation algorithm is built from the same APSP algorithm

and filtering algorithm used for the controllable case and two new steps: testing

for pseudo-controllability and back-propagating the uncontrollable constraints. More

detail on Stedl’s controllability algorithm are provided in Appendix A. Given the

techniques and data structures developed for the controllable case, extending Drake’s

compilation process is a relatively simple process.

5.4 Dispatching Plans with Uncertainty

Morris et al. proved that dynamically dispatching a compiled STPU requires two

simple modifications to the STP dispatcher that Drake copies [9]. First, some events

are not directly controllable and the system must wait for them to complete; this is

exactly the same as waiting for the end events of activities to complete and is essen-

tially already handled by the pseudo-code for Drake. Second, the dispatcher needs

to respect the conditional constraints at dispatch time. These additional constraints

alter when certain events can be executed and therefore require modifications the

event selection algorithm. We also slightly modify the activity selection algorithm

so it does not attempt to control the durations of uncontrollable activities. The top

level routines and propagation techniques are identical to those presented in Chapter

4, except that they must call the two modified functions presented here.

The most important update to the dispatcher is to modify the event selection

routine to respect conditional constraints, meaning that to execute an event with

a conditional constraint, either the conditional event has executed or the difference

constraint is satisfied. In the labeled version, as before, the executive may execute an

event at a certain time if it can invalidate all the environments of violated constraints

without removing all possible complete environments. The conditional constraints

are now just another source of violated constraints the executive must search for.

Algorithm 5.3 handles this extra consideration. Note that it is otherwise identical

to Algorithm 4.3. Lines 20-28 loop over all the triples including this event. Note

that conditional constraints are always negative and point out from the events the

113

Algorithm 5.3 Determine if an event is executable.

1: procedure EventExecutableU?(V,W, Vexec, S, B, C, i, t)
2: eviolated ← {}
3: for (aj, ej) ∈ Bu

i do � Test upper bounds
4: if aj < t then
5: eviolated ← eviolated ∪ ej
6: end if

7: end for

8: for (aj, ej) ∈ Bl
i do � Test lower bounds

9: if aj > t then
10: eviolated ← eviolated ∪ ej
11: end if

12: end for

13: for j ∈ V \ Vexec do � Test activation
14: for (ak, ek) ∈ Wij do

15: if ak < 0 then

16: eviolated ← eviolated ∪ ek
17: end if

18: end for

19: end for

20: for j ∈ V do � Test conditional events
21: for k ∈ V \ Vexec do

22: for (am, em) ∈ Ci,j,k do

23: if (j /∈ Vexec) ∧ (am < Time(j)− t) then
24: eviolated ← eviolated ∪ em
25: end if

26: end for

27: end for

28: end for

29: if ConflictsPossible?(eviolated) then � Test for remaining solutions
30: AddConflicts(eviolated)
31: return true

32: else

33: return false

34: end if

35: end procedure

114

constraint. Therefore, the outer loop is over the end of the edges and the middle loop

is over non-executed events. This algorithm only needs to find violated constraints, so

we need not test any constraints where the conditional event is executed and satisfies

the constraints by definition, so the middle loop only searches over non-executed

events. Otherwise the inequality constraint is tested, ensuring that the other event

has actually been executed and if so, that the difference constraint is met. The

operator Time(j) refers to the time of execution of event j. If either of these tests

fail, the environment of the conditional constraint is added to those that must be

discarded and the algorithm proceeds as before.

Example 5.9 Consider executing the labeled conditional distance graph depicted in

Figure 5-3. Assume that event A was executed at t = 0. At the current time, t = 10,

event B has not executed yet. If the dispatcher considers executing event C, it finds

the conditional constraint. The constraint would be violated if Drake schedules event

C at t = 10 because event B has not executed, nor have 60 minutes elapsed since

event A executed. Therefore, the executive must create a conflict from the conditional

constraint’s environment, {x = 1}, in order to execute event C at t = 10. �

The modification to the activity selection algorithm is simple. If the activity

the function commits to is not controllable, it calls BeginActivityU on Line 16,

which does not attempt to set a duration for an uncontrollable duration. Therefore,

it also skips the computation of duration of the activity. Otherwise, the function

is unchanged. We create activities for the uncontrollable durations because the two

concepts are semantically related, and it provides a convenient way to re-use the

code that delays the execution of events until real-world activities allow it. Also, it

ensures that pruning cannot remove the uncontrollable edges and therefore makes

the dispatcher unaware of the uncontrollable duration that is ongoing. As before, our

mechanism for waiting is simplistic, requiring that only one uncontrollable duration

ends at each event. We can work around this restriction by either noting which

activities must complete for a given event to execute or by having events constrained

with a [0, 0] edge, requiring that they happen simultaneously.

115

At the top level of the code, it is sufficient to remove the end event from the

waiting list when uncontrollable duration completes, because our dispatcher executes

events as soon as they are executable. The compiler guaranteed that the end event of

any uncontrollable duration is executable at any possible outcome of that duration,

so we can rely on the existing procedures to execute the end event on the first time

step after the duration completes.

Algorithm 5.4 A function to begin activities starting with a given event.

1: procedure BeginActivitiesU(V, Vexec,W, S,B, i, t, Act)
2: Vwaiting ← ∅

3: for acts.t.(act.start = i) ∈ Act do
4: if EnvironmentValid?(S, act.e) then
5: CommitToEnv(S, act.e) � Commit to activity

6: if act.controllable? then � select a duration
7: texec ← ∞

8: for (a, e) ∈ Bl
act.end do � Search bounds

9: if EnvironmentValid?(e) then � Sec. 3.3
10: texec ← min(texec, a)
11: end if

12: end for

13: texec ← max(texec − t, act.e)

14: BeginActivity(act, texec, act.end) � Start the controllable
activity

15: else

16: BeginActivityU(act.end) � Start the uncontrollable activity
17: end if

18: Vwaiting ← Vwaiting ∪ act.end
19: end if

20: end for

21: return S, Vwaiting

22: end procedure

STP dispatchers and STPU dispatchers are relatively similar, except for the ad-

dition of conditional constraints and the need to wait for uncontrollable durations to

complete. Therefore, updating Drake only requires a similar modification. The pro-

116

cess for selecting events and activities is identical, as is the strategy for committing

to choices through the creation of conflicts.

5.5 Conclusions

In developing Drake’s technique for compiling and dispatching families of related

STPUs, we outlined and adapted Stedl’s compilation method for STPUs. We pro-

vided algorithms that first compile a deterministic version of the plan, then test

that the problem is pseudo-controllable. Then the consequences of the uncontrollable

durations are propagated throughout the plan, updating other constraints and pos-

sibly creating conditional constraints. We also updated the dispatching routines for

controllable networks to respect these conditional constraints, while preserving the

framework for compiling and dispatching described in Chapters 3 and 4.

This section completes the presentation of technical innovations. Previous chap-

ters have developed labeled value sets as an efficient and simple technique for applying

non-disjunctive temporal reasoning to disjunctive problems. This chapter provided

an interesting case study, because adapting the existing STPU algorithms only re-

quired the basic techniques already developed for Drake’s deterministic algorithms.

Labeled value sets are versatile enough to provide the backbone of the representation

for the new conditional constraints and readily accept the new operations necessary

to propagate uncontrollable durations. The ATMS was intended as a framework

for supporting general problem solving engines, and we see some of this generality,

specialized to weighted graphs.

117

Figure 5-1: An example of an uncertain duration and a conditional constraint that
results. Depicts Examples 5.6 and 5.7.

(a) Input uncertain problem

A B

C

70

Drive, -30

Warm-up, 10

(b) APSP Form of Fragment

A B

C

70

Drive, -30

Warm-up, 10
80

(c) Resulting conditional constraint

A B

C

70

Drive, -30

Warm-up, 10
�−60, B�

118

Figure 5-2: Graph fragments demonstrating pseudo-controllability.

(a) A tighter edge invalidating

{x = 1}

A B

(5, {x = 1})

(3, {})

(b) A tighter edge with no effect

A B

(5, {x = 1})

(3, {x = 2})

Figure 5-3: A fragment of a labeled conditional distance graph with uncertainty.

A B

C

(70, {})

Drive,
(−30, {})

Warm-up,
(10, {x = 1})

(�−60, B�, {x = 1})

119

120

Chapter 6

Experimental Results

This chapter presents an experimental validation of Drake’s compilation and dispatch

algorithms on randomly generated, structured problems. First, we develop a suite of

random structured DTPs and TPNs. Then we compile and dispatch the suites of

problems twice, once with Drake and once by explicitly enumerating all the compo-

nent STNs, following techniques developed in Tsamardinos’s work [19]. Finally, we

compare the compiled size of the problems, the compilation time, and the execution

latency. We find that, in general, Drake’s performance on TPNs, DTPs, TPNUs, and

DTPUs are remarkably similar, regardless of the differences in structure or the pres-

ence of uncontrollable durations. The data shows that Drake’s labeled distance graph

representation, which we developed as a compact form of the component STP(U)s,

is compact in practice. We see a consistent decrease in the compiled size of the

problems compared to Tsamardinos’s explicit enumeration, up to around four orders

of magnitude for the largest problems, containing over 10,000 consistent component

STPs. Drake’s compilation time is often faster than the explicit enumeration pro-

cess of Tsamardinos, but sometimes takes longer by up to two orders of magnitude.

Finally, Drake’s execution latencies are typically slower than Tsamardinos’s work,

sometimes by several orders of magnitude for large problems, but still take less than

a second for most moderately sized problems, with a few thousand component STPs.

Overall, Drake’s techniques successfully trade off compiled space for processing time.

121

6.1 Generating Random DTPs

To generate random structured Disjunctive Temporal Problems, we modify Stedl’s

random structured STP generator [14]. His generator provides relatively fine-grained

control over the size of the resulting problems, and is we used to generate a large test

suite of problems.

We give a brief overview of the generation algorithm. Stedl’s generator first creates

activities, where each activity is specified as a strictly ordered duration between two

events. These activities are randomly assigned coordinates of a grid, with each event

having a unique coordinate, where the start event of an activity is directly to the left

of the end event. This coordinate grid is wider than it is tall, so that the activities

give the feel of a time-line when drawn. Since the generated activities do not share

events, the generator then adds more constraints to connect the activities. These

extra constraints are added by randomly selecting an event, then selecting another

event that is nearby on the coordinate grid and adding a simple temporal constraint,

where the bounds are selected randomly from a range proportional to the distance

between the two events. This scaling of constraints provides structure, and is the

key feature of the technique, because some events are placed closely on the grid

and constrained to occur at similar times, while others are widely separated and

therefore remain loosely coupled. We add to this technique by generating disjunctive

constraints in a similar fashion. For each disjunctive constraint, the algorithm selects

an event to focus on and selects the desired number of constraints from the existing

constraints near the selected event. These constraints then appear in the disjunctive

clauses. If the generator selects a constraint that is already in a disjunctive clause,

it creates another constraint for the disjunct, placed between the same events, with

newly generated bounds.

This generator produces problems where the events are naturally understood as

existing on a type of time-line, making them reminiscent of problems humans might

create. It also provides flexibility over the size of the problems created. We tie

together several of the size parameters to create two basic controls. The first control

122

scales the number of disjuncts per disjunctive constraint. The second control scales

the number of disjunctive constraints in the problem, which determines several other

parameters. The number of activities is the same as the number of disjuncts so the

increased number of disjunctive constraints do not become cluttered. Events are only

created for the activities, so the number of events is fixed at double the number of

activities, as each activity gets independent start and end nodes. Finally, the number

of non-activity constraints, added after the activities are created, is roughly three

times the number of disjunctive clauses. This parameter, along with the scaling of

the random temporal values and some other fine parameters of Stedl’s algorithm,

are chosen empirically so that most of the problems are consistent, and many of the

component STPs are consistent.

Our test suite varies those two controls, producing DTPs and DTPUs with up to

thousands of component STPs. Specifically, we generated 100 consistent problems

at each size, varying between each of 1-13 activities with 2 clauses per disjunctive

constraint and each of 1-9 activities with 3 clauses per disjunctive constraint. We

stopped increasing the activity size when the benchmarking time increased to several

days per parameter increase. All the inconsistent problems were discarded.

When generating uncertain problems, each activity has a fifty percent chance of

being marked as uncontrollable. Otherwise, the generation process is identical to the

deterministic case.

6.2 Generating Random TPNs

Our TPN generator is based on the one presented by Effinger [5]. The algorithm

creates a hierarchical plan by first creating a binary tree up to the desired depth,

connected with [0, 0] simple temporal constraints. Then each node is replaced with

the TPN fragment shown in Figure 6-1. The two activities in the fragment are

randomly generated durations where 0 ≤ ui ≤ 10 and 0 ≤ li ≤ ui. Each node in

the binary tree and the left-most node of the TPN fragment is then converted into a

choice with a probability of one half. Finally, the generator creates an end node for

123

Figure 6-1: This TPN fragment is the fundamental unit used by the random genera-
tion algorithm.

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[l1, u1]

[l2, u2]

the TPN and connects the bottom of the tree, closing off the hierarchies and inserting

new nodes appropriately.

As with the DTP generator, when generating uncertain problems, each activity

has a fifty percent chance of being uncontrollable. Otherwise, the generation process

is identical. We generated 100 consistent TPNs of depths one, two, and three. These

problems are smaller than many of the DTPs, but increasing the depth to create

larger TPNs also takes days to run. All inconsistent problems were discarded.

6.3 Numerical Results

To characterize the performance of Drake, we used it to compile and dispatch the

test suites of controllable and uncontrollable TPNs and DTPs, created as explained

above. Drake is implemented in Lisp, and all the evaluations were run in a single

thread on a four core Intel i7 processor with 8 Gb of memory. Our implementation

deviates slightly from the algorithms presented, however, the differences are largely

superficial and there is a direct correspondence between operations performed by our

implementation and our pseudo-code. The main difference is that the code does not

use labeled value sets by name, instead, it uses multiple edges between any pair of

events and places environments on those edges. However, the operations required

to insert values and perform operations is essentially identical. Also worth noting

is that some of the environment operations are memoized with a size limited hash

table, which distinctly improves the computation times. As a point of reference for

124

comparison, we also implemented a compilation system that explicitly enumerates all

the consistent STPs, as directed in Tsamardinos’s work. We collected data on the

compiled size of the problem, compilation time, and run-time latency, which we now

present and discuss.

Throughout this section, our plots use the number of consistent STPs as the

horizontal axis because seems to explain the variations in the data more clearly than

the number of disjunctive constraints, which is the controllable independent variable

of our generators. We believe it provides cleaner data trends because the fraction of

feasible component problems varies dramatically. Therefore, a problem with many

disjunctive constraints, but only a few feasible component problems might be easier

to store than one with fewer disjunctive constraints, but all the components are

feasible. Also, we developed Drake to avoid the costs that result from explicitly

creating component STPs, hence it seems reasonable to study whether our method

scales better than prior work against this variable. Our analysis of the data suggests

that this variable provides the clearest indicator of the difficulty of the problem, in

that it almost completely separates Drake from the explicit enumeration technique

for the size metric we collected.

We begin with the size of the compiled representation, because it provides the

clearest and most favorable results. The size is computed as a platform independent

metric, counting all the important data structure elements stored by each representa-

tion. Drake’s size metric counts the number of events, values in all the labeled value

sets on the edges, and the overhead of the conflict database, measured as the number

of conflicts and kernels. The STP enumeration metric counts the number of events

and edges, summed over all the consistent, component STPs. Figure 6-2 presents

scatter plots of the four types of problems, DTPs, DTPUs, TPNs, and TPNUs, on

separate log-log scales, showing the compiled size versus the number of consistent

STPs or STPUs in the problem. We selected a log-log scale to make the data visible

over the large range of both axes.

The compiled size for all four types of problems show a similar trend: Drake’s

method provides a consistent and significant reduction in the size of the compiled

125

Figure 6-2: The compiled size of random problems as a function of the number of
component STP(U)s.

(a) The compiled size of DTPs.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

10
8

Number of Consistent Component STPs

Compiled Size

Drake

STP Enumeration

(b) The compiled size of DTPUs.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

10
8

Number of Consistent Component STPUs

Compiled Size

Drake

STP Enumeration

126

Figure 6-2: The compiled size of random problems as a function of the number of
component STP(U)s (cont).

(c) The compiled size of TPNs.

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

Number of Consistent Component STPs

Compiled Size

Drake

STP Enumeration

(d) The compiled size of TPNUs.

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

Number of Consistent Component STPUs

Compiled Size

Drake

STP Enumeration

127

problem, typically ranging from one to four orders of magnitude in savings as the

problem size increases. In fact, the qualitative shape of the graphs are identical across

all four types, and the scales and slopes are relatively similar across all the graphs.

Recall that our TPN generator creates smaller problems than the DTP generator and

has less parameters, meaning that there are fewer data points and less variation in the

number of component STPs within those data points. Even so, the TPN data scale

essentially as the DTP data does. The DTP graphs show that varying the number of

disjuncts per disjunctive clause does not change the trend, as the two sets of data are

completely mixed. Instead, the number of consistent options is the only factor that

matters. Furthermore, the presence of uncontrollable durations has little influence on

the graph. These graphs clearly show that storing the component STPs or STPUs

of a problem using labeled distance graphs reduces the number of events and edges

as compared to the requirement for storing each component separately. Furthermore,

there is little fixed overhead for storing STPUs. Instead, the cost is simply to store

any additional conditional constraints required for dispatch, which are similar in

form to the simple interval constraints. This result validates our primary claim of the

compactness of Drake’s representation in comparison to direct enumeration.

The second metric we collected is the time required to compile the problem to dis-

patchable form, measured in seconds. Drake was timed while it compiled the entire

problem and the direct enumeration strategy was timed while it compiled only the

consistent component problems. Although explicit enumeration was under-counted

by only timing while it counts the consistent component problems, the fraction of

consistent components was never vanishingly small and should not move the points

qualitatively on a logarithmic scale. The plots are shown in Figure 6-3, shown on

log-log plots as before. Again, the results are remarkably similar throughout the

four types of problems. Directly enumerating the STPs is a very consistent pro-

cess and it clearly costs polynomial time with respect to the number of consistent

component problems, just as we expect. Drake’s performance, on the other hand,

varies considerably. For many DTP or DTPU problems, Drake either matches or

dramatically outperforms Tsamardinos’s strategy, but there is a small, yet noticeable

128

Figure 6-3: The compile time of random problems as a function of the number of
component STP(U)s.

(a) The compile time of DTPs.

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

10
6

Number of Consistent Component STPs

Compile Time (sec)

Drake

STP Enumeration

(b) The compile time of DTPUs.

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
0

10
2

10
4

10
6

Number of Consistent Component STPUs

Compile Time (sec)

Drake

STP Enumeration

129

Figure 6-3: The compile time of random problems as a function of the number of
component STP(U)s (cont).

(c) The compile time of TPNs.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Consistent Component STPs

Compile Time (sec)

Drake

STP Enumeration

(d) The compile time of TPNUs.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Consistent Component STPUs

Compile Time (sec)

Drake

STP Enumeration

130

fraction where Drake’s compilation time is an order of magnitude or two worse than

Tsamardinos’s strategy. We believe that the savings is representative of reduced re-

dundancy in the computations during compilation for closely related problems, which

is also something we hoped to see in the data. Unfortunately, in some problems, the

computations involving the environments induce significant overhead, which we ex-

pect is correlated with component STPs that are relatively dissimilar. The TPN and

TPNU graphs appear quite mixed and we cannot draw conclusions about one method

outperforming another, but the results are consistent with the data seen in the DTPs

and DTPUs with few component STP(U)s. Finally, we observed qualitatively, but

cannot support numerically, that the filtering process is often the most expensive

part. We believe this is because that algorithm searches over all pairs of values on

intersecting edges, which is especially slow on the APSP form of the labeled distance

graph.

The final metric we present is execution latency. To collect this data, Drake

simulated running the plans once, of which we recorded the longest decision making

period, during which Drake selected events to execute and performed propagations.

The STP enumeration strategy was timed for the first dispatch step, which is not

an upper bound on the execution time, but is representative because the number of

STPs generally decreases during successive execution steps, and the work required to

dispatch each one is relatively constant without environments to manage. The results

are shown in Figure 6-4. The values at 10−3 were actually reported by Lisp’s timing

functions as zero, so we inflate them to place them on the logarithmic scale; the clear

floor in the data at 10−2 is the minimum reported time.

Generally, Drake takes significantly more time to make decisions for large prob-

lems than Tsamardinos’s approach, which we suspect is because of the extra labeled

operations required at run-time. Although the increase in latency is sometimes two or

three order of magnitude worse, the absolute speed of Drake’s execution is generally

not problematic. For small and medium sized problems, up to a few hundred compo-

nent STPs, most execute with less than 0.1 seconds of latency. Even for the largest

problems tested, many of the problems execute with less than a second of latency.

131

Figure 6-4: The execution latency of random problems as a function of the number
of component STP(U)s.

(a) The execution latency of DTPs.

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−2

10
0

10
2

10
4

Number of Consistent Component STPs

Execution Latency (sec)

Drake

STP Enumeration

(b) The execution latency of DTPUs.

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−2

10
0

10
2

10
4

Number of Consistent Component STPUs

Execution Latency (sec)

Drake

STP Enumeration

132

Figure 6-4: The execution latency of random problems as a function of the number
of component STP(U)s (cont).

(c) The execution latency of TPNs.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

Number of Consistent Component STPs

Execution Latency (sec)

Drake

STP Enumeration

(d) The execution latency of TPNUs.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

Number of Consistent Component STPUs

Execution Latency (sec)

Drake

STP Enumeration

133

Unfortunately, a few DTPs do suffer from latency in the tens of seconds for at least

one reasoning step. Essentially all the TPNs execute with unmeasurable latency with

explicit enumeration and the minimum measurable time for our timing functions with

Drake, excepting one outlier, because the TPNs we tested are all small or medium

sized. Similarly small latencies are visible in the small DTP and DTPU problems.

The overall conclusion we draw from these results is that Drake’s compact encod-

ing is indeed compact for several types of input problems, but also that it trades space

for processing time in a manner that is typically favorable. However, we hesitate to

draw more specific conclusions about the performance on any individual problem,

because we cannot guarantee that the structured random problems we experimented

with are representative of most real-world problems. The uniform results on two

vastly different types of problems, including the time-line structure of the DTPs and

the strict hierarchy of the TPNs, do lend credibility that these trends are relatively

insensitive to some changes in the problem structure. However, future work is re-

quired to determine the distribution of compiled sizes, compile times, and run-time

latencies a system could expect on real problem structures and constraints.

134

Chapter 7

Conclusions and Future Work

We presented Drake, a flexible executive for plans with choice. Drake is designed to

take input plans with temporal flexibility and discrete choices, specifically DTPs or

TPNs, potentially with uncontrollable durations, and decides the execution times and

makes discrete decisions at run-time [4, 8]. Building upon prior work on the ATMS,

Drake introduces a new compact encoding, called labeled distance graphs, to encode

and efficiently reason over alternate plans [2]. This representation is especially use-

ful because it requires relatively minor changes to non-disjunctive graph algorithms,

in order to reason over the discrete choices. Drake’s compilation algorithm success-

fully compresses the dispatchable solution by up to around four orders of magnitude

relative to Tsamardinos’s prior work, often reducing the compilation time, and typ-

ically introducing only a modest increase in execution latency. However, there are

some cases where Drake performs poorly either at compile time or at dispatch time,

relative to Tsamardinos’s approach.

There are several possible avenues of research to improve Drake’s performance.

First, labeled distance graphs use a restricted variant of the labeling machinery de-

veloped for the ATMS, where each value in the labeled value sets are justified with a

single environment, and values may exist in each set multiple times. In the original

ATMS, each value would exist in the value set exactly once and is supported with a

set of environments, which enumerate every partial assignment that would logically

entail that value. Making this change might produce a more compact representation.

135

Managing sets of environments also introduces some design decisions about how to

simplify them.

Example 7.1 Assume there is a discrete choice, x, with domain {1, 2, 3}. If a value

is justified with environments {x = 1}, {x = 2}, and {x = 3}, the value actually

holds universally because it is labeled with all possible options. Therefore, that value

could be labeled with the single environment {}, simplifying the reasoning. �

The above example illustrates hyper-resolution, and is called “hyper,” because it

requires unifying more than two clauses simultaneously. A full ATMS labeling system

with many disjuncts per disjunctive clause, thus requiring variables with large discrete

domains, must efficiently perform hyper-resolution to keep the labels minimal and

efficient.

Next, we observed during testing that filtering redundant edges from the labeled

distance graph is often a computationally intensive step for Drake. We believe this

step is especially expensive for Drake because the labeled values are represented in

a single list, making it harder for the compiling algorithm to find useful domination

tests.

Example 7.2 Take two edges that end at the same event, having labeled value sets

{(2, {x = 1}), (4, {x = 2}), (6, {x = 3})} and {(1, {x = 1}), (3, {x = 2}), (5, {x =

3})}. The filtering algorithm needs to search for dominated values because all these

values are positive weights on edges ending at the same event. Labeled values cannot

dominate one another if their environments differ on an assignment to any variable.

Therefore, there are only three possible dominations here, matching values against

the ones with identical environments. However, our algorithm searches over all pairs

of labeled values, performing nine operations. In contrast, explicitly enumerating the

component STPs performs this operation in minimal time, if there is only the one

choice variable, x. Our filtering algorithm pays a penalty in run-time that is at least

quadratic in the length of the value sets, compared to the time to filter a single STP

with the same number of edges. The data suggests that for some of the examples we

tested, this increase in cost is significant. �

136

Fortunately, in general, compiling an STP to dispatchable form by computing the

APSP and then pruning redundant edges is known to be sub-optimal. Tsamardinos

presented a fast technique, based on Johnson’s algorithm, which avoids creating a

complete graph through the APSP process before pruning it [17]. Instead, the prop-

agation and pruning are interleaved to provide an efficient algorithm. This algorithm

could be adapted to create a direct substitute for the labeled APSP algorithm we

provide.

Finally, it should be possible to create hybrids between Drake’s fully labeled ap-

proach and Tsamardinos’s enumeration approach. Specifically, we could select a set

of choices which are explicitly enumerated and others which are managed through a

labeling approach. This should allow a continuous spectrum of performance between

the space intensive but low execution latency solution provided by Tsamardinos and

the compact but slower dispatching representation Drake uses. One difficulty we can-

not provide firm guidance on, however, is how to appropriately select which choices

to split on and which to label. However, we can suggest that it is probably desirable

to to enumerate the choices that have the largest impact on the constraints of the

problem and label the choices that induce less sweeping changes. This might make

sense, because the labeled technique is designed to reduce the cost of representing

related families of STPs, so we preferentially label the choices that create similar

component STPs.

An alternative way to enhance Drake’s feature set, rather than speed up the

existing features, is to perform some type of reasoning about the utility of the choices

available. Currently, activities, events, and choices are selected greedily. In real-

world situations, where the user is likely to have some preference over the possible

outcomes, Drake might be more useful if it could select executions with some notion

of optimality.

Moving away from possible improvements to Drake, there are some broad lessons

we can take from the development of Drake and the technique it uses. STP reasoning

is largely made efficient by reformulating the STP questions into graph problems.

We desired a system that could natively perform those same reasoning steps while

137

considering the impact of discrete choices. Therefore, we developed labeled distance

graphs and specifically designed analogues to the APSP algorithm and a few other

graph queries, such as dominance. Taking this work a step further, we could envision

an entire graph package, with all the standard graph algorithms, but based on labeled

value sets. We expect there are other uses in autonomous systems, such as path

planning, or other fields, such as communications, where a labeled graph package

could simply provide a compact encoding and an algorithmic strategy to interleave

reasoning over choices with other existing algorithms.

In conclusion, Drake provides the first dynamic executive for TPNs and a develop-

ment on prior DTP executives. It finds a new use for the representations underlying

the prior work in ATMSs, compactly encoding solution sets for related families of

STPs, without forcing us to derive completely new algorithms for temporal reason-

ing. This ability to dynamically make discrete choices from a compact representation

will help robots to be more flexible and reactive in the future.

138

Bibliography

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algo-
rithms. The MIT Press, second edition, 2001.

[2] J. De Kleer. An assumption-based TMS. Artificial intelligence, 28(2):127–162,
1986.

[3] R. Dechter and R. Mateescu. AND/OR search spaces for graphical models.
Artificial Intelligence, 171(2-3):73–106, 2007.

[4] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial
Intelligence, 49:61–95, 1991.

[5] Robert Effinger. Optimal Temporal Planning at Reactive Time Scales via Dy-
namic Backtracking Branch and Bound. Master’s thesis, Massachusetts Institute
of Technology, 2006.

[6] Robert Effinger, Brian C. Williams, Gerard Kelly, and Michael Sheehy. Dynamic
Controllability of Temporally-flexible Reactive Programs. In Proceddings of the
19th International Conference on Automated Planning and Scheduling (ICAPS
09), September 2009.

[7] D.J. Goldstone. Controlling inequality reasoning in a TMS-based analog diag-
nosis system. In AAAI-91 Proceedings, pages 512–517, 1991.

[8] P. Kim, B.C. Williams, and M. Abramson. Executing reactive, model-based
programs through graph-based temporal planning. In International Joint Con-
ference on Artificial Intelligence, volume 17, pages 487–493, 2001.

[9] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with tem-
poral uncertainty. In International Joint Conference on Artificial Intelligence,
volume 17, pages 494–502, 2001.

[10] N. Muscettola, P. Morris, and I. Tsamardinos. Reformulating temporal plans for
efficient execution. In Principles of Knowledge Representation and Reasoning-
International Conference, pages 444–452, 1998.

[11] A. Oddi and A. Cesta. Incremental forward checking for the disjunctive temporal
problem. In ECAI, pages 108–112, 2000.

139

[12] Julie A. Shah and Brian C. Williams. Fast Dynamic Scheduling of Disjunctive
Temporal Constraint Networks through Incremental Compilation. In Proceed-
ings of the International Conference on Automated Planning and Scheduling,
September 2008.

[13] I-hsiang Shu, Robert Effinger, and Brian C Williams. Enabling Fast Flexible
Planning Through Incremental Temporal Reasoning with Conflict Extraction.
In Proceedings of the 15th International Conference on Automated Planning and
Scheduling (ICAPS 05), pages 252–261, 2005.

[14] John Stedl. Managing temporal uncertainty under limited communication: a for-
mal model of tight and loose team coordination. Master’s thesis, Massachusetts
Institute of Technology, 2004.

[15] John Stedl and Brian C Williams. A Fast Incremental Dynamic Controllability
Algorithm. In Proceedings of the 15th International Conference on Automated
Planning and Scheduling (ICAPS 05), pages 69–75, 2005.

[16] K. Stergiou and M. Koubarakis. Backtracking algorithms for disjunctions of
temporal constraints. Artificial Intelligence, 120(1):81–117, 2000.

[17] I. Tsamardinos, N. Muscettola, and P. Morris. Fast transformation of tempo-
ral plans for efficient execution. In Proceedings of the National Conference on
Artificial Intelligence, pages 254–261, 1998.

[18] I. Tsamardinos and M.E. Pollack. Efficient solution techniques for disjunctive
temporal reasoning problems. Artificial Intelligence, 151(1):43–89, 2003.

[19] I. Tsamardinos, M.E. Pollack, and P. Ganchev. Flexible dispatch of disjunctive
plans. In 6th European Conference on Planning, pages 417–422, 2001.

[20] K.B. Venable and N. Yorke-Smith. Disjunctive temporal planning with uncer-
tainty. In 19th International Joint Conference on Artificial Intelligence (IJCAI
2005), pages 1721–22. Citeseer, 2005.

[21] T. Vidal. A unified dynamic approach for dealing with temporal uncertainty and
conditional planning. In Fifth International Conference on Artificial Intelligence
Planning Systems (AIPS-2000), pages 395–402, 2000.

[22] B.C. Williams and R.J. Ragno. Conflict-directed A* and its role in model-based
embedded systems. Discrete Applied Mathematics, 155(12):1562–1595, 2007.

140

Appendix A

Reference on Fast Dynamic

Controllability

The following material is the chapter of Stedl’s thesis that develops the fast dynamic

controllability algorithm for STPUs, and is reprinted with permission of the author

[14]. We replicate this chapter in its entirety because Drake directly adapts this

algorithm and specifically uses the back-propagation rules without modification or

derivation. Therefore, we elected to provide this material for the completeness of

the thesis, without trying to improve upon Stedl’s explanations. We expect that the

chatper should stand alone, given the background material provided in this thesis,

but the entire text is available online.

141

 103

4 Fast Dynamic Controllability Algorithm

4.1 Introduction
 This chapter finishes the explanation of the Hierarchical Reformulation Algorithm
introduced in Chapter 3, by describing how to reformulate each group plan into a
dispatchable group plan. Specifically, this chapter introduces a novel efficient,
centralized, dynamic controllability algorithm, called a fast dynamic controllability
algorithm that transforms a plan constrained by an STNU into a dispatchable form. This
chapter also describes a new edge filtering algorithm that transforms the dispatchable
group plan into an efficiently dispatchable plan, called a minimal dispatchable plan.
Together, the fast dynamic controllability algorithm and edge filtering algorithm perform
group plan reformulation.

 The goal of group plan reformulation is to enable the dispatcher to efficiently,
dynamically, and consistently execute the group plan. The reformulation algorithms
presented in this chapter are analogous to the reformulation algorithm, described in
Chapter 2. Recall that in Chapter 2 we considered plans constrained by a STN; however,
here we consider plans constrained by a STNU. We need to deal with uncertainty. Recall
that in Chapter 3 we dealt with this uncertainty of the activities in the mission plan by
decoupling the activities. This decoupling procedure enabled the activities in the mission
plan to be executed independently. However, in this chapter we seek to precompile the
temporal constraints of the group plan such that the agents can react to the uncertainty at
execution time, in order to exploit the fact that the agents can communicate within the
group plans. We seek to preserve some flexibility in the group plans so they can react to
their situation at execution time, rather than simply preparing for the worst.

 After the reformulation, the agents of the group must cooperate in order to execute the
group plan. In the simplest approach, each group plan is executed using a leader-follower
architecture. In this approach, a single leader is commissioned to make all scheduling
decisions. The leader manages the execution process by sending commands to and
receiving execution updates from the other agents in the group. All information passes
through the leader. In Chapter 5, we present an alternative approach that distributes the
execution process such that all the agents take part in the scheduling process. No matter
which approach (leader-follower or distributed) is used, the fast dynamic controllability
algorithm is still applicable.

 This chapter builds on the concepts presented in Chapter 2 and Chapter 3. Specifically,
the fast dynamic controllability algorithm expresses the temporal constraints of the group
plan as a distance graph, then uses a set of local shortest path computations to reformulate
the plan. The shortest path computations are a type of constraint propagation. Recall that
constraint propagation is the process of deriving the feasible assignments on one set of
variables given a set of constraints on different sets of variables. The fast dynamic
controllability algorithm generalizes the strong controllability rules used in Chapter 3.

 John Stedl
Dispatchable form contains some redundant info—how are the two DIFFERENT

 104

 This chapter introduces one fundamentally new concept, the idea of a conditional
constraint, which was originally introduced by [Morris 2001]. A conditional constraint
(or wait constraint) is a ternary constraint (i.e. relates three timepoints) that is satisfied
either by the passage of a minimum amount of time or through the notification of an
event, which ever is sooner. It is similar to a lower bound simple temporal constraint,
except that its enforcement is conditioned on the outcome of some other event. We use
these types of constraints in everyday life. For example, consider a scenario where you
plan on meeting a friend for lunch; however, you are running late. In such a scenario,
you may call your friend and tell him you are running late. You would like to eat
together, but, you do not want to be inconsiderate, so you ask your friend to wait for at
least 20 minutes before ordering. However, if you get there before 20 minutes, there is no
need to wait any longer. If your friend agrees, he has agreed on a conditional wait
constraint. Your friend will wait for at least 20 minutes or until you arrive, which ever is
sooner.

 In this chapter, we show how to use these types of conditional wait constraints to
preserve flexibility in partially controllable plans so that they can be dynamically
executed. Beyond being desirable, the completeness of the fast dynamic controllability
algorithm depends on using these conditional wait constraints.

 The conditional wait constraint is a fundamental departure from the constraints we
have been using, because they are ternary constraints (relate three timepoints), rather than
binary constraints (relate two timepoints). Fortunately, [Morris 2001] showed that these
conditional constraints can be propagated through the constraint network similar to
simple temporal constraints. Furthermore, the introduction of conditional constraints
only requires a small change to the STN dynamic dispatching algorithm, as presented in
Chapter 2.

 The dynamic controllability problem is solved by iteratively applying a set of local
constraint propagation rules. Our fast algorithm builds on the basic structure of the
dynamic controllability algorithm introduced by [Morris 2001]; however, it removes the
need to perform repeated calls to an O(N3) All-Pairs Shortest-Path (APSP) algorithm.

 The speed of the fast dynamic controllability algorithm is derived by two main
innovations. First, our new dynamic controllability algorithm filters redundant
constraints from the distance graph, up front, which reduces the number of propagations
required. Second, we show that after performing a single APSP computation, the
temporal constraints are placed in a pseudo-dispatchable form. Given this pseudo-
dispatchable form, each constraint only needs to be resolved with the constraints that
involve timepoints that occur earlier in the plan. Therefore, the constraints back-
propagate through the distance graph. Applying these back-propagation rules allows the
fast dynamic controllability algorithm to incrementally build up the reformulated distance
graph, starting from constraints that relate timepoints that occur at the end of the plan, to
constraints that relate timepoints that occur early in the plan.

 105

 The outline for this chapter is as follows. First we introduce some definitions and
concepts related to dynamic controllability. Next, we review the dynamic controllably
algorithm introduced by [Morris 2001]. Then we introduce our novel fast dynamic
controllability algorithm. Finally, we introduced the new edge trimming algorithm. The
empirical results for the new fast dynamic controllability algorithm are presented in
Chapter 6.

4.2 Overview

 This section reviews some key concepts and introduces several definitions regarding
dynamic execution of plans that contain uncertainty. These definitions will be useful in
subsequent sections.

 A plan is dynamically controllable if there is a viable, dynamic execution strategy to
schedule the timepoints in the plan. Recall that an execution strategy is viable if it
generates a consistent schedule in all situations, and an execution strategy is dynamic if
each scheduling decision is based only on the past.

 The goal of dynamic controllability algorithm presented in this chapter is to compile
the temporal constraints of the plan into a form such that a dispatcher can use to
dynamically execute the plan. This reformulation enables the dispatcher to adapt to the
plan�’s uncertainty at execution time.

 Recall that dynamic execution is a scheduling process in which the timepoints of the
plan are scheduled in real-time (timepoints are executed and scheduled simultaneously).
In order to understand how to do this dynamic execution for plans that contain
uncertainty, let�’s review the general job of the dispatcher and how to dynamically execute
plans that do not contain any uncertainty (i.e. plans constrain by STNs rather than
STNUs)

 The dispatcher, whether applied to plans that contain uncertainty or not, is constantly
making two related decisions: 1) what timepoint to execute next, and 2) when to schedule
each timepoint. The reformulation algorithm compiles the temporal constraints of the
plan in order to enable the dispatcher to make these decisions properly and quickly. This
compilation is composed of two tasks: 1) it computes a set of enablement conditions for
each timepoint, and 2) it exposes the set of implicit constraints inherent in the original
explicit temporal constraints.

 In Chapter 2 we presented two reformulation algorithms (a basic version and fast
version) along with a compatible dispatching algorithm for plans constrained by an STN
[Muscettola 1998a, Muscettola 1998b]. Recall that the basic reformulation algorithm
first computes the All-Pair Shortest-Path (APSP) graph of the plan�’s distance graph,
which exposes the implicit constraints, then trims the redundant (dominated) edges. The
resulting graph is called the minimal dispatchable graph. Recall that in the fast version,
the APSP computation and edge trimming are interleaved. For plans constrained by an

 106

STN, the enablement condition is simply a list of timepoints that must be executed. For
each timepoint, after the set of enablement timepoints have been executed, then that
timepoint becomes enabled. The set of enablement timepoints for a timepoint X is
computed by compiling all timepoints that are related to X by outgoing non-positive
edges.

 During execution, the dispatcher is free to select any timepoint for execution that is
both enabled and alive. A timepoint is enabled if the all of the enablement timepoints
have been executed and a timepoint is alive if the current time falls between the
timepoints execution window. Every time the dispatcher executes a timepoint it performs
two updates. First, it sends a set of enablement messages to all timepoints waiting on that
timepoint�’s execution, and second it uses the constraints in the reformulated distance
graph to update the execution windows of neighboring timepoints. [Muscettola 1998a]
showed that upper bound updates are propagated via outgoing positive edges and lower
bound updates are propagated via incoming non-positive edges.

 The reformulation and dispatching algorithms need to be modified to support plans
constrained by STNUs. The dispatcher only has partial control over the execution of the
timepoints. A plan is only dynamically controllable if the plan does not further constraint
the uncontrollable durations. Both the reformulation algorithm and the dispatcher must
respect the timebounds of the contingent links. Recall that a contingent link specifies a
lower and upper bound on an uncontrollable duration. If the temporal constraints of the
plan imply strictly tighter bounds on the uncontrollable duration, then the uncontrollable
duration is squeezed. Specifically, an uncontrollable duration is squeezed if its lower
bound is increased or its upper bound is decreased, as illustrated in Figure 4-1. If the
uncontrollable duration is squeezed, then there exists a situation where the outcome of the
uncontrollable duration falls outside of the specified timebounds; therefore, consistency
of the execution is dependent on the outcome of some uncertain event.

UB

uncontrollable duration

squeezed
bounds

LB

Figure 4-1 Each uncertain duration contains a lower and
upper bounds as specified by the associated contingent
link. The uncontrollable duration is squeezed if its lower
bound is increased or its upper bound of the decreased

 107

 [Morris 2001] introduced the concept of pseudo-controllability, which provides a
first check on the dynamic controllability of a plan. A plan in pseudo-controllable if it is
temporally consistent and none of its uncontrollable durations are squeezed. The pseudo-
controllability of a plan can be checked by computing the All-Pairs Shortest-Path graph
(APSP-graph) of the plan�’s distance graph (ignoring the distinction between contingent
and requirement edges). If the APSP-graph does not contain any negative cycles, and
contingent edges remain unchanged in the APSP-graph, then the plan is pseudo-
controllable. Therefore, if a plan is pseudo-controllable, then the contingent edges in the
plan�’s distance graph are the shortest paths.

Example 4-1:
 Consider the Distance Graph with Uncertainty (DGU) shown in Figure 4-2(a). The
contingent edges represent the time bounds of the uncontrollable duration AB. The
uncontrollable duration will last between [5,10] time units. The path ACB = 9 is shorter
than the direct path AB = 10; therefore, the other constraints imply a tighter value on the
upper bound of the uncontrollable duration. The APSP-graph shown in Figure 4-2(b)
exposes this tightening. The uncontrollable duration is squeezed; therefore, the plan is
not pseudo-controllable.

(a)
A

C

2

10

-5

-1
7

-5

B A

C

2

9

-5

-1
7

-5

B
(b)

Figure 4-2 (a) The DGU with a uncontrollable duration between
timepoints A and B (b) The APSP-graph exposes the temporal
constraints imply a tighter upper bound on the uncontrollable
duration; therefore, the uncontrollable duration is squeezed.

Example 4-2:
 Consider the DGU shown in Figure 4-3(a). The contingent edges remain unchanged
in the APSP-graph, shown in Figure 4-3(b). Furthermore, the plan is temporally
consistent; therefore, the plan is pseudo-controllable.

(a)
A

C

2

10

-5

-1
20

-5

B A

C

2

10

-5

-1
9

-5

B
(b)

Figure 4-3 (a) A DGU with uncontrollable duration AB. (b) The
APSP-graph does not further constraint the contingent edges.

 108

 Even if a plan is pseudo-controllable, the uncontrollable durations may be squeezed at
execution time. When the dispatcher executes a timepoint, it effectively imposes a rigid
constraint between the start of the plan and the timepoint being executed. If the
dispatcher were to resolve this new constraint with the other constraints (by computing
the APSP-graph) it may tighten a contingent edge, thus squeezing an uncontrollable
duration.

 Recall that the dispatcher does not need to recompute the APSP-graph every time it
executes a timepoint. It updates the execution windows of the timepoints via a set of
local propagations rather than updating the constraints of the plan. This is precisely the
reason that the dispatcher is able to schedule the network in real-time. Therefore, when
we talk about squeezing an uncontrollable duration during execution, it is more natural to
express it in terms of the execution windows, rather than in terms of the temporal
constraints of the plan.

 Given a distance graph with uncertainty (DGU) with a positive upper bound
contingent edge, AB, and corresponding contingent lower bound edge, BA, the execution
window of the contingent timepoint B is squeezed if the execution window [x, y],
resulting from propagation through edges AB and BA is tightened by any other
propagation. Specifically, if the propagation through an incoming positive edge CB,
where C A, results in an upper bound, y�’, where y�’ < y, then the contingent execution
window is upper bound squeezed. Similarly, if a propagation through some outgoing
negative edge BC, where C A, produces lower bound x�’, where x�’ > x, then the
contingent execution window is lower bound squeezed. If the contingent execution
window is squeezed during execution then the uncontrollable duration is also squeezed.

Example 4-3:
 Consider the DGU show in Figure 4-4(a). The DGU is pseudo-controllable; however,
it the dispatcher chooses execution time for B such that it squeezes the execution window
of the contingent timepoint C. Timepoint A is the start of the plan and is executed at time
= 0. After executing A, the dispatcher propagates the execution time through the plan.
The execution window for C is [1,7] and the execution time for B is [5,10]. The
dispatcher is free to choose any execution time for C between [1,7]. Figure 4-4(b) shows
a case when the dispatcher chooses an execution time of 5 for B. After executing C, the
dispatcher propagates the execution time of C through the edges CB and BC. These
propagations result in an execution window for the contingent timepoint B of [8,10].
This squeezes the execution window of B. If the uncertain duration takes any time
between 5 and 7 time units, then the execution is inconsistent. Note that if the dispatcher
executed B at time 1 or 2, then the contingent execution window would not have been
squeezed.

 109

Figure 4-4 (a) The execution windows for the plan are shown after
executing A at time = 0. (b) The execution window of the
contingent timepoint B is squeezed from [5,10] to [8,10] after
executing the timepoint C at time = 5.

 The goal of the dynamic controllability algorithm is to add additional constraints to the
plan in order to enable the dispatcher to consistently schedule the plan without squeezing
consistent timepoints at execution time.

4.3 The Dynamic Controllability Algorithm

 This section describes the dynamic controllability (DC) algorithm introduced by
[Morris 2001]. The dynamic controllability algorithm transforms an STNU into a
dispatchable graph. [Morris 2001] also showed that this algorithm is both sound and
complete. If algorithm successfully reformulates the STNU, then the STNU is
dynamically controllable; however, it the algorithm fails to reformulate the STNU, then
the STNU is not dynamically controllable. In this section, we first present the overall
structure of the DC algorithm, we will then describe the details of each step, and finally
present the pseudo-code for the DC algorithm along with a brief analysis of the time
complexity of the algorithm. In the next section, we present a new, faster, dynamic
controllability algorithm, which is used in the Hierarchical Reformulation algorithm.

 The dynamic controllability algorithm iteratively applies a set of reductions in order to
prevent the dispatcher from squeezing the plan at execution time. These reductions are a
set of rules that add (or tighten) the constraints to the plan. These reductions are similar to
the strong controllability transformation rules presented in Chapter 3. The dynamic
controllability algorithm uses a constraint processing loop that iterates between applying
the reductions, propagating the effects of the reductions to the other constraints in the
plan, and checking if the plan is pseudo-controllable. The DC algorithm loops until
either 1) it determines that the plan is not dynamically controllable, by detecting an
inconsistency or determining that the plan is not pseudo-controllable, or 2) it converges
on a dispatchable graph.

(a) A

C

9

10

-5

-3

7

-1

[1,7]

[5,10][0,0]

A

C

9

10

-5

-3

-7

-1

[5,5]

[8,10][0,0]
(b)B B

execute A at T = 0

The execution window
derived by propagating the
execution time of A thru the
contingent edges.

The dispatcher chooses
to execute B at T = 5

The dispatcher is free to
choose an execution time
for C between [1,7] time
units

The execution window of B
is squeezed as a result of
propagating the execution
time of C.

 110

3.) apply reductions

YES

4. wait constraint propagation

NO

1. requirement constraint
propagation

YES

6. converged?

return TRUE

2. Pseudo-
Controllable?

return FALSE NO

5. consistent?

Figure 4-5 Basic Steps of Dynamic Controllability Algorithm

 The constraint processing loop iterates between four basic steps: 1. requirement
constraint propagation, 2. checking pseudo-controllability, 3. local constraint deduction,
and, 4. wait constraint propagation, as shown in Figure 4-5. In Step 1, the algorithm
resolves the simple temporal constraints by computing the All-Pairs Shortest-Path graph.
Conceptually, after the first iteration, Step 1 propagates any change in the requirement
constraints throughout the graph. In Step 2, the algorithm checks if any plan is pseudo-
controllable. If the plan is inconsistent or any uncontrollable duration has been squeezed,
the algorithm returns false. In Step 3, the algorithm applies a set of reductions in order to
prevent an uncontrollable duration from being squeezed at execution time. The reductions
may either modify the simple temporal constraints of the plan or modify the wait
constraints of the plan. Finally, the algorithm propagates wait constraints through the
plan.3 If the algorithm determines any inconsistency during this wait constraint
propagation, it returns false.

3[Morris 2001] called the propagation of the wait constraints regression.

 111

 The algorithm loops through these four steps until either 1) the pseudo-controllability
checking step fails, 2) the propagation of the wait constraints results in an inconsistency,
or 3) the algorithm successfully goes through an iteration of the constraint processing
loop without adding (or modifying) the constraints of the plan.

4.3.1 Triangular Reductions

 This subsection describes a set of reductions, which add (or tighten) the temporal
constraints of the plan, in order to prevent the dispatcher from squeezing the contingent
execution windows at execution time. [Morris2001] derived the reductions in terms of a
triangular STNU; however, here we will derive the reductions using the associated
distance graph (DGU). It is more natural to use the distance graph because the dispatcher
uses a distance graph to execute the plan.

 The reductions are derived from a case analysis of a distance graph of a triangular
STNU. The triangular STNU is shown in Figure 4-6(a) and the associated triangular
DGU is shown in Figure 4-6(b). Later we show how the reductions derived for the
triangular DGU are applied to distance graphs of arbitrary size. The triangular STNU
consists of two executable timepoints, A, and C, and one contingent timepoint, B. It
contains one contingent link AB [x,y], corresponding to an uncontrollable duration,
and two requirement links, AC [p,q] and CB [u,v]. We assume the STNU is pseudo-
controllable and the distance graph is in an APSP form. Therefore, each edge in the
distance graph corresponds to a shortest path distance.

B

C

A

v
-u

y
-x

q
-p

B

C

A

[u,v]

[x,y]

[p,q]

(a) (b)

Figure 4-6 (a) The Triangular STNU (b) The associated triangular
DGU.

 The reductions are used to constrain the execution time of timepoint C, in order to
prevent the propagations through CB and BC from squeezing the contingent execution
window of B. Recall that the execution window of B can only be squeezed by incoming
positive edges and lower bound squeezed by outgoing negative edges. We need to
consider three cases. In the precede case, timepoint C must be executed before the
contingent timepoint B. In the follow case, timepoint B must be executed after the
contingent timepoint C, and in the unordered case, the execution order of B and C is
undetermined. Recall that each execution order of a timepoint is determined by
considering the negative edges in its DGU, as illustrated in Figure 4-7.

 112

-

(a) Precede

-x -

(b) Follow

-x
+ +

(c) Unordered

-x
BA

C

A
y y

B

C

A B
y

C
Figure 4-7 Temporal ordering relationships of a timepoint C with
respect to a contingent Timepoint B.

Given a DGU, G, in an APSP-form, the order of execution of a timepoint, C, with respect
to a contingent timepoint B, is as follows:

A timepoint C must follow the contingent timepoint B, if there exists a
negative edge BC in G.
A timepoint C must precede the contingent timepoint B, if there exists a
negative edge CB in G.
The execution order of timepoint C is undetermined with respect to the
contingent timepoint, B, if both edges BC or CB are non-negative.

 Note that if both BC and CB are negative, then there exists a negative cycle and the
DGU is inconsistent. In the triangular DGU shown in Figure 4-6, the ordering of C with
respect to the contingent timepoint B is determined by the sign of u and v.

Follow Case: u 0
 If u 0, then there exists a negative edge BC. In the precede case, timepoint C must
be executed after the contingent timepoint B; therefore, the dispatcher is always privy to
the execution time of contingent timepoint B when it makes the scheduling decision of C.
Therefore, the dispatcher is able to adapt the schedule of C based on the execution time
of B. In the follow case, the dispatcher uses edges BC and CB to update the execution
window of timepoint C not B. Therefore, the execution of C will never squeeze the
execution window of contingent timepoint B. As long as the STNU is pseudo-
controllable, the dispatcher will be able to dynamically schedule B. The follow case
requires no additional tightening of the constraints.

Example 4-4
 Consider a scenario in which a student must meet with an advisor. The advisor�’s
arrival time at the office is uncertain and will take between 5 to 10 minutes. Furthermore,
the advisor requires at least 5 minutes to check his email before the meeting; however;
the advisor is on a tight schedule so he does not want to wait in his office more than 10
minutes before the meeting. The advisor agrees to notify the student when he reaches his
office. The student is willing to wait for up to 20 minutes. The student�’s plan is shown in
Figure 4-8(a). The APSP-graph is shown in Figure 4-8(b). The APSP-graph is both
consistent and the APSP-graph does not tighten the contingent edges; therefore, the plan

 113

is pseudo-controllable. Furthermore, the timepoint C must follow timepoint B; therefore,
the plan is dynamically controllable. Figure 4-8(c) shows the execution windows after
executing timepoint A at T = 0. Figure 4-8(d) shows a situation where it takes the
advisor 7 minutes to get to his office. This execution time is propagated to timepoint C.
The new execution window for C is [12, 17]. The student can successfully execute the
plan by getting to the office any time in this execution window.

B

C

A

10
-5

10
-5

20
-10

B

C

A

[5,10]

[5,10]

[0,20]

(a) (b)

advisor.goto(office)

student.goto(offi ce)

advisor.goto(office)

studen t.goto(office)

B

C

A

10
-5

10
-5

20
-10

(c)

advisor.goto(office)[0,0] [5,10]

[10,20]

B

C

A

10
-5

10
-5

20
-10

(d)

advisor.goto(office)

[0,0] [7,7]

[12,17]

student.go to(o ffice)

student.goto(office)

Figure 4-8 (a) In the student�’s plan, timepoint C must follow the
contingent timepoint B. (b) The APSP-graph reveals that the plan is
pseudo-controllable. (c) Timepoint A is executed at T = 0 and the
execution windows are updated (d) Timepoint B is executed at T =
7, and the execution window for C is updated. In this situation, the
student must get to the office some time between 12 and 17
minutes.

Precede Case: v < 0
 If v < 0, then there exists a negative edge BC in the triangular distance graph;
therefore, B must always be executed before C. In the precede case, the dispatcher will
never know the execution of the contingent timepoint B when it needs to make the
schedule timepoint C. This is exactly the situation addressed by strong controllability.
The dispatcher is not able to adapt the schedule of C based on the execution time of the
contingent timepoint B. The edge CB and BC are used to update the execution window of
the contingent timepoint C. In order to be dynamically controllable, the algorithm must
restrict the execution time of B. Specifically, in order to prevent the contingent execution
window from being squeezed by propagations through CB and BC, we need to restrict
the execution time of timepoint C with respect to A, by applying the appropriate strong
controllability transformation rules. The reductions are simply the executable/contingent
and the contingent/executable strong controllability transformation rules as derived in
Section 3.5. However, instead of using the rules to compute a new transformed distance
graph, as we did in the strong controllability algorithm, here the rules are used to directly

 114

modify the distance graph. Specifically, the precede reductions tightens the edges AC
and CA.

(Precede Reduction) Given a triangular distance graph with uncertainty ABC (as shown
in Figure 4-6(b)), with v < 0, the edge AC is tightened to x-u, and the edge CA is
tightened to v-y.

 As in the strong controllability case, the precede reduction effectively decouples the
timepoint C from the contingent timepoint B. After applying the reduction, any
propagation from timepoint C to timepoint B is redundant; therefore, the edges CA and
AC can be removed from the distance graph. Any non-redundant information propagated
through the edge CB and BC would only serve to squeeze the execution window of the
contingent timepoint.

 Note that the precede reductions are easily remembered, by first negating and
transposing the contingent edges in the distance graph. Next, the shortest paths CBA and
ABC are computed.

Example 4-5
 Consider the STNU shown in Figure 4-9(a). The uncontrollable duration between
timepoints A and B will take between 5 to 10 time units, and timepoint C must precede
B by 1 to 8 time units. The APSP-graph is shown in Figure 4-9(b) is consistent and the
contingent edges are not tightened; therefore, the STNU is pseudo-controllable. The edge
BC is negative; therefore, C must precede B. In order to prevent the contingent execution
window from being squeezed; we need to apply the precede reduction. The precede
reduction tightens CA to -2 and AC to 4. Figure 4-9(c) shows the tightened distance
graph. The edges BC and CB are not dominated. Figure 4-9(d) shows the distance
graph after removing the dominated edges.

-1
-5

8

-2

4

A B

C

10

-1

-5

8

A
B

C

10

-2

4

-5
A B

C

10

(b)

(c) (d)

[1,8]

A B

C

[5,10]
(a)

9
3

Figure 4-9 (a) The STNU where timepoint C must precede the
contingent timepoint B. (b) The APSP-graph of the STNU. (c) The

 115

resulting distance graph after applying the precede reduction. d(CA)
+ d(AB) = d(CB) and both AB and BC are positive; therefore, CB is
dominated. Also, d(BA) + d(AC) = d(BC) and both BA and BC are
negative, so BC is dominated. (d) The distance graph after CB and
BC are removed.

Unordered Case: v 0 and u 0
 In the unordered case, the edges BC and CB are both positive; therefore, the order of
execution of B and C is not a priori determined. If C is executed first, then the edge CB
is used to update the upper bound of the contingent timepoint B. However, if B is
executed first, then the edge BC is used to update the upper bound of C. The simplest
way to deal with the unordered case is to unconditionally constrain the execution time of
B, in order to prevent the edge CB from squeezing C; this is accomplished by adding
edge CA of v-y, as we did in the precede case. However, unconditionally constraining C
may prevent the dispatcher from being able to react to the uncertain execution time of B,
when B is executed first. Instead, we apply a softer constraint, called a wait constraint,
which enables the dispatcher to adapt to the schedule of C when B is executed first, yet
restricts the execution time of C in order to prevent B from being squeezed.

 The wait constraint, written <B, t>, on edge AC specifies that the execution of C must
wait for at least t time units after A executes or until B executes, which ever is sooner
[Morris 2001]. In the previous example, B is called the conditional timepoint and t is the
wait duration. Here we introduce a slightly different form of the wait constraint, called a
conditional constraint or conditional edge, which encodes the same information as the
wait constraint, except that it puts in a form similar to the edges in the distance graph. A
conditional constraint is a directed edge that contains a distance expressing a temporal
constraint similar to a requirement edge and a conditional timepoint similar to a wait
constraint. The conditional constraint is the negative transpose of the wait constraint. A
wait constraint <B,t> on an edge AC, corresponds to a conditional constraint of CA of
<B,-t>. As in a requirement edge, the temporal distance of the conditional constraint
requires that T(C) �–T(A) -t, which can be rewritten as T(A) �– T(C) t. If t 0, then the
conditional constraint encodes a lower bound temporal requirement (i.e. a wait condition)
on C with respect to A. Similar to a wait constraint, this temporal requirement is only
enforced until the conditional timepoint B is executed. After the conditional timepoint B
executes, we say that the conditional constraint is relaxed. Thus, the conditional
constraint CA of <B,-t> specifies that C must wait for at least t time units after A
executes or until B executes, which ever is sooner.

 In the unordered case, we apply a conditional unordered reduction, as defined below,
which introduces a conditional constraint to the plan.

(Conditional Unordered Reduction) Given a triangular distance graph with
uncertainty (as shown in Figure 4-6(b)), where v 0 and u < 0, apply a conditional
constraint CA of <B, v-y>.

 116

 After applying the conditional unordered reduction, if B executes first (follow case),
then the conditional constraint is relaxed (i.e. the temporal requirement imposed by the
conditional constraint no longer needs to be satisfied) and the dispatcher can react to the
execution time of B. However, if C is executed first (precede case), then the temporal
requirement of the conditional constraint ensures that the propagation from C will not
squeeze the execution window of B.

Example 4-6
 Here we revisit the student-advisor meeting problem with a slightly different temporal
constraints. The advisor�’s arrival time is still uncertain. It will take him between 5 and
15 minutes to get to his office, and the student is willing to wait for up to 20 minutes
before getting to the office. Both the student and the advisor will only wait a small
amount of time in the office. The student will not wait more than 5 minutes after getting
to the office, and the advisor, being more impatient, will wait no more than 1 minute.
Furthermore, the student and advisor agree to call one another when they reach the office.

 The student�’s plan for this scenario is shown in Figure 4-10(a). The APSP-distance
graph is shown in Figure 4-10(a). The APSP-graph is consistent and the contingent edges
are not squeezed; therefore, the plan is pseudo-controllable.

 Consider the student�’s execution strategy. If the student gets to the office anytime
before 10 minutes, he runs the risk that he will be waiting more than 5 minutes before the
advisor arrives. For example, if the student only waits for 6 minutes, the student will be
waiting for more than 5 minutes in a situation where the advisor arrives any time between
11 and 15 minutes. However, if the student unconditionally waits for 10 minutes, the
advisor may be waiting around for more than 1 minute after he arrives. For example, if
the student waits for 10 minutes and the advisor arrives in 7 minutes, then the advisor
will be waiting around for 3 minutes. There is no unconditional strategy for successfully
scheduling the arrival time of the student. Applying the conditional unordered reduction
encodes a conditional execution strategy. The conditional constraint CA <-10,B>
(dashed line), shown in Figure 4-10(c), specifies that the student must wait for at least 10
minutes or until the advisor arrives. This enables the student to successfully execute the
plan.

 117

B

C

A

1
5

15
-5

16
0

B

C

A

[-1,5]

[5,15]

[0,20]

(a) (b)

advisor.goto(office)

student.goto(offi ce)

advisor.goto(office)

studen t.goto(office)

B

C

A

1
5

15
-5

160

(c)

advisor.goto(office)

student.go to(o ffice)

<-10,B>

Figure 4-10 (a) The student�’s plan where the execution order of B
and C is unordered (b) The APSP-graph of the student�’s plan (c)
The distance graph after applying the conditional unordered
reduction

 In order to formally incorporate the conditional constraints with the Distance Graph
with Uncertainty (DGU), we introduce a Conditional Distance Graph with Uncertainty
(CDGU). The CDGU is a DGU that contains a set of conditional constraints. The
dispatcher uses the information contained in the CDGU while executing the plan. The
distance graph shown in Figure 4-10(c) is a CDGU.

Definition (CDGU): A CDGU is a 5-tuple <Nctg,Nexe,Ereq,Ectg,Econd> where Nctg is a set
of contingent timepoints, Nexe is a set of executable timepoints, Ereq is a set of requirement
edges, Ectg is a set contingent edges, and Econd is a set of conditional edges.

 There is one important case when a conditional constraint is actually unconditional. In
this case the conditional constraint is converted into a requirement edge. Specifically, a
conditional constraint is unconditional if the lower bound of the uncontrollable duration
associated with a conditional timepoint is greater than the wait duration specified by the
conditional constraint. In this case, the conditional timepoint will never be executed
before the wait period is completed; therefore, the dispatcher must always wait the full
duration, as specified by the conditional constraint. The unconditional unordered
reduction specifies when a conditional constraint is converted into a requirement edge.

(Unconditional Unordered Reduction) Given a CDGU with conditional constraint CA
of <B,-t>, and an uncontrollable duration AB [x,y] associated with the conditional
timepoint B, if x > t, then the conditional constraint CA is converted into a requirement
CA with distance �–x.

 Note that the unconditional unordered reduction always applies when the temporal
distance of the conditional constraint is positive. Therefore, after applying the
unconditional unordered reduction, only negative conditional constraints remain.

 118

Example 4-7:
 Consider the CDGU shown in Figure 4-11(a). The conditional constraint CA of
<-4,B> derived by the conditional unordered reduction. The conditional
constraint specifies that the dispatcher must wait to execute C for at least 4 time
units after A is executed or until B is executed. However, the contingent edge CA
specifies that B will never execute before 5 time units. Therefore, by the
unconditional unordered reduction, the conditional constraint CA is converted
into a requirement edge CA of distance -4. Figure 4-11(b) shows the resulting
CDGU after applying this requirement constraint to the distance graph.

B

C

A

1
11

15
-5

160
<-4,B>

B

C

A

1
11

15
-5

16
-4

(a) (b)

Figure 4-11 (a) A CDGU with conditional constraint CA <-4,B>
where lower bound of the uncontrollable duration, 5, is greater than
the wait period, 4, of the conditional constraint (b) The
unconditional unordered reduction converts the conditional
constraint CA of <-4,B> in to a requirement constraint CA of -4.

 In this section we reviewed three reductions4 for triangular STNUs: the precede,
conditional unordered, and unconditional unordered reductions. These reductions
prevent the dispatcher from squeezing the execution window of the contingent timepoint,
while allowing dispatcher to react to the uncertain execution time of the contingent
timepoints. If the reductions do not violate the pseudo-controllability of the STNU, then
the triangular STNU is dynamically controllable [Morris 2001]. For STNUs of more than
three timepoints, the triangular reductions are applied for each triangle that appears in the
STNU.

 In the next subsection, we introduce a technique, called regression, which allow us to
determine if the introduction of a conditional constraint violates the pseudo-
controllability of the STNU. Regression also serves to enable us to handle conditional
constraints for STNUs of more than three timepoints.

4.3.2 Regression of Conditional Constraints

 [Morris 2001] showed that conditional constraints need to be propagated through the
distance graph. The propagation is a type of constraint propagation that resolves the
conditional constraint with the other constraints in the plan. The propagation of a
conditional constraint is called regression. This regression serves two purposes. First it
detects if the conditional constraint is inconsistent with the other constraints of the plan,

4 [Morris 2001] also introduced a general unordered reduction; however, it is unnecessary.

 119

and second, it ensures that the conditional constraint will not be violated at execution
time.

Example 4-8
 Consider the distance graph shown in Figure 4-12(a). The conditional constraint
CA of <-7,B> may be inconsistent if D propagates an upper bound to C that is
less than 7 time units. At execution time, if D is executed at a time before 5 time
units, then the propagation through DC requires C to be executed before 7 time
units; hence, violating the lower bound imposed by the conditional constraint CA.
However, if we impose a conditional constraint DA of <-5,B>, thereby restricting
the execution time of D as shown in Figure 4-12(b), the original conditional
constraint CA can not be violated. Note that the constraint DA that restricts the
execution time of D only needs to be conditional because, once B is executed, the
original conditional constraint CA is relaxed; thus it no longer needs to be
protected. Also note that the new conditional constraint DA is computed using a
similar method to that used for requirement constraints; the value of conditional
constraint is equal to the shortest path DCA.

A B10

3

2D

(a)
A B

3

2
D

(b)

<-7,B>

-5

-1 -1

-5
10

1 1

C

<-7,B>
7 <-5,B>

C

7

Figure 4-12 (a) The conditional constraint CA is potentially violated
by the incoming positive edge DC (b) Imposing a conditional
constraint of DA of <-5,B> prevents the original CA from being
violated at execution time.

 In general, a conditional constraint CA is potentially violated by incoming positive
edges in the timepoint C. For a Conditional Distance Graph with Uncertainty (CDGU),
there are two types of positive incoming edges: requirement and contingent edges. Note
that conditional edges are always negative (any positive conditional edge is converted
into a requirement edge by the unconditional unordered reduction). The regression
lemma below specifies the means to resolve the potential consistency violations for both
cases. For the requirement edge, the conditional edge is regressed using a type of
shortest path computation, as illustrated in the previous example. For a contingent edge,
the conditional edge is regressed using a slight variation of the precede reduction. For the
contingent case, the conditional edge must be regressed, in order to ensure that it will be
satisfied for all situations. The regression lemma stated below is a variation of the
regression lemma introduced by [Morris 2001].

(Regression): Given a conditional constraint CA of <B,-t>, where t is less than or equal
to the upper bound of AB. Then (in a schedule resulting from a dynamic strategy):
 i.) If there isa requirement edge DC with distance w, where w 0 and D B, we can
 deduce a conditional constraint DA of <w-t, B>.

 120

 ii.) If t >= 0 and if there is a pair of contingent edges DC, of distance y, and CD, of
 distance -x, where x, y 0 and B C, then we can deduce a conditional
 constraint DA of <x-t, B>.

 The first regression rule is applied when a conditional edge is threatened by an
incoming positive requirement edge. The conditional edge is regressed through the
incoming positive requirement edge, except when the requirement edge originates from
timepoint B (i.e. D = B)5. The regression ensures that the wait period encoded in the
conditional constraint CA of <B,-t> is never in conflict with an upper bound propagated
by the incoming positive edge. The conditional constraint does not need to be regressed
through an edge originating from B because, in order for the dispatcher to propagate an
upper bound from B, B must be executed. When B is executed, the conditional constraint
CA is relaxed (i.e. the temporal requirement is removed from the plan). The upper bound
propagated from B can not be inconsistent with a constraint that is no longer exists.

 If we were to regress a conditional edge CA of <B,-t> through an edge originating
from B, the regression produces a new conditional constraint BA of <B,-x>. This new
conditional constraint, BA, would require B to wait x amount of time after A executes or
until B executes. The constraint imposes a nonsensical constraint in which B is waiting
on itself to execute. One could argue that this constraint precludes B from executing until
the full wait period of x as come to pass or one could argue that simply executing B
satisfies the constraint; therefore, the conditional constraint is satisfied no matter when B
executes. Rather than engaging in a philosophical debate, we simply restrict the
regression such that this type of constraint never arises.

 The second regression rule is applied when a conditional constraint CA of <B,-t> is
threatened by an outcome of an uncontrollable duration. If an uncontrollable duration
DC [x,y] occurs early, such that the execution of C happens before the imposed wait
period of t expires, then the conditional constraint is violated. The regression imposes a
new conditional constraint on the start of the uncontrollable duration, timepoint D, in
order to ensure that the original conditional constraint CA will be satisfied for all
situations. The conditional edge is satisfied in all situations if it is satisfied in the worst
situation. The worst situation occurs when uncontrollable duration DC occurs at its
earliest possible time (i.e. at its lower bound of x). Imposing a conditional constraint of
DA <x-t, B> ensures that even when an uncontrollable duration occurs at its lower
bound, the conditional constraint CA will not be violated. The distance (x-t) of the new
conditional constraint DA is derived by treating the conditional edge as a requirement
edge and applying the precede reduction.

 Note the distance of the original conditional constraint CA is always less than zero (if
distance is positive, then the conditional constraint is converted into a requirement edge
per the unconditional reduction rule). Therefore, A must occur before C and the precede
reduction rule applies. Therefore, the new conditional constraint applied through
regression is only conditioned on the outcome of B. In other words, applying the

5 [Morris 2001] did not include this exception.

 121

unconditional reduction to positive conditional constraints prevents the regression from
introducing a conditional constraint that is conditioned on more than one timepoint.

 Regressions are applied recursively until no more regressions are possible. This
process is called full regression. Each conditional edge introduced by the conditional
unordered reduction needs to be regressed through all incoming positive edges. The
regression of a conditional constraint through an incoming positive edge leads to either a
new conditional constraint or a new requirement constraint (after applying the
unconditional unordered reduction). In general, if the regression introduces a new
conditional constraint, then that new conditional constraint needs to be regressed. A new
conditional constraint does not need to be regressed under three cases: 1) The new
conditional constraint is converted into a requirement edge by the unconditional
unordered reduction, 2) the new conditional constraint is self looping (the start and end
timepoint of the conditional edge are the same) or 3) there are no incoming positive edges
to necessitate further regression.

 One interesting case arises when the conditional constraint is converted into a positive
requirement edge by the unconditional unordered reduction. If the new requirement edge
is positive, then it potentially violates a conditional edge. In this case, any conditional
constraint threatened by this new positive requirement edge must be regressed through it.

 The regression may expose a temporal inconsistency. Specifically, if the regression
imposes a self-looping (conditional or requirement) edge with negative distance (i.e. a
negative cycle), then the plan constrained by the CDGU is not dynamically controllable.
Note that full regression is not in itself sufficient to determine the dynamic controllability
of the plan. The regression may introduce a new requirement edge that compromises the
pseudo-controllability of the plan; however, it is only detected by resolving the new
requirement edge with all the other constraints in the plan. Regression only resolves this
new requirement constraint with the conditional constraints of the plan. The mechanism
used by [Morris 2001] to detect the potential consistency violations is to recompute the
APSP-graph and to recheck if the plan is pseudo-controllable. In the next section, we
present a novel scheme to interleave the constraint propagation of requirement constraints
with conditional constraints. This new scheme does not depend on recomputing the
APSP-graph.

Example 4-9
 Consider distance graph shown in Figure 4-13(a). In order to prevent the execution
window of the contingent timepoint B from being squeezed at execution time, we apply
the conditional unordered reduction to the triangle ABC. This introduces a conditional
edge CA of <-7,B>, as shown in Figure 4-13(b). Note that other reductions are
applicable, including the conditional unordered reduction on triangle DCB; however,
these reductions are not applied for clarity.

 This conditional edge CA needs to be regressed through all incoming positive
requirement edges not originating from the conditional timepoint B, and any
uncontrollable durations terminating on C. In our example, the conditional edge CA is

 122

regressed through the requirement edge AC, and the uncontrollable duration DC. The
regression through AC with distance 9 results in a new self looping conditional edge AA
of <1,B>. The regression of the conditional edge CA through the uncontrollable duration
DC results in a new conditional edge DA of <-4,B>. The results of these regressions are
shown in Figure 4-13(c).

 This conditional edge AA is converted into a requirement edge by the unconditional
unordered reduction, because the distance of the conditional edge is positive. Fortunately,
this new requirement edge does not introduce a negative cycle into the CDGU. The
distance of the conditional edge DA is -4, which imposes a wait of 4 time units between
A and D, which is less than the lower bound of the uncontrollable duration AB of 5.
Therefore, the conditional constraint DA of <-4,B> it is converted into a requirement
edge DA with distance 4 by the unconditional unordered reduction. The results of these
reductions are shown in Figure 4-13(d). Note that there now exists a negative cycle
between AD; however, this is not detected during regression.

A B
10

4

4 CD

(a)
A B

4

4 CD

(b)

<-6,B>

-5

-2 -2

-5
10

Appling the conditional unordered
reduction to the triangle ABC
introduces a conditional constraint
CA of <-6,B>.

Regressing the conditional constraint
CA through requirement edge AC and
uncontrollable duration CD results in a
conditional edge AA of <1,B> and BA
of <-4,B>, respectively.

(d) A B

4

4 CD

<-6,B>-4

-2

10
-5

(c) A B

4

4
CD

<-6,B>
<-4,B>

-2

10

-5

Both conditional edge are converted
into a requirement edge via the
uncontrollable unordered reduction.

1 17 7

7

<1,B>

1

7

3 3

3

3

1
1

Figure 4-13 (a) A four timepoint DGU. (b) The CDGU after
appling the conditional unordered reduction to triangle ABC. (c)
The CDGU after regressing the conditional edge CA through AC
and DC. (d) The CDGU after converting the conditional constraints
to requirement edge via the unconditional unordered reduction

 Several important patterns arise during regression. First, all conditional edges
introduced by regressing a conditional edge CA of <B,-t> always points to C and the
regression rules prevent a conditional edge of BA; therefore, there is at most N-1
conditional edges conditioned on B. For a plan containing P uncontrollable durations,

 123

there can be at most P*(N-1) conditional constraints in the plan. Second, the only way
two conditional constraints can exist between the same timepoints is when the
uncontrollable durations start the same timepoint. Third, the regression always increases
the temporal distance of the conditional constraint (i.e. progressively imposes a less
restrictive constraint).

 In this subsection we presented a constraint propagation technique, called regression,
that enabled us to resolve the conditional constraint with other constraints in the plan.
Regression enabled the ternary conditional constraints to be propagated similar to simple
requirement edges. In the next subsection, we combine a pseudo-controllability checking
algorithm, with the triangular reductions and regression, to form the dynamic
controllability algorithm.

4.3.3 Pseudo-Code for the Dynamic Controllability Algorithm

 The following completes the description of the dynamic controllability (DC) algorithm
[Morris 2001] by presenting the pseudo-code. The pseudo-code for the DC algorithm is
shown in Figure 4-14. Dynamic controllability transforms the STNU into a dispatchable
CDGU, if this reformulation is successful, then the algorithm is dynamically controllable
and returns true, otherwise the DC algorithm returns false. Recall that the general
structure of the DC algorithm is described in the flow diagram shown in Figure 4-5.

 Line 1 computes the associated distance graph, G, of the STNU, . The DC uses the
distance graph formulation of temporal constraints. In Line 3 the DC algorithm first
computes the All-Pair Shortest-Path graph (APSP-graph) of the distance graph G while
ignoring the distinction between contingent and requirement edges. Line 4 checks if the
plan is pseudo-controllable by calling the IS_PSEUDO_CONTROLLABLE function. If
any contingent edges are squeezed or if any negative distance graph contains a negative
cycle, then the IS_PSEUDO_CONTROLLABLE function returns false; otherwise, it
returns true. If the plan is not pseudo-controllable, the DC algorithm returns false. Recall
that if the plan is not pseudo-controllable, then the plan is not dynamically controllable.
Line 6 initializes the variable modified to false. This variable is used to determine if the
algorithm converges.

 Lines 7-14 loops through all possible triangles, ABC, that contain a contingent
timepoint B, and applies any tightening required by the precede reduction, and any
conditional constraint required by the conditional unordered reduction. If the reductions
tighten or add a new constraint to the distance graph, then the algorithm assigns the
variable modified to true and breaks out of the loop. If the algorithm loops through all
possible triangles and the constraints of the distance graph are not modified, the variable
modified remains false.

 In Line 15 The REGRESS_WAITS function applies all possible regressions of
conditional constraints, while converting the conditional constraints to requirement
constraints when the unconditional unordered reduction applies. If the regression
introduces a temporal inconsistency, then the REGRESS_WAITS function returns false;

 124

otherwise, it returns true. If the REGRESS_WAITS function returns false, then so does
the DC algorithm in Line 16.

Line 17 checks if the regression modified the constraints (conditional, requirement, or
contingent) of the distance graph by calling the function IS_MODIFIED. The variable
modified is true if the distance graph is modified, by either applications of the reductions
or regression.

 The algorithm loops through Lines 2-17, tightening the edges of the distance graph
until the algorithm converges on a dispatchable CDGU (the algorithm completes on a
successful loop when no edges are modified) or loops until the algorithm detects that the
plan is not dynamically controllable (either in Line 5 or Line 16).

Figure 4-14 Pseudo-Code for Dynamic Controllability (DC)
algorithm [Morris 2001]

function DC1()
input A STNU
effects computes a dynamically controllable CDGU if the plan is dynamically controllable.
returns true if dynamically controllable, otherwise false
1 G DISTANCE_GRAPH()
2 do
3 G COMPUTE_APSP_GRAPH(G)
4 if IS_PSEUDO_CONTROLLABLE (G)
5 return FALSE
6 modified FALSE
7 for each contingent timepoint B N(G) associated with uncontrollable duration AB
8 for each incoming positive edge CB
9 modified apply tightenings required by the precede reduction to triangle ABC.
10 modified apply conditional constraints required by conditional unordered reduction
 to triangle ABC
11 if modified break
12 end for
13 if modified break
14 end for
15 if REGRESS_WAITS(G)
16 return FALSE
17 modified IS_MODIFIED(G) or modified
16 end if
17 while modified=TRUE
18 return TRUE

 125

 The DC algorithm is sound because it only derives new constraints based on the
original constraints and the assumption of dynamic controllability [Morris 2001].
Furthermore, the completeness of this algorithm was shown in [Morris 2001].

The time complexity of the DC algorithm is shown to be polynomial [Morris 2001]. The
individual tightenings are clearly polynomial, and convergence is assured because the
domains of the constraints are strictly reduced by the tightenings. However, only a crude
estimate was provided for how long the convergence would take. Moreover, a crude
estimate is in terms of the maximum value of the edges and the fixed precision on the
edges. Each time the algorithm loops through Lines 2-17 it applies at least one
tightening. If all the distance on the edges are bounded by B, and there is a fixed level
of precision , and E edges. Then, after at most BE/ loops, the algorithm will converge.
Each loop requires an O(N3) APSP computation and there are N3 edges in the APSP
graph; Therefore, the crude bound becomes N6*B/ !

 The DC algorithm depends on repeated calls to an expensive O(N3) APSP
computation in Line 2 to perform requirement edge constraint propagation. Furthermore,
it uses an inefficient looping scheme that first resolves the requirement edges with one
another via the APSP algorithm, then resolves the requirement edge with the contingent
edge propagation via reductions, and, finally, resolves the conditional edges with the
requirement, and conditional edges with contingent edges via regression. In the next
section, we show how to improve on the performance of the dynamic controllability
algorithm by resolving all possible combinations of constraints all at once. This general
frame work enables our new fast dynamic controllability algorithm to remove the
repeated APSP computations.

4.4 Fast Dynamic Controllability Algorithm
 In this section, we describe our novel fast dynamic controllability algorithm (fast-DC
algorithm). This fast-DC algorithm has a significant performance improvement compared
to the dynamic controllability algorithm introduced by [Morris 2001]. This fast dynamic
controllability algorithm achieves its enhanced speed via several new improvements. The
speed of the fast-DC algorithm is verified empirically.

1. We show how to exploit the fact that a dispatchable plan can by incrementally
executed during the reformulation phase. We introduce a local incremental algorithm for
maintaining the dispatchability of a plan constrained by STNs. In this algorithm, when
an edge length changes in a dispatchable distance graph, only a subset of the constraints
need to be notified of this change. Specifically, the change only needs to be back-
propagated, similar to regression. Then we show how to apply this technique to plans
constrained by STNUs. In order to make this transition from STNs to STNUs, we
introduce a new property, called pseudo-dispatchability, and show that for any for
pseudo-dispatchable STNU only changes in requirement edges need to be back-
propagated. This removes the need to compute the APSP-graph, which updates all edges
in the distance graph, every time a requirement edge changes.

 126

2. The constraint propagations of requirement edges, contingent edges and conditional
edges required by dynamic controllability are combined into an efficient general
framework. This general framework enables the different types of constraint propagation
to be interleaved with one another rather than applying them sequentially. Interleaving
the different types of propagation enables the dynamic controllability algorithm to reduce
the number of propagations required. The idea is to apply the required tightening as soon
as we can deduce them, so that the next round of propagations has the most up-to-date
constraint set as possible.

3. We trim the distance graph of redundant constraints prior to performing the integrated
constraint propagation. This can drastically reduce the number of propagations required.

 First we introduce the incremental algorithm for maintaining the dispatchability of
STNs. Next we show how this incremental algorithm applies to STNUs by introducing
the idea of pseudo-dispatchability. This provides the basis for the new requirement edge
propagation technique, which removes the dependence of the dynamic controllability
algorithm on repeated APSP calls. Next, we describe the set of back-propagation rules
that make up the general constraint propagation framework and present the back-
propagation algorithm. Finally, we describe the new fast-DC algorithm pseudo-code,
which uses this new back-propagation algorithm. After presenting the algorithm, we
demonstrate the fast-DC algorithm on several examples and review how the fast-DC
algorithm fits in with the Hierarchical Reformulation algorithm, presented in Chapter 3.

4.4.1 Incremental Dispatchability Maintenance

 In order to understand how the new requirement constraint propagation technique
works, let�’s revisit the problem of dynamically executing a STN. [Muscettola 1998a]
showed that any dispatchable STN can be executed incrementally using a dispatching
algorithm. If a STN is dispatchable, as long as each execution decision is consistent with
the past assignments, then we can guarantee that there is a consistent assignment for
future timepoint assignments. Recall that executing a timepoint is equivalent to adding a
set of rigid constraints between the start of the plan and the timepoint being executed.
During execution, the dispatcher ensures that the addition of these additional constraints
is consistent with the past, by propagating information at execution time. However, if a
random constraint is modified in a dispatchable graph, we need to make sure that the
change is consistent with the past using back-propagation. Back-propagation informs all
constraints that relate timepoints in the past. If the back-propagation does not introduce
an inconsistency, then the constraint change is consistent with all the constraints. This
leads to an efficient algorithm for incrementally updating a dispatchable STN distance
graph.

 In order to develop a back-propagation algorithm for a dispatchable STN, we use a
logic similar to that used when developing the reduction and regression rules.
Specifically, any positive edge AB that is either added or modified is only threatened by

 127

outgoing negative edges from B. In addition, any negative edge BA that is either added
or modified is only threatened by incoming positive edge to A. Therefore, we need to
back-propagate any change in a positive edge AB through all negative edges originating
from B. Similarly, we need to back-propagate any change in a negative edge BA through
all incoming positive edge into B.

 These back-propagations need to be applied recursively in order to ensure that the
change is consistent with the past. This back-propagation technique only requires us to
update a subset of the edges (i.e. constraint that may happen in the past), instead of all the
edges which would happen if we were to recompute the APSP every time an edge
changed. The future constraint will be notified of the change when they need to be
notified, which is at execution time. Thus we defer the future updates until execution
time. Furthermore, the back-propagation preserves the dispatchability of the distance
graph.

 First, we give an example, then we provide the formal back-propagation rules for
distance graphs associated with STNs. Finally, we show how this back-propagation is
extended to distance graphs associated with STNUs.

Example 4-10
 Consider the dispatchable distance graph shown in Figure 4-15. Figure 4-15(a) shows
the original dispatchable graph. Consider a scenario in which the edge DC is reduced
from -2 to -5 for some reason, as shown in Figure 4-15(b). During execution, the edge
DC is used to propagate a lower bound to timepoint D. We call timepoint D the
timepoint of interest. In order to maintain the dispatchability of the graph, the tightening
of DC needs to be propagated through the graph. However, the effects only need to be
propagated backward from the node of interest, because, as long as D is consistently
executed, the dispatcher is able to consistently execute E.

 The negative edge DC is threatened by the incoming positive edge CD and BD. We
resolve the new edge DC with the threats (CD and BD), by computing the local shortest
path through the threats. The shortest path BDC results in a tightening of edge BD from
8 to 5, and the shortest path CDC results in a new edge CC of 5. Figure 4-15(d) shows
the result of the first step of back-propagation. The tightening of the constraint BC is
then back-propagated where node C is the timepoint of interest. The edge positive BC is
threatened by all outgoing negative edges from C (CB and CA), as shown in Figure
4-15(e). BC is back-propagated through its threats. The shortest path BCB results in a
new edge BB of 0, and the shortest path BCA results in a tightening of BA from 0 to -1.
The results of the second stage of back-propagation are shown in Figure 4-15(f). Note
that BA needs to be back-propagated through AB, resulting in a new edge AA of 9.

 Back-propagation does not introduce any negative cycles; therefore, the change is
consistent. Furthermore, the tightenings introduced through the back-propagation
preserve the dispatchability of the distance graph.

 128

A
10

B
0

C
10

D
-2-5

8
E

10

-2

10

 CD is changed from -2 to -5
timepoint of
interest

A 10 B
0

C 10 D
-5

-5

10

E
10

-2

8

A
10

B
0

C
10

D
-5

-5

10

E
10

-2
8

Idea: locally back-propagate effects
of through all possible threats-6

-6

-6

A
10

B
0

C
10

D
-5

-5

10

E
10

-2
5

-6

A
10

B
0

C
10

D
-5

-5

10

E
10

-2
5

-6

Idea: recursively perform the
local back-propagation

A 10 B
-1

C 10 D
-5

-5

10

E
10

-2

5

-6

(a)

(b)

(c)

(d)

(e)

(f)

5

threats CD and BD

new edges BC and CC

threats CB and CA

5

50

new edge BB and BA
Figure 4-15 Back-Propagation Example

 Now we give the back-propagation lemma and incremental algorithm used to maintain
the dispatchability of a STN distance graph.

Lemma (Incremental Dispatchability) Given a STN and associated dispatchable
distance graph G,
i) any change or addition of an edge AB of distance x, where x >0, for all edges BC of
length y, where y <= 0, we can deduce a new constraint AC of length x+y.
ii) any change or addition of an edge BA of distance z, where p <= 0, for all edge CB of
length q, where q >= 0, we can deduce a new constraint CA of length p+q.
Furthermore, recursively applying rules i and ii maintains the dispatchability of the G.

 The algorithm for maintaining the dispatchability of the distance graph, recursively
applies the Incremental Dispatchability propagation rules until no more back-
propagations can be deduced. If back-propagation introduces a negative cycle then the
algorithm returns false, otherwise, the algorithm returns true

 The Incremental Dispatchability (ID) algorithm used to replace the APSP computation
in the slow dynamic controllability algorithm introduced by [Morris 2001]. In order to
apply the ID algorithm to distance graphs with uncertainty (DGUs) we introduce the idea
of pseudo-dispatchability. If we ignore the distinction between contingent and
requirement edges in the DGU (as we did when we computed pseudo-controllability),
then the DGU is effectively converted into STN distance graph. If this associated STN
distance graph is dispatchable, then we say the DGU pseudo-dispatchable. In order to
maintain the pseudo-controllability of DGU when a constraint is changed, we apply the
ID algorithm to the DGU. This resolves a change in a requirement constraint with all the
other requirement constraints.

 129

 We also introduce the term pseudo-minimal dispatchable graph (PMDG). A PMDG
is DGU in which the associated STN distance graph contains the fewest number of edges.
The edges of the DGU are trimmed using the same dominance relationships introduced
by [Muscettola 1998a].

4.4.2 Back-Propagation

 In this subsection we describe a set of local constraint propagation rules that determine
how one constraint change affects the values of other constraints, in order to maintain the
dispatchability of a dynamic controllability Conditional Distance Graph with Uncertainty
(CDGU). These rules all share one important property - they only affect constraints that
occur earlier in the plan; thus, we call them back-propagation rules for STNUs. This
idea is illustrated in Figure 4-16. These rules and the associated back-propagation
algorithm form the basis of the Fast-DC algorithm. The back-propagation rules integrate
the Incremental Dispatchability rules, the reduction rules and the regression rules. The
back-propagation rules put all these rules in to common framework.

I K

L
A

B

C

H

J
M

E

D G

F

Effected by Change Not Effected By
Chage

If this
changes

Figure 4-16 If either a requirement, or conditional edge changes, in
order to maintain the dispatchability of the CDGU, the effects only
need to be back-propagated

 Each back-propagation rule differs, depending on the types of edges involved, the
signs of the edge distances, and the relative direction of the edges. In a DGU, there exist
five types of edges: positive and negative requirement edges, positive and negative
contingent edges, and negative conditional edges.

Requirement Contingent Conditional

+ - + - -

 130

 We group our back-propagation rules into three groups: negative requirement edges,
positive requirement edges, and negative conditional edges because these are the only
three types of edges that may be added or modified during reformulation. Any positive
conditional edge is converted to a requirement edge by the unconditional unordered
reduction rule. The rules are used to determine what new constraints need to be enforced
to ensure consistency and dynamic controllability. The following table summarizes the
back-propagation rules used in the Fast-DC algorithm.

If This Changes Must Back-Propagated Through Derived From
Negative requirement edge BA 1. any positive requirement edge CB

2. any positive contingent edge CB
ID(i)
Precede Reduction

Positive requirement edge AB 1. any negative requirement edge BC
2. * any negative contingent edge BC
3. any negative conditional edge BC
of <-t,D> where D A

ID(ii)
CUR
Regression(i)

Negative conditional edge BA 1. any positive requirement edge CB
of <-t,D> where D A
2. any positive contingent edge CB

Regression(i)
Regression(ii)

* apply conditional constraint in both precede or unordered cases
ID: Incremental Dispatchability
CUR: conditional unordered reduction

Table 1 Back-Propagation Rules Summary

4.4.3 Back-Propagating when a Negative Requirement Edge Changes

 Recall that when a dispatcher executes a timepoint it propagates that execution times
through the distance graph in order to update the execution windows of the neighboring
nodes. The dispatcher uses the negative edges to update the lower bound of the
timepoint�’s execution window. The only way a timepoint�’s lower bound, derived from a
negative edge propagation, can be violated is if some other positive edge propagates an
upper bound that is smaller than this lower bound. The back propagation rules are used to
prevent this inconsistent condition from happening.

 Recall that there are two types of positive edges in the DGU: a positive requirement
edge (Case1) and a positive contingent edge (Case2). The back-propagation rule for
changing negative requirement edges handles both cases. In [Morris 2001], the first case
was handled by the APSP computation, and the second case was handled by the precede
reduction.

Case 1: Back-propagating a negative requirement edge through a positive
requirement edge.

 131

 This back propagation rule is called in case when there exists some change in or
creation of a negative requirement edge BA with weight a, such that there exist some
positive requirement edges CB with weight b. The back-propagation rule derives a new
constraint with CA with weight a+b. If this new edge CA provides a tighter constraint
then it update the DGU accordingly. Note that the arbitrary timepoint C may be the
timepoint B, in which case the derived constraint loops on the timepoint B. This example
is depicted in Figure 4-17 (Case1).

Case 2: Back-propagating a negative requirement through a contingent link.
This is exactly the same case as the precede case derived in the dynamic controllability
algorithm [Morris 2001]. This propagation is illustrated in Figure 4-17 (Case2). The
correctness of this propagation rule is shown in [Morris 2001], for the case where there
exists some negative requirement edge.

A
-z B

C

yy-z

Example

A -12 B

C

5

A -12 B

C

5-7

if the negative edge BA
changes

back-propagate
through any
incoming positive
edge CB

upon change

ensures that the lower bound of
B propagated by BA is not
violated by the upper bound
propagated by CB

A -z

C

y
x-z

 if negative edge BA
changes

B

Case 1. negative requirement edge
through an incoming positive
requirement edge

Case 2. negative requirement edge
through an incoming positive
contingent edge

new
requirement

edge

A -7

C

10

B A -7

C

B

-2

ensures that the lower bound
propagated by BA does not squeeze the
contingent execution window of B

-x back-propagate through
the uncontrollable
duration CB lasting [x,y]

-5 10-5

Example

back-
propagte

back-
propagate

new
rquirement

edge

upon change

Figure 4-17 Back-Propagation Rules for Negative Requirement
Edge

 132

4.4.4 Back-Propagation Rule when Positive Requirement Edge
Changes

If a positive requirement edge changes, there are three cases to consider. All three cases
are illustrated in Figure 4-18. The rationale for each rule is shown in Table 1.

A z

C

-x

Case 1: positive requirement edge
through an outgoing negative
requirement edge

A B

C

<-7,B>
B

B

Case 2: positive requirement edge
through an outgoing negative
contingent edge

A z

C

-x y

A z

C

<-x,D>

B

Case 3: positive requirement edge
through an outgoing negative
conditional edge

z-x

<z-y,B>

<z-x,D>

if positive edge
AB changes

back-propagate
through all outgoing
negative requirement
edges BC

new edge

if positive edge
AB changes

back-propagate through
any uncontrollable
duration BC lasting [x,y]new

conditional
edge

if positive edge
AB changes

back-propagate
through all outgoing
negative conditional
edges BC of <-x,D>
except when A = Dnew conditional

edge

Example

A 10

C

-5

B

upon change

back-
propagte

A 10

C

-5

B

5

ensures that upper bound
of B propagated by AB is
not violated by lower bound
propagated by BC

Example

A B

10

C

back-
propagte

3

-5

upon change

10 -5

3

ensures that upper bound
of B propagated by AB is
not squeeze the contingent
execution window of B

A 3

C

<-4,D>

B

<-1,D>

upon change

Example

A 3

C

<-4,D>

B

<-1,D>

ensures that conditional
constraint BC is not violated
by the upper bound
propagated by AB

back-
propagte

Figure 4-18 Back-Propagation Rule for Positive
Requirement Edges

 133

4.4.5 Back Propagating Conditional Edges

The back-propagation rule for the addition or change of a conditional constraint is exactly
the same as the regression rules. The back propagation rules are shown here for
completeness. They are illustrated in Figure 4-19.

A <-z,D> B

C

y<y-z,D>

Example

A <-12,D> B

C

5

A <-12,D> B

C

5<-7,D>

if the conditional edge
BA changes

back-propagate
through any
incoming positive
edge CB except
when D = C

upon change

ensures that the lower bound
imposed by the conditional
edge BA is not violated by the
upper bound propagated by CB

A <-z,D>

C

y
<x-z,D>

 if conditional edge BA
changes

B

Case 1. negative conditional edge
through an incoming positive
requirement edge

Case 2. negative conditional edge
through an incoming positive
contingent edge

new conditional
edge

A <-7,D>

C

10

B A <-7,D>

C

B

<-2,D>

ensures that the lower bound imposed
by conditional edge BA does not
squeeze the contingent execution
window of B at execution time

-x back-propagate through
any uncontrollable
duration CB lasting [x,y]

-5 10-5

Example

back-
propagte

back-
propagate

new
conditional

edge

upon change

Figure 4-19 Back-Propagation Rules for Conditional Edges

 134

5.1.1 Pseudo-Code for BACK-PROPAGATE
The pseudo-code for BACK-PROPAGTE is show in Figure 4-20. BACK-PROPAGATE is
a function that recursively applies the back propagation rules in the previous sections. It
accepts a CDGU G, a start timepoint u, and an end timepoint v. BACK-PROPAGATE
is initiated in order to prevent an positive requirement edge (u,v) from squeezing the
upper bound of the contingent timepoint v or in order to prevent a negative requirement
edge (u,v) from squeezing the lower bound of a contingent timepoint u. The algorithm
returns true if the edge (u,v) is successfully back-propagated through G. (i.e. no
inconsistencies were introduced) otherwise the algorithm returns false.

 Lines 1-2 detect two possible termination conditions. If the timepoint u = v, the
edge(u,v) is a loop. If this loop is positive, thus, does not introduce a temporal
inconsistency, then the algorithm returns true in Line 1. However, if the loop is negative
then the algorithm returns false in Line 2

Lines 3-15 applies the all applicable back-propagations associated with edge (u,v).
Specifically the algorithm back-propagates (u,v) through all appropriate edge (x,y)
resulting in a new edge (p,q). In line 5 it applies the unconditional unordered reduction
when appropriate, which converts a conditional edge (p,q) into a requirement edge (p,q).
This new edge (p,q) (conditional or requirement) is resolved with G. If G is modified it
does two things. It checks if the new edge (p,q) introduces any local negative cycles.
Specifically, it checks if the cycle p-q-p is negative. If there is a local negative cycle,
then the algorithm returns false, otherwise the algorithm recursively calls BACK-
PROPAGATE(G, p, q). If this BACK-PROPAGATE returns false, then the orginal
BACK-PROPAGATE function returns false. If the algorithm successfully applies all
possible back-propagations of (u,v) in line 3-13, then the algorithm returns true in Line
16.

In the next section we give a example of the BACK_PROPAGATE function in the
context of the Fast Dynamic Controllability algorithm.

 135

Figure 4-20 Pseudo-Code for BACK-PROPAGATE

4.5 Fast Dynamic Controllability Pseudo-Code

 The pseudo-code for the Fast-DC algorithm is shown Figure 4-22. The algorithm is
used to reformulate the group plans in the Hierarchical Reformulation Algorithm. The
Fast-DC algorithm operates on group plan�’s associated STNU. If the STNU associated
with the group plan is dynamically controllable, then the algorithm returns a pseudo-
minimal dispatchable CDGU, which can be directly executed by the STNU dispatching
algorithm introduced by [Morris 2001], otherwise, the algorithm returns NIL. The
description of the Fast-DC pseudo-code is interleaved with a example. The TPNU used
in the example is shown in Figure 4-21. This group plan is part of the Mars rover
example originally introduced in Section 3.4.

Method BACK-PROPAGATE(G,u,v)
Input: CDGU G, start timepoint u, and end timepoint v
Effects: recursively called function that back-propagates the constraints through G
Returns: true if the no inconsistencies where introduces, otherwise false
1 if IS-POS-LOOP(u, v) return TRUE
2 if IS-NEG-LOOP(u, v) return FALSE
3 for each edge (x,y) where the back-propagation rules apply to edge (u,v)
4 back-propagate (u,v) through (x,y) to create new edge (p,q)
5 convert any conditional constraint (p,q) to a requirement edge (p,q) as required
 by the unconditional unordered reduction
6 resolve the edge (p,q) with G by tightening (or adding) corresponding edge (p,q) in G
7 if G is modified
8 if resolving (p,q) with G introduces a local negative cycle
9 return FALSE
10 end if
11 if BACK-PROPAGATE(G,p,q) // recursive call
12 return FALSE
13 end if
14 end if
15 end for
16 return TRUE

 136

C

D [3,5]

[3,7]B
[0,5]

R3.spec_reading(rock1)

R4.take_pic(R1)
A

[0,10]

G [10,20]
R4.sample(rock1)

H

E

F

[0,1]

[0,1]

[0,1]

[13,34]
Figure 4-21 Sample Group Plan

Figure 4-22 Pseudo-Code of Fast Dynamic
Controllability Algorithm (Fast-DC)

 Line 1 converts the STNU into a CDGU. This conversion is trivial. It converts the
links of the STNU into a pair of directed edges. Note that initially, the CDGU does not
contain any conditional constraints; therefore, the original CDGU is similar to a Distance

function FAST-DC()
input: A Simple Temporal Network with Uncertainty
returns minimal dispatchable CDGU if is dynamically controllable, otherwise NIL
1 G STNU_TO_CDGU()
2 if COMPUTE_MPDG(G)
3 return NIL
4 end if
5 if IS_PSEUDO_CONTROLLABLE (G)
6 return NIL
7 end if
8 S start timepoint of G
9 Bellman_Ford_SDSP(S, G)
10 Q ordered list of contingent timepoints according to the SSSP distances
11 while(Q.IS-EMPTY())
12 n Q.POP_FRONT()
13 if BACK_PROPAGATE_INIT(G, n)
14 return NIL
15 end if
16 end while
17 COMPUTE_MPDG(G)
18 return G

 137

Graph with Uncertainty (DGU). For example, Figure 4-23 shows the CDGU of the
sample group plan.

C

D 5

7B
5

A

[0,10]

G 20
H

E

F
1

1

1

34

0
-3

-3

0

0

0 -10

-13

Figure 4-23 CDGU of the Sample Group Plan

Recall that in order to apply the back-propagation rules, the CDGU must be pseudo-
dispatchable. In addition, in order to efficiently apply the back-propagation rules, the
CDGU should contain the fewest number of edges. Line 2 transforms the CDGU into a
Minimal Pseudo-Dispatchable Graph (MPDG) by calling the COMPUTE_MPDG
function. This function applies the basic STN Reformulation Algorithm [Muscettola
1998a] on the CDGU. The STN Reformulation algorithm is applied by ignoring the
distinction between contingent and requirement edges in the CDGU. This function
reformulates the constraints of the CDGU. If the CDGU is pseudo-dispatchable, then the
function COMPUTE_MPDG returns true, otherwise it return false. If the CDGU is not
pseudo-controllable, then the FAST-DC algorithm returns NIL. The minimal pseudo-
dispatchable graph for the sample group plan is shown in Figure 4-23.

 138

C

D 5

7B
5

A

0

G 20
H

E

F
1

1

10
-3

-3

0

0

0 -10
1 1-2

-2
35

sdsp(C) = -3

sdsp(H) = -12

Figure 4-24 MPDG of the Sample group plan

The CDGU is only dynamically controllable if it pseudo-controllable. Recall that if a
graph is pseudo-controllable then the constraints do not strictly imply a tighter constraints
on the contingent edges. Lines 5-7 of the FAST-DC algorithm checks if the contingent
edges are squeezed during the process of converting the CDGU into a minimal pseudo-
dispatchable graph. If the CDGU is not pseudo-controllable, then the FAST-DC
algorithm returns NIL. In our example, contingent edges BC, CB, GH, and HG all
remain unchanged; therefore, the CDGU is pseudo-controllable.

Recall that our goal is to reformulate the graph to ensure that the plan can be dynamically
executed. This reformulation is done by applying the a recursive BACK_PROPAGATE
function. The BACK-PROPAGATE function needs to be applied to any edge that may
squeeze the contingent timepoint at execution time. Each initial call of
BACK_PROPAGATE causes a series of other edge updates. However, they will only
update edges closer to the start of the plan. In order to reduce the amount of redundant
work, we initiate the back-propagation cycle near the end of the plan to the start of the
plan. This way we slowly build up a solution from the end of the plan to the start of the
plan. In order to organize the back-propagations, we need to create a list of contingent
timepoints ordered from timepoint that are executed near the end of the plan to the
timepoints that are executed near the beginning of the plan.

Lines 8-10 create this ordered list, Q, of the contingent timepoints. The contingent
timepoints are ordered based on their Single-Destination Shortest-Path (SDSP) distance,
sdsp(x). Specifically, the contingent timepoints are ordered from lowest to highest SDSP
distances. Note that all SDSP distances are less than or equal to zero. The SDSP
distances are computed in Line 9, and the contingent timepoints are ordered in Q in Line
10. The sample group plan contains two contingent timepoints C and H with sdsp(C) =
-3 and sdsp(H) = -12. Therefore, timepoint H comes before timepoint C.

Lines 11-16 of the FAST-DC algorithm apply the back-propagation rules. Line 12 pops
the first contingent timepoint, n, off of the list Q and calls the BACK-
PROPAGATE_INIT function, which starts one round of back-propagations. If that back-

 139

propagation round results in a inconsistency, then the FAST-DC algorithm returns NIL.
The pseudo-code for the BACK-PROPAGATE_INIT is shown in Figure 4-25. BACK-
PROPAGATE_INIT ensure the that contingent timepoint n is never squeezed during
execution.

Figure 4-25 Pseudo-Code for BACK-PROPAGATE-INIT

The BACK-PROPAGATE-INIT function initiates the back-propagation by applying the

back-propagation rules to ensure that the contingent timepoint v is never squeezed during
execution. Recall the contingent timepoint can only be squeezed by incoming positive
edges or outgoing negative edges. Lines 1-5 calls BACK_PROPAGATE for all incoming
positive edges into the contingent timepoint v and Lines 6-10 calls BACK_PROPAGATE
for all outgoing negative edges from v.

For example, consider the series of back-propagations shown in Figure XXX.
There does not contain any possible edges to violate contingent timepoint H so no back-
propagation is required. For timepoint C the edge EC is back-propagated through BC
resulting in a new conditional edge EB of <C,-6>. This edge then back-propagated DE
which modifies the requirement edge DE to -1. This requirement edge is then back-
propagated through edge BD resulting in the edge BB of distance 4. This thread of back-
propagation terminates here because of a positive self-loop.

The contingent timepoint C is also threatened by the outgoing negative edge CD of length
-2. This edge CD is back-propagated through BC which modifies BD = 1. This is then
back-propagated through DB resulting modifying the self looping edge BB to 0. No more

BACK-PROPAGATE-INIT(G, v)
Input: A CDGU G and contingent timepoint v
Returns: true if no inconsistencies were introduced during the back-
propagation cycle, otherwise false
1 for all incoming positive edges (u,v) into the contingent timepoint v
2 if BACK_PROPAGATE(G,u,v)
3 return FALSE
4 end if
5 end for
6 for all outgoing negative edges (v,u) from the contingent timepoint v
7 if BACK_PROPAGATE(G,v,u)
8 return FALSE
9 end if
10 end for
11 return TRUE

 140

propagations are necessary. The resulting dispatchable CDGU is shown in Figure 4-26.
The back-propagation did not introduce an inconsistency; therefore, the sample group
plan is dynamically controllable.

C

D 5

7B
5

A

0

G 20
H

E

F
1

1

10
-3

-3

0

0

0 -10
1 1

-2

-2
-11

0

<C,-6>

Figure 4-26 Dispatchable CDGU after back-

propagation

The last step of the Fast-DC algorithm is to trim the dominated (redundant) edges from
the CDGU. This is done by calling the basic STN reformulation algorithm. The resulting
graph is a minimal dispatchable CDGU which can be executed by the dispatching
algorithm introduced by [Morris 2001]. For example, the minimal dispatchable CDGU
for the sample group plan is shown Figure 4-27.

C

D 5

7B
5

A G 20
H

E

F
1

1

10
-3

-3

0

0

0 -10
1 1-11 <C,-6>

Figure 4-27 CDGU of sample group plan after trimming the

redundant edge

4.6 Summary
In this chapter we reviewed the dynamic controllability algorithm introduce by [Morris
2001]. Then we generalized the reduction rules introduced to [Morris 2001] in order to
develop an efficient dynamic controllability algorithm. This new Fast-DC algorithm is
used by the HR algorithm presented in Chapter 3 to reformulate the group plans. In the

 141

next chapter we present empirical data demonstrating the speed of this new Fast-DC
algorithm.

5 Results and Conclusion

5.1 Introduction
The outline for this chapter is as follows. First we discuss the implementation of the
Hierarchical Reformulation (HR) algorithm. Then we discuss the experimental results of
the fast dynamic controllability (Fast-DC) algorithm. We then discuss the limitations of
our approach and directions for future work. We conclude with a summary of the major
contributions of this thesis.

5.2 Implementation of the Hierarchical Reformulation algorithm
The Hierarchical Reformulation (HR) algorithm has been implemented in C++ and tested
with a variety of hand coded examples, including the cooperative Mars rover scenario
presented in Chapter 3.4. In order to generate the two-layer multi-agent plans, we
developed a MTPNU Graphical User Interface (GUI) implemented in Java.6 The GUI
enables the user to create and visualize the MTPNUs. The screenshot of the editor,
shown in Figure 5-1, shows the mission plan for the Mars rover scenario described in
Chapter 3.4. The editor allows the user to create, modify, and visualize the multi-agent
plans in a variety of different forms. All of the plans generated for the HR algorithm were
created using the MTPNU GUI.

6 The MTPNU GUI was developed by Andreas Wehowsky and myself.

	DrakeJournal.pdf
	JohnLStedlThesis
	1.1 Motivation
	1.2 Distributed Multi-Agent Scenario
	1.3 Research Challenges
	1.4 Basic Centralized Architecture
	1.5 Problem Statement
	1.6 Proposed Approach
	1.7 Key Technical Contributions
	1.8 Grand Vision
	1.9 Range of Applicability
	1.10 Roadmap for Thesis
	2.1 Introduction
	2.2 Temporal Constraint Satisfaction Problem
	2.3 Simple Temporal Network and Temporal Plan Networks
	2.4 Dynamic Execution of TPNs
	2.5 Simple Temporal Networks with Uncertainty
	2.6 Summary
	3.1 Introduction
	3.2 Communication Assumption
	3.3 Communication Controllability
	3.3.1 Primary Types of Controllability
	3.3.2 Formal Definition of Communication Controllability
	3.4 Two-Layer Multi-Agent Plans
	3.4.1 Group Programming Language (GPL)
	3.4.2 Converting Multiagent Plans to Two-Layer MTPNUs

	3.5 The Decoupling Algorithm
	3.5.1 Strong Controllability
	3.5.2 Strong Controllability Checking Algorithm
	3.5.3 The Decoupling Algorithm

	3.6 The Hierarchical Reformulation Algorithm
	3.6.1 HR Algorithm Pseudo-Code

	3.7 Summary
	4.1 Introduction
	4.2 Overview
	4.3 The Dynamic Controllability Algorithm
	4.3.1 Triangular Reductions
	4.3.2 Regression of Conditional Constraints
	4.3.3 Pseudo-Code for the Dynamic Controllability Algorithm

	4.4 Fast Dynamic Controllability Algorithm
	4.4.1 Incremental Dispatchability Maintenance
	4.4.2 Back-Propagation
	4.4.3 Back-Propagating when a Negative Requirement Edge Changes
	4.4.4 Back-Propagation Rule when Positive Requirement Edge Changes
	4.4.5 Back Propagating Conditional Edges
	5.1.1 Pseudo-Code for BACK-PROPAGATE

	4.5 Fast Dynamic Controllability Pseudo-Code
	4.6 Summary
	5.4.1 Improvements in Group Macro Representation
	5.4.2 Improvements in the Decoupling Algorithm
	5.4.3 Variations on the Two-Layer Architecture
	5.4.4 Towards a Fully Distribution Architecture
	5.4.5 Other opportunities for future work

