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Abstract

One of the major challenges in autonomous planning and sequencing is the theoretical
complexity of planning problems. Even a simple STRIPS planning problem is PSPACE-
complete, and depending on the expressivity of the planning problem, the complexity of
the problem can be EXPTIME-complete or worse. This thesis improves on current ap-
proaches to sequencing the engineering operations of a spacecraft or ground-based asset
through the explicit use of verifiable models and a decomposition approach to planning.
Based on specifications of system behavior, the planner generates control sequences of
engineering operations that achieve mission objectives specified by an operator.

This work is novel in three ways. First, an innovative “divide-and-conquer” approach
is used to assure efficiency and scalability of the planner. The key to the approach is
in its combined use of constraint decomposition and causal order decomposition. This
technique provides the means to decompose the problem into a set of subproblems and
to identify the ordering by which each subproblem should be solved, thus reducing,
and possibly eliminating, search. Second, the decomposed planning framework is able
to solve complex planning problems with state constraints and temporally extended
goals. Such complex system behavior is specified as concurrent, constraint automata
(CCA) that provide the expressiveness necessary to model the behavior of the system
components and their interactions. The mission objective is described as a desired
evolution of goal states called a qualitative state plan (QSP), explicitly capturing the
intent of the operators. Finally, the planner generates a partially-ordered plan called a
qualitative control plan (QCP) that provides additional execution robustness through
temporal flexibility.

We demonstrate the decomposed approach to Model-based planning on a scenario
based on the ongoing Autonomous Sciencecraft Experiment, onboard EO-1 spacecraft.
The EO-1 problem has a large state space with well over 660 quintillion states, 6.6×1020.
Despite the size and the complexity of the problem, the time performance is linear in
the length of the plan and the memory usage is linear in the number of components.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Contents

1.1 Motivation for Autonomous Model-based Planning . . . . . 15

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Formal Model Specification . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Capturing Operator’s Intent through Goal-directed Plans . . . 20

1.3.3 Automating Sequence Generation through Model-based Tem-

poral Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Innovations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 Constraint Decomposition . . . . . . . . . . . . . . . . . . . . . 22

1.4.2 Causal Order Decomposition . . . . . . . . . . . . . . . . . . . 22

1.4.3 Unifying Constraint & Causal Order Decomposition . . . . . . 23

1.1 Motivation for Autonomous Model-based Planning

As the operational complexity of NASA’s increasingly ambitious missions increases,

the capabilities of our current operations processes and tools are becoming increasingly

strained. The tremendously successful Mars Exploration Rover (MER) mission has

provided important lessons learned in what it takes to efficiently operate a long-duration

planetary mission. Among these lessons learned is the need to improve the level of

integration across the various planning and sequencing tools employed by the operations

team, and reduce the number of overlapping models used by these disparate tools in

generating and validating tactical sequences. Furthermore, the sheer number of tools

15
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and ad-hoc scripts, along with many distinct data representations used among them,

introduces unnecessary brittleness into the operations planning process.

Operational Efficiency through Automation

Operational efficiency is a driving concern for our ground-based embedded systems, as

well. As mentioned before, NASA MER mission is a great example in which operational

efficiency was crucial to the successes of the mission. To maximize the science return,

the scientists and the engineers had to identify the mission objective, generate command

sequence, and verify the safety of the sequence in a less than 24 hour cycle. This was

possible in part with the help from an autonomous scheduler called MAPGEN.

Another example is the Deep Space Network (DSN), which is under constant pres-

sure to reduce its operations budget, while continuing to provide high quality-of-service

telecommunications support to an increasing number of spacecraft. This dilemma can

be at least partially addressed by increasing the level of automation of its Monitor and

Control (M&C) functions, thus enabling operators to work more efficiently, taking on

supervisory responsibility for multiple concurrent spacecraft tracking activities.

Planning using the Design Specification

The blossoming area of goal-based operations has been identified as providing potential

breakthrough capabilities that can directly address these issues. By advancing the

state-of-the-art in this field, we can improve on the current approach to sequencing the

engineering operations of a spacecraft or ground-based asset, through the explicit use

of verifiable models and state-of-the-art goal-directed planning algorithms.

One well accepted problem with NASA’s development methodology in flight and

ground operations software design and development is that software is developed at the

last minute specifically for that mission. The problem is that the time is insufficient

for developing safe software and to transfer all necessary knowledge from the engineers

to software developers. This creates the possibility for bugs in software and possible

inconsistency between hardware design and requirements vs. assumptions on which

software is designed.
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The ability to leverage existing engineering specifications for direct use in sequenc-

ing will reduce the risk of errors in translating the understanding of system behavior

into operational sequences, and will mitigate the proliferation of multiple potentially

inconsistent models used for different purposes across the system.

Model-based Planning

The aforementioned problems can be reduced if an automated planner is designed to

be capable enough to operate based on the specification of the system provided. For

estimation and reactive planning, this approach has been shown to be very promising

within the framework of Model-based Programming [23]. A reactive planner called

Burton [25, 3] has provided a great foundation to model-based planning and great insight

and innovation that allows it to plan efficiently enough to be reactive in real-time, while

assuring scalability.

The benefit of scalability and efficiency comes with some limitations, however.

Firstly, Burton is not able to plan on models that have been written with the full

expressivity of the Reactive Model-based Programming Language (RMPL). Some of

the information must be compiled away the state constraints through a method that

can potentially result in an intractably large model. Secondly, Burton cannot plan on

time-evolved goals described using RMPL. Time-evoloved goals, or also called tempo-

rally extended goals, specify goals over time. Such expressivity is necessary for command

sequence planning and scheduling. While, Burton provides guarantees on it’s ability to

achieve future goals, it relies on an external sequencer to provide one goal at a time,

and real-time feedback of the progress via an estimator. The desire is to extend the

foundation set by Burton to a more capable planner that can plan on more complex

engineering systems and mission objectives, i.e., temporally extended goals.

The new model-based planning capability has the potential for significant impact on

the operations of future space missions and related ground infrastructure (e.g., EO-1,

DSN), in the form of improved efficiency for ground-based operations in the near term,

and in the form of greater onboard autonomy in the longer term. It will particularly
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benefit highly complex MSL-class missions, where our experience on MER points to

ground-based planning of engineering operations as a potentially time-consuming and

error-prone process. The ability to leverage systems engineering models for direct use

in sequencing will reduce the risk of errors in translating the understanding of sys-

tem behavior into operational sequences, and will mitigate the proliferation of multiple

potentially inconsistent models used for different purposes across the system.

1.2 Objectives

We improve on the current approach to sequencing the engineering operations of a

spacecraft or ground-based asset through the explicit use of verifiable models and state-

of-the-art goal-directed planning algorithms. Our objective is to develop a model-based

temporal planner that generates an executable sequence, based on behavior specifica-

tions of the components of a system. We leverage lessons learned from current operations

of systems like MER and the DSN Monitor & Control (M&C) system, in order to sig-

nificantly improve the operations efficiency of future JPL missions, reduce costs and

increase the likelihood of mission success.

1.3 Approach

We leverage model-based programming formalism to specify the system specification and

mission objectives. We use a formal modeling formalism called Concurrent Constraint

Automata to specify the models of system behavior that will then be directly used by

our model-based planner to produce sequences of engineering operations that achieve

mission objectives. A mission objective is specified as a qualitative state plan (QSP)

that is capable of describing temporally extended goals. More specifically, we adopt the

following step-by-step approach:

1. Specify the model of system behavior as concurrent constraint automata that pro-

vide the expressiveness necessary to model the behavior of the system components,

including operational modes with uncertain mode transitions.
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2. Describe the mission objective as a desired evolution of goal states, explicitly

capturing the intent of the operators, rather than implicitly capturing it in a

sequence of commands and procedures that achieve the desired goals.

3. Using a ”divide-and-conquer” approach, apply an offline reasoning algorithm to

synthesize a set of modular, reusable, and compact partial plans for achieving

goal states, thus only requiring a simple composition of partial plans at plan time,

minimizing the amount of computationally expensive online search.

We demonstrate our new planning technology and approach by applying it to EO-1

scenarios, and evaluate its benefits in comparison with existing tools and processes.

1.3.1 Formal Model Specification

The conventional approaches to systems and software engineering inadvertently create

a fundamental gap between the requirements on software specified by systems engineers

and the implementation of these requirements by software engineers. Software engineers

must perform the translation of requirements into software code, hoping to accurately

capture the systems engineer’s understanding of the system behavior, which is not

always explicitly specified. This gap opens up the possibility for misinterpretation of

the systems engineer’s intent, potentially leading to software errors.

Specifying the system and software requirements as a formally verifiable specification

called conccurent constraint automata (CCA) allow the system behavior specification

to be directly used to automatically generate provably correct sequences. CCA provides

the expressiveness necessary to model the behavior of the system components, including

various interactions between components. The concurrency and the use of state con-

straints allow the model-based planner to reason about the system interactions. The

model of the uncertain duration allows the model-based temporal planner to account

for the execution time uncertainty.
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1.3.2 Capturing Operator’s Intent through Goal-directed Plans

The ability to explicitly capture the intent of the operators, rather than implicitly

capturing it in a sequence of commands and procedures that achieve the desired goals,

is crucial for sequence verification. To enable verifiability of automatically generated

sequences, the model-based temporal planner assures that each sequence can be traced

directly to the mission objective and/or operator’s intent. Generally, mission objective

and operator intent can be described explicitly as an evolution of goal-states. Thus, for

model-based temporal planning, the mission objective and operator’s intent is described

as a desired evolution of goal states. Then, the model-based temporal planner uses

a goal-directed planning method to elaborate each goal state into a sequence, while

explicitly associating each sequence to a goal state, that is the intent of the operator

and mission objectives.

1.3.3 Automating Sequence Generation through Model-based Tempo-

ral Planning

For the given mission objective and operator’s intent, the model-based temporal planner

automatically plan a robust sequence in two steps:

First, using a ”divide-and-conquer” approach, an offline reasoning algorithm pre-

compiles a set of modular, reusable, and compact partial plans for achieving goal states.

During this offline step, a model, that is system specification, is first decomposed and

partially ordered into a set of decomposed CCA (DCCA) based on the structure of the

component interactions, that is dependency graph. Then, a set of partial plans, called

decomposed goal-directed plan (DGDP), are generated for each DCCA. Pre-compiling

DGDPs offline not only reduces the online planning time, but also provides a means to

verify the plans before they are used online.

Finally, during the plan time, the desired mission objective, i.e., sequence of goal-

states, are elaborated into an executable sequence by simply composing the appropriate

DGDPs. The resulting conditional sequence is guaranteed to achieve the desired goal-

states in the most robust manner. Again, the efficiency of the online planning is realized
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by pre-compiling the DGDPs offline, and pre-compiling DGDPs for all potential mis-

sion objectives is possible due to the use of the ”divide-and-conquer” method. With

this effective method, the model-based temporal planner can not only be applied to

automate the ground operation, but also onboard to provide an onboard automation

and reactivity.

1.4 Innovations

Unlike other planning and sequencing systems, our approach directly exploits engineer-

ing models of system component behavior to compose the plan, validate its robustness

under both nominal and failure situations, and, when required, synthesize novel proce-

dures from first principles. Our planner is complementary to mission activity planners,

such as the CASPER planner used in the Autonomous Sciencecraft Experiment on

EO-1 and the EUROPA planner used in MAPGEN in MER operation. These activity

planners generate a high-level mission plan, which our planner will elaborate into an

executable lower-level sequence by reasoning about the model. Our approach is novel

in several ways:

1. The ”divide-and-conquer” approach that leverages the structure of the component

interactions to simplify the planning problem ensures the tractability of planning,

even during time-critical situations. This approach is innovative in that it unifies

the existing decomposition techniques used in constraint satisfaction problem and

reactive planning.

2. The new model-based planner is able to solve a planning problem with state

constraints. Addition of state constraints increases the complexity of the problem.

The use of constraint and causal order decomposition allows us to solve such

complex problems efficiently.

3. The new model-base planner extends the existing model-based reactive planning

capability to partially-ordered sequence generation that provides additional exe-

cution robustness through temporal flexibility.
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To mission operations, the new planner provides the benefits of model-based pro-

gramming. The planner incorporates the ability to generate modular, reusable, and

compact partial plans that can be automatically verified for correct execution. This

extends the existing model-based reactive planning capability to sequence generation.

Furthermore, the goal-directed and model-based planning approach ensures traceability

of the executable plan back to the mission intent and system specification, increasing

the reliability and reviewability of the automatically generated plan.

1.4.1 Constraint Decomposition

The main technical innovation is in its combined use of constraint decomposition and

causal order decomposition. Constraint decomposition has been widely used in solving

constraint satisfaction problems (CSP). Constraint decomposition takes advantage of

the structure of the constraints to minimize search. If a CSP can be decomposed into

a tree of subproblems, the decomposed problem can be solved in polynomial time with

respect to the size of the tree. Solving a decomposed problem is only exponential in the

size of the subproblems, known as the tree width. Thus, if a CSP can be decomposed into

small subproblems, we can solve the CSP quite efficiently. Framing a planning problem

as a CSP, and taking advantage of CSP solving techniques is quite common and has been

quite successful . Such methods, however, requires one to guess the number of steps

required to solve the planning problem and encode the n-step model of the planning

problem as a CSP. The size of such a CSP can be quite large depending on the planning

problem. Furthermore, such methods do not easily extend to more complex goals, such

as temporally extended goals.

1.4.2 Causal Order Decomposition

To address the issues that are specific to planning problems, specialized planning algo-

rithms have been developed. As in all general search problems, the efficiency of planning

depends on how well one can identify which path is most promising. Because of the large

search space of a planning problem, many techniques resort to heuristic-based search

methods. Many of the heuristics attempt to relax the original planning problem into
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an easier problem, whose solution can be used to guide the search. Another common

method is to simplify the search space as a disjunctive set of reachable state spaces,

which then can be searched more efficiently for the solution.

Another method is the causal order decomposition technique . Unlike most heuristic

methods that try to estimate how likely it is for a search path to lead to the solution,

A causal order decomposition determines how a single planning problem can be decom-

posed into a set of subproblem. When a problem is decomposed, the ordering in which

each subproblem is solved becomes crucial. As many readers may have experienced from

solving puzzles, depending on the ordering in which each piece of a puzzle is solved, one

may quickly find the solution or one may run in circles trying to repair what was solved

before. Causal ordering decomposition uses the structure of the problem, that is, the

cause and effect relationship among concurrent automata, to determine the proper de-

composition as well as the ordering. As shown by Burton, if a problem is decomposable

into a directed acyclic graph, the planning problem can be solved without search.

1.4.3 Unifying Constraint & Causal Order Decomposition

Intuitively, causal order decomposition provides a means to identify the ordering in

which one should evolve the state over time to quickly come to the solution. In contrast,

constraint decomposition itself is indifferent to time evolution of state. In fact, the size

of the decomposition of a planning problem encoded as a CSP grows linearly with the

number of planning time steps encoded. This is expected since the relationship between

variables do not change with the increase in the number of time steps encoded as a CSP.

Thus, for planning, constraint decomposition does not provide any benefit in guiding

the search over time space.

These two techniques are, however, are synergistic. We can use constraint decompo-

sition to efficiently search the state-space defined by the state constraints of a planning

problem and use the causal order decomposition to efficiently search the time-space

defined by state transitions.
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One of the major challenges in autonomous planning and sequencing is the theo-

retical complexity of planning problems. Even a simple STRIPS Planning problem is

PSPACE-complete [2], and depending on the expressivity of the planning problem, the

complexity of the problem can become even worse [8]. As an example, [21] has shown

that allowing derived predicates, that is, indirect effect or state constraints, increases

the theoretical complexity of a planning problem to EXPTIME-complete.

Using a traditional approach, planning for missions with multitude of complex space-

craft and ground assets with hundreds and thousands of components will most certainly

be intractable. Though many state-of-the-art techniques, with their restricted domain

assumptions, enable planners to find solutions remarkably fast, in many cases, it is

not clear if those techniques can easily be extended to more complex domain such as

spacecraft and ground systems. Moreover, while incredible advancements in automated

planning owe much to new heuristic and stochastic search methods, such methods are

not well received for many space missions that require planning and execution time

guarantees.

This chapter introduces a new approach. Instead of relying on the heuristics and

chances (i.e. stochasticity), the new approach takes advantage of the nature of the

problem, that is, a structure inherent to the problem. Not all problems are tightly

25
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coupled. Many large problems can be decomposed into a set of subproblems with weak

or no interactions. If such decomposition is known, the tractability of the problem

can be predetermined, with tighter bounds on the time requirement for planning and

execution.

In summary, the idea is to exploit decomposition to represent the space of possible

trajectories compactly, and to generate a feasible or optimal set of trajectories within the

decomposed space. The decomposition is achieved by using a constraint graph decompo-

sition technique, and searching through the decomposed space is achieved by utilizing

the causal ordering of the decomposition. The main innovation of the approach is in the

infusion of constraint graph decomposition [6, 12, 4] and causal graph decomposition

[25, 3] techniques.

In this chapter, an intuitive example of problem decomposition and its benefit is

introduced, along with an illustration of a plan for the decomposed problem.

2.1 Example Problem

For a planning problem, the space of all possible trajectories can be graphically repre-

sented as a reachability graph. For a planner that uses forward search, a reachability

graph rooted at the initial state represents the search space of the problem. In this sec-

tion, we will illustrate how this space can be decomposed, and thus reduced, by taking

advantage of the structure of the problem.

For this illustration, consider a simple system composed of two components, a bus

controller and a device. The system is modeled as a Concurrent Constraint Automata

(CCA) as described in Chapter 3. The CCA of the system is depicted in Figure 2-

1. The device (Figure 2-1(b)) has three states, {off, initializing, on}. The device can

be turned on by issuing the device command devCmd = turnOn and turned off with

devCmd = turnOff. Note that the device command devCmd = turnOn indirectly turns

on the device by first initializing it. Once the device is initializing, it may be commanded

to be turned off. Otherwise, it will automatically transition into the on state. For any

command to be routed to the device, the bus be on, thus the precondition bus = on
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cmd ≠ turnOff cmd ≠ trunOff

cmd ≠ turnOn

cmd = turnOncmd = turnOff

off

initon

cmd = turnOff

cmd ≠ turnOff

(a) Bus Controller Automaton

off

initon

Bus.state ≠ on ∨ cmd ≠ turnOn

Bus.state = on
cmd = turnOn

Bus.state = on
cmd = turnOff

Bus.state = on
cmd = turnOff

Bus.state ≠ on ∨
cmd ≠ turnOff

Bus.state ≠ on ∨ cmd ≠ turnOffBus.state ≠ on ∨ cmd ≠ turnOff

(b) Device Automaton

Figure 2-1: 2-1(a) represents a simple bus controller automaton and 2-1(b) represents
a simple device automaton, e.g. valve-driver.

on all commanded transitions. The bus controller, like the device, has three states,

{off, initializing, on}, with the same set of commands {turnOn, turnOff}. Unlike the

device, the transitions of the bus controller is not dependent on the state of any other

components.

Problem 2.1 Given the bus controller and device system in Figure 2-1 and the initial

state (bus = off, dev = off), find a trajectory to the goal state (bus = off, dev = on).

2.2 Reducing the Size of the Search Space through De-

composition

The size of the search space can be reduced through decomposition. In a decomposed

reachability graph, a global state is decoupled into a set of individual or partial state as-

signments and sequence of transitions are parallelized into a set of concurrent transitions

such that the size of the reachability graph is reduced. The feasibility of the decom-

position depends on the property of the problem. For example, the two components,

the bus controller and the device, are only weekly coupled, that is, via the transition

constraints of the device. This property of the problem allows the reachability graph to

be decomposed into two respective reachability graphs that are also weakly coupled.

Next, the notion of a decomposed reachability graph is described through a straight-

forward, step-by-step reduction of the reachability graph. While this is not the proposed
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decomposition method, this example will provide the intuition behind what a decom-

posed reachability graph is, why a reachability graph may be decomposable, and how

the decomposition reduces the search space.

Standard Reachability Graph

Figure 2-2 illustrates the reachability graph for the given Problem 2.1. Each outer

circles represent a state, which is an assignment to a state vector. The each pair of

circumscribed inner circles represents an assignment to a state vector. A blue inner

circle represents state bus variable, that is, bus controller, and a maroon circle repre-

sents dev variable. The shades dark, light and white respectively represent the values

{off, initializing, on} of the state variables. For example, the left most outer circle, that

is, the root of the reachability graph, represents the state (bus = off, dev = off).

A dotted arrow represents a no-op transition, or equivalently no transition. The

arrows that connect two subsequent states (from a state on the “left” with an outgoing

arrow to a state to the “right” with an incoming arrow) indicate that the a state (right)

is reachable from another state (left) through some state transition (depicted as a box).

Thus, a set of subsequent states to the right represent a set of reachable states.

The reachability graph in Figure 2-2 can be mapped into an equivalent representation

in which a state (outer circle) is decoupled into a set of state variable assignments (inner

circles) and state transitions are transformed into a set of concurrent state variable

transitions, or primitive transitions. A primitive transition explicitly specifies what

partial state assignments are changed through the transition and what partial state

assignments are required for the transition to occur. This representation is shown in

Figure 2-3, where blue arrows correspond to primitive transitions that change the bus

controller state and red arrows correspond to primitive transitions that change the device

state. Main objective in transformation to this representation is to decompose the graph

based on individual state variable transitions instead of global state transitions.

This reachability graph highlights the dependence between state variables: A red

transition, a device state transition, may depend (preconditions) on both variables red,
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Figure 2-2: Standard reachability graph.

Figure 2-3: Reachability graph with individual component states decoupled.
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Figure 2-4: Bus controller reachability graph with redundant states.

the device state, and blue, the bus controller state. For example, the transition from

(bus = on, dev = on), row 6, to (buson), row 6, to (bus = on, dev = off), row 3, depends

on the state of and the device, that is, red and blue variables. All blue, that is, bus

controller, transitions, however, are independent of red variables assignments, that is,

does not precondition on the state of the device.

Bus Controller State Reachability Graph

Since all bus controller state transitions are independent of the device state, bus con-

troller state reachability can be analyzed independently from the device state reach-

ability. Removing the device information from Figure 2-3 result in a bus controller

reachability graph shown in Figure 2-4.

Note that the same state variable assignments, bus controller states, are repeated

multiple times on the graph, e.g. state assignment rows 3, 4, and 6. We can collapse

the same assignments and still represent the same reachability graph. Figure 2-5 is the

result of collapsing the same assignments.

As a result, it is easier to see that for a given transition column, there are identical
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Figure 2-5: Bus controller reachability graph without redundant states.

Figure 2-6: Bus controller reachability graph without redundant transitions.

transitions that can also be collapsed. Note that two transitions are identical if the

precondition (previous state and command) and effects (next state) are identical. For

example, in transition column 4, transition rows 4 and 5 are identical. With both

redundant state assignments and transitions removed, the reachability graph for the

bus controller becomes much more compact and simplified as shown in Figure 2-6.

While the reader will notice the redundancy in the columns of state-transition-state

triple, that is, the reachability graph levels out after three steps, this redundancy will

be removed after analyzing the reachability graph of the device.

Device State Reachability Graph

The same reduction method can be applied to the portion of the reachability graph the

pertains to the device (red). Unlike the blue transitions, however, the red transitions

depends on the state of the blue variable (see Figure 2-7, e.g. transition column 3 row
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Figure 2-7: Device reachability graph with redundant states.

4.

Using the same procedure as before, all identical state assignments are collapsed

into one as show in Figure 2-8.

Now, all identical red transitions can be collapsed as shown in Figure 2-9. For

example, in transition column 6, transition rows 4 and 6 can be collapsed into one.

For clarity, Figure 2-9 can be rearranged as shown in Figure 2-10.

Figure 2-8: Device reachability graph without redundant states.
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Figure 2-9: Device reachability graph without redundant transitions.

Figure 2-10: Device reachability graph without redundant states or transitions.

Decomposed Reachability Graph

The two reduced reachability graph of the bus controller and the device can be recom-

bined into a single graph as shown in Figure 2-6. Combining the two into a single graph

results in coupled concurrent reachability graph, or a decomposed reachability graph.

The decomposed reachability can be further reduced by recognizing the fact the

graph levels off after the fifth level. Figure 2-12 is the result of removing the remaining

redundant levels.

Figure 2-13 compares the original reachability graph (Figure 2-13(a)) to the decom-

posed reachability reachability graph (Figure 2-13(b)). Note the size reduction of the

graph. The decomposition possess two important attributes. First, the decomposition

Figure 2-11: Bus controller-Device reachability graph without redundancies.
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Figure 2-12: Decomposed bus controller-Device reachability graph.

(a) Standard Reachability Graph (b) Decomposed Reachability Graph

Figure 2-13: Comparison of standard and decomposed reachability graphs.

inhibits state space explosion by decoupling a global state into a set of individual or

partial state variable assignments. Thus, not all possible combinations of global states

need to be enumerated. Two, the decomposition allows the reachability of each indi-

vidual or partial state variable assignments to be analyzed concurrently. Thus, not all

possible sequences of global state transitions need to be enumerated.

2.3 Planning using the Decomposed Reachability Graph

While the search space of the decomposed reachability graph can be much smaller in

comparison to the original reachability graph, in contrast, searching for a feasible plan,

a feasible trajectory, within the decomposed reachability graph can be much more com-

plex. Assuming that the goal state is indeed reachable, planning based on the original

reachability graph simply requires searching a path from the node that represents the
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Figure 2-14: Planning problem for standard reachability graph.

initial state to the node that represents the goal state. For Problem 2.1, a feasible plan

from the initial state of (bus = off, dev = off) to the goal state of (bus = off, dev = on)

is shown within the original reachability graph in Figure 2-14.

Planning using a decomposed reachability graph, however, requires searching for a

consistent set of trajectories. Because a state is decomposed into a set of individual

or partial state assignments, the initial and goal states must also be decomposed into

a set of individual or partial state assignments. Then, a feasible plan is a consistent

set of trajectories from the set of initials state assignments to the set of goal state

assignment. For example, for Problem 2.1, the initial state is decomposed into bus = off

and dev = off. Similarly, the goal state is decomposed into bus = off and dev = on.

Then, a feasible plan is a consistent set of trajectories of bus = off to bus = off and

dev = off to dev = on. Such feasible plan is shown in Figure 2-15.

While the search space may have been reduced from a single large graph to inter-

connected set of smaller graphs, searching for a feasible plan has become more complex.

Instead of searching for a path within a single graph, now a path must be found within
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Figure 2-15: Planning problem for decomposed reachability graph.

each of the smaller graphs while assuring that the paths chosen are consistent with one

another.
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A central idea in the model-based programming paradigm is the notion of an ex-

ecutable specification [23]. In an executable specification, the system behavioral de-

scription is used directly for planning. Thus, the conceptual description of the system

behavior must be written in, or automatically mapped to, some form of model on which

deductive algorithms can operate. Furthermore, the computational model must be ca-

pable of representing complex behaviors of a system, while facilitating computationally

tractable planning.

Within the model-based execution framework, the behavior of the system being

controlled is modeled as concurrent partially observable Markov decision processes

(POMDPs) that is compactly encoded as a probabilistic concurrent constraint automa-

ton (CCA) [24]. Concurrency is used to model the behavior of a set of components that

operate synchronously. Constraints are used to represent co-temporal interactions and

intercommunication between components. Probabilistic transitions are used to model

the stochastic behavior of components, such as failure.
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In this chapter, a formal description of the CCA computational model is introduced.

CCA will be described in two parts. First, a constraint automaton for a single com-

ponent is first defined formally. Then, a CCA is defined as a set of such constraint

automata. These definitions are similar to the definition of a CCA in [24, 25, 23].

3.1 A Simple System

A CCA represents a set of concurrently operating constraint automata.

3.1.1 Formal Definition of a Constraint Automaton

A constraint automaton is a finite state transition system with constraints that specify

the behavior of the system. The notation C(X) is used to denote a set of all possi-

ble constraints over variables X. Each automaton has an associated state variable xq

with domain D(xq) = {v1, . . . , vm}. Each state xq is associated with state constraints

involving its attributes, that is inputs Σ(Xu) and outputs Σ(Xy) used to define its

requirements and output behaviors. The notation Σ(X) is used to denote the set of

all possible full assignments to variables X. If the automaton in state qi ≡ (xq = vi),

its state constraint Q(qi) must be satisfied. Given the current state qi, an automaton

transitions its state in the next time step, according to its transition function δ. A

transition function is conditioned on a gaurad constraint that must be satisfied for the

transition to occur.

Before formal defining constraint automaton, a finite domain constraint is first de-

fined. A finite domain constraint is a constraint on finite domain variables. Formally:

Definition 3.1 (Finite Domain Constraint) Given a set of finite domain variables

X, a finite domain constraint ϕ ∈ C(X) over variables X is a sentence in a propositional

state logic, that is:

ϕ ::= true | false | (x = v) | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2, (3.1)

where x ∈ X and v ∈ D(x). Variables X and sentence ϕ respectively represent the



39

scope and the relation of the constraint.

Definition 3.2 (Full Instantiation) A set of full instantiations Σ(X) =
∏

x∈X D(x)

is used to denote a complete set of all possible assignments to variables X.

A constraint automaton is then defined as follows:

Definition 3.3 (Constraint Automaton) A constraint automaton1 A is a 4-tuple

〈X,D,Q, δ〉, where

• X = {x1, . . . , xn} is a finite set of variables of the automaton, partitioned into a

set of state variables Xq, a set of input variables Xu and a set of output variables

Xy

• D = {D(x1), . . . ,D(xn)} is a set of finite domains of X,

• Q : Q→ C(Xu ∪Xy) is a state constraint function,

• δ : Q× Σ(Xu)× C(Xu)→ 2Q is a transition function.

Variables

X = Xq ∪Xu ∪Xy is a finite set of variables of an automaton, partitioned into a set of

state variables Xq ⊆ X, a set of input variables Xu ⊆ X and a set of output variables

Xy ⊆ X, such that none of the sets overlap with one another, that is, Xq ∩ Xu = ∅,

Xq ∩ Xy = ∅ and Xu ∩ Xy = ∅. The set of state variables Xq = {x} is a singleton

set containing the state variable of the automaton, denoted xq. The behavior of the

automaton depends on the values of the input variables Xu. Alternatively, the value of

the output variables Xy depend on the state of the automaton.

1As described in [23], a constraint automaton also includes a transition probability function, an
observation probability function and a reward function. These are omitted here for clarity of the
discussion, as the scope of the discussion is limited to deterministic planning. For decision theoretic
planning, transition probability, observation probability, and reward functions should be included in the
description of a constraint automaton.
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Domains

D is a finite set of domains of variables X. The domain of the state variable xq,

D(xq) = {v1, . . . , vm}, directly corresponds to the finite set of discrete states Q =

{q1, . . . , qm} of the automaton, where state qi ∈ Q is equivalent to the assignment of

the value vi ∈ D(xq) to the state variable xq, that is, qi ≡ (xq = vi). A finite set

Σ(Xu) =
∏

xj∈Xu D(xj) is the set of all possible full instantiation of the input variables

Xu. A full instantiation u ∈ Σ(Xu) is a set of assignments to the input variables,

u = {(x1 = v), . . . , (xl = v)}, where variable xi ∈ Xu is assigned a value v ∈ D(xi) and

l = |Xu|. A finite set Σ(Xy) =
∏

xj∈Xy D(xj) is a set of all possible full instantiations

of the output variables Xy. A full instantiation y ∈ Σ(Xy) is a set of assignments to

the output variables, y = ((x1 = v), . . . , (xl = v)), where variable xi ∈ Xy is assigned a

value v ∈ D(xi) and l = |Xy|.

State Constraint

The state constraint function Q associates each state q ∈ Q with a finite domain con-

straint Q(q) ∈ C(Xu ∪ Xy). The constraint set C(Xu ∪ Xy) denotes the set of all

finite-domain constraints over input variables Xu and output variables Xy. The state

constraint function specifies that if the automaton is in state q ∈ Q, its state constraint

Q(q) must be satisfied by input u ∈ Σ(Xu) and outputs y ∈ Σ(Xy) of the automaton,

that is, q ∪ u ∪ y must satisfy q ⇒ Q(q)2. In effect, a state constraint specifies a set of

feasible outputs given a state and an input. Given state q ∈ Q and input u ∈ Σ(Xu),

if there exists exactly one output y ∈ Σ(Xy) that satisfies state constraint Q(q), the

output is deterministic. Accordingly, if more than one output can satisfy the state

constraint, then the output is nondeterministic. Nondeterministic output is typically

associated with a faulty state, but not always. If the output is deterministic for every

state of the automaton, the state constraint function of the automaton is said to be

2In general, an input may be a partial instantiation of the input variables, u ∈ Σ̃(Xu). Without loss
of generality, the definition specifies an input u ∈ Σ(Xu) as a full instantiation of the input variables.
A partial instantiation can be represented as a full instantiation by requiring a value of unknown to be
included in the domain of each input variable, that is, unknown ∈ D(x) for x ∈ X

u.
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deterministic.

Definition 3.4 (Deterministic State Constraint Function) Given constraint au-

tomaton A = 〈X,D,Q, δ〉, the state constraint function Q is deterministic, if and only

if, for each state q ∈ Q and input u ∈ Σ(Xu), there exists exactly one output y ∈ Σ(Xy)

that satisfies the state constraint Q(q).

Transition Function

In the transition function δ : Q × Σ(Xu) × C(Xu) → 2Q, C(Xu) is the set of all finite

domain constraints over input variables Xu. Within the context of the transition func-

tion δ, a constraint ϕ ∈ C(Xu) is called a guard constraint, also known as a transition

guard. Given state q ∈ Q, an input u ∈ Σ(Xu) and a guard constraint ϕ ∈ C(Xu),

where ϕ is satisfied by input u, the transition δ(q, u, ϕ) specifies a set of possible states

that the automaton can transition to at the next time step. Under this condition, tran-

sition δ(q, u, ϕ) is said to be enabled. The transition function captures both nominal and

faulty behavior, represented by δn ⊆ δ and δf ⊆ δ, respectively, where δn ∩ δf = ∅. In

the absence of a faulty behavior, the nominal transition function is always deterministic,

that is, δn : Q×Σ(Xu)×C(Xu)→ Q. The fault transitions introduce nondeterminism

into the system. Therefore, if and only if δf = ∅ and state constraint Q(q) is restricted

to be deterministic, then the constraint automaton is deterministic.

Deterministic Constraint Automaton

In this thesis, we will focus on deterministic constraint automaton.

Definition 3.5 (Deterministic Constraint Automaton) Constraint automaton

A = 〈X,D,Q, δ〉 is deterministic, if and only if state constraint function is deterministic

(see Def. 3.4) and transition function δ is deterministic, that is δ : Q×Σ(Xu)×C(Xu)→

Q.
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3.1.2 Execution of a Constraint Automaton

Definition 3.6 (Execution of a Constraint Automaton) Given constraint automa-

ton A = 〈X,D,Q, δ〉 in state q ∈ Q, the execution of input u ∈ Σ(Xu) is exec(A, q, u) ∈

δ(q, u, ϕ), where u satisfies transition constraint ϕ ∈ C(Xu) and a feasible next state is

nondeterministically chosen from the transition function δ. The notion of execution of

an input is extended to execution of input sequence u(0 : n) = (u(0), . . . , u(n)), where

exec(A, q, u(0 : n)) =





exec(A, q, u(0)), if n = 0

exec(A, exec(A, q, (u(0), . . . , u(n− 1))), u(n)), if n > 0

undefined otherwise

(3.2)

In general, an execution of a constraint automaton is nondeterministic. However, if

a constraint automaton is deterministic (Def. 3.5), then the execution is also determin-

istic.

3.1.3 Feasible Trajectory of a Constraint Automaton

Let u(0 : n) = (u(0), u(1), . . . , u(n)) be a finite input sequence and q(0) be the initial

state of constraint automaton A. Then, q(0 : n + 1) = (q(0), q(1), . . . , q(n + 1)) is a

feasible trajectory if q(0 : n+1) is one of possible trajectories that results from executing

u(0 : n) on A. If constraint automaton A is deterministic, then there exists exactly one

feasible trajectory q(0 : n + 1). Formally:

Definition 3.7 (Feasible Trajectory of a CA) Given constraint automaton A =

〈X,D,Q, δ〉 and input sequence u(0 : n) = (u(0), . . . , u(n)), a finite sequence q(0 :

n + 1) = (q(0), . . . , q(n + 1)) is a feasible trajectory, if and only if,

• q(0) ∈ Q is the initial state of A,

• q(t + 1) = exec(A, q(t), u(t)), for 0 < t ≤ n.
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3.2 Concurrent Constraint Automata

Concurrent constraint automata (CCA) is a set of concurrently operating automata.

Within this formalism, all automata are assumed to operate synchronously, that is, at

each time step every component performs a single state transition. In this section, CCA

and its legal execution are formally defined.

3.2.1 Formal Definition of CCA

A system, is modeled as a composition of concurrently operating constraint automata

A that represent the system’s individual components or processes. This composition,

including interconnections between component automata and interconnections with the

environment, is captured by a CCA. Formally, a CCA is defined as follows:

Definition 3.8 (Concurrent Constraint Automaton) A concurrent constraint au-

tomaton M is a 3-tuple 〈A,X,I〉, where:

• A = {A1, . . . ,An} is a finite set of constraint automata,

• X = {X1, . . . ,Xm} is a finite set of system variables,

• I ∈ C(X ′) is a finite domain constraint, called an interconnection constraint,

where X ′ =
⋃

i=1...n Xu
i ∪ X

y
i , in which Xu

i and X
y
i are the input and output

variables of constraint automaton Ai ∈ A, respectively.

Variables

A finite set of variables X =
⋃

i=1...n Xi of CCA M is composed of all variables Xi of

each constraint automaton Ai ∈ A. Similarly, the finite set of domains D =
⋃

i=1...n Di

ofM is composed of the set of domains Di of each constraint automaton Ai ∈ A ofM.

X = Xs ∪Xc ∪Xo ∪Xd is partitioned into a set of state variables Xs ⊆ X, a set of

control variables Xc ⊆ X, a set of observable variables Xo ⊆ X and a set of dependent

variables Xd ⊆ X, such that none of the sets overlap with one another. State variables
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represent the state of each component. Actuator commands are relayed to the system

by assigning the desired values to control variables. Observable variables capture the

information provided by the system’s sensors. Finally, dependent variables represent

interconnections between components. They are used to transmit the effects of control

actions and observations throughout the system model.

State Variables The set of state variables Xs =
⋃

i=1...n X
q
i of CCA M is a set

composed of the state variables of each constraint automaton Ai ∈ A. The state space

of a CCA, S =
∏

i=1...n Qi, is the Cartesian product of the state spaces Qi of the

individual constraint automaton Ai ∈ A, for all constraint automata A. Note that the

state space Q represents the set of all possible full assignments to the state variables

Xs. A full assignment s ∈ S represents a state of the system the CCA represents.

Control Variables The set of control variables Xc ⊆
⋃

i=1...n Xu
i of a M is a subset

of all input variables of each constraint automaton Ai ∈ A. A finite set Σ(Xc) =

∏
x∈Xc D(x) is a set of all possible full assignments over the control variables. A full

assignment µ ∈ Σ(Xc) represents an instance of a control input.

Observable Variables Similarly, the set of observable variables Xo ⊆
⋃

i=1...n X
y
i of

a M is a subset of all output variables of each constraint automaton Ai ∈ A. A finite

set Σ(Xo) =
∏

x∈Xo D(x) is a set of all possible full assignments over the observable

variables. A full assignment o ∈ Σ(Xo) represents an instance of an observation.

Dependent Variables The set of dependent variables Xd = X −Xs −Xc −Xo are

all remaining variables. A finite set Σ(Xd) =
∏

x∈Xd D(x) is a set of all possible full

assignments over the dependent variables. A full assignment d ∈ Σ(Xd) represents an

instance of a valuation to the dependent variables.

Interconnection Constraint

A finite domain constraint I ∈ C(X ′), where X ′ =
⋃

i=1...n Xu
i ∪X

y
i , provides a means

to describe the interconnections between the outputs,
∏

i=1...n Σ(Xy
i ), and the inputs,
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∏
i=1...n Σ(Xu

i ), of the constraint automata. For a CCA to be proper, all inputs of the

automata must be defined. That is, an input must either be a control input or be con-

nected to the outputs of the constraint automata. Thus to assure that CCA is proper,

all inputs that are not control inputs, i.e. Xu−Xc, are required to be connected to the

outputs Xy through the interconnection constraint I. Similar to a state constraint func-

tion of a constraint automaton, an interconnection constraint is deterministic if there

exists exactly one input u ∈
∏

i=1...n Σ(Xu
i ) that satisfies interconnection constraint I

for given output y ∈
∏

i=1...n Σ(Xy
i ) and control input µ ∈ Σ(Xc).

Definition 3.9 (Deterministic Interconnection Constraint) Given concurrent

constraint automaton M = 〈A,X,I〉, interconnection constraint I is deterministic, if

and only if, for each output y ∈
∏

i=1...n Σ(Xy
i ) and control µ ∈ Σ(Xc), there exists

exactly one input u ∈
∏

i=1...n Σ(Xu
i ) that satisfies interconnection constraint I.

A deterministic CCA is then defined as follows:

Definition 3.10 (Deterministic CCA) A concurrent constraint automaton M =

〈A,X,I〉 is deterministic, if and only if each constraint automaton Ai ∈ A is deter-

ministic (see Def. 3.5) and interconnection constraint I is deterministic (see Def. 3.9).

3.2.2 Execution of a CCA

Before formally defining an execution of a CCA, a projection operator projX′(w) is

defined. The projection operator will be used to define an execution of a CCA, as well

as a feasible trajectory of a CCA described in next section,

Definition 3.11 (Projection of an Instantiation) Let w ∈ Σ(X) be a full assign-

ment to variables in X and X ′ ⊆ X be a subset of the variables in X. Then projX′(w)

is the projection of the assignments w to variables X ′, that is projX′(w) ≡ {(x = v) |
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(x = v) ∈ w, x ∈ X ′}. An assignment may also be projected to a single variable xj ,

where projxj
(w) = {(xj = v) | (xj = v) ∈ w} is a singleton set of an assignment.

For example, let X = {x1, x2, x3, x4, x5}, w = (x1 = v1, x2 = v2, x3 = v3, x4 =

v4, x5 = v5) and X ′ = {x2, x3, x5}. Then, the projection of w to X ′ is projX′(w) =

(x2 = v2, x3 = v3, x5 = v5), and the projection to variable x4 is projx4
(w) = (x4 = v4).

With the use of the projection operator and the definition of an execution of a

constraint automaton (Def. 3.6, an execution of a CCA can be formally defined as

follows:

Definition 3.12 (Execution of a CCA) Given CCAM = 〈A,X,I〉 in state s ∈ S,

the execution of control input µ ∈ Σ(Xc) is exec(M, s, µ) =
⋃

i exec(Ai, qi, ui), where

1. Ai ∈ A is a constraint automaton of CCAM

2. qi ∈ projXq
i
(s) is the current state of constraint automaton Ai,

3. ui = projXu
i
(u), where u ∈

∏
i Σ(Xu

i ) is an input, such that u∧µ∧I∧
∧

qi∈sQi(qi)

is consistent,

The notion of execution of a control input is extended to execution of control sequence

µ(0 : n) = (µ(0), . . . , µ(n)), where

exec(M, s, µ(0 : n)) =





exec(M, s, µ(0)), if n = 0

exec(M, exec(M, s, (µ(0), . . . , µ(n − 1))), µ(n)), if n > 0

undefined otherwise

(3.3)

The third condition of exec(M, s, µ) specifies that the input to the constraint automata

must be consistent with control input µ, output of the automata defined by
∧

qi∈sQi(qi)

and interconnection constraint I. In essence, this condition assures that the flow of
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information from control µ and output y to input u is consistent with the behavior

specified by the CCA.

Again, as was with executions of a constraint automaton, an execution of a CCA is

in general nondeterministic. However, if a CCA is deterministic (Def. 3.10), then the

execution is also deterministic.

3.2.3 Feasible Trajectory of a CCA

Consider a state trajectory s(0 : n+1) = (s(0), s(1), . . . , s(n+1)) and a control sequence

µ(0 : n) = (µ(0), µ(1), . . . , µ(n)), where s(t) and µ(t) represent the state, and control

input of a CCA at time t, respectively. Then, s(0 : n + 1) is a feasible trajectory for a

CCA if s(0 : n + 1) is one of the state trajectories that results from executing control

sequence µ(0 : n). Formally,

Definition 3.13 (Feasible Trajectory of a CCA) Let M = 〈A,X,I〉 be a CCA,

where an automaton Ai ∈ A is described by a 4-tuple 〈Xi,Di,Qi, δi〉. Then, a finite

sequence s(0 : n+1) = (s(0), . . . , s(n+1)) is a feasible trajectory generated by executing

control sequence µ(0 : n) = (µ(0), . . . , µ(n)), if and only if

• s(0) ∈ S is the initial state ofM,

• s(t + 1) = exec(M, s(t), µ(t)), for 0 < t ≤ n.

3.3 Related Work

Reactive planning methods [25, 3] used a the same CCA formalism to model a system

to be controlled. Due to the planning complexity introduced by the maintenance and

observation constraints of a CCA, those constraints were assumed to be “compiled”

away. This compilation method requires an additional assumption that reduces the ex-

pressivity of the modeling formalism and the planning problem description. Within the

compilation, the constraints on the dependent variables are eliminated by substituting

them with entailed constraints on state and control variables. The essential elements of
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the CCA model are extracted using knowledge compilation methods [25, 7] and encoded

as concurrent automata (CA) for reactive planning. In essence, CA represent a nonde-

terministic transition system with finite state and concurrently operating components.

Compiling a CCA into a CA eliminates the need for constraint-based reasoning. Also,

the elimination of the dependent variables reduces the size of the state space. For exam-

ple, the Deep Space One (DS1) CCA model developed for the Remote Agent included

approximately 3000 propositional variables; with the dependent variables eliminated,

only about 100 variables remained.
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In a general planning problem, the objective is to generate a sequence of control

actions that achieves the desired goal given the initial state and the description of the

system under control. The description of the system specifies a set of legal states and

actions, usually described using a set of domain axioms and action operators. The

complexity of the planning problem depends on the the expressivity of the description

of the goal and the system.

In model-based programming formalism, the system under control is represented

as a Concurrent Constraint Automata (CCA) described in Chapter 3. The benefit in

describing a system under control as a CCA is in its expressivity. However, any type

of reasoning on CCA, including planning, becomes quickly intractable as the number

of constraint automata grows in a CCA. Recall that the number of states in a CCA is

|S| =
∏

i=1...n |Qi|, where n = |A| is the number of constraint automata in a CCA and

|Qi| = |D(xq
i )| is the number of states for each constraint automaton Ai. The number of

actions can be as large as the number of possible control inputs |Σ(Xc)| =
∏

x∈Xc |D(x)|,

where Xc is a set of control variables. In order to assure the tractability of planning for

CCAs, the problem of state space explosion must be mitigated, if at all possible.

49
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A simple goal description typically specifies the desired final state of the system. In

this thesis, we are interested in a more complex goal that specifies the desired behavior

of a system over time, typically referred to as a temporally extended goal [11]. In model-

based programming, a goal specification formalism called Qualitative State Plan (QSP)

is used to describe a temporally extended goal.

In this chapter, we describe and formally define a planning problem for CCA. First,

we briefly describe the planning problem. Then, in the subsequent sections, we describe

and define the components of the planning problem. As Chapter 3 defines CCA and

its initial state, we start with the description of a QSP, followed by the definition and

formalism of a solution to the planning problem, called Qualitative Control Plan (QCP).

4.1 Planning Problem for CCA

In this thesis, we are concerned with the problem of generating a control sequence that

achieves a temporally extended goal given the initial state of a finite state system. A

temporally extended goal is a set of goals that are temporally constrained. In effect, a

temporally extended goal constrains the state trajectory of the system. As previously

described, the system is specified as a CCA. The initial state of a CCA is specified

simply as a full assignment to the state variables of the system. Formally the problem

is as follows:

Definition 4.1 (Planning Problem for a CCA) A planning problem PCCA is a 3-

tuple 〈M, s(0),QSP〉, where M = 〈A,X,I〉 is CCA that represent the system under

control, s(0) ∈ S is the initial state of M (Def. 3.8), and QSP is a qualitative time,

qualitative state plan (Def. 4.2) that specifies the desired time-evolved goals.

4.2 Qualitative Time QSP

A mission objective and an operator’s intent can be described explicitly as a desired

evolution of goal states. The desired evolution of goal states can be formally represented

as a qualitative state plan (QSP) [17, 14]. Given a QSP and the current state, a planner
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Bus.state = off

Dev.state = on
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Figure 4-1: An example of a qualitative time, qualitative state plan (QT-QSP) with
qualitative temporal constraints represented using point algebra.

must generate an executable plan that will achieve the desired goal states as described

by the QSP.

For example, consider Bus1Dev1 system described in Chapter 3. A simple mission

objective for the system may be to first turn on the device (Dev.state = on). Once

Dev.state = on is achieved, we wish to turn off the bus controller (Bus.state = off ) at

any time thereafter. Such mission objective may be described as a QSP illustrated in

Fig. 4-1.

In Fig. 4-1, each vertex represents a time point. The inequality constraint labeled

on each directed edge represents a temporal constraint on two time points connected by

the edge. For example, ≤ constraint labeled on the directed edge connecting time point

one, t1, to time point two, t2, specifies that t1 must occur before or at the same time as

t2, that is t1 ≤ t2.

While all directed edges are associated with a temporal constraint, some directed

edges are also associated with an episode. An episode specifies a restriction on time

and state space. For example, the directed edge from t2 to t3 specifies an episode, in

addition to the temporal constraint specified by < constraint. Let us refer to this episode

as ep1. Episode ep1 restricts the time-space by requiring that the episode start at time

t2, referred to as the start event and denoted es(ep1), and end at time t3, referred to as

the end event and denoted ee(ep1). The episode also restricts the state-space through

the state constraint, Dev.state = on . Consequently, episode ep1 requires that the device

state must be on starting at time t2 until time t3.

Another episode, referred to as ep2, occurs between time points t4 and t5, which

specifies that the bus controller must be off (Bus.state = off ). Note that the tempo-

ral constraint between the start time of ep1, es(ep1) = t2, and the start time of ep2,
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Bus.state = off

Dev.state = on
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Figure 4-2: An example of a qualitative time, qualitative state plan (QT-QSP) with
qualitative temporal constraints represented using simple temporal constraints.

es(ep2) = t4, that is es(ep1) ≤ es(ep2), requires the state constraint Bus.state = off be

true at the same time or thereafter the event at which Dev.state = on becomes true.

4.2.1 Qualitative Time in QSP

In general a qualitative state plan may specify quantitative (metric) temporal con-

straints, in which a set of time points of a QSP are constrained by binary temporal

constraints of the form l ≤ tj − ti < u, where l and u are real numbered constants that

represent the lower and upper bounds of the difference of the two time points ti and

tj. The lower and upper bounds, in effect, specify the time interval for which tj − ti is

allowed.

In this chapter, however, we are concerned with QSP’s with qualitative temporal

constraints. We refer to such QSP’s as qualitative time QSP (QT-QSP). In QT-QSP,

point algebra [22] is used to describe the relationship between time points. In point

algebra, only equality and inequality operators, {<,≤,=, >,≥}, are used to describe

the relationship between two time points, e.g. ti < tj . Note that a time interval can

be use to represent a point algebra by restricting the lower and upper bounds to be

either zero or infinity, that is, l ∈ {−∞, 0} and u ∈ {0,∞}. Figure 4-2 is an example

of a QT-QSP for which a qualitative temporal constraint is represented using a time

interval.

4.2.2 Formal Definition of Qualitative Time QSP

As described above a QSP describes a desired evolution of states. More specifically, a

QSP describes the desired evolution of states by specifying a set of time points bound

by temporal constraints and state constraints. In this section a qualitative time QSP is
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formally defined.

Definition 4.2 (Qualitative Time QSP) A qualitative time, qualitative state plan

QSPqt is a 5-tuple 〈X,D, T, Ct, E〉, where

• X = {x1, . . . , xn} is a finite set of variables,

• D = {D(x1), . . . ,D(xn)} is a set of finite domains of X,

• T = {t1, . . . , tm} is a finite set of time points (Def. 4.3),

• Ct : T × T → Ĩ is a temporal constraint function (Def. 4.5), and

• E = {ep1, . . . , epl} is a finite set of externally imposed episodes that specify the

desired state over time (Def. 4.8).

Variables and Domains

A finite domain variables X and their corresponding domains D are used in describing

an episode to specify the desired state of a CCA. As such, X and D are identical to

that of the CCA for which the QT-QSP is specified.

In the QT-QSP shown in Fig. 4-2, only the state variables Bus.state and Dev.state

are used. Note that any variables of Bus1Dev1 CCA could have been used to specify

the state constraints of the episodes.

Time Point

Definition 4.3 (Time Point of a QSP) A time point, t ∈ R, is a real valued variable

that represents a point in time-space. The time for each time point ti is measured from

a reference time point called starting time point, denoted ts.

In the QT-QSP shown in Fig. 4-2, there are total of six time points, that is T =

⋃
i=1,...,6{ti}. Of the six time points, t1 is the starting time point, that is ts ≡ t1.
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Temporal Constraint

Adopting the temporal constraint formalism of [5], a temporal constraint Ct
ij ≡ {I}

specifies a set of feasible qualitative time intervals for time points ti and tj. For example,

a time interval I = [l, u) of Ct
ij represents a temporal constraint l ≤ tj− ti < u. Since we

are interested in representing qualitative temporal constraints, we restrict an interval

to also be qualitative. A qualitative time interval is formally defined as follows:

Definition 4.4 (Qualitative Time Interval) A qualitative time interval I ∈ Ĩ of a

temporal constraint Ct
ij is an interval of a binary domain that represents a feasible dura-

tion between time points ti and tj, that is tj−ti. Intervals Ĩ ≡ {∅, [l, u], (l, u), [l, u), (l, u] |

l ∈ {−∞, 0}, u ∈ {0,∞}} may be empty, closed, semi-open, or open, where l and u re-

spectively denote the lower and upper bounds of the interval.1

The lower bound of an interval may be unconstrained simply by setting l = −∞.

Similarly the upper bound may be unconstrained simply by setting u = ∞. Note that

[17, 14] only uses non-strict inequalities, {≤,≥}, but we generalize the formalism to

more expressive form in which strict inequalities, {<,>}, are also allowed.

As described before, a temporal constraint Ct
ij ≡ {I1, I2, . . . , In} is, in general, a set

of intervals. A set of intervals represents a disjunction of the intervals, I1 ∨ I2∨ . . .∨ In.

In this thesis, however, we restrict a temporal constraint to be a singleton set, thus

disallowing disjunctive intervals.

Definition 4.5 (Qualitative Temporal Constraint) A temporal constraint function

Ct : T ×T → Ĩ associates any two distinct time points, ti and tj for i 6= j, to a singleton

set of a qualitative time interval specified by the temporal constraint Ct
ij .

A temporal constraint Ct
ij is said to be consistent if time points ti and tj can be

assigned to some value such that tj − ti is in interval I ∈ Ct
ij . For conciseness, Ct

ij =

1The notation Ĩ is used to distinguish qualitative time intervals from quantitative time intervals,
denoted I.
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Figure 4-3: The simple temporal constraint of QSP Fig. 4-2.

{(−∞,∞)} by default, if a temporal constraint Ct
ij is undefined, that is, the duration

between ti and tj is unconstrained.

A set of temporal constraints Ct is said to be consistent if all time points in T can be

assigned to some value such that all temporal constraints are consistent. In general, a

temporal constraint satisfaction problem (TCSP) is NP-hard [5] due to the disjunctions

of intervals. By disallowing disjunctions, that is, allowing only a single interval for a

temporal constraint, the temporal satisfaction problem can be solved in polynomial time

[5]. Such problems, in which a temporal constraint is restricted to a singleton, is called

simple temporal problem (STP) [5]. Accordingly, the temporal constraint of a STP is

called simple temporal constraint. Note that in this thesis we are only concerned with

QSP’s with simple temporal constraints.

Definition 4.6 (Simple Temporal Constraint) A simple temporal constraint is a

temporal constraint that is restricted to a singleton set of a time interval.

Figure 4-3 illustrates the temporal constraint of the QT-QSP shown in Fig. 4-2. Each

directed edge is labeled with a time interval. Each time interval represents the simple

temporal constraint of the corresponding two time points connected by the directed

edge. For example, the interval [0,∞) on edge (t2, t4) corresponds to simple temporal

constraint Ct
2,3 = {[0,∞)}. Each temporal constraint Ct

ij for which the directed edge

(ti, tj) does not exist is assumed unconstrained, that is Ct
i,j = {(−∞,∞)}. Note the use

of dotted and solid lines for the edges. A dotted line edge is used to denote an interval

[0,∞) and a solid line edge is used to denote an interval (0,∞). We use this convention

of notation throughout the thesis.
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Episode

In general, a state constraint describes a time-varying state region, e.g. flow-tube [14],

by constraining both the state and the time. In this thesis, however, the state-space

constraint is restricted to discrete, time-invariant constraints, that is, time-invariant

relation over variables with finite domains. Furthermore, we restrict the state-space

constraint to a finite domain constraint, C(X) as defined in Def. 4.7, but in which

conjunction, ϕi ∧ ϕj , and disjunction, ϕi ∨ ϕj , are disallowed:

Definition 4.7 (State Constraint of an Episode) Given a set of finite domain vari-

ables X, a state constraint of an episode ϕ ∈ C(X) over finite domain variables X is a

sentence in a propositional state logic, that is:

ϕ ::= true | false | (x = v) | ¬ϕ1, (4.1)

where x ∈ X and v ∈ D(x). Variables X and sentence ϕ respectively represent the

scope and the relation of the constraint.

An episode is defined formally as follows:

Definition 4.8 (Episode) An episode ep is a 3-tuple 〈es, ee, c〉, where

• es ∈ T is an event representing the starting time point of the episode.

• ee ∈ T is an event representing the end time point of the episode, such that

es < ee.

• c ∈ C(X) is a state constraint that restricts the state-space from the time of es

to ee.

In the QT-QSP shown in Fig. 4-2, there are two episodes E = {ep1, ep2}, where

ep1 ≡ 〈t2, t3,Dev.state = on〉 and ep2 ≡ 〈t4, t5,Bus.state = off 〉.
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Figure 4-4: Concurrent episodes whose state-space constraints Dev.state = on and
Bus.state = off must be true at the time point t1.

Note that while ϕi∧ϕj is disallowed in a state constraint of an episode, a conjunction

can still be represented in a QSP by use of temporal constraints. Let epi be an episode

with constraint ϕi and epj be an episode with constraint ϕj . Then, ϕi ∧ ϕj can be

represented by requiring both episodes epi and epj to occur over the same time point. For

example, if we desire to specify that Dev.state = on and at the same time Bus.state =

off , or equivalently, (Dev.state = on) ∧ (Bus.state = off ), we can represent it by

requiring the two episodes corresponding to Dev.state = on and Bus.state = off occur

over the same time point. This is illustrate in Fig. 4-4.

4.3 Qualitative Time QCP

The solution to a CCA planning problem can be represented as a set of feasible control

sequences that achieve the goal specified in the form of a QSP. That is, a partially

ordered controls in effect represent a set of totally ordered control sequences. Qualitative

Control Plan (QCP) is a formalism that specifies such partially ordered control sequence.

The criteria for goal achievement depends on the goal type. In our problem, a goal

formalism called Qualitative State Plan (QSP) is used to specify the desired goal. The

following sections will describe QSP and the definition of goal achievement for QSP.

Definition 4.9 (Solution to CCA Planning Problem) A control sequence µ(0 :

n) = (µ(0), . . . , µ(n)) is a solution to the planning problem PCCA = 〈M, s(0),QSP〉 if

and only if the following two conditions are met:

1. Feasible Trajectory: s(0 : n) = (s(0), . . . , s(n)) is a feasible state trajectory that
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results from executing control sequence µ(0 : n− 1) from initial state s(0).

2. Goal Satisfaction: s(n) ∧ µ(n) ∧ g(n) ∧ I(n) ∧
∧

qi(n)∈s(n)Qi(qi(n)) is consistent.

The first condition requires that the trajectory s(0 : n) generated by executing

µ(0 : n− 1) is indeed a feasible trajectory as specified in Def. 3.13. Intuitively, s(0 : n)

is a feasible trajectory if the execution of the the control sequence µ(0 : n− 1) on CCA

M in initial state s(0) results in the state trajectory s(0 : n + 1). The second condition

requires that the feasible state trajectory guarantees that the goal is achieved. The goal

is achieved if the state and control at time n and the goal is consistent with the state

and the interconnection constraints.

As specified in Def. 4.9, a solution to the planning problem is a control sequence

µ(0 : n) = (µ(0), . . . , µ(n)), which, upon execution from initial state s(0), generates a

feasible state trajectory s(0 : n) = (s(0), . . . , s(n)) that achieves the goal in its final

state. Instead of searching for the control sequence, we can find a sequence of inputs,

u(0 : n) = (u(0), . . . , u(n)) where u ∈
∏

i Σ(Xu
i ), which, upon execution from the initial

state, achieves the goal. From input sequence u(0 : n), we can extract the solution

trough projection, as defined in Def. 4.10, where µ(0 : n) = projXc (u(0 : n)).

Definition 4.10 (Projection of a Sequence) Let w ∈ Σ(X) be a full assignment

to variables in X and X ′ ⊆ X be a subset of the variables in X. Let w(0 : n) =

(w(0), . . . , w(n)) be a sequence of instantiations to variables X. Then projX′(w(0 : n))

is the projection of the sequence w(0 : n) to variables X ′, that is projX′(w(0 : n)) ≡

(projX′(w(0)), . . . ,projX′(w(n))).

4.3.1 Partially Ordered Plan

Before we define partially ordered plan, we first introduce partial instantiation.

Definition 4.11 (Partial Instantiations) A set of partial instantiations Σ̃(X) =
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⋃
X′∈2X Σ(X ′) is used to denote a complete set of assignments to all possible subset

of variables X ′ ∈ 2X .

Definition 4.12 (Qualitative Control Plan) A qualitative control plan (QCP) is a

5-tuple 〈Xc,D, T, Ct, E〉, where

• Xc is a set of discrete domain, control variables,

• D is the corresponding set of control variable domains,

• T is a set of time points (Def. 4.3),

• Ct is a set of temporal constraints on time points (Def. 4.5), and

• E is a set of episodes that specify the required control actions over time (Def. 4.8).

Note that the syntax of QCP is nearly identical to that of QSP. The only difference

is that the variables are restricted to only the control variables. Correspondingly, the

state-space constraint of an episode is also restricted to control variables. Furthermore,

while the episodes of a QSP specify the desired goal state, the episodes of a QCP specify

the required control actions that must executed in a timely manner as specified by the

temporal constraint Ct.

An example of a QCP for Bus1Dev1 problem is shown in Fig. 4-5.

A partially ordered plan represents a set of control sequences, where µ(0 : n) =

(µ(0), . . . , µ(n)) is a control sequence described by a partial plan Π = 〈T,Σ(Xc), C<〉

if the corresponding sequence of time points t0:n = (ts, . . . , tn) satisfies the ordering

constraint C<. Furthermore, a partial plan Π = 〈T,Σ(Xc), C<〉 is a valid plan for the

problem PCCA = 〈M, s(0), g〉 if and only if each control sequence µ(0 : n) ∈ Π is a

solution to the problem PCCA.

Definition 4.13 (Valid Partially Ordered Plan) Given a planning problem

PCCA = 〈M, s(0), g〉, a partially ordered plan Π = 〈T,Σ(Xc), C<〉 is valid if and only if
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Bus.cmd= turnOn Bus.cmd= noCmd Bus.cmd= turnOff Bus.cmd= noCmd

Dev.cmd= turnOn Dev.cmd= noCmdDev.cmd = noCmd

Bus.cmd = noCmd

Figure 4-5: Qualitative control plan (QCP) for the goal QSP shown in Fig. 4-2.

1.
{

t0:n

∣∣∣
(∧

i=1,...,n (ti−1 < ti)
)

satisfies C<
}
6= ∅.

2. For each sequence of time points t0:n ∈
{

t0:n

∣∣∣
(∧

i=1,...,n (ti−1 < ti)
)

satisfies C<
}

,

the corresponding control sequence µ(0 : n) is a solution to the planning problem

PCCA as defined in Defintion 4.9.

The first condition specifies that at least one sequence of time points t0:n must exist

that is, consistent with the ordering constraint C<. The second condition specifies that

for a given sequence of time points t0:n that is, consistent with the ordering constraint

C<, the corresponding control sequence µ(0 : n) is a solution to the planning problem.
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Bus.cmd= turnOn Bus.cmd= noCmd Bus.cmd= turnOff Bus.cmd= noCmd

Dev.cmd= turnOn Dev.cmd= noCmd

Bus.state = off

Bus.cmd= noCmd

Bus.cmd= turnOff

Dev.state = init Dev.state = on

Bus.state = off Bus.state = off

Bus.state = offBus.state = on

Dev.cmd= noCmdDev.cmd= noCmd

Dev.cmd= noCmdDev.cmd= turnOn

Bus.state = off

Dev.state = on

Dev.cmd = noCmd

Bus.cmd = noCmd

Dev.state = off

Bus.cmd= noCmdBus.cmd= noCmd

Bus.cmd= noCmdBus.cmd= trunOn

Bus.state = onBus.state = initBus.state = off

Figure 4-6: Elaborated qualitative control plan (eQCP) for the goal QSP shown in
Fig. 4-2.
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In this chapter, we describe a new decomposed planning method for the CCA plan-

ning problem. Finally, the chapter ends with the description of related work.

5.1 Compiled Bus Controller and Device Example

To keep the description of the planning problem and the planning process simple to

understand, we consider a compiled CCA of a bus controller (Bus) and a generic device

(Dev) whose state constraints have been compiled away [7]. We refer to this compiled

model as CompiledBus1Dev1 . CompiledBus1Dev1 is graphically depicted in Fig. 5-1.

The bus controller, depicted in Fig. 5-2(a), is responsible for relaying data, including

commands, to the devices that are connected to it. It has three states: An off state

(off ), an initializing state (init), and an on state (on). The device can be commanded

to turn on or turn off. When turned off, the bus controller immediately transition into

63
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Dev.cmd

Bus.cmd

Dev.state

Bus.state

Bus Controller

> cmd

Device

> Bus.state

> cmd

Figure 5-1: Compiled model of a device attached to a bus controller.

cmd ≠ turnOff cmd ≠ trunOff

cmd ≠ turnOn

cmd = turnOncmd = turnOff

off

initon

cmd = turnOff

cmd ≠ turnOff

(a) Bus Controller

off

initon

Bus.state ≠ on ∨ cmd ≠ turnOn

Bus.state = on
cmd = turnOn

Bus.state = on
cmd = turnOff

Bus.state = on
cmd = turnOff

Bus.state ≠ on ∨
cmd ≠ turnOff

Bus.state ≠ on ∨ cmd ≠ turnOffBus.state ≠ on ∨ cmd ≠ turnOff

(b) Device

Figure 5-2: 5-2(a) is a compiled model of a bus controller and 5-2(b) is a compiled model
of a device attached to the bus controller.

the off state from any other state. When turned on from the off state, however, the

bus controller first transitions into the initializing state. Unless commanded to turn

off, the bus controller autonomously transitions into the on state once initialization is

complete. The bus controller must be in the on state for it to be able to relay any data

to its devices. The specification of this behavior has been compiled away and is reflected

in the device model.

Similar to the bus controller model, the device depicted in Fig. 5-2(b) can also be

in any one of the three states {off , init , on}. The behavior of the state transition is

identical to that of the bus controller except that any commanded transitions require

that the bus controller be on. This is due to the fact that the bus controller must be

on for it to relay any command to the device.

5.2 Solving the Planning Problem

We can view the CCA planning problem PCCA = 〈M, s0,QSP〉 as a graph search

problem. The objective is to find a path that is rooted at a vertex corresponding to
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initial state s0 and achieves qualitative state plan (QSP) QSP .

5.2.1 Plan Space: A Trellis Diagram

The plan space of PCCA is defined by a set of feasible execution traces specified by CCA

M. We can depict this search space graphically using a trellis diagram. For example,

Fig. 5-3 is a trellis diagram that depicts the search space of a planning problem for

CompiledBus1Dev1 CCA. Each column ti represents a set of feasible states at ith time

step. In each row, a circle that circumscribes two smaller circles represents a state of

CompiledBus1Dev1 CCA. Of the two smaller circles, the top circle represents a state of

the Bus Controller and the bottom circle represents a state of the device. Note that the

shades of colors used directly correspond to the shades used to distinguish the states

of the Bus Controller and the device in Fig. 5-2. An edge that connects a state of

CompiledBus1Dev1 CCA to a successive state represents a feasible transition between

the two successive states. For example, state {Bus.state = off ,Dev .state = off } (first

row of the trellis diagram) may transition to state {Bus.state = init ,Dev .state = off }

(second row).

Formally, the set of states S(ti) =
∏

i Qi(ti) of CCA M = 〈A,X,I〉 for time steps

i = 0, 1, . . . , n directly corresponds to the set of vertices V of a trellis diagram G =

〈V,E〉, where constraint automaton Ai ∈ A is described by a 4-tuple 〈Xi,Di,Qi, δi〉

and Qi = Σ(Xq
i ) is a set of states of Ai. For example, CompiledBus1Dev1 CCA has

two constraint automata, that is A = {ABus ,ADev}. The state variables of Bus and

Dev are X
q

Bus = {Bus.state} and X
q

Dev = {Dev .state}, respectively. For any time

point ti, the states of CompiledBus1Dev1 is defined by all combinations of the states of

two constraint automata, that is S(ti) = QBus (ti) × QDev (ti). Since each constraint

automaton has three states, there are total of nine states for the CCA at each time step.

In a trellis diagram, a set of directed edges is formally defined as E = {(sk, sl) |

∃Σ(Xc)(µ).(sl = exec(M, sk, µ))}. Intuitively, CCA M in state sk may transition to

state sl if and only if there exists a control input µ ∈ Σ(Xc), such that execution

of µ on CCA M may transition the CCA to state sl in the next time step, that is
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t0 t1 t2 t3 t4 tn tn + 1
st
a
te
s

Figure 5-3: Trellis diagram of CompiledBus1Dev1 model.

sl = exec(M, sk, µ). Furthermore, sl = exec(M, sk, µ) if and only if there exists input

u(t) ∈
∏

i Σ(Xu
i (t)), such that µ(t) = projXc(u(t)), that is control µ(t) is a projection

of input u(t) to control variables Xc, and the following two constraints are satisfiable:

State Consistency State sk(t) and input u(t) are consistent with the specified state

behavior ofM:

I(t) ∧
∧

i

∧

qi(t)∈Qi

(qi(t)⇒ Qi (qi(t))) (5.1)

Transition Consistency There exists a constraint ϕi(t) ∈ C(Xu
i (t)), such that sk(t)∪

u(t) ∪ sl(t + 1) is consistent with the specified transition behavior ofM:

∧

i

∧

δ

(qi(t) ∧ ϕi(t))⇒ qi(t + 1) (5.2)

.

Note that state consistency and transition consistency are the necessary and sufficient

conditions of a feasible trajectory (Def. 3.13) rewritten as a set of constraints. The

state consistency constraint corresponds to the third requirement of CCA execution in
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54

32

Bus.state = off

Dev.state = on

≤ <

<

≤

≤ ≤

Figure 5-4: An example of a QSP for CCA CompiledBus1Dev1 .

Def. 3.12. Intuitively, this condition ensures that the flow of information from output y

to input u is consistent with the state constraint specified by the CCA. The transition

consistency constraint corresponds to the execution requirement of constraint automata

in Def. 3.6. Intuitively, this condition ensures that the transition from sk to sl is

consistent with the transition relation of each constraint automaton.

5.2.2 Solution within a Trellis Diagram

A path within the trellis diagram is a solution to the CCA planning problem PCCA =

〈M, s0,QSP〉 if and only if the path is rooted at a vertex corresponding to initial state s0

and achieves qualitative state planQSP . For example, consider a planning problem with

CCAM = CompiledBus1Dev1 , initial state s0 = {Bus .state = off ,Dev .state = off },

and QSPQSP depicted in Fig. 5-4. In Fig. 5-5, the path traced in bold is an example of a

solution to the planning problem. Note that the path is rooted (time point t0) at a vertex

that corresponds to the initial state. Also, states {Bus .state = on,Dev .state = on}

and {Bus .state = off ,Dev .state = on} achieve goal Dev .state = on at time points t4

and t5, and state {Bus .state = off ,Dev .state = on} achieves goal Bus .state = off at

time point t5. Also as required by the QSP, the solution achieves goal Bus.state = off

after goal Dev .state = on has been achieved.

Recall that a qualitative state plan (QSP) is a 5-tuple 〈X,D, T, Ct, E〉, where set of

episodes E specifies a set of desired goals and temporal constraint function Ct specifies

a partial ordering by which the goals should be achieved. Thus, a path achieves QSP

QSP , if the path visits a set of vertices that satisfy the goals of E and visits them in an

order that satisfies the partial order specified by Ct. Formally, goal g ∈ E of the QSP

is achieved if:
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t0 t1 t2 t3 t4 t5
st
a
te
s

s0

Bus.state = off
Dev.state = on

Bus.state = on
Dev.state = on

Bus.state = off
Dev.state = off

Figure 5-5: A solution within the trellis diagram for a planning problem involving CCA
CompiledBus1Dev1 .

Goal Achievement State sk(t) and input u(t) satisfies the goal:

g(t) ∧ I(t) ∧
∧

qi(t)∈s(t)

Qi(qi(t)) (5.3)

The goal achievement constraint simply checks to see if their exists an output such that

the current state, input and output satisfy the goal.

5.3 Decomposed Planning

Constructing and searching trellis diagram G, however, poses three issues. First, enu-

merating all vertices of G, which is equivalent to enumerating all states of a CCA, is

intractable, as discussed earlier. The number of vertices grow exponentially with the

number of constraint automata in a CCA. Second, we must enumerate all models of

state consistency and transition consistency constraints in order to construct all edges

of graph G. Finally, to determine the goal states, we must either check the satisfiability

of the goal achievement constraint on each branch of the search or enumerate all models
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of the goal achievement constraint. Enumerating all edges and goals is also intractable

given the exponential nature of the number of states, and the fact that in the worst case,

the number of outgoing edges from a vertex can be as large as the number of possible

control inputs (|Σ(Xc)| =
∏

x∈Xc |D(x)|, where Xc is a set of control variables).

Computing graph G before searching for a path is an impractical approach to plan-

ning for most problems. Instead, we can compute only the relevant portion of the graph

incrementally during the search. This is the approach taken by state space and plan

graph planners that incrementally compute the reachability graph, which maintains only

a portion of the trellis diagram that is reachable from initial state s0. Nevertheless, the

number of reachable states is still potentially exponential. Most state space planners,

thus rely heavily on good heuristics to guide the expansion of the reachability graph.

Regardless of the heuristic used for CCA planning, we must still perform constraint

checking on each outgoing edge to verify state consistency, transition consistency and

goal achievement.1

To mitigate these issues, we introduce a new method that relies on a combination

of two decomposition techniques, constraint decomposition and causal order decom-

position. The use of constraint decomposition allows us to maintain a set of reachable

states compactly and to verify state consistency, transition consistency and goal achieve-

ment in an efficient manner. Constraint decomposition augmented with causal ordering

decomposition provides the guidance for searching the reachability graph efficiently.

5.3.1 Decomposing the Trellis Diagram

We classify the three requirements, state consistency, transition consistency and goal

achievement, into two main categories. One, state consistency and goal achievement

constraints are requirements that must be checked at each time point. We can check

these directly from their constraint formulation shown respectively in Eq. (5.1) and

Eq. (5.3). Both constraints can be checked separately for each time point t. In com-

1Most planners are not concerned with constraint checking as they do not allow state constraints in
their planning domain. As shown by [21], inclusion of state constraints increases the complexity of the
planning problem.
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parison, transition consistency is a requirement that must be checked over every pair of

consecutive time points t and t+1. This is also reflected in the corresponding constraint

in Eq. (5.2), which involves two consecutive time points t and t + 1.

With this in mind, we decouple the planning problem into two parts. One, we find a

path from the current state to a goal state while ensuring transition consistency over the

path. Two, we ensure that each vertex of the path is a feasible state, that is, each vertex

satisfies state consistency. If a vertex satisfies the goal achievement constraint, then the

vertex is a goal. In order to solve the planning problem in an efficient manner, we check

the consistency of each vertex as efficiently as possible and minimize the number of edges

over which the planner branches. Constraint decomposition allows us to efficiently check

the consistency of each vertex and goal serialization based on causal ordering allows us

to minimize the branching of the search path.

Checking Vertex Consistency through Constraint Decomposition

Constraint decomposition transforms a constraint satisfaction problem into a binary

acyclic network of constraint satisfaction problems, where each vertex of the acyclic

network is a CSP and two connected CSPs are constrained by a binary constraint.

Definition 5.1 (Constraint Decomposition) Let R = 〈X,D,C〉 be a CSP. A con-

straint decomposition for R is a triple RD = 〈T ,X , C〉, where

• T = 〈V,E〉 is a tree.

• X : V → 2X maps each vertex v ∈ V to a subset of variables X (v) ⊆ X.

• C : V → 2C maps each vertex v ∈ V to a subset of constraints C(v) ⊆ C.

such that

• For each variable x ∈ X, if and only if vi, vj ∈ {v | x ∈ X (v)} and i 6= j, then

(vi, vj) ∈ E.

• For each c ∈ C, there is at least one vertex v ∈ V such that c ∈ C(v) and

scope(c) ⊆ X (v).
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Since the complexity of a binary acyclic CSP is known to be polynomial in the

number of vertices of the acyclic network, the complexity of solving a decomposed CSP

depends on the complexity of solving the individual CSPs that each vertex represents.

The complexity of solving the individual CSPs depends on the number of variables.

A measure called width, w = maxv∈V |X (v)|, is used to define the maximum number

of variables associated with each CSP. Thus, the complexity of a decomposed CSP is

exponential in its width. Depending on the domain of a problem, this width may be

bounded by a constant. Thus, solving a decomposed CSP depends on the structure of

the problem, not the size of the problem.

As long as the width of the decomposition is bounded, we can verify state consis-

tency and transition consistency in a tractable manner. There are many decomposition

methods, and some are better than others [13]. In this thesis, we are not concerned

with developing the best decomposition method, but rather on the use of the technique,

under the assumption that the width of the decomposition is bounded. Thus, we only

need to define the mapping from consistency of state consistency and transition consis-

tency constraints to a CSP. Then, the decomposition follows directly from the definition

of constraint decomposition in Def. 5.1.

Given CCAM = 〈A,X,I〉, the mapping of state consistency and transition consis-

tency constraints to CSP R = 〈X,D,C〉 is straight forward. The variables and domains

of CCAM and CSP R are identical. We map state consistency and transition consis-

tency constraints into a set of constraints C by first transforming state consistency and

transition consistency constraints

ϕ = I(t) ∧
∧

i

∧

qi(t)∈Qi

(qi(t)⇒ Qi (qi(t))) ∧
∧

i

∧

δ

(qi(t) ∧ ϕi(t))⇒ qi(t + 1) (5.4)

into conjunctive normal form (CNF), denoted CNF(ϕ). Each clause in CNF(ϕ) is a

constraint c ∈ C of the CSP.

Figure 5-6(a) illustrates a constraint graph of CCA CompiledBus1Dev1 mapped

to a CSP. Figure 5-6(b) illustrates a constraint decomposition generated using tree

decomposition method [6]. Finally, Fig. 5-6(c) graphically depicts the relations of the
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Bus.cmd(t)

Bus.state(t)

Dev.cmd(t)

Dev.state(t)

Bus.cmd(t+1)

Bus.state(t+1)

Dev.cmd(t+1)

Dev.state(t+1)

(a) Constraint Graph

Bus Controller

Device

Bus.state(t)
Dev.state(t)

Dev.cmd(t)

Dev.state(t+1)

Bus.state(t)
Bus.cmd(t)

Bus.state(t+1)

Bus.cmd(t+1)

Dev.cmd(t+1)

(b) Constraint Decomposition

Bus Controller

Device

(c) Relations

Figure 5-6: 5-6(a) is the constraint graph of the CompiledBus1Dev1 model, 5-6(b) is a
constraint decomposition of the constraint graph and 5-6(c) depicts the relations of the
decomposition.

decomposition. The vertices in the first column of Fig. 5-6(c) represent the states at

time point t and the vertices in the second column represent the states at time point

t + 1. The edges between two consecutive states represent feasible transitions.

Enable Subgoal Serialization through Causal Decomposition

Decomposition of CA is based on subgoal serializability, where a set of subgoals are se-

rializable if and only if the subgoals can be solved sequentially [16]. [25] has recognized

that if the causal graph is acyclic, then the subgoals are serializable. Building upon [25],

[3] developed a causal decomposition method that allows the subgoals to be serialized

even if the causal graph is cyclic. The causal decomposition method simply groups

cyclic components of the causal graph such that the resulting meta graph is acyclic. We

augment constraint decomposition with causal decomposition to enable subgoal serial-

ization. We refer to the augmented decomposition as causal constraint decomposition.

An example of causal constraint decomposition is depicted in Fig. 5-7. Figure 5-7(a)

illustrates the causal graph of CCA CompiledBus1Dev1 . With the information from the

causal graph, we can construct a causal constraint decomposition shown in Fig. 5-7(b).

In this case, there is no cycle, but note the directed edge on the decomposition.

Figure 5-7(a) illustrates a causal graph of CCA CompiledBus1Dev1 .



73

Bus.cmd(t)

Bus.state(t)

Dev.cmd(t)

Dev.state(t)

Bus.cmd(t+1)

Bus.state(t+1)

Dev.cmd(t+1)

Dev.state(t+1)

(a) Causal Graph

Bus Controller

Device

Bus.state(t)
Dev.state(t)

Dev.cmd(t)

Dev.state(t+1)

Bus.state(t)

Bus.cmd(t)

Bus.state(t+1)

Bus.cmd(t+1)

Dev.cmd(t+1)

(b) Causal Constraint Decomposition

Figure 5-7: 5-7(a) is the causal graph of the CompiledBus1Dev1 model and 5-7(b) is a
causal constraint decomposition of the model.

A causal graph specifies cause and effect relationships between the variables of a

CCA. There are thee types of cause and effect relationship: transition dependence, out-

put dependence and interconnection dependence. The transition dependence specifies

the temporal cause and effect relationship between the variables. The output depen-

dence specifies the cause and effect relationship between the state and input variables

and the output variables. The interconnection dependence specifies the cause and ef-

fect relationship between the output variables and the input variables as defined by the

interconnection constraints of the CCA. Formally, a causal graph of CCAM is defined

as follows:

Definition 5.2 (Causal Graph) The causal graph G = 〈V,E〉 of concurrent con-

straint automaton M = 〈A,X,I〉 is a directed graph, where its vertices V correspond

to the variables of CCAM of two consecutive time steps, X(t) and X(t + 1). For each

constraint automaton Ai, a directed edge (u, v) ∈ E is included in G if and only if one

of the following two condition is met:

• Transition Dependence: (u, v) ∈ {(u, v) | u ∈ X
q
i (t) ∪Xu

i (t), v = x
q
i (t + 1)}

• Output Dependence: (u, v) ∈ {(u, v) | u ∈ X
q
i (t) ∪ Xu

i (t), v ∈ X
y
i (t)} ∪ {(u, v) |

u ∈ X
q
i (t + 1) ∪Xu

i (t + 1), v ∈ X
y
i (t + 1)}



74

Also, for each interconnection constraint c ∈ CNF(I), let Xy′

= {x | x ∈ scope(c), x ∈

Xy} be a set of output variables in the scope of the constraint and let Xu′

= {x | x ∈

scope(c), x ∈ Xu} be a set of input variables in the scope of the constraint. Then, a

directed edge (u, v) ∈ E exists if and only if:

• Interconnection Dependence: (u, v) ∈ {(u, v) | u ∈ Xy′

(t), v ∈ Xu′

(t)} ∪ {(u, v) |

u ∈ Xy′

(t + 1), v ∈ Xu′

(t + 1)}

For each constraint automaton Ai, the transition dependence specifies that the value

of the state variable of the next time step, x
q
i (t + 1), depends on the values of state

variable x
q
i (t) and input variables Xu

i (t) of the current time step. Also for each constraint

automaton Ai, the output dependence specifies that the values of output variable X
y
i

depend on the values of state variables x
q
i and input variables Xu

i . For each clause of the

interconnection constraint in conjunctive normal form, c ∈ CNF(I), the interconnection

dependence specifies that the values of output variables Xy′

⊂ scope(c) depend on the

values of input variables Xu′

⊂ scope(c). Note that if only transition dependence is

used to construct the causal graph, then the resulting causal graph is identical to the

transition dependency graph defined in [25, 3].

A causal constraint decomposition is computed as shown in Alg. 5.1. The algorithm

first performs constraint decomposition (lines 1–2). Then, the constraint decomposition

is augmented with the causal ordering (lines 3–15). Finally, causal graph decomposition

is applied to form a causal constraint decomposition. While constraint decomposition

[6] and causal decomposition [3] are well known, the causal ordering of constraint de-

composition is novel to this thesis. Clique B is said to depend on clique A if and only

if A and B are connected in the constraint decomposition (line 16) and there exists

a variable in B, not in A, that is causally dependent on variables of A (lines 7–14).

The connectedness (line 16) ensures that the two cliques are in someway related. The

dependence relationship identifies the directionality of the causal ordering.

In the case of the constraint decomposition of CompiledBus1Dev1 CCA shown in

Fig. 5-6(b), the clique highlighted Device depends on the clique highlighted Bus Con-
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Algorithm 5.1: ComputeCausalConstraintDecomposition(M)

Input: A concurrent constraint automaton M = 〈A,X,I〉
Output: 〈T ′′,X ′, C′〉
R ← CCAtoCSP(M);1

〈T ,X , C〉 ← DecomposeCSP(R);2

G← ComputeCausalGraph(M);3

G∗ ← ComputeTransitiveClosure(G);4

E′ = ∅;5

for (u, v) ∈ E(T ) do ⊲ T = 〈V,E〉6

A← X (u);7

B ← X (v);8

for xi ∈ A do9

for xj ∈ B \ A do10

if (xi, xj) ∈ E(G∗) then ⊲ G∗ = 〈V,E〉11

E′ ← E′ ∪ {(u, v)};12

break;13

if (u, v) ∈ E′ then break;14

T ′ ← 〈V (T ), E′〉;15

〈T ′,X ′, C′〉 ← ComputeCausalDecomposition(T ′,X , C);16

return 〈T ′′,X ′, C′〉;17

troller (see Fig. 5-7(b)) since Bus .state(t) affects Dev .state(t + 1) according to the

transition dependence. Note that the reverse is not true for the clique dependence.

Searching over the causal constraint decomposition is equivalent to searching decom-

posed trellis diagram. Extending the relations of the decomposition shown in Fig. 5-6(c)

to n + 1 steps forms a decomposed trellis diagram shown in Fig. 5-8.

5.3.2 Searching through the Decomposed Trellis Diagram

The following is the pseudo code of a decomposed planning algorithm. Intuitively, the

algorithm chooses a goal (line 7) and finds a state trajectory to achieve the goal from the

current state (line 9), while projecting the state evolution to the future to update the

current state (line 15). The chosen state trajectory may have additional requirements,

and these requirements are added to the list of goals to achieve (lines 12,14). Once no

goal is left to achieve, the planning process successfully returns a plan in the form of a

QCP (line 16). At any point, if a goal is not achievable, planning fails (lines 11–12).
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Figure 5-8: Decomposed trellis diagram of CompiledBus1Dev1 model.

Algorithm 5.2: Plan(M, s(0),QSP)

Input: A concurrent constraint automaton M = 〈A,X,I〉, Initial state s(0),
Goal QSP

Output: Qualitative Control Plan QCP
eQCP ← InsertInitialState(QSP , s(0));1

s(0 : t)← ∅;2

newGoals← ∅;3

RDD ← ComputeCausalConstraintDecomposition(M) ⊲ RDD = 〈T ,X , C〉;4

s0 ← s(0);5

while openGoals(eQCP) 6= ∅ | newGoals 6= ∅ do6

g ← ChooseOpenGoal(eQCP);7

c← getComponent(g);8

s(0 : t)← ChooseTrajectory(s0(c), g);9

if s(0 : t) = ∅ then10

return failed;11

newGoals← ChooseSubgoals(s(0 : t));12

eQCP ← InsertTrajectory(eQCP , s0(c), s(0 : t));13

eQCP ← InsertNewGoals(eQCP , s0, s(0 : t), newGoals);14

s0(c)← s(t);15

return QCP = projXc (eQCP);16
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Bus.state = off

Dev.state = on

Dev.cmd = noCmd

Bus.cmd = noCmd

Bus.state = off

Dev.state = off

Figure 5-9: eQCP with the initial state inserted.

Insert initial state into elaborated QCP (line 1)

The first step after decomposition, is to insert the initial state into the elaborated QCP

(eQCP).

Selecting an Open Goal (line 7)

Given a decomposed causal graph Gc, goals eQCP in the form of an elaborated quali-

tative control plan and current state s0, select an open goal g in eQCP that is neither

causally nor temporally dominated.

Definition 5.3 (Open Goal of eQCP) Given goal g in eQCP , let c be the compo-

nent related to goal g, s0(c) be the current state of component c, epi be the episode in

QSP with current state s0(c) and epj be the episode in eQCP with goal g. A goal g of

component c is open if and only if current state episode epi is guaranteed to end before

goal episode epj starts, that is end(epi) ≤ start(epj).
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Figure 5-10: Example of a closed goal gj and an open goal gk.

A

D

B

C

E

F

G

H

Figure 5-11: An example of a causal graph.

Definition 5.4 (Causally Dominated Goal) Given goals gi and gj in eQCP , let ci

be the component for which goal gi is specified and let cj be the component for which

goal gj is specified. Goal gi causally dominates goal gj if and only if there exists a path

from ci to cj in the decomposed causal graph Gc.

In Figure 5-11 component A dominates component F , but component A does not

dominate component H.

Definition 5.5 (Temporally Dominated Goal) Given goals gi and gj in eQCP , let

epi be the episode in eQCP with goal gi and let epj be the episode in eQCP with goal

gj . Goal gi temporally dominates goal gj if and only if episode epi is guaranteed to end

before episode epj starts, that is end(epi) ≤ start(epj)

epi

epj

start(epj) end(epj)

start(epi) end(epi)

(a) Temporally Dominated

epj

epi

start(epi) end(epi)

start(epj) end(epj)

(b) Temporally Not Dominated

Figure 5-12: In 5-12(a), epj temporally dominates epi and in 5-12(b) epj does not
temporally dominated epi.



79

Dev.state = init Dev.state = onDev.state = off

Figure 5-13: An example of a state trajectory that achieves the goal.

Bus.state = on

Dev.state = init Dev.state = on

Bus.state = off Bus.state = off

Bus.state = off

Dev.cmd= noCmdDev.cmd= noCmd

Dev.cmd= noCmdDev.cmd= turnOn

Dev.state = off

Figure 5-14: An example of extracting the subgoals of the trajectory in Figure 5-13.

Computing a Trajectory (line 9)

Given component c, current state s0(c) and goal g, compute a feasible trajectory, whose

initial state is s0(c) and final state is g.

Note that this trajectory computation can be done using any planner, e.g. Europa,

Burton. As long as each subproblem of the decomposition is small, we are able to pre-

compile a policy for computing the trajectory, similar to the method used by Burton

[25, 3].

Extracting New Goals (line 12)

Given component c and trajectory T , compute time-evolved subgoals, newGoals, that

enable trajectory T . If a CCA does not have indirect effects in the form of state-

constraints, the subgoals are simply the guard constraints of the transition. We must

assure proper qualitative temporal ordering of the subgoals. The guard constraints of

a transition into another state must be satisfied during the transition only. The guard

constraints of an idle transition (transition into the same state) must be satisfied during

the duration of the idling state.

Updating the Plan

If the trajectory generated is a command trajectory, insert it into eQCP .
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Dev.state = init Dev.state = on

Bus.state = off Bus.state = off

Bus.state = offBus.state = on

Dev.cmd= noCmdDev.cmd= noCmd

Dev.cmd= noCmdDev.cmd= turnOn

Bus.state = off

Dev.state = on

Dev.cmd = noCmd

Bus.cmd = noCmd

Bus.state = off

Dev.state = off

Figure 5-15: eQCP with the subgoals for device trajectory from off to on state.

Bus.cmd= turnOn Bus.cmd= noCmd Bus.cmd= turnOff Bus.cmd= noCmd

Dev.cmd= turnOn Dev.cmd= noCmd

Bus.state = off

Bus.cmd= noCmd

Bus.cmd= turnOff

Dev.state = init Dev.state = on

Bus.state = off Bus.state = off

Bus.state = offBus.state = on

Dev.cmd= noCmdDev.cmd= noCmd

Dev.cmd= noCmdDev.cmd= turnOn

Bus.state = off

Dev.state = on

Dev.cmd = noCmd

Bus.cmd = noCmd

Dev.state = off

Bus.cmd= noCmdBus.cmd= noCmd

Bus.cmd= noCmdBus.cmd= trunOn

Bus.state = onBus.state = initBus.state = off

Figure 5-16: Elaborated qualitative control plan (eQCP) for QSP shown in Fig. 4-2.
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Dev.state = init Dev.state = on

Bus.state = off

Dev.state = on

Dev.cmd = noCmd

Bus.cmd = noCmd

Bus.state = off

Dev.state = off

Figure 5-17: An example of updating eQCP with the state trajectory in Figure 5-13.

5.3.3 Extending to Temporal Planning

Extension of the aforementioned algorithm to temporal planning is straight forward.

Given a timed CCA (TCCA) and a quantitative time QSP, or simply a QSP, the eQCP

becomes augmented with the temporal constraints of TCCA and QSP. The algorithm

will require an additional step between lines 14 and 15 that computes temporal con-

sistency check of the updated eQCP. An incremental temporal consistency checking

algorithm of [15] can be used for efficiency.

5.4 Related Work

A planning graph essentially maintains the same information as the reachability graph,

but more compactly by relaxing the condition for reachability. A planning graph is

essentially a linear directed tree, in which each vertex represents a set of all states that

are possibly reachable from the predecessor vertex. Due to the relaxation, however,

not all states of the vertex are guaranteed to be reachable. A goal is reachable if
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one of the vertices includes the goal state. However, even if a vertex includes a goal,

that does not guarantee that a path exists from the initial state to the goal state.

Furthermore, additional search is required to verify that the goal is indeed reachable.

Thus, the compactness of the planning graph comes at a cost of insufficient condition

for reachability and additional search step required to check the reachability.

5.4.1 State Constraint

As an example, [21] has shown that allowing derived predicates, also known as indirect

effect [18, 10, 20] and ramification problem [19, 9], increases the theoretical complexity

of a planning problem to EXPTIME-complete.
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6.1 Implementation

The prototype of the decomposed planning algorithm was developed on Matlab R14. As

such, the performance of the algorithm is expected to be lower in comparison to what

is achievable from more optimized implementation written in C/C++. The problems

were solved on a laptop with 1700 MHz Pentium M Processor and 1 GB Ram on 600

MHz bus.

6.2 Results on EO-1 Mission Ops Scenario

The decomposed planner has been verified on an Earth Observing-1 (EO-1) mission op-

erations scenario. The scenario consists of a set of software components that generate

a binary plan file and upload to the EO-1 spacecraft. The uploaded binary plan file is

83



84

Planner

fileOut >> fileIn

> cmdIn status >

Plan

fileOut >> fileIn

> cmdIn

Exporter

fileOut >> fileIn

> cmdIn status >

Plan File

fileOut >> fileIn

> cmdIn

Converter

fileOut >> fileIn

> cmdIn status >

Binary File

fileOut >> fileIn

> cmdIn

Uplink

fileOut >> fileIn

> cmdIn status >

Exec Plan

fileOut >> fileIn

> cmdIn

Downlink

fileOut >> fileIn

> cmdIn status >

Copy

fileOut >> fileIn

> cmdIn

Compare

> original

> copy status >

Figure 6-1: Concurrent constraint automaton of EO-1 scenario.

then downlinked and compared against the original binary plan file. The main purpose

in benchmarking the performance against the EO-1 scenario is to demonstrate the ap-

plicability of decomposed planning on a scenario that represents a real world problem.

As is with many complex systems, the EO-1 problem has a large state space with well

over ten sextillion states, 1 × 1022. Representative of most engineered systems, the

components of EO-1 mission operations system are loosely coupled. The EO-1 mission

operations scenario is as follows:

Initially the Aspen automated planner, or simply the planner, generates a

plan. The plan is read in by an exporter and processed into a plan file. Then

a converter compresses the plan file into a binary file. Via the uplink com-

munication, the binary file is then uploaded onto EO-1 as an executable plan.

Once EO-1 receives the upload, the downlink communication downloads a

copy of the binary file. The downlinked copy is then compared against the

original uplink binary file before executing the uplinked plan.

The schematic of the concurrent constraint automaton for EO-1 scenario is shown

in Fig. 6-1. Note that most of the components are serially linked.

6.2.1 CCA of EO-1 Mission Ops System

While each step of EO-1 mission operation has its specific purpose, the components of

the process can be categorized into three basic components: File transformer and file

compare components. From the above description, plan, plan file, binary file, executable

plan and copy are all types of files. Planner, exporter, converter, uplink and downlink

are all types of file transformers. Finally, the uplink and downlink files are compared
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using a file compare component. Accordingly in Fig. 6-1, file transformers are colored

blue, files colored red, and a file compare is colored green.

File Transformer Constraint Automaton

A file transformer is an abstraction on a software that reads data, processes the data

and then writes the processed data. An example of a file transformer is an automated

planner called Aspen. An automated planner reads in a file with a planning problem,

plans and then outputs the generated plan as a file. A file transformer has five states,

{idle, transforming ,writing , done , failed}. When a file transformer is in the idle state,

the component is not performing any task. Once the file transformer is commanded to

transform , the file transformer transitions into the transforming state. For the compo-

nent to perform transformation, the input file fileIn must be in a good state. Once the

transformation is complete, the component transitions into the write state, in which

the component is writing the output to fileOut . During the writing state, the output is

corrupt. Once writing is complete, the component transitions to the done state. When

in done state, the output file is guaranteed to be good. If the input file becomes corrupt

or nothing, however, the component transitions into the idle state. At any time, a file

transformer may be forced into the idle state by commanding it to terminate via the

command input cmdIn. A file transformer component may also fail at any point, but

may be recovered into the idle state by providing a new input or into the transforming

state by commanding it to transform. The state of a file transformer is reported through

the status output. The status is idle when the file transformer is in either idle or failed

state. Otherwise, the status is reported as running .

File Constraint Automaton

A file component models a file on a read/write memory. A file component has three

states, {good ,nothing , corrupt}. If good data is written via fileIn, a file will be in the

good state. If a corrupt file is written, the file will be in the corrupt state. If a file

is corrupt, it will remain corrupt until commanded to delete or rewritten with a good

file. A file in a good state, however, may degrade overtime to the corrupt state. A file
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may transition to the nothing state if a file is deleted via the command cmdIn . A file

component has one output fileOut through which other components may read the file.

The output directly reflects the state of the file component.

File Compare Constraint Automaton

A file compare component models software that performs comparison on two files. Given

two input file orignalFileIn and copyFileIn , a file compare component will check to see

if the two files are in the same state. The component has two states {nominal , failed}.

When the component is in the nominal state, it outputs via status whether the two files

are same or different . When the component is in the failed state, it may output any

value regardless of the states of the two input files.

6.2.2 Initial State and QSP

Initially all files are assumed to be in the nothing state, all file transformers are in the

idle state and the file compare component is in nominal state. Initially, no commands

are issued and the planner is provided with a good file.

The goal for the EO-1 scenario is simply to downlink a good file.

6.3 Experimental Results on EO-1 Scenario

One of the difficulties in automated planning is the size of the problem or the number

of states. In this scenario, there is total of ten components, five file components, five

file transformer components, and one file converter component. A file component has

three possible modes, three possible values to each of two inputs and one output. This

implies a file component has 54 states. Similarly a file transformer component has a

total of 270 states. A file compare component has total of 36 states. Thus, as a system

there are over 1 × 1022 states. Nevertheless, the structure of the problem allows us to

decompose the state space and search the reduced decomposed state space.

We have tested decomposed planning on several variations of the EO-1 scenario. The

size of the problem was varied by incrementally increasing the number of file transformer
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Table 6.1: The parameters of the test cases. Each of the test cases are incremental
variations on the EO-1 scenario.
Number of Components 2 4 6 8 10

Number of States 1.5× 104 2.1× 108 3.1 × 1012 4.5× 1016 6.6 × 1020

Number of Cliques 13 27 41 55 69
Maximum Clique Size 4 4 4 4 4

Table 6.2: Time performance for various steps of decomposed planning.
Number of Components 2 4 6 8 10

Offline Decomposition Time (sec) 14 83 243 523 973
Policy Computation Time (sec) 22 107 299 628 1153

Online Subgoal Extraction Time (sec) 1.3 14 58 155 344
Goal Ordering Time (sec) 0.5 5 23 58 128
Trajectory Computation Time (sec) 0.5 6 22 50 98
Total Planning Time (sec) 3.8 34 127 315 670

and file chain. The simplest case includes two components, one file transformer and one

file linked serially. This link is increased up to 10 components, which includes five

file transformers and five files interleaved and linked serially. The 10 component case is

equivalent to EO-1 scenario, but only without the compare component. The parameters

of each case is shown in Table 6.1. Note that the number of states increases exponential

with the number of components, ranging from 150 thousand states to 660 quintillion

states. As expected the number of cliques grows linearly with the number of components

and the maximum clique size is constant.

Table 6.2 lists the amount of time used in various steps of decomposed planning. The

time performance is categorized in to two main parts, offline and online. The memory

usage for the two important outputs of the offline step, decomposition and policy, is

listed in Table 6.3. Decomposition and policy are precompiled offline to reduce online

computation time.

Note that almost half of the time is spent on subgoal extraction. Recall that subgoal

Table 6.3: Memory performance for storing decomposition and policy information.
Number of Components 2 4 6 8 10

Decomposition Memory Size (kB) 108 220 332 444 556
Policy Memory Size (kB) 19 38 58 77 96
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Figure 6-2: Amount of time spent on various steps of the decomposed planning algorithm
for varying EO-1 scenario problem size.

extraction is equivalent to implicant generation time. The current implementation com-

putes all possible implicant and chooses one. The time spent on subgoal extraction can

be reduced by computing one at a time instead of all at once. The growth in memory

usage is linear in number of components as expected.

To visualize the trend on time performance, the data is plotted as shown in Fig. 6-2.

As shown in Fig. 6-3, the time performance increases polynomially. This polynomial

growth is expected since for each addition of a component, the number of goals increase

by a constant factor. That is, a trajectory that achieves a goal will have a length that

is bounded by the maximum number of acyclic transitions feasible for the component,

and each step of a trajectory will add a constant number of subgoals. In effect, the time

performance grows linearly with the expected plan length. A polynomial time bound

in the number of decomposed component is a dramatic improvement over the worst

case polynomial time bound in the number of states, where in EO-1 scenario there are

1× 1022 states.

6.4 Approach & Innovation

We improve on the current approach to sequencing the engineering operations of a space-

craft or ground-based asset through the explicit use of verifiable models and state-of-the-

art goal-directed planning algorithms. We have developed a model-based decomposition
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Figure 6-3: Amount of time spent on various steps of the decomposed planning algorithm
for varying EO-1 scenario problem size. The data has been linearized by comparing time
against the square of the number of components.

planner that generates an executable sequence, based on the behavior specifications of

the components of a system. We leverage lessons learned from current operations of

systems like MER and the DSN Monitor & Control (M&C) system, in the hope of sig-

nificantly improving the operations efficiency of future JPL missions, reduce costs and

increase the likelihood of mission success.

Based on the specifications of the system behavior, the decomposed planner produces

sequences of engineering operations that achieve mission objectives specified by the

operator. More specifically:

1. We specify the model of system behavior as concurrent, constraint automata

(CCA) that provide the expressiveness necessary to model the behavior of the

system components and their interactions.

2. We describe the mission objective as a desired evolution of goal states called

qualitative state plan (QSP), explicitly capturing the intent of the operators,

rather than implicitly capturing it in a sequence of commands and procedures

that achieve the desired goals.

3. We use a “divide-and-conquer” approach, in which an offline reasoning algorithm

is used to determine the proper decomposition of the problem and the ordering



90

by which the decomposed problems should be solved.

4. We use the decomposed problem to solve a planning problem online. The use

of precomputed decomposition reduces, and possiblly eliminates, search during

the online planning step. Inherent to the decomposed planning, the plan gener-

ated, called qualitative control plan (QCP), is partially-ordered. QCP provides

additional flexibility and robustness in comparison to totally-ordered plans.

6.4.1 The Importance of Formal Model Specification

The conventional approaches to systems and software engineering inadvertently create

a fundamental gap between the requirements on software specified by systems engineers

and the implementation of these requirements by software engineers. Software engineers

must perform the translation of requirements into software code, hoping to accurately

capture the systems engineer’s understanding of the system behavior, which is not

always explicitly specified. This gap opens up the possibility for misinterpretation of

the systems engineer’s intent, potentially leading to software errors.

Unlike other planning and sequencing systems, our approach directly exploits en-

gineering models of system component behavior to compose the plan. Specifying the

system and software requirements as a formally verifiable specification called concur-

rent, constraint automaton (CCA) allow the system behavior specification to be directly

used to automatically generate sequences. The state constraints of CCA are used to

specify the behavior of the states of each component and the interconnection constraints

are used to specify the interactions of the components. The transitions and transition

guards specify the dynamics of the components.

6.4.2 Capturing Operator’s Intent through Goal-directed Plan

The ability to explicitly capture the intent of the operators, rather than implicitly

capturing it in a sequence of commands and procedures that achieve the desired goals,

is crucial for sequence verification. To enable verifiability of automatically generated

sequences, the model-based temporal planner assures that each sequence can be traced
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directly to the mission objective and/or operator’s intent. Generally, mission objective

and operator intent can be described explicitly as an evolution of goal-states. Thus,

for model-based planning, the mission objective and operator’s intent is described as

a desired evolution of goal states called QSP. Then, the decomposed planner uses a

goal-directed planning method to elaborate each goal into a sequence, while explicitly

associating each sequence to a goal state, that is the intent of the operator and mission

objectives.

6.4.3 The Decomposition Approach

The “divide-and-conquer” approach that leverages the structure of the component in-

teractions to simplify the planning problem ensures the tractability of planning, even

during time-critical situations. This approach is innovative in that it unifies the ex-

isting decomposition techniques used in reactive planning and constraint satisfaction

problems. The causal graph decomposition used in reactive planning enables the de-

composed planner to determine the proper goal ordering. Using the topological ordering

of a causal graph decomposition allows the decomposed planner reduce, and possibly

eliminate, the search branching on feasible goal orderings. The causal graph decompo-

sition effectively allows the goals in QSP to be divided and ordered into a set of goals

that can be solved sequential without the need to backup to try a new ordering.

An additional search required is in determining the subgoals required for a trajectory

chosen to achieve a goal. With no indirect-effects of the state constraints and intercon-

nection constraints, the subgoals are simply the transition guards of the transition.

With indirect-effects, however, we must identify how the chosen trajectory could affect

components through state and interconnection constraints. Solving for all indirect ef-

fects of a trajectory requires a search through the state and interconnection constraints.

Nevertheless, we are able to eliminate the search for the require indirect effects through

the use of constraint graph decomposition. Constraint graph decomposition decomposes

the state and interconnection constraints such that only the portion that is pertinent

to the trajectory chosen is solved without the need for a search.
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6.5 Future Work

In this thesis, we developed a planning capability to address the real world problem of

controlling devices, but limited to the expressivity of time and state constraints. In this

section we describe a way to extend the work to address the stochastic nature of the

real world. We also describe a way to distribute the processing to enable distributed

planning.

6.5.1 Decision Theoretic Planning with the Decomposed Planner

While many highly reliable devices can be viewed as deterministic systems, for unreli-

able devices, we must model them as stochastic devices. Stochasticity of a system can

be modeled as a CCA by introducing nominal and failure state as well as probabilistic

transition. With probabilities on transitions, however, the trajectories computed by

the decomposed planner is also probabilistic. Thus, we can compute the probability of

the QCP generated by the decomposed planner. Furthermore, the decomposed planner

can choose a trajectory that is more likely, or, with a utility function, choose a trajec-

tory that has higher expected utility. This implies that we can introduce an optimal

search method, such as branch and bound or optimal A* search techniques, so that the

decomposed planner generates a QCP with the highest utility.

Furthermore, the decomposed planner can compute the locations of a QCP that

are most likely to fail. For the points of high failure probability, we could compute

contingent plans that address the possibility of a failure. As such, the decomposed

planner could be extended to solve a decision theoretic planning problem as well as

contingent planning problem.

6.5.2 Distributed Planning with the Decomposed Planner

There are two reasons for distribution of planning. One of the reasons why one may

desire a distributed planning is to modularize the system. One may wish to develop a

simple micro processor that is capable of planning for only one device. Such device along

with the microprocessor and planning software may be flight qualified separately from
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other devices. In such cases, a device of a system may be replaced with another device

without the need to flight qualify a new centralized planning software that is capable

of supporting the new device. Instead, if the device, micro processor and the planner is

self contained, the flight qualification and verification process could be simplified.

As described in the decomposed planner planning algorithm, the trajectory is com-

puted individually for each component, without the need for the information of other

components. This allows us to distribute the trajectory computational portion of the

algorithm to each of the components. Once trajectory computation is distributed, each

component simply needs to pass the required subgoals to the corresponding components

of the subgoals. One difficulty in distributing the planning process, however, is in main-

taining a consistent knowledge of the temporal constraints of the plan. This must be

addressed by communicating the timing bound of the individual component’s plans as

the plan is generated. This should be similar to the distributed temporal consistency

methods used in distributed execution of temporal plans [1].





Bibliography

[1] Stephen A. Block and Brian C. Williams. Robust execution of contingent, tempo-

rally flexible plans. In Proceedings of the AAAI Workshop on Cognitive Robotics,

pages 25–32, Boston, MA, July 2006.

[2] Tom Bylander. Complexity results for planning. In Proceedings of the Twlefth

International Joint Conference on Artificial Intelligence (IJCAI-91), volume 1,

pages 274–279, Sydney, Australia, August 24–30 1991.

[3] Seung H. Chung. A decomposed symbolic approach to reactive planning. Master’s

thesis, Massachusetts Institute of Technology, June 2003.

[4] Adnan Darwiche. A compiler for deterministic, decomposable negation normal

form. In Proceedings of the Eighteenth National Conference on Artificial Intelli-

gence, pages 627–634, Edmonton, Alberta, Canada, July 28–August 1 2002.

[5] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artificial

Intelligence, 49(1):61–95, September 1991.

[6] Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial

Inteligence, 38(3):353–366, April 1989.

[7] Paul H. Elliott. An efficient projected minimal conflict generator for projected

prime implicate and implicant generation. Master’s thesis, Massachusetts Institute

of Technology, Cambridge, MA, February 2004.

[8] Kutluhan Erol and Dana S. Nau V. S. Subrahmanian. Complexity, decidability

and undecidability results for domain-independent planning. Artificial Intelligence,

76(1–2):75–88, July 1995.

95



96

[9] Debora Field and Allan Ramsay. Planning ramifications: When ramifications are

the norm, not the problem. In Proceedings of the Eleventh International Workshop

on Non-Monotonic Reasoning (NMR’06), pages 343–351, Lake District, England,

May 30–June 1 2006.

[10] Hector Geffner. Causality, constraints and the indirect effects of actions. In Pro-

ceedings of the Fifteenth International Joint Conference on Artificial Intelligence

(IJCAI-97), volume 1, pages 555–561, Nagoya, Japan, August 23–29 1997.

[11] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning Theory and

Practice. Morgan Kaufmann Publishers, San Francisco, California, 2004.

[12] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions

and tractable queries. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems (PODS), pages 21–32,

Pittsburgh, Pennsylvania, May 31–June 2 1999. ACM Press.

[13] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural

CSP decomposition methods. Artificial Inteliigence, 124(2):243–282, December

2000.

[14] Andreas G. Hofmann. Robust Execution of Bipedal Walking Tasks From Biome-

chanical Principles. PhD thesis, Massachusetts Institute of Technology, January

2006.

[15] I hsiang Shu. Enabling fast flexible planning through incremental temporal rea-

soning. Master’s thesis, Massachusetts Institute of Technology, Cambridge, Mas-

sachusetts, September 2003.

[16] Richard E. Korf. Planning as search: A quantitative approach. Artificial Intelli-

gence, 33(1):65–68, September 1987.



97
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