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Abstract

Research on autonomous intelligent systems has focused on how robots can robustly carry
out missions in uncertain and harsh environments with very little or no human intervention.
Robotic execution languages such as RAPs, ESL, and TDL improve robustness by manag-
ing functionally redundant procedures for achieving goals. The model-based programming
approach extends this by guaranteeing correctness of execution through pre-planning of
non-deterministic timed threads of activities. Executing model-based programs effectively
on distributed autonomous platforms requires distributing this pre-planning process. This
thesis presents a distributed planner for model-based programs whose planning and ex-
ecution is distributed among agents with widely varying levels of processor power and
memory resources. We make two key contributions. First, wereformulatea model-based
program, which describes cooperative activities, into ahierarchical dynamic simple tem-
poral network. This enables efficient distributed coordination of robots and supports de-
ployment on heterogeneous robots. Second, we introduce a distributed temporal planner,
called DTP, which solves hierarchical dynamic simple temporal networks with the assis-
tance of the distributed Bellman-Ford shortest path algorithm. The implementation of DTP
has been demonstrated successfully on a wide range of randomly generated examples and
on a pursuer-evader challenge problem in simulation.

Thesis Supervisor: Brian C. Williams
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Chapter 1

Introduction

1.1 Motivation

Research on autonomous intelligent systems has focused on how robots can carry out mis-

sions with very little or no human intervention. This research area is receiving significant

attention due to recent mission successes, such as Deep Space One and Mars Pathfinder.

Autonomous robotics offers many benefits, particularly in dangerous environments, where

human lives would be jeopardized, and in remote places, either unreachable by humans or

where communication delays render remote controlled robot missions unfeasible. Exam-

ples include planetary rover missions, unmanned combat aerial vehicles (UCAV) in hostile

environments, and search and rescue missions in emergency areas. Additionally, intelligent

sensor networks that perform a variety of measurements can aid robots in the above scenar-

ios. These robots must be able to autonomously plan cooperative activities, execute these

activities, monitor execution, discover execution failures, and replan quickly with minimal

interruption. Moreover, many of these missions are time-critical, demanding systems that

react in real-time.

Distributing these autonomous robots within intelligent embedded networks of tiny pro-

cessors raises a range of issues, such as how to efficiently and robustly coordinate activities

in a distributed fashion while requiring minimum power, memory and communication.

Robotic execution languages, such as RAPs [13], ESL [14], and TDL [34], have been used

to coordinate activities on robots and to improve robustness by choosing between function-
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ally redundant methods for achieving goals. These languages support complex procedural

constructs, including concurrent activities and actions with specified durations.

Allowing an executive, which dispatches robot commands, to choose among function-

ally redundant methods on-the-fly may introduce a temporal inconsistency that renders the

selected methods un-executable [8]. For example, imagine two robots grabbing and lift-

ing an object in collaboration. Each robot is allowed to select among a set of functionally

redundant methods of slightly varying duration to achieve their goals. The constraint is

imposed that they stop lifting the object simultaneously. Given this constraint, methods

must be selected that allow the robots to stop the activities simultaneously, otherwise the

execution of the activities fails. The model-based programming approach [36] guarantees

correctness of execution bypre-planningtemporally flexible threads of activities immedi-

ately before execution. In the pre-planning process, a series of methods are selected that

are confirmed to satisfy temporal consistency. For example, in the example with the two

robots, the model-based approach will search for methods to be executed by the robots

that when combined allow the activities to be stopped simultaneously. In [18], selection is

made efficient by framing the problem as a search through a temporal graph called a Tem-

poral Plan Network, which encodes all possible executions, and the distributed temporal

planning algorithm presented in this thesis builds upon this idea among others.

1.2 Problem Statement

While past research has concentrated largely on robots with a centralized executive on

board, current research has identified many benefits fromdistributedrobotic systems. One

example is a spacecraft mission, such as NASA’s Starlight or Terrestrial Planet Finder,

which uses multiple spacecraft to form a distributed interferometer for imaging planets

around other stars. Another example is NASA’s Spacecraft Mobile Robot (SMR)1, mi-

cro satellites for inside the International Space Station, which include features like video

conferencing, measurement and repair. Distributed systems are inherently more complex

than single systems, introducing new challenges such as synchronizing the distributed set

1SMR/Person Satellite Assistant website: http://ic.arc.nasa.gov/projects/psa/
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of processors and providing communication.

Executing model-based programs effectively on distributed platforms requires distribut-

ing the pre-planning process. Centralized solutions introduce a single point of failure, do

not scale well, and face the problem of high degrees of communication network conges-

tion. Furthermore, centralized solutions often require substantial computational resources

and cannot be deployed on robots with limited capabilities.

This thesis presents adistributed temporal plannercalled DTP that performs the pre-

planning phase of model-based program execution. DTP enables robust coordination of

activities between heterogeneous multi-agent systems, such as those described above. Fur-

thermore, this thesis introducesHierarchical Dynamic Simple Temporal Networks(HD-

STN) and distributed HDSTNs(DHDSTN)as abstractions of centralized and distributed

model-based program execution, respectively.

Hierarchical Dynamic Simple Temporal Networksextend Simple Temporal Networks

(STN) [8] that have been widely used within planning and execution research, because they

provide an efficient way of modeling and analyzing temporal constraints among concurrent

and sequential actions, while allowing temporal uncertainty to be expressed in terms of in-

terval bounds. HDSTNs extend Simple Temporal Networks by using dynamic variables

to allow choices among simple temporal constraints. The choices are between function-

ally redundant methods [24]. Additionally, distributed HDSTNs provide a formalism for

distributed pre-planning and execution across robots with varying computational resources.

To perform fast pre-planning, DTP uses a hierarchical form of distributed dynamic

variable assignment to generate candidate plans, and uses the distributed Bellman-Ford

shortest path algorithm to check for schedulability. Technically, the two most significant

contributions of DTP are 1) a distributed algorithm for the pre-planning component of

model-based program execution and 2) the ability to operate on heterogeneous robots, from

computationally impoverished tiny embedded processors within sensor networks to much

more capable processors inside rovers and satellites.

The contribution of distributed pre-planning is two-fold: First, DTP performs paral-

lel graph search on DHDSTNs when possible. Recall that DHDSTNs are abstractions of

model-based program execution. Model-based programs are inherently hierarchical and
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Figure 1-1: Model-based Distributed Executive Architecture

support complex parallel and sequential expressions of methods and primitive commands.

DTP exploits the hierarchical property of model-based programs to achieve parallel dis-

tributed processing while synchronizing the distributed computation using only local inter-

actions between robots. Second, DTP runs multiple isolated instances of the Bellman-Ford

consistency check algorithm simultaneously. Bellman-Ford has the advantage of linear

complexity and the need for only local coordination. Distributed Bellman-Ford is typically

ran on the complete graph. DTP exploits the fact that DHDSTNS are hierarchical, enabling

several Bellman-Ford consistency tests to be run simultaneously in a DHDSTN at different

levels within the DHDSTN hierarchy.

In addition to parallel processing, DTP also effectively distributes and synchronizes the

pre-planning process among robots with varying levels of processor power. Distribution is

performed by first grouping processors in hierarchies, then dividing DHDSTNs into sub-

networks of varying size and finally mapping sub-networks into groups of processors.

The pre-planning process is one of three interacting components of a distributed model-

based executive (Figure 1-1). The pre-planner selects from among alternative methods to

18



Figure 1-2: Pursuer-evader scenario (Source: DARPA/NEST and UC Berkeley)

produce threads of execution that satisfy all temporal constraints. This thesis focuses solely

on the Pre-planning component. The Plan Runner executes these threads while scheduling

activity execution times dynamically in order to adapt to execution uncertainties. Execution

monitoring and failure diagnosis is performed by Mode Estimation, and involves monitor-

ing state trajectories over time by searching for likely state transitions, given observations.

1.3 The Pursuer-evader Scenario

As an example, consider a problem in which a set of rovers in a field are pursuing a robot

that is attempting to evade them. The pursuer rovers are assisted by helicopters that use vi-

sual tracking, and a wireless sensor network, which is distributed on the ground of the field.

The scenario is depicted in Figure 1-2. In the particular scenario of this thesis we assume

that the pursuer team consists of two rovers (Rover1, Rover2), one helicopter (Helicopter)

and a group of sensors (SensorGroup). The helicopter’s visual tracking of the evader is a

computationally expensive process and takes longer than when the wireless sensor network

performs sensing action, such as sensing light, sound or electromagnetic EM fields. The

two rovers have different capabilities. Both rovers can analyze the feedback transmitted

by the helicopter or the sensor network and can generate a path that it traverses. Rover1

can move faster than Rover2; however Rover1 is slower at computing a path. Moreover,

Rover1 has the choice of generating a simple path or a detailed path. The latter offers more

detailed driving information and makes it easier to traverse a path. The disadvantage is

19



that it takes longer to compute the detailed path. Rover2 is only capable of computing and

traversing a simple path.

Suppose that at a certain point in time, this heterogeneous set of pursuer robots must

execute a strategy to get to the position of the evader. Our example strategy for the pursuer-

evader problem is to first perform tracking, using either the helicopter or the sensor network

for a user specified period of time. Next the rovers receive the tracking information. Third,

either Rover1 or Rover2 must compute a path to the evader given the tracking information,

and finally, one must traverse the path to get to the evader position. The strategy includes

choices between functionally redundant methods with varying duration for achieving the

goal of moving a rover to the evader position.

Applying DTP to this strategy, DTP first distributes the scenario’s tasks among the

robots by employing leader election and group formation algorithms to the robots. DTP

then selects temporally consistent methods for execution in a distributed fashion by choos-

ing among functionally redundant methods, performing this selection systematically and

in parallel. One combination of temporally consistent methods found is to perform sensor

tracking first, and then to let Rover1 generate a simple path to the evader and to traverse

that path.

To summarize, the research presented in this thesis makes the following contributions:

1) a reformulation of model-based programs into HDSTNs, enabling efficient distribution

and pre-planning, 2) a method for distributing model-based programs among heteroge-

neous robots, 3) a distributed temporal pre-planning algorithm that ensures safe execution,

and 4) the processing of model-based programs on heterogeneous robots including those

that are severely constrained with respect to computational resources. The research builds

upon previous work on model-based programming [18], simple temporal networks [8],

dynamic CSPs [24] and distributed CSP algorithms [23].

1.4 Thesis Layout

The remainder of the thesis is organized as follows. Chapter 2 gives background on pre-

vious research related to this thesis. Chapter 3 introduces the TinyRMPL robot execution
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language. Chapter 4 defines HDSTN, illustrates how TinyRMPL is reformulated as an HD-

STN, and develops an algorithm for solving HDSTNs in a centralized fashion. Chapter 5

first introduces distributed HDSTNs (DHDSTNs) and explains how they are used to enable

distributed processing. It then describes a more advanced method for distributing process-

ing within ad-hoc networks. Chapter 6 describes how to solve DHDSTNs in a distributed

fashion and the distributed temporal planner DTP. The final chapter, Chapter 7, concludes

with a description of the implementation, experimental results, a summary of the research

presented, and suggestions for future work.
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Chapter 2

Background

2.1 Overview

The research presented in this thesis is based on research in several areas: robotic exe-

cution languages and model-based programming, distributed planning techniques, simple

temporal networks, dynamic constraint satisfaction problems, and distributed constraint

satisfaction algorithms. This background chapter briefly summarizes relevant components

of the above mentioned research areas.

2.2 Robotic Execution and Model-based Programming

2.2.1 Robotic Execution Languages

When robots perform cooperative activities in harsh, uncertain environments, such as search

and rescue missions, robust planning and execution are key. Actions will sometimes fail

to produce their desired effects and unexpected events will sometimes demand that robots

shift their attention from one task to another; hence, plans must be structured to cope ef-

fectively with the unpredictable events that occur during execution.

Robotic execution languages address the above challenges by providing reactive plan-

ning in the execution cycle to cope with unexpected events and achieve plan goals. The

languages typically support complex procedural constructs, including concurrent activities
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and actions with specified durations. They improve robustness by choosing between func-

tionally redundant methods for achieving goals and by reacting to unpredicted events in

uncertain environments. In the following we briefly describe three important robotic exe-

cution languages, RAPS [13], ESL [14], and TDL [34], which have influenced the design

of the reactive model-based programming language, described in Section 2.2.2.

The RAP system by James Firby [13] is an executive that provides reactive hierarchi-

cal task decomposition planning. A robot in a realistic environment cannot expect pre-

compiled plans to succeed due to undesired changes and unexpected events in the environ-

ment. Planning involves the ordering of primitive actions that will achieve a goal. Reactive

planning is situation-driven, meaning that the state of the world determines the order of

actions chosen. Furthermore, for reactive planning, actions are not selected in advance but

are chosen opportunistically as execution takes place, hence, there is no need for explicit

replanning on failures. A RAP is areactive action package, which is a program-like repre-

sentation of an action that can be taken in the environment. A RAP consists of the goal or

sub-goal it will achieve and a variety of methods that can be attempted in order to achieve

the goal. As in the real world, there is often a multitude of ways to achieve a goal. A

RAP, when executed, may call on other RAPs until the task is decomposed to primitive

skills. At the same time, the system monitors its own execution as well as changes in the

environment.

Note that the reactive action packages (RAPs) are selected during execution. Since

the RAPs have fixed durations and the execution cycle selects one RAP command to be

executed at a time, unsafe execution is unlikely to occur. In the contrary, model-based pro-

grams, as described below, allow lower and upper bounds on durations of actions. How-

ever, choosing arbitrarily among functionally redundant methods with flexible durations

can cause unsafe execution. The pre-planner is different from the execution cycle of RAPS,

because the pre-planner, before execution, selects methods that are temporally consistent

and can be safely executed.

Several other languages and planning and execution systems are based on or influenced

by the RAPS system. One of them isExecution Support Language(ESL) [14]. ESL is a

language used within the Deep Space 1 remote agent for encoding execution knowledge.
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ESL is a language extension to Lisp, containing common features of the RAPS system.

Relative to RAPS, ESL aims for a ”more utilitarian point in the design space” (E.Gat [14]).

ESL consists of several independent sets of features, including constructs for contingency

handling, task management, goal achievement, and logical database management that all

can be composed in arbitrary ways.

The robotic execution languageTask Description Language, TDL (Simmons [34]), is

an extension of C++ that includes syntax to support task-level control, such as task de-

composition, task synchronization, execution monitoring and exception handling. TDL is

a layer on top of the Task Control Architecture (TCA) [20], a general-purpose architec-

ture to support distributed planning, execution, error recovery, and task management for

autonomous systems. TDL is ideally suited for event-driven architectures, in which events

occur asynchronously during real-world situations, such as in robotics or satellite systems.

Recently, TDL has been generalized to a distributed version called MTDL for Multi-TDL1.

2.2.2 Model-based Programming

Robot missions are becoming increasingly more complex. Programmers make common-

sense mistakes when designing and implementing missions and control software, such as

planners and executives. Examples of mistakes are designing activities that cannot be

scheduled correctly, or reasoning about hidden states, i.e., plant states that are not directly

observable or controllable. The objective of model-based programming is to provide em-

bedded languages that think from common-sense models in order to robustly estimate,

plan, schedule, command, monitor, diagnose, and repair collections of robotic explorers.

The embedded languages help programmers avoid common programming mistakes by rea-

soning about hidden states automatically.

TheReactive Model-based Programming Language(RMPL) [36] is a high-level object-

oriented embedded language used to describe models of reactive systems. The models

specify the behaviors of a system in terms of its nominal behavior and also its possible

actions and their effects on the system. RMPL serves several purposes at both the planning

level and execution level of a multi-layered architecture, as described below.

1For more information see http://www-2.cs.cmu.edu/˜tdl/
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The RMPL language provides expressions for timing of actions, full concurrency, pre-

emption (when-donext), conditional execution (if-thennext), maintenance conditions (do-

watching), and constraint assertion usingaskandtell constraints for forward and backward

chaining and threat-resolution [33]. At the execution level, RMPL is used to describe both

probabilistic plant models, such as hardware component interaction, and control programs.

The control program specifies the desired state trajectory to achieve state goals, and the

plant model is used to deduce a command sequence that tracks this trajectory. The model-

based executive executes command sequences, while monitoring states, diagnosing faults

and reactively planning new commands to achieve state goals by reasoning about hidden

states automatically. At the planning level, RMPL is designed to describe complex strate-

gies for robot teams, including temporal coordination and functionally redundant threads

of execution with lower and upper time bounds on actions.

RMPL inherits features from RAP, ESL and TDL. The model-based executive shares

key features with the RAPS system, by supporting pre-conditions, control programs, and

effects when reactively planning and executing commands to achieve state goals. RMPL

also supports the rich set of expressions found in ESL and TDL. For example, contingency

handling in ESL is handled by RMPL’s preemption constructs with the hidden state diag-

nosis. ESL’s and TDL’s task management capabilities, such as spawning new concurrent

tasks and setting up task networks, are handled by RMPL’s parallel composition and pre-

emption constructs. Synchronization features, such as handling events and signaling, are

supported by RMPL as long as the events can be represented as changes to system states.

RMPL also has full support of time-keeping, both at the executive layer and at the planner

layer.

Figure 2-1 shows an RMPL program at the planning level that describes the down-

load activity of data from a satellite to a ground station. The satellite is either in position

A or B and has two antennas A and B used for transmission. If, for example, the satel-

lite is in position A and is using antenna B, the satellite must rotate to position B first.

After the satellite is reoriented to a correct position, it must wait for a communication

window to open in order to transmit data, and the communication window must be open

during the entire transmission of data. Theantennaandposare internal state variables, and
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(downlink ()
(sequence

(choose_orientation []
(choose

;; two cases where reorientation is necessary
(if-thennext (AND (antenna = omniA) (pos = posB))

(move_to_A (reorient_sc_to_A()) [5,10])
)
(if-thennext (AND (antenna = omniB) (pos = posA))

(move_to_B (reorient_sc_to_B()) [5,10])
)

)
)
;; When packet is ready and a comm window is open send packet
( when-donext (comm = window_ok) ;;wait till window is open

(do-watching (NOT(comm = window_ok)) ;;download data
((download_data_block()) [3,5])

)
)

)
)

Figure 2-1: RMPL data downlink program.

commis an external state variable that tells when the communication window is open. The

RMPL interpreter performs temporal planning at the planning level by selecting methods

that achieve temporal consistency and by performing threat-resolution and backward and

forward chaining. For example, in Figure 2-1, the temporal planner (RMPL interpreter)

ensures that the spacecraft is reoriented to the correct position and that the data is down-

loaded when the communication window is open while satisfying the temporal constraints

on the activities.

The distributed temporal planner presented in this thesis uses a subset of RMPL to de-

scribe complex cooperative activities for heterogeneous robots. The reasons for using a

subset of RMPL are to enable pre-planning and execution operations in highly distributed

contexts and to enable deployment on severely computationally constrained robots by re-

ducing the most computationally extensive tasks, as detailed in Chapter 3.

2.3 Distributed Planning

Executing model-based programs effectively on distributed autonomous platforms requires

distributing the pre-planning process, which guarantees correctness of execution through

pre-processing of non-deterministic timed threads of activities. Furthermore, the high de-
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mand of processing power and memory for centralized planners is a problem that arises

when deploying planning systems in resource-constrained robots. In most cases, it is sim-

ply not possible to deploy existing centralized systems, because the systems require orders

of magnitude more memory than available. In order for a planning and execution system

to be deployable and still exploit the resources of a particular robot, the system must be

designed to solve problems with largely varying complexities. The pre-planner and its un-

derlying distributed data structures presented in this thesis are designed to be robust yet

deployable on robots with varying computational resources. This thesis focuses on pre-

planning to enable safe executions of programs. Constraints of time and space prevent

focus on handling physical failures, such as communication failures or processor unrelia-

bility.

Several surveys present distributed planning; for example, [9] gives a high level overview

of distributed planning and presents many references. In general, there currently is a large

variety of distributed planning and execution systems that serve different purposes, such as

Robocup rescue simulation [19], Robotic Soccer [31], and planetary exploration with co-

operative rovers (ASPEN/CASPER) [12]. Planning and execution modules are most often

coupled in a multi-layered architecture. However, a majority of distributed systems per-

form centralized planning or partial centralized planning, and distributed execution, such

as ASPEN/CASPER and Robotic Soccer. The architecture of many distributed planners

is often based on hierarchical task networks [33]. The ideas on distributed hierarchical

planning were founded in the 1970s by, Corkill [5] among others.

Distributed planning and execution systems are often tailored to solve specific tasks.

Examples are the distributed cooperative robotic system ASPEN and CASPER [12] and

similar systems, such as Multi-Rover Integrated Science Understanding System (MISUS)

[11], and CAMPOUT [29]. These systems are tailored to coordinate multiple rover behav-

ior for science missions. They perform centralized high level planning and centralized data

analysis, but distribute lower level science goals to individual rovers. One disadvantage

of systems, such as ASPEN and CASPER is that they require substantial computational

resources and cannot be deployed on small robots, such as tiny rovers or robotic spiders.

The objective of the distributed temporal planner (DTP) presented in this thesis differs
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from the other designs of distributed planning and execution systems. The purpose of

DTP is to provide safe distributed coordination of activities on heterogeneous robots, while

supporting deployment of the planner in robots that are severely limited with respect to

computational resources. Furthermore, DTP does not require centralized coordination at

any level.

2.4 Simple Temporal Networks

Temporal constraints are used to describe requirements concerning the times of different

events, where an event is defined as something that occurs at a single point in time. For

example, the activitydriving to the shopis not an event because it the occurs over an

interval of time, butstarting the driveandcompleting the driveare both events because

they correspond to instants of time. To specify a temporal constraint between two events,

binary constraints are used. For example, to express that the drive takes between 10 and

20 time units, the binary constraint [10,20] is introduced between thestarting the driveand

completing the drive, hence, the binary constraint determines the lower and upper bound

on the duration of the activitydriving to the shop.

A Temporal Constraint Network [8] is a formal framework for representing and rea-

soning about systems of temporal constraints. The description in this section concentrates

on Simple Temporal Networks (STN), a simple class of temporal constraint networks that

support binary constraints between pairs of time events, which enables polynomial time

algorithms to check if a temporal constraint system is consistent. STNs have been widely

used in planning systems for representing bounds on duration among threads of activities

[12, 31]. The model-based programs used by the pre-planner in this thesis use a hierarchi-

cal dynamic STN representation, based on STNs, to encode temporal information, and the

pre-planner uses a temporal consistency checking technique as a part of the pre-planning

process.

A Simple Temporal Network (STN) consists of nodes that represent time events and

directed edges with interval labels that represent binary temporal constraints over time

events. The binary temporal constraints are also known as simple temporal constraints. A
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Figure 2-2: a) A two-node STN, and b) the equivalent distance graph

simple temporal constraints, represented by an edge〈xi, xj, lb, ub〉 between nodesxi and

xj, says that the time eventxi must precede the time of eventxj by at leastlb time units

and at mostub time units. Figure 2-2a depicts a two-node STN with a single temporal

constraint.

Simple Temporal Networks have an equivalent graph representation calleddistance

graphs, which enable efficient temporal consistency checking using polynomial-time short-

est path algorithms. An STN, and hence, a distance graph is temporally consistent if there

exist times that can be assigned to each time event such that all temporal constraints are

satisfied.

A distance graphof an STN is an equivalent weighted directed graphG = (V, E). The

vertices inG correspond to the vertices (nodes) in the STN. An edge〈xi, xj, lb, ub〉 in the

STN induces two edges inE, where the first edge goes fromxi toxj with the weightub, and

the other goes fromxj to xi with the weight(−lb), such thatxi−xj ≤ −lb∧xj−xi ≤ ub;

see [8] for details. Figure 2-2b depicts a distance graph that corresponds to the two-node

STN with a single temporal constraint in Figure 2-2a.

Rina Dechter et. al. [8] prove that an STN istemporally consistentif its corresponding
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M
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Figure 2-3: Example of a negative weight cycle
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distance graph has no negative weight cycles. Figure 2-3 shows a network with a negative

weight cycle, in which time event K is exactly one time unit before time event M, and

M is one time unit before L, and L is one time unit before K, and hence, the network

is impossible to execute, in other words temporally inconsistent. Negative weight cycles

can be detected by any shortest path algorithm that allow negative weights, such as the

Bellman-Ford single source shortest path algorithm [6]. Checking for temporal consistency

is critical to the pre-planner, as described in Chapter 6. Since the pre-planner is distributed,

it uses a distributed shortest path algorithm to check for consistency, namely the distributed

Bellman-Ford algorithm.

2.5 Dynamic Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs) have been used widely, because they provide a

powerful and efficient framework for describing state space search problems. A CSP is

typically defined as the problem of finding a consistent assignment of values to a fixed set of

variables given some constraints over these variables. However, for many tasks, including

pre-planning, the set of variables that are relevant to a solution and must be assigned values

changes dynamically in response to decisions made during the course of problem solving.

Mittal and Falkenhainer provide a formulation of Dynamic Constraint Satisfaction Prob-

lems (Dynamic CSPs) in [24]. This formulation has been used widely, and the data struc-

ture for pre-planning presented in this thesis uses dynamic CSPs as well. In the dynamic

CSP formulation, two types of constraints are used.Compatibility constraintsare the con-

straints over the values of variables and correspond to those traditionally found in CSPs.

Activity constraintsdescribe conditions under which a variable may or may not be actively

considered as a part of a final solution. When a variable isactive, it must have an assigned

value and be included in the solution. By expressing the conditions under which variables

are and are not active, standard CSP methods can be extended to make inferences about

variable activity as well as their possible value assignments.

In [24] four types of activity constraints that are closely related to traditional constraints

are introduced. The most fundamental type of an activity constraint is therequire variable

31



activity constraint, which establishes a variable’s activity based on an assignments of values

to a set of active variables. For example,x = 5 ⇒ y, says that if the active variablex is

assigned the value5, theny becomes active. The data structure used for distributed pre-

planning presented in this thesis uses this fundamental type of activity constraint. The three

other types of activity constraints arealways require, require notandalways require not,

and are used to express other types of conditions in which variables activate or deactivate,

as described in further detail in [24].

Mittal and Falkenhainer implements the dynamic CSP framework as a specialized prob-

lem solver integrated with anassumption-based truth maintenance system (ATMS)[7].

Furthermore, they implement a subset of the dynamic CSP framework by extending a con-

ventional backtrack-search CSP algorithm [30]. This thesis presents a similar centralized

backtrack-search algorithm that solves a dynamic CSP combined with simple temporal

constraints for the pre-planning problem. The distributed pre-planner also presented in this

thesis uses a distributed graph-based search to solve the same problem.

2.6 Distributed Constraint Satisfaction Problems

The distributed temporal planner (DTP) presented in this thesis leverage distributed con-

straint satisfaction problems (distributed CSPs), because DTP utilizes dynamic constraint

satisfaction problems (dynamic CSPs) [24] in a distributed fashion. This section gives an

overview of distributed CSPs and distributed CSP algorithms.

2.6.1 Background

Yokoo et.al. [23] provides an extensive review of distributed CSP algorithms. This section

briefly describes the most common distributed CSP algorithms.

CSPs have been used to solve a large range of AI problems, such as planning, resource

allocation, and fault diagnosis. Distributed CSPs are useful when the problem to be solved

is inherently distributed. In many situations, researches have realized the benefits of refor-

mulating multi-agent systems with inter-agent constraints to distributed CSPs, and using

distributed CSP algorithms to solve the problems. A wide range of problems have been
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mapped to distributed CSPs. Examples are distributed resource allocation [25], distributed

scheduling [21], and distributed truth-maintenance systems [17]. Furthermore, Pragnesh

et.al. [26] describes an asynchronous complete method for general distributed constraint

optimization, which can be applied to several areas, including optimal distributed plan-

ning. Modi et.al.[25] have presented a mapping from distributed resource allocation to a

dynamic distributed constraint satisfaction problem (DDSCP) applied to large-scale sen-

sor networks for tracking moving targets [25]. The dynamic properties of the formulation

enable the constraint problem to change during run-time, which is essential when track-

ing a moving object within a sensor network field. Dynamic constraints distributed among

agents are continuously activated or deactivated at run-time according to sensor input from

the sensor network. To keep the DDCSP consistent, they use a distributed CSP algorithm

that runs in a loop, reacting to dynamic changes of the CSP. Although this solution is in-

spired the author of this thesis, there are a few fundamental differences: 1) the research in

this thesis (DTP) focuses on pre-planning prior to execution in contrast to the DDCSP sys-

tem, which focuses on resource allocation, 2) DTP focuses on coordination of temporally

flexible activities using an STN graph-representation, whereas the DDCSP system uses a

distributed CSP algorithm for solution extraction. Nevertheless, the DDCSP system has

some valuable properties that could be applied to distributed execution and monitoring.

2.6.2 The basic distributed CSP formulation

The basic distributed CSP formulation is defined as a set ofm agents (processors)p1 . . . pm,

where each processorpi has one variablexi with an associated domain. The constraints

among agents are binary, for example,x1 6= x2. It is assumed that every agentpi knows

about all the constraints which are related topi, and no global knowledge is assumed.

However, these assumptions can be relaxed. A distributed CSP is solved if all variables are

assigned and all constraints are satisfied.

Agents communicate with neighbors using messages when a neighbor has a shared

constraint. The basic assumption for a distributed CSP algorithm is that message delivery

is finite, though random, and that messages are received in the order in which they were
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sent. Underlying communication protocols are assumed to handle communication. The

communication protocols used depend on the type of the distributed network of processors.

Computers connected to the Internet typically use the TCP/IP protocol, and ad-hoc wireless

networks use adaptive routing algorithms. [32] provides an extensive review of routing pro-

tocols in wireless ad-hoc networks, and [28] presents a highly adaptive distributed routing

algorithm for mobile wireless networks.

2.6.3 Fundamental distributed CSP algorithms

Distributed CSP algorithms can be classified as backtracking, iterative improvement or

hybrid. Furthermore, distributed CSP algorithms can be divided into three groups. Algo-

rithms in the first group are used for problems with a single local variable per processor, the

second group supports multiple local variables, and the third group represents distributed

partial CSP, see [23] for details. In the following we briefly describe the properties of three

classes of algorithms in the single local variable group to give the reader a sense of the

properties of the algorithms and how they relate to the distributed pre-planning algorithm

presented in this thesis. In the following we assume the basic distributed CSP formulation

with the three properties: 1) every agents owns one variable, 2) all constraints are binary,

and 3) each agent knows all constraints relevant to its variable.

The first algorithm isasynchronous backtracking(AB), which is derived from central-

ized backtracking [30]. In AB, every agent maintains anagent view, which is an agent’s

current belief about variable assignments of other agents. Agents can send(ok?xj = dj)

messages to other agents to check if a particular assignment is consistent with agent views

of other agents, and they can sendnogoods(constraint)which specifies a new constraint

that contains violating assignments. Agents are ordered alphabetically using agent IDs,

and the order decides the priority of the variable assignments of agents. Lower prioritized

agents try to resolve conflicts first before higher prioritized agents resolve conflicts. The

AB algorithm is complete.

The main inefficiency of asynchronous backtracking is that agent and value ordering

is statically determined. This forces lower priority agents to perform an exhaustive search
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in order to revise bad decisions made by higher priority agents. Theasynchronous weak-

commitment(AW) search addresses this inefficiency by 1) introducing a minimum conflict

heuristic to reduce the risk of making bad decisions, and 2) enabling dynamic agent order-

ing. For a particular agent, the minimum conflict heuristic selects the assignment that will

minimize the number of violated constraints. The agents usepriority valuesto dynamically

change the order in which agents make assignments. If an agent cannot make a variable

assignment that is consistent with the agent view, the agent creates a nogood constraint and

increases its priority value to change its priority. The AW algorithm is complete.

The last algorithm,distributed breakout(DB), is based on the iterative repair method,

which starts with an initial, flawed solution and performs repairs in an iterative manner to

find a consistent solution. DB defines a weight variable for each constraint and uses an

evaluation function, the sum of weights of violating constraints, as a breakout mechanism

to escape local minima. Weights are increased when neighboring agents detect that they are

in a local minimum with respect to their value assignments, and the agent that can improve

the evaluation value the most, changes its value. The algorithm, however, is not complete.

The experimental results in [23] show that for a graph coloring problem withn agents

andm = 2n constraints, the asynchronous weak commitment search outperforms both

the asynchronous backtracking and distributed breakout algorithms. However, when the

number of constraints are increased tom = 2.7n, an interesting phase transition occurs,

and the distributed breakout algorithm starts to outperform the other algorithms. Several

other distributed CSP algorithms have been developed. Distributed CSP algorithms often

perform well on a particular problem, but do not generalize well [23].

While past research on distributed CSPs inspired the author, the distributed temporal

planning algorithm, presented in this thesis, takes a different graph-based search approach

to solve the distributed problem of pre-planning activities to ensure safe execution. The

main reason is that our representation of a model-based program is based on a hybrid of

simple temporal constraints (STC) [8] and dynamic CSPs [24]. Checking for consistency in

this context requires running a distributed shortest path algorithm on a graph that represents

the STCs, which prevents the pre-planning problem from being modeled as a classical

distributed CSP.
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Chapter 3

Model-based Programming for

Heterogeneous Robots

3.1 Overview

We introduce TinyRMPL (Tiny Reactive Model-based Programming Language), which is

used for robust multi-agent coordination and execution. To support deployment on pro-

cessors with very constrained computational resources, TinyRMPL uses a subset of the

features of RMPL (Chapter 2). This reduction of features relieves processors from compu-

tationally extensive tasks.

3.2 The TinyRMPL Language Specification

In TinyRMPL, robustness is accomplished by specifying multiple redundant methods to

achieve each task and temporally flexible metric time constraints on activities. Since the

flexible time constraints on methods vary, the pre-planner (Chapter 6) is able to select

methods that satisfy time constraints, thereby achieving robustness by not being dependent

on a single method with certain time constraints that always have to be satisfied.

While RMPL is designed to support a complex set of model-based features, such as

mode estimation, fault diagnosis and repair [36], the purpose of TinyRMPL is solely to

describe cooperative activities. It does not support types of constraints other than temporal
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constraints, and it does not support parameterless recursion. This simplification decreases

the workload and requirements of the processors, which is crucial when deployed on very

constrained processors. However, ongoing research will fold features of RMPL into the

distributed framework. The grammar of TinyRMPL is shown in Figure 3-1.

A ::= ((c[lb,ub])
| ((parallel (A) (A+)) [lb,ub])
| ((sequence (A) (A+)) [lb,ub])
| (choose (A) (A+))

c ::= target.action(parameter list)
target ::= single robot | robot team

Figure 3-1: TinyRMPL grammar.

The following sections explain the components of TinyRMPL in further detail.

3.2.1 Primitive Commands

A primitive commandc is defined asc = target.action(parameters), wheretarget is either

the name of a single robot or a team of robots defined by the executive. Theaction is

the command to be executed on the target, and the action has an argument list,parameter

list. The pre-planner does not interpret primitive commands. The commands are used for

distribution of tasks and for distributed execution.

For example,R.drive-to(50 70)describes the motion command for robot R to drive to

location(x, y) = (50, 70). Suppose instead that there exists a team called Team1, which

consists of three robots (R,S,T).Team1.drive-to(50 70)specifies that Team1 must drive to

that same location. When this command is dispatched, all three robots will drive to that

location. The pre-planner treats the Team.drive-to command as a single command, and the

executive interprets the command and ensures that the drive-to command is executed on all

members of the team.
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3.2.2 Simple Temporal Constraints

TinyRMPL is a timed language in which activities and structures of activities have temporal

constraints. TinyRMPL provides temporal constraints in the form of lower and upper time

bounds on actions and compositions of actions. Lower bound and upper bound (lb andub)

are specified as positive integers. The units of the temporal constraints are defined by the

dispatching algorithm, to which the TinyRMPL programmer must adhere. Iflb andub have

not been specified, which is the case for the abovedrive-toexamples, they are assumed to

be (lb, ub) = (0,∞), implying an unlimited upper bound on the duration. This unlimited

duration, however, can be restricted by other actions, as described below.

To specify a time constraint on the duration of, for example, activityR.drive-to(50 70)

with a lower bound of 20 time units and an upper bound of 30 time units, in TinyRMPL it

is specified asR.drive-to(50 70)[20,30].

The temporal constraints of commands are interpreted during the pre-planning phase

described in Chapter 6 to ensure consistency, but the semantics of primitive commands are

not interpreted in this phase.

3.2.3 Basic Combinators

TinyRMPL provides three combinators. The two combinators,sequentialandparallel, are

used to create hierarchical sets of concurrent actions. Thechoosecombinator is used to

select among multiple methods. These constructs can be combined recursively to describe

arbitrarily complex behaviors.

An example of TinyRMPL code illustrating the sequence combinator is listed below.

In this example, robot R must first drive to location W within 10 to 12 time units and then

immediately afterwards broadcast a message M within 1 to 2 time units.

(sequence

((R.drive-to(W)[10,20])

((R.transmit(M)[1,2])

)

Since the two actions are performed sequentially, the overall lower bound and upper bound
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on the above example arelb = lb(driveto) + lb(transmit) = 10 + 1 = 11 andub =

ub(driveto) + ub(transmit) = 20 + 2 = 22, respectively.

The choose combinator is used to model the selection of functionally redundant meth-

ods and can be used in various contexts. For example, if the TinyRMPL programmer wants

to specify that either robot R or S drives to location W, the corresponding code is:

(choose

((R.drive-to(W)[lb,ub])

((S.drive-to(W)[lb,ub])

)

Explicit specification oflb andub for parallel and sequential structures is optional and is

used to set absolute limits on the time of execution of the structures. For example, if two

rovers are driving simultaneously, but the programmer wants to specify an overall time

constraint on this activity, the TinyRMPL code is:

((parallel

((R.drive-to(W)[10,25])

((S.drive-to(Y)[10,25])

)[12,22])

Here the time constraints are [12,22], which will tighten the time bounds on the concur-

rent behavior, such that the lower bound is 12 and the upper bound is 22 and the rovers are

required to start and stop the driving activity simultaneously. They are not allowed to wait

for each other. In real life uncertain environments, however, there is a nearby 0 probability

that the two rovers actually reach their goals simultaneously, because driving activities have

uncontrollable durations. To model uncontrollability the rovers must wait for each other.

To accomplish this, the programmer turns the driving command into a sequence consisting

of first the driving command followed by a waiting command.

3.3 Scenario Encoded in TinyRMPL

The TinyRMPL program for the scenario outlined in the introduction is shown in Figure 3-

2. The first half of the program describes the tracking activities of the helicopter and sensor
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network, followed by communication of the tracking information between the helicopter,

sensor group and the rovers. The second half describes the path generation and path traver-

sal activities of the two rovers.

;; pursuer - evader strategy
(strategy [0,INF]

((sequence
;; perform evader tracking and communicate with rovers
(parallel

(choose
(sequence

((SensorGroup.sensor-tracking(LIGHT SOUND EM_FIELDS)) [5,6])
((SensorGroup.transmit-info(TO_ROVERS)) [1,2])

)
(sequence

((Helicopter1.vision-tracking(EVADER1)) [10,20])
((Helicopter1.transmit-info(TO_ROVERS)) [1,2])

)
)
;; wait and receive tracking information
((Rover1.wait-receive-info())[0,8])
((Rover2.wait-receive-info())[0,8])

)
;; move Rover1 or Rover2 to evader position
(choose

((sequence ; S1
(choose

((Rover1.compute-advanced-path())[30,40])
((Rover1.compute-simple-path())[10,15])

)
((Rover1.fast-path-traversal()) [10,20])

)[20,35])
(sequence

((Rover2.compute-simple-path())[5,10])
((Rover2.path-traversal()) [20,30])

)
)

)[0,40])
)

Figure 3-2: Pursuer-evader scenario represented in TinyRMPL.

The [0,40] at the end of thestrategyprocedure denotes tightening of the time bound of

execution time of the top-level procedure. The minimum and maximum duration is 0 and

40 time units, respectively. Not all combinations of parallel methods render a temporally

consistent execution. For example, as described in Chapter 4, an execution is unsafe when

two parallel threads of execution need to end at the same time, but the temporal constraints

imposed on the threads prevents the threads from ending simultaneously. Two parallel

threads can never end simultaneously, if the lower bound on the first thread is higher than

the upper bound on the other thread or vice versa.

For example, executingRover1.compute-advanced-pathis inconsistent with the sur-
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roundingsequence(S1 in Figure 3-2) of the command, since the lower time bound on action

Rover1.compute-advanced-pathlb = 30, is higher than the upper bound of the sequence,

ub = 20. Also, if the total lower bound of the tracking activity and a rover path traversal

activity was higher than 40 (the overall upper bound), it would yield an unsafe execution,

since the maximum allowed time is 40 time units. An example of a temporally consistent

execution is to first execute the sensor network tracking and thenRover1.compute-simple-

path, see Figure 3-2.

Before identifying a safe execution, we first map TinyRMPL programs to a data struc-

ture that the pre-planner can process. The following section presents a Hierarchical Dy-

namic Simple Temporal Network used as an abstraction of TinyRMPL program that is

sufficient for pre-planning.
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Chapter 4

Hierarchical Dynamic Simple Temporal

Networks

4.1 Overview

This thesis focuses on the process of selecting a safe execution of a TinyRMPL program

in a distributed fashion, prior to dispatching the plan for execution. For this purpose, we

map the TinyRMPL program into a data representation that satisfies the following crite-

ria: 1) supports efficient distribution of TinyRMPL, 2) supports parallel processing, and 3)

supports deployment on heterogeneous robots with varying computational resources. To

support deployment on robots with extremely limited computational resources, the robots

must make modest use of memory. The local knowledge per robot must be minimized

and the communication among robots must be minimized. These criteria are satisfied by

reframing the decision problem as a hierarchical dynamic simple temporal network (HD-

STN), which enables efficient distribution, parallel processing and solution extraction of a

TinyRMPL program. This chapter introduces HDSTNs, shows how HDSTNs are mapped

from TinyRMPL, and how they are solved with a centralized algorithm. Chapter 5 de-

scribes how HDSTNs are distributed among a set of processors, and Chapter 6 details a

solution to distributed HDSTN problems.
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4.2 An Introduction to HDSTNs

HDSTNs extend STNs [8] with two key properties: they arehierarchical anddynamic.

The hierarchy is inherited from TinyRMPL and itsparallel andchoosecombinators. The

hierarchical property of an HDSTN enables key features of the distributed temporal plan-

ner, introduced in Chapter 6 : efficient parallel search and parallel consistency checks.

In HDSTNs,dynamicvariables are used to encode choices among alternative threads of

execution, while constraints are restricted to simple temporal constraints and activity con-

straints.
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Figure 4-1: An HDSTN with parallel threads and a choice of methods.

Figure 4-1 shows an HDSTN with parallel activities and a choice between two methods.

The nodes represent time events. A solid edge constraint labeled [lb,ub] denotes a simple

temporal constraint. Edges annotated with commands, such asA, correspond to the execu-

tion of TinyRMPL commands, where the arrows show the forward direction of execution in

time. Note that commands are not interpreted during pre-planning and, hence, are not a part

of the formal definition of an HDSTN, introduced below. Nodes 1 and 10 are the start and

end events, respectively, and also denote the start and end of parallel threads of commands.

The gray solid node,2, denotes a time event with an associated dynamic variable and two

associated choices (5 and 7). A choice is graphically represented as dotted edges, one of

which must be chosen. In this case either node 5 or 7 must be chosen. Commands have

non-zero duration. For example, command A is represented by the edge between nodes 5

and 6, with a lower and upper bound of 2 and 4 time units, respectively.

Definition 4.1 AnHDSTN is a 5-tupleN = 〈V, E, δ, s, e〉. V denotes time event variables

partitioned into three mutually disjoint finite sets,Vsimple, Vdecision, andVparallel. Vsimple
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denotes simple time events for actions.Vdecision denotes time events that form the start

and end of decision threads, andVparallel denotes the same for parallel threads. The

edge set E contains 4-tuples〈xi, xj, lb, ub〉. An edge〈xi, xj, lb, ub〉 represents a sim-

ple temporal constraint on the values for time eventsxi and xj such thatxi − xj ≤

−lb∧ xj − xi ≤ ub. This is a lower and upper bound(lb, ub) on the temporal distance be-

tweenxi andxj, wherelb andub are positive integers. The dynamic variable setδ contains

4-tuples〈x, δx, initial?, Domx〉. For every decision time event, with time event variable

x ∈ Vdecision, there is an element inδ, 〈x, δx, initial?, Domx〉, whereδx is a dynamic vari-

able at time eventx, andDomx is the set of target time event variables of which one must

be chosen. The time eventss ande represent the start and end events ofN , respectively.

The following section describes the properties of an HDSTN in further detail. By con-

vention, time event variables are named by integers. Dynamic variables are namedδi and

are attached to time event variablesi, i = 0 . . . |Vdecision|. A dynamic variable can be la-

beled active or inactive as determined by anactivity constraint. Only active variables are

assigned values during pre-planning. They denote the solution of an HDSTN, which is an

STN, as defined below. The values of time event variablesV of an HDSTN are assigned

during execution. Dynamic variables with theinitial? flag set to true are by definition

always active. For example, if an HDSTN solely consists of a choice between action A or

B, the initial flag of the corresponding dynamic variable is true, because the decision is not

dependent on other decisions - in all cases the decision must be made.

HDSTN networks are designed to be created from TinyRMPL and inherit the hierar-

chical properties of TinyRMPL, as described in further detail in Section 4.3. The setE of

edges in a DHSTN,N = 〈V, E, δ, s, e〉, is referred to asedges(N), the set of variablesV

is referred to asvars(N) and the set of dynamic variablesδ is referred to asdynvars(N).

Any given DHSTN networkN created from a TinyRMPL expression always has a start

and end nodes, e. We refer to them asstart(N), end(N) ∈ vars(N).

The set ofactivity constraintsare induced from dynamic variables and simple temporal

constraints. Anactivity constraintα of an HDSTNN is a tupleα = 〈δi, di, δj〉 denot-

ing constraint{δi = di ⇒ activate(δj)}, equivalent to a variable assignmentδi = di

that activates the dynamic variableδj. An activity constraint〈δi, di, δj〉 is enabledif the
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constraintδi = di is satisfied. If the initial? flag of a dynamic variable is false, or the vari-

able is not activated by an activity constraint, it is always inactive. An activity constraint,

δi = di ⇒ activate(δj), is stored with its antecedent variableδi.

start node end node

1
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7
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8
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10

A
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C

d1=2=>v2

Figure 4-2: Example of HDSTN with activity constraints.

Figure 4-2 shows an HDSTNN = 〈V, E, δ, s, e〉 with two dynamic variables(δ1, δ2)

and associated decision time events(v1, v2), which are denoted in the figure as two grey

circles (1,2). The bounds on the simple temporal constraints are omitted in the example for

simplicity. The start and end time eventss ande are1 and10. The HDSTN in the example

contains an activity constraint(δ1 = 2⇒ δ2), which models the activation of the dynamic

variableδ2, given the assignmentδ1 = 2, i.e., a choice between A or B is only needed if

C has not been chosen. The time events{1, 2, 9, 10} = Vdecision are the start and end time

events of functionally redundant methods (A or B, or C), the remainder of the nodes in the

figure are simple time events fromVsimple.

activityConstraints(N)= f(start(N),−,−, N) where
f(x, var, val, N) =

if x ∈ Vdecision

let 〈x, δx, b, Domx〉 ∈ δ
let α =

⋃
f(d, δx, d, N) ∀d ∈ Domx

if var 6= −,
{(var = val⇒ x)}

⋃
α

else
α

else⋃
f(y, var, val, N) ∀〈x, y,−,−〉 ∈ E

Figure 4-3: The function activityConstraint(N)

The functionactivityConstraints(N)=f(x, var, val, N), shown in Figure 4-3, returns a set
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of activity constraints, given an HDSTN,N . f(N) performs a search on the network ofN .

For a dynamic variablex, it performs recursive calls withx = val as the enabling assign-

ment, for each subnetwork reachable fromx. For each dynamic variabley encountered in

a subnetwork reached fromx, an activity constraintx = val⇒ y is added.

For example in Figure 4-2,f(. . .) starts fromstart(N) = v1, i.e. f(v1,−,−, N). The

search branches out tof(v2, v1, 2, N) andf(v3, v1, 3, N). v2 ∈ Vdecision has a correspond-

ing dynamic variableδ2, and the activity constraintδ1 = 2⇒ δ2 is created. The remainder

of the search on the network will not create additional activity constraints.
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Figure 4-4: The pursuer-evaderStrategyactivity represented as an HDSTN.

Figure 4-4 depicts the HDSTN corresponding to the TinyRMPL example,strategy,

from Figure 3-2. Again, the nodes represent time event variables. The nodes are grouped

into the three classes: simple, parallel, and decision. The formal representation of the

HDSTN in Figure 4-4 is〈V, E, δ, s, e〉, where:

Vsimple = {6, 7, 13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39}

Vparallel = {0, 1, 2, 4, 5, 9, 10, 11, 12, 24, 25, 26, 27}

Vdecision = {8, 3, 30}

E = {〈x0, x4, 0, 0〉, 〈x15, x13, 5, 6〉, 〈x14, x16, 1, 2〉, . . .}

δ = {〈δ8, {9, 11}〉, 〈δ3, {24, 26}〉, 〈δ30, {31, 33}〉}

s = 0, e = 1

Unlabeled edges implicitly correspond to zero duration simple temporal constraints.

Nodes 0 and 1 are the start and end events ofstrategy, respectively. The gray solid nodes,

(8, 3, 30), denote time events inVdecision with associated dynamic variables fromδ. The
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domainDomi of a variableδi ∈ δ is graphically represented as the nodes pointed to by

the dashed edges, of which one branch must be chosen. Nodes4, 9, 11, 24, 26 are the

start nodes of parallel networks of actions fromVparallel. Again, commands have non-zero

duration. Commands are shown in the figure to clarify the relationship to thestrategy

scenario, but commands are not interpreted in the pre-planning phase. Command H.vt, for

example, denoting Helicopter vision tracking, is represented by the edge between node 19

and node 17, with a lower and upper bound of 10 and 20 time units, respectively.

In the following we present the notion of active edges in a HDSTN, which leads to the

definition of a feasible solution of an HDSTN.
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Figure 4-5: Different sets of active edges within a DHSTN.

The HDSTN solution algorithm, presented in Section 4.4, identifies theE ′ ⊆ E, active

edgesof a given HDSTN.E ′ is determined by the dynamic variable assignments. When

an HDSTN’s edge setE is restricted to its active edgesE ′, it reduces to an STN. Figure 4-

5 shows the HDSTN given earlier in Figure 4-2 with three different sets of active edges

determined by the dynamic variablesδ1 andδ2. Figure 4-5a shows the HDSTN before pre-

planning. Figure 4-5b shows the active edges of the HDSTN determined by the assignments

δ1 = 3 andδ2 = inactive. Figure 4-5c and d reflect the assignments{δ1 = 2, δ2 = 5} and

{δ1 = 2, δ2 = 7}, respectively.

Definition 4.2 A feasible solutionof an HDSTN is an assignmentγ to all active variables

such that 1) every variable mentioned in the consequent of an enabled activity constraint

has an assignment, 2) every variable mentioned in the consequent of a disabled activity
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constraint is unassigned, and 3) the corresponding STN derived by considering only the

active edges is temporally consistent.

One feasible solution for the HDSTN in Figure 4-4 is represented by the variable assign-

mentsδ8 = 9, δ3 = 24, andδ30 = 33. In the figure there is one activity constraintα at

the dynamic variableδ3 because it can enableδ30, i.e.,α = {δ3 = 24 ⇒ δ30}. In the next

section we present the mapping between TinyRMPL and HDSTNs.

4.3 Mapping TinyRMPL to HDSTNs

TinyRMPL code is translated to an HDSTN, where the signature of the translation function

[[-]] is (A, HDSTN) → HDSTN. For example, if a TinyRMPL constructA is mapped and

added to a DHSTNN , the translation function is[[A]]N = N ′, whereN ′ is the resulting

DHSTN.

The formal translation rules for the four constructs in TinyRMPL are:

• [[c[lb,ub]]]N = N ′, where

vars(N ′) = vars(N) ∪ {xs, xe}, xs, xe ∈ Vsimple, xs, xe 6∈ vars(N),

edges(N ′) = edges(N) ∪ {〈xs, xe, lb, ub〉}

• [[parallel A B [lb,ub]]]N = N ′, where

vars(N ′) = vars(N) ∪ {xs, xe}, xs, xe ∈ Vparallel, xs, xe 6∈ vars(N),

[[A]]N = NA, [[B]]NA = NB,

edges(N ′) = edges(NB) ∪ {〈xs, start(NA), 0, 0〉, 〈xs, start(NB), 0, 0〉,

〈end(NA), xe, 0, 0〉, 〈end(NB), xe, 0, 0〉, 〈xs, xe, lb, ub〉}

• [[sequence A B [lb,ub]]]N = N ′, where

vars(N ′) = vars(N) ∪ {xs, xe}, xs, xe ∈ Vparallel, xs, xe 6∈ vars(N),

[[A]]N = NA, [[B]]NA = NB,

edges(N ′) = edges(NB) ∪ {〈xs, start(NA), 0, 0〉, 〈end(NA), start(NB), 0, 0〉,

〈end(NB), xe, 0, 0〉, 〈xs, xe, lb, ub〉}
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• [[choose A B]]N = N ′, where

vars(N ′) = vars(N) ∪ {xs, xe}, xs, xe ∈ Vdecision, xs, xe 6∈ vars(N),

[[A]]N = NA, [[B]]NA = NB,

edges(N ′) = edges(NB) ∪ {〈xs, start(NA), 0, 0〉, 〈xs, start(NB), 0, 0〉,

〈end(NA), xe, 0, 0〉, 〈end(NB), xe, 0, 0〉}

dynvars(N ′) = dynvars(NB) ∪ 〈xs, δxs , b, Domxs〉, δxs 6∈ dynvars(N), where

Domxs = {start(NA), start(NB)}

The above rules show the translation of constructs that consists of binary sub-constructs,

for examplechoose A B, wherechooseis the construct andA andB are the sub-constructs.

The translation rules generalize to constructs with arbitrary numbers of sub-constructs.

Note that the mapping of asequenceconstruct creates a start and end variable that is added

to Vparallel, because the sequence is a special case of a parallel construct with one sequence

of activities and a simple temporal constraint between the start and end node. The initial

flags of dynamic variables are set in a second pass of the resulting DHSTN; this pass can be

incorporated into the extraction of activity constraints. The rules are depicted graphically

in Figure 4-6. Once a TinyRMPL program has been mapped to an HDSTN, it can be solved

using an HDSTN-solver, introduced in the following section.
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Figure 4-6: Graphical representation of the TinyRMPL to HDSTN mapping
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4.4 Solving HDSTNs

HDSTNs can be solved using a dynamic constraint satisfaction backtrack search algorithm,

which extends the generic constraint satisfaction chronological backtracking algorithm in

[30]. In an HDSTN, an inconsistency corresponds to a negative weight cycle. We use

the Bellman-Ford single source shortest path algorithm to detect such cycles. We only

run Bellman-Ford onactiveedges. The pseudo-code for this centralizedHDSTN-solveris

presented in Appendix, Section A.

The HDSTN-solver (referred to as the solver from now on) assumes access to all ele-

ments of an HDSTN,N = 〈V, E, δ, s, e〉, that is being solved, and takes as input the size

of the vector of dynamic variablesn = |δ|. The solver accesses dynamic variablesδi ∈ δ

using the operatorv[i].

The solver is similar to the chronological backtracking algorithm, because it system-

atically labels (assigns) values to variables while checking for consistency. The solver

searches for a solution in the dynamic CSP of an HDSTN by labeling only active dynamic

variables. Each time a dynamic variable is labeled or the solver backtracks and unlabels

a variable, the dynamic variables are updated based on the activity constraints; the up-

date involves activation or deactivation of variables. The algorithm returns when all active

dynamic variables are labeled and no activity constraints activate other new, unlabeled vari-

ables. It returnssuccessif the STN determined by the active edges is temporally consistent,

or failure if no consistent STN could be found.

We demonstrate the solver on the pursuer-evader scenario HDSTN in Figure 4-4 by

walking through the solution process while illustrating the network changes (Figure 4-7).

The total number of dynamic variables supplied to the solver is 3,{δ3, δ8, δ30}. Theinitial?

flag of the dynamic variablesδ3, δ8 are true. The first variable assignment isδ3 = 24. Next

comes a consistency check on the active edges (Figure 4-7a). Since no negative weight

cycles are induced, the current assignment is consistent. The next dynamic variable in the

array isv8, and the variable assignments becomesδ8 = 9. Another consistency check

is performed on the active edges (Figure 4-7b), and the network is consistent. Next the

activity constraintδ3 = 24 ⇒ δ30 activatesδ30, which makes the assignmentδ30 = 31.
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Figure 4-7: HDSTN-solver animation of processing thestrategyscenario.
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However, this creates an inconsistency (Figure 4-7c), since the activities R1.cd and R1.fpt

combined have a lower bound (40) greater than the upper bound of the surrounding simple

temporal constraints(lb, ub) = (20, 35). Instead, the variable assignmentδ30 = 33 is made,

which yields a temporally consistent network (Figure 4-7d), and the solver returnssuccess.

The final variable assignments areδ8 = 9, δ3 = 24, andδ30 = 33.
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Chapter 5

Distributing HDSTNs

5.1 Overview

The objective is to support fine grained distributed execution on processors with severely

limited computational resources. As a result, we allow distribution to go down to the level

of each robot handling a single variable or constraint. In addition, our robotic systemsvary

substantially in their computational capabilities, from wireless sensors to rovers, with more

capable systems being able to handle large collections of constraints. This heterogeneous

case is handled using the same fine grained distributed algorithm, by simply having each

robot execute the distributed algorithm on all of the constraints it owns. We frame this

problem as a distributed HDSTN. This chapter first describes a simple distribution of an

HDSTN in a processor network. The second section describes more general cases, in which

leader election is necessary to determine the distribution.

5.2 Simple Distribution in a Processor Network

Definition 5.1 A processoris defined as an independent computer that communicates with

other processors using messages. Aprocessor networkis an array ofN processors,pi =

1, 2, ..., N , where any pair of processors can communicate with each other either directly

or by message routing.
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Definition 5.2 A Distributed Hierarchical Dynamic Simple Temporal Network,DHDSTN,

is a Hierarchical Dynamic STN (HDSTN),N , where every time event variablev ∈ vars(N)

is assigned a specific processorpi in a processor network. A processor can own one or more

HDSTN nodes. The simple temporal constraints,edges(N) are distributed such that ev-

ery processorpi only has local knowledge on the topology, entailing knowledge on simple

temporal constraints that are directly connected to a nodev ∈ pi.

Initially, for simplification, every time eventv ∈ vars(N) in an HDSTNN is assigned to a

unique processor. It is straight forward to extend this to the general case, where every pro-

cessor owns an arbitrary number of nodes in an HDSTN. Section 5.3 explains the process

by which elements of an HDSTN are assigned to processors in ad-hoc networks by using

leader election and group formation algorithms.

5.2.1 Local Knowledge of Processors

Figure 5-1 shows a processor representing a single node from an HDSTN. The processor

maintains a set of local attributes used by the DTP planner and the simple temporal con-

straints between its neighbors{s, p, r}, wheredij denote upper time bounds and denote the

forward direction in execution time, anddji denote lower bounds.

Node a from the processor point of view

s

a

p

r

d(a,p)

d(p,a)

forward direction
of execution

Node attributes
D(a)
D(p,r,s)
d(i,j), i=a,j={p,r,s}
d(j,i), j={p,r,s},i=a
Node type
Level
SSI
parent-id
Dynamic variable
Activity constraint

Figure 5-1: DHDSTN processor node.
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The local attributes of processors are:

• D andDi are estimates of temporal distance to the target for a node and its neighbors,

respectively, and are used for consistency checks together with the simple temporal

constraintsdij between neighbors.

• Thenode typeindicates the type of node this processor represents. The behavior of

DTP depends on the node type. The node type is eitherdecision-start, decision-end,

parallel-start, parallel-end, primitive, which is directly related to the variable type

v ∈ V of an HDSTN.

• The levelvariable denotes the ”level of nesting” of a node within parallel networks

(defined in Section 6.2.3) and is used for isolating concurrent consistency checks at

different levels in the network.

• The Sequential Network Id reference,SNI, speeds up search by enabling parallel

search in cases were sequential search otherwise is the basic solution.SNI refer-

ences are found using simple forward search on the HDSTN during the distribution

phase.

• Theparent-idvariable is used by DTP to send feedback messages backward toward

the origin. They are enabled during DTP runtime and are described in Section 6.2.2.

• dynamic variablesandactivity constraintsare preserved from the HDSTN. During

distribution, every activity constraintα = {δi = val ⇒ δj} is copied to the same

processor asδi.

5.3 Mapping HDSTNs to Processor Networks

This section describes a method for mapping a Hierarchical Dynamic Simple Temporal

Network (HDSTN) to a set of distributed processors. The distribution can take place in

several contexts. One example is the pursuer-evader scenario with rovers, a helicopter and

a sensor network. Another example is ad-hoc networks, such as amorphous computer net-

works [16, 1]. An amorphous computer network consists of an array of processors, where
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there is no a priori organization, and there are no leaders or leader hierarchies to organize

computation a priori. The first objective of amorphous computing is to obtain coherent

behavior from the cooperation of large numbers of these processors that are interconnected

in unknown, irregular, and time-varying ways. The second objective is to find methods for

instructing the arrays of processors to cooperate and achieve goals.

The first sub-section motivates the reader by giving examples. The following sub-

section describes a type of leader election that can be applied in general. The last sub-

section describes a distribution method of an HDSTN over an ad-hoc network.

5.3.1 Motivation

When distributing an HDSTN over a robotic network, tasks associated with particular

robots are typically distributed to that particular robot. Moreover, hierarchical subnetworks

of an HDSTN can be mapped to hierarchies within the robotic network. However, there

is still a question of determining which robot must initiate the search, and how to coordi-

nate the solution, and how to ensure that robots are within communication range of each

other. For ad-hoc networks, such as wireless sensor networks of small processors that are

randomly distributed on a surface, there may be no mapping of tasks to particular robots,

and the question is how to determine the distribution of tasks given the layout and structure

of the network. This is usually unknown beforehand.

Section 5.2 introduced a simple distribution of an HDSTN, where each variablev ∈ V

of an HDSTN was assigned a unique processor in a sensor network, simply by copying

each variable to a unique processor while assuming full communication. This simple form

of distribution can be generalized to other types of distribution. For heterogeneous robots

with varying computational resources, the most constrained robots can handle one con-

straint each, and more capable robots can handle large collections of constraints. Hence,

the HDSTN should be distributedunevenlyamong robots to maximize the use of the re-

sources of each robot. For this uneven type of distribution, every robot still runs DTP, where

each robot simulates DTP on all of the constraints it owns. In addition, communication is

reduced by having collections of variables and constraints within each robot. For example,
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if two DHDSTN nodes reside in the same physical robot, they do not need to communicate,

but can merely exchange data directly, because they are running on the same machine.

Only in some cases can the mapping between tasks and robots be determined before-

hand. In general it is not clearhow to distribute the HDSTN nodes and constraints among

processors. Therefore two main challenges for performing distribution occur: 1) which

processor is the lead at each level in the hierarchy and which leader initiates DTP, and 2)

ensuring that communication between pairs of processors can occur either directly or using

message routing. When full communication is non-existent, the distribution method of an

HDSTN must ensure that the processors that need to communicate with each other when

running DTP actually can communicate with each other.

(parallel
((Robot1.drive-to(RockA))[10,20])
((Robot2.drive-to(RockB))[15,25])
...

)

Figure 5-2: TinyRMPL program to be distributed among robots.

Figure 5-2 shows an example with two (or more) robots that are performing cooperative

activities. In this example, the HDSTN time events that represent drive-to tasks for a par-

ticular robot can be assigned to that robot during execution. However, there is a question

about what robot takes the responsibility of the parallel start and end nodes that represent

the start and end of the cooperative activities. In this situation it is useful to run a leader

election algorithm [22, 4] prior to distribution and let the leader take the responsibility of

parallel start and end nodes. Sub-section 5.3.2 describes one form of leader election.

(parallel
((Sensor1.measure-light())[10,20])
((Sensor2.measure-sound())[15,25])
((Sensor3.measure-EM-fields())[15,25])

)

Figure 5-3: TinyRMPL program to be distributed within a sensor network.

Figure 5-3 shows another motivating example for a more advanced form of distribu-

tion in an ad-hoc sensor network, in which the TinyRMPL program must be distributed

to three sensor processors. Assume that the three processors are not synchronized or or-
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ganized, so it is unknown how or if the processors can communicate with each other. To

enable pre-planning and later the dispatching of commands, groups have to be formed to

determine communication routing and a leader needs to be selected, which can initiate the

pre-planning. We show how these tasks are performed in sub-section 5.3.2.

5.3.2 Leader Election

This section describes the leader election algorithm [4] to form groups in the processor net-

work. We briefly summarize the basic leader election algorithm in Figure 5-4 that creates

a two-level hierarchy of leaders and followers. I encourage the reader to read [4], which

describes network algorithms for amorphous computing more thoroughly.

For every processor:

r = randomInteger(1..R)
while(r > 0)

r ← r − 1
if(r = 0)

broadcast(”followMe”)
processor becomes leader

if received(”followMe”)
processor becomes follower of sender
return

Figure 5-4: Amorphous Computer group formation algorithm.

The leader election algorithm is based on performing a countdown from a randomly

selected integer, within a given range for every processor. In each step of the algorithm,

every processor decrements its integer. If the integer of a processor reaches zero, the pro-

cessor broadcasts a ”followMe” message and becomes a leader. Otherwise, if a processor

receives a ”followMe” when its integer is greater than zero, it becomes a follower of the

sender of the message. The result of the algorithm is that all processors within the network

are divided into groups. In each group there is one leader and a number of followers of the

leader. The followers are within direct communication range of the leader.

Given the basic two-level hierarchy with leaders and followers, a tree-hierarchy can be

created with a higher number of levels. To extend tree-hierarchy from leveln to n + 1, a
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slightly different leader election is performed among the leaders at leveln, and the groups

are connected in a tree-like fashion. By specifying a max number (depth) of followers, the

tree can be balanced. The tree-hierarchy formation algorithm is described in [4].

The leader election algorithm can be extended to allow followers to continue to listen

for other leaders, instead of returning once a leader has recruited the follower. The purpose

is to enable processors to act as communication hops between groups, as illustrated in the

following section. The current leader of the follower becomes the primary leader, and the

follower then allows for secondary leaders (and so forth).

5.3.3 Distribution of an HDSTN in Ad-hoc Networks

This section describes a distribution method for ad-hoc networks that addresses the issue of

ensuring that processors that perform the pre-planning are within communication range of

each other. The distribution method assumes that the leader election procedure in Figure 5-

4 has been performed beforehand, and furthermore that tree-hierarchies are formed on top

of the basic two-level hierarchy.

In many cases it is important to address the problem of distributing the actual computa-

tionsevenlyon processors according to available processing power. This is key to networks

of processors with limited power, for example for processors that run on batteries. It is un-

desirable to have one processor performing all computations and potentially running out of

power before the others do. The method of distribution described here maximizes the dis-

tribution of computation by assigning followers of leaders subnetworks whenever possible.

The averaging of computations is possible because the tree-hierarchy of groups formed by

the leader election and group formation algorithm [4] can be mapped to the hierarchical

network of a DHDSTN derived from TinyRMPL, as described next.

We assume that the processors have no prior knowledge of the HDSTN but are pro-

grammed by receiving the HDSTN from an external source. The objective is to enable

distribution of an HDSTN among groups of processors in a network where communication

between all pairs is possible using direct communication or routing. To accomplish this,

a tree-hierarchy of a number of levels is built until one top leader in the hierarchy can be
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selected for the point of contact with the external source. The top leader can be selected, for

example, by comparing the number of followers of leaders at the highest level of the tree-

hierarchy and selecting the leader with the highest number of followers as the top leader.

This requires the leaders to be within communication range of each other.

To enable efficient pre-planning by minimizing the size of the DHDSTN, robot teams

are interpreted as single units, and the tasks are decomposed to represent an action for every

team member at execution time. For example, ifTeam1is defined as robotsR,S,T, then the

pre-planner interpretsTeam1.take-picture()[lb,ub]as a start and end time event connected

with a simple temporal constraint. Afterwards, the distributed executive decomposes the

command to three parallel commands, one for each robot inTeam1.

We introduce a HDSTN distribution method, shown in Figure 5-5, which enables paral-

lel processing of parallel and sequential networks of HDSTNs by assigning subnetworks to

followers and co-leaders, i.e. a leader at the same level as the distributor. The distribution

method runs on every processor and takes in an HDSTN as input. The key property of the

distribution method is to maximize the distribution of HDSTN subnetworks to followers,

thereby maximizing the amount of parallel computations.

HDSTN-Distribution-Procedure()
For every processor p
n = number of followers(p)
if received(HDSTN)

if HDSTN = command with simple temporal constraint C
assign C to p

if HDSTN = choose or sequence or parallel network L
with k subnetworks A-1....A-k
assign start and end node of L to p
if (n = 0) // no followers

if p is leader and has a neighbor leader v
send k/2 subnetworks to v
assign k/2 subnetworks to p // the rest

else
assign k subnetworks to p // the rest

else if (n > k)
for k subnetworks

send(subnetwork) to a follower of p
else if (n < k)

for n subnetworks
send(subnetwork) to a follower of p

assign (k-n) subnetworks to p

Figure 5-5: HDSTN Distribution procedure on amorphous computers

The HDSTN distribution procedure works as follows. Every processor is ready to re-

ceive an HDSTN network. Assume that a processorp with n followers receives an HDSTN
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N . The distribution method follows these rules:

• If N is a primitive command, thenp assignsN to itself.

• If N is network withk subnetworks, then firstp assigns the start and end node ofN

to itself. The distribution of the subnetworks depends on whetherp has any followers

and if there are more subnetworks than followers(k > n):

– No followers. There are two possible distributions: 1) ifp is a leader and has a

neighbor leaderv, it attempts to even out the computations by sendingk/2 sub-

networks tov and assigningk/2 subnetworks to itself. 2) there are no neighbor

leaders, sop assigns allk subnetworks to itself.

– More followers than subnetworks. Assignk subnetworks tok followers of p

randomly.

– Less followers than subnetworks. Assignn of thek subnetworks to then fol-

lowers randomly. Assign the rest(k − n) subnetworks top itself.
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Figure 5-6: A three-level tree-hierarchy formed by Amorphous leader election.

Figure 5-6 shows a tree-hierarchy of three levels with a top leader, depicted in the

figure as a square. The top leader enables the external source to connect with the processor

network and is the point of contact for distribution of an HDSTN. The white circles denote

followers at the lowest level, level 0. The black circles are followers at level 0 that have

both a primary and secondary leader, and the arrows point to their primary leader. The gray
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circles denote leaders at level 0 and the dotted circles denote their communication range.

The lines between the gray circles and the square represent the tree-hierarchy at level 1.

Note that if a processor is a leader at levelj it is also a leader at all lower levels0...j − 1,

because a tree-hierarchy at leveln is based on the leaders at leveln − 1. For example,

in Figure 5-6, processor 1 is leader at both level 1 and 0, while processors 2, 3, and 4 are

leaders at level 0.

(parallel ; P1
(sequence ; S1

((A())[1,2])
((B())[1,2])

)
(sequence ; S2

((C())[1,2])
((D())[1,2])

)
(choose ; C1

((E())[2,4])
((F())[2,4])

)
)

Figure 5-7: TinyRMPL example for distribution on a amorphous computers network

The distribution method in Figure 5-5 is demonstrated as follows. Assume that the

TinyRMPL program in Figure 5-7 must be distributed on the amorphous computer network

in Figure 5-6. In the figure, each processor has an ID, and we now refer to processorp with

ID i aspi. Since TinyRMPL and HDSTN have an equivalent hierarchical property, walking

through the TinyRMPL program simplifies the explanation.

Initially, the network is unstructured, so the network executes the leader election algo-

rithm first and creates a three level tree-hierarchy. Figure 5-6 shows the resulting hierarchy.

It is assumed that the TinyRMPL program comes from an external source, which estab-

lishes a connection with the top leaderp1 (see Figure 5-6) and sends the TinyRMPL in

form of an HDSTN top1. At the top level, the HDSTN has three subnetworks.p1 assigns

the start and end node of the network to itself. Furthermore,p1 assigns the subnetworks

{S1, S2, C1} to the followers{p2, p3, p4} at level 1 with one subnetwork for each follower.

Now each follower in{p2, p3, p4} processes its subnetwork in parallel with the others.p2

processesS1 and since it is a sequence, it assigns the node pairs and simple temporal con-

straints of the primitive commandsA() andB() to two of its followersp5, p6. Since prim-

itive commands cannot be decomposed,p5 andp6 assign the commands to themselves.p3
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processesS2, assignsC() to p13 andD() to p14. p4 processesC1, but has no followers.

p4 has a neighboring leader (p3), however, and sends half of the subnetworks (E, F ) to p3.

SinceE() is a primitive command,p3 assignsE() to itself. p4 keeps the other half,F (),

and assigns that command to itself.

Even though the distribution method described above attempts to balance the workload

on the processors and exploit parallelism, it can be optimized in a number of ways. This is

discussed in Section 7.4, which is on future work.

65



66



Chapter 6

The Distributed Temporal Planning

Algorithm

6.1 Overview

This chapter describes how Distributed Hierarchical Dynamic Simple Temporal Networks

(DHDSTNs) are solved by the Distributed Temporal Planner (DTP). The description of

DTP covers a high-level overview, the communication model, the algorithm, proof of

soundness and completeness, a description of distributed consistency checking of DHD-

STNs, and a walk-through of DTP running on the pursuer-evader scenario.

6.2 Solving Distributed HDSTNs

A temporally consistent execution of a TinyRMPL program is found in a distributed man-

ner by solving its corresponding DHDSTN. The TinyRMPL program is reformulated as a

Hierarchical Dynamic Simple Temporal Network (HDSTN) (Section 4.2) and distributed

among the processors (Section 5.2), forming a DHDSTN. The DHDSTN is solved by

searching the network in a hierarchical manner and assigning values to dynamic variables,

while ensuring consistency of the active simple temporal constraints induced by the value

assignments. DTP returns success when it has found a feasible solution. The activities cor-

responding to the active STN are then executed using a distributed version of the dynamic
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dispatching algorithm, introduced in [27, 35].

6.2.1 Introducing the Distributed Temporal Planner

DTP is a distributed algorithm in which every processor of the network runs an instance

of the DTP algorithm. In collaboration, these processors find acorrect plan, given a

TinyRMPL program mapped to a DHDSTN as input.

Definition 6.1 A plan iscorrectif and only if a solution to the DHDSTN exists, and the

dynamic variables of the DHDSTN solution are assigned values such that the activity con-

straints are satisfied, and there are no negative weight cycles induced by the active simple

temporal constraints.

The significant advantages of DTP over centralized solutions are that 1) DTP performs

parallel DHDSTN search when possible and 2) DTP simultaneously runs multiple isolated

instances of the Bellman-Ford consistency check on different groups of processors in the

DHDSTN. The remainder of this chapter details exactly how these advantages are achieved.

Distributed algorithms are inherently more complex than centralized algorithms. It

is a greater challenge to solve the DHDSTN than HDSTNs, because the processing is

distributed and asynchronous. In distributed processor networks, processors communicate

with each other using messages. To search a DHDSTN, messages have to be propagated

through the network and instantaneous message delivery is not guaranteed.

The technique for solving DHDSTNs is different from solving HDSTNs. The HDSTN-

solver finds a solution to the dynamic CSP by performing chronological backtracking and

by using the Bellman-Ford shortest path algorithm for consistency checks. DTP is a divide-

and-conquer search method that exploits the fact that only parallel networks, described be-

low, can create negative cycles and cause inconsistency1. Analogous to the HDSTN solver,

DTP uses a distributed version of the Bellman-Ford shortest path algorithm to check for

consistency. Moreover, DTP exploits the fact that the hierarchical network of TinyRMPL,

and therefore DHDSTNs, enables both parallel search and concurrent isolated consistency

1Kirk [18] exploited a similar property when pre-planning RMPL programs in the centralized case.
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checks. This speeds up the solution extraction tremendously, as the experimental results in

Section 7.3 demonstrate.

Synchronization is used to ensure consensus in the network, i.e., that any processor at

any given time is solving just one task, either searching the network and making variable

assignments or checking for consistency, butnot both simultaneously. An example of lack

of consensus is the case in which a processor is waiting for a response of a search, but

before it gets a response, it is asked by another processor to perform consistency check-

ing. Synchronization prevents those situations from occuring. Synchronization is achieved

by propagatingfindfirst andfindnextsearch messages forward along the simple temporal

constraints in the network of a DHDSTN to find consistent dynamic variable assignments

and by waiting for responses in the form offail or ack messages, for failure or success

(acknowledge), respectively.

DTP performs a parallel recursive depth-first network search on a DHDSTN to make

dynamic variable assignments and checks the simple temporal constraints for temporal

consistency. During network search, dynamic variables are processed and assigned values

when their associated decision nodes,Vdecision, in the DHDSTN are visited. The algorithm

ensures consistency at the deepest levels in the hierarchy and gradually moves up to higher

levels until reaching the top level of the DHDSTN. This search method has two advantages:

it automatically synchronizes the processors and it enables parallel search and consistency

checks. However, to ensure completeness, DTP performs a systematic exhaustive search

on the dynamic variables.

To understand the behavior of DTP, we first describe the message communication

among processors when solving a DHDSTN. The next section describes how the DTP

algorithm searches networks for consistent assignments and abstracts the distributed con-

sistency check as a function. After that, soundness and completeness is proven. Finally, we

describe distributed consistency checking in detail.
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6.2.2 Message Communication Model

Messages in the DTP algorithm are sent between processor pairs. The DTP algorithm

assumes an underlying communication protocol that provides seamless message exchange

between any pair of processors in the network. For simplicity all messagesmsgsent by

DTP have four data fields:(SenderID, RecipientID, Type, Data). TheData field is used

only when performing consistency checks. DTP uses 6 different message types, which are

shown below in the formmessage-type(data):

• findfirst() is propagated in the forward direction of execution in time to search a

subnetwork for consistent variable assignments. Whenever a node receives afindfirst,

the node’s parent-id is set to the parent of the sender to enable a feedback response

later to that parent. The parent-id is necessary, since the parent of a processor may

not be its neighbor and parents change when new variable assignments are made.

• findnext()is propagated in the forward direction of execution in time to search for the

next consistent set of variable assignments in a subnetwork. Thefindnextmessage

is used when a subnetwork was consistent by itself, but when combined with other

subnetworks it is inconsistent. In that case, a systematic search is performed using

findnext.

• BF-init(level) initializes a Bellman-Ford consistency check in a subnetwork atlevel

and above. Consistency checking is described in Section 6.2.5.

• BF-update(distance)is used by the Bellman-Ford algorithm’s update cycle.

• fail() indicates that the subnetwork is inconsistent with the current set of assignments

within the subnetwork.

• ack() (acknowledge) indicates that a subnetwork has a consistent set of variable as-

signments.

Thefail andackmessages are sent backwards in the opposite direction of execution in time

towards the start node of a network. The Bellman-Ford messages are sent both forward and

backward.
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6.2.3 The DTP Algorithm

This section describes the Distributed Temporal Planner (DTP) algorithm. DTP exploits the

hierarchical network of a DHDSTN mapped from TinyRMPL. The hierarchical network of

TinyRMPL is created usingparallel, sequence, andchoosecombinators recursively on top

of primitive commands, i.e.,simple temporal constraints.
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Figure 6-1: DHDSTN networks

These four types of DHDSTN networks are shown in Figure 6-1. Each network type

consists of a start and end time event (proccesor node), denoted as circles in the figure,

and DHDSTN subnetworks, denoted as squares. The edges represent simple temporal con-

straints between the start and end time events and subnetworks. DTP searches these net-

works to find consistent variable assignments. DTP uses thefindfirstandfindnextmessages

to find the first consistent variable assignments and next consistent variable assignments of

subnetworks, in case the first were inconsistent. DTP checks for consistency at the deepest

level of hierarchical parallel networks (see Figure 6-1) and gradually moves up to the top

level of a DHDSTN. If the top level of a DHDSTNN rooted atstart(N) is consistent,

DTP returns success (ack). Analogous to the HDSTN solver, distributed STN consistency

(Section 6.2.5) automatically considers only the active edges of the DHDSTN. The choices

among methods are represented as dynamic variables; thus, backtracking in the context of

the DTP algorithm involves undoing variable assignments and trying new assignments.

The next four sub-sections further describe DTP for the four types of subnetworks in

Figure 6-1. The first three sub-sections, on searching simple temporal constraints, paral-

lel networks and decision networks, concentrate on finding the first and next consistent

variable assignment in networks, assuming that there are no sequential networks. The last

sub-section describes searching sequential networks and finding the next consistent vari-
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able assignments, when the first were inconsistent, which completes the description of the

search method of DTP.

Simple Temporal Constraint

In a DHDSTN,N , a simple temporal constraint has a start time events and an end time

evente, where(s, e) ∈ Vsimple of N (see Figure 6-2). Simple temporal constraints pass

search requests forward and search responses backward during search. They cannot them-

selves induce negative cycles.

simple temporal constraint

s e
[l,u]

forward direction of execution in time

findfirst / findnext

ack / fail
parent successor

Figure 6-2: DTP search on a simple temporal constraint

During a search, nodes receives either afindfirstor findnextfrom its parent and prop-

agates it forward to thee node. Thee propagatesfindfirst and findnextmessages to its

successor. Whene receives afail or ack from its successor, it propagates it backwards by

sending it tos, which sends it to its parent.

Parallel Networks

Recall that DTP ensures consistency at the deepest levels in the hierarchy and gradually

moves up to higher levels until it reaches the top level of the DHDSTN. For simplicity,

assume for now that the functioncheck-consistency()checks if the variable assignments of

a subnetwork are temporally consistent and returns true if the subnetwork is consistent, or

false otherwise. Check-consistency() is initialized by the start nodes of a parallel network

(see Figure 6-1). Consistency checking is explained in details in Section 6.2.5.

DTP searches a parallel network for temporally consistent choices by first sending a

findfirst to all the subnetworks, before checking for temporal consistency of the entire par-

allel network. For example, in Figure 6-1, DTP first searches for consistent assignments
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in the subnetworks A . . . Z, and checks that each of them is consistent before checking the

entire network includings ande for consistency. The search of subnetworks is performed

in parallel.

a b

x y

r s

n m

u v

0 0

1 1

1 1

2 2

2 2

Figure 6-3: Levels of nodes in a parallel hierarchical network.

The start nodestart(N) sends afindfirst to each child, where a child is defined as

the start node of a subnetwork,start(Si). Figure 6-3 shows an example of a hierarchical

parallel network with nodes and levels of nodes within the hierarchy. LetN be the entire

network in Figure 6-3. Thenstart(N) = a andend(N) = b. LetS1 be the subnetwork that

consists of the nodes{x, r, s, n, m, y}, thenstart(S1) = x. In Figure 6-3, the nodes{a, b}

are at the top-level0, the nodes{x, y, u, v} are at level 1, and nodes{r, s, n, m} are at level

2. Thefindfirstsent bystart(N) will eventually reachend(N), which will reply with an

ack message in the opposite search direction towardsstart(N). If all subnetworks ofN

are consistent individually,start(N) initializes a consistency check of the entire parallel

network. Otherwisestart(N) sends afail to its parent.

Figure 6-4 shows the pseudo-code of a start nodestart(N) of a parallel networkN for

finding the first consistent assignment. The pseudo-code of end nodes of parallel networks

is shown in Figure 6-5. DTP checks the network in the example in Figure 6-3 as follows.

Nodea is the parallel start node to which the pseudo-code in Figure 6-4 applies. Nodea

receives afindfirstfrom its parent (lines 1-2) and records its parent (line 3). Nodea initiates

the search by sending afindfirstto nodes{x, b, u} in that order (lines 4-5).

Three searches occur in parallel: 1) nodex is also a parallel start node and receives

findfirst, setsa to be its parent, and sends out afindfirstmessage to nodes{r, n, y} (lines

1-5). 2) Meanwhile the parallel-end nodeend(N) = b receives thefindfirst message. It
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procedure parallelStartNode() //node v

1 wait for message msg
2 if msg = (findfirst)
3 set parent of v to msg.from
4 for each child
5 send(findfirst) to w
6 wait for all responses from children
7 if any of the responses is fail
8 send(fail) to parent of v
9 else // all ok

10 if check-consistency(v)?
11 send(ack) to parent
12 else
13 // search systematically
14 for w = child-0 to child-n //last child
15 send(findnext) to w
16 wait for response
17 if response = ack then
18 if check-consistency(v)?
19 send(ack) to parent
20 return
21 else // not consistent
22 w = child-0 // reset w
23 else // response is NOT ok
24 send (findfirst) to w
25 wait for response // it is ok
26 end-for
27 send(fail) to parent

Figure 6-4: Findfirst search method for start nodes of parallel networks.

procedure DTP-parallelEndNode()

1 wait for message msg
2 if msg = (findfirst) OR msg = (findnext)
3 if msg.from is parallel start node?
4 set parent of v to msg.from
5 send(ack) to parent

Figure 6-5: Findfirst and findnext search method for end nodes of parallel networks.

checks with its local knowledge if the sender is its corresponding start node of a parallel

structure (Figure 6-5, line 3), which is the case, so it records the sendera as its parent and

sends back anackmessage toa. 3) Nodeu receives thefindfirst from a and forwards it to

v. v receives the message and forwards it tob, which sends back anackmessage tov. v

receives theackand sends it back tou and finally toa. a still needs anackmessage fromx.

In the meantime, once nodesr andn receive thefindfirstmessages fromx, they perform a

parallel search towardsy, which sends back oneackmessage for each branch. Nodey also

receives afindfirst directly from x and recordsx as its parent and sends anack message

back tox. Nodex receives theackmessages and starts a consistency check at level 1 and

above (lines 6-10). Here it is assumed that the subnetwork is consistent, so nodex sends
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anackmessage toa (line 11). Nodea finally initiates a consistency check at level0 and

above (lines 6-10), and assuming that the network is consistent, the search of the parallel

network is successful.

In some cases, each subnetworkSi ∈ N is consistent, but combined with other subnet-

works,N is inconsistent (line 12). In that case, DTP performs an exhaustive search to find

variable assignments that makeN consistent.start(N) systematically sends afindnextto

one child at a time to find the next consistent variable assignment (Figure 6-4, lines 14-27).

The pseudo-code for a parallel start node handling afindnextmessage is in its basic form

identical to the systematic search in Figure 6-4, lines 14-27 when handlingfindfirst mes-

sages. However, the pseudo-code forfindnextmessages is extended to handling sequential

networks, as described later.

Decision Networks

Making consistent decisions in networks is the core of DTP. The search mechanism for a

decision networkN , rooted atstart(N), makes one assignment to the dynamic variable

δi ∈ δ of start(N) at a time until it finds a consistent assignment. For the decision network

in Figure 6-1, for example, nodes tries one assignment (A . . . Z) at a time.

procedure DTP-decisionEndNode()

1 wait for message msg
2 if msg = (findfirst) OR msg = (findnext)
3 set parent of v to sender of msg
4 send(ack) to parent

Figure 6-6: Findfirst and findnext search method for end nodes of a decision networks.

Figure 6-7 shows the pseudo-code of a decision start nodestart(N) of a decision net-

work N for finding the first consistent assignment, and Figure 6-6 shows pseudo-code of

end nodes of decision networks. When an end node of decision network receives afindfirst

or findnextmessage, it records the sender as its parent and sends anackback to the parent

(Figure 6-6, lines 1-4).

When a start nodestart(N) of a decision network receives afindfirst, start(N) makes

one assignment at a time and sends afindfirstmessage to the corresponding start node of a

subnetwork ofN (Figure 6-7, lines 5-6). Whenstart(N) receives anackfrom the selected
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procedure decisionStartNode()

1 wait for message msg
2 if msg = (findfirst)
3 parent = msg.from
4 for w = child-0 to child-n //last child
5 value assignment = w
6 send(findfirst) to w
7 wait for response from child w
8 if response = ack then
9 send(ack) to parent

10 return
11 else // fail
12 remove w from child list
13 end-for
14 // no more assignments (children) exist
15 send(fail) to parent

Figure 6-7: Findfirst search method for start nodes of decision networks.

subnetwork, it sends anackmessage to its parent, signifying that it found a consistent as-

signment for the entire networkN (lines 8-10). In case of afail, start(N) removes the

current value of the assignment from the domain, because no consistent assignment exists

for that particular subnetwork (lines 11-12).start(N) then continues with a new assign-

ment toδi, until all values in domainDomi of δi have been examined. If all assignments

fail, thenstart(N) returnsfail to its parent (line 15).

a b

x y

r s

n m

u v

a=1

a=2

x=1

x=2

a=1=>activate(x)

Figure 6-8: Decision network with an activity constraint.

For example, in Figure 6-8, the first assignment of the start node of the decision network

N is a = 1, which points to nodex. Nodex is a dynamic variable activated bya = 1.

Nodex makes the assignmentx = 1 and propagatesfindfirst to r which is then forwarded

to s, theny, thenb. Nodeb replies toy with anack, which is propagated backwards tox. x

returnsackto a, which returnsackto its parent. Now suppose thatx returnsfail, then there

are no valid assignments rooted atx. Nexta makes a new variable assignmenta = 2 and

sends afindfirstmessage tou.
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procedure decisionStartNode()

1 if msg = (findnext)
2 w = current assignment (child)
3 // search on subnetwork
4 if w enables activity constraint
5 send(findnext) to w
6 wait for response
7 if response = ack
8 send(ack) to parent
9 return

10 while w < last child do
11 w = next assignment
12 send(firstfirst) to w
13 wait for response
14 if response = ack
15 send(ack) to parent
16 return
17 else // fail
18 remove w from child list
19 end-while

Figure 6-9: Findnext search method for start nodes of decision networks.

After the start node of a decision networkN sends anackmessage to its parent, it may

later receive afindnextmessage from its parent, becauseN is inconsistent with some other

parallel network. The pseudo-code of a decision start node when afindnextis received

is shown in Figure 6-9. Since DTP performs a depth-first search,start(N) will check

whether the current variable assignment enables any activity constraints. If that is true, a

different variable assignment in the currently selected subnetwork can be made first before

moving on to the next child (lines 4-5).

For the example in Figure 6-8, if the previous assignment of nodea isa = 1, a will send

a findnextto x, because the activity constraint{a = 1⇒ activate(x)} is enabled. Nodex

does not have any activity constraints, and therefore makes a new assignment,x = 2 and

returnsack.

If there was no enabled activity constraint or thefindnextsent out to the currently se-

lected child failed, DTP performs a search starting from the next child and searches the

remaining children (lines 10-19) to find a consistent variable assignment. For example, in

Figure 6-8, if there was no enabled activity constraint ata, nodea would ignore nodex and

immediately make a new assignmenta = 2.

Thestart(N) node returnsackas soon as a subnetwork returnsack. If no findnextof

subnetworks ofN were successful,start(N) returnsfail.
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Sequential Networks

A sequential network consists of a series of interconnected subnetworks (Figure 6-1). Sub-

networks can be simple temporal constraints, parallel networks, decision networks or se-

quential networks. A sequential networkN also has a simple temporal constraint between

start(N) andend(N), which requires a consistency check with the entire network. To

accomplish this check, DTP views a sequential network as a parallel network case with

only one compound subnetwork. When searching for valid assignments in a sequence of

subnetworks A . . . Z, each subnetwork must be consistent and the overall network must be

consistent as well.

parallel network

s e

A

B

Z

decision network

s e

A

B

Z
[l,u]

[0,0]

[0,0]

[0,0] [0,0]

[0,0]

[0,0] [0,0]

[0,0]

[0,0]

[0,0]

[0,0]
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s e

[0,0]

[l,u]

Sequential Network

Figure 6-10: Sequential network example.

Figure 6-10 shows a sequential network with two subnetworks: a parallel network and

a decision network. When searching for assignments, DTP checks the two subnetworks

first. Then DTP checks the entire sequential network. DTP systematically searches subnet-

works of a sequential network in parallel, and each subnetwork in the sequence is searched

independently. For example, consider a sequence of three subnetworks, where each sub-

network represents a choice between two dynamic assignments (0 or 1). DTP performs a

systematic search of up to23 = 8 assignments (000,100,010,. . . 111) to identify a consis-

tent assignment, if one exists. The systematic search of DTP is achieved by usingfindfirst

andfindnextmessages on the subnetworks of sequential networks. The section below de-

scribes how parallel and decision start nodes are modified to perform systematic search in

case there are sequences of subnetworks.
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To simplify the communication between subnetworks during systematic search and to

improve efficiency, we introduce theSNI (Sequential Network Id) reference pointer. SNI

is used for parallel and decision subnetworks embedded within sequential networks. Start

nodes of parallel and decision subnetworks use SNI to instantiate parallel search on their

succeeding subnetwork and to wait for a response by communicating directly with the start

node of their succeeding subnetwork. For example, if two subnetworks,A and B, are

sequentially connected, then theSNI variable of start(A) is a pointer to start(B). For the

sequential network A . . . Z in Figure 6-1,SNI(start(A)) = start(B), SNI(start(B)) =

start(C) and so forth. DTP does not perform parallel search on a sequence of simple

temporal constraints, because it does not speed up search in that case.

  ((sequence
    (choose
      (A[1,1]))
      (B[3,3]))
    (choose
      (C[1,1]))
      (D[3,4]))
  )[6,8])

Search
v  u
1  6 neg.cycle
3  6 neg.cycle
1  8 neg.cycle
3  8 consistent

6 7
[1,1]

1 2
[1,1]

8 9

10

[3,3]
3 4

5
[3,4]

[6,8]

v u

s e

Figure 6-11: Example of a DHDSTN sequential network.

Figure 6-11 shows an example of two connected sequential networks with a simple

temporal constraint,(lb, ub) = (6, 8), on the entire graph. The SNI reference is represented

as the dotted arc fromv to u. In the figure, the TinyRMPL code is shown to the left and

the corresponding DHDSTN is in the middle. Note that the command names are irrelevant

to the pre-planning processing. There are two connected decision networks, each with two

options, hence a total of four combinations. Only the assignmentsv = 3 andu = 8 are

consistent. In that case the upper time bound on the two decisions is3 + 4 = 7, which is

greater than the overall lower time bound (6). However, three inconsistent combinations,

shown to the right in Figure 6-11, are attempted first before the consistent assignments are

found.

The DTP algorithm running on start nodes of decision and parallel networks is ex-

tended to find first and succeeding consistent assignments within a sequential network as

follows. To find the first consistent assignments to the subnetworks of a sequential net-

work, afindfirstmessage is sent to the start node of a subnetwork using SNI. For example,

if SNI(start(A)) = start(B), thenstart(A) searches subnetwork A and concurrently
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begins a search in subnetwork B by sending afindfirstmessage to B using the SNI. Then

start(A) synchronizes by waiting for the result of the search of the network A and the

search of sequential network B. Nextstart(B) receives the search request fromstart(A)

and sets its parent-id tostart(A) to enable a dreict response later tostart(A), thus jump-

ing over the entire networkA. If B has a sequential network C,start(B) does the same as

start(A) and so forth. This method of parallel search generalizes to sequential networks

of arbitrary length.
The pseudo-code of parallel start nodes for finding first consistent assignments is ex-

tended to enable search on sequential subnetworks by inserting the following two lines
between lines 5 and 6 in Figure 6-4 :

if sequel B exists

send(findfirst) to B

The parallel start node waits for a response from the sequence when waiting for responses

from the children. To extend the pseudo-code of a decision start node for finding first

consistent assignments, the same two lines are inserted between lines 3 and 4 in Figure 6-7,

and ”wait for sequel B (if it exists) is inserted” between lines 14 and 15

to synchronize with the sequential subnetwork. The resulting pseudo-code is shown in the

Appendix, Section B.

The search gets more complex when a sequential network is inconsistent and the next

valid assignment must be found. In this case, a sequential network must be searched sys-

tematically by trying remaining combinations of assignments to the subnetworks. The

pseudo-code in Figure 6-12 shows how a parallel start nodev processes afindnext. First,

v systematically tries to find a consistent assignment locally, i.e., on its own subnetwork

(lines 2-14). If there is no next consistent assignment tov’s subnetwork,v checks if there

is a sequential subnetwork (line 16). If there is,v sends afindnextto the start node of

the immediate neighbor networkSNI(v) in order to try all combinations (lines 17-19). If

there is no sequential subnetwork,v sends afail to its parent (line 23). This method also

generalizes to sequential networks of arbitrary lengths.

The psuedo-code in Figure 6-13 shows how a decision start node processes afind-

nextand communicates with sequential subnetworks. First, the start node systematically

searches for a consistent assignment on its own subnetwork (line 2) - the pseudo-code for

80



procedure parallelStartNode() //node v

1 if msg = (findnext)
2 for w = child-0 to child-n //last child
3 send(findnext) to w
4 wait for response
5 if response = ack then
6 if check-consistency(v)?
7 send(ack) to parent
8 return
9 else // not consistent

10 w = child-0 // reset w
11 else // response is NOT ok
12 send (findfirst) to w
13 wait for response // it is ok
14 end-for
15 // no next configuration exists
16 if sequel B exists
17 send(findnext) to B
18 wait for response
19 send response (ack/fail) to parent
20 else
21 //no combinations are ok,
22 //sequential network fails
23 send(fail) to parent

Figure 6-12: Extended findnext pseudo-code of parallel start nodes.

procedure decisionStartNode()

1 if msg = (findnext)
2 (first search for consistent assignment locally)
3 // search on sequel if it exists
4 if sequel B exists
5 // search on sequel
6 send(findnext) to B
7 // reset subnetwork
8 for w = child-0 to child-n //last child
9 value assignment = w

10 send(findfirst) to w
11 wait for response from child w
12 if response = ack then
13 break
14 end-for
15 // subnetwork will be ok
16 wait for response from B
17 send response (ack/fail) to parent
18 else
19 //no combinations are ok
20 send(fail) to parent

Figure 6-13: Extended findnext pseudo-code of decision start nodes.
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this search is identical to the pseudo-code for processingfindnextin Figure 6-9. If the

search in line 2 fails, but a sequential subnetwork exists (line 4), the start node searches

for the next consistent assignment to the sequential subnetwork (line 6) and resets its own

subnetwork to the first consistent assignment, identical to processing afindfirst message,

except for that the start node does not send afindfirst to the sequential network. If there is

no sequential network, afail is sent to the parent (line 20).

When searching for a consistent assignment to the network in Figure 6-11, for example,

DTP first makes the assignmentsv = 1 andu = 6. Processors initializes a consistency

check, and determines that the assignments are inconsistent with the simple temporal con-

straint of the network ([6,8]).s sends afindnextto v, which still has unexamined values

left in its domain.v makes the assignmentv = 3 and immediately returns with anack to

s. This assignment is also inconsistent. In the followingfindnext, v is forced to reset its

assignment to the first value in its domain (v = 1). v also sends afindnextto u using the

SNI reference.u makes a new assignmentu = 8. The combinationv = 1 andu = 8

is inconsistent. Finally, the consistent combination of assignmentsv = 3 andu = 8 are

found.

The pseudo-code of the DTP algorithm that runs on every processor is shown in the

Appendix (Section B page 107).

6.2.4 Soundness and Completeness

Definition 6.2 A solution to a DHDSTN isfeasibleif and only if the solution to the corre-

sponding HDSTN is feasible. For HDSTN feasibility, see Definition 4.2.

Proposition 6.1 Soundness of DTP. If a given DHDSTN,N , has a feasible solution,DTP (N)

will return ack, otherwise it will returnfail.

Proof of Proposition 6.1:

We prove thatDTP (N) = ack ⇒ {∃STN ⊆ N | STN is temporally consistent}, by

proving thatDTP (S) on any given DHDSTN network,S, (Figure 6-1) issound, i.e., S

will return ackiff S is temporally consistent. There are three cases to prove: 1)trivial case:

A time variable eventx ∈ Vsimple cannot itself create inconsistency. Leta be a simple time
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event variable, andB be an arbitrarily complex DHDSTN network. Assume thatB is tem-

porally consistent. A networkS of a connected toB, creates a simple temporal constraint

edge〈a, start(B), 0, 0〉. Since this edge does not introduce new cycles in the corresponding

distance graph,S is temporally consistent and always returnsack. 2)parallel network case:

the start node of a parallel networkP with arbitrarily complex subnetworks{A, B, ..., Z}

returnsack if and only if all subnetworks of P returnack AND P is temporally consis-

tent. 3)decision network case: the start node of a decision networkD with subnetworks

{A, B, ..., Z} returnsack iff there exists one subnetwork ofD that returnsack. Any given

DHDSTN mapped from a TinyRMPL program always consists of zero or more recursive

combinations of DHDSTN networks. SinceDTP (S) is sound, whereS is any of the three

cases just described, DTP issoundwhen solving any DHDSTN derived from TinyRMPL.

2

Proposition 6.2 Completeness of DTP. If there exists a feasible solution of a given DHD-

STN,N , DTP (N) = ack, i.e., DTP will find a feasible solution and returnack.

Proof of Proposition 6.2: Because DTP in the worst case performs an exhaustive search

on the graph of a given DHDSTN,N , trying all combinations of dynamic variable assign-

ments, it will find a feasible solution if one exists, by the definition of exhaustive search.2

So far the search behavior of DTP has been described, and we mentioned that a par-

allel start node checks for consistency when it has synchronized with its children, before

sending feedback to its parent. The following section explains how consistency checks are

performed in a distributed fashion using the synchronized Bellman-Ford algorithm.

6.2.5 Checking Active STN Consistency in a Distributed Fashion

At any given point during the DHDSTN search, the current dynamic variable assignment

forms an active subnetwork, analogous to an active subnetwork of an HDSTN. Temporal

consistency is determined by running a single source shortest path (SSSP) algorithm on

the distance graph corresponding to the active subnetwork, and by checking if there are

any negative weight cycles [8]. The weights correspond to upper and lower time bounds
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(distances) between the nodes in the network. If there is a negative cycle, the HDSTN is

not temporally consistent, i.e., it cannot be executed safely.

We use the distributed Bellman-Ford SSSP algorithm to check for negative cycles [22].

This has three major features: 1) the algorithm requires only local knowledge of the net-

work at every processor, 2) it does not exhibit exponential behavior in its synchronized

version when running on DHDSTNs, and 3) in general it runs in time linear in the number

of processors in the network.

The processors in many networked intelligent systems run asynchronously. The asyn-

chronous version of the Bellman-Ford shortest path algorithm is worst case exponential,

with respect to both computation and communication. However, if one synchronizes the

processors, then the shortest path can be determined in linear time [22]. The extra computa-

tion required for synchronization does not have a significant impact on the overall runtime

of the algorithm.

The Bellman-Ford shortest path algorithm, which has also been widely used as a data

network routing algorithm, works as follows: every nodei = 0..N in the network maintains

an estimated distance,Di, to a single predetermined target node:= 0. The algorithm is the

reverse of a single source shortest path algorithm because it findsthe shortest paths from

all sources to a single target. Initially Di = 0 if i = 0 or Di =∞, otherwise. Every node

i also maintains a tableDij containing estimates of distance to target from neighboring

nodes (j = 1,2,3...). A nodej is a neighbor to nodei if there is a simple temporal constraint

between them. Every nodei runs an update procedure which monotonically decreasesDi

by comparing distance estimates,Dij, going through neighboring nodes until it reaches the

actual shortest distance to the target, given that there are no negative weight cycles. The

update procedure does the following:

1. Update the tableDij with message updates from neighboring nodes.

2. Update the distance estimateDi :

Di = minj ( Dij + dij ) wheredij is the distance on the link from nodei to j. It sets

its distance to the value that minimizes the cost of going to the target through one of

its neighbors.
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3. Broadcast updatedDi to its neighbors.

DTP extends the Bellman-Ford algorithm in the following two ways to support consis-

tency testing of dynamic variable assignments:

1. While the centralized Bellman-Ford shortest path algorithm [6] can detect nega-

tive weight cycles in a graph, the originaldistributedBellman-Ford shortest path algorithm

is an all sources single destination algorithm, and does not allow visiting the destination

node, i.e., the node that initialized the consistency check, multiple times. Recall that the

distributed Bellman-Ford algorithm monotonically decreasesDi, i = 1 . . . n until they con-

verge to the shortest path distances. However, for the destination node (node 0),D0 = 0,

andD0 cannot be decreased further, since it is the destination. There is no shorter path to

itself than a path with zero distance. This restriction prevents the algorithm from searching

cycles in graphs, which is needed to detect negative weight cycles.
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Figure 6-14: a) Simple distance graph b) Same graph with a phantom node.

For example, consider the distance graph in Figure 6-14a with four nodes{t, a, b, c}

and simple temporal constraints between the nodes. Nodet is the destination, soDt = 0

andDi = ∞, i 6= t. The graph contains a negative weight cycle(t → a → b → c → t).

However,Dt cannot update its distance estimate, because it isthedestination.

We introduce aphantom-nodewith a zero weight link to the destination node of the

network. The phantom node becomes the destination, and the original destination can

then be visited multiple times, permitting the detection of negative cycles. Figure 6-14b

shows the graph in Figure 6-14a extended with a phantom nodept. During runtime of the

Bellman-Ford algorithm, the original destinationt may be updated with a negative distance

estimate, but it will always reset its estimate to zero, satisfying the zero distance temporal

constraint to the new destination. Nevertheless, negative weight cycles can be detected by

other nodes, as explained below.
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2. The other extension to the distributed Bellman-Ford for DTP is synchronization.

The processors are synchronized to ensure a linear runtime proportional to the number of

processors in the network (nodes in the DHDSTN). Linear runtime is a substantial improve-

ment of the otherwise exponential asynchronous Bellman-Ford algorithm. To implement

synchronization, the processors run N (number of processors) rounds. Each processor can-

not increase its iteration counter during each round until it has received updates from all its

processor neighbors. For every processor at round N, the distance estimate will have con-

verged or not (see the proof in [2]). The distance estimate of a processor has converged if

the estimate of round N equals the estimate in round N-1,i.e.,DN
i = DN−1

i for all i = 0..N .

If Di for one or more nodes has not converged, there is a negative weight cycle.

It is always true that during a particular consistency check, a subset of the processor

network is running distributed Bellman-Ford in parallel. The significant advantage with the

hierarchical network of the HDSTN and DHDSTN is that multiple concurrent checks can

run on various subnetworks concurrently and independently from each other. This speeds

up the solution time; see the experimental results in Section 7.3. Concurrent instances of

consistency checks on subnetworks are isolated from each other using the level variables,

defined in Section 5.2.1, as follows.

Only parallel start nodes (this includes sequential networks as well) initiate Bellman-

Ford consistency checks. At the consistency check initialization, theBellman-Ford init

message is used to inform nodes about the bottom level, hence the level of the parallel start

node, of the instance of that consistency check. Only nodes with a level greater or equal to

the bottom level will be a part of the consistency check, i.e., only nodes within the parallel

subnetwork rooted at the start node run the consistency check. For example in Figure 6-3,

if nodex initializes a consistency check at level1 at start nodex it will only affect nodes

S = {x, y, r, s, n, m}. Even though the nodes{u, v} are at level1, they are not affected,

because they are not directly connected to any nodes inS and are not located within the

parallel subnetwork.

After round N of the Bellman-Ford algorithm has been executed, the parallel start node

that initialized the consistency check needs to be informed whether the subnetwork is tem-

porally consistent. Since an undetermined number of processors in the subnetwork may

86



indicate a negative consistency results, i.e., inconsistency (DN
i 6= D

(N−1)
i ), a converge cast

is needed to gather this information and propagate it back to the parallel start node. A con-

verge cast is a backward propagation of consistency results through the subnetwork and is

initiated by the parallel end node at the lowest level of the consistency check. For example,

in Figure 6-3, if nodea initiated the consistency check, nodeb initiates a converge cast.

The parallel start node that initiated the consistency check eventually receives consistency

results from all its children and determines if the subnetwork is consistent.

The parallel end node sends anack or fail, depending if it is consistent, to all its in-

coming neighbors to initialize the converge cast towards the parallel start node. Due to

synchronization, all processors have executed N rounds and are waiting for the converge

cast. When a processor receives a converge cast message, it performs a logicalAND with

its own consistency view, sinceall processors must be consistent. It then propagates the

result to its parent. A parallel start node in the subnetwork synchronizes with all itsn

children performingn logical ANDs before relaying the result to its parent. Eventually the

consistency check initiator receives feedback from the converge cast.

For example, in Figure 6-3, if nodex initiated a consistency check at level 1, then after

N rounds, nodey initiates a converge cast, since the level ofy is 1. Firsty checks with its

own distance estimate. Assume that it is consistent. Theny sends anackmessage tos and

m. Assuming that all nodes are consistent, the twoackmessages are propagated backwards

to nodex, which determines that the subnetwork is consistent.

Consider now a consistency check initiated at level0 in Figure 6-3. Then at round N,

nodeb initializes a converge cast, since the level ofb is 0. Assume that for all nodesi

except for nodex, DN
i = DN−1

i , indicating consistency. During the converge cast,b sends

anackto {y, a, v}. v relays theackto u, which relays it toa. Nowa need only synchronize

with x. y relays theack to {s, m} and eventuallyx receives twoacks. However, sincex is

inconsistent, it sends afail to a, anda determines that the subnetwork is inconsistent.

DTP in general always runs a number of Bellman-Ford iterations equivalent to the total

number of nodes in the network, even though only a sub-set of the processors are running

the Bellman-Ford algorithm. The reason is that the size of a subnetwork is dynamic and

depends on the variable assignments, and a processor does not have real-time knowledge
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about a given size of a subnetwork when running Bellman-Ford. Section 7.4 on future work

describes how to address the problem with this limitation.

The pseudo-code of distributed consistency checking and its integration into the search

methods of the DTP algorithm is shown in the Appendix (Section B page 107).

6.2.6 Running DTP on the Persuer-evader Scenario

This sub-section walks DTP through the persuer-evader scenario, see the corresponding

HDSTN in Figure 6-15. DTP makes the same variable assignments as the centralized

HDSTN solver does on the same example (see Section 4.4). Additionally, DTP searches

the network in parallel, as described below.
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Figure 6-15: The pursuer-evaderStrategyactivity problem solved by DTP.

When DTP starts running on the processors of a DHDSTNN , they are in an idle-

mode, i.e., they are not performing any computations but listening for messages. Afindfirst

message injected into the network to the origin node,start(N), will initialize the solution

process. The injection can take place by own initiative in the network or through an external

interface to other computers such as robots, a base station or ground control.

The start node (0) sends out afindfirst message to nodes1 and 4. Node 1 sends

back anack message to node0. Node4 sends out fivefindfirst messages to processors

{2, 8, 21, 22, 3}; the findfirst message to3 is sent using theSNI reference pointer. The

process of node4 sending outfindfirstmessages is illustrated in Figure 6-16a. In the fig-

ures in this sub-section,findfirstandfindnextare abbreviated asFF andFN, respectively.
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Figure 6-16: Snapshots of DTP searching the DHDSTN of the pursuer-evader problem.

The search now becomes parallel as thefindfirst messages propagate along the five

paths simultaneously. Node4 will wait for feedback from all nodes before returning a

result to its parent, node0. Recall that node2 is a parallel end node and will just return

ackmessages back to message senders. Since the parent of node3 becomes node4, node

3 will report directly back to4. The search on the nodes{21, 6, 22, 7} is a propagation of

findfirst messages towards2 andack messages backwards towards4. The decision start

node8 makes the assignmentδ8 = 9 and sends afindfirst to 9, from where the search

propagates to nodes{9, 15, 13, 14, 16, 10, 5}. Figure 6-16b is a snapshot of the search,

whereack messages are propagated backwards to node4 and the subnetwork of nodes

{9, 15, 13, 14, 16, 10} performs a consistency check, while the subnetwork rooted at node

3 performs a parallel search, as described next.
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Figure 6-17: Snapshots of DTP searching the DHDSTN of the pursuer-evader problem.
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Simultaneously, node3 makes the variable assignmentδ3 = 24, and sends afindfirst

message to node24, which activates the dynamic variableδ30. δ30 makes the assignment

δ30 = 31 and sends afindfirstmessage to 31 (Figure 6-17a). Eventually the parallel start

node24 will initiate a consistency check on nodes between itself and node25. An incon-

sistency is detected, so node24 sends afindnextto node30 (Figure 6-17b). Node30 makes

a new assignmentδ30 = 33. This assignment is consistent at the level of24, so anack

message is propagated to node3 and then node4 (Figure 6-17c).
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Figure 6-18: Snapshot of DTP searching the DHDSTN of the pursuer-evader problem.

A consistency check is performed on the parallel network between nodes4 and2 (Fig-

ure 6-18), which is consistent with the current assignments. Since the assignments are

consistent at node4, node4 sends anack to the start node0, which checks that the entire

network is consistent. The network is consistent and node0 returnssuccess. The final vari-

able assignments areδ8 = 9, δ3 = 24, andδ30 = 33. Figure 6-19 shows the final consistent

STN selected by DTP.

6.3 Summary

This chapter introduces the Distributed Temporal Planner (DTP) for the pre-planning of a

Distributed Hierarchical Dynamic Simple Temporal Network (DHDSTN). DTP identifies

a temporally consistent selection of funtionally redundant methods prior to dispatching to

ensure a safe execution. This chapter describes the DTP algorithm, proves soundness and

completeness, explains the distributed temporal consistency checking and illustrates the
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Figure 6-19: Final consistent STN of the pursuer-evader problem selected by DTP.

behavior of DTP by walking through the solution extraction of the pursuer-evader strategy

scenario. Chapter 7 concludes the thesis by covering the description of the implementation

of DTP, experimental results, future work and a final summary.
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Chapter 7

Conclusions

7.1 Overview

The first section of this chapter describes the implementation of the distributed temporal

planner, including the compiler and simulator. The following section focuses on exper-

imental results and discussion. The chapter ends with a section on future work and a

summary.

7.2 Implementation

The implementation consists of theTinyRMPL to HDSTN compilerand asoftware simula-

tor for the HDSTN distribution algorithm and DTP. The entire implementation is written in

ISO/ANSI-compliant C++. The TinyRMPL to HDSTN compiler outputs the HDSTN file

in XML format [10]. XML is today’s standard media for document exchange across net-

works and between various computer platforms. The simulator is a batch program, which

uses the Xerces-C XML library [3] for parsing the XML file.

7.2.1 TinyRMPL to HDSTN Compiler

The compiler translates TinyRMPL code into HDSTN by performing the mapping de-

scribed in Chapter 4. Additionally, the compiler performs a search over the HDSTN in
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order to extract activity constraints and sequential network IDs (SNIs). It saves the final

HDSTN in XML. The compiler generates a graphical representation of the HDSTN and

saves it as a Postscript file using the GraphViz Dot program [15]. Although GraphViz is

very useful for illustration of HDSTNs, it becomes impractical to read the generated graphs

when the number of nodes exceeds 30 to 40. The XML format that represents an HDSTN

is specified in the Appendix, Section C.

7.2.2 Software Simulator for the Distributed Temporal Planner

The simulator distributes the HDSTN by creating robot agents that represent real robots.

Each robot agent owns a number of virtual agents. Virtual agents have simple temporal

constraints between them. A simple temporal constraint points from a virtual agent to

another virtual agent inside the same robot agent or to a virtual agent in an external robot

agent. The simulator takes care of message communication using a routing table, which

determines how messages are routed within the network.

The simulator runs the temporal planner in cycles. The DTP procedures for processors

are implemented as finite state machines, enabling execution of multiple processors in one

thread. The implementation of the DTP algorithm (namely the while loops) for the different

types of processors is divided into states. In each state a few lines of code is executed on

each processor at a time, simulating a truly multi-threaded environment with one thread.

During runtime, the user can:

• execute one DTP cycle at a time,

• jump ahead to a certain planning cycle,

• let the simulator run until the planning process finishes,

• view state and local knowledge information of the processors,

• view the current assignments of the dynamic variables, and

The implementation of the DTP simulator consists of the following C++ classes:
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• AgentSimulator.cppdistributes an HDSTN, simulates robot agents, and enables mes-

sage communication between robot agents.

• PhysicalAgent.cppcontains one or more virtual agents and simulates all of its virtual

agents. It also handles data exchange among virtual agents that reside in the same

robot agent.

• VirtualAgent.cpprepresents a DHDSTN node (see Figure 5-1) and runs DTP where

the actual DTP code depends on the node type flag. The pseudo-code is shown in the

Appendix, Section B.

• AgentLink.cpprepresents a simple temporal constraint between two virtual agents.

• AgentMessage.hdefines the message structure used for communication.

7.2.3 Porting the Code to Other Systems

The code can ported to any other system that has a C++ compiler. The Xerces-C XML li-

brary exists for most common platforms. For porting DTP to a distributed platform, such as

a rover test-bed, the PhysicalAgent and its classes must be running on each robot. To port

the code to the tiny processors, the PhysicalAgent, VirtualAgent and AgentLink classes

must be converted to C code compatible with the Tiny OS1, but the core algorithm imple-

mentation does not need to be changed.

7.3 Experiments and Discussion

The implementation of DTP has been tested on a 1.133GHz PC with 384MB of RAM. In

brief, the system simulates an array of processors solving a DHDSTN in rounds. In every

round, every processor performs alisten-act-respondcycle. We have implemented a ran-

dom TinyRMPL code generator in Java to test DTP. The TinyRMPL generator takes in three

parameters(C,D,N), whereC denotes the number of desired TinyRMPL combinators,D

denotes the maximum recursive depth, andN denotes the desired number of corresponding

1TinyOS Website: http://webs.cs.berkeley.edu/tos/
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DHDSTN processors. The generator creates TinyRMPL code while attempting to fulfill the

parameters.

Range Trials Nodes Cycles RunT/ms Assignmt. Checks Backtrack Messages Success
0-10 5 6.00 10.00 6.00 0.50 0.50 0.00 69.00 1.00
11-20 5 16.38 38.94 39.88 1.38 1.19 0.38 558.31 0.75
21-30 5 24.83 36.08 61.13 0.88 0.71 0.13 828.08 0.63
31-40 5 32.00 41.73 72.73 2.09 0.82 0.09 1030.36 0.91
41-50 5 44.67 54.07 138.87 3.27 0.73 0.27 2087.67 0.40
51-60 5 53.62 64.69 180.31 3.00 0.81 0.31 2342.85 0.54
61-70 5 63.00 101.13 162.63 3.50 1.63 1.13 2251.75 0.50
71-80 5 72.86 73.43 175.86 4.14 1.14 0.57 2288.71 0.43
81-90 5 83.00 106.50 239.00 3.50 1.33 1.00 3238.17 0.50
91-100 5 92.36 125.27 297.82 3.45 1.45 0.64 4222.73 0.82

Table 7.1: Empirical results.

For each TinyRMPL program, we compiled it to an HDSTN, distributed it among the

processors, and ran 5 trials to average small runtime fluctuations. Each robot agent had

exactly one virtual agent. The running time and number of cycles needed to terminate de-

pended heavily on the amount of backtracking and consistency checks. In order to smooth

out the effects of outlier results, we sorted the trials into buckets depending on the num-

ber of nodes of a DHDSTN, in increments of 10. The results are shown in Table 7.1

and graphically in Figure 7-1. The graph shows a linear increase in the number of cycles

before completion as a function of the number of nodes in the DHDSTN. Some of the

variations due to outliers were not fully averaged out. In our tests, we generated several
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Figure 7-1: Graphical depiction of empirical results, cycles vs. nodes.

hundred randomly generated TinyRMPL programs with varying parameters in the ranges
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(C=[3,30],D=[4,10],N=[5,200]). Tests included running DTP with from tens of nodes to

over two thousand nodes. The table shows the average test results for 10 different buckets

and indicates a relatively steady, linear increase in all variables - cycles, runtime in ms,

total number of assignments, number of consistency checks, number of backtracks, and

processor-to-processor messages - as a function of the average number of nodes in a partic-

ular bucket. The robot example from Section 1.3 is relatively small and is solved in around

120 cycles by DTP.

The result is what was expected, for two reasons: 1) As the parameter values of the

TinyRMPL generator increase, the random programs become increasingly complex and

harder to solve; and 2) the increase in cycles as a function of nodes is linear or close to

linear, because DTP performs parallel search and consistency checkswheneverpossible.

The network search including variable assignments is of linear complexity and the dis-

tributed Bellman-Ford algorithm is of linear complexity. However, the runtime depends

on the number of backtracks and consistency checks, proportional to the complexity of the

problem.

The pre-planning problem in general is worst-case exponential. The rightmost column

of the table shows the average success rate (indicating whether a solution was found), where

0 is a failure and 1 a success. Given the success rates in the table, we can infer empirically

that the random TinyRMPL generator produced a large variety of programs. It did not

create programs that were extremely hard to solve, which would show polynomial or even

exponential running time.

The experimental results show that the number of processor-to-processor messages in-

creases significantly as a function of nodes and cycles. The high number of messages is

mainly due to the distributed Bellman-Ford algorithm which is of quadratic communication

complexity with respect to the number of nodes in a network. During consistency checking

in a DHDSTN, each processor typically sends at least two Bellman-Ford updates to neigh-

bors in a cycle; hence withn processor andn cycles, at least2n2 messages will be sent

during a Bellman-Ford consistency check on the entire graph. The numbers in the message

column in Table 7.1 would be reduced by about 50% or more if local Bellman-Ford update

broadcasts to neighbors within the communication range of a processor were counted in-
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stead of processor-to-processor messages, because HDSTN nodes on average have two to

three neighbors. The other reason for the high number of messages is that the consistency

check always runs|V | Bellman-Ford iterations on any subnetwork independent of its level,

since processors cannot know the dynamic size of a subnetwork during runtime and that

size can also not be calculated at compile-time.

An efficient way to determine the number of Bellman-Ford iterations, which does not

increase the computational complexity of DTP, is to count nodes within each subnetwork

during search. When an end node of a parallel subnetwork receives afindfirstor findnext,

it can send back anack with a counter set to 0 using thedata field of a message. Each

node visited on the way towards the parallel-start node increases the counter. Parallel-start

nodes return to their parents the sum of the counts of all their children. When the Bellman-

Ford algorithm is initialized, the initialization message must include the counted number

of nodes, i.e., the number of Bellman-Ford iterations, along with the level information.

7.4 Future work

Conflict-directed backtracking could improve the DTP search. This would require DTP

to locate the negative weight cycles in order to prune. Negative cycles can be located

with centralized algorithms. For example, the second half of the centralized Bellman-Ford

shortest path algorithm [6] identifies edges that are part of negative cycles. It is much

harder to identify negative cycles in distributed asynchronous networks, even if the shortest

path algorithm is synchronized. Additionally, a better backtrack search only helps in some

cases, because an inconsistency is often induced at the top level, which makes it hard to

identify the parallel threads that caused the inconsistency and prune.

Scaling DTP to run on large numbers of processors requires the reduction of message

communication. Communication can be reduced by counting the number of nodes and

hence iterations before each Bellman-Ford consistency check, as described above, and by

allowing each processor to execute DTP on collections of variables and constraints. Nev-

ertheless, our results indicate that DTP is an efficient distributed algorithm for ensuring

safe execution on networked embedded processors with widely varying computational re-
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sources.

The ad-hoc computer network distribution algorithm for HDSTNs presented in section

Section 5.3 takes the first steps towards the goal of applying model-based programming

and distributed coordination to ad-hoc networks. Much more could be done to improve the

distribution method. One could apply a more intelligent load-balancing distribution method

that had more extensive knowledge about the topology of the group hierarchies and the

resources available for each robot. Additionally, the current distribution method is static,

but the environment of these networks is inherently dynamic. For example, processors

fail from time to time. To adapt to a dynamic environment and to increase robustness,

the tree-hierarchy formation algorithm and the HDSTN distribution method should run

continuously to adapt to network topology changes and to reallocate pre-planning tasks as

necessary.

Lastly, the TinyRMPL language ought to be extended with more features from RMPL,

such as preemption and conditionals [36], to enable the description of more complex sce-

narios. Currently, TinyRMPL uses a subset of RMPL to support deployment on robots

that are severely constrained with respect to computational power. However, more capable

robots could and should support all the features of RMPL.

7.5 Summary

Robotic execution languages improve robustness by managing functionally redundant pro-

cedures for achieving goals. The model-based programming approach extends this by guar-

anteeing correctness of execution through pre-planning of non-deterministic timed threads

of activities. Executing model-based programs effectively on distributed autonomous plat-

forms requires distributing this pre-planning process.

This thesis presents a distributed planner for model-based programs whose planning

and execution is distributed among agents with widely varying levels of processor power

and memory resources. TinyRMPL is a compact language that leverages the hierarchical

properties, functionally redundant methods, and flexible time bounds of RMPL and enables

distribution of model-based programs among robots that are severely constrained with re-
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spect to power and memory. Hierarchical Dynamic Simple Temporal Networks (HDSTNs)

map directly from TinyRMPL and enable 1) efficient task distribution because of the mini-

mal local knowledge requirements, and 2) efficient parallel pre-planning including parallel

consistency checks, enabled by the hierarchical properties of HDSTNs. These contribu-

tions are implemented within the Distributed Temporal Planner (DTP) system, which in-

cludes a TinyRMPL to HDSTN compiler, distribution of HDSTNs with robot and virtual

agents, and distributed pre-planning. The initial, simple distribution method is extended

through leader election and hierarchical group formation, and through a more advanced dis-

tribution method of HDSTNs within ad-hoc computer networks. Finally, the experimental

results indicate that DTP is an efficient distributed algorithm for ensuring safe execution on

heterogeneous robots with widely varying computational resources. This research presents

a first step toward distributed model-based planning. Future research will be required to

further develop the ideas of the distributed model-based programming paradigm.
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Appendix A

Pseudo-code for HDSTN-solver

procedure HDSTN_Solver(n)
  consistent = true
  i = 1
  while true
    if consistent?
      i = label(i,consistent)
    else
      i = unlabel(i,consistent)
    if i > n
      return success
    else if i = 0
      return failure

procedure label(i,consistent)
  while v[i] inactive and i<=n
    i = i + 1
  if i > n
    return i
  for v[i] = each element of currDom[i]
    consistent = Bellman-Ford(DSTN,0)
    if not consistent?
      currDom[i]=remove(v[i],currDom[i])
    else
      update set of variables based on
        activity constraints
  end-for
  if consistent
    return i+1
  else
    return i

procedure unlabel(i,consistent)
  h = i-1
  while v[i] inactive and i>0
    h = h - 1
  if h = 0 return h
  currDom[i]=domain[i]
  currDom[h]=remove(v[h],currDom[h])
  update set of variables based on
    activity constraints
  consistent = currDom[h] != nil
  return h

procedure Bellman-Ford(G,s)
initialize-single-source(G,s)
V[G] = V-simple + V-decision +
  V-parallel
for i=1 to |V[G]|-1
  for each active edge (u,v) in E[G]
    relax(u,v,w)
for each active edge(u,v) in E[G]
  if d[v] > d[u]+w(u,v)
    return false
return true

subprocedure relax(u,v,w)
if d[v] > d[u]+w(u,v)
  d[v] = d[u]+w(u,v)

Figure A-1: HDSTN-solver pseudo-code.
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Appendix B

DTP Pseudo-code

Figure B-1 shows the DTP pseudo-code for processors with the parallel-start flag set. The

check-consistency() procedure is a helper function used to initialize consistency check and

to process the results. Figure B-2 shows the DTP pseudo-code for processors with the

decision-start flag set. Figure B-3 shows the DTP pseudo-code for processors with the

parallel-end flag, decision-end flag, or primitive flag set, and the pseudo-code for the dis-

tributed Bellman-Ford consistency check.
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procedure check-consistency(x)
BF-level = level // isolate check
for (each neighbor w at BF-level

and above)
send (BF init) to w
send (BF update) to w

run distributed-Bellman-Ford()
on subgraph rooted at x

wait for BF responses
if consistent?

return true
else

return false

procedure parallelStartNode() //node v
wait for message msg
if msg = (findfirst)

set parent of v to msg.from
for each child

send(findfirst) to w
if sequel B exists

send(findfirst) to B
wait for all responses from children
wait for response from B
if any of the responses is fail

send(fail) to parent of v
else // all ok

if check-consistency(v)?
send(ack) to parent

else
// search systematically
for w = child-0 to child-n //last

send(findnext) to w
wait for response
if response = ack then

if check-consistency(v)?
send(ack) to parent
return

else // not consistent
w = child-0 // reset w

else // response is NOT ok
send (findfirst) to w
wait for response // it is ok

end-for
send(fail) to parent

else if msg = (findnext)
for w = child-0 to child-n //last child

send(findnext) to w
wait for response
if response = ack then

if check-consistency(v)?
send(ack) to parent
return

else // not consistent
w = child-0 // reset w

else // response is NOT ok
send (findfirst) to w
wait for response // it is ok

end-for
// no next configuration exists
if sequel B exists

send(findnext) to B
wait for response
send response (ack/fail) to parent

else
//no combinations are ok,
//sequential network fails
send(fail) to parent

else if msg = (BF init)
BF-level = data(msg)
for each neighbor w

send (BF init) to w
send (BF update) to w

else if msg = (BF update)
run distributed-Bellman-Ford-update()

Figure B-1: DTP pseudo-code for processors with the parallel-start flag set.
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procedure decisionStartNode()
wait for message msg
if msg = (findfirst)

parent = msg.from
if sequel B exists

send(findfirst) to B
for w = child-0 to child-n //last child

value assignment = w
send(findfirst) to w
wait for response from child w
if response = ack then

wait for sequel B (if there is any)
if (sequel B and sequel is OK)

OR no sequel
send(ack) to parent

else
send(fail) to parent

return
else // fail

remove w from child list
end-for
// no more assignments (children) exist
wait for sequel B
send(fail) to parent

else if msg = (findnext)
w = current assignment (child)
// search on subnetwork
if w enables activity constraint

send(findnext) to w
wait for response
if response = ack

send(ack) to parent
return

while w < last child do
w = next assignment
send(firstfirst) to w
wait for response
if response = ack

send(ack) to parent
return

else // fail
remove w from child list

end-while
// search on sequel if it exists
if sequel B exists

// search on sequel
send(findnext) to B
// reset subnetwork
for w = child-0 to child-n //last child

value assignment = w
send(findfirst) to w
wait for response from child w
if response = ack then

break
end-for
// subnetwork will be ok
wait for response from B
send response (ack/fail) to parent

else
//no combinations are ok
send(fail) to parent

else if msg = (BF init)
BF-level = data(msg)
for current selected child w

send (BF init) to w
send (BF update) to w

send (BF init) to parent
send (BF update) to parent

else if msg = (BF update)
run distributed-Bellman-Ford-update()

Figure B-2: DTP pseudo-code for processors with the decision-start flag set.
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procedure DTP-parallelEndNode()
wait for message msg
if msg = (findfirst) OR msg = (findnext)

if msg.from is parstart?
set parent of v to msg.from

send(ack) to parent

else if msg = (ack) OR msg = (fail)
send msg to parent

else if msg = (BF init)
BF-level = data(msg)
if BF-level = level

BF-par-end? = true
for (each neighbor w at BF-level

and above)
send (BF init) to w
send (BF update) to w

else if msg = BF update
run distributed-Bellman-Ford-update()

procedure DTP-decisionEndNode()
wait for message msg
if msg = (findfirst) OR msg = (findnext)

set parent of v to sender of msg
send(ack) to parent

else if msg = (ack) OR msg = (fail)
send(msg) to parent

else if msg = (BF init)
BF-level = data(msg)
if (neighbor w in forward direction

at BF-level and above)
send (BF init) to w
send (BF update) to w

send (BF init) to parent
send (BF update) to parent

else if = (BF update)
run distributed-Bellman-Ford-update()

procedure DTP-primitiveNode()
wait for message msg
if msg = (findfirst) OR msg = (findnext)

relay message forward

else if msg =(fail) OR msg = (ack)
relay message backwards

if msg = (BF init)
BF-level = data(msg)
for each neighbor w

send (BF init) to w
send (BF update) to w

if msg = (BF update)
run distributed-Bellman-Ford-update()

procedure distributed-Bellman-Ford-update()
update distance table
if synchronized with all neighbors

run BF update rule
broadcast distance to neighbors
increment iteration counter

if iteration counter = N (finished)
if (parallel-end node of structure

(BF-par-end?))
initialize converge cast

else
wait for feedback message(s)

if (all feedback are ok
AND locally consistent?)

send(ack) to parent
else

send(fail) to parent

Figure B-3: DTP pseudo-code for processors with the flag set to: parallel-end or decision-
end or primitive flag set. Pseudo-code for the distributed Bellman-Ford consistency check.
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Appendix C

XML format specification of HDSTN

files

The TinyRMPL to HDSTN compiler saves the output in XML. The format supports ar-

bitrary numbers of dynamic variables, activity constraints, time events and commands.

Every dynamic variable has an associated domain with an arbitrary number of values. The

HDSTN file format specification is shown in Figure C-1. The Strategy scenario example

compiled to an HDSTN XML file is shown next.
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HDSTN XML file :=
<hdstn>

<domains>
<domain name>

<value value-name />
...

</domain>
...

</domains>
<variables>

<variable variable-name, time-event id, domain, initial?/>
...

</variables>
<activity_constraints>

<activity_constraint variable-name, value-name, variable-name/>
...

</activity_constraints>
<nodes>

<node time-event id,node type,ssi,level >
<neighbors>

<neighbor time-event id, level, simple-temporal-constraint-dist, forward? />
...

</neighbors>
</node>
...

</nodes>
<commands>

<command start time-event id, end time-event id, command name>
<parameters>

<parameter name/>
...

</parameters>
</command>

<commands>
</hdstn>

Figure C-1: XML HDSTN file format specification.
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TheStrategyexample in the HDSTN XML format.

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE dcsp >

<!-- @version: -->

<hdstn>
<domains>

<domain NAME="domain-1">
<value NAME="24" />
<value NAME="26" />

</domain>
<domain NAME="domain-2">

<value NAME="31" />
<value NAME="33" />

</domain>
<domain NAME="domain-3">

<value NAME="9" />
<value NAME="11" />

</domain>
</domains>
<variables>

<variable NAME="strategy_1" ID="3" DOMAIN="domain-1" INITIAL="yes" />
<variable NAME="strategy_1_0_0" ID="30" DOMAIN="domain-2" INITIAL="no" />
<variable NAME="strategy_0_0" ID="8" DOMAIN="domain-3" INITIAL="yes" />

</variables>
<activity_constraints>

<activity_constraint VAR_NAME="strategy_1" EQ_VAL="24" ACTIVATE="strategy_1_0_0" />
</activity_constraints>
<nodes>

<node ID="0" TYPE="ps" SSI="-1" LEVEL="0">
<neighbors>

<neighbor ID="1" LEVEL="0" TC="40" FW="yes"/>
<neighbor ID="4" LEVEL="1" TC="0" FW="yes"/>

</neighbors>
</node>
<node ID="1" TYPE="pe" SSI="-1" LEVEL="0">

<neighbors>
<neighbor ID="0" LEVEL="0" TC="0" FW="no"/>
<neighbor ID="23" LEVEL="1" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="2" TYPE="pe" SSI="-1" LEVEL="1">

<neighbors>
<neighbor ID="3" LEVEL="1" TC="0" FW="yes"/>
<neighbor ID="4" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="5" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="6" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="7" LEVEL="2" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="3" TYPE="ds" SSI="-1" LEVEL="1">

<neighbors>
<neighbor ID="2" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="24" LEVEL="1" TC="0" FW="yes"/>
<neighbor ID="26" LEVEL="1" TC="0" FW="yes"/>

</neighbors>
</node>
<node ID="4" TYPE="ps" SSI="3" LEVEL="1">

<neighbors>
<neighbor ID="0" LEVEL="0" TC="0" FW="no"/>
<neighbor ID="2" LEVEL="1" TC="INF" FW="yes"/>
<neighbor ID="8" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="21" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="22" LEVEL="2" TC="0" FW="yes"/>

</neighbors>
</node>
<node ID="5" TYPE="de" SSI="-1" LEVEL="2">

<neighbors>
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<neighbor ID="2" LEVEL="1" TC="0" FW="yes"/>
<neighbor ID="10" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="12" LEVEL="2" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="6" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="2" LEVEL="1" TC="0" FW="yes"/>
<neighbor ID="21" LEVEL="2" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="7" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="2" LEVEL="1" TC="0" FW="yes"/>
<neighbor ID="22" LEVEL="2" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="8" TYPE="ds" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="4" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="9" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="11" LEVEL="2" TC="0" FW="yes"/>

</neighbors>
</node>
<node ID="9" TYPE="ps" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="8" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="10" LEVEL="2" TC="INF" FW="yes"/>
<neighbor ID="15" LEVEL="3" TC="0" FW="yes"/>

</neighbors>
</node>
<node ID="10" TYPE="pe" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="5" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="9" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="16" LEVEL="3" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="11" TYPE="ps" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="8" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="12" LEVEL="2" TC="INF" FW="yes"/>
<neighbor ID="19" LEVEL="3" TC="0" FW="yes"/>

</neighbors>
</node>
<node ID="12" TYPE="pe" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="5" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="11" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="20" LEVEL="3" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="13" TYPE="pr" SSI="-1" LEVEL="3">

<neighbors>
<neighbor ID="14" LEVEL="3" TC="0" FW="yes"/>
<neighbor ID="15" LEVEL="3" TC="-5" FW="no"/>

</neighbors>
</node>
<node ID="14" TYPE="pr" SSI="-1" LEVEL="3">

<neighbors>
<neighbor ID="13" LEVEL="3" TC="0" FW="no"/>
<neighbor ID="16" LEVEL="3" TC="2" FW="yes"/>

</neighbors>
</node>
<node ID="15" TYPE="pr" SSI="-1" LEVEL="3">

<neighbors>
<neighbor ID="9" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="13" LEVEL="3" TC="6" FW="yes"/>

</neighbors>
</node>
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<node ID="16" TYPE="pr" SSI="-1" LEVEL="3">
<neighbors>

<neighbor ID="10" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="14" LEVEL="3" TC="-1" FW="no"/>

</neighbors>
</node>
<node ID="17" TYPE="pr" SSI="-1" LEVEL="3">

<neighbors>
<neighbor ID="18" LEVEL="3" TC="0" FW="yes"/>
<neighbor ID="19" LEVEL="3" TC="-10" FW="no"/>

</neighbors>
</node>
<node ID="18" TYPE="pr" SSI="-1" LEVEL="3">

<neighbors>
<neighbor ID="17" LEVEL="3" TC="0" FW="no"/>
<neighbor ID="20" LEVEL="3" TC="2" FW="yes"/>

</neighbors>
</node>
<node ID="19" TYPE="pr" SSI="-1" LEVEL="3">

<neighbors>
<neighbor ID="11" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="17" LEVEL="3" TC="20" FW="yes"/>

</neighbors>
</node>
<node ID="20" TYPE="pr" SSI="-1" LEVEL="3">

<neighbors>
<neighbor ID="12" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="18" LEVEL="3" TC="-1" FW="no"/>

</neighbors>
</node>
<node ID="21" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="4" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="6" LEVEL="2" TC="8" FW="yes"/>

</neighbors>
</node>
<node ID="22" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="4" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="7" LEVEL="2" TC="8" FW="yes"/>

</neighbors>
</node>
<node ID="23" TYPE="de" SSI="-1" LEVEL="1">

<neighbors>
<neighbor ID="1" LEVEL="0" TC="0" FW="yes"/>
<neighbor ID="25" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="27" LEVEL="1" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="24" TYPE="ps" SSI="-1" LEVEL="1">

<neighbors>
<neighbor ID="3" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="25" LEVEL="1" TC="35" FW="yes"/>
<neighbor ID="30" LEVEL="2" TC="0" FW="yes"/>

</neighbors>
</node>
<node ID="25" TYPE="pe" SSI="-1" LEVEL="1">

<neighbors>
<neighbor ID="23" LEVEL="1" TC="0" FW="yes"/>
<neighbor ID="24" LEVEL="1" TC="-20" FW="no"/>
<neighbor ID="35" LEVEL="2" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="26" TYPE="ps" SSI="-1" LEVEL="1">

<neighbors>
<neighbor ID="3" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="27" LEVEL="1" TC="INF" FW="yes"/>
<neighbor ID="38" LEVEL="2" TC="0" FW="yes"/>

</neighbors>
</node>
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<node ID="27" TYPE="pe" SSI="-1" LEVEL="1">
<neighbors>

<neighbor ID="23" LEVEL="1" TC="0" FW="yes"/>
<neighbor ID="26" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="39" LEVEL="2" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="28" TYPE="de" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="29" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="32" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="34" LEVEL="2" TC="0" FW="no"/>

</neighbors>
</node>
<node ID="29" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="28" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="35" LEVEL="2" TC="20" FW="yes"/>

</neighbors>
</node>
<node ID="30" TYPE="ds" SSI="29" LEVEL="2">

<neighbors>
<neighbor ID="24" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="31" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="33" LEVEL="2" TC="0" FW="yes"/>

</neighbors>
</node>
<node ID="31" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="30" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="32" LEVEL="2" TC="40" FW="yes"/>

</neighbors>
</node>
<node ID="32" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="28" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="31" LEVEL="2" TC="-30" FW="no"/>

</neighbors>
</node>
<node ID="33" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="30" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="34" LEVEL="2" TC="15" FW="yes"/>

</neighbors>
</node>
<node ID="34" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="28" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="33" LEVEL="2" TC="-10" FW="no"/>

</neighbors>
</node>
<node ID="35" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="25" LEVEL="1" TC="0" FW="yes"/>
<neighbor ID="29" LEVEL="2" TC="-10" FW="no"/>

</neighbors>
</node>
<node ID="36" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="37" LEVEL="2" TC="0" FW="yes"/>
<neighbor ID="38" LEVEL="2" TC="-5" FW="no"/>

</neighbors>
</node>
<node ID="37" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="36" LEVEL="2" TC="0" FW="no"/>
<neighbor ID="39" LEVEL="2" TC="30" FW="yes"/>

</neighbors>
</node>
<node ID="38" TYPE="pr" SSI="-1" LEVEL="2">
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<neighbors>
<neighbor ID="26" LEVEL="1" TC="0" FW="no"/>
<neighbor ID="36" LEVEL="2" TC="10" FW="yes"/>

</neighbors>
</node>
<node ID="39" TYPE="pr" SSI="-1" LEVEL="2">

<neighbors>
<neighbor ID="27" LEVEL="1" TC="0" FW="yes"/>
<neighbor ID="37" LEVEL="2" TC="-20" FW="no"/>

</neighbors>
</node>

</nodes>
<commands>

<command ID="14" END_ID="16" CMD="SensorGroup.transmit-info">
<parameters>

<parameter NAME="TO_ROVERS" />
</parameters>

</command>
<command ID="15" END_ID="13" CMD="SensorGroup.sensor-tracking">

<parameters>
<parameter NAME="LIGHT" />
<parameter NAME="SOUND" />
<parameter NAME="EM_FIELDS" />

</parameters>
</command>
<command ID="18" END_ID="20" CMD="Helicopter1.transmit-info">

<parameters>
<parameter NAME="TO_ROVERS" />

</parameters>
</command>
<command ID="19" END_ID="17" CMD="Helicopter1.vision-tracking">

<parameters>
<parameter NAME="EVADER1" />

</parameters>
</command>
<command ID="21" END_ID="6" CMD="Rover1.wait-receive-info">
</command>
<command ID="22" END_ID="7" CMD="Rover2.wait-receive-info">
</command>
<command ID="29" END_ID="35" CMD="Rover1.fast-path-traversal">
</command>
<command ID="31" END_ID="32" CMD="Rover1.compute-advanced-path">
</command>
<command ID="33" END_ID="34" CMD="Rover1.compute-simple-path">
</command>
<command ID="37" END_ID="39" CMD="Rover2.path-traversal">
</command>
<command ID="38" END_ID="36" CMD="Rover2.compute-simple-path">
</command>

</commands>
</hdstn>
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