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Abstract

Highly robust embedded systems have been enabled through software executives that
have the ability to reason about their environment. Those that employ the model-
based autonomy paradigm automatically diagnose and plan future actions, based on
models of themselves and their environment. This includes autonomous systems that
must operate in harsh and dynamic environments, like deep space. Such systems must
be robust to a large space of possible failure scenarios. This large state space poses
difficulties for traditional scenario-based testing, leading to a need for new approaches
to verification and validation.

We propose a novel verification approach that generates an analysis of the most
likely failure scenarios for a model-based program. By finding only the most likely
failures, we increase the relevance and reduce the quantity of information the devel-
oper must examine. First, we provide the ability to verify a stochastic system that
encodes both off-nominal and nominal scenarios. We incorporate uncertainty into
the verification process by acknowledging that all such programs may fail, but in dif-
ferent ways, with different likelihoods. The verification process is one of finding the
most likely executions that fail the specification. Second, we provide a capability for
verifying executable specifications that are fault-aware. We generalize offline plant
model verification to the verification of model-based programs, which consist of both
a plant model that captures the physical plant’s nominal and off-nominal states and
a control program that specifies its desired behavior. Third, we verify these specifica-
tions through execution of the RMPL executive itself. We therefore circumvent the
difficulty of formalizing the behavior of complex software executives.

We present the RMPLVerifier, a tool for verification of model-based programs
written in the Reactive Model-based Programming Language (RMPL) for the Titan
execution kernel. Using greedy forward-directed search, this tool finds as counterex-
amples to the program’s goal specification the most likely executions that do not
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achieve the goal within a given time bound.
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Chapter 1

Introduction

Highly robust embedded systems have been enabled through software executives that

have the ability to reason about their environment. Such systems must often operate

in harsh and dynamic environments, like deep space, and therefore must be robust to

a wide combination of potential failures. Those that employ the model-based auton-

omy paradigm automatically diagnose and plan future actions, based on models of

themselves and their environment. Model-based programming is an approach to de-

veloping embedded systems that can reason about and control their hardware using

corresponding software models [20]. A model-based program enables one to specify the

desired state evolutions of the embedded system. It consists of a specification of be-

havior, known as a control program, and a representation of the physical plant’s nom-

inal and off-nominal states, known as a plant model; these are run on a model-based

executive. Model-based systems have the ability to detect and respond to unantici-

pated failures on the fly. Therefore, they provide an increased assurance of reliability

and fault awareness. However, such programs present a new challenge to verification.

First, the large space of failure situations they handle poses difficulties for traditional

scenario-based testing. Second, they are run on a complex execution algorithm. This

leads to a need for new kinds of verification and validation [15].

Verification and validation (V&V) is an established methodology for ensuring

the quality and reliability of software systems. By definition, verification assures

that a product satisfies its requirements at a given phase in the development cycle,
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and validation assures that the final product satisfies the system requirements [16].

Previous verification efforts, such as the symbolic model checking of reactive programs

[3], have focused on determining the correctness of embedded programs. However,

in the real world, where embedded programs control real hardware, those systems

are never guaranteed to succeed; they are more or less likely to succeed. We extend

model-based system verification to the verification of model-based programs under

uncertainty.

We propose a novel verification approach that generates an analysis of the most

likely failure scenarios for a model-based program. First, we provide the ability

to verify a stochastic system that encodes both off-nominal and nominal scenarios.

We incorporate uncertainty into the verification process by acknowledging that all

such programs may fail, but in different ways, with different likelihoods. Second,

by verifying model-based programs, we provide a capability for verifying executable

specifications that are fault-aware. A model-based system is never guaranteed to

function correctly, since it always has some probability of not behaving nominally.

Therefore, verification of these systems is a process of finding the most likely of

these failure executions, rather than simply determining if there are any. Third, we

verify these specifications through execution. We therefore circumvent the difficulty

of formalizing the behavior of complex software executives by invoking the actual

executive components.

We present the RMPLVerifier, a tool for verification of model-based programs

written in RMPL for the Titan execution kernel. The Reactive Model-based Program-

ming Language (RMPL) allows developers to perform high-level reasoning on the

behavior of a model. The RMPLVerifier uses greedy forward-directed search to ana-

lyze an RMPL model-based program based on a goal specification and a given time

bound. It then presents, as counterexamples, the most likely executions that lead to

failure i.e. non-achievement of the stated goal. We analyze the results of applying our

verification approach to the Mars Entry scenario, a significant model-based program

specifying the entry sequence for a lander spacecraft.

The remainder of this chapter will motivate the verification of model-based pro-
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grams, relate verification to the Mars Entry scenario, and give an overview of the

RMPLVerifier.

1.1 Motivation

Our verification approach provides three capabilities. We examine and motivate each

of these in turn.

The first contribution of our approach is the ability to verify a stochastic system

that encodes both off-nominal and nominal scenarios. In the past, one created robust

embedded systems by attempting to enumerate ahead of time all possible failures the

system could encounter. These systems were limited by the ability of the software

development team. If a system encountered a failure that had not been predeter-

mined by the developers, possible because of the many complex interactions between

the hardware and software and the environment, it could fail to react properly. For

example, the failure of the Mars Polar Lander is thought to have occurred because

of unexpected leg sensor readings as it attempted to land. The software erroneously

concluded from these readings that the Lander had touched down on the surface and

prematurely shut off the engines, leading to the loss of the craft. New intelligent

systems have been created to address this problem [20]. Rather than being prepro-

grammed with all failures, these systems have the ability to deduce if they are in a

nominal or failure state and to respond accordingly. These systems are stochastic, as

they maintain knowledge of the probability of being in a particular state at a given

time [20]. We provide a verification capability for such systems. By returning in-

formation on the likelihood of the program’s executions, we incorporate uncertainty

into the verification process. By showing only the most likely failure executions, the

RMPLVerifier helps focus the systems engineer on the most vulnerable components

of a system.

Our second contribution is the ability to verify executable specifications that are

fault-aware. Synchronous programming languages, such as Esterel [1], were designed

for writing software to control reactive systems. A synchronous programming lan-
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guage is characterized by logical concurrency, orthogonal preemption, multiform time,

and determinacy, which have been shown to be necessary characteristics for reactive

programming [1]. Synchronous programming seeks to provide executable specifica-

tions. An executable specification is a program that doubles as a specification about

which one can prove properties and an executable implementation of that specifica-

tion. This eliminates the need to write a specification and implementation separately

[20]. Model-based programming generalizes this approach to executable specifica-

tions that are fault-aware - they have knowledge of the behavior of the plant under

failures as well as nominal situations. A model-based program, consisting of a con-

trol program and plant model, is a fault-aware executable specification of the desired

behavior of a robust embedded system. The plant model is a representation of the

hardware, including the nominal and faulty states it may be in. The control program

directs the actions of the executive to progress the system through a sequence of

intended states. The executive uses the plant model to generate a control sequence

that achieves these intended states. The verification task for a model-based program

therefore has two pieces. One may verify properties of the plant model alone, or one

may verify the control program, given a correct plant model. Our work focuses on

the latter, while previous work has focused on the former [15]; there has also been

research on the verification of the diagnostic executive [7] [12]. The control program,

by its nature, has a high-level goal. For example, this could involve carrying out a

navigation procedure or maintaining a sub-system in a steady-state. We enhance the

control program to include this definition of success in the form of a goal specification.

The results returned by verification are counterexamples to this overall specification.

Our final contribution is the ability to verify these specifications through exe-

cution. To handle all possible failure scenarios, the reactive systems that we have

described must consider an exponentially large state space. To achieve tractability

model-based executives consider a subset of the possible situations and solutions, by

employing anytime algorithms. Due to this approximate inference, it is difficult to

formalize the behavior of such systems correctly. In addition, changes to approxi-

mations made by the reactive system over time would render any formalization used
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by a verifier obsolete. We therefore generate our results by running the specification

on the actual software executive. Our tool verifies programs written in the Reac-

tive Model-based Programming Language (RMPL) using the Titan executive. Titan

includes both a control sequencer and deductive controller. The control sequencer

generates the sequence of intended states, while the deductive controller attempts to

achieve them. An RMPL model-based program can have many different executions,

which depend on the observations it receives, the time for which it runs, and the

mode estimation algorithm used for diagnosis. Some of these executions will achieve

the program’s goal, and others will not. For instance, along one execution path, a

camera may fail to take a picture, resulting in an unsuccessful navigation procedure.

The verification tool focuses on these unsuccessful execution paths. It explores the

set of most likely executions over the specified number of program steps. It interfaces

directly with the Titan executive and can thus easily accommodate updates to Titan.

We further motivate our verification approach with an example.

1.2 Example of Verification on a Model-based

Program

Consider the problem of controlling a spacecraft system. A spacecraft has hundreds

of different components that must interact in complex ways. At the same time, a

spacecraft operates autonomously in an unpredictable environment, making it likely

that there will be unexpected failures. These properties make it a good candidate for

model-based autonomy. Figure 1-1 shows a Mars lander spacecraft. Figure 1-2 shows

the RMPL control program [11] specifying the desired behavior of such a spacecraft

during an entry scenario. The program performs a series of actions in preparation for

entering the atmosphere of Mars, such as turning on the engine and letting it heat to

standby, changing the kind of navigation used, and properly orienting the craft. The

program operates on a model of the spacecraft, which represents both nominal and

failure scenarios. Thus, an engine can be in the states firing or failed.
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Figure 1-1: The Mars Polar Lander. Cour-
tesy NASA/JPL-Caltech.

1 EntrySequence() {
2 Engine = Standby;
3 Nav = Inertial;
4 do {
5 always (Att = Entry-Orient),
6 when (Att = Entry-Orient)
7 donext (Lander = Separated)
8 } watching (Entry = Initiated)
9 }

Figure 1-2: The RMPL Control Program
for the Mars Entry Scenario.

Since many failure scenarios are possible, a developer creating a model-based pro-

gram for such a system would find it beneficial to be able to enumerate possible failure

executions. The RMPLVerifier returns the most likely executions of a model-based

program that do not lead to success. The tool tracks a set of most likely plant state

trajectories over time, as shown in Figure 1-3. The figure shows a simplified trajec-

tory that could be returned as a counterexample by the verifier. In this trajectory,

the engine transitions from off to heating and then to a failed state. We revisit the

Mars Entry example in Chapter 5.
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... ... ...

Engine = Off

Engine = FailedEngine = Heating

Figure 1-3: The Set of Plant State Trajectories Tracked by the RMPLVerifier.
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1.3 The RMPLVerifier

This thesis presents RMPLVerifier, a development tool for RMPL model-based pro-

grams. The RMPLVerifier verifies a model-based program against a specification of

success. It takes as input a model-based program with a goal specification and pro-

duces as counterexamples the k most likely failure executions of the program. The

verifier generates these executions by searching the space of possible trajectories using

greedy forward-directed search.

The RMPLVerifier generates trajectories using Titan and a simulator that pro-

vides observations consistent with the plant state. A plant state trajectory includes

only states of the plant model and is tracked by the simulator. A plant state has a

likelihood, computed from the likelihood of the previous state and the probability of

transitioning to it from the previous state. A program state includes the states of

the control program and plant estimate at a given point in the execution of a model-

based program. A program state trajectory, which is generated by Titan, consists of

a sequence of program states and represents the execution of a model-based program

from the start state to a given time step for a given plant trajectory. The verifier

returns a list of plant state trajectories. The likelihood of the plant state trajectories

is used as the search heuristic. The search completes once the requested k number of

solutions has been found for the given horizon. A list of trajectories, sorted in order

of likelihood from highest to lowest, is returned as solutions to the verification query.

1.4 Thesis Layout

Chapter 2 of this thesis discusses related work on the verification of reactive systems.

Chapter 3 defines the RMPL model-based program. It also gives background on

Titan and its components. Chapter 4 defines the verification problem and presents

the details of the verification algorithm. Chapter 5 introduces the Mars Entry scenario

and works through a verification of the model-based program. Chapter 6 describes

the implementation, and Chapter 7 gives results and conclusions.
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Chapter 2

Related Work in Verification

Verification and validation (V & V) has been shown to improve software quality,

yielding a number of benefits [16].

• It can detect errors early, reducing overall development cost and granting time

for a comprehensive solution.

• It can evaluate the product against system requirements. For example, these

may be properties required by the customer.

• It gives an incremental preview of performance of the product, allowing for

early adjustments. For example, it may detect early on that a program runs

too slowly for the desired application.

• It may indicate whether or not to proceed to the next development phase.

V & V is especially applicable to embedded systems that must operate in environ-

ments in which they must handle a broad set of failures. Traditionally, such systems

have been checked for reliability through extensive manual testing, using simulations

of nominal and off-nominal scenarios. However, the number of possible scenarios can

be very large for highly autonomous software, limiting the effectiveness of traditional

testing [2]. This chapter gives an overview of methodologies relevant to the V & V of

software for embedded systems.
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2.1 Model Checking

Model checking is a methodology which exhaustively explores a system’s achievable

states. It is a common technique for verifying digital hardware and reactive software.

Given a model of a system and a property for correctness, a model checker runs

through all possible executions of that system, including interleavings of concurrent

threads, and reports any execution that violates the property specification. Explicit

state model checking generates and explores every state [13]. Symbolic model checking

efficiently manipulates compact encodings of sets of states and, therefore, may be

applied to larger systems [15]. A drawback of model checking is that the system

usually is converted beforehand, into the formal syntax accepted by the model checker.

This is generally a tedious process carried out manually by an expert. Alternately,

translators can be used; we describe one later in this chapter [15].

Model checking has been demonstrated for verifying the correctness of plant mod-

els used in model-based systems, as we see when we describe the Livingstone to SMV

translator [15]. It has also proven useful for identifying bugs related to concurrency

in the source code of system executives [7]. However, there are difficulties in applying

model checking to verification of the executions of a model-based system, the goal of

this thesis. A model-based system is difficult to translate into a formal language, a

requirement for model checking. In addition, the space of executions model checking

must explore is exponentially large.

We now describe applications of model checking to reactive systems.

2.1.1 Livingstone to SMV

Livingstone [21] is a model-based diagnostic system developed as part of the Remote

Agent autonomous spacecraft controller [14]. Livingstone uses a plant model to de-

scribe the nominal and failure modes of each component in the system. Each mode

has associated modal constraints that describe the behavior of the component when

in that mode. A component also has transition constraints that determine when it

can switch between modes. Plant models are written in the Model Programming
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Language (MPL). The goal of the Livingstone to SMV project was to apply formal

verification techniques to the development of autonomous controllers based on Liv-

ingstone. The focus was on diagnosing errors in plant models. Properties for correct

models included reachability of component modes in the plant model and consistency

and completeness of mode transitions. Transitions are consistent when only one of a

mode’s outgoing transitions to other modes is enabled at a time; two transitions can-

not be simultaneously enabled. Transitions are complete when at least one transition

constraint is always fulfilled.

The Livingstone to SMV translator [15] converts the plant models used by Living-

stone into specifications that can be verified with the Symbolic Model Verifier (SMV)

[3], a model checker from Carnegie Mellon University. The specification for correct-

ness is expressed in terms of properties in the temporal logic CTL (Computation Tree

Logic) or, alternately, using pre-defined specification patterns in MPL, Livingstone’s

modeling language. The translator converts both the plant model and the specifica-

tion from MPL to SMV’s formal language, and then converts any diagnostic output

from SMV back to MPL. The translator thus saves the developer from tedious manual

translation. The Livingstone to SMV translator has been used to verify properties of

the Livingstone model of the Deep Space 1 spacecraft used within the Remote Agent

experiment.

The Livingstone to SMV project only addressed the verification of the plant mod-

els of model-based systems. This thesis seeks to verify an entire model-based program,

including both control program and plant model.

2.1.2 Remote Agent

A research effort [7] was conducted that applied formal verification methods to the

RA Executive [14], one of the three subsystems of the Remote Agent autonomous

spacecraft controller, demonstrated in flight on the Deep Space 1 mission. The Ex-

ecutive provides operating-system level capabilities for goal-directed software. Two

separate efforts applied the SPIN model checker [9] to this piece of software. The

focus was to find errors in the source code of the executive.
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The first effort [7] occurred during the development process and early on found five

concurrency errors that would not have been found through testing. The lisp source

code of the Executive was abstracted and translated by hand to the PROMELA

language used by SPIN, a model checker for analyzing the correctness of finite state

concurrent systems. The model checker then examined it for properties such as the

liveness of concurrent tasks. The significant manual labor required motivated the

creation of the Java PathFinder tool [18], a translator from Java to PROMELA. As

mentioned in the next section, this tool was also later used during a V&V survey on

the Rover Executive. The second effort [7] occurred due to an in-flight deadlock in a

sibling subsystem to the one verified. The RA developers provided the researchers the

code for the Executive without identifying where the bug was located. Researchers

conducted a separate “clean-room” verification and found the concurrency error in a

total process of two days; most of the time was spent in understanding and modeling

the code. The project demonstrated that formal verification can find concurrency

errors that occur in actual flight. It also produced tools that increased the ease with

which V&V could be incorporated into the software development cycle. As one of the

more successful applications of formal methods, it gave an impetus for more research

in the verification of such systems.

The authors presented one of the successful applications of verification to software

that was part of a reactive system. However, they focused exclusively on source code

verification, the realm of traditional V&V. In this thesis we look instead at verification

of the higher-level behavior of the executive, as part of the model-based system that

includes the model-based program.

2.1.3 Rover Executive V & V Study

We now give an overview of a study conducted at NASA Ames for the purpose of

determining the maturity of different verification and validation techniques, including

model checking, on a representative example of NASA flight software [2]. The study

had two goals. The first was to evaluate the relative strengths and weaknesses of

traditional and advanced V&V approaches and tools on autonomy software. The
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second was to determine if current tools show that advanced verification techniques

are a significant improvement over traditional ones.

The study consisted of a controlled experiment where three V&V technologies

(static analysis, runtime analysis and model checking) were compared to traditional

testing regarding their ability to find seeded errors in the source code of a Rover

executive. The Rover Executive [19] was a software prototype written in C++ by

researchers at NASA Ames. It commanded a rover through the use of high-level

plans. Groups of two were assigned to each methodology and given the task of

finding bugs. Static analysis was conducted with the PolySpace Verifier [17], runtime

analysis with the DBRover [4] and Java PathExplorer [8], and model checking with

the Java PathFinder [18].

The significance of this study is that it was the first to experimentally evaluate and

compare formal methods-based tools to testing on a realistic research prototype of

embedded software. While the authors did not draw any strong conclusions, the study

did confirm that advanced tools can outperform manual testing when trying to locate

concurrency errors. They also drew a number of insights. They found runtime analysis

and monitoring to be very successful in uncovering the seeded bugs. Runtime analysis

methods detect the correctness of a program by collecting data from the execution

of the program and then analyzing it. Runtime monitoring validates the correctness

of a single execution online against a set of formally state requirements. However,

as both of these techniques require the code to be executed, their effectiveness was

limited to how exhaustively the test-inputs covered the input space. The authors

also found model checking to be good at systematic analysis; for example, it could

systematically cover all input plans up to a specific size for the rover.

This study gives basis to our claim that there is a real benefit to using automatic

verification tools on reactive systems, when compared to the results obtained from

manual testing.
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2.2 Executable Specifications

An executable specification is a program that doubles as a specification about which

one can prove properties and an executable implementation of that specification. This

eliminates the need to write a specification and implementation separately [20]. We

look at Esterel, a language that creates executable specifications.

Esterel [1] is a synchronous programming language. Synchronous languages were

designed to program reactive systems, systems that have a reactive program as their

main component. Reactive programs are programs that maintain an interaction with

their environment, reacting to inputs received from the environment by sending out-

puts to it. For example, an operating system driver is a reactive program embedded

in a larger system. Reactive programs are composed of three layers. An interface

controls input reception and output production. A reactive kernel decides what com-

putation and outputs to generate in response to the inputs. A data handler performs

the computations requested by the reactive kernel. Esterel is not a full programming

language but a language for defining reactive kernels, which can then be generated

as code in another language. It is analogous to the grammar from which a parser

generator produces a parser. Once generated, the reactive kernel can be embedded

in a larger program that implements the interface and data handling layers.

Esterel programs are executable specifications. The main theorem of Esterel is

that the behavioral and execution semantics are equivalent. The behavioral seman-

tics give a mathematical definition of the semantics of the language. The execution

semantics define the actions of the underlying execution machine. Esterel is not a

high-level specification language that requires the developer to rewrite the program

in an implementation language once the specification is complete. Rather, the speci-

fication and implementation are one and the same. Once written, a program can be

efficiently compiled to object code.

RMPL is another synchronous language that builds on the ideas of Esterel. RMPL

model-based programs are executable specifications that are fault-aware - they know

the plant’s behavior under both failure and nominal scenarios. This thesis performs
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verification on RMPL executable specifications by executing them using the Titan

engine.

2.3 Simulation-based Verification

Livingstone PathFinder (LPF) [12] uses a new verification approach based on simu-

lation. It seeks to find diagnosis errors in the Livingstone engine, instances when the

engine inaccurately diagnoses the current state of the system. LPF applies state space

exploration algorithms to a testbed, consisting of the Livingstone [21] engine embed-

ded in a simulated environment. The simulator is generally also a Livingstone engine.

The tool runs on a Livingstone plant model and a low-level scenario of commands

and injected faults. It has the ability to report error conditions during execution of

the scenario on the model. It can report when the engine fails to find any consistent

candidate for the current state. It can report a discrepancy between the component

modes of the simulator and diagnoser. For example, if the plant model has a valve

component which the simulator believes to be in the open mode and the diagnoser

believes to be in the closed mode, the tool reports that there has been a misdiagnosis.

LPF runs on a set of different executions defined from the permutation of the

events given by the scenario. The events of the scenario are the commands and

faults; the faults are interleaved in the sequence of commands. LPF explores the tree

of executions given by the scenario using search, saving and restoring intermediate

execution points. The user may specify the kind of search, where the options are

depth-first search with backtracking, breadth-first search, or best-first search, with a

heuristic that favors situations where fewer candidates for the estimated state were

found and therefore a misdiagnosis is more likely to occur. The user may also specify

whether to report one or all errors.

The focus of LPF is primarily on reporting diagnosis errors in the engine. A

disadvantage of the tool noted by the authors was that it generated a large amount

of output and could therefore benefit from improvement in the post-treatment and

display of results. Currently Livingstone PathFinder only uses plant models and the
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deductive controller. However, a new version, called Titan PathFinder, is currently

in development. This version seeks to use Titan as the diagnostic engine, includ-

ing both the deductive controller and the control sequencer; the task is still to find

misdiagnoses.

LPF employs a similar strategy to the RMPLVerifier, both tools using search

to explore executions of a model-based system. However, LPF focuses on finding

misdiagnoses. Our tool focuses on the model-based program, finding executions of

the program that do not achieve success, along with their likelihoods.

2.4 Summary

The verification research on reactive systems that we have examined has focused pri-

marily on verification of those systems, while ignoring the failure behavior of the plant

being controlled. In addition, in the area of model-based autonomy, verification has

focused primarily on the detection of errors in the plant model or the implementa-

tion of the diagnostic engine. Our focus is to develop verification approaches for an

entire model-based program, which includes both a plant model and a control pro-

gram. In addition, these past efforts have focused on determining the correctness of

model-based systems. We instead account for uncertainty by determining how likely

a program is to succeed or fail.
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Chapter 3

The RMPL Model-based Program

Languages for embedded systems have been developed to simplify the task of control-

ling devices with many different components. These languages enable one to write

programs that interact with the hardware by reading sensor values and by sending

commands to actuators. In programming languages like Esterel [1] and Statecharts

[6], the programmer is responsible for mapping the intended state of the system to

the variables holding sensor and actuator values. The complex interactions between

hardware components and the large number of failure scenarios possible make this

mapping error-prone. The model-based programming paradigm [20] was designed to

address this problem. A model-based programming language interacts directly with

the state of the plant. Programmers are given the ability to define and control hid-

den state variables; by manipulating a state variable, one indirectly interacts with

observable and control variables corresponding to sensors and actuators respectively.

The RMPLVerifier, the central focus of this thesis, performs verification on an

RMPL model-based program. In this chapter, we describe the Reactive Model-based

Programming Language. Section 3.2 defines a model-based program. Section 3.1

introduces the RMPL language with the help of an example. Section 3.3 describes

Titan, RMPL’s execution kernel, and includes a detailed discussion of the Mode

Estimation component of Titan. The details of Mode Estimation are particularly

important background for verification, as the prediction step of Mode Estimation

forms the core of the verifier’s trajectory generation algorithm.
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3.1 The Reactive Model-based Programming

Language

The Reactive Model-based Programming Language (RMPL) [20] allows developers to

perform high-level reasoning on the behavior of a model. It is an object-oriented lan-

guage that uses propositional state logic as its underlying constraint system. RMPL

provides primitive constructs for conditional branching, preemption, iteration, and

concurrent and sequential composition. We highlight the key design features of the

language with the aid of an example.

Figure 3-1: The Mars Exploration Rover. Courtesy NASA/JPL-Caltech.

A rover’s mission is to drive to a final destination (Figure 3-1). In order to reach

it, it drives to a set of intermediate waypoints. It stops at each to take an image with

its hazard camera, to be used by its on-board hazard avoidance algorithm. We can

translate this scenario into a model-based program in the following manner.

Figure 3-2 shows the RMPL control program. It is expressed in a style similar to

traditional software programs. In the main procedure, DriveToTarget(), the rover

initially takes a picture with the TakeHazardPicture() subprocedure and drives to

the next waypoint with the DriveToNextWaypoint() subprocedure. When it has
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1 DriveToTarget() {
2 do {
3 {
4 TakeHazardPicture();
5 DriveToNextWaypoint();
6 } ,
7 when (RoverWaypoint = Reached) donext {
8 TakeHazardPicture();
9 DriveToNextWaypoint();
10 }
11 } watching (RoverTargetPosition = Reached or HazcamHealth = Unhealthy)
12 }
13
14 TakeHazardPicture () {
15 ;; In full version, we include the stereo image, terrain map and path
16 ;; generation.
17 RoverMotion = Park;
18 HazcamImage = Valid;
19 }
20
21 DriveToNextWaypoint () {
22 ;; In full version, we maintain the Rover in a driving state until the
23 ;; Waypoint is reached. Actual control of the driving is assumed to occur
24 ;; at some lower control layer.
25 do {
26 always RoverMotion = Arc
27 } watching (RoverWaypoint = Reached)
28 }

Figure 3-2: A Control Program for the Rover-Hazcam Scenario.

reached this waypoint, it repeats its actions. In this way, the rover drives to each

intermediate waypoint, stopping to take a hazard picture at each before proceeding.

If, at any point, it reaches its target position or detects that the state of the camera

is unhealthy, the procedure terminates.

This example highlights several important properties of a control program. First,

the code is written in terms of state assignments. Assignments may be used as execu-

tion conditions. The assignment RoverTargetPosition = Reached is an execution

condition that depends on the plant’s hidden state variable RoverTargetPosition

(Line 11). State assignments may also be used as assertions. The assignment Rover-
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Motion = Park (Line 17) in the TakeHazardPicture() procedure directs the

system to make that assertion true once execution reaches that point in the program.

These hidden state assignments are not directly observable or controllable. They pro-

vide a layer of abstraction that makes it easier for the developer to write a reactive

program. This specification is far simpler than a program that must turn on motors

and switches directly. Second, RMPL allows both parallel execution, denoted by a

comma, (Line 6) and sequential execution, denoted by a semicolon (Line 5). RMPL

also allows both conditional execution and iteration. The when ... donext con-

struct on Line 7 is an example of both; the actions inside the construct repeat until

the condition, RoverWaypoint = Reached, is satisfied. Finally, the language al-

lows preemption. The procedure DriveToTarget() terminates if either RoverTar-

getPosition = Reached or HazcamHealth = Unhealthy becomes true (Line

11).

The plant model is a representation of the rover’s behavior, and is used by the

Titan executive to achieve the control program. It is a system composed of several

subcomponents, each illustrated by a rectangle in Figure 3-3. These components in-

teract with the hardware through sensor and actuator values. They may also interact

with each other. The figure uses arrows to show incoming observations and outgo-

ing commands, as well as the flow of internal information between components. The

RoverMotion component describes the movement of the rover; it can command it to

drive or stop. The RoverWaypoint and RoverTargetPosition components check to

see if the rover has reached a waypoint and its target destination respectively; they

receive position information as observations. The HazcamOperation, HazcamHealth,

and HazcamImage components represent the Hazcam camera of the rover. Hazcam-

Operation can command the camera to turn on or off or to take a picture. It can

observe whether the power is on or off and whether the camera is ready. HazcamIm-

age can observe whether the image recorded is valid; it depends on input from Haz-

camOperation. HazcamHealth decides whether the camera is in healthy condition,

depending on inputs from HazcamOperation and HazcamImage. The plant model

given for this example scenario is still somewhat high-level. A model to be used
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Figure 3-3: The Plant Model for the Rover-Hazcam Scenario.
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in a real scenario would contain many more low-level components that describe the

hardware more accurately.

Each component is defined separately in terms of the nominal and failure states

it may occupy. Since components may be defined independently, it is simple to build

a plant model in a modular manner by reusing components. A component’s state

depends on the actual observations received and commands issued to the hardware.

We look in detail at the component definition of HazcamImage, the graphical rep-

resentation of which is shown in Figure 3-3. HazcamImage represents the hidden

state of the camera image. It has the nominal modes Valid and Unavailable and

the failure modes Corrupt and Unknown, corresponding to the states that it may

occupy. It observes the validity of the image from the plant as sensor readings True

or False. When the image is Valid, we expect the observed output to be True, and

when the image is Corrupt, we expect it to be False. Each mode in the figure is

labeled with a modal constraint that expresses these conditions. For example, mode

Valid has ImageValidObs = True. The Unknown mode is unconstrained, since

nothing is known about the conditions of an unanticipated failure. The Unavailable

mode is also unconstrained, since no image is available at that point for observa-

tion. The figure illustrates the commanded transitions between Unavailable, Valid

and Corrupt. The command newImage transitions the state to Valid, and the

command clearImage transitions it to Unavailable. This particular model defines

relationships such that HazcamImage’s commands are variables dependent on the out-

put of HazcamOperation. However, a component may command the plant directly

in the same manner. One may also take an un-commanded transition to the fault

modes Corrupt and Unknown from any other mode. This indicates that the image

may fail at any time. Self-transitions indicate that the state of the image has not

changed between time steps. Each transition between states has a probability; only

the fault transitions are labeled in the figure. For instance, upon issuing the command

newImage when the image is unavailable, one has probability 0.001 of transitioning

to Unknown, probability 0.01 of transitioning to Corrupt, and probability 0.989 of

transitioning successfully to Valid.
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As we have seen, the control program combined with the plant model compose

the complete RMPL model-based program. The RMPL compiler efficiently compiles

the components of a model-based program into representations of finite automata. A

plant model is represented by a Concurrent Constraint Automaton (CCA) [20]. A

CCA is a composition of concurrently operating constraint automata, along with the

interconnections between component automata and with the environment. A control

program is represented by a Hierarchical Constraint Automaton (HCA), a variant of

hierarchical automata [20]. The plant model and control program are defined in the

next section.

3.2 The Model-based Program

A model-based program enables one to specify the desired state evolutions of the

embedded system. It consists of a control program and a plant model. The plant

model is a representation of the hardware, defining its nominal behavior and its

behavior during common failures. The control program specifies the system behavior

in terms of the model. The verifier returns plant state trajectories that are expressed

using the variables of the plant model.

The plant model defines state variables in terms of control and observable vari-

ables, and the control program sets these state variables. We give the formal def-

initions of each below. The plant model is a partially observable Markov decision

process P = 〈Π, Σ, T, PΘ, PT , PO, R〉, where:

• Π is a set of finite-domain variables, divided into state variables Πs, control

variables Πc, and observable variables Πo. A state of the plant is defined as an

assignment to Πs. Control and observable variables correspond respectively to

commands issued to and observations received from the actual plant.

• Σ is the set of all feasible full assignments over Π. An assignment is feasible

if it is allowed by the constraints inherent to the hardware. The set Σs, the

projection of Σ on variables in Πs, is the set of all feasible states.
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• T is a finite set of transitions. A transition τ ∈ T is a function τ : Σ → Σs that

maps feasible full assignments over Π to states.

• PΘ(s0) is the probability that the plant has initial state s0.

• PT (τ) is the probability associated with transition function τ .

• PO(si, oj) is the probability of observing oj in state si.

• R(si) is the reward for being in state si.

The control program is a deterministic automaton CP = 〈Σcp, Θcp, τcp, gcp, Σs〉,

where:

• Σcp is the set of program locations. A program location is defined as the state

of the control program.

• Θcp is the initial location.

• τcp is the transition function between locations, conditioned on plant states of

P . In other words, τcp : Σcp × Σs → Σcp.

• gcp(l) is the configuration goal of location l. Each program location has a con-

figuration goal, which is the set of legal plant goal states associated with that

location.

• Σs is the set of all feasible states of the plant model.

One executes a model-based program by generating a control sequence that moves

the plant to the states, known as configuration goals, specified by the program. A

model-based executive executes a program by continuously generating these configura-

tion goals based on the plant model and the current plant state. A configuration goal

is translated to commands that are sent to the plant. The executive also continually

estimates the current plant state based on the plant model and sensor data. The

executive uses this information to determine if goals were successfully achieved and

to diagnose failures.
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3.3 Titan

Titan [20] is the model-based executive for RMPL. The architecture for Titan is

shown in Figure 3-4. Titan has two main components, the control sequencer and the

deductive controller. The control sequencer generates the configuration goals, based

on knowledge of the state of the control program and the estimated state of the plant

model. The deductive controller has two subcomponents, mode estimation and mode

reconfiguration. Mode Estimation (ME) generates an estimate of the plant’s most

likely current state, based on observations received from the plant and commands

issued to it. Mode Reconfiguration (MR) sends commands to the plant that progress

the plant through the states necessary to achieve the configuration goals.

Control Sequencer

Deductive Controller

Plant

Control
Program

Plant
Model

State estimates Configuration goals

Observations Commands

Titan
RMPL

ME MR

Figure 3-4: The Architecture of the Titan Model-based Executive.

3.3.1 Mode Estimation

A plant state trajectory is a sequence of feasible states. The space of possible state

trajectories can be visualized through a Trellis diagram, shown in Figure 3-5(a). The

Trellis diagram enumerates all possible states at each time step and all transitions

between states at adjacent times. Mode Estimation (ME) is an online algorithm for
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tracking the most likely states through this diagram that are consistent with the plant

model, the observations and the commands. ME is an instance of Hidden Markov

Model belief state update. Belief state update associates a probability to each state

in the Trellis diagram. ME selects the tracked state with the highest probability as

the most likely state estimate. Belief state update computes the current belief state,

the probability of being in each state sj at time t + 1, with the following equations:

σ(•t+1)[sj] =
n∑

i=1

σ(t•)[si]PT(σi, sj)

σ(t+1•)[sj] = σ(•t+1)[sj]
PO(sj, ok)∑n

i=1 σ(•t+1)[si]PO(si, ok)

PT(σi, sj) is defined as the probability that the plant P transitions from full as-

signment σi to state sj, computed as the sum of Pτ over all transition functions τ

that map σi to sj. The a priori probability σ(•t+1)[sj] is conditioned on all observa-

tions up to o(t). The posteriori probability σ(t+1•)[sj] is also conditioned on the latest

observation o(t+1) = ok.

3.3.2 k Best Trajectories Mode Estimation

Ideally we would like mode estimation to track all possible states of the system for

all time in order to compute the most accurate estimate of the current state. How-

ever, this is very costly in practice, so ME uses approximate belief state update [10]

instead. Rather than tracking the true belief state, ME computes the set of states

reachable by the most likely transitions, given the latest commands and observations

(Figure 3-5(b)). This approach has the limitation that a low-probability trajectory

that is pruned may become very likely at a later time, after considering additional

information. Since ME no longer tracks the true belief state, we cannot guarantee

that the true current state is included in the set of tracked current states. An addi-

tional limitation of this approach is that it does not add the posterior probabilities

for multiple separate trajectories that lead to the same state; instead, only the most

likely of these trajectories is chosen. Therefore, the resulting probability of the target
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Figure 3-5: (a) A Trellis diagram showing all possible state trajectories. (b) k Best
Trajectories Mode Estimation tracks only the most likely states.

state is an underestimate of the true probability of being in that state.

Figure 3-6 gives the pseudocode for the k Most Likely Trajectories algorithm [20]

currently used by Titan’s Mode Estimation. We begin with the set of current most

likely trajectories, as well as the new command and observation received by Mode

Estimation from Mode Reconfiguration and the plant respectively (Lines 1-2). A

trajectory is a sequence of estimated states. For each current trajectory, we first

find the most likely transition to the next state, enabled by the model and this new

information (Line 8). We create a new trajectory by appending this state to the end

of the current trajectory and add it to a priority queue, ordered by the trajectory

probability (Line 10-11). Next, while the priority queue is not empty, we get the

most likely trajectory in it and add it to the list of next trajectories (Line 14-15). If

we have found k trajectories, we exit at this point (Line 16-17). If not, we find the

current trajectory that originated it; this is the trajectory after its last target state
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1 FindKMostLikelyTrajectories ( Model, CurrentTrajectories, Command,
2 Observation, NumSolns )
3 returns NextTrajectories
4
5 let NextTrajectories = {}
6 let PriorityQueue = {}
7 foreach CurrentT in CurrentTrajectories
8 compute the most likely transition from CurrentT’s current state,
9 enabled by Command, Observation and Model
10 let NextT = CurrentT + target state of enabled transition
11 insert NextT into PriorityQueue
12 endfor
13 while PriorityQueue is non-empty
14 let T = pop most likely trajectory from PriorityQueue
15 insert T into NextTrajectories
16 if ( size of NextTrajectories == NumSolns )
17 return NextTrajectories
18 endif
19 let OrigCurrentT = T - last state of trajectory T
20 compute the next most likely transition from OrigCurrentT’s current
21 state, enabled by Command, Observation and Model
22 let NextT = OrigCurrentT + target state of enabled transition
23 insert NextT into PriorityQueue
24 endwhile
25 return NextTrajectories

Figure 3-6: The k Most Likely Trajectories Algorithm.

has been removed (Line 19). We create another new trajectory, based on the next

most likely enabled transition (Line 20-22). We add it to the priority queue (Line

23). This ensures that the final set of k next trajectories is the most likely, based

on the possible trajectories from all currently tracked trajectories. If more than k

trajectories are possible, these are pruned automatically as they are never inserted

into the list of next trajectories.
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Chapter 4

The Verification Algorithm

The RMPLVerifier is a tool for offline verification of RMPL model-based programs

- both plant models and control programs - for the Titan executive. RMPLVerifier

searches the space of state trajectories of the model-based program using greedy,

forward-directed, best-first search. It attempts to return the k most likely program

failure trajectories for a bounded time period.

In this chapter, we describe the verification problem and algorithm. Section 4.1

defines the problem we wish to solve. Section 4.2 gives an overview of the verification

process. Section 4.3 gives an overview of the algorithm. Section 4.4 gives the top-

level pseudocode of the verifier. Section 4.5 gives the pseudocode for the simulator

component and describes the modified k Most Likely Trajectories algorithm it uses

to track the most likely plant trajectories.

4.1 Problem Statement

We seek to answer the verification question “What are the k most likely plant trajec-

tories that do not achieve a given goal within N time steps, given the control program,

plant model, and starting configuration of an RMPL model-based program?”

Successful execution of a model-based program can be defined as achievement

of its stated purpose, whether this is taking a picture with a camera or controlling

the navigation of a satellite. Conversely, failure can be defined as not achieving this
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goal. The aim of our verification approach is to find the different ways that a model-

based program can fail to achieve its goal. However, a program can interact with its

environment in many ways, leading to many different execution paths. We improve

the relevance of our results by returning the most likely executions, along with their

likelihoods. Finally, we consider only trajectories that have not achieved the goal by

a finite time, as they may be impossible to determine for an infinite time bound.

4.2 The Verification Process

RMPL
Model-based

Program
RMPL

Compiler

Goal

Violates goal?
Counterexample

Counterexample
YES

RMPLVerifier

CCA

HCA

Figure 4-1: The Verification Process.

The verification process can be described by the loop depicted in Figure 4-1. The

developer produces an RMPL model-based program, consisting of a control program

and plant model. The control program is enhanced to include a specification of the

program’s high-level goal; for example, the successful firing of an engine could be ex-

pressed as the goal (Engine = On).. The control program and plant model are then
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compiled into Hierarchical Constraint Automaton (HCA) and Concurrent Constraint

Automaton (CCA) formats, respectively, and provided as input to RMPLVerifier.

The verifier uses greedy forward-directed search to discover those plant trajectories,

and corresponding program executions, that do not achieve the goal within the given

horizon. The verifier returns the k most likely of these. The collection of most likely

program failure trajectories is then presented to the developer, who may wish to mod-

ify the model or control program based on the verification results. Each extension of

a trajectory involves selecting a nominal or failure transition of the plant, and then

executing the model-based program one step in response. The RMPLVerifier calls on

the Titan executive to run this execution of the program.

4.3 Overview of the Algorithm

Figure 4-2 gives an overview of the action of the RMPLVerifier. It has two main

components, the Titan executive and the plant simulator. The Titan executive is

the same software used to control the system at runtime; it consists of the control

sequencer and deductive controller. It runs on the control program and plant model.

The plant simulator tracks the set of k most likely trajectories at each time step,

using the model and goal specification. The simulator and Titan interact in a loop.

The simulator receives commands for the current time step from the executive and

returns observations consistent with the next estimated state. At the end of a given

time horizon, the simulator outputs the set of most likely plant trajectories at that

time step that fail to achieve the program goal. This list, sorted in order of likelihood,

is returned as counterexamples to the verification query.

A plant state trajectory includes only states of the plant model. A plant state has

a likelihood, computed from the likelihood of the previous state and the probability

of transitioning to it from the previous state. A program state includes the states

of the control program and plant estimate at a given point in the execution of a

model-based program. A program state trajectory consists of a sequence of program

states and represents the execution of a model-based program from the start state to
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Figure 4-2: A High-level View of the Algorithm.

a given time step for a given plant trajectory. The verifier returns a list of plant state

trajectories.

4.4 Top-level Pseudocode

We first describe the top-level pseudocode for the verifier, shown in Fig 4-3.

We can think of the Simulator in abstract terms as tracking a set of plant state

trajectories selected from the Trellis diagram of possible trajectories. This set of plant

trajectories at first contains only the initial plant state. Titan, on the other hand,

can be thought of abstractly as generating a control program trajectory. The task

of the verifier is to select amongst choice points in the trellis diagram, so that the

simulator and Titan most likely fail to reach the goal.

In the beginning we initialize an instance of the simulator (Line 4). We next ask

the simulator for the observation entailed by the initial plant state (Line 5-6). We

add this initial observation to the list of observations to be passed to Titan (Line 7).

We now begin the first iteration of the verifier (Lines 9-16). We get an instance

of Titan that corresponds to the simulator plant trajectory (Line 11). Since we are

just starting, this will be a new Titan instance. We give our initial observation

from the simulator to Titan (Line 12), as shown in Figure 4-4(a). Mode Estimation
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1 Verify ( ControlProgram, Model, GoalSpec, InitialState, Horizon,
2 NumSolns ) returns Trajectories
3
4 let Simulator = new Simulator( Model, GoalSpec, InitialState, NumSolns )
5 let InitObservation = compute assignment to observables entailed by Simulator’s
6 initial state and Model
7 let Observations = { InitObservation }
8 let Commands = { }
9 for ( let TimeStep = 0; TimeStep < Horizon; TimeStep++ )
10 for ( let i = 0; i < Observations.size(); i++)
11 let Titan = get Titan that corresponds to plant trajectory i
12 let Command = Titan.Step( ControlProgram, Model, Observations[ i] )
13 insert Command into Commands
14 endfor
15 Observations = Simulator.Step ( Commands )
16 endfor
17 return Trajectories from Simulator

Figure 4-3: The Top-level Pseudocode of the Verification Algorithm.

takes the observation and calculates an estimate of its initial state. The control

sequencer generates the next configuration goal, based on this current state and the

control program. Mode Reconfiguration issues a command for the plant based on this

configuration goal, as shown in Figure 4-4(b). This is added to the list of commands

(Line 13). At this point, Titan’s program trajectory is composed of just one state,

consisting of the states of the control program and plant estimate, originating from

the initial observation. The simulator receives the new command from Titan (Line

15) and generates a new set of k observations from its plant trajectories, as shown in

Figure 4-4(c).

We begin the second iteration. For each new observation, Titan is called for

another step (Lines 10-14). The instance of Titan that we use must correspond to

the plant trajectory for the observation (Line 11). In other words, the observation

is output from a simulator plant trajectory, which generated a program trajectory

using Titan in the previous iteration of the verifier. During the step, Titan’s Mode

Estimation learns of the new command from MR, as well as the new observation

received from the simulator, and calculates the next estimated state from the current
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Figure 4-4: The Beginning of the Verification Algorithm. (a) The Simulator issues
an observation based on the initial state. (b) Titan estimates the state based on the
observation and issues a command. (c) The Simulator issues observations consistent
with the next states. (d) Titan issues a new set of commands based on the new
observations. (e) The Simulator again issues observations consistent with the next
states.
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state (Figure 4-4(d)). At this point, we have used Titan to generate k program state

trajectories, obtained by extending the initial program trajectory with the different

observations. We get a list of k new commands and pass them to the simulator (Line

15). The simulator ensures that each command is given to its originating plant state

trajectory. This is the plant trajectory that generated the observation that in turn

generated the command. The plant trajectories are extended once more, and the new

observations are generated, as shown in Figure 4-4(e).

In this manner, the cycle repeats until the time horizon has been exceeded. The

RMPLVerifier returns the set of most likely plant trajectories from the Simulator

at the end of the last time step. Figure 4-5 illustrates the steady-state relationship

between Simulator and Titan trajectories. Titan’s MR issues a command. The Sim-

ulator receives that command and issues the new observation based on the next plant

state. Titan’s ME receives the observation as well as the command and computes its

next state estimate.

current
state

next
state

next
state

current
state

commandTitan

Simulator

observation

Figure 4-5: Relationship between a Titan trajectory and a Simulator trajectory.

We look into the operation of the Simulator in detail in the next section. For now,

it is sufficient to know that the Simulator extends its initial trajectory based on the

command by the next most likely states to a set of most likely trajectories. For each

next state, the Simulator outputs an observation entailed by it. Therefore, if there

are k next states, there are k corresponding observations (Figure 4-4(c)).

We assume that a state uniquely determines an observation. The next state

determined by Mode Estimation based on this observation and the command may or

may not be the same as the plant state. Whether or not ME correctly estimates the
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plant state depends on how observable the system is.

4.5 The Simulator

1 Simulator ( Model, GoalSpec, InitialState, NumSolns ) {
2
3 // Constructor
4 Simulator. Model = Model
5 Simulator. GoalSpec = GoalSpec
6 Simulator. NumSolns = NumSolns
7 Simulator. CurrentTrajectories = initial trajectory from InitialState
8 }
9
10 Step ( Commands ) {
11 returns Observations
12
13 let NextTrajectories = FindModifiedKMostLikelyTrajectories
14 ( Simulator. Model, Simulator. GoalSpec, Simulator. CurrentTrajectories,
15 Commands, Simulator. NumSolns )
16 foreach NextT in NextTrajectories
17 let Observation = compute assignment to observables entailed by NextT’s
18 current state and Model
19 insert Observation into Observations
20 endfor
21 Simulator. CurrentTrajectories = NextTrajectories
22 return Observations
23 }

Figure 4-6: The Simulator Pseudocode.

We now examine the Simulator in greater detail. The pseudocode given in Fig-

ure 4-6 shows a Simulator() constructor by which we initialize the Simulator and

a Step() function. Step() is called on each iteration of the verifier with a list of

commands and returns a list of observations. The Simulator maintains a set of the

current most likely plant trajectories, which it updates at each time step. Its first

action is to invoke our modified k Most Likely Trajectories algorithm (Line 6), de-

scribed later on. It provides the algorithm with the current set of plant trajectories

and commands, as well as the model and goal specification of the model-based pro-
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gram, and obtains the set of next most likely program failure trajectories. For each

next trajectory, it computes an assignment to the observable variables of the model

that is entailed by the last state of the trajectory and the model (Line 17). It inserts

this observation into a list of observations (Line 19). Finally, it updates the current

trajectories (Line 21) and returns the list of observations to the verifier (Line 22).

Figure 4-7 graphically illustrates one step of the Simulator. The Simulator receives a

list of commands 1 through k, which are passed to the k current trajectories. Based

on the new information, it generates the k next trajectories and their corresponding

observations.

In our algorithm, we assume that the plant model is determinate, and therefore,

a state uniquely determines an observation. However, if the plant model is an inde-

terminate, partial specification, then multiple observations may be consistent with a

state, and the observations may have different likelihoods. Therefore, branching on

unassigned observable variables with different probabilities could be a future exten-

sion to this algorithm.
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Figure 4-7: One step of the Simulator.

In Chapter 3 we motivated and described the k Most Likely Trajectories algo-

rithm employed by Titan’s Mode Estimation. We reuse k Best Trajectories ME in

our simulator. Figure 4-8 gives the pseudocode incorporating our changes to the al-

gorithm. First of all, we pass in a list of commands rather than a single command.
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1 ModifiedFindKMostLikelyTrajectories ( Model, GoalSpec, CurrentTrajectories,
2 Commands, NumSolns )
3 returns NextTrajectories
4
5 let NextTrajectories = {}
6 let PriorityQueue = {}
7 foreach CurrentT in CurrentTrajectories
8 let Command = Commands[ CurrentT ]
9 compute the most likely transition from CurrentT’s current state, enabled
10 by Command and Model, that doesn’t satisfy GoalSpec
11 let NextT = CurrentT + target state of enabled transition
12 insert NextT into PriorityQueue
13 endfor
14 while PriorityQueue is non-empty
15 let T = pop most likely trajectory from PriorityQueue
16 insert T into NextTrajectories
17 if ( size of NextTrajectories == NumSolns )
18 return NextTrajectories
19 endif
20 let OrigCurrentT = T - last state of trajectory T
21 let Command = Commands[ OrigCurrentT ]
22 compute the next most likely transition from OrigCurrentT’s current state,
23 enabled by Command and Model, that doesn’t satisfy GoalSpec
24 let NextT = OrigCurrentT + target state of enabled transition
25 insert NextT into PriorityQueue
26 endwhile
27 return NextTrajectories

Figure 4-8: The Modified k Most Likely Trajectories Algorithm.

Since we are using Titan to individually propagate a set of trajectories rather than

just one, we receive a corresponding number of commands. Second, we no longer pass

in observations, since our objective, as a simulator, is to generate the observations

from the commands. Finally, we consider the goal specification of the model-based

program when determining which transitions are tracked. Since we are interested

only in counterexamples, that is, trajectories that do not satisfy the goal specifica-

tion, we disallow transitions to states that fulfill the goal of the program. The goal

specification is a propositional state logic sentence; for example, a specification could

be (RoverTargetPosition = Reached). We take the negation of this sentence and

add it to the logic constraints for the model. We determine enabled transitions based
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on whether they satisfy the negation of this goal constraint, in addition to the con-

straints asserted by the modes and transitions of the model. Therefore the algorithm

only generates the most likely trajectories that fail to achieve the program goals. As

before, the cost of a trajectory is its computed probability and therefore, the probabil-

ity of the execution it represents. The algorithm performs a greedy forward-directed

search over the space of possible trajectories. At each iteration, best-first search is

used to select the next set of trajectories.
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Chapter 5

Verification of the Mars Entry

Scenario

We have defined the verification problem we wish to solve and have introduced our

algorithm. This chapter demonstrates verification on the Mars Entry model-based

program, an entry scenario for a Mar lander spacecraft. Section 5.1 introduces the

Mars Entry scenario. Sections 5.2 and 5.3 describe the inputs and outputs to the

problem. Section 5.4 walks through the verification of the model-based program.

The model-based program and its corresponding figures are taken from [11], with

permission of the author Michel. D. Ingham.

5.1 The Model-based Program for the Mars Entry

Scenario

Spacecraft are a natural application for model-based systems, as they must operate

for long periods of time in unknown environments, with little human intervention.

For example, one may concisely express the entry sequence for a Mars lander space-

craft using a model-based program, as described in [11]. In a typical scenario, the

spacecraft begins a sequence of actions in preparation for its entry into the Mar-

tian atmosphere, as it nears the end of the cruise phase of its mission. As shown
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Figure 5-1: The Entry Sequence for a Mars Lander Spacecraft.

in Figure 5-1, it first turns its descent engine to standby mode, then switches from

Earth-relative navigation to inertial navigation. It next rotates to and maintains

its entry orientation. Once it has reached the proper orientation, the lander stage

of the spacecraft separates from the cruise stage and descends towards its destina-

tion. Atmospheric entry is determined by a change in the spacecraft’s acceleration, at

which point the entry sequence ends. Each of the actions described can be modeled

and controlled as hidden states, in accordance with the model-based programming

paradigm.

5.2 Inputs

We now take a more detailed look at the inputs to the RMPLVerifier, which consist

of a control program, a goal specification, a plant model, and a number of parameters

that specify the search.
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5.2.1 The Control Program

The control program directs the behavior of the system by interacting with the hidden

state of the plant model. Figure 5-2 shows an example RMPL control program for

the Mars lander entry sequence [11]. This program manipulates the hidden state of

Engine, Nav, Att, Lander and Entry model components, which respectively represent

the descent engine of the spacecraft, its navigation capability, its attitude, the lander

stage, and the entry itself. First, the engine is turned to Standby mode (Line 2).

Next, the craft changes to inertial navigation (Line 3). Then, while entry is not yet

initiated, the attitude is set to always be Entry-Orient (Line 5) and the lander stage

is detached (Line 6). The EntrySequence() procedure uses RMPL constructs to

compactly specify the actions of the spacecraft during its entry phase.

As noted in Chapter 3, the intermediate representation of a control program is a

Hierarchical Constraint Automaton (HCA) [20]. This compiled form is input to the

verifier.

1 EntrySequence() {
2 Engine = Standby;
3 Nav = Inertial;
4 do {
5 always (Att = Entry-Orient),
6 when (Att = Entry-Orient) donext (Lander = Separated)
7 } watching (Entry = Initiated)
8 }

Figure 5-2: The RMPL Control Program for the Mars Entry Scenario.

5.2.2 The Goal Specification

As part of the verification process, we make explicit the mission of the program by

asking the user to include a goal specification in the control program. A control

program procedure is given a post-condition that indicates what should be true on

the successful completion of that procedure. This specification is then automatically

translated by the verifier into propositional state logic constraints and added to the
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constraints expressing the plant model. Propositional state logic is the constraint

system supported by RMPL. Consistent with our goal of easing the development

process, we decided to express this knowledge as an addition to the control program.

By adding RMPL post-conditions to each procedure, we add both functionality and

documentation.

Intuitively, the definition of success for the Mars Entry control program is the

separation of the lander, since that indicates the conclusion of the entry sequence.

Therefore its goal specification could be expressed as the propositional state logic

sentence Lander = Separated. Figure 5-3 shows the control program enhanced by

a goal specification.

1 EntrySequence() {
2 postcondition (Lander = Separated);
3
4 Engine = Standby;
5 Nav = Inertial;
6 do {
7 always (Att = Entry-Orient),
8 when (Att = Entry-Orient) donext (Lander = Separated)
9 } watching (Entry = Initiated)
10 }

Figure 5-3: The RMPL Control Program and Goal Specification for the Mars Entry
Scenario.

5.2.3 The Plant Model

The plant model, the second component of the model-based program, represents the

possible states of the system hardware. Continuing with our previous example, we

may model the Mars lander spacecraft with a number of components that can then

be controlled by the control program [11]. Figure 5-4 shows all the components of the

model, along with their interconnections. As we can see, the engine is connected to

two fuel tanks via valves. The PDE can command the engine and valves. We give a

brief description of each component. The Att component (Figure 5-5) is a qualitative
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Figure 5-4: The Plant Model for the Mars Entry Scenario.

model of the spacecraft’s attitude. The Engine component (Figure 5-6) models the

spacecraft’s engine. The Entry component (Figure 5-7) gives the entry status. The

Lander component (Figure 5-8) represents a simple lander/cruise stage separation

pyro mechanism. The Nav component (Figure 5-9) models the craft’s navigation. The

PDE component (Figure 5-10) represents the propulsion drive electronics. The Tank

component (Figure 5-11) models a propellant tank. The Valve component (Figure

5-12) models a simple valve. The compiled Concurrent Constraint Automaton (CCA)

representation of the plant model is input to the verifier.

5.2.4 Other Parameters

In addition to the model-based program, enhanced by the goal specification, the

verifier takes in a number of parameters that specify the search:

• The initial state of the plant model. This consists of assignments to the com-

ponent mode variables.

• The name of the control program procedure to execute.

• How many time steps of the program’s execution the verifier should examine.
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Figure 5-5: The Att Component.
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Figure 5-6: The Engine Component.
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Figure 5-7: The Entry Component.
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Figure 5-8: The Lander Component.
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Figure 5-9: The Nav Component.
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Figure 5-10: The PDE Component.
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Figure 5-11: The Tank Component.
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Figure 5-12: The Valve Component.
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• How many program failure trajectories the verifier should find.

5.3 Outputs

The verifier produces as output a list of counterexamples ranked by probability, from

highest to lowest. A counterexample is a plant state trajectory that does not achieve

the goal specification within the specified number of steps. Figure 5-13 shows the first

counterexample from a run of the RMPLVerifier on the Mars Entry model-based pro-

gram, with control program procedure EntrySequence() and LANDER1.MODE

= SEPARATED as the definition of success. The initial state of the plant is given

on Lines 9-18. The number of time steps examined is seven, and the number of pro-

gram failure trajectories returned is five. The first counterexample, which is also the

most likely, proceeds through the entry sequence of the spacecraft, taking nominal

transitions. At the last step, it takes a transition to a failure state.

We look at this first counterexample in detail. The probability of the most likely

program failure trajectory is given as 5.41851e-05 (Line 5). At Time Step 0, we see

the initial plant state, which is provided as input to the RMPLVerifier. Next, we

begin execution of the model-based program at Time Step 1. The output for a time

step includes the observations received during that step (Lines 22-35), the command

issued by Titan’s Mode Reconfiguration (Line 37-38), and the plant state at the end

of the step (40-42). Each of these is an assignment to the appropriate variables of the

plant model. In this particular counterexample, PDE, the propulsion drive electronics

component of the spacecraft, begins in the off state (Line 15). MR issues a command

to turn PDE on during the first time step. The new plant state shows that the

command was successful (Line 42). The values of the other mode variables stay the

same.

We briefly go through each remaining time step. At Time Step 2, the observations

have not changed. The command is to turn the engine to standby. The next plant

state shows that the engine is heating, which is an intermediate step to standby. At

Time Step 3, the observations show that the engine temperature is increasing and
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1 5 counterexamples were found:
2
3 # Counterexample 1 #
4
5 This trajectory has probability = 5.41851e-05
6
7 At the completion of Time Step 0, the plant state is:
8
9 ENGINE1.MODE = OFF
10 NAV1.MODE = EARTH-RELATIVE
11 TANK1.MODE = FULL
12 TANK2.MODE = FULL
13 VALVE1.MODE = CLOSED
14 VALVE2.MODE = CLOSED
15 PDE1.MODE = OFF
16 ATT1.MODE = CRUISE-ORIENT
17 LANDER1.MODE = CONNECTED
18 ENTRY1.MODE = NOT-INITIATED
19 ---------------------------------------------------------
20 Executing Time Step 1 ...
21
22 The model-based executive received the following changed observations:
23 NAV1.IMU-STATUS = ACTIVE
24 ATT1.ACS-OBS = IN-CRUISE
25 LANDER1.BACKUP-PYRO = NOT-FIRED
26 LANDER1.PRIMARY-PYRO = NOT-FIRED
27 NAV1.ST-STATUS = ACTIVE
28 ENTRY1.ACCEL-OBS = ZERO
29 TANK2.PRESSURE-OUT = HIGH
30 ATT1.ACS-CTRL = CRUISE
31 ENGINE1.POWER = OFF
32 ENGINE1.THRUST = ZERO
33 VALVE2.PRESSURE-OUT = LOW
34 VALVE1.PRESSURE-OUT = LOW
35 TANK1.PRESSURE-OUT = HIGH
36
37 The model-based executive issued the following command:
38 PDE1.PDE-CMD-IN = ON
39
40 At the completion of Time Step 1, the changes to the plant state are:
41
42 PDE1.MODE = ON
43 ---------------------------------------------------------
44 Executing Time Step 2 ...
45
46 The model-based executive received the following changed observations:
47
48
49 The model-based executive issued the following command:
50 PDE1.ENGINE-CMD-IN = STANDBY
51
52 At the completion of Time Step 2, the changes to the plant state are:
53
54 ENGINE1.MODE = HEATING

Figure 5-13: The Verification Output for the Mars Entry Scenario.
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1 ---------------------------------------------------------
2 Executing Time Step 3 ...
3
4 The model-based executive received the following changed observations:
5 ENGINE1.TEMP = INCREASING
6 ENGINE1.POWER = ON
7
8 The model-based executive issued the following command:
9 PDE1.ENGINE-CMD-IN = STANDBY
10
11 At the completion of Time Step 3, the changes to the plant state are:
12
13 ENGINE1.MODE = STANDBY
14 ---------------------------------------------------------
15 Executing Time Step 4 ...
16
17 The model-based executive received the following changed observations:
18 ENGINE1.TEMP = NOMINAL
19
20 The model-based executive issued the following command:
21 NAV1.NAV-CMD = TOINERTIAL
22
23 At the completion of Time Step 4, the changes to the plant state are:
24
25 NAV1.MODE = INERTIAL
26 ---------------------------------------------------------
27 Executing Time Step 5 ...
28
29 The model-based executive received the following changed observations:
30 NAV1.ST-STATUS = INACTIVE
31 ENGINE1.POWER = ON
32
33 The model-based executive issued the following command:
34 ATT1.ACS-CMD = TO-ENTRY
35
36 At the completion of Time Step 5, the changes to the plant state are:
37
38 ATT1.MODE = SLEW-TO-ENTRY-ORIENT
39 ---------------------------------------------------------
40 Executing Time Step 6 ...
41
42 The model-based executive received the following changed observations:
43 ATT1.ACS-CTRL = ENTRY
44
45 The model-based executive issued the following command:
46 No new command was necessary.
47
48 At the completion of Time Step 6, the changes to the plant state are:
49
50 ATT1.MODE = ENTRY-ORIENT
51 ---------------------------------------------------------
52 Executing Time Step 7 ...
53
54 The model-based executive received the following changed observations:
55 ATT1.ACS-OBS = IN-ENTRY
56
57 The model-based executive issued the following command:
58 LANDER1.LANDER-PYRO-CMD = FIRE-PRIMARY
59
60 At the completion of Time Step 7, the changes to the plant state are:
61
62 LANDER1.MODE = UNSUCCESSFUL-ATTEMPT
63 ---------------------------------------------------------

Figure 5-14: The Verification Output for the Mars Entry Scenario (Continued).
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the power is on and the engine command is still standby. The plant state now shows

that the engine has achieved standby mode. At Time Step 4, the observations are

that the engine temperature is nominal. Consistent with the control program, the

next command is to switch navigation to inertial mode. The plant state shows that

this was successful. At Time Step 5, the navigation ST instrument status is inactive

and the engine power is on and the attitude command was to set the orientation

to ToEntry. The plant state showed that the spacecraft was slewing to the entry

orientation. At Time Step 6, the attitude control was observed to be Entry. There

was no command issued. The plant state showed that the attitude had been changed

to the entry orientation. Finally, at Time Step 7, the attitude was observed to be in

the in-entry orientation, and that the command was to fire the primary lander pyro.

The plant state showed that the lander had unsuccessfully tried to separate.

We have examined the first plant trajectory output by the verifier in the Mars

Entry scenario. In the next section, we see how the set of trajectories is generated.

5.4 Walkthrough of the Algorithm

We run the EntrySequence() control program and its corresponding spacecraft

model on the RMPLVerifier. The horizon, which determines the number of time

steps examined, is set to seven, and the number of state trajectories tracked and

returned is set to five. Figures 5-15 and 5-16 show the state trajectories tracked

by the verifier at each time step. Figure 5-15 covers time steps 0 to 3, and Figure

5-16 covers 4 to 7. Each rounded rectangle in the figure represents a plant state.

Lines connecting the states represent plant state trajectories. Each level in the tree

represents a time step. The states on a level are ordered from left to right, with the

left-most state being the most likely at that point in time. We highlight any state

assignment in a trajectory that has changed in the last time step. The figure also

shows commands issued at each step.
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Engine = Off
Nav = Earth-Relative

Tank1 = Full
Tank2 = Full

Valve1 = Closed
Valve2 = Closed

Pde = Off
Att = Cruise-Orient

Lander = Connected
Entry = Not-Initiated

Tank2 = Empty

Pde = On

Pde = ResettableTank1 = Empty

Pde = On

Pde = On

Entry = Initiated
Pde = On

Engine.Power = Off
Engine.Thrust = Zero

Nav.IMUStatus = Active
Nav.STStatus = Active
Tank1.Pressure = High
Tank2.Pressure = High
Valve1.Pressure = Low
Valve2.Pressure = Low

Att.Control = Cruise
Att.Obs = InCruise

Lander.BackupPyro = NotFired
Lander.PrimaryPyro = NotFired

Entry.Accel = Zero

Cmd Pde = On

No change
Engine = Heating

Entry = Initiated

Engine = HeatingEntry = Not-InitiatedEngine = Heating

Cmd Engine = Standby

No change Engine = StandbyNo changeEngine = HeatingEngine = Standby

(a)

(b)

(c)

(d)

Cmd Engine = Standby

Cmd Engine = Standby Cmd Engine = Standby Cmd Pde = Reset

Cmd Engine = Standby

Cmd Engine = Standby

Cmd Engine = Standby Cmd Engine = Standby Cmd Engine = Standby

Cmd Nav = ToInertial Cmd Engine = Standby Cmd Engine = Standby Cmd Engine = Standby Cmd Nav = ToInertial

Figure 5-15: Verification of the Mars Entry Scenario. (a) The Initial State. (b)-(d)
Time Steps 1-3.
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5.4.1 Time Step 0

Figure 5-15(a) shows the initial state of the program as an assignment to state vari-

ables. In the beginning, the spacecraft is traveling towards its destination and has

yet to begin entry into the Martian atmosphere. Therefore, for example, its engine is

off, navigation is still relative to earth, and the lander is connected.

5.4.2 Time Step 1

In the first time step, the verifier expands the initial state by conducting best-first

search on the enabled state transitions. The first configuration goal determined by

Mode Reconfiguration from the control program is Engine = Standby. In order

to transition from the initial state Off to Standby, we must first transition to the

intermediate Heating mode of the engine. This may be accomplished by giving the

engine the Standby command. However, we cannot issue any engine commands

while the PDE component is off. Therefore the first desired step of the program is to

transition the PDE from Off to On. MR issues a command to turn on the propulsion

drive electronics.

Figure 5-15(b) shows the five most likely states at the end of Time Step 1. In

practice, many more states are reachable, but the verifier prunes these during its

best-first search. The verifier also will prune any trajectory that satisfies the goal

specification, Lander = Separated. Due to the large number of observable vari-

ables, we show their values only for the first time step. The simulator has generated

an observation consistent with the initial state. The command from Titan is to turn

the PDE On. Note that the PDE has been successfully turned on in the first four

trajectories. The fifth trajectory goes to Resettable, a failure mode of PDE. In three

child trajectories, other state values have changed as well. The second trajectory also

decides that entry has been initiated. The third and fourth trajectories think a tank

is empty. These are less likely scenarios than the first trajectory. At the end of the

first time step, we thus have four trajectories that turn the PDE on.
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5.4.3 Time Step 2

Now that the PDE is on, we are ready to issue commands to the engine. We are still

pursuing the control program goal to set Engine = Standby. During Time Step

2 (Figure 5-15(c)), we issue a command to the first four trajectories to turn on the

engine. We issue a command to reset the PDE to the fifth trajectory, as it has not

yet turned the PDE on. We see that some trajectories succeed in setting Engine to

Heating, while others do not. An important fact to note about Time Step 2 is that

the most likely trajectories are derived from only the first two previous trajectories;

the remainder are pruned.

5.4.4 The Remaining Time Steps

We proceed in a similar manner through each time step (Figures 5-15(d) and 5-

16(a)-(d)), issuing configuration goals to switch to inertial navigation and to set the

attitude to the entry orientation of the spacecraft and successfully and unsuccessfully

completing commands. Eventually we reach Time Step 7 (Figure 5-16(d)), where one

trajectory receives a command to fire the primary lander pyro. At this stage, our goal

specification for the program, Lander = Separated, comes into play, preventing the

lander from separating. The state for the first trajectory reflects the fact that the

attempt was unsuccessful. Beginning at Time Step 5, we also get trajectories that

failed to achieve their configuration goals. Mode reconfiguration issues an error when

a trajectory has failed to achieve a configuration goal within a number of steps.

At the conclusion of the verification algorithm, we are left with the five most likely

program failure trajectories in the bound of seven time steps. The trajectories are

labeled with their probabilities in Figure 5-16(d). The most likely trajectory proceeds

nominally through the Mars entry sequence until it reaches the lander separation

state, when it fails to separate. We would expect the most likely state to be the

separation of the lander. However, that is not allowed by our goal specification,

so the lander being unsuccessful is the next most likely state for that trajectory.

The third trajectory is similar, only it takes longer to set the attitude to the entry
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Nav = Inertial

Engine = Standby

Nav = Inertial

Engine = Heating

Nav = Inertial

Engine = Standby

Nav = Inertial
Nav = Inertial

Att = SlewEntry-Orient
Engine = Standby

Att = SlewEntry-Orient
Could not achieve
configuration goal.Att = SlewEntry-Orient

Could not achieve
configuration goal. No change.No change.Att = Entry-Orient

(a)

(b)

(c)

From 1 From 2 From 3 From 3 From 4

Lander =
Unsuccessful

Could not achieve
configuration goal.

Could not achieve
configuration goal.

Lander =
Unsuccessful

(d)

5.41851e-05 2.70883e-05 2.31109e-052.5662e-052.56788e-05

Cmd Att = ToEntry Failed to achieve goal Cmd Engine = Standby
Cmd Engine = Standby

Failed to achieve goal

No command issued Failed to achieve goal Cmd Engine = Standby
Failed to achieve goal Failed to achieve goal

Cmd Lander = FirePrimary No command issued Failed to achieve goal
Failed to achieve goal Failed to achieve goal

Engine = Heating

Att = SlewEntry-Orient

Att = Entry-Orient

Att = Entry-Orient

Lander =
Unsuccessful

Figure 5-16: Verification of the Mars Entry Scenario (cont’d). (a)-(d) Time Steps
4-7.
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orientation. The fifth trajectory has not yet achieved the entry orientation when

the verification terminates. For the last two time steps, this trajectory receives no

command from MR. Instead, Mode Reconfiguration states that is waiting for an

appropriate observation. It does not receive the necessary observation to achieve the

entry orientation goal by Time Step 7. The second and fourth trajectories fail to

achieve their configuration goals. The second trajectory first gets an error message

from MR at Time Step 4. For the last three time steps before, the command is to turn

the engine to standby. However, this state is not achieved by the plant. Therefore,

Mode Reconfiguration gives an error saying that it cannot achieve this configuration

goal. The fourth trajectory fails for the same reason, only it first gets an error from

MR in Time Step 6. The results described above are illustrative of the different

categories of failure trajectories the verification process may reveal. The results are

particularly useful when considering complex models like the Mars Entry scenario,

where the possible states, commands and observations are far too many to enumerate

by hand.
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Chapter 6

Implementation

RMPLVerifier is implemented as a C++ program that uses the C++ API of Titan

1.2, the current version of Titan. In this chapter we describe the implementation. We

begin with a general overview of the system architecture in Section 6.1. Section 6.2

describes components of Titan used by RMPLVerifier. Section 6.3 takes a detailed

look at key components of RMPLVerifier and outlines the main implementation issues.

In particular, we examine the Verifier, Simulator, and SequencerInterfaceWithObs

classes, which encapsulate the core functionality of the software.

6.1 System Architecture

Figure 6-1 shows the architecture of the system as a Unified Modeling Language

(UML) class diagram. Each block in the diagram represents a class. A relationship

between classes is described with a connecting link. An arrow on the link shows the

direction of the association. For example, the arrow from Verifier to ModelBasedPro-

gram indicates that Verifier can be queried about its ModelBasedProgram, but not

vice versa. A diamond end to the link indicates that the class contains a collection

of the class on the other end of the link. For example, a StateTrajectory contains a

collection of MRCommands. The end of the link shows the multiplicity of the class,

which is the number of possible instances of the class that can be associated with the

class on the other end. The multiplicity can be:
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• 0...1 - Zero or one instance.

• 0...* - Any number of instances, including zero.

• 1 - One instance.

• 1...* - One or more instances.

Verifier

ModelBasedProgram

1

1..*1

1

Simulator

1

1

ModeEstimator

1

1

ValidSAT

1

1

SequencerInterfaceWithObs

Sequencer

ObservationHistory MRCommand

1

1..*

1

0..*

1

1

StateTrajectory

1

1..*

1

0..*

ObservationHistory MRCommand

1

1

Class Diagram of RMPLVerifier

Figure 6-1: The UML class diagram for RMPLVerifier.

The shaded blocks indicate classes of Titan used by RMPLVerifier.

Verifier is the root of the class hierarchy. It takes a ModelBasedProgram and

the search parameters as input and produces a ranked list of trajectories as output.

ModelBasedProgram represents the model-based program and contains objects rep-

resenting the control program and plant model, the control program procedure, and

the initial state of the model. Verifier handles the interaction between Titan and

Simulator. It maintains a list of the current MRCommands to be provided from Ti-

tan to Simulator. It maintains another list of the current ObservationHistory objects

to be provided from Simulator to Titan. Verifier interfaces with the Titan system

using the Sequencer class. Sequencer is the top-level object for Titan, consisting of
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the control sequencer and deductive controller. Verifier constructs Sequencers using

SequencerInterfaceWithObs, an interface that allows one to receive commands from

Titan and inject observations from Simulator during execution of the model-based

program.

Simulator implements a simulator that maintains a list of the current StateTra-

jectory’s, ranked by probability. StateTrajectory represents a plant state trajectory

and contains the ObservationHistory of the trajectory, as well as the command his-

tory as a list of MRCommands. ObservationHistory is a list of the observations at

each time step. MRCommand represents a command received from Titan’s Mode

Reconfiguration. Simulator queries the ModeEstimator class to generate the next set

of StateTrajectory’s. ModeEstimator is the Mode Estimation component of Titan.

Simulator then uses ValidSAT [5] to find observations consistent with the next states.

ValidSAT is a satisfiability engine available as part of the Titan API.

6.2 Relevant Components of Titan

RMPLVerifier calls on the Titan executive to execute model-based programs. Here

we describe key components of Titan used in the implementation.

6.2.1 Sequencer

Sequencer implements Titan’s control sequencer and deductive controller and is used

to execute a model-based program. It contains all the subsystems of Titan, including

Mode Estimation and Mode Reconfiguration; the ModeEstimator object is its sub-

component. It also contains the Titan data structures representing the model-based

program and is initialized with the initial state and a control program procedure.

Sequencer maintains all the state information during execution, including the tra-

jectories for the plant model and control program. Starting the Sequencer begins

the execution of the model-based program by producing the initial state estimate.

Stepping the Sequencer executes the program for one time step, during which the

next configuration goal is generated from the control program, Mode Reconfiguration
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issues the next command, and Mode Estimation computes the next estimated states.

6.2.2 ModeEstimator

ModeEstimator implements Titan’s Mode Estimation subsystem. It produces a single

most likely state estimate that is used by the rest of Titan. The current version of

ModeEstimator in Titan 1.2 implements the k Most Likely Trajectories algorithm.

We use ModeEstimator in two capacities. We use it indirectly for execution as part

of the overall Titan system. In this case, ModeEstimator applies the same command

to all state trajectories. We also use a separate instance for simulation. In this case,

it applies an individual command to each state trajectory.

6.2.3 ValidSAT

ValidSAT [5] is a satisfiability engine. It is able to classify theories as either consistent,

inconsistent, or valid. The engine uses a clause-directed approach along with finite-

domain variables to efficiently test for validity. These techniques allow it to test for

validity without assigning a value to every variable. ValidSAT is also able to extract

the minimal valid and minimal inconsistent assignment it found while classifying the

theory. We use ValidSAT in the simulator to return the first minimal valid solution

to a satisfiability problem where the observable variables are the decision variables

and the constraints are the constraints on the modes of the plant model, along with

the mode values of the current state. This solution is the consistent observation for

that state.

6.3 Key Components of RMPLVerifier

We now describe the Verifier, Simulator, and SequencerInterfaceWithObs classes in

more detail.
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6.3.1 Verifier

Verifier is called by VerifierCLI, the top-level program of RMPLVerifier. The user

invokes VerifierCLI and enters the inputs to the verification problem via it’s command-

line interface. These inputs are:

• -h Specifies the name of the file containing the HCA of the enhanced control

program.

• -c Specifies the name of the file containing the CCA of the plant model.

• -i Specifies the name of the file containing the initial state of the plant model.

• -p Specifies the name of the control program procedure to execute.

• -n Specifies how many time steps of the program’s execution the verifier should

examine.

• -k Specifies how many program failure trajectories the verifier should find.

VerifierCLI loads the inputs and creates the ModelBasedProgram object used in

the rest of the program. It prints the state trajectories obtained from Verifier to an

output log file, as a list of counterexamples ranked by probability.

Verifier takes the ModelBasedProgram and search parameters as input and gen-

erates an ordered list of plant state trajectories as output. It keeps a reference to an

ObservationHistory for each current state trajectory. Initially, there are no state tra-

jectories, so this list contains a single empty ObservationHistory. Verifier also keeps

a list of the MRCommands received during the current time step, one for each state

trajectory. Initially, this list is empty. Verifier performs iterations, each correspond-

ing to a time step, until the time horizon has been reached. It takes the following

actions during each iteration.

First, it gets the new list of commands from Titan. For each current trajectory,

it needs an instance of Titan that contains all the state for that trajectory. That in-

stance will then output a new command for the trajectory given the latest observation
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from the simulator. Verifier loops over the list of ObservationHistorys, each of which

contains the latest observation for its associated trajectory. For each ObservationHis-

tory, it recreates the Sequencer object for the state trajectory it represents. It does so

by creating a new Sequencer object based on the ModelBasedProgram and stepping

it through the model-based program for the necessary number of steps. At each step,

it uses SequencerInterfaceWithObs to input the appropriate observation from the ob-

servation history. The command history is automatically recreated. Once it has the

Sequencer representing the current trajectory, it obtains the new command issued by

Mode Reconfiguration based on the current state. Verifier stores the command in its

list of commands. Next, it passes the current list of commands to Simulator and gets

the new list of ObservationHistorys. Once the time horizon has been reached, Verifier

returns the list of current StateTrajectory’s from Simulator.

6.3.2 Simulator

Simulator is initialized with the plant model and goal specification of the model-based

program. It maintains a list of the current StateTrajectory’s. The following actions

occur for each simulator step.

Simulator begins by calling ModeEstimator with the latest list of commands it

has received. ModeEstimator returns the list of next states. Simulator gives ModeEs-

timator a modified version of the plant model as input. The plant model is essentially

a set of propositional state logic constraints. Simulator creates a logic sentence that

is the negation of the goal specification for the control program procedure. The spec-

ification, as procedure post-conditions, is loaded automatically as part of the control

program at the beginning of the program. Simulator inserts it into the model. This

ensures that ModeEstimator only returns estimated states that do not satisfy the

specification.

Simulator then computes an observation consistent with each next state using

ValidSAT. A state, consisting of the full assignment to the state variables, is provided

to ValidSAT along with the modal constraints from the plant model. The observable

variables are set as the decision variables in the satisfiability problem. ValidSAT
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returns the first minimal valid assignment to observable variables that satisfies the

constraints. Simulator updates each StateTrajectory with the next state estimate,

the probability of the trajectory from ModeEstimator, and the new command and

observation.

6.3.3 SequencerInterfaceWithObs

SequencerInterfaceWithObs is an interface that allows Verifier to receive commands

from and give observations to Titan. SequencerInterfaceWithObs is passed as a con-

structor argument to the Sequencer. Ordinarily, Sequencer is created with Sequencer-

Interface, which passes commands directly from Mode Reconfiguration to Mode Esti-

mation and has no facility for injecting observations. By creating SequencerInterface-

WithObs, a subclass of SequencerInterface, we were able to obtain commands from

Mode Reconfiguration and inject observations from an observation history. By con-

structing the class with an observation history, we are able to recreate the Sequencer

state for a particular program state trajectory. SequencerInterfaceWithObs can be

queried for the newest command issued by Mode Reconfiguration.

6.4 Implementation Issues

The main implementation challenge lay in maintaining the list of program state trajec-

tories using Sequencer. A Sequencer instance holds all the state for Titan. Therefore

it seemed a natural choice to store the information for a program state trajectory

during the search. However, in practice, unexpected errors occur when multiple Se-

quencer objects exist and are running at the same time. Therefore we were unable

to keep a list of Sequencer objects as representations of state trajectories. Another

factor in this decision was the fact that a Sequencer has no copy constructor. This

is reasonable for Titan, as there is ordinarily no reason to copy a Sequencer, and it

would undoubtedly be an expensive operation. However, it also meant that we could

not create two new trajectories from the same parent trajectory by simply copying

the parent node’s Sequencer and stepping it once. Our solution for both of these
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issues was to store enough information in a StateTrajectory object that we were able

to recreate the Sequencer for its corresponding program state trajectory when needed.

In particular, we stored the observation history for each time step. Unfortunately,

the Sequencer must step through the whole execution of the model-based program,

duplicating work we have done before. Future optimizations could focus on storing

some of the state of the Sequencer in order to reduce the time needed.

6.5 Summary

In this chapter we presented the implementation of the RMPLVerifier. In the next

chapter we look at results and give ideas for future work.
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Chapter 7

Results and Conclusions

This thesis presented a novel verification approach embodied in RMPLVerifier, a tool

for verification of RMPL model-based programs. Our approach provides three key

capabilities. First, we provide the ability to verify a stochastic system that encodes

both off-nominal and nominal scenarios. Second, we provide a capability for verifying

executable specifications that are fault-aware. Third, we verify these specifications

through execution.

This chapter presents the performance of RMPLVerifier on the Mars Entry model-

based program (Section 7.1). We conclude by discussing future work (Section 7.2).

7.1 Performance

We measured the performance of the RMPLVerifier with respect to time. The program

was tested on an Intel(R) Xeon(TM) 1.7 GHz processor with 500 MB of RAM running

the Debian Linux 2.4.23 operating system. It was run on the Mars Entry model-based

program with different combinations of search parameters. The Mars Entry model is

composed of 8 component models. It has 7 control variables, 15 observable variables,

10 state variables, and 10 dependent variables, for a total of 42 variables. It has 179

transitions.

For our first benchmark, we varied the number of time steps the verifier examined

while keeping the number of tracked trajectories constant. Table 7.1 shows the time
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Number of Time Steps Number of Trajectories Average Time (seconds)
1 5 0.396
2 5 2.898
3 5 5.96
4 5 10.066
5 5 15.758
6 5 22.462
7 5 29.511

Table 7.1: Performance of RMPLVerifier on the Mars Entry model-based program
with respect to the number of time steps.

Number of Time Steps Number of Trajectories Average Time (seconds)
1 1 0.349
1 2 0.36
1 3 0.363
1 4 0.388
1 5 0.412
1 6 0.426
1 7 0.441

Table 7.2: Performance of RMPLVerifier on the Mars Entry model-based program
with respect to the number of trajectories.

performance of the program in this case. For each test, we measured the total number

of seconds that the process used directly in user mode and the total number of seconds

used by the system on its behalf in kernel mode. We added these two numbers to

obtain the total time the process ran. We averaged the total time over ten runs to

compute the average time for the test case.

For our second benchmark, we varied the number of trajectories to find while

keeping the number of time steps constant. Table 7.2 shows the time performance of

the program. We computed the average time in the same manner.

The data we collected agreed with our intuition on the performance of the pro-

gram. As we increase the number of trajectories, the time for the program to complete

increases in a roughly linear fashion. This corresponds to the behavior we would ex-

pect for Mode Estimation, which is the computational core of the simulator. However,

as we increase the number of time steps, the time for the program to complete in-

creases exponentially. This is an artifact of the implementation. We can understand
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why this happens by looking at the process by which the verifier computes the next

set of Titan trajectories from the current one. Let us define the time needed to ex-

tend each of the current set of Titan trajectories by one Titan step as a constant T .

Therefore, the time taken to complete one time step is T added to the time to recreate

the current Titan trajectories. This can be described by the following recurrence:

Stepn = T + Stepn−1 + Stepn−2 + ... + Step1 = T ∗ 2n−1

Therefore, the time to execute a program that examines n steps is:

Timen =
n∑

i=1

Stepi = T ∗ (2n − 1)

This performance bottleneck is strictly an implementation issue, which can be

addressed as a software engineering task. We discuss ways to improve it in the next

section.

7.2 Future Work

We discuss areas of future research in the treatment of observations, performance,

and the presentation of results.

7.2.1 Observations

The treatment of observations in the verifier could be improved. Currently the sim-

ulator returns the first observation consistent with a next state. However, in reality,

there may be a number of equally valid observations. A future version of the verifier

could reflect this by branching on all consistent observations. In addition, we have

assumed that all observations have equal likelihood, which is not the case. A better

strategy would account for the observation probability in the cost of a trajectory.

Note that observation probabilities are not currently part of RMPL specifications.
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7.2.2 Performance

We have adopted the strategy of local beam search for our algorithm. At each step,

we generate the k best successors of the current k plant states. Initially, we considered

using simple best-first search for our algorithm. However, we realized that generating

all the possible next states for a current plant state would quickly grow intractable

in terms of the size of the queue we would have to maintain. The queue size remains

constant in our current search strategy. However, a disadvantage of our approach

is that we have no way to steer the search towards non-achievement of the goal,

since we only use local information to make decisions. Therefore, a future version of

the algorithm could employ a different search strategy, one that uses an admissible

heuristic to calculate the cost to reach the negation of the goal.

The performance of our implementation could be improved by finding an alternate

strategy for saving and restoring the state of Titan for a trajectory. Currently it is not

possible to save this state as a Sequencer object because of buggy behavior that occurs

when multiple instances of the Sequencer are run soon after each other. One strategy

would be to work with Titan’s developers to eliminate this problem. However, since

RMPLVerifier uses Titan as a client, it might be more practical to find a solution

that uses Titan as is. An alternate strategy would be to save our own representation

of Titan’s state at any point in time and use it to recreate a Titan instance.

7.2.3 Presentation of Results

There are two main ways that the presentation of results to the user could be im-

proved. The first is the addition of a graphical user interface in addition to the

command-line interface that is currently available. Desired features of this inter-

face could include the ability to visualize, step through, and play back trajectories.

Another is the abstraction of the trajectories returned. It is possible that some tra-

jectories returned will have many states in common. Trajectories could be grouped

together by similarity and common points of failure to increase the relevance of the

results to the user.
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7.3 Summary

The verification and validation of model-based systems is an area that has been little

explored. However, V & V is key to proving the viability of model-based autonomy

as an alternative to human control on missions. This thesis brings us a step closer

to achieving that goal. We have presented a verification approach for model-based

programs. Our approach provides three capabilities. We give the ability to verify

stochastic systems that define both nominal and failure scenarios. We enable ver-

ification of executable specifications that are fault-aware. Finally, we verify these

specifications through execution.
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