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Abstract

Robotic and embedded systems have become increasingly pervasive in every-day ap-
plications, ranging from space probes and life support systems to autonomous rovers.
In order to act robustly in the physical world, robotic systems must handle the uncer-
tainty and partial observability inherent in most real-world situations. A convenient
modeling tool for many applications, including fault diagnosis and visual tracking,
are probabilistic hybrid models. In probabilistic hybrid models, the hidden state is
represented with discrete and continuous state variables that evolve probabilistically.
The hidden state is observed indirectly, through noisy observations. A challenge is
that real-world systems are non-linear, consist of a large collection of concurrently
operating components, and exhibit autonomous mode transitions, that is, discrete
state transitions that depend on the continuous dynamics.

In this thesis, we introduce an efficient algorithm for hybrid state estimation that
combines Rao-Blackwellised particle filtering with a Gaussian representation. Con-
ceptually, our algorithm samples trajectories traced by the discrete variables over time
and, for each trajectory, estimates the continuous state with a Kalman Filter. A key
insight to handling the autonomous transitions is to reuse the continuous estimates
in the importance sampling step. We extended the class of autonomous transitions
that can be efficiently handled by Gaussian techniques and provide a detailed em-
pirical evaluation of the algorithm on a dynamical system with four continuous state
variables. Our results indicate that our algorithm is substantially more efficient than
non-RaoBlackwellised approaches. Though not as good as a k-best filter in nomi-
nal scenarios, our algorithm outperforms a k-best filter when the correct diagnosis
has too low a probability to be included in the leading set of trajectories. Through
these accomplishments, the thesis lays ground work for a unifying stochastic search
algorithm that shares the benefits of both methods.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor

3



4



Acknowledgments

First and foremost, I would like to thank my research advisor Brian C. Williams for

guiding me in my research. He set a great example and provided hard-to-find insights

that aided me in my academic career.

I would like thank to my parents, my sister Monika Jačmeńıková, and my friend
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Chapter 1

Introduction

Robotic and embedded systems have become increasingly pervasive in a variety of

applications. Space missions, such as Mars Science Laboratory (MSL) [3] and the

Jupiter Icy Moons Orbiter (JIMO) [1], have increasingly ambitious science goals, such

as operating for longer periods of time and with increasing levels of onboard autonomy.

Manned missions in space and in polar environments will rely on life support systems,

such as the Advanced Life Support System developed at the NASA Johnson Space

Center, to provide a renewable supply of oxygen, water, and food. Here on Earth,

robotic assistants, such as CMU’s Pearl and iRobot’s Roomba, directly benefit people

in ways ranging from providing health care to routine services and rescue operations.

In order to act robustly in the physical world, robotic systems must handle the

uncertainty and partial observability inherent in most real-world situations. Robotic

systems often face unpredictable, often harsh physical environments and must con-

tinue performing their tasks (perhaps at a reduced rate), even when some of their

subsystems fail. For example, in land rover missions, such as MSL, the robot needs

to detect when one or more of its wheel motors fail, which could jeopardize the safety

of the mission. The rover can detect the failure from a drift in its trajectory and then

compensate for the failure, either by adjusting the torque to its other wheels or by

replanning its path to the desired goal.

One of the major thrusts in reasoning under uncertainty is model-based probabilis-

tic reasoning. Probabilistic model-based methods represent the uncertainty explicitly,

17



by modeling the transition function, observation function, and relations among the

variables as probability distributions. Employing these methods allows autonomous

systems to reason explicitly about the uncertainty of their belief and to act robustly

in their environment. As an example, consider the problem of tracking the position of

a robotic arm. Typically, the position of an arm is observed only indirectly, through

noisy sensors that measure arm angle and exerted force with a certain amount of

error. Since the dynamic equations for the system and the amount of noise on the

sensors is typically known, the problem of tracking the arm position can be framed

as a state estimation problem, in which the given model is combined with the rover’s

perception, in order to obtain an estimate of the arm position. This state estima-

tion problem can then be solved using one of a wide range of methods, offered by

estimation and control theory. [7]

In this thesis, we investigate the problem of estimating the state of systems with

probabilistic hybrid models. Probabilistic hybrid models represent the system with

both discrete and continuous state variables that evolve probabilistically according

to a known distribution. The discrete state variables typically represent a behavioral

mode of the system, while the continuous variables represent its continuous dynam-

ics. These representations often provide an appropriate level of modeling abstraction

when purely discrete, qualitative models are too coarse, while purely continuous,

quantitative models are too fine-grained. Probabilistic hybrid models are particularly

useful for fault diagnosis, the problem of determining the health state of a system.

With hybrid models, fault diagnosis can be framed as a state estimation problem,

by representing the nominal and fault modes with discrete variables and the state of

the system dynamics with continuous variables. Probabilistic hybrid models can thus

be viewed as a natural successor to discrete model-based diagnosis systems, such as

Livingstone [62].

State estimation techniques for probabilistic hybrid models have traditionally fo-

cused on a restricted subset of conditional linear Gaussian models, in which the

discrete state d is a Markov chain with a known transition probability p(dt|dt−1),

and the continuous state evolves linearly, with system and observation matrices de-
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pendent on dt. Under such conditions, the continuous estimate for each sequence of

discrete state assignments can be computed with a Kalman Filter. The number of

tracked estimates can be kept down to an acceptable level by using one of a variety of

methods, including the well-known interactive multiple model (IMM) algorithm [10],

Rao-Blackwellised particle filtering [6, 21] and, more recently, efficient k-best filtering

[45, 32]. Systems with non-linear dynamics, such as a rover drive subsystem [36]

can be handled by employing variations of the Kalman Filter, such as an Extended

Kalman Filter [7] or an Unscented Kalman Filter [39].

In many domains, however, such as rocket propulsion systems [43] or life-support

systems [32], simple Markovian transitions p(dt|dt−1) are not sufficiently expressive.

In these domains, the transitions of the discrete variables often also need to depend

on the continuous state. Such transitions are called autonomous1, and are substan-

tially more challenging to address. Recent work in k-best Gaussian filtering [32, 44]

demonstrated efficient k-best filtering algorithms for hybrid models with autonomous

transitions. Owing to their efficient representation and focused search, these meth-

ods have been succesfully applied to large systems with as many as 450,000 discrete

states. Excessive focusing during search may, however, come at a price if the correct

diagnosis is not among the leading set of hypotheses.

In this thesis, we propose an efficient Gaussian particle filtering technique, which

performs state estimation in hybrid models with autonomous transitions. In the

spirit of prior approaches to k-best filtering and Rao-Blackwellised particle filtering,

the algorithm samples mode sequences and, conditioned on each sequence, estimates

the continuous state with a Kalman filter. Such a solution is thus substantially more

efficient than traditional particle filters, yet offers the fair sampling benefits of particle

filters.

Applying Rao-Blackwellisation schemes to models with autonomous transitions is

difficult, since the discrete and continuous spaces in these models tend to be coupled.

The key innovation in our algorithm is that it reuses the continuous state estimates

1In the terminology of hybrid Bayesian networks, these correspond to discrete nodes with con-
tinuous parents.
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in the importance sampling step of the particle filter. In this manner, the algorithm

does not need to maintain the full sample representation of the state space. In or-

der to perform state estimation in Concurrent Probabilistic Hybrid Automata [32], a

formalism for modeling large concurrent systems, we compute the optimal proposal

distributions for single-component transitions and combine them as a proposal distri-

bution for the overall model. We demonstrated the approach on a highly-nonlinear

two link system and compared its performance to an efficient k-best filtering solution.

In the following section, we give an overview of probabilistic hybrid models, and

clearly state the state estimation problem that we are addressing in this thesis. Then,

we lay out the basic principles behind Gaussian filtering for hybrid models, and

explain the key insights in our algorithm.

1.1 Probabilistic hybrid models

Continuous models have been a long-held standard in natural sciences, ranging from

Newtonian mechanics to fluid dynamics. Their biggest advantage is their fidelity:

since the models described detailed interactions in a physical system, accurate pre-

dictions and conclusions can be drawn based on these models.

Often, however, it is very challenging to obtain a faithful continuous model of a

system or, given a complex continuous model, it may be difficult to reason about

it. For example, in order to construct a continuous model of a fault in an actuator,

one would have to model detailed interactions between currents and magnetic fields

inside it. Constructing such a model may be overly difficult and costly for the given

purpose. In these cases, engineers typically divide the model into a finite set of

steady-state behavioral modes, and model each behavioral mode with a separate set

of equations. Such a model is called hybrid, because it contains both continuous and

discrete variables. For example, by partitioning the behaviors of an actuator (motor)

in a robotic arm into nominal (functional) and loose-failed, one can describe the

torque in each mode separately. Such models are simpler and much easier to construct.

Probabilistic hybrid models can be thought of as extensions of discrete models,
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Figure 1-1: Model of an acrobatic robot.

such as hidden Markov models [53] or dynamic Bayesian networks [14], to continuous

dynamical models. As compared to more traditional hybrid systems, such as hybrid

I/O automata [48], probabilistic hybrid models have properties crucial for reason-

ing under uncertainty, including probabilistic transitions between modes, stochastic

continuous evolution, and noisy observations.

As an example, consider a simple two-link model of an acrobatic robot with two

degrees of freedom, as shown in Figure 1-1. The robot is swinging on a high bar,

controlled by an appropriate controller, which specifies the torque T to be exerted by

the actuator at the center of the robot. If the actuator is functional (mode = ok),

it will exert the specified torque. Otherwise, it will exert zero torque. Similarly, the

additional weight at the end of the body could be modeled as a discrete mode (true,

false), representing whether or not there is a ball of known weight at the end of the

body.

1.2 Problem statement

In this thesis, we focus on estimating the hidden state of systems modeled with

Concurrent Probabilistic Hybrid Automata (CPHA) [32]. CPHA present several

challenges for state estimation, compared to the linear switching models, including

nonlinearities, autonomous mode transitions, and concurrency. Given a sequence of

control inputs and noisy observations, our goal is to estimate the discrete and con-
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tinuous state of the hybrid model. This estimate can take the form of a Maximum a

posterior estimate (MAP), or the Minimum Mean Square Error estimate (MMSE) of

the discrete and continuous state.

The main application of this problem fault diagnosis. In fault diagnosis, the

goal is to estimate the mode (discrete state) of the system from a sequence of noisy

observations. Hybrid models are particularly well suited to fault diagnosis, since

faults can be modeled as a discrete variable, while the system dynamics is modeled

with continuous variables. The goal is then to filter out subtle symptoms from noisy

observations.

1.3 Gaussian filtering in hybrid models

In the previous two sections, we illustrated the class of hybrid models under our

consideration and defined the state estimation problem, addressed in this thesis. In

this section, we give an overview of Gaussian filtering for switching linear models. In

the next section, we describe the technical innovations of our algorithm.

In order to efficiently estimate the state of hybrid systems, Gaussian filtering ap-

proaches represent the posterior as a mixture of Gaussians. The key idea behind

Gaussian filtering is to track sequences traced by mode variables and, for each se-

quence, maintain the sufficient statistics of the continuous state conditioned on that

sequence. This process is illustrated in Figure 1-2. This figure shows an example

system, which is known to start in mode Partially Open. From mode Partially

Open, the system can transition to two modes: Partially Open and Fully Open.

Each of these modes can, in turn, transition to other modes, resulting in a total of

five mode sequences after two transitions. For each sequence, we compute the esti-

mate of the continuous variables, given that the system’s behavioral modes switch

as specified by that sequence. Thus, as shown in Figure 1-2, we could compute an

estimate of flow based on the assumption that the system was in mode Partially

Open at time t = 0, in mode Partially Open at time t = 1, and in mode Fully Open

at time t = 2. Due to the nature of switching linear models, it is possible to efficiently
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Figure 1-2: The hypothesis tree and the associated estimates.

compute the continuous estimate using a Kalman Filter [7], once the behavioral mode

is fixed at each time step.

The compact representation of Gaussian methods provides an efficient solution

to high-dimensional problems. In the case of particle filtering, it has been shown

that this representation results in a smaller variance of the state estimate than if we

sampled the complete state space [18]. Intuitively, to reach a given precision, the

Rao-Blackwellised estimate will require fewer samples than the non-RaoBlackwellised

approach, since we sample from a lower-dimensional distribution. Nevertheless, these

methods are generally restricted to models with Gaussian white noise, and may suffer

from non-linearities in the model.

Naturally, tracking all possible mode sequences is infeasible: as time progresses,

the number of such sequences increases exponentially. Two strategies are commonly

employed in Gaussian filtering methods to address this issue: pruning and collapsing.

These strategies are illustrated in Figure 1-3. Collapsing combines sequences with

the same mode at their fringe to a single sequence. Typically, two or more sequences

would be collapsed only if their continuous state estimates are close. Pruning selects

which sequences are less “relevant” given the evidence observed so far, and terminates

those sequences. Which sequences are considered “relevant” varies among methods,

as discussed below.

A k-best filtering method [45, 32] (see Figure 1-4) focuses the state estimation

on sequences with high posterior probability. At each time step, the method starts
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Figure 1-3: Pruning (left) and collapsing strategies (right).
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Figure 1-4: The k-best filtering method for pruning mode sequences. The first, fourth,
and fifth sequences were selected, while the second and third were omitted.

with a set of mode sequences. Based on this set, it computes the probability PT of

transitioning to other modes in the system. The method then enumerates the mode

sequences in the decreasing order of prior probability.

Gaussian particle filtering differs from the above method in that it samples each

sequence fairly according to its posterior probability. This process is illustrated in

Figure 1-5. At each time step, the algorithm starts with several mode sequences.

Then, using the system model, the continuous estimates, and the latest observations,

the algorithm computes the transition probability PT and the observation likelihood

PO for each candidate sequence at the next time step. The transition probability

PT and the observation likelihoods PO then determine the proposal distribution and

weight of the sampled sequences.
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Figure 1-5: The Gaussian particle filtering method for pruning mode sequences. The
first and fifth sequence were selected, and the fifth one was sampled twice.

1.4 Technical approach

Our algorithm extends upon the Gaussian filtering method described above. In the

spirit of prior approaches to k-best filtering and Rao-Blackwellised particle filter-

ing, our algorithm tracks the sequences of mode assignments and, for each sequence,

estimates the state with an Extended Kalman Filter [7] or an Unscented Kalman

Filter [39]. Our key insight to handling autonomous mode transitions is to reuse the

continuous state estimates from the previous time step, by integrating the Gaussian

over the set corresponding to each transition guard, as was done in [32]. This pro-

cess is illustrated in Figure 1-6. In order to compute the transition probability for

the sequence Partially Open→ Partially Open, we compute an integral over the

Gaussian estimate associated with this sequence. Compared to the prior publication

in [32], we provide a rigorous derivation of this procedure, and extend the class of

guard conditions that can be efficiently handled by both particle and k-best filtering

methods to multivariate linear constraints.

The work presented in this thesis is based on our previously published work [23].

In order to handle multi-component systems, modeled as CPHA, we propose two

efficient algorithms that sample the sequences on a component-by-component basis,

either according to their priors, or according to an approximate posterior, computed

for individual component transitions. We demonstrate the algorithm on a 6-variable

dynamical system and compare it to the corresponding efficient k-best filtering algo-
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Figure 1-6: Computing the transition probabilities.

rithm [32]. We show that although our algorithm is not as good as a k-best filter

when dealing with high-likelihood sequences, it outperforms the k-best filter when

the correct diagnosis has too low a prior probability to be included in the leading

set of sequences. Our results thus lay ground work for a unifying approach, in which

k-best filtering is interleaved with Gaussian particle filtering to improve upon the

performance of both.

1.5 Thesis roadmap

The rest of this thesis is organized as follows. In Chapter 2, we give an overview

of Concurrent Probabilistic Hybrid Automata (CPHA)In Chapter 3, we formally

define the hybrid estimation problem addressed in this thesis and give a tutorial on

particle filtering, concluding with an elementary Bootstrap particle filter for PHA. In

Chapter 4, we describe our Gaussian particle filtering algorithm for PHA and relate it

to prior work in particle filtering and hybrid model-based diagnosis. In Chapter 5, we

generalize our algorithm to the setting of Concurrent Probabilistic Hybrid Automata.

We evaluate this algorithm experimentally in Chapter 6 and compare its performance

to the k-best filter [32]. We conclude the thesis with a summary and the discussion

of future work in Chapter 7.
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Chapter 2

Concurrent Probabilistic Hybrid

Automata

Our estimation methods are based on Concurrent Probabilistic Hybrid Automata

(CPHA), a formalism for modeling engineered systems with uncertain stochastic dy-

namics and switching behavioral modes [32, 35]. Examples of such systems include life

support systems [32, 44], planetary rovers [15], and rocket propulsion [43]. A CPHA

model consists of a network of concurrently operating Probabilistic Hybrid Automata

(PHA), connected through shared continuous input/output variables. Each PHA rep-

resents one component in the system and has both discrete and continuous hidden

state variables. For each assignment to the discrete (mode) variables, PHA specifies

the continuous evolution of the component in terms of stochastic difference and al-

gebraic equations. Based on these equations, a global model is constructed using an

algebraic equation solver on a mode-by-mode basis, and then used in the inference

process.

In this chapter, we first give an overview of Concurrent Probabilistic Hybrid Au-

tomata, following the discussion in [35]. We provide cleaner semantics of the discrete

state transitions, by viewing the transition guards in CPHA as a set of constraints

that partition the probability space.
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2.1 Notation

In this chapter and the rest of the thesis, we use the following notation. We denote

random variables with lower-case letters, such as x. To denote a vector of random

variables, we use lower-case bold letters, such as x. Where clear from the context, we

use the same notation for the set of random variables; thus, x would represent both

a vector and an equivalent set of random variables.

In order to distinguish between discrete (mode) variables and continuous variables,

we use the lower-case subscript d or c, as in xd. We also use a subscript to refer to

the value or instantiation of a variable at a particular time step. Thus, for example,

xd,t would refer to a vector of discrete variables at time step t.

Where it is clear from the context, we use the same notation to denote both the

random variable (or a vector of random variables) and its instantiation. Thus, for

example, xd,t may refer to both the vector of discrete random variables at time step t

and their instantiation at time step t. The only exceptions to this rule are individual

mode sequences (hypotheses), which we refer to by upper index in parentheses, such

as (i). Thus, for example, x
(i)
d,t would refer to the value of the (discrete) variable xd at

time step t, as specified by the sequence i.

2.2 Probabilistic hybrid automata

In Probabilistic Hybrid Automata (PHA), a system is modeled by a hybrid automa-

ton that has both discrete and continuous state variables. This framework can be

viewed as an extension of a hidden Markov model [53] that incorporates discrete

and continuous inputs and stochastic continuous dynamics and autonomous mode

transitions.

Figure 2-1 shows a PHA for a two-link acrobatic robot (see Figure 1-1). For

this example, we focus our discussion on a model with one discrete (mode) variable,

has-ball, which represents whether or not the robot carries a ball on its legs.1 The

continuous state of the robot is modeled with four variables, θ1, θ2, ω1, and ω2.

1This event is modeled by increasing the point mass m2 by a known constant.

28



���������	��
 


����

���

7.01 <θ

��� �

7.01 >θ
��� �

7.01 >θ
��� �

7.01 <θ

��� �

��� �

��� �

2121 ,,, ωωθθ

����� �"! ��#	��# �%$	& � ��' ! ( �*)

2,2,1,2,1,21,2

1,2,1,2,1,11,1

2,2,21,2

1,1,11,1

),,,,(

),,,,(

ω

ω

θ

θ

δωωθθω
δωωθθω

δωθθ
δωθθ

vtTf

vtTf

vt

vt

ttttyest

ttttyest

ttt

ttt

+=

+=
++=

++=

+

+

+

+

2,2,1,2,1,21,2

1,2,1,2,1,11,1

2,2,21,2

1,1,11,1

),,,,(

),,,,(

ω

ω

θ

θ

δωωθθω
δωωθθω

δωθθ
δωθθ

vtTf

vtTf

vt

vt

ttttnot

ttttnot

ttt

ttt

+=
+=

++=
++=

+

+

+

+

Figure 2-1: A probabilistic hybrid automaton for the acrobot example. Left: transi-
tion model for the discrete state of the system. Right: evolution of the automaton’s
continuous state, one set of equations for each mode.

As with the hidden Markov model, the transitions between modes yes and no

are probabilistic: if, for example, the robot carries a ball at one instant (mode yes),

the probability of it carrying a ball at the next instant, as specified by our model, is

determined by the probability of transitions from that mode. Unlike with the hidden

Markov model, however, the transitions can be conditioned on the continuous state

of the system. Thus, if the robot carries a ball and θ1 > 0.7, the probability of

transitioning to mode no and staying in mode yes are the same, whereas if θ1 < 0.7,

the robot will keep the ball with probability 1. These probabilities reflect our modeling

assumption that the robot is about as likely to lose the ball as it is to keep it when

it is far to the right (θ1 > 0.7), but it will otherwise, keep the ball.2

Each mode is associated with a set of equations that describe the system’s dy-

namics in that mode. For example, when the robot carries a ball, its dynamics is

2Certainly, one can imagine a higher-fidelity model that may be more appropriate in a real-world
application. For example, rather than comparing θ1 to one cut-off value 0.7, it may be desirable
to consider several ranges of θ1, with increasing likelihood of capturing a ball. Similarly, it may be
desirable to consider not just the angle θ1, but the placement of the robot’s legs, which is a function
of both θ1 and θ2. However, in order to simplify the explanation, we focus on this simple model.
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described by the following differential equations:

θ̇1,t+1 = f1,yes(θ1,t, θ2,t, θ̇1,t, θ̇2,t, T ) (2.1)

θ̇2,t+1 = f2,yes(θ1,t, θ2,t, θ̇1,t, θ̇2,t, T ) (2.2)

In this equation, T represents the input torque, exerted by the robot at its center,

and f1, f2 are nonlinear functions derived using Lagrangian mechanics, see [52]. The

extra weight of the ball, the mass of which is assumed to be known, affects parameters

in the functions f1,yes and f2,yes.

Using the Euler approximation, the system of differential equations 2.1,2.2 trans-

lates to the following set of discrete-time difference equations over the state variables

θ1, θ2, ω1, and ω2:

θ1,t+1 = θ1,t + ω1,tδt + vθ1 (2.3)

θ2,t+1 = θ2,t + ω2,tδt + vθ2 (2.4)

ω1,t+1 = ω1,t + f1,yes(θ1,t, θ2,t, ω1,t, ω2,t, T ) + vω1 (2.5)

ω2,t+1 = ω2,t + f2,yes(θ1,t, θ2,t, ω1,t, ω2,t, T ) + vω2 , (2.6)

where vθ1, vθ2 , vω1, vω2 are added white Gaussian noise variables that represent our

uncertainty in the model.

The next two subsections define the Probabilistic Hybrid Automata and the se-

mantics of their discrete transitions. Then we turn to the composition of PHA, which

allows the modeler to describe complex systems component-wise as a Concurrent

Probabilistic Hybrid Automaton (CPHA).

2.2.1 Definition

Formally, a Probabilistic Hybrid Automaton is defined as a tuple

〈x,w, F, T, X0,Xd,Ud〉: [32, 35]

• x denotes the hybrid state of the automaton, which consists of discrete state
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variables xd and continuous state variables xc.
3 The discrete variables xd with

finite domain Xd represent the operational mode of the system, while the con-

tinuous variables xc with domain R
nx capture its continuous evolution.

• w denotes the set of input/output variables, through which the automaton in-

teracts with its environment. For example, a flow regulator interacts with its

surrounding components through input flow, output flow, and pressure differ-

ences. w consists of command variables ud and the set of continuous input

variables uc, continuous disturbances vc, and continuous output variables yc,

with domains Ud, R
nu, R

nv , and R
ny , respectively.

• The set-valued function F : Xd → 2FDE × 2FAE specifies the continuous evo-

lution of the automaton in terms of first-order discrete-time difference equa-

tions FDE ⊂ FDE and algebraic equations FAE ⊂ FAE over the continuous

input/variables wc and continuous state xc for each mode. The discrete-time

difference equations specify the continuous evolution of the continuous state

between two time-steps, while the algebraic equations specify the relationship

among variables in each time step.

• The set-valued function T : Xd → 2T specifies the discrete transition distribu-

tion of the automaton in terms of a finite set of transition tuples τi := 〈pτi, ci〉 ∈
T . Each transition tuple specifies a distribution pτi over the modes Xd in the au-

tomaton. The transition is guarded by a boolean expression over the continuous

state and the input/output variables. The expression defines for which assign-

ments to state and input/ouput variables the associated transition distributions

hold.4

• X0 specifies the distribution for the initial state of the automaton. X0 is ex-

pressed as a probability mass function p(xd,0) over the modes of the automaton

and a normal distribution N (µd, Λd) = p(xc,0|xd,0 = d) for each mode d ∈ Xd.

3When clear from the context, we use lowercase bold symbols, such as v, to denote a set of
variables {v1, . . . , vl}, as well as a vector [v1, . . . , vl]

T with components vi.
4For simplicity, we omit the probabilistic reset of the continuous state introduced in [35]. For an

elaboration, see [35].
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2.2.2 Semantics of the discrete state evolution

The transition tuples returned by the function T for some mode d specify the tran-

sition distribution p(xd,t|xd,t−1 = d,xc,t−1). Each tuple 〈pτ , c〉 ∈ T (d) defines the

transition distribution p(xd,t|xd,t−1 = d,xc,t−1) to be pτ in the regions satisfied by the

guard c.

For example, consider the acrobot model in Figure 2-1. When xd,t−1 = no, the

transition distribution is specified by the tuples 〈[0.5 0.5], θ1 > 0.7〉 and 〈[0 1.0], θ1 <

0.7〉. When θ1 > 0.7, the transition distribution p(xd,t|xd,t−1,xc,t−1) is uniform, oth-

erwise it is distributed as [0 1.0].

For the purpose of this thesis, we restrict our attention to the guards of the form

cd(ud) ∧ cc(xc,wc), where cd is a constraint over the domain of the discrete input

variables, Ud, and uc is a constraint over the space R
nx ×R

nw of the continuous state

variables and continuous input/output variables. This form is sufficiently expressive

to represent both commanded and autonomous transitions.5 Depending on its form,

the constraint cc can be handled more or less efficiently (see Section 4.3.3).

In order for the PHA to be well-defined, we need to impose certain restrictions

on the guards in each mode. Let Ai ⊆ Ud × R
nx denote the set of values for the

guard ci is satisfied. Then, provided that the sets Ai partition the space Ud×R
nx , the

transition probability pτ is uniquely defined for all possible values of the continuous

state and inputs.

2.3 Concurrent Probabilistic Hybrid Automata

Composition provides a method for defining a new automaton as a combination of

existing automata. This allows the modeler to model the individual components of

the system separately and then to define a model for the overall system by combining

models of the system’s components.

An example of composition is shown in Figure 2-2. This figure shows a model of

5In fact, the hybrid model of the BIO-Plex plant growth chamber in [34] only contained individual
commanded and autonomous transitions.
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Figure 2-2: Concurrent Probabilistic Hybrid Automata for the acrobatic robot. The
component automata are shown in rectangles, with their state variables shown be-
neath.

the acrobot with three components: one for the actuator at the middle joint, one for

the robot’s body, and one for a noisy sensor that measures the angle at the center

joint, θ2 (see Figure 1-1). Each component is modeled by a PHA with its own discrete

and continuous state variables (if any).

Composed automata are connected through shared continuous input/output vari-

ables. In physical systems, this notion corresponds to physically connecting the sys-

tem’s components through natural phenomena, such as force, fluid pressure and flow,

electrical potential, and electromagnetic radiation. For example, the actuator and

robot’s body components of the system interact through the force that is exerted on

the robot’s body by the actuator. At an abstract level, the sensor and the robot body

interact through the true value of θ2.

Formally, a CPHA CA is defined as a tuple 〈A,u,yc,vc, N〉: [32, 35]

• A = 〈A1,A2, . . . ,Al〉 denotes the finite set of PHAs that represent the compo-

nents Ai of the CPHA. We denote the components of a PHA Ak by xd k, xc k,

ud k, uc k, yc k, Fk, and Tk

• The set of input variables u = ud ∪ uc consists of the sets of discrete input

(command) variables ud = ud 1 ∪ . . . ∪ ud l and continuous input variables uc ⊆
wc.

• The set of output variables yc ⊆ yc 1 ∪ . . . ∪ yc l specifies the subset of observed

continuous I/O variables of A that are visible to the outside world.

• The set of noise variables vc specifies the subset of continuous I/O variables that
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model the disturbances that act upon the system. The disturbances are dis-

tributed according to the function N : Xd → pdf , which specifies a multivariate

p.d.f. for the noise variables vc.

The discrete transitions for CPHA are defined independently for each component,

conditioned on the continuous state. For example, the transition probability

p(actuatort = failed, ballt = no|actuatort−1 = ok, ballt−1 = no,xc,t−1,ut−1)

(2.7)

is defined as a product of independent transitions

p(actuatort = failed|actuatort−1 = ok,xc,t−1,ut−1)

p(ballt = no|ballt−1 = no,xc,t−1,ut−1) (2.8)

The overall continuous evolution of the CPHA varies in each mode, and is de-

termined by taking the algebraic and difference equations for each component PHA.

If the k-the component is in the mode dk, the overall model is determined by the

union ∪kFk(dk), where Fk(dk) are the algebraic and difference equations for the k-th

component. These equations are then solved into the standard form

xc,t = f(xc,t−1,uc,t−1,vx,t−1;xd,t)

yc,t = g(yc,t−1,uc,t−1,vy,t−1;xd,t). (2.9)

Typically, we further assume that the noise is additive, white Gaussian noise, that

is,

xc,t = f(xc,t−1,uc,t−1;xd,t) + vx,t−1

yc,t = g(yc,t−1,uc,t−1;xd,t) + vy,t−1. (2.10)

However, using the Unscented Kalman Filter [60], it would be possible to use the

more general setting of Equation 2.9.
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Chapter 3

Particle Filtering

Given a hybrid model of the system, our goal is to estimate its state from a sequence

of control inputs and observations. This estimate can then be used for a number

of tasks, ranging from diagnostics to autonomous control. In this chapter, we first

discuss and formally define the hybrid estimation problem. Then we give a tutorial

of particle filtering concepts and algorithms that will be relevant in the next chapter.

Finally, we show how a simple particle filtering algorithm, the Bootstrap filter [26, 41],

specializes to the class of systems modeled as Probabilistic Hybrid Automata. This

algorithm is not as efficient as the prior approaches in particle filtering for various

hybrid models [59, 22, 56, 20], but it demonstrates the key principles of particle

filtering in PHA.

3.1 Hybrid estimation problem

Given a CPHA description of a system, our goal is to estimate the state of the system

from a sequence of noisy observations and control inputs known to drive the system.

Depending on the application, we might be interested in different aspects of this

problem:

1. Mode estimation typically refers to the task of computing the most likely

mode (MAP mode estimate) of the system or the distribution over the set of
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possible modes. This task is most applicable in areas, such as fault diagnosis,

which concern themselves primarily with detecting the nominal and off-nominal

modes of the system and less with its continuous state.

2. Continuous state estimation refers to the task of computing a MMSE (min-

imum mean square error) estimate of the continuous state. This can be used

in applications, such as target tracking and improved odometry calculation for

land rovers, in which the continuous state is of primary concern.

3. Hybrid state estimation refers to the task of computing the joint estimate

over both the discrete and the continuous state. This task is useful in the area

of model-based programming, which allows the programmer to write control

programs directly in terms of the hidden state of the system, and needs to

compute queries over the joint probability space. In addition, this task is useful

for state tracking under failure.

In this thesis, we address the last of these tasks, hybrid state estimation. For

brevity, we also use the term hybrid estimation. More precisely, we wish to compute

the probability distribution over the discrete and continuous state variables at time

t, given the control inputs and outputs. Formally:

Definition 1 Hybrid Estimation: Given a CPHA model of the system CA and the

sequence of control inputs u0, . . . ,ut and observed outputs y0, . . . ,yt, estimate the

hybrid state 〈xd,t,xc,t〉 at time t.

The motivation for this definition is twofold: First, the discrete and continuous

variables in PHA are highly intertwined. Not only does the continuous evolution of

the state and the observations depend on the discrete state of the system, but also the

discrete transitions depend on the continuous state, as we have seen in Section 2.2.

This makes separate mode estimation and continuous state estimation infeasible, and

the two problems must be addressed jointly. The second motivation for this definition

is that one can extract a mode estimate from a hybrid state estimate as a marginal,

by ignoring the continuous portion of the estimate.
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Since we are dealing with highly nonlinear systems that do not generally have

a closed-form solution, we do not require the estimator to be unbiased or to have

minimum variance. Chapter 6 provides an empirical evaluation of various estimators.

3.2 Particle filtering

Given the problem of estimating state in a hybrid model, a natural question is, what

techniques can be used to address this problem. Particle filters offer an appealing

alternative, because, unlike linear continuous solutions, such as a Kalman Filter,

they make very weak assumptions about the form of the model. This property enables

their immediate use in hybrid models, which have both discrete and continuous state

variables and may have non-linear dynamics.

In this section, we give an overview of the particle filtering method. Conceptu-

ally, particle filters reason in terms of the discrete-time evolution taken by the state

variables x from the initial time step 0 to the present time step t. We are interested

in the joint posterior distribution p(x0:t|y1:t,u0:t) over the set of possible state evolu-

tions x0:t , 〈x0, . . . ,xt〉, given the observations y1:t , 〈y1, . . . ,yt〉 and control inputs

u0:t , 〈u0, . . . ,ut〉. For example, for a system with one state variable θ and t = 1,

this distribution describes the joint probability of the state at time 0, θ0, and the

state at time 1, θ1, as shown in Figure 3-1.

Given the posterior distribution p(x0:t|y1:t,u0:t), it is possible to express most char-

acteristics of interest for the system, such as the marginal distribution p(xt|y1:t,u0:t)

and the minimum mean square error (MMSE) estimate E[xt|y1:t,u0:t], by taking ap-

propriate integrals; for example,

E[xt|y1:t,u0:t] =

∫

x0:t

xtp(x0:t|y1:t,u0:t)dx0:t. (3.1)

Unfortunately, these integrals, as well as the posterior distribution p(x0:t|y1:t,u0:t),

are rarely tractable, except in the case of simple models, such as linear Gaussian

models. In particle filters, this difficulty is addressed by approximating the posterior
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Figure 3-1: Samples from one-dimensional state space. The state at time 0 is posi-
tively correlated with the state at time 1, which is reflected in the samples.

distribution p(x0:t|y1:t,u0:t) with a set of samples, evolved sequentially. At each it-

eration in the sequence, the samples are evolved in two steps, importance sampling

and selection. The samples can then be directly used to estimate the hidden state

and other desired characteristics.

3.2.1 Concepts

One of the fundamental principles in particle filtering is a duality between samples

and the distribution from which they are taken [9]: A distribution can generate

random samples, which are random events from that distribution, and samples can

approximate the distribution that generated them.

For example, consider a distribution p(x) shown in Figure 3-2. Given this dis-

tribution, we can generate independent, identically distributed (i.i.d.) samples x(i).

These samples have the highest occurence in the regions where the probability den-

sity function p(x) is highest and tends to be sparse in the regions where p(x) is low.

Given the samples x(i), we can approximate the distribution, for example, as a his-

togram (Figure 3-2 on the right), in which we compute the number of samples over

fixed intervals of the probability space. At a more fundamental level, the samples x(i)
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Figure 3-2: Left: A probability distribution and 100 i.i.d. samples taken from it
(shown with circles). Right: Histogram of the samples (appropriately scaled).

approximate the distribution p(x) in terms of the probability mass function

Pr[x = c] =
1

N
|i ∈ {1, . . . , N} : x(i) = c| (3.2)

or, equivalently,

p̄N(x) =
1

N

N
∑

i=1

δx(i)(x), (3.3)

where δx(i)(x) is the Dirac delta function positioned at the i-th sample x(i) and 1
N

is

a normalizing factor. This approximation is evident in Figure 3-2 (left): the p.d.f.

p(x) can be approximated by the relative density of the random samples x(i).

We can approximate the expected value of any function f(x) with respect to a

given distribution p(x) by taking independent samples x(i) from this distribution.

Rather than computing the (possibly intractable) integral

E[f(x)] ,

∫

x

f(x)p(x)dx, (3.4)

we only look at the points given by the samples x(i) and approximate the integral
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with a finite summation:

E[f(x)] ≈ 1

N

N
∑

i=1

f(x(i)) , ĪN(f). (3.5)

For example, consider the case when we wish to estimate Ep(x)[x], the mean of

the random variable x w.r.t. distribution p(x). In this case, f(x) = x, and ĪN(f) =

1
N

∑N
i=1 x(i). This estimator is consistent with our intuition that the mean of i.i.d.

samples should be a “good” approximation to the mean of the distribution that

generated them.

Indeed, the estimator ĪN(f) has several desirable properties. First, ĪN(f) is un-

biased:1

E[ĪN (f)] = E[
1

N

N
∑

i=1

f(x(i))] =
1

N

N
∑

i=1

E[f(x(i))] =
1

N

N
∑

i=1

E[f(x)] = E[f(x)]. (3.6)

The third equality in Equation 3.6 holds, because the samples x(i) are drawn from

the distribution p(x) and thus, need to be themselves treated as random variables

with distribution p(x), hence E[f(x(i))] = E[f(x)]. In other words, in repeated trials

for a fixed N , the estimates will be centered around the estimated value E[f(x)].

Furthermore, since the samples x(i) are i.i.d. random variables, the random variables

f(x(i)) are also i.i.d. From the strong law of large numbers, 1
N

∑N
i=1 f(x(i)) converges

almost surely (a.s.) to E[f(x(i))] = E[f(x)] as N → +∞. In other words, the

estimates ĪN , N = 1, 2, . . ., converge almost surely to the estimated quantity as the

number of samples increases (see Figure 3-3).2

Now, suppose that we are not able to easily take samples from the given distribu-

tion p(x), but we can easily evaluate the p.d.f. p(x) for any given x up to a constant.

For example, the distribution p(x) may have no closed-form solution for the inverse

cumulative function and no efficient approximate sampling method, but it may have a

1An estimator is unbiased if its expected value is the same as the estimated quantity, that is, if,
on average, the estimator is not offset from the estimated quantity.

2An even stronger statement can be made when the variance σ2
f of the estimated function f(x)

with respect to the distribution p(x) is finite. In this case, the central limit theorem holds, and the
expression

√
N(ĪN (f)− Ep(x)[f(x)]) converges in distribution to the normal distribution N (0, σ2

f ).
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Figure 3-3: Estimates IN(x) of the mean of the distribution p(x) from Figure 3-2.
The estimates were computed from a single sequence of samples x(i) and converge to
the true mean E[x] = 4.

functional form of the p.d.f. Such distributions are common, for example, in nonlinear

systems, in which the posterior distributions are often non-standard, but their p.d.f.s

can be easily evaluated as a product of the prior model and the observation(s) up to

the normalizing constant 1
p(y0:t)

.3 In these cases, we can apply the importance sam-

pling method [9]. This method is based on the observation that, even if we are unable

to take samples from the target distribution p(x), we might be able to take samples

from a different distribution q(x) and adjust for the difference by assigning a weight

to each sample. In this manner, we can still approximate the target distribution p(x)

and any of its characteristics.

The process is illustrated in Figure 3-4. Suppose that the target distribution

p(x), shown on the left, is difficult to sample efficiently. Thus, we take samples from

another distribution, q(x), that can be easily sampled; we refer to this distribution

as the proposal distribution, or simply the proposal.4.

For example, in Figure 3-4, the samples were taken from a normal distribution

with mean 5 and variance 1; hence, some of the samples fell at the tails at 3 and

3For now, we do not explicitly condition the distribution p(x) on the observations, since the
concepts herein apply to arbitrary distributions. The conditioning on the observations will be
introduced in the next subsection.

4In some literature, it is also referred to as the importance sampling distribution.
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Figure 3-4: Left: The desired target distribution and the sampled proposal distribu-
tion. Right: Generated samples and their weights.

7, even though p(x) ≈ 0 there. In order to account for the discrepancy between the

two distributions, each sample has an associated weight, which is equal to the ratio

between the target and the proposal p.d.f. at the sampled point. Intuitively, where

the posterior distribution p(x) is much lower than the sampled distribution q(x), the

weights will be low; where p(x)� q(x), the weights will be high.

As before, the samples, along with their weights, approximate the target distri-

bution p(x). This fact is illustrated in Figure 3-5. Similarly, we can approximate the

expected value of any function f(x) with respect to p(x) by taking a weighted average

of the function at the sampled points:

Ep(x)[f(x)] ≈
∑N

i=1 f(x(i))w(x(i))
∑N

i=1 w(x(i))
=

N
∑

i=1

f(x(i))w̃(x(i)) , Ī1
N(f), (3.7)

where w(x(i)) ,
p(x(i))

q(x(i))
is the weight of the i-th particle and w̃(x(i)) ,

w(x(i))
∑N

i=1 w(x(i))
is

the normalized weight.

As an example, suppose that we wish to compute the probability that x < c w.r.t.

p(x) for some constant c, given that q(x) is uniform over the (bounded) domain of

x. This problem is equivalent to finding the expected value of the decision variable
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Figure 3-5: Left: Approximated distribution p(x) and sampled distribution q(x).

Right: Histogram of 100 i.i.d. samples taken from q(x), weighted according to p(x)
q(x)

.

(function)

f =











1 if x < c,

0 otherwise,

(3.8)

because then E[f ] = 1 · Pr[x < c] + 0 · Pr[x ≥ c] = Pr[x < c]. Since q(x) is constant,

the estimator 3.7 simplifies to

I1
N (f) =

∑N
i=1 f(x(i))p(x(i))
∑N

i=1 p(x(i))
=

∑

i:f(x(i)<c) p(x(i))
∑N

i=1 p(x(i))
. (3.9)

In other words, the estimator computes the relative density of those samples that

fall in the region of interest x < c. This is analogous to approximating the integral
∫

x<c
p(x)dx with a Riemann sum with fixed interval lengths.

The estimator 3.7 is not, in general, unbiased, as explained below, but it does

converge asymptotically a.s to the estimated quantity Ep(x)[f(x)]. First, note that

the numerator is the Monte Carlo estimator IN of the function f(x)w(x) (see Equa-

tion 3.5) and the denominator is the Monte Carlo estimator IN of the function w(x)

w.r.t. the distribution q(x):

Ī1
N (f) ,

∑N
i=1 f(x(i))w(x(i))
∑N

i=1 w(x(i))
=

IN(fw)

IN(w)
. (3.10)
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Figure 3-6: Estimates IN(x) of the mean of the distribution p(x) when the samples
were taken from the distribution q(x) in Figure 3-4. The estimates were computed
using a single sequence of samples x(i) and converge to the true mean E[x] = 4.5984.

Although both estimators IN (fw) and IN(w) are unbiased, their ratio is not necessar-

ily unbiased, because, in general, E[a
b
] 6= E[a]

E[b]
. Thus, in repeated trials with different

sets of samples, the estimator ĪN will not be centered at Ep(x)[f(x)]. However, since

these estimators converge a.s. to Eq(x)[f(x)w(x)] and Eq(x)[w(x)], respectively, their

ratio converges asymptotically a.s. to the estimated value Ep(x)[f(x)] under the fol-

lowing assumptions [25]:

1. the estimated value Ep(x)[f(x)] is finite,

2. the support of q(x) includes the support of p(x)5 and

3. the expectations of wt and wtf
2
t (x) are finite.

Intuitively, the second assumption ensures that the probability that importance sam-

pling would miss a region of p(x) with non-zero probability will tend to zero as

N → +∞.

Finally, note that the importance sampling method subsumes the perfect (direct)

sampling method, since we can always let q(x) = p(x). In this case, the weights

5Support of a function q with domain X is the closure of the set of elements x ∈ X , for which
q(x) 6= 0.
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Figure 3-7: Two-dimensional state space representing the set of coordinates, where
a robot can be located. Dark regions represent the obstacles; dots represent the
sampled positions.

w(x(i)) are always equal to 1
N

, and the estimator I1
N(f) (Equation 3.7) simplifies to

∑N
i=1 f(x(i)) 1

N
∑N

i=1
1
N

=
1

N

N
∑

i=1

f(x(i)) = IN(f). (3.11)

In reality, particle filters reason in terms of vectors of random variables, rather

than a single variable x. Thus, rather than taking samples x(i) from a single variable

x, we will take random samples x(i) from a vector of variables x according to some

distribution p(x). For example, in order to localize a rover in a known environment,

we may consider taking samples from a 2-dimensional space of coordinates 〈x, y〉, as

shown in Figure 3-7. Furthermore, we will consider the evolution of the random vector

x in discrete time-steps. Conceptually, this evolution corresponds to introducing a

vector of random variables at each time step up to the present:

x0:t =





x0

y0









x1

y1



 · · ·





xt

yt



 . (3.12)

All the principles and results introduced above for a single random variable hold

also in this more general setting. For example, there is a duality between any dis-
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tribution p(x0:t) over random vectors x0, . . . ,xt and the samples x
(i)
0:t taken from this

distribution. This duality implies that one can generate (at least in principle) random

samples from the distribution p(x0:t), and, in turn, the samples x
(i)
0:t can be used to

reconstruct the original distribution. Similarly, as in the single-dimensional case, if we

can take i.i.d. samples from a distribution p(x0:t), we can approximate the expected

value of any function f(x) by taking a weighted sum of the function at the points

given by the samples x
(i)
0:t.

To summarize, we can take samples and use them to approximate the distribution

that generated them. The samples can be used to approximate any characteristics of

the distribution that can be expressed as E[f(x)] for some function f . Examples of

such characteristics include the MMSE estimate and the variance of the distribution.

When we cannot take samples directly from the distribution p(x), we can apply the

importance sampling method and take samples from a different distribution q(x).

With sufficiently large number of samples N , one can obtain a good approximation of

any characteristics E[f(x)] by taking a weighted sum of the function f at the sampled

points.

With these principles in mind, we turn to the algorithm that estimates the state

of a dynamic system using importance sampling.

3.2.2 Sequential importance sampling

As discussed previously, our goal is to approximate the posterior p(x0:t|y1:t,u0:t) and

its interesting characteristics, such as the minimum mean square error (MMSE) esti-

mate E[x0:t|y1:t,u0:t] and the marginal posterior distribution p(xt|y1:t,u0:t), also called

the filtering distribution. In view of the previous section, we estimate these charac-

teristics by taking random samples from the set of evolutions of the hidden state,

x0:t , 〈x0x1, . . . ,xt〉. The desired characteristics, such as MMSE estimate, can be

then approximated by taking the weighted average of these samples, as was done in

the estimator I1
N(f) (Equation 3.5).

The key idea to make this computation suitable for recursive estimation it to evolve

the samples sequentially, from one time step to another. This process is illustrated in
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Figure 3-8. At the beginning, we take N i.i.d. samples from the initial distribution

p(x0); hence approximating the posterior at time t = 0. Then, in each time step, we

evolve each sample x
(i)
0:t−1 according to some proposal distribution q(xt|x0:t−1,y1:t,u0:t)

and update its importance weight w
(i)
t . The weight w

(i)
t reflects the discrepancy

between the proposal q and the desired posterior distribution p(x0:t|y1:t,u0:t), such

that the resulting weighted samples converge to the posterior.

The importance weights are chosen as

w
(i)
t =











w
(i)
t−1

p(yt|x
(i)
0:t,y0:t−1,u0:t)p(x

(i)
t |x

(i)
0:t−1,y0:t−1,u0:t)

q(x
(i)
t |x

(i)
0:t−1,y0:t,u0:t)

if t > 0

1 if t = 0

(3.13)

To see why this choice guarantees convergence, first note that the samples x
(i)
0:t are

distributed according to the proposal distribution q(x0:t|y1:t,u0:t), where

q(x0:t|y1:t,u0:t) , p(x0)
t

∏

k=1

q(xt|x0:t−1,y1:t,u0:t). (3.14)
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The weights w
(i)
t satisfy the following equality:

w
(i)
t

= w
(i)
0

∏t
k=1

p(yk|x
(i)
0:k,y0:k−1,u0:k)p(x

(i)
k

|x
(i)
0:k−1,y0:k−1,u0:k)

q(x
(i)
k

|x
(i)
0:k−1,y0:k,u0:k)

(3.15)

=
p(x0)

∏t
k=1 p(yk|x

(i)
0:k,y0:k−1,u0:k)p(x

(i)
k

|x
(i)
0:k−1,y0:k−1,u0:k)

p(x0)
∏t

k=1 q(x
(i)
k

|x
(i)
0:k−1,y0:k,u0:k)

(3.16)

= p(y1:t,x0:t|u0:t)
q(x0:t|y1:t,u0:t)

(3.17)

= p(x0:t|y1:t,u0:t)
q(x0:t|y1:t,u0:t)

p(y1:t|u0:t) (3.18)

Hence, the algorithm is just a special case of importance sampling, discussed

in the previous section, with the proposal distribution q(x0:t|y1:t,u0:t) equal to the

product of the proposal distributions q(x
(i)
k |x

(i)
0:k−1,y0:k,u0:k) at individual time steps,

and the approximated distribution equal the posterior distribution p(x0:t|y1:t,u0:t).

The factor p(y1:t|u0:t) in the weights is independent of the state variables x0:t and

thus, does not affect the desired estimate Ī1
N (f) (see Equation 3.7). The resulting

sequential importance sampling (SIS) algorithm is shown in Figure 3-9.

Choice of the proposal distribution

The proposal distribution is chosen as necessary to allow efficient sampling for the

given problem or the domain. In its simplest form, the proposal distribution takes

the form of the prior transition distribution p(xt|x0:t−1,u0:t) = p(xt|xt−1). In this

case, the samples are evolved according to the transition model and the incremental

weights simplify to the observation likelihood p(yt|x(i)
0:t,y0:t−1,u0:t) = p(yt|x(i)

t ,ut):
6

w
(i)
t , w

(i)
t−1

p(yt|x(i)
0:t,y0:t−1,u0:t)p(x

(i)
t |x(i)

0:t−1,y0:t−1,u0:t)

q(x
(i)
t |x(i)

0:t−1,y0:t,u0:t)

= w
(i)
t−1

p(yt|x(i)
0:t,y0:t−1,u0:t)p(x

(i)
t |x(i)

0:t−1,y0:t−1,u0:t)

p(x
(i)
t |x(i)

0:t−1,y0:t−1,u0:t)

= w
(i)
t−1p(yt|x(i)

0:t,y0:t−1,u0:t) (3.20)

6We choose not to simplify the transition and observation distributions in the derivations to
p(xt|xt−1,ut−1) and p(yt|xt,ut), because particle filters apply also models that are not strictly
Markovian. This more general non-Markovian form will be used later in Chapter 4.
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1. Initialization

• For i = 1, . . . , N

– draw a random sample x
(i)
0 from the prior distribution p(x0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

– draw a random sample x
(i)
t from the proposal q(xt|x(i)

0:t−1,y0:t,u0:t)

– let x
(i)
0:t ← 〈x(i)

0:t−1,x
(i)
t 〉

• For i = 1, . . . , N , compute the importance weights:

w
(i)
t ← w

(i)
t−1

p(yt|x(i)
0:t,y0:t−1,u0:t)p(x

(i)
t |x(i)

0:t−1,y0:t−1,u0:t)

q(x
(i)
t |x(i)

0:t−1,y0:t,u0:t)
(3.19)

• For i = 1, . . . , N normalize the importance weights w
(i)
t

Figure 3-9: Sequential importance sampling algorithm.

The importance sampling step is then entirely analogous to the prediction-update

sequence in other filtering methods, such as Kalman Filtering and HMM belief state

update: first, we predict the state x̃t, using the estimate at the previous time step,

and then we adjust the prediction using the newest observation.

The reason why the proposal distribution p(xt|xt−1) is popular [26, 41] is that

stochastic models of systems are often available in the form

xt = f(xt−1,ut−1) + vx (3.21)

yt = g(xt,ut−1) + vy, (3.22)

where vx and vy are noise variables. This distribution is easy to sample, since vx is

typically a Gaussian or another distribution that can be sampled efficiently, and vy

is a noise variable, whose p.d.f. can be evaluated easily. In this case, it is easy to

sample from the proposal distribution by propagating the sample x
(i)
t−1 through the

function f and sampling from the distribution f(x
(i)
t−1,ut−1) + vx.
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It has been shown that the distribution q(x
(i)
t |x(i)

0:t−1,y0:t,u0:t) = p(xt|xt−1) is

optimal in the sense that it minimizes the variance of the importance weights. [20]

Unforunately, this distribution often results in untractable integrals. Therefore, it is

instead common to use a proposal that is “close” to the optimal proposal distribution.

See [58] for an example.

Degeneracy of sequential importance sampling

Unfortunately, while the Sequential Importance Sampling (SIS) algorithm guarantees

convergence for a fixed t, it is not usable in practice. After a while, the most fit sample

will tend to have a normalized weight of 1, while all the other ones will be nearly

zero. Thus, the filter will degenerate to tracking a single sequence in the continuous

state, and will no longer approximate the posterior distribution p(x0:t|y1:t,u0:t) well.

The following proposition is taken from [42]:

Proposition 1 The unconditional variance of the weights w̃t (that is, the variance of

the weights w̃t, when the observations are regarded as random) increases over time.[42]

To see how this relates to a single run of the filter and the performance of the SIS

algorithm, note that

var(w̃t) = E[var(w̃t|y1:t,u0:t)] + var(E[w̃t|y1:t,u0:t]) (3.23)

Since E[w̃t|y1:t,u0:t] = 1, its variance is 0, and the mean (conditional) variance of the

importance weights

E[var(w̃t|y1:t,u0:t)] = var(w̃t) (3.24)

will increase over time. This means that the variance of the weights will typically

increase, and most of the density in the distribution
∑N

i=1 w̃
(i)
t δ(x

(i)
0:t) will be concen-

trated in a small region of the state space.
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Figure 3-10: Importance sampling with an additional selection step. After the samples
θ

(i)
t are evolved, they are resampled according to their importance weights.

3.2.3 Selection

In order to avoid the degeneracy of the Sequential importance sampling method, an

additional resampling (selection) step is needed (see Figure 3-10). This step creates

copies of the particles with high weight and removes the ones with the low weight,

so that in the next time step, the high-likelihood particles contribute more to the

sampling process. Intuitively, the particles with high importance ratio are more likely

to contribute to the regions of high posterior probability.

A selection scheme associates with each particle i a number of off-spring, de-

noted as Ni, such that
∑N

i=1 Ni = N . The off-spring are unweighted, that is, the

selection scheme replaces a weighted particle 〈x̃(i)
0:t, w

(i)
t 〉 with Ni (possibly zero) un-

weighted particles x
(i)
t . Several selection schemes have been proposed in the litera-

ture. An early example of such a strategy is sampling-importance resampling (SIR),

which selects N random i.i.d. samples (with repetition) from {x(i)
0:t} according to the

weights, w
(i)
t . [26] Examples of other strategies include residual resampling [31, 47]

and stratified/systematic sampling [41]. All of these strategies satisfy the equality

E[Ni] = Nw
(i)
t , but vary in terms of how much variance they introduce in the number

of offsprings Ni. See [13] for the theoretical treatment of the subject and converge

proofs for several selection schemes.

The final algorithm is shown in Figure 3-11. To distinguish between the samples
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1. Initialization

• For i = 1, . . . , N

– draw a random sample x
(i)
0 from the prior distribution p(x0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

– draw a random sample x̃
(i)
t from the proposal q(xt|x(i)

0:t−1,y0:t,u0:t)

– let x̃
(i)
0:t ← 〈x(i)

0:t−1, x̃
(i)
t 〉

• For i = 1, . . . , N , compute the importance weights:

w
(i)
t ←

p(yt|x̃(i)
0:t,y0:t−1,u0:t)p(x̃

(i)
t |x̃(i)

0:t−1,y0:t−1,u0:t)

q(x̃
(i)
t |x̃(i)

0:t−1,y0:t,u0:t)
(3.25)

• For i = 1, . . . , N normalize the importance weights w
(i)
t

(b) Selection step

• Select N samples (with replacement) from {x̃(i)
0:t} according to the nor-

malized weights {w̃(i)
t } to obtain samples {x(i)

0:t}

Figure 3-11: Generic particle filter.

before and after the selection step, the samples in the importance sampling step are

marked with a tilde (x̃
(i)
0:t).

3.3 Filter implementation for PHA

Sequential Monte Carlo methods, which were overviewed in the previous section, ap-

ply to a wide range of discrete and continuous stochastic processes that satisfy the

Markovian property and whose observations are conditionally independent given the

process. Their adaptation to Probabilistic Hybrid Automata is straightforward, pro-

vided that we sample the complete hybrid state and evolve the samples according to

the transition prior p(xt|xt−1,ut−1). In this section, we present a simple particle filter,

which directly applies the concepts presented in the previous section to PHA. While
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more advanced particle filtering algorithms exist for estimating state with hybrid

models, including the Risk-sensitive particle filter [56], Variable resolution particle

filter [59], and a Rao-Blackwellised particle filter [22], we introduce this algorithm

here to motivate the discussion in the following chapter. For a discussion of other

particle filtering approaches and their comparison to our Gaussian particle filter, see

Section 4.4.

Figure 3-12 illustrates the algorithm on a model with one discrete variable domain

{on, off} and one continuous variable xc. The algorithm maintains sampled sequences

of the hybrid state; each particle x
(i)
0:t consists of a discrete evolution x

(i)
d,0:t and a

continuous evolution x
(i)
c,0:t. The algorithm starts by drawing samples from the initial

distribution p(x0); thus, effectively approximating the posterior at time t = 0. The

initial state distribution of a PHA is specified as a distribution over the mode variables

p(xd,0) and, for each mode m, the associated normal distribution over the continuous

state p(xc,0|xd,0 = m). Thus, the initial samples x
(i)
0 are generated by first taking a

set of random samples {x(i)
d,0} according to the prior distribution p(xd,0) and then, for

each discrete sample x
(i)
d,0, by taking a corresponding continuous sample xc,0 according

to the distribution p(xc,0|x(i)
d,0).

Given our choice of the proposal distribution

q(xt|x(i)
0:t−1,y0:t,u0:t) = p(xd,t,xc,t|x(i)

d,t−1,x
(i)
c,t−1,ut−1), (3.26)

the algorithm evolves the particles in two steps (see Figure 3-13):

1. discrete (mode) evolution, which generates a random discrete sample xd,t

according to the discrete transition distribution p(xd,t|x(i)
d,t−1,x

(i)
c,t−1,ut−1) and

2. continuous evolution, which generate a random continuous sample according

to p(xc,t|x(i)
d,t,x

(i)
c,t−1,ut−1), using the new discrete sample x

(i)
d,t.

Recall that in a PHA, discrete transition distribution p(xd,t|xd,t−1,xc,t−1,ut−1) is

specified as a set of pairs {〈pτ , c〉} of transition distributions pτ and associated tran-

sition guards c (see Figure 2-1). The guards determine which transition distribution
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Figure 3-12: Bootstrap filter for a hybrid model with one mode variable and one
continuous variable.

applies to the current discrete state, and may depend on the current continuous state

xc and the input u. For example, when has-ball=yes and θ1 = 0.75 in the model

in Figure 2-1, the system is as likely to transition to the mode no as it is to stay

in the mode yes. It follows that, in order to generate the discrete sample x
(i)
d,t, we

need to determine which transition guard in T (x
(i)
d,t−1) is satisfied by the continuous

sample x
(i)
c,t−1 and the input ut−1. This guard gives us a (unique) distribution pτ (xd,t)

to generate the sample x
(i)
d,t.

Given a mode assignment at time t, the continuous evolution and observation of

the system is determined by the equations associated with that mode. For exam-

ple, if the acrobatic robot is in the mode x
(i)
d,t = 〈actuator=ok, has-ball=yes〉, its

continuous state evolves and is observed according to the equations

xc,t = f(xc,t−1,uc,t−1;x
(i)
d,t) + vx(xd,t) (3.27)

yc,t = g(xc,t,uc,t;x
(i)
d,t) + vy(xd,t), (3.28)

which take into account the higher weight m2 at the robot’s legs. The random vari-

ables are vx and vy, hence it is easy to evolve the continuous sample x
(i)
c,t−1 once we
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condition on the new mode of the system x
(i)
d,t, by taking a random sample from the

distribution

N (f(x
(i)
c,t−1,ut−1;x

(i)
d,t), cov(vx(x

(i)
d,t))). (3.29)

Finally, since the samples are evolved according to the transition prior, the weights

(Equation 3.25) simplify to the observation likelihood p(yt|xt,ut), as shown in Equa-

tion 3.20. From Equation 3.28, the observation likelihood is given by

N (yt, g(x
(i)
c,t−1,ut−1;x

(i)
d,t), cov(vy(x

(i)
d,t))), (3.30)

where N(y, µ, Λ) is the p.d.f. of the normal distribution with mean µ and covariance

Λ, evaluated at y. The complete filter algorithm for PHA is shown in Figure 3-13.
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1. Initialization

• For i = 1, . . . , N

– draw a random sample x
(i)
d,0 from the prior distribution p(xd,0)

– draw a random sample x
(i)
c,0 from the normal distribution p(xc,0|x(i)

d,0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

– draw a random discrete sample x̃
(i)
d,t from the transition distribution

p(xd,t|x(i)
d,t−1,x

(i)
c,t−1,ut−1)

– draw a random continuous sample x̃
(i)
c,t from the normal distribution

N (f(x
(i)
c,t−1,ut−1; x̃

(i)
d,t), cov(vx(x̃

(i)
d,t)))

– let x̃
(i)
0:t ← (x

(i)
0:t−1, 〈x̃(i)

d,t, x̃
(i)
c,t〉)

• For i = 1, . . . , N , compute the importance weights:

w
(i)
t ← N (yt, g(x̃

(i)
c,t−1,ut−1; x̃

(i)
d,t), cov(vy(x̃

(i)
d,t))) (3.31)

• For i = 1, . . . , N normalize the importance weights w
(i)
t

(b) Selection step

• Select N samples (with replacement) from {x̃(i)
0:t} according to the nor-

malized weights {w̃(i)
t } to obtain samples {x(i)

0:t}

Figure 3-13: Bootstrap particle filter for PHA.
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Chapter 4

Gaussian Particle Filtering for

PHA

In practice, sampling in high-dimensional spaces can be inefficient, since many par-

ticles may be needed to cover the probability space and attain a sufficiently accurate

estimate. Several methods have been developed to reduce the variance of the es-

timates, including antithetic sampling [28, 27], control variates [5, 27], and, more

recently, decomposition [51] and abstraction [59]. In this chapter, we apply the tech-

nique of Rao-Blackwellisation [6, 12, 21] to particle filtering in Probabilistic Hybrid

Automata (PHA). This technique is based on a fundamental observation that if the

model has a tractable substructure, we may be able to factor it out with an effi-

cient solution only sample the remaining variables. In this manner, fewer samples are

needed to obtain a given accuracy of the estimate.

The key contribution of this chapter is an approximate Rao-Blackwellised particle

filtering (RBPF) algorithm for PHA that handles the nonlinearities and autonomous

transitions, that is, mode transitions dependent on the continuous state, present in

PHA models. In the spirit of prior approaches to RBPF [6, 49] and k-best filter-

ing [45, 32], our algorithm samples the mode sequences and, conditioned on each

sampled sequence, estimates the associated continuous state with an Extended [7] or

an Unscented Kalman Filter [39]. Our key insight to addressing autonomous transi-

tions for PHA is to reuse the continuous estimates in the importance sampling step
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of the filter. We extend the class of autonomous transitions that can be addressed

efficiently. In addition, we demonstrate how the algorithm bridges the prior work

in Rao-Blackwellised particle filtering and hybrid model-based diagnosis, laying the

foundation for a principled unification of RBPF and k-best PHA filtering methods.

4.1 Rao-Blackwellised Particle Filtering

Rao-Blackwellised particle filtering (RBPF) [6, 21] is an extension to the generic par-

ticle filtering algorithm, described in Section 3.2.3. If we partition the state variables

into two sets, r and s (see Figure 4-1), we can use the chain rule to express the

posterior distribution p(x0:t|y1:t,u0:t) as

p(x0:t|y1:t,u0:t) = p(s0:t, r0:t|y1:t,u0:t)

= p(s0:t|r0:t,y1:t,u0:t)p(r0:t|y1:t,u0:t) (4.1)

Thus, we expand the posterior in terms of the sequence of random variables r0:t and

in terms of the sequence s0:t conditioned on r0:t. The key to this formulation is that

if we can compute analytically the conditional distribution p(s0:t|r0:t,y1:t,u0:t) or its

marginal p(st|r0:t,y1:t,u0:t), then we only need to sample the sequences of variables

r0:t, not 〈s0:t, r0:t〉. Intuitively, far fewer particles will be needed in this way to reach a

given precision of the estimate, since for each sampled sequence r0:t, the corresponding

state space s is covered by an analytical solution, rather than a finite number of

samples.

In RBPF, each particle holds not only the samples r
(i)
0:t, but also a parametric

representation of the distribution p(st|r(i)
0:t,y1:t) for each sample i, which we denote

by α
(i)
t . This representation holds sufficient statistics for p(st|r(i)

0:t,y1:t), such as the

mean vector and the covariance matrix of the distribution. The posterior is thus

approximated as a mixture of the distributions α
(i)
t at the sampled points r

(i)
0:t:

p(s0:t, r0:t|y1:t,u0:t) ≈
N

∑

1

αt(i)δr
(i)
0:t

(r0:t). (4.2)
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Figure 4-1: Rao-Blackwellised particle filtering.

A generic RBPF method is outlined in Figure 4-2, and, except for the initialization

and the addition of the exact step, it is identical to the generic particle filter from

Section 3.2.3. In each time step, we evolve the samples r
(i)
0:t, according to a suitable

proposal distribution q(rt|r(i)
0:t−1,y0:t,u0:t). This distribution depends entirely on the

structure of the problem, and is discussed at a greater depth in Section 4.3.2. In

order to account for the discrepancy between the proposal distribution and the desired

posterior distribution p(r0:t|y1:t,u0:t), we assign importance weights

w
(i)
t =

p(yt|r̃(i)
0:t,y0:t−1,u0:t)p(r̃

(i)
t |r̃(i)

0:t−1,y0:t−1,u0:t)

q(r̃
(i)
t |r̃(i)

0:t−1,y0:t,u0:t)
, (4.3)

to the particles i as before (see Equation 3.13). Then, the selection step once again

multiplies or discards the samples according to their weights w
(i)
t , using one of the

selection schemes, as discussed in Section 3.2.3. The last step, called exact, step

updates the posterior distribution α
(i)
t over the variable rt, using the newly evolved

sample r
(i)
t , the latest observation yt, and the inputs.

The RBPF method places no restriction on how the state space should be par-

titioned, other than that it must be possible to update the conditional distribution

α
(i)
t = p(s0:t|r(i)

0:t,y1:t,u0:t) efficiently. A common practice in the field is to factor out

as much of the tractable space as possible. Murphy and Russell [50] advocate an

iterative procedure for dynamic Bayesian networks [14], whereby the set of variables

r gets expanded until the set of remaining variables s = x \ r can be updated exactly

and efficiently. For switching linear models, where the continuous dynamics of the
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1. Initialization

• For i = 1, . . . , N

– draw a random sample r
(i)
0 from the prior distribution p(r0)

– let α
(i)
0 ← p(s0|r(i)

0 )

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

– draw a random sample r̃
(i)
t from the proposal q(rt|r(i)

0:t−1,y0:t,u0:t)

– let r̃
(i)
0:t ← (r

(i)
0:t−1, r̃

(i)
t )

• For i = 1, . . . , N , compute the importance weights:

w
(i)
t ←

p(yt|r̃(i)
0:t,y0:t−1,u0:t)p(r̃

(i)
t |r̃(i)

0:t−1,y0:t−1,u0:t)

q(r̃
(i)
t |r̃(i)

0:t−1,y0:t,u0:t)
(4.4)

• For i = 1, . . . , N normalize the importance weights w
(i)
t

(b) Selection step

• Select N particles (with replacement) from {r̃(i)
0:t} according to the nor-

malized weights {w̃(i)
t } to obtain samples {r(i)

0:t}
(c) Exact step

• Update α
(i)
t given α

(i)
t−1, r

(i)
t , r

(i)
t−1, yt, ut−1, and ut with a domain-specific

procedure (such as a Kalman Filter)

Figure 4-2: Generic RBPF algorithm. [50]
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system is linear, conditioned on the discrete mode variables (see Section 4.2.1), it is

common to factor out the continuous space altogether [6, 21].

This strategy can be understood in the light of the following proposition [17]:

Proposition 2 The variances of the importance weights and the numerator and the

denominator in Equation 3.7, obtained by Rao-Blackwellisation, are smaller than

those obtained using the generic particle filtering method.

Furthermore, under weak assumptions, the Rao-Blackwellised estimate converges to

the estimated value as N → +∞, with a variance smaller than the generic particle

filtering method [18]. Therefore, at least based on a fixed number of samples, it is

beneficial to sample as small of a subset of the state space as possible. In practice,

the run-time performance of the filter will depend on the relative cost of the exact

update for α
(i)
t .

4.2 Tractable substructure in PHA

In the previous section, we outlined the technique of Rao-Blackwellisation, which

reduces the variance of the estimates by factoring out a tractable substructure. Al-

though, inference in hybrid models is generally NP-hard [46], including PHA, many

hybrid modeling formalisms contain a tractable substructure. For HMM-based hybrid

models, this structure typically takes the form of the continuous state, conditioned

on sequences of mode assignments [6, 32]. In this Section, we review the structure of

switching linear models, in which the posterior over the continuous state is a Gaussian,

when conditioned on a mode sequence. Generalizing upon this review, we then elab-

orate on the tractable substructure in Probabilistic Hybrid Automata, which exhibit

additional challenges, including nonlinearities and autonomous transitions.

4.2.1 Structure in switching linear systems

A switching linear dynamical system (SLDS) [55, 40], also known as a jump Markov

linear Gaussian model, is a special form of hybrid model, in which xd is a finite
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Figure 4-3: Structure in switching linear dynamical systems. Once we fix the mode
up to time t, we can estimate the continuous state at time t analytically.

Markov chain, with transition distribution p(xd,txd,t−1) and continuous state evolving

according to

xc,t = A(xd,t)xc,t−1 + B(xd,t)uc,t−1 + vx(xd,t) (4.5)

yt = C(xd,t)xc,t + D(xd,t)uc,t−1 + vy(xd,t), (4.6)

where A(xd,t), B(xd,t), C(xd,t), D(xd,t) are mode-dependent system and observation

matrices, and vx(xd,t) and vy(xd,t) are normally-distributed noise variables. There-

fore, they can be viewed as a special form of PHA without autonomous transitions,

in which the system function f and the observation function g in Equations 2.10 and

2.10 are linear.

SLDS models have attractive properties that make them particularly amenable to

Rao-Blackwellisation. If we take an arbitrary (but fixed) assignment d0:t , d0, d1, . . . , dt

to the mode variables xd,0:t, then the initial distribution p(xc,0), the system matrices

A,B, the observation matrices C,D, and the noise models will each be fixed for all

t′ = 1, . . . , t. This means that once we fix the mode variables xd,0:t, we can construct

an analytical estimate of the continuous state of the system up to time t [6] (see

Figure 4-3).

From the probabilistic point of view, fixing the mode variables xd,0:t to d0:t amounts

to conditioning on the event that xd,0:t = d0:t and computing the posterior probability

p(xc,t|xd,0:t = d0:t,y1:t,u0:t). Since the transition and observation functions are linear,

the posterior probability p(xc,t|xd,0:t = d0:t,y1:t,u0:t) can be computed exactly with a
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Kalman Filter [7].

4.2.2 Structure in PHA

For a PHA, the continuous behavior of the system may change at each time step, in a

similar way as it does in SLDS models. However, PHA pose two additional challenges

to continuous state estimation: non-linearities and autonomous mode transitions.

These two challenges translate to two approximations:

1. When nonlinear functions are used in the transition or an observation function,

posterior is typically nonlinear and non-Gaussian. This means, that the contin-

uous state tracking will typically incur error whenver the system is propagated

through such equations.

2. When the PHA model has autonomous transitions, the posterior will be biased

right after the transition towards the regions of those guards cj, which have a

higher associated transition probability pτj
(x

(i)
d,t).

The first approximation will be accurate to the first degree if an Extended Kalman

Filter is used, or to the second degree if the Unscented Kalman Filter is used.

In order to understand the second approximation, consider the example in Fig-

ure 4-4. This figure shows the distribution N(0, 1) of variable x, when it is first

propagated through a constraint x > 0 (upper right-hand corner) and then is evolved

according to the continuous model x′ = x + N (0, 1) (lower right-hand corner). We

see that by conditioning the variable on the event x > 0, its distribution is slightly

skewed to the right and has a smaller variance. Nevertheless, the disitribution is still

approximated well by a Gaussian, due to the normal noise added after the distribution

is propagated through the constraint.

In our current algorithm, we make no special arrangements in order to account

for the bias introduced by autonomnous transitions. It may be possible, however, to

compute the true mean and variance of the distribution after it has been propagated

through the continuous constraint by numerical methods.
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Figure 4-4: The top two graphs show a Gaussian distribution p(x) (left) and a
graph of this distribution when it is propagated through a constraint x > 0 (right).
The bottom left graph shows the distribution of x when x is propagated through the
model x′ = x+N (0, 1) but ignores the constraint, while the bottom right graph shows
the true distribution when the constraint is accounted for (obtained by importance
sampling with a large number of samples).
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Having described the structure in PHA, we turn to describing an algorithm, which

uses this structure to perform Rao-Blackwellised particle filtering for PHA.

4.3 Gaussian Particle Filtering for PHA

4.3.1 Overview of the algorithm

Since we can compute (or approximate) the posterior distribution p(xc,t|xd,0:t,u0:t)

efficiently in an analytical form, we can apply Rao-Blackwellisation to this problem

by taking r = xd and s = xc. In other words, we will sample the mode sequences

x
(i)
d,0:t with a particle filter and, for each sampled sequence x

(i)
d,0:t, we will estimate

the continuous state with a Kalman Filter. The result of Kalman Filtering for each

sampled sequence x
(i)
d,0:t will be the estimated mean x̂

(i)
c,t and the error covariance

matrix P
(i)
t . The samples x

(i)
d,0:t will serve as an approximation of the posterior distri-

bution over the mode sequences, p(xd,0:t|y1:t,u0:t), while each continuous estimate

〈x̂(i)
c,t,P

(i)
t 〉 will serve as a Gaussian approximation of the conditional distribution

p(xc,t|xd,0:t = x
(i)
d,0:t,y0:t;u0:t) , αi

t. Since the estimate 〈x̂(i)
c,t,P

(i)
t 〉 merely approxi-

mates αi
t, we will not be performing a strict Rao-Blackwellisation; nevertheless, the

results will be accurate up to the approximations in the Extended or the Unscented

Kalman Filter.

Our algorithm is illustrated in Figure 4-5. Each particle now holds a sample

sequence x
(i)
d,0:t and the corresponding continuous estimate 〈x̂(i)

c,t,P
(i)
t 〉. The algorithm

starts by taking a fixed number of random samples from the initial distribution over

the mode variables p(xd,0) (Step 1). For each sampled mode x
(i)
d,0, the corresponding

continuous distribution p(xc,0|x(i)
d,0) is specified by the PHA model.

The algorithm then proceeds to expand the mode sequences and updates the

corresponding continuous estimates (see Figure 4-5, Step 2). In each time step, we

first evolve each particle by taking one random sample x
(i)
d,t, for each particle, from the

proposal distribution q(xd,t;x
(i)
d,0:t−1,y1:t,u0:t). This distribution takes into account

the transition model for the PHA from mode x
(i)
d,t−1 to xd,t and can be efficiently
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Figure 4-5: Gaussian particle filter for PHA.
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computed from the transition model and the continuous estimates, as described in

the next section. For each new mode sequence x
(i)
d,0:t, we compute the importance

weight w
(i)
t . These importance weights take into account the latest observation yt

and are akin to the observation function p(yt|xt) in a hidden Markov model. After

we compute the importance weights, we resample the trajectories according to their

importance weights, using one of the selection schemes described in Section 3.2.3,

such as residual resampling. This step will, in effect, direct the future expansion of

the mode sequences into relevant regions of the state space.

The final step in Figure 4-5 updates the continuous estimate for each new mode

sequence x
(i)
d,0:t. Since in a PHA, each mode assignment d over the variables xd is

associated with transition and observation distributions

xc,t = f(xc,t−1,ut−1;d) + vx(d) (4.7)

yc,t = g(xc,t,ut;d) + vy(d), (4.8)

we update each estimate x̂
(i)
c,t−1, P

(i)
t−1 with a Kalman Filter, using the transition func-

tion f(xc,t−1,ut−1;d), observation function g(xc,t,ut;d), and noise variables vx(x
(i)
d,t)

and vy(x
(i)
d,t), to obtain a new estimate 〈x̂(i)

c,t, P
(i)
t 〉.

4.3.2 Proposal distribution

In order to complete the algorithm outlined above, we need to specify the pro-

posal distribution q(xd,t|x(i)
d,0:t−1,y1:t,u0:t), which determines how the discrete mode

sequences are evolved. For simplicity we choose the distribution p(xd,t|xd,0:t−1 =

x
(i)
d,0:t−1,y1:t−1,u0:t). This distribution expresses the probability of the transition from

the mode x
(i)
d,0:t−1 to each mode d ∈ Xd and is similar in its form to the transition

distribution p(xt|xt−1) in a Markov process. However, it is conditioned on a complete

discrete state sequence and all previous observations and control actions, rather than

simply on the previous state. This is because {xd,t} alone is not an HMM process:

due to the autonomous transitions, knowing xd,t−1 alone does not tell us what the

distribution of xd,t is. The distribution of xd,t is known only when conditioned on the
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xd,t-1
xd,t

xc,t-1 xc,t

yc,t

Figure 4-6: Conditional dependencies among the state variables xc,xd and the out-
put yc expressed as a dynamic Bayesian network [14]. The edge from xc,t−1 to xd,t

represents the dependence of xd,t on xc,t−1, that is, autonomous transitions.

mode and the continuous state for the previous time step (see Figure 4-6).

Our key insight is to compute the proposal distribution for each tracked mode

sequence x
(i)
d,0:t−1 using the corresponding continuous estimate 〈x̂(i)

c,t,P
(i)
t 〉. Since the

estimate 〈x̂(i)
c,t,P

(i)
t 〉 captures the posterior distribution of the continuous state con-

ditioned on the i-th sequence, p(xc,t−1|x(i)
d,0:t−1,y1:t−1,u0:t), we can integrate it out to

obtain a transition distribution conditioned on x
(i)
d,0:t−1, y0:t−1 and u0:t alone:

p(xd,t|x(i)
d,0:t−1,y1:t−1,u0:t)

=

∫

xc,t−1

p(xd,t,xc,t−1|x(i)
d,0:t−1,y1:t−1,u0:t) dxc,t−1

=

∫

xc,t−1

p(xd,t|x(i)
d,0:t−1,y1:t−1,xc,t−1,u0:t)p(xc,t−1|x(i)

d,0:t−1,y1:t−1,u0:t) dxc,t−1

=

∫

xc,t−1

p(xd,t|x(i)
d,t−1,xc,t−1,ut−1)p(xc,t−1|x(i)

d,0:t−1,y1:t−1,u0:t−1) dxc,t−1 (4.9)

The first equality follows from the total probability theorem. The second equality

comes from the independence assumptions made in the model: the distribution of xd,t

is independent of the observations y1:t−1 and mode assignments prior to time t − 1,

given the state at time t− 1.

Typically, when performing Rao-Blackwellisation, the integral in Equation 4.9 is

difficult to evaluate efficiently, as noted in [50], since the integral 4.9 often does not
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Figure 4-7: Probability of a mode transition ball=no to ball=yes as a function of
θ1,t−1.

have a closed form. For PHA, however, efficient evaluation of this integral is possible.

Recall that the distribution of the discrete evolution of a PHA for one step is

specified as a finite set of guards c and their associated transition probabilities pτ .

Each guard specifies a region over the continuous state and automaton’s input/output

variables, for which the transition distribution pτ holds. For example, the acrobot

model in Figure 2-1 has two guard conditions for the mode has-ball=no: θ1 < 0.7

and θ1 > 0.7, with associated transition probabilities back to mode no 1.0 and 0.5,

respectively. Since the transition distributions pτ are fixed, the transition distribution

p(xd,t|x(i)
d,t−1,xc,t−1,ut−1) takes on a finite number of values for varying xc,t−1.

As an example, consider computing the probability of transitioning from mode

ballt−1 = no to mode ballt = yes, as a function of θ1,t−1 (Figure 4-7). When

θ1,t−1 > 0.7, the probability of transitioning from ballt−1 = no to ballt = yes

is equal to 0.5. When θ1,t−1 < 0, the transition probability is determined by the

distribution that is associated with the guard θ1 < 0.7, and is equal to 0. In general,

the mode transition distribution p(xd,t|x(i)
d,t−1,xc,t−1,ut−1) will be constant over the

regions Xj ⊂ R
nx that satisfy the corresponding guards, c(xc,t−1,ut−1,yt−1). In each

region Xj, the distribution will be determined by the corresponding distribution pτj

from the PHA model.

To see, how this insight aids in the evaluation of the proposal distribution, consider

the left term in the integral in Equation 4.9, p(xd,t|x(i)
d,t−1,xc,t−1,ut−1). Since this term

takes on only a finite number of values pτj(xd,t), we can split the integral domain into

the sets Xj that satisfy the constraints cj and factor out the transition probability
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pτj:

∫

xc,t−1

p(xd,t|x(i)
d,t−1,xc,t−1,ut−1)p(xc,t−1|x(i)

d,0:t−1,y1:t−1,u0:t−1) dxc,t−1

=
∑

j

∫

Xj

p(xd,t|x(i)
d,t−1,xc,t−1,ut−1)p(xc,t−1|x(i)

d,0:t−1,y1:t−1,u0:t−1) dxc,t−1

=
∑

j

pτj(xd,t)

∫

Xj

p(xc,t−1|x(i)
d,0:t−1,y1:t−1,u0:t−1) dxc,t−1

=
∑

j

pτj(xd,t) Pr
α

(i)
t−1

[Xj] (4.10)

The second equality holds because, for the region Xj, the conditional distribution

p(xd,t|x(i)
d,t−1,xc,t−1,ut−1) is fixed and equal to pτj. Therefore, in each summed term,

we multiply the transition distribution pτj by the probability of satisfying the guard

cj in the distribution α
(i)
t−1. Hence, the key contribution for PHA is that the discrete

transition probability can be computed directly, by integrating the p.d.f distribution

function α
(i)
t−1(xc,t−1) for each sample i.

4.3.3 Evaluating the probability of a transition guard

Given the derivation in the previous section, the remaining challenge in computing

the proposal distribution is evaluating the probability of satisfying the guard cj, given

the following distribution:

α
(i)
t−1 = p(xc,t−1|x(i)

d,0:t−1,y1:t−1,u0:t−1)

For simplicity, we assume here that cj is only over continuous state variables. Note

that it is easy to relax this assumption and to allow mixed discrete and continuous

guards of the form cd(ud) ∧ cc(xc), by setting Pr
α

(i)
t−1

[Xj] ≡ 0 whenever cd(ud) is not

satisfied.

As suggested in Section 3.2, computing the posterior distribution of xc exactly is,

in general, intractable. While it would be possible to use a particle filter to estimate
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the distribution α
(i)
t , doing so would be prohibitively expensive and would defeat the

purpose of applying Rao-Blackwellisation to this problem. Instead, we use Gaussian

distributions with the estimated mean x̂
(i)
c,t−1 and covariance P

(i)
t−1 in place of the true

posterior distribution α
(i)
t . While this approximation will introduce estimation error

in the proposal, it allows us to compute the proposal distribution efficiently, since the

problem simplifies to computing an integral over a Gaussian distribution with mean

x̂
(i)
c,t−1 and covariance matrix P

(i)
t−1:

Pr
α

(i)
t

[Xj] ≈
1

(2π)nc/2|P(i)
t−1|1/2

∫

Xj

e−
1
2
(xc−x̂

(i)
c,t−1)

T P
(i)
t−1

−1
(xc−x̂

(i)
c,t−1) dxc (4.11)

This approach was suggested in [32] for single-variate guards of the form x < c

and x > c, where x ∈ x is a continuous state variable and c is a real constant. In

this section, we first summarize their procedure and then show how it generalizes to

multi-variate linear conditions.

Interval single-variate guards

When the guards are of the form x < c or x ≤ c, for some constant c, such as θ1 < 0.7,

the integral in Equation 4.11 simplifies to evaluating the cumulative density function

of the normal variable N (µ, σ2), where µ = (x̂
(i)
c,t−1)x is the mean of variable x in

x̂
(i)
c,t−1 and σ2 = (P

(i)
t )x is its variance (Figure 4-8):

D(c) ,
1

σ
√

2π

∫ c

−∞

e−(x−µ)2/(2σ2)dx. (4.12)

The cumulative density function D(c) can be evaluated using standard numerical

methods, such as a trapezoidal approximation or using a table lookup. In order to

evaluate the probability of the complementary guards x > c or x ≥ c, we take the

complement of the cumulative density function, 1−D(c).

The above forms of guard conditions can be viewed as a special case of a more

general form, in which x falls into an interval [l; u].1, where l, u are in the extended

1Whether the interval is closed or open matters only if x can have a zero variance. It is straight-
forward to generalize the discussion here to open and half-open intervals.
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Figure 4-9: A two-tank system.

set of real numbers R
+ , R∪{−∞, +∞} that includes positive and negative infinity.

In these cases, the probability of satisfying a guard condition can be expressed as the

difference of the c.d.f at the endpoints of the interval, D(u)−D(l). Such guards are

thus slightly more expressive, while maintaining the same computational complexity.

Rectangular multi-variate guards

Multivariate guards are often needed to represent more complex constraints on transi-

tions. For example, in a two-tank system connected by a pipe at height h (Figure 4-9)

[43], the transition between the four flow modes between the two tanks are constrained

by the how heights h1 and h2 compare to h. In this system, the transition into the

no-flow mode with Qa = 0 would be conditioned on the guard (h1 < h) ∧ (h2 < h).

In general, the rectangular multi-variate guards will take the form
∧

i∈I(xi ∈
[li; ui]), where xi are distinct continuous state variables and I , {i1, . . . , in} are their

indices. Evaluating the probability of such a multi-variate guard amounts to evalu-

ating the multi-dimensional (hyper)rectangular integral over a Gaussian distribution

(see Figure 4-10):

Pr
α

(i)
t

[Xj] ≈
1

(2π)nc/2|PI|1/2

∫ ui1

li1

∫ ui2

li2

· · ·
∫ uin

lin

e−
1
2
(xc−x̂c,I)T PI

−1(xc−x̂c,I) dxc, (4.13)
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Figure 4-10: Rectangular integral over a Gaussian approximation of the posterior
density of h1 and h2, p(h1, h2| x(i)

d,0:t−1, y1:t−1,u0:t−1).

where x̂c,I is the mean of guard values, selected from the continuous state estimate

x̂
(i)
c,t−1, and PI is the covariance matrix of guard values, selected from the estimate

covariance P
(i)
t−1. Rectangular integrals over Gaussian distributions can be evaluated

efficiently using numerical methods, such as those presented in [38, 24]. As an alter-

native, one could use Monte Carlo methods to evaluate the integral 4.13; however,

numerical methods tend to perform better.

Linear multi-variate guards

Sometimes, the transition guard is best represented by linear combinations of con-

tinuous variables. For example, in the two-tank system in Figure 4-9, the direction

of the flow Qa depends on the heights in the two tanks: if h1 > h2, the flow will be

positive, while if h1 < h2, the flow will be negative. If we were to have a mode variable

in our model that represents the direction of the flow, the transitions for this mode

variable would be guarded by the linear guards h1 > h2 and h1 < h2, or equivalently,

h1 − h2 > 0 and h1 − h2 < 0 (see Figure 4-11). Such guards cannot be handled

by directly applying the procedure for rectangular constrained described above. One

remedy would be to include Qa in our model, as a derived state variable. However,

this would increase the computational complexity of the Kalman Filter. Even worse,

introducing the derived state variable would make the covariance matrix singular and
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Figure 4-11: Linear guard h2 < h1 over the Gaussian approximation of the posterior
density of h1 and h2.

prevent efficient implementation of the inversion and matrix square root operations

in the Unscented Kalman Filter. Instead, the key idea is to apply a linear transform

to the variables that reduces the computation to one of the previous two cases.

For example, consider the guard h2 < h1 in Figure 4-11. Suppose that the random

vector [h1 h2]
T is distributed as N (x̂c,I ,PI), where x̂c,I and PI are the mean and the

covariance matrix of h1 and h2 in the continuous state estimate 〈x̂(i)
c,t−1,P

(i)
t−1〉. Then

the random variable h2 − h1 = [−1 1][h1 h2]
T is normal with mean [−1 1]x̂c,I and

variance [−1 1]PI[−1 1]T . Therefore, we can evaluate the probability of the guard

by computing an integral over this Gaussian (single-variate) distribution with mean

[−1 1]x̂c,I and variance [−1 1]PI [−1 1]T , as it was done in the previous subsections.

In general, suppose that the guard condition c is expressed as a conjunction of

clauses
∧n

i=1 li < aixc,<ui. With two continuous state variables, such conditions

correspond to a polygon in the plane that is formed as an intersection of half-planes

li < a1,ixc1 + a2,ixc2 and a1,ixc1 + a2,ixc2 < ui. In higher-dimensional space, these

guard conditions correspond to a convex space that is formed as an intersection of

hyper-planes li < aixc and aixc < ui.

74



Let

A ,

















a1

a2

...

an

















(4.14)

Then z , Axc defines a random vector with n elements. Furthermore, the guard

c ,
∧n

i=1 li < aixc,<ui is equivalent to the guard
∧n

i=1 li < zi < ui. Therefore, if we

knew the posterior distribution p(zt|x(i)
d,0:t−1,y1:t−1,u0:t−1) of the derived vector z and

could evaluate the integral

∫ ui1

li1

∫ ui2

li2

· · ·
∫ uin

lin

p(zt|x(i)
d,0:t−1,y1:t−1,u0:t−1) dxc, (4.15)

over the rectangular region [l1; u1]× [l2; u2]× · · · × [ln; un], this integral would be the

desired probability of the guard c.

In general, the posterior distribution of z will be as intractable as the posterior

distribution α
(i)
t−1 of xc. Nevertheless, if we approximate α

(i)
t−1 with the continuous

estimate asN (x̂
(i)
c,t−1,P

(i)
t−1), the distribution of z will be Gaussian with a mean Ax̂

(i)
c,t−1

and a covariance AP
(i)
t−1A

T . Therefore, in order to compute the probability of the

guard
∧n

i=1 li < aixc,<ui, we can compute the mean and covariance of z, using the

rectangular integration methods discussed in the previous subsections.

4.3.4 Importance weights

Given our choice of the proposal distribution, the weights w
(i)
t in Equation 4.3 simplify

to

w
(i)
t ,

p(yt|x̃(i)
d,0:t,y0:t−1)p(x̃

(i)
d,t|x̃

(i)
d,0:t−1,y0:t−1)

q(x̃
(i)
d,t; x̃

(i)
d,0:t−1,y0:t)

= p(yt|x̃(i)
d,0:t,y0:t−1,u0:t) (4.16)

This expression represents the likelihood of the observation yt, given a complete mode

sequence, inputs, and previous observations. PHA, like most hybrid models, do not
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directly provide this likelihood and only provide the probability of an observation

y, conditioned on the discrete and continuous state (see Figure 4-6). The closest

approximation to this quantity is the posterior distribution of x, conditioned on the

mode sequence, p(xc,t−1|x(i)
d,0:t−1,y0:t−1,u0:t−1). The key idea is to use the system

transition and observation model (Equations 4.8), to compute a prediction of xc and

y. This leads to the well-known Kalman Filter measurement innovation, which has

been used extensively for state estimation in SLDS models [10]. A similar technique

applies to nonlinear models, such as PHA.

Observation likelihood in linear switching models

Let 〈x̂c,t−1(i), P
(i)
t−1〉 be the continuous estimate for the i-th mode sequence at time

t − 1. As discussed in Section 4.2.1, in linear systems, this estimate represents the

posterior distribution

α
(i)
t−1 ≡ p(xc,t−1|x(i)

d,0:t,y1:t,u0:t)

exactly, that is, α
(i)
t−1 = N (x̂c,t(i),P

(i)
t ). Let

xc,t = A(xd,t)xc,t−1 + B(xd,t)uc,t−1 + vx(xd,t) (4.17)

yt = C(xd,t)xc,t + D(xd,t)uc,t−1 + vy(xd,t), (4.18)

be the equations for the continuous evolution of the model, where A, B, C, D

are mode-dependent system and observation matrices, and vx(xd,t) and vy(xd,t) are

normally-distributed noise variables with covariance matrices Q and R, respectively.

Since α
(i)
t−1 is Gaussian, the predicted distribution

α
(i)−
t , p(xc,t|y1:t−1,x

(i)
d,0:t,u0:t)

is also Gaussian, because it is a linear combination of Gaussian variables. The mean
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of α
(i)−
t is

E[α
(i)−
t ] = E[A(x

(i)
d,t)xc,t−1 + B(xd,t)uc,t−1 + vx,t|y1:t−1,x

(i)
d,0:t,u0:t]

= A(xd,t)E[xc,t−1|y1:t−1,x
(i)
d,0:t,u0:t] + B(x

(i)
d,t)uc,t−1 + E[vx,(xd,t)]

= A(xd,t)x̂c,t−1i + B(xd,t)uc,t−1 (4.19)

and its covariance is

Λx,x
(i)
d,0:t,u0:t = A(x

(i)
d,t)P

(i)
t−1A(x

(i)
d,t))

T + Q. (4.20)

The first equation follows from the additive property of means, E[ax+b] = aE[x]+E[b],

while the second follows from the additive property of uncorrelated variables.

Similarly, the predicted distribution of yc,t given a mode sequence x
(i)
d,0:t and prior

observations yc,0:t−1 is Gaussian, and its first two moments are

E[yt|x(i)
d,0:t,y1:t−1,u0:t] = C(x

(i)
d,t)E[α

(i)−
t ] + Dxd,tuc,t + R

, yp. (4.21)

and

Λy = C(x
(i)
d,t)ΛxC(x

(i)
d,t)

T + R , S
(i)
t (4.22)

Thus, yt is distributed as N (yp,S), when conditioned on mode sequence i and

prior observations. This allows us to compute the observation likelihood using the

normal p.d.f.:

w
(i)
t =

1

(2π)N/2|S(i)
t |1/2

e−0.5rT (S
(i)
t )−1r, (4.23)

where r = yt − yp is the measurement residual (innovation). The residual r and its

covariance S are precisely the values computed in the update step of a Kalman Filter.
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Observation likelihood in PHA

Since PHA may, in general, contain nonlinear dynamics and autonomous transitions,

the distribution α
(i)
t will no longer be Gaussian. Nevertheless, it is possible to ap-

proximate the weight with a procedure similar to the one described in the previous

section. The key is to use the result of measurement innovation in the Extended or

the Unscented Kalman Filter.

For example, in the case of the Extended Kalman Filter, the prediction α
(i)−
t is

computed by first, propagating the estimated mean through the nonlinear model and

predicting the the estimate covariance

x̂
(i−)
c,t = f(x̂

(i)
c,t−1,ut01) (4.24)

A =
∂f

∂xc

|x̂(i)
c,t (4.25)

P
(i−)
t = AP

(i−)
t AT + Q. (4.26)

This leads to the observation prediction yp with covariance S
(i)
t :

yp = g(x̂
(i−)
c,t ,ut) (4.27)

C =
∂g

∂xc
|x̂(i−)

c,t (4.28)

S
(i)
t = CP

(i−)
t CT + R. (4.29)

Therefore, the likelihood can be approximated again as

w
(i)
t =

1

(2π)N/2|S(i)
t |1/2

e−0.5rT (S
(i)
t )−1r. (4.30)

4.3.5 Putting it all together

The final algorithm is shown in Figure 4-12. Note that the order of the Exact and

Selection step of the generic RBPF algorithm in Figure 4-2 has been switched, because

the innovation mean and covariance, computed in the Kalman Filter update step, are

used to compute the importance weight.
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1. Initialization

• For i = 1, . . . , N

– draw a random sample x
(i)
d,0 from the prior distribution p(xd,0)

– initialize the estimate mean x̂
(i)
c,0 ← E[xc,0|x(i)

d,0]

– initialize the estimate covariance P
(i)
0 ← Cov(xc,0|x(i)

d,0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

– compute the transition distribution p(xd,t|x(i)
d,0:t−1,y1:t−1,u0:t)

– sample x̃
(i)
d,t ∼ p(xd,t|x(i)

d,0:t−1,y1:t−1,u0:t)

– let x̃
(i)
d,0:t ← (x

(i)
d,0:t−1, x̃

(i)
d,t)

(b) Exact step

• For i = 1, . . . , N

– perform a KF update: x̃
(i)
c,t, P̃

(i)
t , r

(i)
t ,S

(i)
t ← UKF (x̂

(i)
c,t−1,P

(i)
t−1, x̃

(i)
d,t)

– compute the importance weight:

w
(i)
t ← N (r

(i)
t ,S

(i)
t ) (4.31)

(c) Selection step

• normalize the importance weights w
(i)
t

• Select N particles (with replacement) from {〈x̃(i)
d,0:t, x̃

(i)
c,t, P̃

(i)
t 〉} according

to the normalized weights {w̃(i)
t } to obtain particles {〈x(i)

d,0:t, x̂
(i)
c,t,P

(i)
t 〉}

Figure 4-12: Gaussian particle filer for PHA.
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Several straightforward optimizations can be employed to further improve the per-

formance of the algorithm. First, since the algorithm is recursive and only depends

on the latest state estimate and the latest mode assignment in a mode sequence, it is

sufficient to maintain only the latest mode assignment x
(i)
d,t, rather than the complete

mode sequences x
(i)
d,0:t. Furthermore, the algorithm can compute the transition prob-

ability PT in the Importance Sampling step only once for each unique sample. This

can be accomplished by maintaining the number of off-springs Ni generated in the Se-

lection step, and taking Ni random samples from the computed transition probability

PT . We implemnted our algorithm in C++, using both of these optimizations.

4.3.6 Sampling from the posterior

One problem with using the transition distribution as a proposal in the fault diagnosis

domain is that fault transitions typically have a low prior probability, and many par-

ticles may be needed to sample and detect the fault. If there is a significant amount

of information contained in the observations, it may be useful to incorporate this

information into the proposal, so that modes with high probability in the posterior

distribution are also likely in the proposal. It may be possible to use domain-specific

heuristics to guide the sampling process [15]; however, such heuristics are difficult

to construct and can be very fragile. One systematic solution is to use the optimal

proposal distribution, q = p(xd,t|x(i)
0:t−1,y0:t,u0:t) [6, 18]. This distribution was first

described by Akashi [6] and is optimal in the sense that it minimizes the variance of

importance weights [18]. Unlike the proposal distribution discussed in Section 4.3.2,

it is also conditioned on the latest observation. This modification is a double-edged

sword: although the performance will improve on a per-sample basis, significantly

more computation will need to be performed, in order to compute the proposal dis-

tribution. In practice, the trade-off will depend on the amount of information in the

observations and on the prior probabilities of the faults.

In order to understand this distribution, let us expand it in terms of the hybrid
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transition function and the observation likelihood:

p(xd,t|x(i)
d,0:t−1,y1:t,u0:t) = (4.32)

=
p(xd,t,yt|x(i)

d,0:t−1,y1:t−1,u0:t)

p(yt|x(i)
d,0:t−1,y1:t−1,u0:t)

(4.33)

=
p(yt|xd,t,x

(i)
d,0:t−1,y1:t−1,u0:t)p(xd,t|x(i)

d,0:t−1,y1:t−1,u0:t)
∑

d∈Xd
p(yt,xd,t = d|x(i)

d,0:t−1,y1:t−1,u0:t)
(4.34)

=
P

(i)
T ,t−1(xd,t)p(yt|xd,t,x

(i)
d,0:t−1,y1:t−1,u0:t)

∑

d∈Xd
P

(i)
T ,t−1(d)p(yt|d,x

(i)
d,0:t−1,y1:t−1,u0:t)

(4.35)

Thus, the distribution represents the “increment” in the posterior distribution of

the mode sequence from time step t − 1 to time step t (the numerator of 4.35),

among all the sequences extending x
(i)
d,0:t−1 (the denominator of 4.35). The sum in the

denominator ensures the proper normalization of the proposal distribution.

Given this choice of the proposal distribution, the importance weights in Equa-

tion 4.3 simplify to

w
(i)
t =

p(yt|x̃(i)
d,0:t,y0:t−1)p(x̃

(i)
d,t|x̃

(i)
d,0:t−1,y0:t)

q(x̃
(i)
d,t; x̃

(i)
d,0:t−1,y0:t)

(4.36)

=
P

(i)
T ,t−1(x̃

(i)
d,t)p(yt|x(i)

d,0:t,y1:t−1,u0:t)

q(x̃
(i)
d,t; x̃

(i)
d,0:t−1,y0:t)

(4.37)

=
∑

d∈Xd

P
(i)
T ,t−1(d) p(yt|d,x

(i)
d,0:t−1,y1:t−1,u0:t) (4.38)

Thus, the weight represents the total “increment” in the posterior distribution for the

mode sequences that extend x
(i)
d,0:t−1.

Note that the weights w
(i)
t do not depend on the latest mode x

(i)
d,t. Therefore, it is

possible to move the Selection before the Importance sampling step, an idea that was

first introduced in [49]. In this manner the number of evolved samples that stem from

x
(i)
d,t−1 will remain unchanged; however, their variety will be increased at no further

computational cost.

An important consequence of sampling from the optimal proposal is that the al-
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gorithm needs to evaluate the observation likelihood for each successor mode, unless

additional approximations are used. This means that its computational complexity

per sample increases form O(T + K) when sampling from the prior to O(T + |Xd|K)

when sampling from the posterior, where T is the computational complexity of com-

puting the transition function, Xd is the number of discrete mode assignments, and K

is the cost of the Kalman Filter update. Thus, the trade-off between the two methods

will depend on whether there is enough information in the observation likelihood to

justify the additional cost of |Xd| − 1 Kalman Filter updates. One heuristic is to

take the ratio r between the observation likelihoods PO in the fault mode and the

observation likelihood in nominal modes when a fault occurs. If r > |Xd| − 1, the

algorithm will benefit from sampling from the posterior; otherwise, it will not.

4.4 Discussion

In the previous sections, we have derived an efficient Gaussian particle filtering al-

gorithm that can handle single-component systems with autonomous transitions and

nonlinear dynamics. In the following two subsections, we relate our algorithm to the

prior art in hybrid model-based diagnosis and particle filtering.

4.4.1 Comparison with prior approaches to hybrid model-

based diagnosis

Several algorithms have addressed the problem of the exponential growth of the Gaus-

sian mixtures. One class of solutions are multiple-model estimation schemes, which

maintain a pre-determined number of mode sequences. These include the generalized

pseudo-Bayesian algorithm (GPB) [4], the Detection/Estimation Algorithm (DEA)

[57], the popular Interacting Multiple Model (IMM) algorithm [10], and residual cor-

relation Kalman filter bank [29]. All of these techniques have a fixed, deterministic

strategy for pruning the mode sequences.

More recently, Lerner et al. [45] proposed a k-best filtering solution for switching
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linear dynamical models. In addition to pruning, their algorithm implements several

techniques not present in our algorithm, including collapsing of the mode sequences,

smoothing, and weak decomposition. Lerner extended this approach later in [44],

to the setting of hybrid dynamic Bayesian networks with SoftMax transitions, using

numerical integration techniques instead of the Kalman Filter. Similarly to ours, their

algorithm provides an any-time solution to the hybrid state estimation problem.

Hofbaur and Williams [32] introduced autonomous transitions to the models in the

context of Concurrent Probabilistic Hybrid Automata. They introduced an any-time

k-best filtering algorithm for concurrent systems. Their algorithm extracts a leading

set of sequences in the order of their priors using a combination of branching and A*

algorithm that exploits preferential independence and guarantees to find the next set

of k leading sequences at each time step.

4.4.2 Comparison with prior particle filtering approaches

Several papers [8, 41] have proposed to use the bootstrap filter to perform state esti-

mation in hybrid models. Dearden [15] demonstrated the application of this method

in the rover fault diagnosis domain.

An early application of the Rao-Blackwellisation method to reduce the variance

of sampling in SLDS models was introduced by Akashi and Kumamoto [6]. Their

algorithm, named Random Sampling Algorithm (RSA), sampled the sequences of

mode assignments using the distribution p(xd,t|xd,0:t,y1:t,u0:t). Doucet [17, 21] intro-

duced the Selection Step, which is crucial for the convergence of sequential Monte

Carlo methods and framed the problem in the general particle filtering framework.

In addition, he proved several properties on the convergence and variance reduction

of Rao-Blackwellisation schemes. Doucet et al. [19] further extended the work of

[17] and described an algorithm for fixed-lag smoothing with MCMC steps. Finally,

Morales-Menndez et. al [49] introduced the look-ahead procedure, described in Sec-

tion 4.3.6. This increases the variety of the particles and, in general, improves the

performance of the particle filter. All of these techniques were designed for linear

switching models without autonomous transitions.
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Similar to, but independent from our work, Hutter and Dearden [36] combined

the look-ahead Rao-Blackwellised particle filter with an Unscented Kalman Filter, in

order to improve the accuracy of the continuous estimates. In our work [23], we have

introduced autonomous transitions and drew parallels to prior approaches in hybrid

model-based reasoning.

Two complementary approaches for improving the performance of particle filters

were proposed by Thrun [56] and Verma [59]. The first one, the risk sensitive particle

filter, incorporates a model of cost into the sampling process. The cost is implemented

automatically using an MDP value function tracking. The second approach improves

the performance of particle filtering by automatically choosing an appropriate level

of abstraction in a multiple-resolution hybrid model. Maintaining samples at a lower

resolution prevents hypotheses from being eliminated due to a lack of samples.
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Chapter 5

Gaussian Particle Filtering for

CPHA

In the previous chapter, we described a particle filtering algorithm for PHA models.

In practice, a model will be composed of several concurrently operating automata

that represent individual components of the underlying system. In this manner, the

design of the models can be split on a component-by-component basis, thus enhancing

the reusabiliy of the models and reducing modeling costs.

In this chapter we extend our Gaussian particle filter to handle Concurrent Prob-

abilistic Hybrid Automata (CPHA) [32, 35], a modeling formalism that defines the

overall hybrid model as a set of PHA, connected through continuous input and output

variables, see Chapter 2 for an overview of CPHA. In CPHA, components transition

independently, conditioned on the current discrete and continuous state. Therefore, it

is possible to compute the transition probabilities P
(i)
T for each tracked mode sequence

component-wise [32]. This property is exploited by our algorithm in the importance

sampling step, whereby the samples are evolved according to the transition distribu-

tion PT on a component-by-component basis. We then show how sampling from the

posterior (Section 4.3.6) can be adapted to CPHA. The key idea is to evaluate the

observation function for mode transitions independently. This results in an improved

proposal q that incorporates some information in the latest observations, but does not

need to evaluate the observation likelihood PO for an excessive number of successor
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modes.

5.1 Sampling from the prior

Recall that the algorithm in Section 4.3 sampled the mode sequences according to

the proposal distribution

q(xd,t|x(i)
d,0:t−1,y1:t,u0:t) = p(xd,t|x(i)

d,0:t−1,y1:t−1,u0:t) , P
(i)
T ,t.

This represents the probability of being in the mode xd,t, conditioned on the previous

sequence of modes x
(i)
d,0:t−1 and observations y1:t−1, leading to that mode. Given this

choice of the proposal, the importance weights simplify to

w
(i)
t = p(yt|xd,0:t,y1:t−1,u0:t) , P

(i)
O,t. (5.1)

When sampling mode sequences in CPHA, we use the same proposal distribution.

The only difference is that now, instead of computing the transition probability for

every value in the domain Xd of the discrete variables xd, we evaluate it only for the

individual component’s discrete domain Xd k, and obtain the joint transition distri-

bution p(xd,t|x(i)
d,0:t−1,y1:t−1,u0:t) as a product of component transition distributions

∏

k p(xd k,t|xd k,0:t−1,y1:t−1,u0:t), for all components k in the model.

To illustrate this process, consider the discrete transition model for the acrobot,

shown in Figure 5-1. In order to compute the transition probability from the mode

x
(i)
d,t−1 = 〈actuator=ok, has-ball=no〉 to the mode x

(i)
d,t = 〈actuator=ok, has-ball=yes〉,

we multiply the component probabilities

p1 = Pr(actuatort=ok | x(i)
d,0:t−1,y1:t−1,u0:t−1) (5.2)

= Pr(actuatort=ok | actuatort−1=ok,x
(i)
d,0:t−2,y1:t−1,u0:t−1)
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Figure 5-1: The discrete transition model for the acrobatic robot. Due to the indepen-
dence assumptions made in the model, the joint probability distribution for the two
components (actuator, has-ball) is obtained as a product of the two component
distributions, when conditioned on the continuous state.

and

p2 = Pr(has-ballt=yes | x(i)
d,0:t−1,y1:t−1,u0:t−1) (5.3)

= Pr(has-ballt=yes | has-ballt−1=no,x
(i)
d,0:t−2,y1:t−1,u0:t−1).

Since the actuator transition distribution is not conditioned on the continuous state,

its evolution satisfies the Markovian property, and p1 simplifies to p(actuatort=no |
actuatort−1 = ok), which can be read off directly from the model. The transitions

for the has-ball component, on the other hand, do depend on the continuous state.

Hence, the transition probability for this component is computed from the continuous

estimate 〈x̂(i)
c k,t, P

(i)
t 〉, as described in Sections 4.3.2 and 4.3.3.

Figure 5-2 shows the pseudocode for the resulting algorithm. The algorithm is

based on the algorithm presented in Section 4.3, except that in the importance sam-

pling step, we compute the transition distribution and evolve the sampled mode

sequences on a component-by-component basis.
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1. Initialization

• For i = 1, . . . , N

– draw a random sample x
(i)
d,0 from the prior distribution p(xd,0)

– initialize the estimate mean x̂
(i)
c,0 ← E[xc,0|x(i)

d,0]

– initialize the estimate covariance P
(i)
0 ← Cov(xc,0|x(i)

d,0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

– For each component k

∗ compute the transition distribution p(xd k,t|x(i)
d k,0:t−1,y1:t−1,u0:t)

∗ sample x̃
(i)
d,t k ∼ p(xd k,t|x(i)

d k,0:t−1,y1:t−1,u0:t)

– let x̃
(i)
d,0:t ← (x

(i)
d,0:t−1, 〈x̃

(i)
d,t 1, . . . , x̃

(i)
d,t nc
〉)

(b) Exact step

• For i = 1, . . . , N

– perform a KF update: x̃
(i)
c,t, P̃

(i)
t , r

(i)
t ,S

(i)
t ← UKF (x̂

(i)
c,t−1,P

(i)
t−1, x̃

(i)
d,t)

– compute the importance weight:

w
(i)
t ← N (r

(i)
t ,S

(i)
t ) (5.4)

(c) Selection step

• normalize the importance weights w
(i)
t

• Select N particles (with replacement) from {〈x̃(i)
d,0:t, x̃

(i)
c,t, P̃

(i)
t 〉} according

to the normalized weights {w̃(i)
t } to obtain particles {〈x(i)

d,0:t, x̂
(i)
c,t,P

(i)
t 〉}

Figure 5-2: Gaussian particle filter for CPHA.
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5.2 Sampling from partial posterior

As discussed in Section 4.3.6, the performance of a particle filter can be improved by

incorporating the latest observations into the proposal distribution q. In the case of

the Gaussian particle filter, these observations can be incorporated by evaluating the

observation function at each possible successor mode [6, 49], and sampling according

to the distribution q(xd,t|x(i)
d,0:t−1,y1:t,u0:t) = P

(i)
T ,tP

(i)
O,t.

While this approach may work in a single-component system that has only a

few modes, its performance, as a function of the execution time, will degrade as

the number of modes increases. The reason for this degradation is that computing

the observation likelihood for each successor mode quickly becomes a burden – with

500,000 modes in the BIO-Plex model [34], the algorithm would have to perform

500,000 Kalman Filter updates for each sample. With one Kalman Filter update

taking as much as 1ms for a four-variable continuous model (see Section 6.2), this

approach would take at least ten hours to perform one iteration, when taking 70

samples for the model described in [34].

Instead, we describe an algorithm that incorporates the latest observations into

the sampling process, but does not enumerate all the successor modes. The key idea is

to compute the observation likelihood, PO, for each individual component transition,

and combine these with the transition distribution, PT . After we sample the new

mode, we compute the observation likelihood for the newly generated sample and

reflect the discrepancy between the proposal distribution and the true posterior in

the importance weights. Thus, the algorithm will still have guaranteed convergence

properties as N → +∞. Although more computation will need to be performed in

each time step, fewer samples will be needed to attain the same level of accuracy.

The pseudocode for the algorithm is shown in Figure 5-3. In the importance

sampling step, the algorithm computes the observation likelihood for each component

k and each mode m in that component. The transitions are treated independently:

While we transition the component k into mode m and compute the observation

likelihood for the newly evolved sequence, all of the other components remain in
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1. Initialization

• For i = 1, . . . , N

– draw a random sample x
(i)
d,0 from the prior distribution p(xd,0)

– initialize the estimate mean x̂
(i)
c,0 ← E[xc,0|x

(i)
d,0]

– initialize the estimate covariance P
(i)
0 ← Cov(xc,0|x

(i)
d,0)

2. For t = 1, 2, . . .

(a) Importance sampling step

• For i = 1, . . . , N

– For each component k

∗ compute the transition distribution: P
(i)
T ,t k ← p(xd k,t|x

(i)
d k,0:t−1,y1:t−1,u0:t)

∗ For each mode m in component k

· perform a KF update: r,S← UKF (x̂
(i)
c,t−1,P

(i)
t−1,x

(i)
d,t−1,m)

· compute the observation likelihood PO ← N (r,S
(i)
t )

· let q
(i)
t k

(m)← P
(i)
T ,t k

PO

∗ normalize q(xd k,t)

∗ sample x̃
(i)
d,t k ∼ q(xd k,t)

– let x̃
(i)
d,0:t ← (x

(i)
d,0:t−1, 〈x̃

(i)
d,t 1, . . . , x̃

(i)
d,t nc

〉)

(b) Exact step

• For i = 1, . . . , N

– perform a KF update: x̃
(i)
c,t , P̃

(i)
t , r

(i)
t ,S

(i)
t ← UKF (x̂

(i)
c,t−1,P

(i)
t−1, x̃

(i)
d,t

)

– compute the importance weight: w
(i)
t ←

N (r
(i)
t ,S

(i)
t )

Q

k P
(i)
T ,t k

Q

k q
(i)
t k

(c) Selection step

• normalize the importance weights w
(i)
t

• Select N particles (with replacement) from {〈x̃
(i)
d,0:t, x̃

(i)
c,t , P̃

(i)
t 〉} according to the normalized

weights {w̃
(i)
t } to obtain particles {〈x

(i)
d,0:t, x̂

(i)
c,t,P

(i)
t 〉}

Figure 5-3: Gaussian particle filter for CPHA with improved proposal.

the same mode. Together with the transition distribution P
(i)
T ,t k, this observation

likelihood determines the probability of transitioning to mode m of the proposal

distribution q
(i)
t k, for the component k. This proposal distribution is used to evolve

the mode variables in the k-th component, in order to obtain the new sample x̃
(i)
d,t k.

In the Exact step, the algorithm updates the continuous state, using the newly

sampled mode, and computes the importance weights for the newly obtained sam-

ples. Recall from Section 3.2.2 that importance weights need to satisfy the following
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equality:

w
(i)
t =

p(yt|x(i)
d,0:t,y1:t−1,u0:t)p(x

(i)
d,t|x

(i)
d,0:t−1,y1:t−1,u0:t−1)

q(x
(i)
d,t;x

(i)
d,0:t−1,y1:t,u0:t)

. (5.5)

In this case, since the samples x
(i)
d,t k are evolved independently according to the pro-

posal distribution q
(i)
t k for each component k, the proposal distribution for the vector

x̃
(i)
d,t becomes

q(x
(i)
d,t;x

(i)
d,0:t−1,y1:t,u0:t) =

∏

k

q
(i)
t k. (5.6)

Similarly, the prior transition distribution P
(i)
t for the sample x̃

(i)
d,t becomes

P
(i)
t =

∏

k

P
(i)
T ,t k. (5.7)

Therefore, the weights w
(i)
t in Equation 5.5 reduce to

w
(i)
t =

N (r,S
(i)
t )

∏

k P
(i)
T ,t k

∏

k q
(i)
t k

(5.8)

.

The algorithm works best when the effects of mode transitions are observed in-

dependently, or nearly independently, among the component mode variables. This

occurs, for example, when the transitions occur in independent or weakly dependent

components. In these cases, the observation likelihood in one component is indepen-

dent of, or weakly-dependent on, the observation likelihoods in the other components.

The proposal distribution q is then near the optimal proposal q(x
(i)
d,t;x

(i)
d,0:t−1,y1:t,u0:t) =

p(x
(i)
d,t;x

(i)
d,0:t−1,y1:t,u0:t).

We have implemented both of these algorithms in C++. In the next Chapter,

we demonstrate them and compare their performance against the k-best filering al-

gorithm [32].
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Chapter 6

Experimental Results

In the previous chapters, we described a Gaussian particle filtering algorithm for

probabilistic hybrid models that handles the full expressivity of CPHA, including

non-linearities, autonomous mode transitions, and concurrency. Through the tech-

nique of Rao-Blackwellised particle filtering [6, 21], our algorithm significantly reduces

the sampled space. We have shown how the algorithm relates to the prior art in prob-

abilistic hybrid diagnosis, including multiple-model estimation schemes [10], Gaussian

k-best filtering [32, 45], and variable resolution particle filtering [59]. What is left open

is how Gaussian particle filtering performs in relation to these methods in various do-

mains. More generally, the questions that we are trying to address is how accurate

the Gaussian representation is for tracking nonlinear systems, and how well sampling

performs in relation to best-first enumeration algorithms. While significant progress

has been made in both particle filtering and k-best filtering for hybrid systems, very

little attention has been given so far to comparing their relative performance.

In this chapter, we consider the acrobatic robot example introduced in Chapter 2,

see Figures 2-1 and 2-2. The discrete state of the hybrid model for this example

consists of two variables, representing whether or not the robot holds a ball (variable

has-ball) and whether or not its actuator has broken (variable actuator). The

system’s dynamics is represented by four continuous variables: θ1, the angle that the

robot holds with the horizontal plane, θ2, the angle between the robot’s torose and

its legs, and the corresponding angular velocities ω1, ω2. The goal is to filter out the
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robot’s hybrid state from a sequence of noisy observations of θ2.

While this example is small, it demonstrates interesting challenges for both track-

ing and hybrid state estimation. The dynamic model for two-link systems like the

acrobatic robot is highly nonlinear. For example, the angular acceleration θ̈1 can be

expressed as θ̈1(θ1, θ2, θ̇1, θ̇2) =

D12T + θ̇2
1(−D211D12) + θ̇2

2(D122D22) + 2θ̇1θ̇2(D112D22 −D212D12) + D1D22 −D2D12

D2
12 −D11D22

(6.1)

where the coefficients D involve trigonometric functions of θ1 and θ2 and mode-

dependent parameters parameters of the robot’s body, and T is the torque exerted by

the actuator. [52] Furthermore, with four continuous state variables, as demonstrated

below, the model appears to be already too large to be handled by particle filters in

realtime, and even with 100,000 samples, both the Unscented Particle Filter (UPF)

[58] and the Bootstrap filter [26]. Finally, the symptoms exhibited by mode changes

are very subtle. Given our choice of the observation noise of σ = 0.1rad ≈ 5deg,

it takes at least ten time steps to differentiate between the has-ball=yes and the

has-ball=no modes.

6.1 Scenarios

We considered the following three scenarios for tracking and hybrid estimation (see

Figure 6-1). The robot was driven by input torque that made it swing back and

forth. In the first scenario, the robot remains in the nominal mode has-ball=no,

actuator=ok for the duration of the experiment. In the second one, the robot cap-

tures a ball at time t = 1.3s and keeps it for the rest of the experiment. Capturing a

ball increases its weight m2 at the end of the legs and changes the resulting trajec-

tory, as shown in Figure 6-1. In the final, third scenario, the robot’s actuator breaks

at t = 1.8. This event causes the robot to stop exerting any torque (T = 0), and

alters its trajectory, as shown in Figure 6-1. In all of our experiments, the time was

sampled at 100 Hz, and the continuous state was modeled to evolve with additive
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Figure 6-1: The evolution of θ1 (left) and θ2 (right) for the three scenarios.

white Gaussian noise with σx = 0.01rad.

As shown in Figure 6-1, the continuous state trajectories for these different sce-

narios are sufficiently different to be detected on a long-term basis, but are sufficiently

subtle not to be observable from a single observation. Thus, the problem is well-suited

for hybrid estimation.

6.2 Accuracy of the Gaussian representation

In the first set of experiments, we evaluated the accuracy of simple continuous state

tracking when the discrete state was fully observable, in order to verify that our Gaus-

sian representation is valid. We compared the performance of the unscented Kalman

filter (UKF) [39] to the ground truth and to the unscented particle filter (UPF) [58],

which has been shown to greatly outperform Bootstrap-based importance sampling

schemes. The most commonly cited advantage of particle filters is their ability to cope

with general nonlinear, non-Gaussian models. [58, 19]. Our experiments show that,

even for a highly-nonlinear system like the acrobatic robot, the Gaussian estimates

obtained with an UKF are sufficiently accurate for the given task. This result, along

with the fact that an UKF is vastly more efficient than an UPF, justifies the use of

Gaussian filtering in this domain.
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Continuous state tracking

In order to evaluate the performance of continuous state tracking, we assumed that

the mode is observable at each time step and temporarily removed the autonomous

transitions from the model. The former assumption implies that we do not need to

track several mode sequences, while the latter removes the bias from the estimate and

allows a meaningful comparison in a system where the true posterior distribution is

difficult to obtain.

Figure 6-2 shows the ground truth and continuous state estimates for θ1 and θ2,

computed with an unscented Kalman filter and an unscented particle filter. The par-

ticle filter was using 100,000 samples in each time step and implemented systematic

resampling [11] with MCMC moves, in an attempt to obtain an accurate approxi-

mation of the true posterior distribution. We see that while the UPF provides an

accurate estimate of the continuous state at the beginning of the sequence, it suffers

from particle depletion at t = 3 seconds, exhibited by a dense distribution of the

particles that are clearly off from the true posterior, and eventually diverges from

the posterior at t = 4.2s. The estimate obtained with the UKF, on the other hand,

behaves consistently, even though it has higher variance and definite bias at the peaks

of the motion (t = 1.3s, t = 1.8s, t = 3.1s, t = 3.6s, and t = 4.2s).

In order to obtain a better understanding of how well the Gaussian estimate

represents the joint posterior distribution over the continuous state variables, we

compared it to a close approximation of the posterior, obtained with a large number

of samples (N = 1, 000, 000). Figure 6-3 shows a few representative samples from

the posterior distributions of 〈θ1, θ2〉 and 〈ω1, ω2〉 at t = 0.6s. We see that while

the covariance of the UKF estimate is much larger than the covariance of the true

posterior distribution, the variables are at least properly correlated.

6.3 Hybrid estimation

Having evaluated the performance of the continuous tracking, we turn to evaluating

our Gaussian particle filtering algorithm presented in Chapter 4 and to comparing its
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Figure 6-2: Ground truth and state estimates for θ1 (above) and θ2 (below). The
standard deviations for the estimates were offset by 0.03 in order to clarify the figure.
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distribution computed from the samples, while the dashed lines represent the contours
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filter.
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performance to the k-best filter [32].

6.3.1 Single executions

In order to gain insight into the operation of the Gaussian particle filter, we examined

its performance on one sequence of observations for each of the three scenarios.

Figure 6-4, shows the maximum a posteriori (MAP) estimate of the filter for

the nominal scenario, when the rover was swinging throughout its execution not

holding a ball and without experiencing a failure. We see that the algorithm correctly

estimates the mode has-ball=no, actuator=ok of the system (mode value 0 on

the graph), except between t = 4.3 and t = 4.8 seconds, when (presumably) the

noise in the observation leads to the wrong diagnosis. The regular spikes at t ≈ 0,

t ≈ 1.3, t ≈ 2.5, t ≈ 3.6 and t ≈ 5 correspond to the times when θ1 reaches its

maximum (see Figure 6-2). During these times, the autonomous transitions between

has-ball=no and has-ball=ues guarded by the condition t1 > 0.7 are enabled with

high probability, and, according to our model, the probability of having the ball is

approximately 0.5. This fact is correctly reflected by a decreased confidence in the

correct diagnosis (Figure 6-4 right). The exact mode estimate will depend on the

values of the received observations and on the outcomes of the probabilistic choices

made by the filter.

Figure 6-5 shows the results for the scenario when the robot captures a ball at

t = 1.3s. This result is very interesting; it shows that the Gaussian particle filter

overcommits to the fault mode. One possible explanation of this phenomenon is that

once a fault mode is sampled and if it supports the observations well, it will remain

in the surviving set of the particles, because there are no outgoing transitions from

a fault mode. This issue does not affect k-best filters to such a degree, because

the fault sequence probabilities need to multiply over time to a high product to be

included in the leading set of trajectories. Over time, the fault may be disproved

by the observations, and, may even be dropped from the list of leading trajectories,

because its posterior may not build up in time before the sequence is dropped from

the leading set of hypotheses.
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Figure 6-4: A single run for the nominal scenario using both the Gaussian particle
filter and the Gaussian k-best filter. Left: MAP estimate computed by the Gaussian
particle filter with 100 samples. Right: probability of the correct (nominal) diagnosis.

As shown in Figure 6-6, this problem is remedied to some extent by using a version

of the Gaussian particle filter that samples from the posterior (see Section 4.3.6. In

this case, the filter overcommits to the fault mode at a later time t = 3.5s.

In the last, actuator failure scenario, the Gaussian particle filter detected the

failure, although it misclassified it as a double-transition to the mode has-ball=true,

actuator=failed. Even so, the correct diagnosis was detected earlier than with the

k-best filter. Looking at the plot in Figure 6-1, we see that the fault should have been

detected early, since the evolution of θ2 in the fault scenario is significantly different

from the nominal scenario. Therefore, our Gaussian particle correctly detects the

fault earlier in this test run.

In all the scenarios, the Gaussian particle filter tracked the continuous state very

well. For example, Figure 6-8 shows the tracking for the nominal scenario. The

continuous state estimate is very close to the omniscient UKF.1

1Omniscient filter observes the discrete state directly and thus, can provide a more accurate
continuous state estimate.
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Figure 6-5: A single run for the ball capture scenario. Left: Maximum a posterior
(MAP) estimate computed by RBPF and k-best filtering algorithm. Right: proba-
bility of the correct diagnosis has-ball=yes for t ≥ 1.3s.
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Figure 6-6: A single run for the ball capture scenario when sampling from posterior.
Left: Maximum a posterior (MAP) estimate computed by RBPF and k-best filtering
algorithm. Right: probability of the correct diagnosis has-ball=yes for t ≥ 1.3s.
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Figure 6-7: A single run for the actuator failure scenario, when sampling from the
prior (left) and the posterior (right).
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Figure 6-8: Filtered θ1 for a single execution of the nominal scenario.

6.3.2 Performance metrics

One of the biggest obstacles in evaluting the performance of hybrid state estimation

algorithms is that inference with hybrid models is, in general, NP-hard [46], and it is

very difficult to obtain the true posterior distribution p(xc,t,xd,t|y1:t,u0:t). Sometimes,

this distribution can be approximated by a particle filter with a large number of

samples; however, the accuracy of such approximations may not be bounded tightly

enough and has little chance of succeeding with our model, which could not be tracked

reliably even when the discrete state was fully observed.

Instead, we use the following two metrics: percentage of the diagnostic faults,

defined as # of wrong diagnoses
# time steps

, and the mean square estimation error ((x̂c,t−xc,t)
T (x̂c,t−

xc,t))
1/2, averaged out over all of the time steps and experiments. These metrics are

far from perfect. For example, it is possible that the correct diagnosis may not be

the most likely one. Furthermore, due to integration errors and the process and

the observation noise, the optimal estimate might not be close to the ground truth.

Nevertheless, these statistics do, in general, produce the correct results and have been

employed in prior literature. [36] An alternative would be to use as a measure the

likelihood of the correct diagnosis for discrete estimates and the KL divergence from

the omniscient Kalman Filter for the continuous estimates. [44]
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Figure 6-9: Percentage of diagnostic errors for the nominal scenario, as a function of
number of tracked mode sequences (left) and running time per time step (right).

6.3.3 Average performance

Figures 6-9 through 6-14 show the percentage of diagnostic errors and the mean

square tracking error for the three scenarios considered above. For each of the sce-

nario, the algorithms were run on 20 random observation sequences with fixed mode

assignments.

For the first two scenarios, the k-best filtering provides consistently better esti-

mates. This is true especially for the percentage of diagnostic errors, which goes down

by as much as 45 per cent.

For the actuator failure scenario, the Gaussian particle filter performs better than

the k-best filter with 50 samples or more, and had produced consistently better con-

tinuous state estimates. The latter metric suggests that this result is not an accidental

consequence of our choice of the diagnostic error metric: if the non-faulty mode es-

timates were indeed more likely, they should result in smaller continuous state error.

Nevertheless, more testing will need to be performed to confirm this result.

6.4 Discussion

In this demonstration, we focused on comparing the Gaussian particle filtering and

k-best filtering techniques for selecting mode sequences. Based on our results, the
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Figure 6-10: Mean square estimation error of the continuous state for the nominal
scenario, as a function of number of tracked mode sequences (left) and running time
per time step (right).
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Figure 6-11: Percentage of diagnostic errors for the ball capture scenario, as a function
of number of tracked mode sequences (left) and running time per time step (right).
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Figure 6-12: Mean square estimation error of the continuous state for the ball capture
scenario, as a function of number of tracked mode sequences (left) and running time
per time step (right).
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Figure 6-13: Percentage of diagnostic errors for the actuator failure scenario, as a
function of number of tracked mode sequences (left) and running time per time step
(right).
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Figure 6-14: Mean square estimation error of the continuous state for the actuator
failure scenario, as a function of number of tracked mode sequences (left) and running
time per time step (right).

Gaussian k-best filter tends to outperform the Gaussian particle filter in the cases

when the likelihood of the correct diagnosis is sufficiently high. There are two reasons

for this result. There are several reasons for this. One reason is that sampling

introduces variance in the estimate by replacing the mode sequence weights with

a set of discrete samples. By performing repeated sampling and resampling, the

algorithm discards some information in the sequence that would otherwise eventually

be noticable. Second reason is that k-best filtering focus the expansion of sequences

to the space with the highest likelihood, thus performing better when high-likelihood

events occur.

Nevertheless, there are instances when our Gaussian particle filter outperforms

the k-best filter. In the actuator failure scenario, our Gaussian particle filter was

able to detect the change much earlier than the Gaussian k-best filter. One possible

explanation for this phenomenon is that either the fault diagnosis has too low a

probability to be included in the leading set of sequences or does not accumulate large

enough probability to survive the addition of higher-probability nominal sequences.

The Gaussian particle filter, on the other hand, does not suffer from these effects,

because it samples the mode sequences fairly, and will, sooner or later, sample the

diagnosis, even if it has a low probability.
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In this Chapter, we focused on evaluating the Gaussian representation and com-

pared the performance of Gaussian particle filtering and k-best filtering in detecting

high-likelihood sequences. Both evaluated algorithms could be immediately improved

upon by using several techniques, including collapsing of the mode sequences [45], de-

composition [51, 33, 45], and abstraction [59]. These issues are, however, orthogonal

to the problem of selecting correct mode sequences, and our results should generalize

when applying these optimizations.
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Chapter 7

Summary and Future Work

7.1 Summary

In this thesis, we investigated the problem of estimating the state of system repre-

sented with probabilistic hybrid models. Our main accomplishment is an efficient

Gaussian particle filtering algorithm, developed in Chapters 4 and 5, that handles

autonomous mode transitions, concurrency, and nonlinearities present in Concurrent

Probabilistic Hybrid Automata (CPHA). Through the technique of Rao-Blackwellised

particle filtering, our algorithm significantly reduces the dimensionality of the sam-

pled space and improves the performance of particle filtering. The key insight to

addressing the autonomous transitions was reuse the continuous estimates associated

with the tracked mode sequences.

In Chapter 4, we presented significant contributions related to discrete state tran-

sitions that depend on the continuous state (autonomous mode transitions). We

extended the class of models, for which transition probabilities can be computed effi-

ciently and explored the approximations that occur in the posterior of the continuous

space when autonomous transitions are present. Due to the similarities in the theo-

retical development of both Gaussian particle filtering and k-best filtering, our results

translate directly to prior k-best filtering algorithms that use sharp transition guards

in the models [32, 33].

Our contributions are, however, not merely theoretical. In Chapter 6, we demon-
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strated our algorithm on a simulated highly nonlinear system, and empirically com-

pared its performance with k-best filtering method [32, 45]. Our results [23] indicate

that Gaussian particle filtering outperforms non-Rao-Blackwellised particle filtering

approaches. For the cases when the correct diagnosis is repeatedly left out from the

leading set of mode sequences, our Rao-Blackwellised particle filter outperforms k-

best filtering, although more experimentation may be needed to confirm this result.

For the nominal, high-likelihood sequences, k-best filtering is a clear winner. This de-

velopment suggests that it may be possible to unify the two approaches in a stochastic

search algorithm that shares the strengths of both methods.

7.2 Future work

We believe that hybrid estimation and fault diagnosis is an important field of research

in artificial intelligence. Our hope is that this thesis will help drive further research

in this area. The following research problems could be addressed using the results in

this thesis.

7.2.1 Modeling

Semantics of the continuous state evolution

While we have clarified the semantics of discrete transition distribution in CPHA

formalism slightly, the compatibility and determinedness properties of the continuous

state evolution in CPHA are still left open. For example, the modeling formalism

needs to provide theoretical provisions that disallow models with a set of conflicting

equations, such as y = θ1 and y = θ1 + 1. Similarly, provisions need to be made re-

garding the semantics of models, in which some variables do not have their evolution

completely specified. For example, it may be possible to gradually increase the vari-

ance of these variables [33] or follow a common engineering practice of setting their

variances to a sufficiently high value to represent the high level of uncertainty that

these variables have in the belief state. Alternatively, it may be possible to merge
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the notions of continuous state constraints in to the formalism and make no assump-

tions about the evolution of the variables when no model is provided, although the

semantics of and reasoning with such models may prove to be difficult.

Timed models

A very useful extension to probabilistic hybrid models would be to allow the mode

transitions to depend on time similar to [37]. Allowing timed transition constraints

would enable the use of model-based hybrid estimation capability in time-critical

procedures, such as the entry, descent, and landing (EDL) sequence for a Mars lander.

The simplest way to extend the hybrid models with timed transitions is to al-

low a specially designated time variable in the transition guards. This is a common

practice in the hybrid systems community, and would require minimal changes to the

estimation algorithm and the underlying modeling framework. Time can be repre-

sented as a continuous input variable, updated externally. Provided that a hybrid

estimation algorithm is run at a higher rate than the time difference between two con-

secutive timed transition, and provided that the transition constraints partition the

R
nx×R

nu×T ime space, the algorithm will consider the transition in its computation

of the belief state.

A more comprehensive time extension to hybrid models would involve allowing

the transition distribution to depend on the time continuously. This extension would

allow the modelers to specify models for which the transition probabilities change

continuously as a function of time. A good starting point for this work would be

the work in the context of Timed Concurrent Constraint Automata (TCCA) [37].

The algorithm would span theads of mode sequences at different distinct time points.

A collapsing strategy [45] could then be used to reduce the branching factor of the

sequences.
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7.2.2 State estimation

Errors due to autonomous transitions

As indicated in Chapter 4, a Gaussian can serve as a good approximation to the pos-

terior even in the presence autonomous transitions, provided that there is a sufficient

amount of noise in the model. It would be useful to derive a bound on this error, as

a part of a long-term effort to derive error bounds in hybrid estimates.

Improved proposal distribution through abstraction

The performance of a Gaussian particle filter could be greatly improved if it was

possible to reduce the number of Kalman Filter updates needed to incorporate the

latest observations into the proposal distribution. The techniques of abstraction [59],

qualitative abstraction [54] could be used to guide sampling based on qualitative simi-

larities or distinctions in the model. For particle filters, such a heuristic is particularly

easy to obtain, since it does not need to take a form of a strict upper- or lower-bound.

The heuristic can also be more optimistic in directing the mode sequence expansion.

7.2.3 Hybrid model learning

A key enabler for hybrid estimation and fault diagnosis methods in practice is a hy-

brid model learning capability. Since the primary application of probabilistic hybrid

models is to detect subtle symptoms from noisy data, hybrid models need to be suf-

ficiently accurate in order to be effective. Currently, the only way to obtain such

models is by derivation from first principles of physics or by extensive experimenta-

tion. While these approaches work well for small systems, for large systems, such

as the NASA JSC Advanced Life Support system [2], modeling costs could become

prohibitively large.

An efficient hybrid state estimation algorithm can be directly used within the

Expectation Maximization (EM) algorithm [16] to iteratively learn model parameters.

A preliminary application of this method was developed in [30]. The Expectation step

of the EM algorithm uses the current model to label the data with the most likely
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mode and, as such, can be directly implemented using the algorithm described in this

thesis. The labeled data can then be used in the Maximization step to improve its

estimates the model parameters. Techniques, such as overlapping decomposition [61],

could be used to reduce the dimensionality of the learned models and scale up the

algorithm.

7.3 Conclusion

We believe that hybrid models are growing field of research with enticing challenges

and numerous opportunity. Our hope is that this thesis shed some light on the green

field of reasoning with hybrid models, and seeded some ideas that might grow to

become beautiful, strong flowers in the future.
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