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Abstract

Performing real-time reasoning on models of physical systems is essential in many
situations, especially when human intervention is impossible. Since many deductive
reasoning tasks take memory or time that is exponential in the number of variables
that appear in the model, efforts need to be made to reduce the size of the models used
online. The model can be reduced without sacrificing reasoning ability by targeting
the model for a specific task, such as diagnosis or reconfiguration. A model may be
reduced through model compilation, an offline process where relations and variables
that have no bearing on the particular task are removed.

This thesis introduces a novel approach to model compilation, through the gener-
ation of projected prime implicates and projected prime implicants. Prime implicates
and prime implicants compactly represent the consequences of a logical theory. Pro-
jection eliminates model variables and their associated prime implicates or implicants
that do not contribute to the particular task. This elimination process reduces the
size and number of variables appearing in the model and therefore the complexity of
the real-time reasoning problem.

This thesis presents a minimal conflict generator that efficiently generates pro-
jected prime implicates and projected prime implicants. The projected minimal con-
flict generator uses a generate-and-test approach, in which the candidate generator
finds potential minimal conflicts that are then accepted or rejected by the candidate
tester.

The candidate generator uses systematic search in combination with an iterative
deepening algorithm, in order to reduce the space required by the algorithm to a
space that is linear in the number of variables rather than exponential. In order to
make the algorithm more time efficient, the candidate generator prunes the search
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space using previously found implicants, as well as minimal conflicts, which identify
the sub-spaces that contain no new minimal conflicts.

The candidate tester identifies implicants of the model by testing for validity. The
tester uses a clause-directed approach along with finite-domain variables to efficiently
test for validity. Combined, these techniques allow the tester to test for validity
without assigning a value to every variable.

The conflict generator was evaluated on randomly generated models; problems
in which models with 20 variables, 5 domain elements each, were projected onto 5
variables. All projected prime implicates were generated from models with 20 clauses
within 2 seconds, and from models with 80 clauses within 13 seconds.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor of Aeronautics and Astronautics
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Nomenclature

The following is an overview of the symbols that are used throughout this thesis.

A lower case letter, such as v, is used to represent a primitive element, in this case

a variable. A capital letter, such as V , represents a set of the elements v, in this case

a set of variables. A script letter, such as V, represents a set of sets.

The symbol ⇓p after a clause C or theory C indicates that the theory is projected.

A variable is projected over a subset of the variables, Vp, of the model. Thus, the

clause being denoted C ⇓p is only in terms of the variables of Vp. Lack of a projection

operator implies that the clause is in terms of all the variables V . The letters p and

u are used to represent the projected and unprojected variables, respectively. Thus,

C and C ⇓Vu∪Vp
are equivalent.

V : The set of all variables.

v : A single variable.

v ∈ V

Vp : The set of projected variables.

Vu : The set of unprojected variables.

X : The set of all possible values for all variables.

D(v) : The domain D(v) ⊆ X of the variable v.

D : V 7→ X

s : An assignment of a single value to a single variable.

s = {< v, x > |v ∈ V, x ∈ D(v)}

sp : An assignment of a value to a projected variable.

s = {< v, x > |v ∈ Vp, x ∈ D(v)}

su : An assignment of a value to an unprojected variable.

s = {< v, x > |v ∈ Vu, x ∈ D(v)}
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c : A literal. It has an assignment and a parity flag, that specifies whether the

assignment is either true or false.

c = {< a, parity > |parity ∈ {Positive, Negative}}

C : A disjunctive clause of literals.

C =
∨

c

C : The constraints of the plant model, represented as a conjunctive sentence of

disjunctive clauses.

C =
∧

C

A : A conjunction of literals.

A = {
∧
i∈{1,...,n} ci|∀cj, ck. ((cj.v = ck.v)⇔ (j = k))}

Where n ∈ N, so this clause can have 0 or more assignments.

A is a valid assignment if it contains at most one assignment per

variable, thus A is a tuple over the variables V .

A : A disjunction of conjunctive clauses A; i.e., a constraint.

A =
∨

A
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Chapter 1

Introduction

1.1 Problem Statement

Many problems can be formulated as a set of finite constraints that describe interac-

tions among a set of variables. For example, in model-based reasoning, variables are

used to describe components and variable constraints are used to describe the compo-

nent behaviors. Typically, these constraints are initially specified by a modeler. This

user-specified model often has extra variables and constraints, which were introduced

to make it easier for humans to write, to re-use, and to understand the model. For

example, for portability, each component is often written with an interface, such as

the current state of power to the device, which is often provided by some other com-

ponent, like a power supply. In this simple system, as shown in Figure 1-1, there are

already 4 variables: the state of the power supply, the state of the powered device, a

variable that describes the power being output by the power supply, and a variable

that describes the power being input to the powered device. Given this system, the

model can be compiled so as to eliminate both intermediate power variables. In the

compiled model, the powered device has power when the power supply is on.
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Power Supply
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Supply

State


Device
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Figure 1-1: (a) A simple model with a power supply, modeled with two variables, and
a powered device, also modeled with two variables. Each component is encapsulated
with a power in/power out interface variable. (b) shows the same simple model with
the interface variables compiled out. In the compiled form, the component distinctions
are removed.

Reasoning on constraints, which is equivalent to solving the Constraint Satis-

faction Problem (CSP), is intractable; in the worst case, CSPs take an exponential

amount of time to solve as a function of the number of variables. Thus, reasoning

on the user-specified constraints can take unnecessarily long amounts of time. One

effective way of speeding up the response time is to reduce the problem size by elim-

inating both the extra variables and the extra constraints that are not needed for a

specific task. This is referred to in the literature as knowledge compilation or model

compilation [12] [6].

One way to achieve this reduction is through prime implicate and implicant gener-

ation [1]. A set of prime implicates is a minimal set of clauses such that each clause is

implied by the theory. Prime implicates are useful for diagnosis, where all diagnoses

in the theory are also present in the prime implicates. A set of prime implicants is a

minimal set of clauses such that each clause implies the theory. Prime implicants are

useful for controllers, where only those control actions that have specific effects are

present in the prime implicants. Implicates and implicants are explained in greater

detail in Section 3.1. Using prime implicates and prime implicants can speed up

the reasoning process; however, generating these implicates and implicants is also an

NP-complete task. Fortunately, this task can be performed just once and can be

performed offline.
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Another way of reducing the model is to eliminate variables. Since the model

typically contains information suitable for a number of tasks, it also typically contains

a number of variables that are not useful for a particular task. Thus, by projecting the

model on to the set of variables useful for a particular task, the task can be performed

more efficiently. Projection generates a new theory tailored to a specific task.

This thesis combines these two methods of reducing the model. This thesis ad-

dresses three problems: (1) eliminating unnecessary variables from the model by

projecting the constraints onto the set of desired variables, (2) representing the pro-

jected model compactly through prime implicates and implicants, and (3) providing

a projected minimal conflict generator, where a minimal conflict is a negated prime

implicate, that provides an efficient means to simultaneously solve the first two prob-

lems.

1.2 Approach

As mentioned above, this thesis solves the two problems of (1) projected prime im-

plicate and (2) projected prime implicant generation. These two problems differ

primarily in the way that they treat ambiguous conditions. Ambiguities arise when

the value of some variable can take on an arbitrary set of values, either by design,

or because some of the variables that would clear up the ambiguity can neither be

measured nor estimated. If a variable v is ambiguous, then a theory based on the

projected prime implicates will optimistically assume that any assignment to v is

correct as long as that assignment is possible. A theory based on the projected prime

implicants will pessimistically assume that all assignments to v are inconsistent as

long as a different value could have been chosen.

The first problem arises in model-based diagnosis, as it allows for the possibil-

ity that information is partial, and hence a hypothesis is a valid diagnosis if it is
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Figure 1-2: A light with a switch.

merely consistent with what is observed, rather than explaining all observations. (1)

uses consistency to ensure that the resulting compiled model does not rule out these

possible diagnoses.

The second problem arises in model-based control. Unlike diagnosis, where the

diagnoses are partial, in model-based control one would like to make sure that the

system is guaranteed to be only controlled into particular states. (2) will ensure that

the compiled model contains only consistent configurations that entail the goals.

Consider an example of how these two problems are used to address ambiguity.

One common type of ambiguity arises when one attempts to model the behavior of a

broken component. Typically the behavior of a broken component is unrestricted. For

instance, assume that there is a broken light switch in the system shown in Figure

1-2. When estimating the state of the switch, one should allow for the possibility

that the light attached to the switch is either on or off. Either is possible, depending

on how the switch failed. However, when performing control, one requires that the

system be in a certain state. The control side should therefore assume that the light

will be off when the switch being broken. If the light needs to be on, the controller

should repair the switch, rather than assuming that the light may be on and taking

no action.

The projection eliminates variables that do not contribute to the relation of in-

terest, such as the relation between observations and state. Since reasoning with the

model is exponential in the number of its variables, reducing the number of variables

can lead to dramatic performance improvements.
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In this thesis, the problems of generating projected prime implicates and projected

prime implicants are reformulated as the problem of generating projected minimal con-

flicts. A conflict is a negated implicate; hence, a conflict of a theory is an assignment

that is inconsistent with that theory. A minimal conflict is a conflict that is inconsis-

tent with the theory, but no subset of the conflict is inconsistent with the theory. This

is equivalent to the negation of a prime implicate. A projected minimal conflict is a

minimal conflict that is restricted to a subset of the variables, namely the projected

variables. The generator is implemented as a generate-and-test algorithm that uses

iterative deepening search to be space-efficient. The generation algorithm employs

pruning using implicants, as well as minimal conflicts, which have been identified thus

far by the tester.

Conceptually, pruning eliminates sub-trees of candidates that cannot contain solu-

tions, namely minimal conflicts. While minimal conflicts are necessarily determined,

the candidate tester must be able to test for validity in order for the tester to identify

implicants.

The algorithm tests each candidate assignment to determine if it is a minimal con-

flict using a SAT-based algorithm that is able to distinguish between valid, consistent,

and inconsistent candidates. Valid candidates are implicants, while inconsistent can-

didates are conflicts. The tester is able to test for validity efficiently through the use

of two concepts. First, the tester is clause-directed, meaning that it assigns values to

variables only to satisfy clauses. Second, the tester operates on finite-domain vari-

ables directly, rather than representing each finite-domain variable as a set of binary

variables. Combined, these two techniques enable the tester to conclude validity,

namely when all the clauses have been satisfied, without having to assign values to

every variable.
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1.3 Thesis Outline

Chapter 2 introduces a model that is common throughout this thesis and the related

work upon which this thesis builds. It presents current developments in knowledge

compilation and their relation to projected prime implicate generation. A projected

prime implicate generator and a projected prime implicant generator is presented in

Chapter 3. These algorithms builds upon a projected minimal conflict generator.

The projected minimal conflict generator is presented in Chapter 4. It uses a

generate-and-test algorithm. The generator for the generate-and-test algorithm is

a memory-efficient iterative deepening algorithm that prunes candidates based on

implicates and implicants found so far. The tester uses a SAT engine, augmented to

extract information used by the generator to prune the search.

Chapter 5 summarizes the content of this thesis. It also presents a number of

potential research areas that may improve upon what this thesis has presented.
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Chapter 2

Background and Related Work

This chapter sets the context for the model compilation algorithms developed in this

thesis. Section 2.1 introduces a simple pedagogical example, used to demonstrate

the concepts introduced by this thesis. Section 2.2 sets this thesis in the context of

previous research on model compilation.

2.1 Modeling Physical Systems using

Logical Theories

This thesis is primarily motivated by the CSP problems that arise in model-based

autonomy. Model-based autonomy [17] is an architecture for robust control of au-

tonomous robots and other embedded systems, by reasoning on the fly from models

of that system. Model-based autonomy uses a constraint-based model to describe

the behavior of the system, and then uses a general-purpose constraint optimization

engine to operate on this model.

The following section introduces an example that will be used throughout this

thesis. This example generates a set of projected prime implicates. Intuitively, the

21



prime implicates are clauses that relate the state variables to the observations.

2.1.1 Example: Propulsion Model

The model has four types of variables: (1) state variables, which describe the per-

sistent state of the system, (2) command variables, which describe the input to the

system, (3) observable variables, which describe the measurable outputs of the sys-

tem, and (4) dependent variables, which describe transient information that cannot

be observed or commanded directly. For example, consider the variables associated

with a single valve. (1) The current position of a valve is a state variable, (2) the

input to the valve actuator is a command variable, (3) the flow rate through the valve

is an observable variable (with a suitable sensor), and (4) if the pressure out of the

valve cannot be measured directly, it is a dependent variable. The value of a depen-

dent variable is deduced based on the values of the state, observable, and command

variables. For the propulsion model in this section, if the observable variable P2 is

high and the state variable V2 is Open, then the dependent variable PV 2 is High. For

this chapter, the projected variables Vp will be all the state and observable variables.

The simple propulsion model presented in this section is shown in Figure 2-1.

The propulsion model has a fuel tank, three valves, and a thruster. The thruster

produces thrust whenever fuel can flow from the fuel tank to the thruster. This

corresponds to turning on either valve V 2 or V 3, together with the first valve V 1. A

model is defined by a set of variables, domains, and clauses. The clauses are broken

into two types: state constraints, which describe consistent state configurations, and

transitions, which describe how one gets from a previous state to a next state. For

example, (F1 = Filled) ⇒ (P1 = High) is a state constraint, which says that

the pressure P1 must be high if the fuel tank F1 is full. (R1 = On) ∧ (CR1 =

TurnOff)⇒ (R1′ = Off) is a transition constraint, which says that the next state
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of the thruster R1′ is off if the command in CR1 is to turn off and the previous state

R1 was on. Both of these types of clauses are merged into a single theory CΦ by

conjoining all of them.

Variables and Domains

This section defines the variables V and domains D(V ) of the model. These variables

are grouped by their type: state, command, observable, or dependent.

State : Exp

F1 ∈ {Filled, Empty}

V 1 ∈ {Open, Closed}

V 2 ∈ {Open, Closed}

V 3 ∈ {Open, Closed}

R1 ∈ {On, Off}

Command :

CV 1 ∈ {None, Open, Close}

CV 2 ∈ {None, Open, Close}

CV 3 ∈ {None, Open, Close}

CR1 ∈ {None, TurnOn, TurnOff}

Observable :

P1 ∈ {High, Low}

P3 ∈ {High, Low}

T1 ∈ {Thrust, NoThrust}

Dependent :

P2 ∈ {High, Low}
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Figure 2-1: A simple propulsion model. The model has five components: a fuel tank
F1, three valves V 1, V 2, and V 3, and a thruster R1. The variables P1, P2, and
P3 describe the pressure at their respective points in the system. The variable T1
describes the thrust produced by the thruster. PV 2 and PV 3 are the pressures out
of each valve, V 2 and V 3, respectively, and are used to determine the pressure at
P3. The variables CV 1, CV 2, CV 3, and CR1 correspond to the commands into the
components V 1, V 2, V 3, and R1, respectively.
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PV 2 ∈ {High, Low}

PV 3 ∈ {High, Low}

For the purpose of this chapter, the projected variables Vp are {F1, V 1, V 2, V 3,

R1, P1, P3, T1}. Other projected variables can be used depending on the compilation

task, though these other cases will not be addressed.

State Constraints

Here we define the constraints for each component, relating the component variables

at each point in time. These are expressed as the following clauses:

The fuel tank F1 outputs pressure only when Filled.

1. (F1 = Filled)⇒ (P1 = High)

2. (F1 = Empty)⇒ (P1 = Low)

The valves V 1, V 2 and V 3 output their input when Open and output Low when

they are closed.

Valve 1:

3. (V 1 = Open) ∧ (P1 = High)⇒ (P2 = High)

4. (V 1 = Open) ∧ (P1 = Low)⇒ (P2 = Low)

5. (V 1 = Closed)⇒ (P2 = Low)

Valve 2:

6. (V 2 = Open) ∧ (P2 = High)⇒ (PV 2 = High)

7. (V 2 = Open) ∧ (P2 = Low)⇒ (PV 2 = Low)

8. (V 2 = Closed)⇒ (PV 2 = Low)

Valve 3:

9. (V 3 = Open) ∧ (P2 = High)⇒ (PV 3 = High)

10. (V 3 = Open) ∧ (P2 = Low)⇒ (PV 3 = Low)

11. (V 3 = Closed)⇒ (PV 3 = Low)

The next constraints state that the pressure P3 at the junction is High whenever

at least one valve is outputting High. Otherwise, if both are Low, it is also Low.
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12. (PV 2 = Low) ∧ (PV 3 = Low)⇒ (P3 = Low)

13. (PV 2 = High)⇒ (P3 = High)

14. (PV 3 = High)⇒ (P3 = High)

The thruster R1 only outputs thrust when it is On and it’s input is High. Other-

wise, it does not produce thrust.

15. (R1 = On) ∧ (P3 = High)⇒ (T1 = Thrust)

16. (R1 = On) ∧ (P3 = Low)⇒ (T1 = NoThrust)

17. (R1 = Off)⇒ (T1 = NoThrust)

Combined, the above constraints constitute the state constraints of the theory CΦ.

Transition Constraints

This section defines the transitions T of the model. A transition describes the evo-

lution of a singe state variable, such as F1, from an initial value, such as Filled,

to a final value, such as Empty. It has a guard that specifies the condition under

which the transition is enabled. The guard for the transition (R1 : On → Off) is

(CR1 = TurnOff). A transition is equivalent to the clause (R1 = On) ∧ (CR1 =

TurnOff)⇒ (R1′ = Off), where (R1′ = On) is the next state of the variable1.

F1 : Filled→ Empty | Guard(T1 = Thrust)

1Note that each transition also has a probability associated with it, reflecting the chance that the
transition is taken when the transition is enabled. For this model, all transitions have a probability
of 1.0 except for the transition (F1 : Filled → Empty), whose probability is 0.01. Compilation
preserves these probabilities, but does not use them.

The probability of 0.01 indicates that there is a one percent chance per second that the tank will
be empty whenever the thruster is producing thrust. Thus, the fuel tank is expected to be empty
after about 100 seconds of use, on average.
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Each of the three valves closes when it is commanded to close and opens when it is

commanded to open.

Vi : Open→ Closed | Guard(CVi = Close)

Closed→ Open | Guard(CVi = Open)

The thruster turns on when it is commanded to turn on, and turns off when com-

manded to turn off.

R1 : On→ Off | Guard(CR1 = TurnOff)

Off → On | Guard(CR1 = TurnOn)
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2.2 Previous Research on Model Compilation

Model compilation is the process of compiling a model from its user-specified repre-

sentation to a form more suitable for an engine to handle efficiently. Model compila-

tion allows for a compact representation of the model, that facilitates responsiveness.

In model-based autonomy [16], model compilation improves the reactiveness of the

system.

Extraneous constraints and variables in the model can significantly slow down the

constraint solver. The constraints and variables are often extraneous either because

they describe behaviours that are impossible to distinguish, due to a lack of observ-

ability or controllability, or because they include relations that are not necessary for

the particular application, such as estimation or control.

Model compilation involves eliminating both extraneous constraints and variables,

as well as generating constraints that represent specialized subsets of the model.

These specialized constraints are suited for particular reasoning steps. For example,

when estimating the state of the system, one will often wish to determine if the es-

timated state is consistent. This can be determined by examining which states are

allowed, given the observations. If one were to compile a relation that only describes

the interaction between observations and states, one can eliminate all the variables

related to control and abstract away the variables that describe the interaction be-

tween states. Both of these types of variables and their associated constraints do not

contribute to the consistency of the estimate with the observations. These specialized

constraints reduce the amount of deduction required to infer particular conclusions

about the system. Consider the propulsion model from Section 2.1.1. The model has

5 state variables and 3 observable variables; the other 6 variables can be eliminated.

Projecting out these 6 variables reduces the model’s 17 state constraints down to 10

state constraints.
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Johan de Kleer [6], Rina Dechter [10], and Alvaro del Val [8] present approaches

to knowledge compilation through the generation of prime implicates or resolution.

Prime implicates simplify the constraints into a reduced form; resolution eliminates

variables.

De Kleer presents incremental prime implicant generation based on tries. In this

scheme, the algorithm generates all possible resolvents, while incrementally pruning

all clauses that are not prime. The key contribution of his work is an indexing scheme,

called a trie, for efficiently performing the pruning step.

Dechter presents an algorithmic framework called bucket elimination that is a

generalization of dynamic programming. She applies bucket elimination to finding

optimal candidates based on a weighting function, using directional resolution, which

is the fundamental core of DPLL [5] [4]. The directional resolution algorithm is able

to decide if a theory is satisfiable by performing resolution on the theory, where bucket

elimination is used to speed up the resolution process. Both bucket elimination and

a directional resolution algorithm that uses bucket elimination are key contributions

provided by Dechter.

Alvaro del Val focuses on consequence-finding using kernel resolution on a com-

pact, symbolic encoding of clauses, called zero-suppressed binary decision diagrams

(ZBDD). This approach uses a language L to specify which sets of prime implicates

are desired and then uses bucket elimination in its kernel resolution to generate all

the prime implicates that are a member of that language. The approach performs

resolution on multiple clauses simultaneously by performing resolution on symbolic

ZBDD encodings of sets of clauses. This reduces the space required to encode the

clauses, and improves performance, by reducing the number of resolution steps that

need to be performed. This approach also uses buckets to specify the order in which

variables are processed, where the order in which variables are processed can effect

the amount of time it takes to solve the problem. The key contribution of del Val is
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a ZBDD-based implementation that performs significantly better than the trie-based

prime implicate generator.

The approach pursued in this thesis is to generate prime implicates, but to take

also into account the elimination of variables. This will be called projected prime

implicates. This thesis builds off of the work done by Robert Ragno [14]. Ragno

developed an algorithm that generates all full assignments to the projected variables

using a clause-directed A* search algorithm. The algorithm was also testing for

validity and so was able to prune implicants. Since the algorithm is built upon an

A* search, the algorithm prunes implicants by throwing away a search node. The

algorithm lacks two essential features for the purpose of model compilation: first, in

model compilation, the cost of each assignment is uniform, so the A* search turns into

a breadth-first search which requires an exponential amount of memory, and second,

the algorithm is designed to generate full assignments to the projected variables, and

thus implicates, but not prime implicates. To get prime implicates, and additional

step of unifying the implicates into prime implicates needs to be performed.

While none of these algorithms provide a solution to the problem by themselves,

there are two straight-forward methods to generate projected prime implicates, by

performing projected and implicate generation as two separate steps:

The first method generates all the prime implicates first and then throwing away

all the prime implicates that mention unprojected variables. The algorithms provided

by de Kleer and del Val are suitable for this method. Independent of the number of

variables being eliminated, this scheme has the same cost as generating all the prime

implicates. If a number of variables are being eliminated, then many prime implicates

will be generated and then thrown away. As stated above, the cost of generating all

of the prime implicates is exponential in the number of variables, so this method is

impractical for systems of realistic size. More specifically, let p be the number of

projected variables and u be the number of unprojected variables. Then the cost is
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CpCu, hence the cost is exponentially more expensive.

The second method of generating projected prime implicates involves projecting

the model by using resolution to eliminate each projected variable, one at a time, and

then generating the prime implicates of the projected model. This method is suitable

for using either Dechter’s work or Ragno’s work, though it also requires a prime

implicate generator. Since resolution is exponential in the number of clauses, and

prime implicate generation is exponential in the number of variables, the projected

variables in this case, this approach still requires using two different exponential

algorithms.

This thesis presents an algorithm that performs the projection and prime implicate

generation in a single step. When many variables are eliminated, this algorithm

enumerates over a much smaller space of values and can thus solve the problem

quickly, unlike the two-step methods. This compilation algorithm has been developed

in the context of a model-based autonomy engine called Titan [16] . It can enabled

autonomy in a real-time environment [2] [18].
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Chapter 3

Model Compilation as Projected

Prime Implicate Generation

This chapter presents algorithms to solve two distinct knowledge compilation prob-

lems: (1) projected prime implicate generation and (2) projected prime implicant

generation. A projected solution is one where only a subset of the variables are used

in the solution. Projection is precisely defined in Section 3.1. Both of these problems

arise when compiling constraint-based models, where each problem represents a dif-

ferent way of treating model uncertainty. (1) produces a compiled model, where all

consistent assignments of the original model are consistent with the compiled model.

This is suitable for tasks like consistency-based diagnosis. For example, if a faulty

light switch is capable of turning on a light, then the light being on is consistent

with the model when the switch is faulty, and hence a valid diagnosis. (2) produces a

compiled model where all consistent assignments of the compiled model are consistent

with the original, uncompiled theory. This is suitable for planning problems, which

involve selecting actions that must have a guaranteed effect. With the faulty switch

example above, it is possible for the light to be on or off when the switch is broken.
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Thus, to turn the light on, the planner will need to repair the switch; otherwise, when

the switch is faulty, the light is not guaranteed to be on.

Note that model compilation involves generating a set of theories, each of which is

suitable for specific tasks, such as diagnosis and planning. In each of these cases, the

original theory almost always contains three classes of variables: variables that convey

state, variables that describe an interaction with the world, both observations and

commands, and variables that convey interactions between different state variables,

called dependent variables in this thesis. Dependent variables are uniquely deter-

mined by the current state, observations, and issued commands. Often, real-world

models have many more dependent variables than state variables. Thus, a projected

theory that projects dependent variables out of the theory can have significantly fewer

variables as compared to the original theory. Since the reasoning tasks performed on

the theory are exponential in the number of variables, this compilation can provide

a dramatic savings. This savings has been realized for both types of compilation

methods in our application context of model-based autonomy [16].

An import feature of the algorithms presented in this thesis is that they do not

require first projecting the theory, and they do not require generating all prime im-

plicates or implicants prior to projection. Performed as two steps, two exponential

operations are required. Instead, projection and prime implicate or implicant gener-

ation are performed within a single step. By performing the task in a single step, the

generation process can save significant amounts of time over algorithms that perform

the task in two steps.

This chapter begins by defining two supporting concepts, prime implicates and

implicants, in Section 3.1 and 3.2, respectively. The algorithm for generating pro-

jected prime implicates is presented next in 3.3, and is followed by the algorithm for

generating projected prime implicants in 3.4. The solutions to these two problems

presented in this chapter are based on a projected prime implicate generator, which
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will be detailed in Chapter 4.

3.1 Projected Prime Implicates

Given a theory, an implicate of the theory is a logical consequence of the theory

that is represented as a disjunctive clause. Viewing a clause as a set of literals, a

prime implicate is an implicate such that no proper subset of it is an implicate. The

complete set of prime implicates offers a more compact encoding of the theory that

is logically equivalent to the complete set of implicates.

More precisely, a theory CΦ is represented as a set of disjunctive propositional

clauses, which is logically equivalent to a Conjunctive Normal Form (CNF) sentence.

In particular, each clause is a disjunction of literals: (c1 ∨ c2 ∨ . . .), where a positive

literal c1 is some proposition a and a negative literal c2 is the negation of some propo-

sition, that is ¬a. We develop our compilation methods in the context of propositional

state logic. In propositional state logic, a proposition a is an assignment (v = x) of a

value x from the domain of the variable v to a variable v. The domain of a variables

is written as D(v).

Definition: Given a theory CΦ, CI is an implicate of CΦ iff CI is a clause and

CΦ |= CI .

An implicate is true for every assignment in which the original theory is true. For

example, consider the theory

{(Switch = Off)⇒ (Power = Low),

(Switch = On)⇒ (Power = High),

(Power = Low)⇒ (Light = Dark),

(Power = High)⇒ (Light = Lit)}. (3.1)
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It is important to note that the algorithms presented in this thesis operate on

variables and their domains, not on raw binary-domain literals. For a constraint

solver that only operates on binary literals, the mutual exclusion and exhaustion

constraints that describe a variable’s domain also need to be included in the theory.

The mutual exclusion constraints require that every variable have at most 1 value

assigned to it. The exhaustion constraints require that every variable have at least 1

value assigned to it. Thus, combined, these constraints require that variables have a

single consistent assignment. The algorithms in this thesis operate on the domains

of the variables directly, so these domain constraints are enforced by the algorithm

instead of by the theory. This substantially reduces the size of the theory.

An implicate of Theory 3.1 is

¬(Switch = On) ∨ ¬(Light = Dark). (3.2)

The sentence 3.2 is an implicate because it logically follows from the second and

fourth clauses of Theory 3.1. The implicate states that the switch must either be off

or the room must be lit. The second clause of the theory states that either the switch

is off or power is present. The fourth clause states that either there is no power or

the light is lit. The implicate follows from the fact that, if there is no power present,

then from clause two, the switch is off; however, if power is present, then by clause

four the light is lit.

Definition: A clause CP is a prime implicate of theory CΦ iff CP is an implicate of

the theory, and there exists no other implicate CI of the theory such that CI entails

CP :

(CΦ |= CP ) ∧ ∀CI . ((CΦ |= CI) ∧ (CI |= CP )⇒ (CI = CP )).

36



This set of prime implicates is also written as {CP |CΦ |= CP}prime.

In the above example, Sentence 3.2 is a prime implicate. Sentence 3.2 is prime

because neither of its subsets, ¬(Switch = On) and ¬(Light = Dark), are implicates.

For ¬(Switch = On) to be an implicate, it must always be true that the switch is off.

However, the Theory 3.1 can consistently have the switch on, namely when the power

is high and the light is lit. For ¬(Light = Dark) to be an implicate, it must always

be true that the light is lit. Once again, the theory in Equation 3.1 can consistently

have the light dark, namely when the power is low and the switch is off. Thus,

neither of these subsets are implicates. Conversely, ¬(Switch = On) ∨ ¬(Power =

Low) ∨ ¬(Light = Dark) is an implicate of the theory; however, it is not a prime

implicate because it is an implicate of Equation 3.2.

The implicates of a theory make explicit all of the logical consequences of the

theory, but often contain a significant level of redundancy. Prime implicates remove

much of this redundancy yet are sufficient to encode all logical consequences of a

theory. However, the set of prime implicates can still be quite large. This set can

be further reduced based on the observation that for a particular task, only a small

subset of the prime implicates are relevant. Concepts like theory implicates [15] and

task-driven abstraction [13] have been defined in order to specify different concepts

of task relevance.

In the model compilation tasks addressed by this thesis we are only interested

in implicates that relate a small subset VS of the system variables V . Implicates

relating other, intermediate variables, are superfluous to the task. In particular,

given independent knowledge (generally observations) about consistent assignments

to some of the variables VO ⊆ VS, the task is to use CΦ to determine the consistent or

necessary assignments to one or more of the other variables in VS, that is, variables

in VS \ VO. In this case, only those implicates involving only assignments to VS are
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relevant. That is, the consistent or necessary assignments with respect to CΦ are

exactly the same as those with respect to CΦ ⇓VS
.

Theorem 1 Let VS be a subset of all the variables V . Let a subset VO of VS be

the set of all variables for which independent knowledge (generally observations) is

available. Let CΦ be a theory over V . Let the theory Cψ be comprised of the implicates

of CΦ involving only assignments to the variables VS. Then an assignment CA to the

variables VS is consistent with Cψ iff it is consistent with CΦ.

To prove this we need this additional lemma:

Lemma 1 If a clause L is inconsistent with a theory CΦ, then ¬L must be an impli-

cate of CΦ. (In this case, the clause L is called a conflict.)

Proof:

Let CF be the set of full assignments to the variables V that are consistent with

CΦ. Since L is inconsistent with CΦ, L must be inconsistent with all the elements of

CF , as each one constrains every variable, and each one is consistent with CΦ. Thus,

if they are all inconsistent with L, they must all be consistent with ¬L. This implies

that every assignment that is consistent with CΦ is consistent with ¬L, which means

¬L is an implicate of CΦ.

Now we are ready to prove Theorem 1.

Proof:

(⇒) Assume, for contradiction, that CA is consistent in the projected model Cψ, while

it is inconsistent in the original model CΦ. By Lemma 1, since CA is inconsistent with

CΦ, ¬CA must be an implicate of CΦ. CA, by definition, only contains assignments

to variables in VS, so ¬CA must also only contain assignments to variables in VS.

Thus, ¬CA cannot be eliminated from CΦ, so it must exist in Cψ. This implies that
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CA is inconsistent with Cψ. But this also contradicts our assumption. Thus, if CA is

consistent with Cψ, it must also be consistent with CΦ.

(⇐) Since the projection process is removing implicates from the original theory CΦ,

the new theory Cψ is a subset of CΦ. Thus, any CA that is consistent with CΦ must

still be consistent with Cψ.

For example, for diagnosis, one needs to know only the direct relationship between

the variables representing the system observables and the variables representing the

system state. Hence, only prime implicates involving these variables are relevant,

and any prime implicate that refers to one or more other variables is irrelevant in

this context. There are two types of these other variables, variables that command

the system into new states, and dependent variables that are determined solely by

the other three types of variables. The dependent variables are neither observed

nor needed for diagnosing the state. For instance, with the theory in Equation 3.1,

“power” is a dependent variable. One can diagnose that there is a problem with the

switch if the switch is on and the light is observed dark, without needing to know

that the power must also be low. Similarly, with the command variables, one does

not need to know how the state is going to evolve, in order to determine whether

the current state estimate is consistent or inconsistent with the observations. For

example, if a light switch is supposed to be on and the light is off, it is unimportant

to know that the light switch is supposed to turn off soon. According to the model,

the transition has not yet happened, so the light should still be on and is not.

To describe the prime implicates relevant to a subset of the variables, we introduce

the term projected prime implicate. We call the interesting subset of the variables the

projected variables. We use Vp to denote the projected subset of variables V and

CΦ ⇓Vp
to denote the projection of theory CΦ onto Vp.

Definition: Let CΦ be a theory over variables V . The clause CP is a Projected

Prime Implicate of CΦ onto Vp ⊆ V iff CP is a prime implicate of CΦ, and if for all
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assignments (xi = vi), in CP , vi ∈ Vp.

A variable vi of V is said to be projected out relative to CP iff vi ∈ (V \ Vp).

For example, projecting out the variable “power” in the switch example given

by the Theory 3.1 results in two projected prime implicates. The first was given in

Equation 3.2. The second is the clause ¬(Switch = Off)∨¬(Light = Lit). Note that

Theory 3.1 has four other prime implicates, all of which involve the eliminated variable

power, and hence are unnecessary. An example is the prime implicate ¬(Switch =

On) ∨ ¬(Power = Low).

3.2 Projected Prime Implicant

Given a theory, an implicant of the theory is a conjunctive clause that implies the

theory. A prime implicant of a theory is an implicant of the theory that has a minimal

number of literals. The complete set of prime implicants is logically equivalent to the

complete set of implicants and hence represents a more compact encoding of the

theory.

More precisely, a theory of prime implicants CN is represented as a set of conjunc-

tive propositional clauses, which is logically equivalent to a Disjunctive Normal Form

(DNF) sentence. Each clause is a conjunction of literals: (c1 ∧ c2 ∧ . . .∧ cn). As with

implicates, c1-cn are positive or negative literals. The set represents a disjunction,

that is at least one of the clauses must hold. Prime Implicants and Prime Implicates

are dual representations of the same theory. Without projection, they are equiva-

lent, and the particular theory determines which one is more compact. Implicants

are more compact in the case where the theory has few solutions, and implicates are

more compact in the case where the theory has many solutions. The choice is also

affected by which encoding is more explicit for the task at hand.
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Definition: Given a theory CΦ, CN is an implicant of CΦ iff CN is a conjunctive

clause and CN |= CΦ.

Note that whenever an implicant is true, the original theory is also true. For

example, if the theory is

((Switch = Off)⇒ (Power = Low)) ∧

((Switch = On)⇒ (Power = High)) ∧

((Power = Low)⇒ (Light = Dark)) ∧

((Power = High)⇒ (Light = Lit)) ∧

((Heater = On)⇒ (Temp = Warm)) (3.3)

then an implicant of the theory is

(Switch = Off) ∧ (Power = Low) ∧ (Light = Dark) ∧ (Heater = Off) (3.4)

Definition: The clause CR is a prime implicant of the theory CΦ iff CR is an implicant

of the theory and there exists no other implicant CN of the theory such that CR is an

implicant of CN :

(CR |= CΦ) ∧ ∀CN . ((CN |= CΦ) ∧ (CR |= CN)⇒ (CR = CN))

This set of prime implicants is also written as {CR|CR |= CΦ}prime.

In the above example, Equation 3.4 is a prime implicant. Equation 3.4 is prime

because neither of its subsets, (Switch = Off), (Switch = Off) ∧ (Light = Dark),

etc. are implicants. For (Switch = Off) to be an implicant, it must be true that

when the switch is off, all other variables can take on any value, as they are uncon-

strained. However, the theory implies that the light must be dark and the power low
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when the switch is off. ((Switch = Off) ∧ (Power = Low) ∧ (Light = Dark) ∧

(Heater = Off) ∧ (Temp = Cold)), for example, is an implicant that is not a prime

implicant. This implicant is an implicant of both the theory and Equation 3.4.

All extensions of an implicant are consistent with the theory; hence, there are

often many of them, and they often contain a significant amount of redundancy.

Prime implicants remove much of this redundancy; however, they still encode all

possible assignments that are consistent with the theory.

As with implicates, one desires a relevant sub-set that is suitable for performing

a specific task. For example, suppose a reasoning system is given a set of goals and

asked to find one or more states in which all consistent states include the goals. The

states are such that they all imply that the system has reached its goal with certainty.

To perform this task, the reasoning system needs a relation between goals and the

set of states. One possible representation for this relation is a set of implicants of a

theory that is projected onto the state variables and a goal variable of interest. If

the implicants of the theory are also implicants of the goal, then when the system is

in the specified state, it is both consistent for the system to be in that state, and it

ensures that the goal is reached. Thus, by this design, only the variables describing

the state of the system and the single goal of interest are relevant in the final theory,

for a particular goal, which is a small subset of the total set of variables. For example,

with the Theory 3.3, if the goal is that one wants the light to be lit, then one would

like to generate the clause (Switch = On)∧ (Light = Lit). This clause indicates that

the only way to ensure that the light is lit is to ensure that the switch is on. However,

this clause is not an implicant of the Theory 3.3. An implicant would also require the

power to be high and the heater to be off. However, (Switch = On) ∧ (Light = Lit)

is an implicant of Theory 3.3, projected onto the variables switch and light. By

projecting the model first, the goals only require that a consistent assignment exists

to the variables projected out. This is in contrast to the original problem formulation,
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which requires that any assignment to the variables projected out be consistent. Thus,

projected implicants are implicants of the projected prime implicates, rather than of

the original theory. If one does not project the theory first, then following the same

steps will generate implicants that are projected prime implicants of the original

theory. As a result, traditional projected prime implicants are a simple variation of

the algorithm in this thesis. Section 3.4 presents an algorithm that can generate the

kinds of implicants we want, such as (Switch = On) ∧ (Light = Lit).

Definition: Let CΦ be a theory over variables V , then the clause CP is a Projected

Prime Implicant of CΦ onto Vp ⊆ V iff CP is a prime implicant of CΦ and if for all

assignments (xi = vi) in CP , vi ∈ Vp.

If one were to project out the variable temp from Theory 3.3, for example, then

Equation 3.4 is one of the implicants that remains. All of the implicants that involve

temp would be removed.

For example, model compilation for planning involves reasoning about a relation-

ship between a subset VS of the variables V that guarantee (entail) a set of goals. In

particular, given a goal configuration as a set of assignments CG to a subset VG of the

variables in VS, the planning task is to determine the consistent or necessary assign-

ments to one or more of the other variables in VS, such that the desired configuration

CG is entailed by the assignments. This entailment must hold for any assignments to

the remaining variables in VS. In addition, there must exist a consistent set of assign-

ments to the remaining variables in V \ VS. That is, all extensions to the assignment

over the variables VS must be consistent. When all the extensions to a clause of

assignments CA is consistent with the theory CΦ, then CA is called valid with respect

to CΦ. Note that implicates only requires that the candidate be consistent with the

theory, meaning it has at least one extension that is also consistent, rather than that

they all be consistent.

43



Theorem 2 Let VS be a subset of all the variables V . Let CΦ be a theory, and let

the theory Cψ be comprised of the implicants of CΦ involving only assignments to the

variables VS. Then an assignment CA to the variables VS is valid with Cψ iff it is

valid with CΦ.

To prove this we need this additional lemma:

Lemma 2 If a clause CA is valid with the theory CΦ, then CA must be an implicant

of CΦ.

Proof:

Let CF be the set of full-assignment extensions to CA over the variables V that

are consistent with CΦ. Since CA is valid with the theory CΦ, CF must be the set

of all full-assignment extensions to CA, and each of these is consistent with CΦ. For

CA to be an implicant of CΦ, CA must entail CΦ. This is equivalent to requiring that

all extensions of CF entail CΦ. Since they are all full extensions, this simplifies into

requiring that all extensions of CF be consistent with CΦ. But we already know this

is true, so CA must be an implicant of CΦ.

Now we are ready to prove Theorem 2.

Proof:

(⇒) Assume, for contradiction, that CA is valid with the projected model Cψ, while

it is not valid with the original model CΦ. By Lemma 2, since CA is valid with the

projected model Cψ, CA must be an implicant of Cψ, and therefore be an element of

Cψ. Since Cψ is a subset of CΦ, CA must also be an element of CΦ. Since CA is an

element of CΦ, it must be valid with CΦ, contradicting the assumption.

(⇐) Assume, for contradiction, that CA is not valid with the projected model Cψ,

while it is valid with the original model CΦ. Since CA is valid with CΦ, it must be an

implicant in CΦ. CA only contains the variables VS, so it must be the case that it was
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not removed from CΦ. But then CA must be an implicant of Cψ, so it must be valid

with Cψ.

Projecting the Theory 3.3 over just the switch and light variables, thus allowing

the heat, power, and temp variables to take on any consistent value, creates a theory

with only two prime implicants: (Switch = On) ∧ (Light = Lit) and (Switch =

Off)∧ (Light = Dark). These describe all the consistent combinations of these two

variables. Thus, the switch being on implies that the light is lit, as desired.

Consider again the difference between prime implicates and prime implicants. For

example, consider the Theory 3.3. The set of prime implicates of this theory are

¬(Switch = Off) ∨ ¬(Power = High),

¬(Switch = On) ∨ ¬(Power = Low),

¬(Power = Low) ∨ ¬(Light = Lit),

¬(Power = High) ∨ ¬(Light = Dark),

¬(Switch = Off) ∨ ¬(Light = Lit),

¬(Switch = On) ∨ ¬(Light = Dark), and

¬(Heater = On) ∨ ¬(Temp = Cool).

The set of prime implicants of the theory are

(Switch = Off) ∧ (Power = Low) ∧ (Light = Dark) ∧ (Heater = Off),

(Switch = On) ∧ (Power = High) ∧ (Light = Lit) ∧ (Heater = Off),

(Switch = Off) ∧ (Power = Low) ∧ (Light = Dark)

∧(Heater = On) ∧ (Temp = Warm), and

(Switch = On) ∧ (Power = High) ∧ (Light = Lit)

∧(Heater = On) ∧ (Temp = Warm). (3.5)
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Consider the case where the variable temp is eliminated. The projected theory has

the two prime implicants, the first two: (Switch = Off)∧(Power = Low)∧(Light =

Dark) and (Switch = On)∧ (Power = Low)∧ (Light = Dark). The variable heater

has also been eliminated as its value no longer matters when the variable temp is

ignored.

3.3 Projected Prime Implicate Generation

In Chapter 4, a conflict-directed enumeration algorithm for generating all projected

prime implicates is developed. This algorithm, called primeImplicates, takes four

inputs: the theory CΦ, the set of projected variables Vp, a set of implicants AP and a

set of conflicts AF . The algorithm returns a set of projected prime implicates CP onto

the projected variables Vp. Here the elements of CP are projected prime implicates, as

defined in Section 3.1. AP and AF extend the basic projected implicate equation from

{CP |CΦ ⇓Vp
|= CP}prime to the equation {CP |(CΦ∨AP ) ⇓Vp

|= CP ,¬(¬AF |= CP )}prime.

The addition of implicants AP into the first part of the equation adds the implicants

AP , and all extensions to them, to the set of consistent solutions of the projected

prime implicates CP . The second part of the equation states that the projected prime

implicates CP must not contain all of the same solutions described by the implicates

¬AF . Thus, the implicants AP add solutions to CP , while the conflicts AF constrain

the solutions to lay outside of region defined by the conflicts.
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3.4 Projected Prime Implicant Generation As

Projected Prime Implicate Generation

This section describes how to generate all projected prime implicants CR that satisfy

the theory CΦ and the additional constraints Cρ:

CR |= (Cρ ∧ CΦ) ⇓Vp
(3.6)

The additional constraints Cρ is used to specify a simple, easily inverted set of con-

straints.

Proposition 1 The implicate generation problem CI |= CΦ is equivalent to the impli-

cant generation problem ¬CΦ |= ¬CI . Both are reduced to the same problem, namely

∀CI .CΦ ∧ ¬CI is inconsistent.

Thus Equation 3.6 is equivalent to

(¬Cρ ∨ ¬CΦ) ⇓Vp
|= ¬CR (3.7)

The theory in this case is Cρ∧CΦ, which allows for the specification of a common theory

and some additional constraints Cρ, as needed. Note that this approach assumes that

CΦ is a large theory that one does not wish to invert, namely the ¬CΦ in Equation

3.7, while Cρ is a small theory that is easily inverted. The cost of inverting a theory

is worst case exponential in the number of variables of the theory, both in terms of

time and space. The exponent results from applying the distribution law. This cost

makes inversion intractable for large models.

A specific goal relation is typically represented as Cρ. For example, in the con-

text of a simple switch, (Power = On) is a goal relation Cρ whose inverse ¬Cρ is

¬(Power = On). The model for the simple switch is represented in CΦ.
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Without Cρ, one could generate projected prime implicants for CΦ by projecting

CΦ and then generating the implicants. However, since ¬Cρ may not be expressed in

terms of just the projected variables Vp, it is necessary to solve the problem in the

context of the theory CΦ, which contains the relationship between the variables of Vp

and the variables used in Cρ. We derive the new problem formulation by conjoining

to Equation 3.7 the term CΦ ∨ ¬CΦ:

((CΦ ∨ ¬CΦ) ∧ (¬Cρ ∨ ¬CΦ)) ⇓Vp
|= ¬CR. (3.8)

Applying distribution, this expands to:

((CΦ ∧ ¬Cρ) ∨ (CΦ ∧ ¬CΦ) ∨ (¬CΦ ∧ ¬Cρ) ∨ (¬CΦ ∧ ¬CΦ)) ⇓Vp
|= ¬CR. (3.9)

The second term (CΦ ∧ ¬CΦ) simplifies to false and is eliminated. The fourth

term (¬CΦ ∧¬CΦ) simplifies to ¬CΦ. The first term (¬CΦ ∧¬Cρ) is then subsumed by

the fourth term, ¬CΦ, and is eliminated, resulting in:

((CΦ ∧ ¬Cρ) ∨ (¬CΦ)) ⇓Vp
|= ¬CR. (3.10)

Notice that Equation 3.10 is in the form (C ′
Φ
∨ AP ) ⇓Vp

|= CP . Thus, if we let

C ′
Φ

= (CΦ ∧ ¬Cρ) and AP = (¬CΦ), the projected prime implicate generator that

will be presented in Chapter 4 is capable of solving this problem. Notice also that

this problem can also be solved by instead letting C ′
Φ

= ((CΦ ∧ ¬Cρ) ∨ (¬CΦ)) and

AP = {}; however, C ′
Φ

must be in conjunctive normal form. We make the assumption

that converting C ′
Φ

back into conjunctive normal form in this latter case is more

expensive than treating ¬CΦ as a set of implicants AP in the generation process, as

per the former option. This former approached is represented by Equation 3.11.

The above derivation results in the following problem formulation
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((CΦ ∧ ¬Cρ) ⇓Vp
|= ¬CR) with Implicants ¬CΦ (3.11)

or, equivalently,

((CΦ ∧ ¬Cρ) ∨ ¬CΦ) ⇓Vp
|= ¬CR. (3.12)

As was suggested in Section 3.2, for planning problems, the theory should be

projected prior to implicant generation. Projecting the theory first results in a two-

step solution:

CΦ ⇓Vp
|= Cψ (3.13)

((CΦ ∧ ¬Cρ) ⇓Vp
|= ¬CR) with Implicants ¬Cψ (3.14)

This is equivalent to:

CΦ ⇓Vp
|= Cψ (3.15)

((CΦ ∧ ¬Cρ) ⇓Vp
∨¬Cψ) |= ¬CR. (3.16)

The two steps exactly correspond to the two lines of the following generatePrimeIm-

plicants algorithm.
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3.4.1 Algorithm

generatePrimeImplicants(Vp, CΦ, ¬Cρ)

Cψ ← primeImplicates(Vp, CΦ, {}, {})

CR ← ¬primeImplicates(Vp, (CΦ ∧ ¬Cρ), Cψ, {})

return CR ⇓Vp

3.5 Summary

This chapter has shown how to solve the projected prime implicate and prime im-

plicant generation problems using a projected prime implicate generator. From a

general-purpose model, both of these algorithms generate a smaller task-specific

model. Both generators project the theory onto a subset of its variables; eliminating

extraneous variables, such as dependent variables that relate states to each other.

Projected prime implicates provide a compiled theory that can test consistency in

place of the original model; projected prime implicants provide a compiled theory

that can test validity in place of the original model. Generating projected prime im-

plicants can be reduced to generating projected prime implicates. The next chapter

will provide the details on how to generate projected prime implicates, as well as on

how to incorporate conflict and implicant pruning.
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Chapter 4

Prime Implicate Generation

This chapter describes a fast prime implicate generation algorithm that performs

the model compilation tasks of Chapter 3. The prime implicate generation algorithm

exploits both conflicts and implicants to perform pruning of the search space, allowing

for up to two orders of magnitude improvements over an algorithm that does not use

these methods.

This chapter presents a novel algorithm for pruning based on implicants. In order

to make this algorithm efficient, this chapter also presents an efficient means for

testing for validity, which allows the tester to identify implicants. Validity testing

is fast through the combined use of a clause-directed search strategy and the use

finite-domain variables within the algorithm.

Recall that the prime implicate generator finds all of the projected prime im-

plicates CI , from the set of all projected partial clauses C ⇓Vp
, of a theory CΦ over

projected variables Vp:

CI = {CI|CI ∈ C ⇓Vp
, CΦ |= CI}prime.

Since p |= q iff p∧¬q is inconsistent, this problem is equivalent to finding all minimal
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clauses CI such that CΦ ∧ ¬(CI ⇓Vp
) is inconsistent:

CI = {CI |CI ∈ C ⇓Vp
, CΦ ∧ ¬CI is inconsistent}prime.

Using this equation, the prime implicate generator is implemented as a proposi-

tional unsatisfiability algorithm, which is comprised of a candidate generator and a

candidate tester.

The candidate generator generates the negation of prime implicate candidates

¬CC ⇓Vp
, that is, each candidate ¬CC is a conjunctive clause over Vp. Hence, the

generator generates minimal conflicts ¬CI , not prime implicates CI . The prime im-

plicates are recovered by negating the discovered conflicts. For simplicity, we call

the candidate conflicts AC in place of ¬CC , where AC denotes a set of inconsistent

assignments.

The candidate tester checks each candidate partial assignment AC to see if it

is a conflict. It accomplishes this by checking to see if CΦ ∧ AC is unsatisfiable.

If it is unsatisfiable, then CC ≡ ¬AC is a prime implicate CI . The input to the

prime implicate generator is the projected variables Vp, the theory CΦ, an initial set

of implicants AP , and an initial set of conflicts AF . The generator returns a set

of projected minimal conflicts AI ⇓Vp
, the negated set of all the projected prime

implicates of CΦ.

Determining unsatisfiability can be a computationally expensive operation; the

problem is co-NP complete and the search space associated with the problem is worst-

case exponential in |V |, the number of variables in CΦ. In particular, the candidate

generator may generate an exponential number of candidate assignments to the vari-

ables in Vp, and to prove inconsistency, the tester may need to search an exponential

number of assignments to the remaining variables, Vu = V \ Vp.
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The key to the algorithms detailed in this chapter is that they are able to reduce

the number of tests and the size of the search space employed during generation.

This is accomplished through the use of two sets of information that are determined

in the testing process: candidates that are implicants of CΦ and candidates that are

minimal conflicts of CΦ. These two sets are used to prune the candidate space by

bounding the set of viable candidates. Implicants provide a lower bound on what can

be an implicate. Conflicts provide an upper bound above which candidates will be

implicates, but will not be minimal. The candidate generation algorithm is designed

to generate candidates within the two bounds, without creating candidates outside

these bounds. Figure 4-1 shows these different bounds.

For tests on randomly generated problems, this approach has been shown to reduce

the number of candidates generated, in comparison to the complete candidate space,

by up to two orders of magnitude.

The first section of this chapter introduces a compilation example, used to demon-

strate the prime implicate generation process. Section 4.1 introduces the top-level

algorithm that coordinates the generator and tester. Section 4.2 introduces the can-

didate generator, while Section 4.3 introduces the candidate tester. Finally, Section

4.4 performs an empirical evaluation of the overall projected prime implicate gener-

ator on randomly generated problems.

4.1 Prime Implicate Generator

This section presents the high level flow of data between the candidate generator and

candidate tester, thus providing the top-level algorithm of the prime implicate gener-

ator. The candidate generator generates candidate minimal conflicts AC ⇓Vp
, which

are partial assignments to the projected variables. Each candidate is evaluated by

the candidate tester for consistency with CΦ. The tester returns whether CΦ∧AC ⇓Vp
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Figure 4-1: Implicant and conflicts of the model CΦ are used to filter candidates
AC ⇓Vp

. This lattice represents all possible partial assignments. All extensions to
a valid partial assignment are also valid. All extensions to an unsatisfiable partial
assignment are also unsatisfiable. Thus, sub-lattices are formed of each of these types.
The root of a valid sub-lattice is a prime implicant. The root of an unsatisfiable
sub-lattice is a minimal conflict. The remaining nodes above the sub-tree roots are
all satisfiable, they have a path to both a conflict and an implicant. This lattice
represents the relationship between the thruster, its pressure input, and it thrust
output.
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Figure 4-2: The architecture of the prime implicate generator. The candidate gener-
ator generates candidate prime implicates and the candidate tester determines if the
candidate is a solution as well as identifying implicants and conflicts.

is valid, unsatisfiable, or satisfiable. In addition, when satisfiable is returned, it also

returns a projected implicant of the model CΦ, which it found when testing satisfiabil-

ity. Valid indicates that a consistent assignment exists to the non-projected variables

Vu for all projected variable extensions to the candidate. Unsatisfiable indicates that

the candidate has no consistent extension. If a candidate is neither valid nor un-

satisfiable, the tester returns satisfiable; it has already found an extension that is

classified as unsatisfiable and an extension that is classified as valid. The projected

implicant returned in this case is the projection of the valid-classified extension. The

architecture of the prime implicate generator is shown in Figure 4-2.

As mentioned before, the generator can generate an exponential number of candi-

dates to test. In an effort to reduce the number of candidates generated, the generator

employs three pruning rules.

1) Conflict Pruning:

The first rule prunes all candidates that are extensions of known minimal conflicts.

These candidates must not be minimal, so they can be ignored.

2) Implicant Pruning:

The second rule prunes all candidates that are extensions of known implicants. Since
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an implicant is consistent for all extensions, and a conflict is inconsistent for all exten-

sions, there cannot exist a minimal conflict that is an extension of a known implicant.

3) Skip Satisfiable Candidates:

The final rule prunes all candidates that can be extended to a superset of a known

implicant. These extensions must be satisfiable, so their corresponding candidates

can not be conflicts.

For the first two pruning rules, no extensions to pruned candidates need to be ex-

amined, since all extensions to conflicts are conflicts, and all extensions to implicants

are implicants. Thus, they too can all be pruned. In the case of the third pruning rule,

some extension to the pruned candidate may be a minimal conflict, so the extensions

to the candidate still need to be examined. Hence, the first two pruning rules allow

for the elimination of complete sub-trees of candidates. The third rule only allows the

generator to ignore a particular candidate, saving the time of testing the candidate.

These three rules are detailed in figure 4-1.

For example, assume (V 1 = Open)∧ (F1 = Full) is a known implicant of CΦ and

(F1 = Empty) is a known minimal conflict of CΦ. The first pruning rule eliminates

all extension of (F1 = Empty), such as (F1 = Empty) ∧ (V 1 = Open). Every

extension to a minimal conflict must also be a conflict, and must not be minimal.

The second pruning rule eliminates all extensions of (V 1 = Open) ∧ (F1 = Full),

such as (V 1 = Open)∧ (F1 = Full)∧ (V 2 = Open). Every extension to an implicant

must also be an implicant. The third rule prunes all candidates that can be extended

to include the implicants. For example, (V 1 = Open), (F1 = Full), and (V 2 =

Open)∧ (V 1 = Open) can all be pruned as they can all be extended to be extensions

of the known implicant (V 1 = Open) ∧ (F1 = Full). These must all be implicants,

so they cannot be conflicts.

In the satisfiable case, the tester must find a projected implicant. The tester, in

order to determine that the candidate is neither valid nor unsatisfiable, must find
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both a valid partial assignment and an unsatisfiable partial assignment. The valid

assignment is an implicant; the unsatisfiable assignment is a conflict. The tester

returns the projected implicant to the generator.

The algorithm linking the generator and tester is responsible for passing informa-

tion between the two components and collecting the solutions. This algorithm simply

gets a candidate from the generator and then tests the candidate in the tester. If the

candidate is valid, it is inserted as an implicant into the generator. If the candidate

is satisfiable, the implicant found is inserted into the generator. If the candidate is

unsatisfiable, the candidate generator is informed of the minimal conflict and the min-

imal conflict is added to the set of solutions. This process repeats until either there

are no more candidates or a sufficient number of minimal conflicts (prime implicates)

have been found, as specified by the user.
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4.1.1 Example

This example demonstrates the passing of information between the generator and the

tester on a sample run. The run uses the model in Section 2.1.1, which describes

a simple propulsion model with three valves, a fuel tank, and a thruster. In this

example, the projected variables Vp are the state and observation variables {F1, V 1,

V 2, V 3, R1, P1, P3, T1}. All of these variables have two-element domains.

The generator generates the empty assignment {}, which is equivalent to true, as

the first candidate conflict. The tester determines that the first candidate is satisfi-

able, and returns the implicant 4.1:

(F1 = Empty) ∧ (P1 = Low) ∧ (V 1 = Closed) ∧ (V 2 = Closed) ∧

(V 3 = Closed) ∧ (P3 = Low) ∧ (R1 = Off) ∧ (T1 = NoThrust) (4.1)

This implicant is fed back to the generator.

The generator constructs the candidate {(F1 = Empty)} and prunes it by the

third rule, because it can be extended to be a superset of the implicant 4.1. The gen-

erator then constructs the candidate {(F1 = Filled)}, and returns this as the second

candidate. This candidate is also satisfiable, and the tester returns the implicant 4.2:

(F1 = Filled) ∧ (P1 = High) ∧ (V 1 = Closed) ∧ (V 2 = Closed) ∧

(V 3 = Closed) ∧ (P3 = Low) ∧ (R1 = Off) ∧ (T1 = NoThrust) (4.2)

This implicant is also added to the generator.

The next generated candidate is {(V 1 =Open)}, followed by the candidates

{(V 2 = Open)},{(V 3 = Open)}, {(P3 = High)}, {(R1 = On)}, and {(T1 =
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Table 4.1: A list of the candidates and their corresponding implicants from the tester.

{(V 1 = Open)}: (F1 = Empty) ∧ (P1 = Low) ∧ (V 1 = Open)∧
(V 2 = Closed) ∧ (V 3 = Closed) ∧ (P3 = Low)∧
(R1 = Off) ∧ (T1 = NoThrust)

{(V 2 = Open)}: (F1 = Empty) ∧ (P1 = Low) ∧ (V 1 = Closed)∧
(V 2 = Open) ∧ (V 3 = Closed) ∧ (P3 = Low)∧
(R1 = Off) ∧ (T1 = NoThrust)

{(V 3 = Open)}: (F1 = Empty) ∧ (P1 = Low) ∧ (V 1 = Closed)∧
(V 2 = Closed) ∧ (V 3 = Open) ∧ (P3 = Low)∧
(R1 = Off) ∧ (T1 = NoThrust)

{(P3 = High)}: (F1 = Filled) ∧ (P1 = High) ∧ (V 1 = Open)∧
(V 2 = Open) ∧ (V 3 = Closed) ∧ (P3 = High)∧
(R1 = Off) ∧ (T1 = NoThrust)

{(R1 = On)}: (F1 = Empty) ∧ (P1 = Low) ∧ (V 1 = Closed)∧
(V 2 = Closed) ∧ (V 3 = Closed) ∧ (P3 = Low)∧
(R1 = On) ∧ (T1 = NoThrust)

{(T1 = Thrust)}: (F1 = Filled) ∧ (P1 = High) ∧ (V 1 = Open)∧
(V 2 = Open) ∧ (V 3 = Closed) ∧ (P3 = High)∧
(R1 = On) ∧ (T1 = Thrust)

Thrust)}. All of these are satisfiable and generate implicants. These implicants

are shown in Table 4.1.

The generator then generates the candidate {(F1 = Empty) ∧ (P1 = High)},

which is unsatisfiable. Since it is unsatisfiable, it is a minimal conflict, and is added

to Csolutions. It is also added to the generator’s list for pruning non-minimal conflicts.

This process continues until all potential candidates have been pruned, generating

a total of 9 additional minimal conflicts, which are summarized in Table 4.2. These

are the projected prime implicates of the state and observable variables. The prime

implicants show again in a more readily understood form in Table 4.3. Notice that

our model previously had 17 state constraints and now only has 10 state constraints.

In addition, 3 variables were eliminated. As is shown in Figure 4-3, for the first

two search groups, only 8 candidates are tested, 5 of which are minimal conflicts.
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Table 4.2: The projected prime implicates generated for the propulsion system ex-
ample.

1. ¬(F1 = Filled) ∨ ¬(P1 = Low)
2. ¬(F1 = Empty) ∨ ¬(P1 = High)
3. ¬(P1 = Low) ∨ ¬(P3 = High)
4. ¬(V 1 = Closed) ∨ ¬(P3 = High)
5. ¬(V 2 = Closed) ∨ ¬(V 3 = Closed) ∨ ¬(P3 = High)
6. ¬(P1 = High) ∨ ¬(V 1 = Open) ∨ ¬(V 2 = Open) ∨ ¬(P3 = Low)
7. ¬(P1 = High) ∨ ¬(V 1 = Open) ∨ ¬(V 3 = Open) ∨ ¬(P3 = Low)
8. ¬(P3 = Low) ∨ ¬(T1 = Thrust)
9. ¬(R1 = Off) ∨ ¬(T1 = Thrust)
10. ¬(P3 = High) ∨ ¬(R1 = On) ∨ ¬(T1 = NoThrust)

Internally, the generator generates an additional 23 candidates, but uses Rule 3 to

prune these candidates, hence avoiding 23 calls to the tester. The generator uses Rule

1 to avoid generating 2 additional candidates and to prune one additional candidate

that it generated.
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Table 4.3: The projected prime implicates generated for the propulsion system exam-
ple rewritten to be human readable. Notice that our model previously had 17 state
constraints and now only has 10 state constraints. 3 variables were also eliminated.

1. (F1 = Filled)⇒ (P1 = High)
2. (F1 = Empty)⇒ (P1 = Low)
3. (P1 = Low)⇒ (P3 = Low)
4. (V 1 = Closed)⇒ (P3 = Low)
5. (V 2 = Closed) ∧ (V 3 = Closed)⇒ (P3 = Low)
6. (P1 = High) ∧ (V 1 = Open) ∧ (V 2 = Open)⇒ (P3 = High)
7. (P1 = High) ∧ (V 1 = Open) ∧ (V 3 = Open)⇒ (P3 = High)
8. (P3 = Low)⇒ (T1 = NoThrust)
9. (R1 = Off)⇒ (T1 = NoThrust)
10. (P3 = High) ∧ (R1 = On)⇒ (T1 = Thrust)

4.1.2 Algorithm

This section presents the algorithm just described for projected prime implicate gen-

eration. Lines 1 and 11 request new candidates from the generator. Line 2 checks

to be sure that a new candidate was available. Line 3 tests the candidate, both

classifying the candidate in fstatus as well as return an implicant in Aimplicant when

fstatus = Satisfiable. Lines 4 and 5 handle the case when the candidate is valid.

In this case, the candidate is an implicant, so the generator is given the new impli-

cant. Lines 6, 7, and 8 handle the case when the candidate is unsatisfiable. In this

case, the candidate is a minimal conflict, so it is added to the solutions and added

to the generator. Lines 9 and 10 handle the case when the candidate is neither valid

nor unsatisfiable. In this case, a implicant Aimplicant is returned, and is given to the

generator. Line 12 returns the solutions generated.
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primeImplicates(Vs, CΦ, AP , AF)

0a. ∀AP ∈ AP · generator.addImplicant(AP )

0b. ∀AF ∈ AF · generator.addConflict(AF )

1. AC ← generator.getNextCandidate(Vs)

2. While AC 6= AllDone Do

3. {fstatus, Aimplicant} ← tester.testCandidate(AC )

4. If fstatus = V alid Then

5. generator.addImplicant(AC)

6. Else If fstatus = Unsatisfiable Then

7. generator.addConflict(AC)

8. Csolutions ← Csolutions ∪ {¬AC}

9. Else If fstatus = Satisfiable Then

10. generator.addImplicant(Aimplicant)

11. AC ← generator.getNextCandidate()

12. Return Csolutions
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4.2 Candidate Generator

This section explains the functionality of the candidate generator. The candidate

generation function is called getNextCandidate. It takes as input a set of variables

over which it should generate candidates and remembers, between function calls,

the candidate that it previously generated. Each call to the function returns the

candidate that successively follows the previously returned candidate, starting with

the candidate {}, which represents a candidate that evaluates to true.

The candidate generator implements two novel concepts: an iterative deepening

search algorithm and a set of prune rules that prune based on conflicts and implicants.

The generator generates candidate minimal conflicts over the space of all partial

assignments to the variables it takes as its input. The algorithm is systematic, hence

each candidate is generated at most once. The candidates are generated in increasing

length, meaning number of literals, to ensure that the first conflict found is a minimal

conflict of the theory CΦ. If (F1 = Filled) ∧ (P1 = Low) is a minimal conflict,

then (F1 = Filled) ∧ (P1 = Low) ∧ (V 1 = Open) must also be a conflict, but is

not minimal, thus the latter need never be generated. The algorithm used for the

generation of candidates as well as the search tree associated with the generation

process is elaborated in Section 4.2.1. As mentioned in Section 4.1, there are three

pruning rules used in the candidate generator. The minimal conflicts found are used

to prune candidates that are non-minimal conflicts (Rule 1); implicants are used to

prune all candidates that must be implicants, and therefore can not be conflicts (Rule

2); and implicants are used to prune all candidates that must be satisfiable with the

theory CΦ and therefore can not be conflicts (Rule 3). These three pruning rules will

be further developed in Section 4.2.2. The algorithm is presented in Section 4.2.3.

For the example in this section, there are three different variable sets: 1) {F1, P1},

2) {P1, V 1, V 2, V 3, P3}, and 3) {P3, R1, T1}. These come from a cut-set based
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decomposition of the model, not presented in this thesis. The purpose of the de-

composition is to reduce the exponent of the space being searched over. From each

set, a set of minimal conflicts and implicants is generated. These minimal conflicts

and implicants carry over between the candidate generation processes for each set.

Thus, candidates are generated locally from each set, and pruning is applied globally

across all sets. Locally, the candidates returned to the tester can be selected from

among any one set of variables. {(F1 = Full)∧(P1 = High)} is a candidate, as is

{(P3 = Low)}; however, {(F1 = Full)∧(P3 = Low)} is not a candidate since it

does not come from a single set of variables. Note that {(P3 = Low)} is a candidate

from two different sets; it is only generated once because any duplicate candidate is

discarded by one of the pruning rules.

4.2.1 Search Tree and Iterative Deepening Search

The search tree is organized in such a way that all nodes at a particular depth d

correspond to all partial candidates of length d. A sample tree is shown in Figure

4-3. The tree is constructed by first defining an ordering on the variables and their

assignments. The algorithm assigns variables and values according to this ordering.

For example, in Figure 4-3, the variable F1 is ordered before the variable P1; the

value Filled of the variable F1 is ordered before the value Empty. Thus, the as-

signment (F1 = Filled) is ordered before the assignment (F1 = Empty), which in

turn is ordered before (P1 = High). The important property of the tree is that all

the children of a variable contain variables that have an ordering greater than that

variable. This ordering ensures that the partial candidates are never duplicated. For

example, for the initial branch of R1 and the value On in the figure, the only variable

after R1 is P3, so this is the only variable that can be selected. P3 in turn has two

values high and low. Thus, (R1 = On)∧ (P3 = High) is a valid candidate, while the
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Figure 4-3: The search tree associated with a complete candidate generator run for
the example in Section 4.2. The nodes with the initial sets represent the current
group being examined. A path from the root to a node collectively represents the
current group and candidate. For example, the top-most black node Low has the path
({F1, P1}, F1, F illed, P1, Low). This corresponds to a current group of {F1, P1} and
a current candidate of {(F1 = Filled), (P1 = Low)}. Light grey nodes were pruned
by Rule 3. Dark grey nodes were pruned by Rule 1 and Rule 2. The white nodes
were tested and were satisfiable. The black nodes were tested and were unsatisfiable.
As the figure illustrates, only the root and three other nodes were tested and were
not solutions. The other five nodes tested were all solutions. A total of 26 nodes were
pruned, of which 23 were generated.
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permutation (P3 = High) ∧ (R1 = On) is not valid, as R1 comes before P3.

The candidate generation algorithm selects candidates from this tree using an iter-

ative deepening algorithm[11] to generate candidates with increasing length. Iterative

deepening is a search method that uses a depth-first search algorithm[3], but limits

the depth of the search at each round r to a maximum depth of r. Using iterative

deepening, the candidate generation algorithm will generate all candidates of length

r in round r before generating any candidate of depth r+1 in round r+1. If only the

leaves of length r are considered as candidates in round r, the algorithm simulates

a breadth-first search[3], returning all candidates of length r before allowing for any

candidates of length greater than r. However, iterative deepening has a much smaller

memory bound than breadth-first search, namely the same as depth-first search. A

breadth-first search uses O(bd) space and time, where b is the average domain size,

and d is the number of search variables. Iterative deepening increases the runtime by

a constant factor, so it is still O(bd); however, it only uses O(d) space. The constant

factor is almost always less than 1.5 and can be much closer to one, as the average

domain size per variable grows above two. Thus, iterative deepening does not sig-

nificantly increase the run-time of the generator, while the dramatic savings in space

can allow the generator to run on substantially larger problems. In other words, the

limit becomes the amount of time one wishes to spend, rather than the amount of

memory available.

For the candidate generation algorithm, a node represents an assignment, and a

search path corresponds to a list of assignments. Thus, searching deeper involves

adding an assignment to the list, and going up a level in the search tree corresponds

to removing an assignment. The iterative deepening portion of getNextCandidate is

on lines 3 to 12, 14 to 17, and 20 to 21 (Section 4.2.3).

Intuitively, the iterative deepening portion of the algorithm is trying to walk

vertically down the search tree shown in Figure 4-3, and when it reaches the bottom,
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it starts again at the top at one level deeper. Lines 3 to 12 handle the case when

walking down the tree at the current depth just involves switching the last assignment

to the next one in the ordering. For example, the candidate {(T1 = Thrust), (R1 =

On)} is followed by {(T1 = Thrust), (R1 = Off)}, which is in turn followed by

the candidate {(T1 = Thrust), (P3 = High)}. In the search tree, to get from

{(T1 = Thrust), (P3 = Low)} to {(T1 = None), (R1 = On)}, one needs to first

walk down one node at the previous level and then can select a variable and value

at the current depth. In this case, at the previous level, the node {(T1 = Thrust)}

is followed by {(T1 = None)}. Line 4 walks down the values assigned to the same

variable at the same depth. For example, the candidate {(R1 = On)} will be followed

by the candidate {(R1 = Off)}. Line 6 selects the next variable according to the

ordering. For example, the candidate {(T1 = None)} is followed by {(R1 = On)}.

If line 8 is reached, the algorithm must first walk down the tree at one level lower to

select the next candidate. Thus, it removes the last assignment in the list and walks

down the sub-tree formed by the shorter list. If line 10 is reached, then the algorithm

has walked down the entire tree at the current depth, so there are no more candidates

of length d. Thus, it increments the length of the candidates it is searching for to

d +1. In either case, reaching line 8 or 10, the algorithm recursively attempts to find

a successor candidate.

Once the algorithm has found the successor partial candidate, potentially through

the removal of any number of assignments from the list, lines 13 through 17 verify that

the partial candidate has enough assignments corresponding to the desired depth; if

not, the same steps as line 8 through 11 are performed. For example, if the candidate

is {(R1 = Off), (P3 = Low)} and the depth is 2, then line 8 removes (P3 = Low),

because it has no successor value or variable. Upon recursing, {(R1 = Off)} is

followed by {(P3 = High)}. Line 13 compares the number of variables required, in

this case 1, and the number of variables remaining, in this case 0. It concludes that
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{(P3 = High)} does not have enough variables remaining in its sub-tree to generate

a candidate of length 2. Line 14 deletes the last assignment in the partial candidate,

so line 16 increases the depth to 3.

If the candidate makes it past lines 13 through 17, then the candidate once again

needs to be extended to the desired depth. This last step is performed by lines 20 to

23. For example, when finding the candidate after {(T1 = Thrust), (P3 = Low)},

lines 3 through 12 stripped off (P3 = Low) and then found that {(T1 = None)}

was the successor of {(T1 = Thrust)}. {(T1 = None)} is then passed to lines 20

to 23, which, with the goal of walking down the tree, needs to assign the first value

of the first available variable, (R1 = On). Thus, the successor candidate of {(T1 =

Thrust), (P3 = Low)} has successfully been found, {(T1 = None), (R1 = On)}.

For the correctness of this algorithm, it is essential to store the previously gen-

erated candidate. This previous candidate is stored in the variable AC . This is a

convenience, as the previous candidate is transformed into the current candidate, so

when the new candidate is returned, AC once again contains the current candidate.

For the next function call, this will be the previous candidate. The pseudo-code given

in Section 4.2.3 assumes that the first candidate {} is returned by some mechanism

prior to calling the function getNextCandidate, thus AC will always have a defined

value, initially {}. This value can trivially be returned by initially having the depth

be 0 and simultaneously increasing the depth by 1 and returning {}.

Putting the whole example together, consider the variable set {T1, R1, P3} from

Figure 4-3. Assume that the candidate AC is of length 2 and is given as {(T1 =

Thrust), (R1 = On)} and that the desired candidate length is also 2. The candidate

is succeeded by {(T1 = Thrust), (R1 = Off)}, as Off is the next value of R1.

This new candidate is succeeded by {(T1 = Thrust), (P3 = High)}, as R1 no longer

had any values, and the variable P3 is after R1. This is then succeeded by {(T1 =

Thrust), (P3 = Low)}. Since (P3 = Low) does not have a successor value or variable,
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it is removed, leaving {(T1 = Thrust)}. This is then succeeded by {(T1 = None)}.

Lines 20 to 23 then add (R1 = On), making the next candidate {(T1 = None), (R1 =

On)}. This will progress until the candidate {(R1 = Off), (P3 = Low)} is reached.

(P3 = Low) will be removed, as before, and {(R1 = Off)} is succeeded by {(P3 =

High)}. However, there are no longer any remaining variables, so the desired depth

will be increased to 3 and (P3 = High) will be removed from the candidate, leaving

the candidate empty. This corresponds to walking vertically down the {T1, R1, P3}

sub-tree shown in Figure 4-3, starting in the second column of values. Since the

candidate is empty, the algorithm will fill in all the values, thus the next candidate

is {(T1 = Thrust), (R1 = On), (P3 = High)}, which corresponds to restarting the

walking function at the top of the third column in Figure 4-3.

Without pruning, everything behaves as described. The purpose of pruning is to

avoid generating candidates that need not be generated and avoid testing candidates

which are definitely not conflicts. Section 4.2.2 describes how the rules for pruning

are incorporated into this algorithm, so as to prevent the generation of sub-trees that

do not contain any minimal conflicts, and to eliminate all candidates that cannot be

conflicts.

4.2.2 Pruning Rules

As mentioned in Section 4.1, there are three types of pruning rules performed by the

candidate generator. These rules use the conflicts and implicants found thus far in the

search for minimal conflicts. For the problem shown in Figure 4-3, these three types

of pruning reduce the number of tested candidates down from 35 to 9. They also

reduce the number of nodes generated from 35 to 32. While the latter improvement

seems less significant, note that the implicants and conflicts in the example are rather

long – the shortest has a length of two, while there are only three variables in the
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largest grouping shown. Hence, fewer sub-trees can be pruned. This pruning rule is

quite effective in the empirical data, when run on random problems. The empirical

data can be found in Section 4.4. This rule can reduce the overall time to find the

solution by a factor of five. The novel contribution of this section is a set of pruning

rules that utilize implicants. For minimal conflict generation, implicants serve the

purpose of specifying sets of assignments that can never be conflicts.

The first rule, conflict pruning, eliminates all sub-trees starting at a conflict. This

rule is motivated by the fact that every superset of a conflict must be a non-minimal

conflict. Thus, the first rule can prune sub-trees of candidates representing conflicts

as each extension to the candidate cannot be a minimal conflict. For example, assume

that (T1 = Thrust)∧(R1 = Off) is a minimal conflict, then (T1 = Thrust)∧(R1 =

Off) ∧ (P3 = High) cannot be a minimal conflict, the assignment (P3 = High) is

extraneous.

The second rule, implicant pruning, eliminates all sub-trees starting at an impli-

cant. As with conflict pruning, once a candidate is a superset of an implicant, every

extension is also going to be an implicant. Since any candidate that is an implicant

can not be a conflict, it is unnecessary to test such a candidate when looking for min-

imal conflicts. The second rule also prunes sub-trees for which the candidate at the

root of the sub-tree is a superset of an implicant that has been discovered. For exam-

ple, assume that (F1 = Filled) is an implicant. Then (F1 = Filled) ∧ (P1 = High)

must also be an implicant.

The third rule, skip satisfiable candidates, eliminates candidates that must be

consistent and therefore can not be conflicts given the implicants that have been

found. Any candidate that can be extended to be a superset of an implicant, by

assigning at most one value per variable, must have an extension that is an implicant.

Since implicants and conflicts are disjoint, if the candidate has an extension that is

an implicant, then the candidate can not be a conflict. Thus, the candidate need not
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be tested. However, unlike the previous two cases, this third type of pruning only

prevents one from returning a specific candidate. It is possible that an extension

to the candidate is a conflict; it is only known that the candidate itself is not a

conflict. For example, assume that (F1 = Filled) is an implicant. The third rule

will prune the candidate (P1 = High) because it can be consistently extended to

(F1 = Filled) ∧ (P1 = High). This extension is an implicant, as its a superset of

(F1 = Filled), so (P1 = High) must not be a conflict.

Since the first two pruning rules are both superset tests, and have the same effect

of pruning the tested sub-tree, the two tests are folded into the same test routine,

pruneSupersets. The pruneSupersets routine is described in Section 4.2.4. Pruning

is checked after each successor is generated, every time the partial candidate changes.

Rules 1 and 2 are checked on lines 18 and 22.

To understand why pruning occurs on lines 18 and 22, consider Figure 4-3. Assume

that the previous candidate was {(T1 = Thrust), (R1 = On), (P3 = Low)}. As

specified by the search process in Section 4.2.1, the algorithm determines that (P3 =

Low) has no successor and removes it from the candidate list. The algorithm then

tries to find the successor of {(T1 = Thrust), (R1 = On)}. In this case the successor

is {(T1 = Thrust), (R1 = Off)}. The black node for this successor in the figure

indicates that it is a minimal conflict. Thus, the algorithm prunes the sub-tree of this

candidate. In this example, having found a successor of {(T1 = Thrust), (R1 = On)},

the algorithm is on line 13. This line, as mentioned before, makes sure that the

partial candidate {(T1 = Thrust), (R1 = Off)} has a deep enough sub-tree (enough

variables left) to generate a suitable candidate. Since this sub-tree does have enough

elements, the algorithm makes it to line 18. At this point the algorithm verifies that

{(T1 = Thrust), (R1 = Off)} is a superset of a known minimal conflict, in this case

equal to the minimal conflict. Step 19 causes the algorithm to immediately find the

successor of {(T1 = Thrust), (R1 = Off)}, in this case {(T1 = None), (R1 = On)}.
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Hence, the whole sub-tree of {(T1 = Thrust), (R1 = Off)} was pruned in a single

step, due to the pruning check on line 18. Similarly, on line 22, the algorithm verifies

that the candidate has not become a superset of a conflict or implicant, as it adds

assignments to the candidate. Thus, the candidate and its sub-tree is pruned as soon

as possible.

The third type of pruning is checked on line 24 of the getNextCandidate routine

by the pruneByImplicants routine. The pruneByImplicants routine is described in

Section 4.2.5. At this point in the getNextCandidate routine, the candidate is of the

correct length and is otherwise ready to be returned as the next candidate. Thus,

checking the candidate here ensures that only full candidates are pruned when they

are not conflicts. This has the effect of skipping over the candidate, selecting instead

the successor of the candidate, saving an unnecessary test in the candidate tester.

4.2.3 Algorithm

Variables

dcurrent The current iterative deepening depth

Vs The search variables. Candidates are selected from these variables.

AC The working candidate. This variable starts out as the previous

candidate in getNextCandidate.

Initially, AC is set to the first candidate {}, which is a candidate of length zero.

dcurrent is set to one. This procedure handles all candidates past the first candidate,

{}. Note that AC is a clause, represented as a list of assignments. The list is, by virtue

of the way this algorithm works, sorted based on the assignment ordering. Thus, the

first candidate is the assignment with the earliest ordering and the last candidate is

the assignment in AC with the latest ordering. Note that an assignment c is a pair

of terms, a variable v and a value x. c.v refers to the variable of the assignment c.
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Note that dcurrent − size(AC) is the number of assignments needed at the current

depth dcurrent, given how many have already been assigned size(AC). size(Vs) −

orderingOf(lastAssignmentOf(AC).v) is the number of free variables remaining. A

variable is free if the variable’s ordering is greater than the variable of last assignment

of AC . The variables are ordered starting at 1, where 0 denotes that there are no

assignments.

getNextCandidate(Vs)

1. If dcurrent ≤ size(Vs) Then

2. If size(AC) > 0 Then

3. cp ← last assignment of AC

4. c′p ← (cp.v, x′) where x′ ∈ D(cp.v) and x′ = next value after cp.x}

5. If (no next value) Then

6. c′p ← (v′, x′) where v′ ∈ Vs and v′ = next variable after cp.v,

x′ ∈ D(v′), x′ = first value of D(v′)}

7. If (no next variable) Then

8. Delete last assignment of AC

9. If (size(AC) = 0) Then

10. dcurrent ← dcurrent + 1

11. Return getNextCandidate(Vs)

12. Replace last assignment of AC with c′p

13. If dcurrent − size(AC) >

size(Vs)− orderingOf(lastAssignmentOf(AC).v) Then

14. Delete last assignment of AC

15. If (size(AC) = 0) Then

16. dcurrent ← dcurrent + 1

17. Return getNextCandidate(Vs)
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18. If pruneSuperset(AC) Then

19. Return getNextCandidate(Vs)

20. While size(AC) < dcurrent Do

21. cp ← last assignment of AC

Add (v, x) where v ∈ Vs, v = next variable after cp.v,

x ∈ D(v), and x = first value of D(v)} to AC

22. If pruneSuperset(AC) Then

23. Return getNextCandidate(Vs)

24. If ¬pruneByImplicants(AC) Then

25. Return AC

26. Return getNextCandidate(Vs)

27. Return AllDone

4.2.4 Pruning Supersets of Conflicts and Implicants

This section presents the routine pruneSuperset(AC) for testing whether a candidate

AC is the superset of the implicants and conflicts that have been found, Rule 1 and

Rule 2. It also presents the routine addConflict for adding conflicts to the data

structure P used in the superset test. Conflicts are only used in this test, so they are

presented here. Implicants are added in the same way as conflicts for the purpose of

this test, but are also used in the pruneByImplicants test, so are presented in the

next section.

The pruneSuperset(AC) routine determines if the current partial candidate should

be pruned, because it has become a superset of an implicant or conflict. The impli-

cants and conflicts are stored as lists. If the partial candidate is a superset of an

element of either of these lists, then the candidate must be eliminated.
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The data structure P used for this test is a list of elements, called Trigger objects,

which store two values, the number of assignments that have matched the candidate

and the number of assignments in this conflict or implicant. These are both inte-

gers. The data structure also keeps a list of all assignments and associates with each

assignment a list of these Triggers. A trigger is in the list of an assignment if it’s

corresponding conflict or implicant contained that assignment.

With this data structure P , there is a three step process to determine if the

candidate is a superset of one of the implicants or conflicts. The algorithm first needs

to record that each Trigger has not yet been accessed, corresponding to lines 1 and

2. It then needs to retrieve the list of Triggers for each of its assignments. For each

of the elements in the list, the algorithm needs to add one to the Trigger’s count.

This corresponds to lines 3 to 6. Finally, the algorithm checks to see if any Trigger

has been accessed as many times as it has elements. If so, then the candidate must

be a superset of the Trigger’s corresponding implicant or conflict. This is checked on

lines 7 to 9. If none of them have enough assignments in common, then the routine

indicates that the candidate should not be pruned on line 10.

For i implicants and conflicts, with an average length of d, and a candidate of

length l, the algorithm requires O(i) time perform the first phase. For the second

phase, if l < d, the algorithm requires, in worst case, O(l · i) time, otherwise, in worst

case, O(d · i) time. The final phase requires O(i) time.

For example, if the implicant (F1 = Empty) ∧ (P1 = Low) is represented in

the data structure P , then it has a corresponding Trigger in the data structure that

requires two accesses to activate and is in the list returned by getPruneList() for

the assignments (F1 = Empty) and (P1 = Low). If the candidate ever has both of

these elements in it, the Trigger is accessed twice, and prune returns true, indicating

that the item should be pruned, as desired. Otherwise, the Trigger must have been

accessed less than twice, and the routine will not return true on account of this
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Trigger, as desired.

The addConflict routine adds a new conflict S as a Trigger to the data structure

P . As mentioned above, implicants are added in the same way. Adding a conflict

involves creating a new Trigger p with a trigger count of size(S). This corresponds

to lines 1 and 2 of addConflict, respectively. This new Trigger p is then added to P ,

the list of all Triggers, on line 3. Lines 4-6 add the new Trigger p to the trigger list

of every assignment s in S.

Variables

P : The set of all prune entries

Ps: The set of prune entries that the assignment s is a part of

addConflict(S)

1. p← New Trigger

2. p.total ← size(S)

3. P.push(p)

4. For ∀s ∈ S Do

5. Ps ← s.getPruneList()

6. Ps.push(p)
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pruneSuperset(AC)

1. For ∀p ∈ P Do

2. p.trigger ← 0

3. For ∀c ∈ AC Do

4. Pc ← c.getPruneList()

5. For ∀pc ∈ Pc Do

6. pc.trigger ← pc.trigger + 1

7. For ∀p ∈ P Do

8. If p.trigger = p.total Then

9. Return true

10. Return false

4.2.5 Pruning Satisfiable Candidates Using Implicants

This section presents the routine pruneByImplicants(AC) for testing whether a can-

didate is inconsistent with all of the implicants that have been found, according to

Rule 3. It also presents the routine addImplicant for adding implicants to the data

structure P used in the superset test and in the inconsistency pruning. When the

candidate is inconsistent with every implicant that has been found, an extension does

not exist that will make the candidate a superset of the known implicants. Since

both the candidate and the implicants are a conjunction of assignments, a candidate

and implicant is inconsistent whenever both have an assignment to the same variable

where the value of the two assignments differ.

To test for this condition, the data structure consists of a set of lists, one per

assignment, where each list maps the assignment to a set of elements, called Implicant

objects, with which the assignment is inconsistent. Each Implicant corresponds to an

implicant that has been found. The list of Implicants associated with each assignment
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is call the Inconsistent list. As stated in the pruning section, Section 4.2.4, implicants

are also used in pruning, thus an Implicant is a subclass of a Trigger.

Using this data structure, testing to see if a candidate is inconsistent with every

implicant involves three steps. First, the algorithm initializes the set of Implicants

so that they all indicate that they are still consistent with the candidate. This corre-

sponds to lines 1 and 2. Second, for each assignment in the candidate, the algorithm

gathers the list of all implicants that the assignment is inconsistent with and marks

them as inconsistent. This corresponds to lines 3 through 6. Finally, the algorithm

checks to see if any implicant is still consistent. If so, the candidate must be consistent

with this implicant and must therefore be consistent with the theory CΦ; otherwise,

the algorithm returns false. This part of the algorithm corresponds to lines 7 through

10.

For example, consider the implicant (F1 = Empty)∧(P1 = Low)1. The implicant

indicates that there can never be a minimal conflict that involves having both F1 be

Empty and P1 be Low. Thus, to be a conflict the candidate must contradict one of

the two assignments. Any candidate that does not contradict one of the implicant’s

assignments can be consistently extended by this candidate and the resulting candi-

date is an implicant. For example, the candidate (P3 = Low) will be pruned, as it can

be extended to (F1 = Empty) ∧ (P1 = Low) ∧ (P3 = Low), which is an implicant.

The candidate (P3 = Low) ∧ (F1 = Filled) is a valid candidate, as (F1 = Filled)

contradicts (F1 = Empty).

Adding a new implicant S for use in the implicant and superset checks involves

creating a new Implicant l with a trigger count of size(S). This corresponds to lines

1-2. This Implicant l is then added to the Prune list P and Implicant list L on

lines 3-4. Lines 6-7 insert l into the appropriate assignment prune list Ps for each

1Note that (F1 = Empty) ∧ (P1 = Low) is not an implicant for the above thruster example, as
(P1 = Low) is part of a minimal conflict that does not involve F1
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assignment for the superset test. Lines 8-10 insert l into the inconsistent lists Ls of

every assignment to the current variable s.v of s that contradicts the assignment’s

value s.x.

Variables

P : The set of all prune entries

Ps: The set of prune entries that the assignment s is a part of

L: The set of all implicant entries

Ls: The set of prune entries that s satisfies

addImplicants(S)

1. l ← New Implicant

2. l.total ← size(S)

3. P.push(l)

4. L.push(l)

5. For ∀s ∈ S Do

6. Ps ← s.getPruneList()

7. Ps.push(l)

8. For ∀(sl ∈ {(s.v, x)|x ∈ (D(s.v) \ s.x)}) Do

9. Ls ← sl.getSatisfyList()

10. Ls.push(l)
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pruneByImplicants(AC)

1. For ∀l ∈ L Do

2. l.consistent ← True

3. For ∀c ∈ AC Do

4. Lc ← c.getSatisfyList()

5. For ∀lc ∈ Lc Do

6. lc.consistent← False

7. For ∀l ∈ L Do

8. If l.consistent Then

9. Return true

10. Return false
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4.3 Candidate Tester

This section explains the functionality of the candidate tester. The tester distin-

guishes between valid, satisfiable, and unsatisfiable candidates, with respect to a

theory and a set of projected variables. The candidate CC is valid whenever all the

extensions to each of the projected variables are consistent. In other words, the can-

didate is valid whenever all unassigned projected variables can take on any of their

possible domain values. A candidate is satisfiable when it is neither valid nor unsat-

isfiable. A candidate is unsatisfiable whenever there exists no extension to any of the

variables that is consistent with the theory. The candidate tester takes as input a

candidate and returns the classification of the candidate as well as an implicant when

the candidate is classified as satisfiable.

This section provides a novel approach for efficiently testing for validity. This

approach is able to determine valid candidates without assigning a value to every

variable. Validity testing allows the tester to identify implicants, namely a valid

extension to the candidate.

In general, testing for validity can be computationally expensive, however the test

provides useful information. This is especially true for the typical under-specified

model that has a much larger space of satisfiable assignments than unsatisfiable as-

signments. In such situations, the generator will explore the set of valid candidates

and all of their extensions, testing every one of these candidates. For each of these

candidates, the tester will need to repeat much of its work to determine once again

that the candidate is still satisfiable. This search will never turn up a conflict and can

add significant amounts of time to the search, much more than testing for validity.

Therefore, testing for valid is highly advantageous.

A straight-forward method for testing the validity of a candidate is to verify

that all full extensions to the candidate are consistent. If so, the candidate is valid.
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However, this approach requires enumerating all possible extensions. This has an

exponential complexity that is a function of the number of unassigned variables. The

approach that the tester of this thesis uses is based on the realization that a candidate

is known to be valid as soon as all the clauses of the model have been satisfied. This

holds because any combination of the remaining variables must be consistent. Thus,

for theories with few clauses, the tester need only assign a few variables, while complex

theories will require searching over more variables.

This thesis uses a clause-directed approach [14], which directs its search towards

satisfying clauses. In particular, a clause-directed algorithm selects assignments by

choosing them from clauses that have not yet been satisfied. A clause is satisfied when

an assignment has been selected that makes one of its literals true. For example, the

clause ¬(F1 = Full) ∨ (P1 = High) is satisfied by making one of the assignments

(F1 = Empty), ¬(F1 = Full) or (P1 = High). If none of these assignments has

already been selected, then to satisfy the clause the tester will select either ¬(F1 =

Full) or (P1 = High), since these two choices each provide a minimal constraint

on the domains of the variables while still satisfying the clauses. In this particular

example, the choice of (F1 = Empty) is equivalent to ¬(F1 = Full); however, if the

variable had three values in its domain, ¬(F1 = Full) would constrain the domain

from three to two values, while (F1 = Empty) would constrain the domain from

three to one value.

To be systematic, the tester must make sure that the set of extensions are only

examined once. To accomplish this the tester first chooses an assignment from a clause

and searches the extensions including the assignment. The tester then chooses the

negation of the assignment that it chose first, and searches the extensions including

that negation. For example, the tester will examine the extension of ¬(F1 = Full)

as its first branch and (F1 = Full) as its second branch. The effect is to split the

search space into two disjoint sets, ensuring that the search is systematic. The tester

82



performs unit propagation after choosing each assignment, in order to quickly deduce

assignments to unassigned variables that are implied by the chosen assignment. This

is similar to DPLL [5] [4]. This branching process continues until all clauses have been

satisfied or until a clause is found unsatisfiable, meaning that all of the assignments

in the clause are inconsistent with respect to the set of extensions that have been

made thus far.

Since we allow for non-binary variable domains, the assignment operation, for a

positive assignment, constrains the domain of the variable to the value of the as-

signment, while a negative assignment removes the value of the assignment from the

domain of the variable. In the former case, if the value was no longer in the domain

of the variable, then the extensions are inconsistent. In the latter case, the extension

has no effect.

The branching process can be thought of as constraining the flexibility of a vari-

able. The algorithm maintains a count of how many values remain in the domain

of the variable. If all the values are removed from the variable’s domain, then the

branch is inconsistent. If a value is removed from the domain of a projected variable,

then the value removed, along with the extended candidate, must be classified as

unsatisfiable, which is to say that it is a conflict. Hence, the extension just prior to

removing the value from the domain of the projected variable must be satisfiable or

unsatisfiable; it cannot be valid.

For example, consider the task of generating prime implicates for the fuel tank

of the propulsion example and the tank pressure. This corresponds to clauses 1 and

2 from the model in Section 2.1.1. If the candidate conflict being considered is that

the fuel tank is Filled, {(F1 = Filled)}, then Constraint 1, (F1 = Filled)⇒ (P1 =

High), constrains the pressure to High by unit propagation. If the pressure is also a

projected variable, then (F1 = Filled)∧ (P1 = Low) is inconsistent with the theory,

and hence a conflict. If {(F1 = Filled)} is satisfiable, as opposed to unsatisfiable,
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then there must exist some extension that is valid, and hence an implicant. For

example, if (F1 = Filled)∧(P1 = High) is valid, then this extension can be returned

as an implicant.

The algorithm works by first propagating the initial assignments on lines 1-5 of

testCandidate. If the solution is known at this point, there is nothing more to do. If

not, then the algorithm assigns the first assignment of the first clause as either true or

false on lines 2-3 and 5 of evaluate. For example, if the current candidate is {(F1 =

Filled) ∧ (P1 = High)}, and the first literal of the first clause is {¬(V 1 = Open)},

then the algorithm checks the two sub-trees, corresponding to the extensions {(F1 =

Filled)∧(P1 = High)∧¬(V 1 = Open)} and {(F1 = Filled)∧(P1 = High)∧(V 1 =

Open)}.

Starting with the first branch, the algorithm then recursively checks how the candi-

date extended with the positive literal is classified (valid, satisfiable, or inconsistent),

and how the candidate extended with the negated literal is classified, on lines 4 and

6.

Lines 7-12 of evaluate recursively classify the candidate according to the classifi-

cation of its two branches. If the branches agree, the candidate is classified the same

as the classification of its two branches; however, if an assignment inconsistent with

the candidate has been found through unit propagation, when both of the candidate’s

branches were valid, then the candidate is classified as satisfiable instead of valid2.

Otherwise, the candidate is classified as satisfiable. The classification based on the

two branches is summarized in Table 4.4.

The tester makes an additional optimization: if the first branch examined is found

to be satisfiable but not valid, then the other branch does not need to be examined;

both a consistent assignment and an inconsistent assignment has been found. Hence,

the classification of the other branch is irrelevant as the candidate is known to be

2The notV alid flag indicates that an inconsistent assignment exists for the candidate.
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Table 4.4: This table summarizes how a candidate is classified depending on how
the two branches are classified and which flags are set. The candidate is valid if the
generator is unable to generate an extension to the candidate that is inconsistent. A
candidate is inconsistent if no consistent extension to the candidate exists. Otherwise,
the candidate is satisfiable. The classification depends on the notV alid flag as well
as whether the branch variable is projected or unprojected.

notV alid is false
projected 2nd Branch unprojected 2nd Branch
variable unsat sat valid variable unsat sat valid

1st unsat unsat sat sat 1st unsat unsat sat valid
Branch sat sat sat sat Branch sat sat sat valid

valid sat sat valid valid valid valid valid

notV alid is true 2nd Branch
unsat sat valid

1st unsat unsat sat sat
Branch sat sat sat sat

valid sat sat sat

satisfiable. The conditions under which the second branch need not be examined is

summarized in Table 4.5.

Note that this algorithm is sound but not complete in classifying valid candidates.

The algorithm is sound in that when a candidate is classified as valid or unsatisfi-

able, the classification is guaranteed to be correct. A candidate that is classified as

satisfiable, however, may in fact be valid. The incompleteness of the algorithm does

not affect the completeness of the conflict generation algorithm since a candidate

classified as valid is only used for pruning in the candidate generator.

The algorithm may misclassify a valid candidate as satisfiable when it finds an

inconsistent assignment that contains an unprojected variable through unit propa-

gation. If an inconsistent assignment contains unprojected variables, the subset of

the assignments that correspond to the projected variables may have a consistent

extension. By the definition of a valid candidate, as defined at the beginning of this
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Table 4.5: This table summarizes the conditions under which the second branch does
not need to be examined. The second branch needs to be examined if the candidate
has the potential of being classified as something other than satisfiable, as per Table
4.4. The decision to check the second branch depends on the classification of the first
branch as well as whether the branch variable is projected or unprojected.

projected 1st Branch unprojected 1st Branch
variable unsat sat valid variable unsat sat valid
Explore yes no * Explore yes * no
2nd Branch 2nd Branch

*If notV alid is false, then yes, otherwise no.

section, such an assignment should be classified as valid.

The candidate tester uses a flag called notV alid to indicate when it has found

an inconsistent assignment. The tester sets the notV alid flag when the domain of a

projected variable is reduced by unit propagation.

For example, consider the variables P1 and F1 from the propulsion model. Assume

that F1 is projected and P1 is unprojected. In the model, pressure P1 is determined

by the tank’s state F1, and visa-versa. Since the a candidate is valid if all extensions

to the projected variables are consistent, all candidates of this model are valid; F1

can be either Filled or Empty and there is always an assignment to P1 that is

consistent with the chosen assignment to F1. If the tester selects P1 first, however,

the algorithm always constrain F1 by unit propagation, and thus the candidate will

be categorized as satisfiable, even though it is valid. The tester selects satisfiable,

instead of valid, because it does not know that there exists a consistent extension to

any assignment to F1.

Consider testing the candidate (F1 = Filled) with the propulsion model. The

search tree generated for this example is shown in Figure 4-4. As can be seen, the

search for this example did not require any backtracking, due to the specific selection

of assignments. Upon reaching the assignment of NoThrust to T1, node 17, the search
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has satisfied all clauses, and in this case, also assigned all variables. The algorithm

classifies node 17 as valid. At the previous node, the algorithm detects that it has

constrained the value of the projected variable T1 by unit propagation, so it marks

itself as satisfiable, instead of valid. The algorithm knows that the assignment (F1 =

Filled) ∧ (P1 = High) ∧ (V 1 = Closed) ∧ (P2 = Low) ∧ (V 2 = Closed) ∧ (PV 2 =

Low)∧(V 3 = Closed)∧(PV 3 = Low)∧(P3 = Low)∧(R1 = Off)∧(T1 = Thrust) is

inconsistent with the theory, thus, with (T1 = Thrust) removed from the assignment,

back to node 15, the resulting assignment is satisfiable. One extension is valid, node

17, and the other is unsatisfiable, node 16. Additionally, since the current node, node

15, is a satisfiable node, the algorithm records its valid child, node 17, as the shortest

implicant found thus far. All of the previous nodes also constrain projected variables,

so they all return without checking their second branch. Thus, the candidate (F1 =

Filled) is classified as satisfiable with the implicant 4.2.

If one of the branches did not assign a projected variable, the other branch can

be examined to determine if the other branch was valid. If the other branch were

valid, then node branching on the unprojected variable is classified as valid, instead of

satisfiable, as there exists one assignment to the unprojected variable that leaves all

the projected variables free to take on any value. This one assignment will always be

consistent, for any candidate generated with all of its preceding extensions. However,

the generator need not generate any further extensions.
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Figure 4-4: The search tree associated with a tester run, with (F1 = Filled) as a
candidate. White nodes with black text are valid. The grey nodes are satisfiable.
White nodes with grey text are untested branches. White nodes with grey, dashed
lines connecting them are cases where the search constrained a variable to a value and
the grey node represents the alternative that was ruled out. The nodes with arrows
are assignments determined by unit propagation, while the ones without arrows are
nodes where a choice was made.
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testCandidate(CC)

1. For ∀(sc, pc) ∈ CC Do

2. If (sc, pc) is the last element in CC Then

3. n.propagate(sc, pc, T rue, False)

4. Else

5. n.propagate(sc, pc, T rue, T rue)

6. Return n.evaluate()

evaluate()

1. If solution = Unknown Then

2. (sc, positivec)← CΦ.C0.f irst()

3. nodep.propagate(sc, positivec, T rue, False)

4. solutionp ← nodep.evaluate()

5. noden.propagate(sc,¬positivec, T rue, False)

6. solutionn ← noden.evaluate()

7. If (solutionp = solutionn) ∧ (¬notV alid ∨ ¬(solutionp = V alid)) Then

8. solution← solutionp

9. Else If ((solutionp = V alid) ∨ (solutionn = V alid)) ∧¬(sp.v ∈ Vp) Then

10. solution← V alid

11. Else

12. solution← Satisfiable

13. Return solution
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4.3.1 Propagate

This section presents the algorithm responsible for applying both positive and nega-

tive assignments to the clauses, and to the domains of the variables. The algorithm

also performs unit propagation. The function propagate() first makes the requested

assignment, by appropriately restricting the variable’s domain, and then by deter-

mining which clauses have become satisfied as a result of the assignment. Propagate

then performs unit propagation on the remaining clauses.

Propagate takes, as its input, an assignment and three flags. The first flag positive

indicates whether to remove this assignment from the domain (false) or to constrain

the domain to the specified value (true). For example, (F1 = Full) is an assignment.

If the flag is false, then it is equivalent to the literal ¬(F1 = Full).

The second flag, ignoreConstraint, is true whenever propagate should not set

the notV alid flag, due to restricting the domain of a projected variable. Normally,

propagate sets notV alid whenever the assignment constrains a projected variable.

ignoreConstraint is only set to true by evaluate when both branches are being

examined, and thus the restriction of the domain of the projected variable is expected

and does not indicate that the algorithm has found an inconsistent assignment.

The third flag, multiSet is only used when applying the constraints from the initial

candidate. This flag has the effect of delaying unit propagation until all of the initial

candidate’s constraints have been added. Since the candidate can contain multiple

assignments, it would be incorrect to set the notV alid flag if one assignment in the

candidate constrained the value of some other assignment in the candidate, which

would be discovered before the second assignment has been propagated, as both are

already set to some value. Unit propagation is delayed until the last assignment of the

candidate has been added. For example, if the candidate was (F1 = Full) ∧ (P1 =

High), then adding either of these implies the other one. Thus, if (F1 = Full) were
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allowed to cause unit propagation, then it would constrain (P1 = High). Since P1 is

a projected variable, this would cause the algorithm to believe that the candidate is

at best satisfiable, but the constraint imposed is part of the candidate, so the imposed

constraint can be ignored.

The main body of the algorithm has five parts. The first part checks the consis-

tency of the new assignment sp with the variables that have already been assigned

a value. If the variable in sp is already assigned a value, the new assignment must

be consistent with the previous value assigned to the variable. Otherwise, this prop-

agation is inconsistent. For example, if the assignment is ¬(F1 = Full), and F1

has been assigned a single value because its domain was reduced to that single value,

then this check will verify that the value assigned is consistent with ¬(F1 = Full).

So long as the value assigned is not Full, the propagation is successful and nothing

more needs to be done. Otherwise, the candidate is inconsistent. This corresponds

to lines 1-4.

The next two parts have a positive and a negative counterpart, lines 6-22 and 24-

40, respectively. The first part modifies the domain of the variable to match the new

assignment, lines 6-12 and 24-29. The second part satisfies or constrains all remaining

clauses so that they reflect how the new assignment has changed the theory, lines 13-

22 and 30-40. The positive counterpart sets the variable to the specified value. The

negative counterpart removes the value from the domain of the variable.

For example, if the assignment is (F1 = Full) and the positive flag is true, then

the domain of F1 is set to Full. Any clause mentioning (F1 = Full) or an element

of {¬(F1 = x)|x ∈ [D(F1) \ Full]} is satisfied, and is removed from the list of

unsatisfied clauses. Any clause with ¬(F1 = Full) or an element of {(F1 = x)|x ∈

[D(F1) \ Full]} has that literal removed from the clause since the literal is false.

When the clause becomes empty, the clause, and hence the theory, is unsatisfiable.
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The fourth part is responsible for propagating unit clauses, lines 41-46. If there

is only one literal left in a clause, the clause can only be satisfied by one specific

assignment. Unit propagation makes this remaining assignment. For example, if

a clause was reduced to ¬(F1 = Full), then the current node’s assignments are

extended by ¬(F1 = Full) by calling propagate on this assignment. This satisfies

the clause in the only way possible.

The last part, lines 47-52, is responsible for determining whether all the clauses

have been assigned. When this happens, the candidate can be classified as Valid, or

if the notV alid flag is set, as Satisfiable.

Thus, this algorithm can handle both types of assignments, positive and negative,

and can perform unit propagation. All of these operations involve modifying the

domains of the variables as well as the set of satisfied clauses and inconsistent literals.

4.3.2 Algorithm

propagate(sp, positive, ignoreConstraint, multiSet)

checkExistingAssignment

1. If sp.v ∈ Vassigned Then

2. If ¬((sp.x ∈ D(sp.v)) xor positive) Then

3. solution← Unsatisfiable

4. Return

positiveAssignment

5. If positive Then
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constrainDomain

6. If s.x ∈ D(sp.v) Then

7. D(sp.v)← s.x

8. If sp.v ∈ Vsearch ∧ ¬ignoreConstraint Then

9. notV alid← True

10. Else

11. solution← Unsatisfiable

12. Return

updateClauses

13. For ∀C ∈ CΦ Do

14. For ∀(sc, positivec) ∈ C Do

15. If sp.v = sc.v Then

16. If (sp.x = sc.x) xor positivec Then

17. CΦ ← CΦ \ C

18. Else

19. C ← C \ (sc, positivec)

20. If C = {∅} Then

21. solution← Unsatisfiable

22. Return

negativeAssignment

23. Else
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constrainDomain

24. If s.x ∈ D(sp.v) Then

25. D(sp.v)← D(sp.v) \ s.x

26. If sp.v ∈ Vsearch ∧ ¬ignoreConstraint Then

27. notV alid← True

28. Else

29. Return

updateClauses

30. For ∀C ∈ CΦ Do

31. For ∀(sc, positivec) ∈ C Do

32. If sp.v = sc.v Then

33. If sp.x = sc.x Then

34. If positivec Then

35. C ← C \ (sc, positivec)

36. Else

37. CΦ ← CΦ \ C

38. If C = {∅} Then

39. solution← Unsatisfiable

40. Return
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unitPropagate

41. If ¬multiSet Then

42. For ∀C ∈ CΦ Do

43. If size(C) = 1 Then

44. (sc, positivec) ∈ C

45. propagate(sc, positivec, False, False)

46. Return

identifySolutionStatus

47. If size(CΦ) = 0 Then

48. If solution = Unknown Then

49. If notV alid Then

50. solution← Satisfiable

51. Else

52. solution← V alid

This section has shown a set of algorithms capable of classifying a candidate as

either valid, satisfiable, or unsatisfiable. The addition of the classification of valid has

allowed this algorithm to perform implicant extraction during the test process. These

implicants can then be used to prune the search space in an effort to find minimal

conflicts.
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4.4 Empirical Evaluation

The prime implicate generation engine described in this chapter was bench marked

with and without validity testing enabled. When valid testing is enabled, the algo-

rithm works as described above. More specifically, to test for validity, like unsatis-

fiable, one must prove that all extensions to the candidate are classified the same

way. When validity testing is disabled, the tester need only check another extension

when it finds an unsatisfiable extension. Otherwise the algorithm knows that at least

one solution exists and can safely classify the candidate as satisfiable. In this mode,

the tester may still return valid, but only if this can be determined through unit

propagation.

The implementation of the prime implicate generator outlined in this chapter

is called CompileSAT. When comparing the performance of CompileSAT with and

without validity testing, having validity testing enabling showed an improvement on

random problems in which in ratio of clauses to variables was lower than four. In this

region, where there tends to be more valid candidates than unsatisfiable candidates,

the engine testing for validity was capable of finding all of the prime implicates up to

five times faster. In regions greater than four, the validity testing engine demonstrated

equivalent performance; it was within 15% of CompileSAT with valid testing disabled.

Note that it only rarely took longer to solve the problem with validity testing enabled.

Figure 4-5 also shows the performance of the candidate generator when the valid-

testing algorithm from Section 4.3 is replaced by a straight DPLL algorithm. The

generator remains the same. The DPLL-based algorithm takes an order of magnitude

longer to run, at best, and at worst, several orders of magnitude longer. This is in

large part due to pruning done by implicants, as is done in a number of modern SAT

solvers, such as Chaff [19].
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In Figure 4-5, the DPLL algorithm tends to perform badly on the left because it is

unable to prune anything from the search space, while the CompileSAT algorithms are

able to prune some implicants, when validity testing is disabled, and all implicants

when validity-testing is enabled. When searching for conflicts in this region, the

candidate tester need not examine very many extensions, as there are very few clauses,

but the generator needs to generate all possible partial conflicts. Towards a ratio of

2-4 clauses/variable, the tester needs to examine additional extensions to classify

the candidates. The generator also needs to examine more candidates, as fewer are

eliminated by implicants and there are still few minimal conflicts. At higher ratios,

the generator prunes a number of candidates that are unsatisfiable, and so the curve

starts dropping. For CompileSAT, when valid testing is disabled, the algorithm still

gets a reduced number of candidates generated due to the number of candidates

that are easily classified as valid. It also benefits from having implicants, though

the implicants are not very good as the tester can only find implicants through unit

propagation. Towards the right, the algorithm not testing for validity tends to have

many more unsatisfiable candidates than valid candidates and so begins performing

much like the DPLL algorithm, performing better than it due to use of implicants

and because it operates in a clause-directed manner. The valid-testing algorithm

benefits significantly in low clause/variable ratios as the tester can quickly determine

that most candidates are valid, and so the generator prunes large sub-trees of its

search space. This benefit is present only at the beginning where large sub-trees can

be pruned this way, where the implicants are short. Otherwise, the validity-testing

algorithm finds mostly unsatisfiable branches, so it does not do any more work than

when valid-testing is disabled.

In figure 4-6, the problem is slightly harder because it has an additional projected

variable with a domain size of 5. One will note that the problem takes about twice

as long to solve, on average, with this extra variable, and that the full search space
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is five times larger. The trends between this example and the previous example are

approximately the same. The graph has what appears to be a random bump towards

8 clauses/variable. This is apparently due to noise based on the number of samples.

As the number of clauses/variable get close to 10, the hardness of the problem is

highly variable, so there are too few samples in this region to get a smoother curve.

As the data shows, testing for validity is always advantageous. Combined with

implicant extraction, the prime implicate generator performs much better on prob-

lems with fewer clauses per variable. For even highly constrained problems such as

a more complicated propulsion model similar to the one in this thesis, testing va-

lidity is beneficial. This more complicated model has 8 projected variables and 14

unprojected variables. Each variable has a domain size of 3 to 5 values. The DPLL-

based algorithm took 568 seconds to project the model over the state and observation

variables. The non-valid testing algorithm took 194 seconds, and the valid-testing al-

gorithm took 170 seconds. The validity-testing algorithm took 12% less time then the

algorithm that did not test for validity. It took 70% less time than the DPLL-based

algorithm.

4.5 Summary

This chapter has shown how to implement a prime implicate generator as an unsat-

isfaction engine based on the algorithms from the previous chapter. The generator

uses iterative deepening on a systematic tree of candidates such that each candidate

is generated only once and sub-trees of candidates can be eliminated through the

application of three different pruning rules. These rules are based on implicants and

conflicts extracted by the candidate tester. The candidate tester, in turn, is able to

extract implicants through the use of an efficient routine for determining if a candidate

or one if its extensions is valid.
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Figure 4-5: This graph shows the performance benefit of using a SAT engine capable
of detecting Valid candidates and using decomposition. Each data point represents
the average of 100 test cases. Each test ran on 20 variables, 5 of which were projected
variables. Each clause had 3 literals. Each variable had 5 domain elements. These
tests were run on a 733 MHz Pentium III processor.
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Figure 4-6: This graph shows the performance benefits on a harder problem, as it has
more projected variables. Each data point represents the average of 100 test cases.
Each test ran on 12 variables, 6 of which were projected variables. Each clause had
3 literals. Each variable had 5 domain elements. These tests were run on a 733 MHz
Pentium III processor.
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The tester utilizes unit propagation to focus its search quickly. The tester also

partitions its search space, so it only searches a subspace of assignments once. The

tester is also clause-directed with non-binary domain variables, hence it only assigns

values that are necessary to satisfy its clauses. The algorithm examines many fewer

extensions than a non-clauses directed algorithm.
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Chapter 5

Summary and Future Work

5.1 Conclusion

In an effort to reduce the runtime computation required for model-based reason-

ing in real-time systems, this thesis develops the algorithms necessary to perform

pre-runtime model compilation. Two types of compilation algorithms are required:

projected prime implicate generation for the estimation of the system, and projected

prime implicants for the control of the system. This thesis presents algorithms for

both problems and implements them using a projected minimal conflict generator as

the core algorithm. The projected prime implicates are obtained as negated projected

minimal conflicts of the original model. The projected prime implicants are obtained

as projected minimal conflicts of the negated model.

The projected minimal conflict generator is a sophisticated generate-and-test algo-

rithm that employs a number of optimizations that improve the compilation process.

In order to keep the memory bound of the generation process small, the candidate

generator uses an iterative deepening algorithm on a systematic search tree. Thus,

the compilation process can be allowed to run for as long as desired, limited only
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by processing time, and does not suffer from space-explosion as would be the case

for breadth-first search. The candidate generator employs three pruning rules that

significantly reduce the number of candidates generated and tested. The first rule

eliminates all non-minimal conflicts by pruning supersets of minimal conflicts. The

second and third rules are based on implicants that are extracted during the testing

process. The second rule prunes supersets of implicants. Because they must also be

implicants, they cannot be conflicts. The third rule prunes candidates that can be

extended to be supersets of implicants, since they also cannot be conflicts.

The candidate tester identifies a candidate as inconsistent or valid. There are

two key concepts that make testing efficient: 1) the tester uses a clause-directed

search and 2) the tester operates directly on the original finite-domain variables of

the model, as it treats the problem as a CSP. This approach ensures that only those

variables that are necessary to determine the validity of the candidate are assigned

values. In contrast, encoding the variables using sets of binary variables would require

domain axioms, mutual exclusion and exhaustion clauses, which would force the tester

algorithm to assign a value to every binary variable.

The generate-and-test approach of the projected minimal conflict generator allows

the algorithm to perform projection and minimal conflict generation in a single step.

This approach can be significantly better than approaches that must perform these

two steps separately, especially when a large number of variables are projected out.
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5.2 Contributions

This thesis contributes a model compilation algorithm that generates projected prime

implicates and implicants based on a generate-and-test algorithm.

The main contribution of the thesis lies in the development of the algorithm for

the projected minimal conflict generator. This contribution has two parts: a candi-

date generator that efficiently prunes sub-trees of candidates based on implicants and

a candidate tester that efficiently identifies implicants by testing for validity. For the

candidate generator, we presented a method for creating a systematic search tree of all

partial assignments over a set of finite-domain variables. We also presented a method

for performing pruning while searching the tree with an iterative deepening algo-

rithm. Previous approaches were only designed to generate complete assignments, as

a tree, and would generate them in a breadth-first manner, thus incurring a significant

memory cost.

This thesis also contributes improvements to the candidate tester, specifically

converting the clause-directed A* algorithm presented by Ragno’s thesis [14] into a

validity-testing classification algorithm, and extended the algorithm by adding rules

to classify candidates that were not directly valid or inconsistent, but whose children

are valid or inconsistent. Finally, the candidate tester has been extended to support

implicant extraction.

5.3 Future Work

This thesis demonstrates a method for projected prime implicate generation that

scales to many real world problems. However, improved efficiency would expand the

scope of the problems that could be solved. This section proposes several future ex-

tensions that promise to improve efficiency, in particular, for improving the candidate
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tester:

Dynamic Variable Re-Ordering for the Candidate Generator Using a

fixed variable ordering can lead to inefficient pruning in the generator. If the variable

ordered last in the variable ordering prunes a specific value, the generator will only

test and prune candidates including this assignment as leaves of the generator’s search

tree. If the variables were reordered so that the last variable was first, the whole

generator sub-tree with that assignment as its root could be pruned. Thus, the

generator should benefit from dynamic variable reordering. This reordering could be

based on the number of conflicts/implicants that the variable appears in as well as

their length. For example, a heuristic could be to reorder the variables so they are

ordered based on how often they appear in conflicts and implicants and/or based on

the length of the conflicts/implicants in which they appear.

That is, based on the consideration that if a variable appears in many conflicts

and implicants, it is likely that many extensions of the candidate, and all of their

sub-trees can be pruned. Similarly, if the conflicts and implicants are short, then it

requires fewer extensions before the candidate can be pruned.

A Complete Candidate Tester The tester is currently sound but not complete

with respect to determining validity. It is possible that changing the criteria by which

the algorithm chooses its next assignment can make the validity testing complete.

Currently the tester chooses the first assignment of the first clause. The tester is not

complete when there are projected variables that are constrained to the same value as

an unprojected variable. If the tester chooses to assign the unprojected variable first,

the algorithm will unit propagate the value of the projected variable and the algorithm

is forced to conclude it found a conflict, but it has not (Note that this conflict makes

the candidate satisfiable. If the conflict were tested, it would be determined to be

either valid or satisfiable). This problem may be resolved if the tester always choses

to assign projected variables before assigning any unprojected variables, other than
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through unit propagation.

Improved Implicant Extraction in the Candidate Tester Implicants gener-

ated by the candidate tester are not always minimal. They often contain a few extra

variables that got set to values but were actually unconstrained once other values were

chosen. They are also non-minimal if assigning a value to one or more unprojected

variables make the variable unconstrained. The tester should be able to determine

which variables have this property and generate smaller implicants by eliminating

these variables from the implicant. It is uncertain if it is worth the additional com-

putation required to create a smaller implicant, in particular if it is expected to be

only one or two assignments shorter.

Use an Better Data Structure For Propagation in the Candidate Tester

The candidate tester is fairly inefficient in how it handles unit propagation as well as

branching. The tester would benefit from using a better data structure for managing

its assignments and clauses. Recent advances in SAT engine data structures and

techniques should be easy to incorporate into the validity tester, as it has a similar

underlying algorithm.

5.4 Summary

This thesis shows that the generate-and-test method utilized in the minimal con-

flict generator allows for the efficient generation of projected prime implicates and

projected prime implicants. The candidate generator used in the minimal conflict

generator uses a space space-efficient search algorithm for generating all partial can-

didates. The candidate tester uses a classification algorithm that can distinguish

between valid, satisfiable, and unsatisfiable.
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