
ACCURATE BELIEF STATE UPDATE FOR

PROBABILISTIC CONSTRAINT AUTOMATA

by

Oliver Borelli Martin

B.S., Department of Aerospace Engineering
California Polytechnic State University, 2002

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2005

c© 2005 Massachusetts Institute of Technology
All rights reserved.

Signature of Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Aeronautics and Astronautics

May 20, 2005

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Brian C. Williams

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jaime Peraire

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students





Accurate Belief State Update for Probabilistic

Constraint Automata

by

Oliver Borelli Martin

Submitted to the Department of Aeronautics and Astronautics
on May 20, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science at the

Massachusetts Institute of Technology

Abstract

As autonomous spacecraft and other robotic systems grow increasingly complex, there
is a pressing need for capabilities that more accurately monitor and diagnose system
state while maintaining reactivity. Mode estimation addresses this problem by reason-
ing over declarative models of the physical plant, represented as a factored variant of
Hidden Markov Models (HMMs), called Probabilistic Concurrent Constraint Automata
(PCCA). Previous mode estimation approaches track a set of most likely PCCA state
trajectories, enumerating them in order of trajectory probability. Although Best-First
Trajectory Enumeration (BFTE) is efficient, ignoring the additional trajectories that lead
to the same target state can significantly underestimate the true state probability and
result in misdiagnosis. This thesis introduces two innovative belief state approximation
techniques, called Best-First Belief State Enumeration (BFBSE) and Best-First Belief
State Update (BFBSU), that address this limitation by computing estimate probabilities
directly from the HMM belief state update equations. Theoretical and empirical results
show that BFBSE and BFBSU significantly increase estimator accuracy, uses less mem-
ory, and has no increase in computation time when enumerating a moderate number of
estimates for the approximate belief state of subsystem sized models.
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Chapter 1

Introduction

The purpose of estimation is to determine the current state of the system. An estimator

infers the current state by reasoning over a model of the system dynamics along with

the commands that have been executed and the resulting sensory observations. In many

embedded systems, this knowledge of the current state is then used by a controller to drive

the system state towards a specific target or goal. The ability for a system to accurately

and reliably deduce its current state can dictate whether it is able to achieve its objectives.

This is particularly important for highly complex robotic space exploration systems that

operate in uncertain environments. Furthermore, deep space communication delays and

severely constrained on-board computing capabilities present tremendous challenges to

traditional methods of estimation in support of robust autonomous spacecraft operations.

1.1 Previous Work

Previous work in model-based monitoring and fault diagnosis, including GDE/Sherlock [6,

7], GDE+ [19], Livingstone [21, 15], diagnosis using model-checking [5], and Titan Mode

Estimation [20], have made significant advances towards meeting these challenging per-

formance requirements. All of these capabilities achieved reactivity, while maintaining

reliability, by framing mode estimation as a best-first shortest-path problem, which can

be efficiently solved using a variant of the Viterbi algorithm [10]. This approach is known

as Best-First Trajectory Enumeration (BFTE) and works quite well when trying to de-

termine the “most likely explanation” to a sequence of observations. Livingstone was

successfully flight validated on the NASA Deep Space One probe as part of the Remote

Agent Experiment in 1999 [17]. Unfortunately, approximating the current state by the

13



14 INTRODUCTION

most likely trajectory can significantly underestimate the true state probability and re-

sult in misdiagnosis. In addition, failure to update the estimates with valid observation

probabilities places a probabilistic bias on failure modes, which can drive the estimator

towards incorrect fault diagnoses during continuous nominal operations.

This thesis introduces two novel mode estimation techniques, called Best-First Belief

State Enumeration (BFBSE) and Best-First Belief State Update (BFBSU), that approx-

imate the belief state by generating the set of most likely estimates and achieve greater

accuracy than BFTE by computing the estimate probabilities directly from the Hidden

Markov Model (HMM) belief state update equations, instead of approximating them by

their trajectory probability. This contribution significantly increases the accuracy of the

estimator while using less memory and less computational time; providing an enabling

technology for increasingly complex space missions of the future.

1.2 Thesis Outline

This thesis first provides a motivating example of a small IMU system, similar to the one

that will fly on the decent stage of the Mars Science Laboratory [12] in 2009. Our Prob-

abilistic Concurrent Constraint Automata (PCCA) formalism [21, 20] is then presented

in detail and the IMU Plant model is formally described. Chapter 3 reviews the exact

solution to the PCCA estimation problem using the HMM belief state update equations,

eluding to some practical limitations due to PCCA state space explosion. The PCCA es-

timation problem is then framed as an Optimal Constraint Satisfaction Problem (OCSP),

providing the framework for efficient best-first enumeration of state estimates. Due to

state space explosion, Chapter 4 discusses the three significant approximations that were

employed in BFTE to achieve the strict computational requirements of severely con-

strained embedded systems, while maintaining estimate accuracy. BFBSE and BFBSU

are then introduced as superior mode estimation techniques that significantly improve

estimate accuracy through direct use of the HMM belief state update equations. In

addition, BFBSE and BFBSU improve estimator performance by framing the PCCA es-

timation problem as a single OCSP, and using the observation probabilities in the search
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heuristic to quickly identify likely solutions and avoid sub-optimal candidates. In Chap-

ter 5, we support our claims of improved estimator accuracy and performance through

theoretical and empirical comparisons between BFTE, BFBSE, and BFBSU. Experimen-

tal data gathered from three different spacecraft subsystem models show good alignment

with our theoretical expectations. In conclusion, Chapter 6 summarizes the technical

contributions of this thesis and provides insight into future areas of research in the field

of model-based monitoring and fault diagnosis.





Chapter 2

Decent Stage IMU

The Mars Science Laboratory (MSL) is NASA JPL’s next generation Mars rover, which

is currently slated to be launched in December of 2009. The primary science objective

of MSL is to conduct in-situ analysis of Martian soil in search for organic compounds

that are necessary to support life [12]. MSL is twice as long and three times as massive

(3000 kg) as the Mars Exploration Rovers (MER), carrying an unprecedented 10 science

instruments. Due to this large size and mass, the current airbag landing system is no

longer sufficient and a novel “sky-crane” approach (shown in Figure 2-1) will be used to

safely place MSL on the Martian surface. In addition, MSL will be the first Mars Lander

to use precision guidance during entry, decent, and landing (EDL), in order to accurately

control MSL to within a 10km x 5km, 3σ landing target error ellipse [12]. This innovative

EDL sequence and precise landing target requirement places a substantial demand on

the MSL EDL system, which must operate autonomously due to the 4 to 21 minute

time-delay between Earth and Mars.

The Inertial Measurement Unit (IMU) is a critical component for supporting MSL

EDL. An IMU is typically composed of 3 accelerometers and 3 gyroscopes, one for each

axis, and is responsible for providing body-frame position and attitude measurements

with a fast update rate, as necessary for real-time control. MSL will rely on an IMU

attached to its decent stage (Figure 2-1) in order to make the necessary adjustments

to its flight-path during entry for a safe and precise rover landing. With less than 6

minutes in the entire EDL sequence, quick and accurate monitoring and diagnosis of the

IMU operational mode is essential for the success of the mission. Failure to autonomously

diagnose and recover from an IMU failure mode would certainly lead to unreliable position

17



18 DECENT STAGE IMU

Decent Stage

MSL Rover

Entry Interface

Deploy Supersonic Chute

Jettison Heatshield, Activate Radar, and Deploy Mobility

Jettison Chute and Backshell, 

Begin Powered Descent

Begin Sky-Crane Maneuver

Rover 
Touchdown

Sense Velocity with Radar

71 s

48.6 s

33.3 s

337.3 s323 s304.0 s233.0 s 255.4 s0s

Flyaway

Courtesy JPL

Figure 2-1: Mars Science Laboratory sky-crane entry, decent, and landing sequence [12].

and attitude knowledge, followed by imminent mission loss due to a hazardous landing.

Although approximate belief state enumeration is applicable to nearly any embedded

system, the MSL EDL demand for autonomous, responsive, and accurate monitoring and

fault diagnosis, makes the decent stage IMU a highly relevant example that will be used

throughout this thesis. This chapter presents a decent stage IMU system, similar to that

of MSL, that is greatly simplified for pedagogical clarity, but sufficiently complex to high-

light the innovation and importance of the additional accuracy provided by approximate

belief state enumeration. The chapter concludes with graphical models of the IMU and

its accessory components.

2.1 Simple IMU Example

An Inertial Measurement Unit (IMU) is a standard sensor package that is used to provide

spacecraft and other robotic systems with translational and angular motion measure-
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ments. Space qualified IMUs are typically radiation hardened and tightly coupled to the

spacecraft body; firmly mounted to the rigid-body structure, thermally controlled, and

electrically wired to provide two way communication between the IMU and the attitude

determination and control (ADC) processor. The IMU system modeled in this thesis is

greatly simplified to three interconnected components, as shown in Figure 2-2.

Power Switch

Inertial 

Measurement 

Unit

Timer

IMU Mode Timer Status

Power

Data Valid 

Flag

IMU Data

D
a

ta
 B

u
s

Switch Command

IMU 

Command

Figure 2-2: Simple IMU system block diagram.

This simplified IMU system consists of the basic IMU itself, a controllable Power

Switch (PS) that provides the IMU with a power source, and a Timer (T) that is used

to help infer whether the IMU has become stuck in an undesirable mode. Although the

IMU and PS are interconnected with the data bus, which passes information to the ADC

processor, we chose to not model this component for simplicity, and we assume that there

is always power flowing into the Power Switch. Detailed descriptions of each component

are provided below.

2.1.1 The IMU Component Model

This simple IMU is a relatively passive device that reacts primarily to the input power

coming from the Power Switch. During nominal use, the IMU is ready to take measure-

ments shortly after an initialization period, which occurs when it is first powered on.

Although the main function of the IMU is to provide continuous motion measurements,

for the purpose of monitoring and diagnosing the IMU operational mode, we will ignore

this data. A graphical representation of the discrete IMU modes are shown in Figure 2-3.

The IMU has 5 defined operational modes, 3 of which are considered nominal and
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( )IMU
cmd reset=

( )

Initializing

in

( )
Measuring
me( )

Unknown
un

( )

Stuck

Initializing
si

( - )IMUtimer in expired=

( )IMUcmd reset¬ =

0.01

(
)

IMUcmd
reset=

0.001

0.001

0.001

1.0

( - )

( - )
IMU

IMU

power in

data valid false

=

∧ =

nominal

( - )IMUpower in zero= ( - )

( - )
IMU

IMU

power in

data valid false

=

∧ =

nominal

( - )

( - )
IMU

IMU

power in

data valid true

=

∧ =

nominal

( )IMUcmd reset¬ =

( )- IMUtimer in expired¬ =

( )

Off

of

0.001

Figure 2-3: Model of IMU operational modes.

2 failure modes1. When the IMU first receives power, it transitions from the Off mode

and begins initializing, during which the IMU measurements are not reliable and the

data-valid flag is false. After a short period of time (typically less than 22 seconds), the

IMU produces valid data and is ready for use. If the power is removed from the IMU

at any point in time, it will return to the Off mode. It is also possible for the IMU to

become Stuck Initializing if the Timer expires during the initialization process. This is

a recoverable fault mode in which a reset command can be issued to to restart the IMU

initialization. It is important to note that, if the IMU has to be reset multiple times,

or there are unexplainable sensor measurements of the data validity that contradict the

expected IMU behavior, it is more likely that the IMU is in an Unknown mode and

the spacecraft should quickly switch to its redundant IMU (not modeled) in order to

recover. The probabilities on the transitions will be explained at the end of this chapter

in Section 2.2.

1For the purpose of this thesis, a failure mode is simply defined as an undesirable mode that is
unexpected and rarely occurs (lower probability of occurrence).
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2.1.2 The Power Switch Component Model

The sole purpose of the Power Switch (PS) is to provide the IMU with power. For the

purpose of this simple IMU system, we will assume that the PS is always receiving power.

An illustration of the PS is shown in Figure 2-4.

( )

Closed

cl

( )
Unknown
un 0.0005

1.0

( )PScmd close=

( )PScmd close¬ = ( )PScmd open¬ =

( )PScmd open=

( )

Open

op

( )

Tripped

Open
to

( - )PSpower out nominal=

( - )PSpower out zero=

0.1

0.1

0.0005

(
)

PScmd
open=

( )PScmd open¬ =

0.0005

* Assumes constant 

input power 

( - )PSpower out zero=

Figure 2-4: Model of Power Switch operational modes.

This Power Switch has 2 nominal modes and 2 failure modes. When the PS is

commanded closed, the switch is shorted and power is supplied to the IMU. Likewise,

when the PS is commanded open, power is removed from the IMU. In the presence of too

much electron current, the PS will become Tripped Open in order to prevent overloading

and possibly damaging the IMU. A safe recovery can be conducted by reopening the

switch and then closing it again to power on the IMU. Similar to the IMU, there is also

an Unknown mode, which captures all other unexpected behavior.

2.1.3 The Timer Component Model

The third component is the IMU Timer (T), shown in Figure 2-5, which is responsible

for keeping track of how much time the IMU has spent Initializing. When the IMU is not

initializing, the Timer is Idle. As soon as the IMU begins initializing, the Timer starts

Running and an external continuous timer starts in the background. When the external

timer expires after 22 seconds, the alarm flag is set to true, signaling that the IMU is
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Stuck Initializing. Alternatively, if the IMU exits from the initializing mode before the

external timer expires, the external timer will have no effect on this model and will simply

reset the next time the IMU begins initializing.

( )
Running

ru

( )
Unknown
un 0.0001

1.0

( )Talarm tripped=

( )

Expired

ex

0.0001

( )Timu-mode in=

( )

Idle

id

( )Talarm tripped¬ =

(
)

Timu-mode
in

¬
=

0.0001

( )Timu-mode in=

( )- Timu mode in=( )Timu-mode in=

( )Timu-mode in¬ =

(
)

Timu-mode
in

¬
=

Figure 2-5: Model of Timer operational modes.

This concludes our summary of the three components that constitute our simple ped-

agogical IMU plant. The next section section defines a specific type of factored HMM

modeling formalism that is used in this thesis and provides a formal description of the sim-

ple IMU system. Chapter 3 introduces the complete PCCA estimation problem, followed

by Chapter 4, describing the challenges that PCCA estimation presents for embedded

systems and assumptions that have made monitoring and fault diagnosis tractable for

full-scale systems.

2.2 PCCA Plant Model

As in previous work, we model the physical plant as a factored Hidden Markov Model

that is compactly encoded as Probabilistic Concurrent Constraint Automata (PCCA) [20].

The PCCA represent a set of concurrently operating components that are interconnected

and interact with their surrounding environment. Each automaton has a set of possible

discrete modes with conditional probabilistic transitions, which capture both nominal and

faulty behavior. These modes are only partially observable, due to a limited number of
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sensors, but are inherently constrained by the system properties that define each mode.

In this section we review the formal definition of the PCCA plant model and provide

an illustrative example using the simple IMU system that was previously introduced in

Chapter 2.

2.2.1 PCCA Formalism

We first define a single probabilistic constraint automaton and then the composition of

multiple automata. A probabilistic constraint automaton for component “a” is defined

by the tuple Aa = 〈Πa,Ma,Ta,PTa
〉:

1. Πa = Πm
a ∪ Πr

a is a finite set of discrete variables for component “a”, where each

variable πa ∈ Πa ranges over a finite domain D(πa). Πm
a is a singleton set containing

mode variable {xa} = Πm
a whose domain D(xa) is the finite set of discrete modes

in Aa. Attribute variables Πr
a include inputs, outputs, and any other variables used

to define the behavior of the component. Σa is the complete set of all possible full

assignments over Πa and the state space of the component Σxa
a = Σa⇓xa

is the

projection of Σa onto mode variable xa.

2. Ma : Σxa
a → C(Πr

a) maps each mode assignment (xa = va) ∈ Σxa
a to a finite

domain constraint ca(xa = va) ∈ C(Πr
a), where C(Πr

a) is the set of finite domain

constraints over Πr
a. These constraints are known as modal constraints and are

typically encoded in the propositional form λ , True | False | (u = y) | ¬λ1 |

λ1 ∧ λ2 | λ1 ∨ λ2, where y ∈ D(u). If the current mode is (xt
a = va) at time-step

t, then the assignments to each attribute variable rt
a ∈ Πr

a at time-step t must be

consistent with ca(xa = va). These constraints capture the physical behavior of the

mode.

3. Ta : Σxa
a ×C(Πr

a)→ Σxa
a is a set of transition functions. The set of finite domain con-

straints C(Πr
a) are also known as the transition guards, encoded in the propositional

form λ. Given a current mode assignment (xa = va) ∈ Σxa
a and guard ga ∈ C(Πr

a)

entailed at time-step t, each transition function τa(xa = va, ga) ∈ Ta(xa = va, ga)
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specifies a target mode assignment (xa = v′
a) ∈ Σxa

a that the automaton could

transition into at time-step t + 1. Ta = Tn
a ∪ Tf

a captures both nominal and faulty

behavior.

4. PTa
: Ta(xa = va, ga) → ℜ[0, 1] is a transition probability distribution. For each

mode variable assignment in Σxa
a and guard gt

a, there is a probability distribution

across all transitions into target modes defined by the set of transition functions

Ta(xa = va, ga).

The entire system plant P is modeled by a composition of concurrently operating

constraint automata. Each automaton is interconnected to both its environment and

other automata through constraints on shared variables. Formally, the PCCA plant

model is defined by the tuple P = 〈A,Π,Q〉:

1. A = {A1,A2, . . . ,An} is the finite set of constraint automata that represent the n

components of the plant.

2. Π =
⋃

a=1..n Πa is the set of all plant variables. The variables Π are partitioned into

a finite set of mode variables Πm =
⋃

a=1..n Πm
a , control variables Πc ⊆

⋃

a=1..n Πr
a,

observation variables Πo ⊆
⋃

a=1..n Πr
a, and dependent variables Πd ⊆

⋃

a=1..n Πr
a.

Σc, Σo, and Σd are the sets of full assignments over Πc, Πo, and Πd.

3. Q ⊂ C(Π) is a set of finite domain constraints that capture the interconnections

between plant components.

2.2.2 Example: The IMU System PCCA Plant Model

The simple IMU system introduced in Chapter 2 will be used in this section to clarify the

PCCA formalism. Our PCCA plant model P is composed of the constraint automata

for the IMU (Aimu), Power Switch (Aps), and Timer (At). As an example of a single

constraint automaton, consider the IMU component shown again in Figure 2-6.

A formal description of Aimu is provided below:
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( )IMU
cmd reset=

( )

Initializing

in

( )
Measuring
me( )

Unknown
un

( )

Stuck

Initializing
si

( - )IMUtimer in expired=

( )IMUcmd reset¬ =

0.01

(
)

IMUcmd
reset=

0.001

0.001

0.001

1.0

( - )

( - )
IMU

IMU

power in

data valid false

=

∧ =

nominal

( - )IMUpower in zero= ( - )

( - )
IMU

IMU

power in

data valid false

=

∧ =

nominal

( - )

( - )
IMU

IMU

power in

data valid true

=

∧ =

nominal

( )IMUcmd reset¬ =

( )- IMUtimer in expired¬ =

( )

Off

of

0.001

Figure 2-6: IMU constraint automaton, Aimu.

1. Πimu = {ximu, µ
cmd
imu, o

dv
imu, d

pi
imu, d

ti
imu} where {ximu} = Πm

imu resides in 1 of 5 discrete

modes D(ximu) = {of, in, me, si, un} as indicated with circular nodes in Figure 2-6.

Πr
imu = {µcmd

imu, o
dv
imu, d

pi
imu, d

pi
imu} where µcmd

imu is used to reset the IMU with D(µcmd
imu) =

{reset, no-command}, odv
imu is an observation of the data validity with D(odv

imu) =

{true, false}, dpi
imu is the power-in with D(dpi

imu) = {zero, nominal}, and dti
imu is a

time expiration variable with D(dti
imu) = {expired, not-expired}. Σimu = Σm

imu ×

Σr
imu is the set of all full assignments over Πimu with 5 · (2 · 2 · 2 · 2) = 80 elements.

2. Mimu includes the constraints encapsulated by rectangles in Figure 2-6. The com-

plete set of modal constraints for the IMU are shown in Table 2.1 below.

Table 2.1: Aimu Modal Constraints

(ximu = vimu) ∈ Σximu

imu Mimu(ximu = vimu)

ximu = of dpi
imu = zero

ximu = in dpi
imu = nominal ∧ odv

imu = false

ximu = me dpi
imu = nominal ∧ odv

imu = true

ximu = si dpi
imu = nominal ∧ odv

imu = false
ximu = un (unconstrained)

3. The component transitions are indicated by the arrows and labels in Figure 2-

6. For example, Timu(ximu = si, µcmd
imu = reset) is a set of transition functions
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{τn1 , τn2, τ f1} where (ximu = si) is the source mode and (ximu = in), (ximu = of),

and (ximu = un) are the target modes. The complete set of transition functions for

Aimu are shown in Table 2.2 below.

Table 2.2: Aimu Transition Functions / Probabilities

(ximu = vimu) gimu ∈ C(Πr
imu) Timu(ximu = vimu, gimu) PTimu

(ximu = vimu, gimu)

ximu = of (unconstrained) {of, in, un} {0.4995, 0.4995, 0.001}
ximu = in ¬(dti

imu = expired) {of, in, me, un} {0.333, 0.333, 0.333, 0.001}
ximu = in dti

imu = expired {of, me, si, un} {0.4945, 0.4945, 0.01, 0.001}
ximu = me ¬(µcmd

imu = reset) {of, me, un} {0.4995, 0.4995, 0.001}
ximu = me µcmd

imu = reset {of, in, un} {0.4995, 0.4995, 0.001}
ximu = si ¬(µcmd

imu = reset) {of, si, un} {0.4995, 0.4995, 0.001}
ximu = si µcmd

imu = reset {of, in, un} {0.4995, 0.4995, 0.001}
ximu = un (unconstrained) {un} {1}

4. The component transition probability distribution for each set of IMU transition

functions is shown on the right side of Table 2.2 above.

For completeness, the formal definitions to Aps and At are listed in Appendix A. The

full PCCA plant model for this simple IMU system is composed of 3 components and the

interconnections between them. The power output of the PS is connected to the power

input of the IMU and the T is connected to the IMU to help determine if the IMU has

become Stuck Initializing2. The PCCA plant P for the IMU system is formally defined

as follows:

1. A = {Aimu,Aps,At} is the set of all constraint automata in the IMU system;

including the IMU, Power Switch, and Timer.

2. Π = Πimu ∪ Πps ∪ Πt is the set of all variables. This set is partitioned into mode

2The transient initialization process of the IMU is a perfect example of when a Timed Plant Model
[13] would be preferred over a PCCA to increase the fidelity of the model. Since this thesis is limited
to only PCCA models, we have compensated for the continuous-time IMU behavior by introducing a
discrete Initializing mode for the IMU as well as a Timer component, that interacts with an external
continuous timer, to help determine if the IMU is Stuck Initializing. Although the concepts of Best-First
Belief State Enumeration in this thesis are presented in the context of PCCA, the method could be
expanded to improve the accuracy of Timed Mode Estimation.
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variables Πm = {ximu, xps, xt}, control variables Πc = {µcmd
imu, µ

cmd
ps }, observation

variables Πo = {odv
imu, o

al
t }, and dependent variables Πd = {dpi

imu, d
ti
imu, d

po
ps, d

im
t }.

3. The interconnections for the IMU system are

Q =























dpo
ps = dpi

imu∧

ximu = dim
t ∧

xt = dti
imu























,

where the power-out (po) of the PS is connected to the power-in (pi) of the IMU,

the IMU mode variable ximu is connected to imu-mode (im) of the T, and the T

mode variable xt is connected to the timer-in (ti) of the IMU.

With the PCCA formalism defined, the next chapter will introduce the full PCCA

estimation problem as well as approximations that are used to make the problem scalable

to full-sized systems.





Chapter 3

Estimation of PCCA

This chapter reviews exact belief state update for PCCAs and presents a formulation of

the estimation problem as an Optimal Constraint Satisfaction Problem (OCSP), inter-

leaving examples using the IMU system. The task of estimation is to calculate a belief

state of the system in real-time, while maintaining accuracy and reliability. A belief state

is a probability distribution over the states of a system, which represents the likelihood of

the system being in any single state, given a history of past commands and observations.

For PCCA, a state si is defined as a full assignment to mode variables si ∈ Σm and a

belief state B = 〈S, p〉 is a finite set of estimates that cover all consistent states S ⊆ Σm.

Each estimate consists of a state si ∈ S and its posterior probability p(si) ∈ p.

3.1 Belief State Update

The Markov property declares that the future state of a system is conditionally inde-

pendent of its past, given its current belief state. This property allows an estimator

to iteratively compute the next complete belief state Bt+1 at time-step t + 1 by only

considering the current belief state Bt and commands µt at time-step t, along with the

resulting observations ot+1. The belief state is then computed using the standard HMM

belief state update equations [1]:

P(st+1
j |o

<0,t>, µ<0,t>) =
∑

st
i∈St

(

P(st+1
j |s

t
i, µ

t)P(st
i|o

<0,t>, µ<0,t−1>)
)

(3.1)

P(st+1
j |o

<0,t+1>, µ<0,t>) =
P(st+1

j |o
<0,t>, µ<0,t>) ·P(ot+1|st+1

j )
∑

st+1
i ∈St+1 P(st+1

i |o
<0,t>, µ<0,t>)P(ot+1|st+1

i )
(3.2)

29
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Equation 3.1 represents the a priori probability of being in the next state st+1
j at

time-step t+1, given all the observations o<0,t> and commands µ<0,t> between time-step

0 and t. P(st
i|o

<0,t>, µ<0,t−1>) ∈ pt is the probability that the system was in state si at

time-step t and P(st+1
j |s

t
i, µ

t) is the state transition probability. Equation 3.1 propagates

the system dynamics into the future before considering new observations. Once all the a

priori estimates are generated, Equation 3.2 then updates these estimates by adjusting

the probabilities based on new observations ot+1 using the Total Probability Theorem

and Bayes’ Rule to calculate the a posteriori probabilities pt+1 across all states in St+1.

The belief state evolution over time can be visualized in a Trellis diagram, as shown in

Figure 3-1. Each column represents a separate belief state at different time-steps. Arrows

depict conditional dependence between states, and correspond to transitions between

states. The probabilities associated with each state in the belief states are not shown.

B
t+1

B
t

B
t-1

B
0

...

Figure 3-1: The Trellis diagram of the possible state evolutions over time.

3.1.1 PCCA Transition and Observation Probabilities

To complete the definition of belief state update for PCCA, the state transition proba-

bilities and observation probabilities must be defined. Since the PCCA are concurrently

operating, the state transition consists of a set of component mode transitions; one mode

transition τa for each component (xa = va) ∈ si. By assuming that each component tran-

sition is conditionally independent given the current state st
i and commands µt, the state

transition probability simply becomes the product of the component transition proba-

bilities (Equation 3.3). This assumption, previously made by Livingstone [21], has been

demonstrated in practice to be reasonable for a wide range of engineered systems.
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P(st+1
j |st

i, µ
t) =

∏

(xt+1
a =v′a)∈st+1

j

(

P(xt+1
a = v′a|x

t
a = va, s

t
i, µ

t)
)

(3.3)

The component mode transition probability P(xt+1
a = v′

a|x
t
a = va, s

t
i, µ

t) is the prob-

ability of transitioning from mode (xt
a = va) at time-step t to mode (xt+1

a = v′
a) at the

next time-step, conditioned on the current state of all components st
i and commands

µt. Recall from the PCCA formalism that if transition guards ga are entailed by st
i and

µt, the set of transitions Ta(xa = va, ga) are considered to be enabled and their target

modes are reachable; otherwise the transitions are disabled with a transition probabil-

ity of zero1. To be probabilistically complete, the sum of the enabled outgoing state

transition probabilities must be 1 for each st
i ∈ Bt.

The conditional observation probability P(ot+1|st+1
j ) is the probability of sensing ob-

servations o ∈ Σo, given that the system is in state sj ∈ Σm at time-step t + 1. For

PCCA, the observation probability distribution is defined using a consistency approach

similar to that of GDE [6], such that for every state sj ∈ Σm, there is a probability

distribution across all combinations of observations. If every observation ol ∈ ot+1 is

entailed or refuted by the conjunction of the modal constraints M and state st+1
j , the

observation probability P(ot+1|st+1
j ) is 1 or 0, respectively. When the observations are

neither entailed nor refuted, there is a uniform probability distribution of 1/m across

all the m possible consistent values of ot+1, creating a probabilistic bias towards states

that predict (entail) observations. This uniform distribution assumption is a degener-

ate case of Maximum-Entropy [14] when there is no previous knowledge about how the

sensors behave. The precise observation probability distribution for PCCA is shown in

Equation 3.4.

P(ot+1|st+1
j ) =











1 if st+1
j ∧M |= ot+1,

0 if st+1
j ∧M |= ¬ot+1,

1/m otherwise,

where m = number of consistent assignments to ot+1 for st+1
j and M.

(3.4)

1On rare occasion, it is possible to have a transition guard that is neither entailed nor refuted,
resulting in a probability that the transition is enabled. This is beyond the scope of this thesis but is
discussed as future work in Section 6.2.
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3.1.2 Example: IMU System Belief State Update

The simple IMU system described in Section 2.1, and formally defined in Section 2.2,

is now used to demonstrate the mechanics of the propagate and update equations that

were introduced in Section 3.1. This example uses the belief state update equations to

compute the exact solutions to the PCCA estimation problem. Figure 3-2 illustrates

a single estimation cycle where the belief state update equations first propagate the

IMU system dynamics to calculate the a priori state probabilities (center of Figure 3-2)

and then update those estimates with the resulting observation data to determine the a

posteriori state probabilities (right of Figure 3-2). The labels on the arrows represent

the component transition probabilities (one for each component) during the propagation

step, and observation probabilities during the update step. Due to the large state space

of this simple example2, only the leading four estimates are shown for Bt+1.

IMU=of
PS=op

T=id

(0.4995)(0.1)(0.9999)

(0.4995)(0.9995)(0.9999)

IMU=of

PS=to
T=id

IMU=of

PS=to
T=id

IMU=of
PS=op

T=id

IMU=in

PS=op
T=id

tB

1

ts

2

ts

0.2521

0.2521

0.2471

0.2471

0.55

0.45

IMU=of

PS=op
T=id

tB 1+

1

1

ts +

1

2

ts +

1

3

ts +

1

4

ts +

0.3363

0.3296

0.1648

0.1681

propagate update

(0.25)

IMU=in

PS=to
T=id

IMU=in

PS=to
T=id

IMU=of
PS=to

T=id

IMU=in

PS=op
T=id

1

3

ts +

1

1

ts +

1

4

ts +

1

2

ts +

Figure 3-2: Single-step exact belief state update of the IMU Plant.

Given the current belief state Bt, consisting of st
1 with probability 0.55 and st

2 with

probability 0.45, we will focus on the process of generating the state probability for st+1
3 ,

as highlighted in Figure 3-2. Assuming that there are no commands µt and only consistent

2Since all of the components are independently operating, the actual number of estimates contained
in the full belief state is

∏

yk∈Πm |D(yk)|, where yk contains only the reachable mode assignments of xt+1

k

such that D(yk) ⊆ D(xt+1

k ). Recall that a mode is reachable if there is an enabled component transition
leading to that mode. For this example, the number of elements in the belief state Bt+1 is (3)(3)(2) = 18.
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observations ot+1, both current states have enabled state transitions that converge to a

single next state st+1
3 with an a priori probability of 0.2521. This state is then updated

with its observation probability to result in an a posteriori state probability of 0.1618.

Before we can calculate the a priori state probabilities, we must first determine all

the enabled component mode transitions by determining which transition guards are

entailed. The enabled transitions and their probabilities for all three components of the

IMU system are shown in Table 3.1 below:

Table 3.1: Enabled Component Transitions for the IMU Plant, P

st (ximu = vimu) gimu Timu PTimu

st
1 ximu = of (unconstrained) {of, in, un} {0.4995, 0.4995, 0.001}

st
2 ximu = of (unconstrained) {of, in, un} {0.4995, 0.4995, 0.001}

st (xps = vps) gps Tps PTps

st
1 xps = op ¬(µcmd

ps = close) {op, to, un} {0.8995, 0.1, 0.0005}
st
2 xps = to ¬(µcmd

ps = open) {to, un} {0.9995, 0.0005}

st (xt = vt) gt Tt PTt

st
1 xt = id ¬(dim

t = in) {id, un} {0.9999, 0.0001}
st
2 xt = id ¬(dim

t = in) {id, un} {0.9999, 0.0001}

Now we can compute the state transition probabilities by taking the product of the

enabled component transition probabilities. Since we are interested in state st+1
3 , we

will only consider the state transitions leading to the target state {ximu = of, xps =

to, xt = id}. The probabilities for the two state transitions that converge to state st+1
3

are computed below:

P(st+1
3 |s

t
1, µ

t) = P(ximu = of |ximu = of)P(xps = to|xps = op)P(xt = id|xt = id)

= (0.4995)(0.1)(0.9999)

= 0.049945

P(st+1
3 |s

t
2, µ

t) = P(ximu = of |ximu = of)P(xps = to|xps = to)P(xt = id|xt = id)

= (0.4995)(0.9995)(0.9999)

= 0.4992
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Using the belief state update propagate equation from Equation 3.1, we can now

calculate the a priori state probability by multiplying each state transition probability

by their originating state probability and then summing over all the incoming transitions

into state st+1
3 .

P(st+1
3 |o

<0,t>, µ<0,t>) = P(st+1
3 |s

t
1, µ

t)P(st
1|o

<0,t>, µ<0,t−1>)

+ P(st+1
3 |s

t
2, µ

t)P(st
2|o

<0,t>, µ<0,t−1>)

= (0.049945)(0.55) + (0.4992)(0.45)

= 0.2521

This is the same a priori state probability shown in Figure 3-2. The next step is to

update this probability with the resulting observations ot+1 using Equation 3.2. In this

example, we have assumed that we received observations that are consistent with st+1
3 .

By reconciling the modal constraints of the IMU automata defined in Chapter 2.2 and

Appendix A, there are four unique sets of observation assignments that are consistent

with both st+1
3 and M:

{odv
imu = true, oal

t = tripped}, {odv
imu = true, oal

t = not-tripped},

{odv
imu = false, oal

t = tripped}, {odv
imu = false, oal

t = not-tripped}.

Since a set of observations is neither entailed nor refuted, the observation probability

for state st+1
3 is P(ot+1|st+1

3 ) = 1/4 = 0.25 (as shown in Figure 3-2), where there are 4

consistent sets of observations. This observation probability is then used in Equation 3.2

to compute the a posteriori probability as shown below:

P(st+1
3 |o

<0,t+1>, µ<0,t>) =
P(st+1

3 |o
<0,t>, µ<0,t>) ·P(ot+1|st+1

3 )
∑

st+1
i ∈St+1 P(st+1

i |o
<0,t>, µ<0,t>)P(ot+1|st+1

i )

=
(0.2521)(0.25)

(0.37487)

= 0.1681

The denominator of Equation 3.2 is a normalization factor that can be acquired by
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summing over the all posterior probabilities for belief state Bt+1 prior to normalization.

For this example, the normalization factor is 0.37487.

This completes the belief state update for state st+1
3 . In order to compute the full

belief state, this same process must be completed for all 18 possible reachable states

in Bt+1. It is important to note that although st+1
1 and st+1

2 are more likely than st+1
3

in Bt+1 (as illustrated in Figure 3-2), the IMU cannot be Initializing while the Power

Switch is Tripped Open or Open, since the Power Switch does not supply the IMU with

power in either of those modes3. Due to our factored model representation, belief state

update alone will not eliminate these inconsistent states. A solution to this problem is

presented in the next section by framing the estimation problem as an Optimal Constraint

Satisfaction Problem (OCSP) [22]. Using this framework, a solution is only valid if all

the constraints are satisfied, hence, inconsistent states st+1
1 and st+1

2 are invalid solutions

and would not be returned.

3.2 Optimal Constraint Satisfaction Problems

PCCA estimation can be viewed as a problem of constraint optimization, where each

reachable target state st+1
j in the belief state Bt+1 must be consistent with modal con-

straints M, component interconnections Q, and observations ot+1. This constraint op-

timization formulation was previously used in Titan [20] and can similarly be used to

formulate the methods underlying GDE [6], Sherlock [7], and Livingstone [21, 15]. This

thesis leverages a similar OCSP formulation, but differs from previous approaches by

augmenting the utility function specification to increase the estimator accuracy.

Definition 3.1. An OCSP 〈y, f, C〉 is a problem of the form “arg max f(x) subject to C(y),”

where x ⊆ y is a vector of decision variables, C(y) is a set of state constraints, and f(x)

is a multi-attribute utility function.

3The HMM belief state update equations enumerated inconsistent states because our IMU Plant
model has violated the conditional independence assumption of the component transition probabilities,
and not because of a flaw in the belief state update equations. In these circumstances, there is actually a
joint probabiliy distribution across the enabled transitions. A couple possible solutions to this problem
are presented in the future work section on Page 82.
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Solving an OCSP consists of generating a prefix to the sequence of feasible solutions,

ordered by decreasing value of f . A feasible solution assigns to each variable in x a

value from its domain, such that C(y) is satisfied. For PCCA estimation, the decision

variables x are the set of mode variables Πm and the constraints C(y) restrict mode

variable assignments (xa = v′
a) to those that are consistent with observations ot+1, modal

constraints Ma(xa = v′
a), and component interconnections Q. Algorithm 3.1 provides

pseudo code for computing the exact belief state update when framing PCCA estimation

as an OCSP.

Algorithm 3.1 BeliefStateUpdate(P, Bt , µt, ot+1)

1: Setup the OCSP 〈y, f, C〉:

• The vector x includes a decision variable xa for each component of the plant, whose domain D(xa) is the
set of modes that are reachable from any current state st

i ∈ St. For all st
i ∈ St, the target mode for each

transition (xa = v′a) = τa(xa = va, ga) whose source (xa = va) ∈ st
i and guard ga are satisfied by Ct

M
∧st

i∧µt

is considered reachable, such that v′a ∈ D(xa). Ct
M

= Q ∧ (∧(xa=va)∈st

i

Ma(xa = va)).

• The utility function f(x) is the posterior probability of next state x. More precisely, f(x) =�
Σst

i
∈StP(x | st

i, µ
t) · pt(si)

�
· P(ot+1 | x), where P(x | st

i, µ
t) =Π(xa=v′

a
)∈xP(xa = v′a | xa = va, st

i, µ
t),

pt(si) is the posterior probability for state st
i, and P(ot+1 | x) is the observation probability for x.

• C(y) encodes the constraint that x∧CMx ∧ot+1 must be consistent. CMx = Q∧(∧(xa=v′

a
)∈x

Ma(xa = v′a)).

2: Compute all the solutions St+1 to OCSP〈y, f, C〉.
3: Extract the normalized posterior state estimate probabilities, such that pt+1(sj) =

f(sj)/
∑

si∈St+1 f(si) for each solution sj ∈ St+1.
4: return the consistent state estimates contained by Bt+1 = 〈St+1, pt+1〉.

Algorithm 3.1 first initializes the OCSP in Step 1 with the current belief state Bt,

commands µt, and resulting sensor observations ot+1. All the consistent states in the

next belief state Bt+1 are then computed and stored in St+1 in Step 2. The posterior

probabilities pt+1 are then computed in Step 3 by taking the utility function of Step 1

and normalizing across all states st+1
j ∈ St+1, as per the HMM update equation (recall

Equation 3.2 on page 29). This procedure is repeated for each estimation cycle.

The challenging part of Algorithm 3.1 is in computing the solutions to the OCSP in

Step 2. Solutions can be computed using any OCSP solver, but this thesis will focus on

using OPSAT as an efficient OCSP solver that generates solutions in order of likelihood.
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Chapter 4 describes OPSAT and gives justification for why best-first enumeration is a

key property for reactive estimation.

3.2.1 Example: IMU System OCSP Belief State Update

Recall the single-step belief state update example for the IMU system shown in Figure 3-

2 and represented more compactly in Figure 3-3a. By framing PCCA estimation as an

OCSP and computing the belief state using Algorithm 3.1, the resulting belief state Bt+1

is shown in Figure 3-3b. The only difference is that the leading two estimates of Bt+1

in Figure 3-3a were correctly determined by Algorithm 3.1 to be inconsistent and were

not returned as valid solutions; elevating st+1
3 to st+1

1 in Figure 3-3b. The difference in

estimate probabilities is due to normalization over only the states that are consistent4.
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Figure 3-3: Single-step belief state update example for the IMU Plant (a) solved without
considering constraints and (b) solved as an OCSP that considers constraints.

The next chapter begins by identifying 3 approximations that have previously made

online estimation tractable when scaled up to full-sized systems. The two main contri-

butions of this thesis are then presented as improvements to existing mode estimation

4Although framing PCCA estimation as an OCSP correctly eliminates the inconsistent states, it
introduces an error in the outgoing state transition probability distribution, such that the sum of prob-
abilities across the outgoing state transitions is no longer 1. For example, since the transitions from st

1

to st+1

1 and st+1

2 in Figure 3-3a no longer exist as a solution to the OCSP, the sum of the outgoing state
transition probabilities from st

1 is 1−(0.4995)(0.1)(0.9999)−(0.4995)(0.8995)(0.9999) = 0.5008 6= 1. This
is because our assumption of independent transitions is occasionally violated due to the interconnected
nature of the components. One solution to this problem is to normalize the outgoing state transitions
during the estimation process but this approach is not reflected in Algorithm 3.1.
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approaches that, together, eliminate 2 of the 3 approximations. These two novel es-

timation techniques, known as Best-First Belief State Enumeration (BFBSE)[16] and

Best-First Belief State Update (BFBSU), provide a highly accurate mode estimation

capability without incurring much additional computational overhead.



Chapter 4

Approximate Estimation of PCCA

As space exploration systems grow increasingly complex, there is an unprecedented de-

mand for accurate and reactive monitoring and diagnosis techniques that must be scalable

to mounting challenges. Due to limited computational resources of embedded systems,

the exact solution presented in Chapter 3 is not tractable for full-sized systems. This

chapter begins by identifying three key approximations that were previously used to

achieve reactivity, while preserving estimator accuracy. Section 4.2 introduces an OCSP

solver that efficiently solves the approximate estimation problem using Conflict-directed

A∗ [22, 18] and Sections 4.3 and 4.4 adjust the A∗ heuristic function to eliminate two of

the three belief state update approximations.

4.1 Belief State Update Approximations

Three significant approximations are made by previous monitoring and diagnosis engines;

including Livingstone [21, 15], and previously in Titan [20]:

1. The full belief state Bt is accurately approximated by maintaining only the k most

likely estimates in an approximate belief state B̃t.

2. The probability of each state is accurately approximated by the probability of the

most likely trajectory to that state.

3. The observation probabilities can be accurately reduced to 1.0 for all observations

consistent with the state, and 0.0 for observations inconsistent with the state.

39
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This thesis continues to make Approximation 1 to mitigate state space explosion, but

eliminates Approximations 2 and 3. The following section present each approximation

in detail.

4.1.1 Exponential Belief State Approximation

For systems modeled as PCCA, there is a finite number of estimates in the belief state,

though the size of the belief state is exponential in the number of concurrently operating

components. More precisely, size of the belief state for n components is
∏

a=1..n |D(xa)|,

where |D(xa)| is the number of modes inAa. For a full-scale spacecraft propulsion subsys-

tem, such as the NewMaap model of JPL’s Cassini Spacecraft propulsion subsystem, the

size of the belief state was roughly 3.580 (80 mode variables with an average domain size

of 3.5) [21]. To mitigate this belief state space explosion, previous work on Livingstone

and Titan have made the assumption that the true state of the system is captured within

only a few of the most likely estimates. This assumption is based on the key insight that,

although the full belief state is exponential in size, the bulk of the probability density is

concentrated in only a handful of the most likely estimates. This is due to the drastically

decreasing likelihood of simultaneous multiple point failures [7].

Recall the single-step exact belief state update OCSP example for the IMU plant,

presented earlier in Section 3.2.1, and summarized again in Figure 4-1a. The resulting

probability distribution across all 16 consistent states in Bt+1 is shown in Figure 4-1b,

where the states are ordered in terms of likelihood. The leading 2 estimates capture

99.62% of the total belief state probability density, supporting the hypothesis that the

true state of the system is likely to be contained within the leading most likely estimates.

By leveraging this approximation, the estimation problem is simplified from updat-

ing the full belief state B to enumerating the k best estimates in an approximate belief

state B̃. In order to avoid extraneous computation, preserve reactivity of the estimation

process, and enable it to be employed for the purposes of real-time control, this enu-

meration is performed in best-first order. Section 4.2 reviews an efficient technique for

best-first estimate enumeration, based on Conflict-directed A∗ [22].
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Figure 4-1: Belief state probability distribution at Bt+1 for the simple IMU Plant scenaio.

4.1.2 Trajectory Approximation

Although the majority of belief state probability density can be captured by only a hand-

ful of most likely estimates, it is not clear how to quickly identify which estimates, out

of the entire exponential belief state, are most likely. Previous mode estimation ap-

proaches side-step this problem by unfolding the belief state transitions into a branching

tree structure (Figure 4-2) and by enumerating estimates in order of state trajectory

probability1 [21, 15, 20].

B
2

B
1

B
0

B
2

B
1

B
0

Figure 4-2: Evolution of the belief state, represented as a trellis diagram (left), can be
decomposed into a branching tree.

Each arrow on the right side of Figure 4-2 still represents a state transition, but

1The state trajectory probability is defined as the product of state transition probability P(st+1

j |

st
i, µ

t) and its source state probability P(st
i|o

<0,t>, µ<0,t−1>).
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the belief state encoding is no longer compact since there may be duplicate states at

each time-step in the branching tree. Furthermore, the probability associated with each

estimate, as per the HMM belief state update equations, is split across all the duplicate

nodes within the same time-step, such that the probability tied to each individual node

in the tree is actually a lower bound on the true state probability. Although this violates

the claim to true best-first estimate enumeration, the tree decomposition is conceptually

advantageous because it facilitates the use of proven AI search techniques to efficiently

determine the shortest path (most likely trajectory) to a leaf node (estimate).

As an example of the trajectory approximation, consider the same IMU system sce-

nario that was originally shown in Figure 3-2 (Page 32) and its propagation step displayed

again here in Figure 4-3a with the inconsistent states preemptively removed. Figure 4-3b

shows the same scenario when using the trajectory approximation, as indicated with only

a single incoming transition arc to each next state.
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Figure 4-3: IMU Plant using (a) exact HMM propagation and (b) approximate trajectory
propagation.

The three most likely trajectories for the scenario in Figure 4-3b are presented in

Table 4.1, with their source state, target state, state trajectory probability, and percent

error when compared to the true HMM a priori probabilities of Figure 4-3a. It is impor-

tant to notice that since the trajectory approximation splits the two trajectories leading

to st+1
1 , this state is no longer evaluated as the most likely estimate. Even worse, the

state may not be tracked at all. Incorrectly estimating the likelihood of states in this
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fashion can have a major affect on the action a control system will take to achieve a goal.

In the case of this IMU example, the corrective action to resolve the tripped switch state

will not be executed if you base your control action solely on the most likely state.

Table 4.1: Results for Best-First Trajectory Enumeration
solution # source state target state probability % error

1 st
1 st+1

2 0.2471 0.0
2 st

2 st+1
1 0.2246 10.9

3 st
1 st+1

1 0.0275 89.1

This trajectory approximation is the basis for the Best-First Trajectory Enumeration

(BFTE)[16] estimation approach that is employed in Livingstone[21, 15], and previously

in Titan [20]. Pseudo code for BFTE is provided in Appendix B. As exhibited in the

example above, the trajectory approximation underestimates the true estimate probabil-

ity and can lead to misdiagnosis. Section 4.3 provides the first innovative contribution

of this thesis that eliminates this approximation and, furthermore, improves runtime

performance.

4.1.3 Observation Approximation

The precise observation probability distribution was previously given in Equation 3.4,

under the assumption that there is a uniform distribution across all consistent obser-

vation assignments for a given state. Computing the number of consistent observation

assignments is worst case exponential in the number of model variables. Static diagnosis

systems [6, 7] computed these assignments under the assumption that observations were

independent. However, this can lead to significant inaccuracy due to observation cou-

pling. To achieve real-time performance for online mode estimation, under impoverished

computational resources, Livingstone made the following approximation:

P(ot+1|st+1
j ) =











0 if st+1
j ∧M |= ¬ot+1,

1 otherwise.

(4.1)

Equation 4.1 states that the observation probability is 1 when the observations ot+1 are
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consistent with st+1
j ∧M and 0 when they are inconsistent. Since each solution x to an

OCSP formulation of BFTE must satisfy constraints C(y), the update step is implicitly

computed such that P(ot+1|x) is 1 when observations are consistent with C(y) and 0

otherwise. This results in an optimistic estimate that avoids searching the observation

state space.

Although this approximation is computationally beneficial, its overly optimistic prob-

ability estimate can significantly deteriorate diagnostic, over both the near-term and

long-term. Consider the exact single-step belief state update example for the IMU, illus-

trated again in Figure 4-4a. From this example, it is clear that the ordering of a priori

estimates is directly affected by the observation probabilities, where the most likely a

priori state st+1
3 gets shifted to third in the a posteriori ordering in Bt+1. Using Equa-

tion 4.1, the a priori ordering would hold (as seen in Figure 4-4b) since the observation

probability is 1 when the states are consistent with the observations2.
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Figure 4-4: IMU Plant using (a) exact HMM update and (b) approximate observation
probability update.

Table 4.2 lists the solutions from Figure 4-4b in order of approximate a posteriori

probability. These results are compared with the exact probability solutions provided in

Figure 4-4a and the percent error between the two is shown in the last column.

2Recall from Section 3.1.2 that states st+1
1 and st+1

2 in Figure 4-4 are inconsistent with M, regardless
of the observation assignments. As a result, neither state would be returned as a valid solution to the
OCSP, but they are still depicted in this example to illustrate the importance of correct observation
probabilites.
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Table 4.2: Results for Approximate Observation Probability Update
solution # target state exact probability approximate probability % error

1 st+1
3 0.1681 0.2521 49.9

2 st+1
1 0.3363 0.2521 25.0

3 st+1
4 0.1648 0.2471 49.9

From this example, it is clear that, not only does this observation probability approx-

imation result in incorrect state estimate ordering, it also introduces a large amount of

error in the state probabilities that are tracked over time. Section 4.4 of this chapter

extends Section 4.3 to include a tractable approach to computing the correct observation

probabilities and using them online during the most likely estimate search.

4.2 Best-First Solutions using OPSAT

Out of the three belief state update approximations that were just discussed in Sec-

tion 4.1, we will continue to use Approximation 1 and eliminate Approximations 2 and

3 using novel mode estimation techniques discussed in Sections 4.3 and 4.4, respectively.

This section reviews a method for efficiently generating best-first solutions to an OCSP

that we will use in order to benefit from Approximation 1.

The OCSP, first discussed in Section 3.2, extends constraint satisfaction problems to

optimization, by associating a utility with the assignments to decision variables. Mode

estimation is framed as a specific instance of an OCSP. Although the state space of

mode estimates is exponential in the number of components, Section 4.1.1 indicated that

the belief state can be reasonably approximated by tracking only a handful of the most

likely estimates. This section reviews OPSAT as an efficient OCSP solver that generates

solutions in best-first order [22, 18], such that the most likely solutions are generated

quickly.

4.2.1 Conflict-directed A∗

OPSAT is an OCSP solver based on Conflict-directed A∗ [22], which efficiently finds

solutions to an OCSP in best-first order, by interleaving candidate generation and test.
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OPSAT generates each leading candidate x by performing variable splitting guided by

A∗ search, and then tests the candidate for consistency against constraints C(y). If x

proves inconsistent, OPSAT summarizes the inconsistency (called a conflict) and uses this

summary to jump over other leading candidates that are similarly inconsistent. Pseudo

code for the top-level loop of Conflict-directed A∗ is provided in Algorithm 4.1.

Algorithm 4.1 Conflict-directed A∗(OCSP )

1: Conflicts[OCSP ] ← {}
2: OCSP ← Initialize-Best-Kernels(OCSP )
3: Solutions[OCSP ] ← {}
4: loop

5: decision-state← Next-Best-State-Resolving-Conflicts(OCSP )
6: if decision-state = ∅ or Terminate?(OCSP ) then

7: return Solutions[OCSP ]
8: if Consistent?(CSP[OCSP ], decision-state) then

9: add decision-state to Solutions[OCSP ]
10: else

11: new-conflicts← Extract-Conflicts(CSP[OCSP ], decision-state)
12: Conflicts[OCSP ] ← Eliminate-Redundant-Conflicts(Conflicts[OCSP ] ∪

new-conflicts)

After initializing, the main loop of Conflict-directed A∗ begins by calling

Next-Best-State-Resolving-Conflicts, which generates the next best valued can-

didate (full assignment to decision variables) that resolves all discovered conflicts. If the

candidate is found to be consistent with with constraints C(y), it is a valid solution and

added to the set of solutions to the OCSP. Otherwise, Extract-Conflicts generalizes

the inconsistency into one or more conflicts by using any CSP algorithm that is capable

of conflict extraction. The algorithm terminates when there is no next-best solution (the

search space has been exhausted) or when Terminate? is true (application specific). Af-

ter each loop, the new conflicts are then used by Next-Best-State-Resolving-Conflicts

(Algorithm 4.2) to avoid generating candidates are that are similarly inconsistent.

Next-Best-State-Resolving-Conflicts determines the next best valued candi-

date that is consistent with Conflicts[OCSP ] through the following two step process:

The best valued kernel is first generated with Next-Best-Kernel and then expanded
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Algorithm 4.2 Next-Best-State-Resolving-Conflicts(OCSP )

1: best-kernel ← Next-Best-Kernel(OCSP )
2: if best-kernel = ∅ then

3: return ∅
4: else

5: return Kernel-Best-State[OCSP](best-kernel)

into a candidate using Kernel-Best-State. A kernel is defined as a partial assign-

ment to decision variables that resolves all known conflicts. The kernel is expanded

into a candidate by choosing the best value assignments to the remaining decision vari-

ables. Both Next-Best-Kernel and Kernel-Best-State use traditional A∗ search to

quickly find the best valued solutions, but Next-Best-Kernel searches over conflicts

and Kernel-Best-State searches over all possible assignments to the remaining deci-

sion variables that were not assigned in the kernel. The difference between Best-First

Trajectory Enumeration (used in previous approaches to mode estimation) and Best-

First Belief State Enumeration (presented in this thesis) resides in the specification of

the heuristic function that guides these A∗ searches [16].

4.2.2 Estimation using OPSAT

By solving the estimation problem as an OCSP using OPSAT, each estimate in an ap-

proximate belief state is enumerated in best-first order. As in previous mode estimation

approaches, we will take advantage of OPSAT to reduce the exponential number of pos-

sible states to the k most likely. The decision variables x are the set of mode variables

Πm and the constraints C(y) restrict mode variable assignments (xa = v′
a) to those

that are consistent with observations ot+1, modal constraints Ma(xa = v′
a), and compo-

nent interconnections Q. For the exact PCCA estimation problem that was framed as

an OCSP on Page 36, the utility function f(x) is the HMM belief state update equa-

tions. In order to guarantee optimality and efficiently guide the Next-Best-Kernel and

Kernel-Best-State A∗ searches of Conflict-directed A∗, an admissible heuristic with a

tight optimistic bound must be specified. In the remainder of this section, we will pro-

vide a simple IMU system example using the same heuristic that was previously used in
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Best-First Trajectory Enumeration. Section 4.3 eliminates the trajectory approximation

by specifying an admissible heuristic based on the HMM propagation equation.

4.2.3 Example: Most Likely Trajectory for the IMU System

Consider the problem of calculating the most likely trajectory out of a single initial state.

In this scenario, the OCSP formulation of the PCCA estimation problem is identical to

that of Algorithm 3.1 except the utility function is simplified to the state trajectory

equation (shown again in Equation 4.2) when there is only a single state transition into

the next state. Since all the component transitions are probabilistically independent, this

equation can be split into an admissible heuristic as seen in Equation 4.3.

f(st+1
j ) =

∏

(xt+1
a =v′a)∈st+1

j

(

P(xt+1
a = v′a | x

t
a = va, s

t
i, µ

t)
)

·P(st
i | o

<0,t>, µ<0,t−1>) (4.2)

f(n) =



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
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















(4.3)

The n in Equation 4.3 denotes a node in the search space and consists of a partial

assignment to decision variables. The first product is the uniform-cost heuristic and

represents the exact utility of the current assignments in n. The second product in

Equation 4.3 is the greedy heuristic and represents an optimistic guess at the best value

to the remaining decision variables. The heuristic is admissible because f(n) ≥ f(st+1
j )

due to maximizing each independent component transition probability that is not in n.

Conflict-directed A∗ search is guided by this heuristic in order to quickly identify the

most likely trajectory.

As an example of generating the most likely trajectory using Conflict-directed A∗,

consider when the IMU is Off, the Power Switch is Open, and the Timer is Idle with 100%

certainty (upper-left of Figure 4-5). Assuming that there are no commands issued and

nominal observations received, the kernel produced by Next-Best-Kernel is the empty
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set since there are no conflicts. Kernel-Best-State is then used to search through the

most likely mode assignments using A∗ to find the next most likely state (Figure 4-5).
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Figure 4-5: Single Trajectory Enumeration for the IMU Plant.

In this simple example, A∗ searches over all the mode variables in the IMU Plant.

The dark squares denote nodes that are currently in the A∗ queue and the light squares

denote nodes that have been popped off the queue and expanded. The search begins by

expanding out the root node and adding all the reachable IMU mode assignments to the

A∗ priority queue. The heuristic function, defined in Equation 4.3, is used to calculate the

utility of each node. For example, the uniform-cost heuristic for {ximu = in} is (0.4995)

and the greedy heuristic is (0.8995 · 0.9999), resulting in a (0.4995) · (0.8995 · 0.9999) =

0.4493 utility value. This is an optimistic value since an unforeseen conflict may rule out

the nominal transitions of the Power Switch and Timer when the candidate is checked

for consistency. The A∗ search continues by popping the best valued node off the queue

and expanding its children in a similar manner. The final solution for this example is

{ximu = of, xps = op, xt = id} with state trajectory probability 0.4493. Generating the

next-best solution is simply a matter of continuing this conflict-directed search.

This simple example has illustrated the use of OPSAT for the purpose of most likely

trajectory enumeration, given a single initial state. Previous monitoring and fault diagno-

sis approaches have used the Best-First Trajectory Enumeration (BFTE) [16] technique

to track multiple trajectories in an approximate belief state. BFTE specified the same
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search heuristic defined in Equation 4.3, but used k OCSPs (one for each state in the B̃t)

in order to find the most likely trajectories out of each initial state, and compared them

to determine the k most likely trajectories overall. Pseudo code for BFTE is provided

in Appendix B. The next section specifies a novel heuristic that is based on the HMM

propagate equation, eliminating Approximation 2 and enabling the estimation problem

to be framed as a single OCSP.

4.3 Best-First Belief State Enumeration

The previous two sections of this chapter discussed the three major approximations that

have been used in mode estimation and reviewed OPSAT as an efficient way of generating

estimates in best-first order. This section presents a novel mode estimation technique,

call Best-First Belief State Enumeration (BFBSE), that expands estimates in best-first

order using a search heuristic based directly on the HMM propagate equation, eliminating

Approximation 2. Although this technique still approximates the belief state by enumer-

ating only the k best estimates, BFBSE provides a more compact representation of the

belief state that avoids expanding the Trellis structure into a branching tree, resulting

in increased estimator accuracy. In addition, this compact representation enables PCCA

estimation to be framed as a single OCSP, increasing the estimator runtime performance

and reducing heap memory usage. Pseudo code for BFBSE is presented in Algorithm 4.3.

BFBSE is similar to Algorithm 3.1 that solved the exact PCCA estimation problem,

except BFBSE only maintains the k most likely estimates (Approximation 1) and leaves

out the HMM update equation (Approximation 3), such that the observation probabil-

ity is 1.0 when the observations are consistent with st+1
j ∧ M and 0.0 when they are

inconsistent.

4.3.1 BFBSE Heuristic Function

In order for OPSAT to enumerate states in best-first order, an admissible heuristic must

be specified for the OCSP utility function in BFBSE. Recall that the HMM propagation
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Algorithm 4.3 BFBSE(P, B̃t, µt, ot+1)

1: Setup the OCSP 〈y, f, C〉:

• The vector x includes a decision variable xa for each component of the plant, whose domain D(xa) is the
set of modes that are reachable from any current state st

i ∈ S̃t. For all st
i ∈ S̃t, the target mode for each

transition (xa = v′a) = τa(xa = va, ga) whose source (xa = va) ∈ st
i and guard ga are satisfied by Ct

M
∧st

i∧µt

is considered reachable, such that v′a ∈ D(xa). Ct
M = Q ∧ (∧(xa=va)∈st

i

Ma(xa = va)).

• The utility function f(x) is the prior probability of next state x. More precisely, f(x) = Σ
st

i
∈S̃tP(x |

st
i, µ

t) · pt(si), where P(x | st
i, µ

t) =Π(xa=v′

a
)∈xP(xa = v′a | xa = va, st

i, µ
t) and pt(si) is the posterior

probability for state st
i.

• C(y) encodes the constraint that x∧CMx ∧ot+1 must be consistent. CMx = Q∧(∧(xa=v′

a
)∈x

Ma(xa = v′a)).

2: Compute the k most likely solutions S̃t+1 = {x1, . . . ,xk} to OCSP〈y, f, C〉 in best-
first order using OPSAT.

3: Extract the normalized posterior state estimate probabilities, such that pt+1(sj) =
f(sj)/

∑

si∈S̃t+1 f(si) for all k solutions sj ∈ S̃t+1.

4: return the k most likely state estimates contained by B̃t+1 = 〈S̃t+1, pt+1〉.

equation (shown again in Equation 4.4) is used directly as the BFBSE utility function.

P(st+1
j |o<0,t>, µ<0,t>) =

∑

st
i∈S̃t







∏

(xt+1
a =v′a)∈st+1

j

(

P(xt+1
a = v′a | x

t
a = va, s

t
i, µ

t)
)

P(st
i|o

<0,t>, µ<0,t−1>)







(4.4)

f(n) =

∑

st
i∈S̃t

















∏

(xt+1
g =v′g)∈n

(

P(xt+1
g = v′g | x

t
g = vg, s

t
i, µ

t)
)

·

∏

(xt+1
h

=v′
h
)/∈n

max
v′

h
∈D(xh)

(

P(xt+1
h = v′h | x

t
h = vh, st

i, µ
t)
)

·

P(st
i|o

<0,t>, µ<0,t−1>)

















(4.5)

The BFBSE heuristic function (Equation 4.5) is derived by decomposing the HMM

propagate equation into a uniform-cost heuristic and a greedy heuristic, similar to how

the state trajectory equation was split in the BFTE heuristic (Equation 4.3). Leveraging

on the independent component transition assumption, the state transition probabilities

are broken into a uniform-cost heuristic that represents the exact utility of the current

assignments in n, and a greedy heuristic that represents an optimistic guess at the best
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value to the remaining decision variables. The difference between the BFBSE heuristic

and the BFTE heuristic is the summation across all incoming transitions from source

states S̃t that BFBSE uses to increase the accuracy of the estimate probabilities. It is

important to note that the assignment made to a particular component xt+1
h in the greedy

heuristic might differ between incoming trajectories due to different source states S̃t that

can affect the “max” computation. This is important in order to guarantee that heuristic

is admissible without spending an absorbent amount of time computing the heuristic.

4.3.2 Example: BFBSE for the IMU Plant

As an example of how to execute BFBSE online, consider the same IMU Plant scenario

that was originally introduced in Section 3.1.2 on Page 32. There are two initial states,

{ximu = of, xps = op, xt = id} with probability 0.55 and {ximu = of, xps = to, xt = id}

with probability 0.45, and we assume that there are no commands issued and only nominal

observations received. The propagation and normalization performed by BFBSE when

tracking 2 estimates is illustrated in Figure 4-6 with the inconsistent states preemptively

removed. All the enabled transitions for this scenario are displayed again in Table 4.3

below.

tB 1+ɶ

IMU=of
PS=op

T=id

(0.4995)(0.1)(0.9999)

(0.4995)(0.9995)(0.9999)

IMU=of

PS=to
T=id

IMU=of

PS=to
T=id

IMU=un
PS=to

T=id

IMU=un

PS=op
T=id

tBɶ

1
ts

2

ts
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0.0005

0.0005
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0.45
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+
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+
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+

ts 1

4

+
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PS=op
T=id

(0.4995)(0.8995)(0.9999)

IMU=of

PS=to
T=id
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0.4950

ts 1

1

+

ts 1
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+
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PS=op
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normalize

Figure 4-6: Best-First Belief State Enumeration for the IMU Plant.

The Conflict-directed A∗ search is performed in the same way as the most likely tra-

jectory example in Section 4.2.3. The only difference is in the BFBSE heuristic function

defined in Equation 4.5. In order to generate the 2 most likely estimates in B̃t+1, we
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Table 4.3: Enabled Component Transitions for the IMU Plant, P

st (ximu = vimu) gimu Timu PTimu

st
1 ximu = of (unconstrained) {of, in, un} {0.4995, 0.4995, 0.001}

st
2 ximu = of (unconstrained) {of, in, un} {0.4995, 0.4995, 0.001}

st (xps = vps) gps Tps PTps

st
1 xps = op ¬(µcmd

ps = close) {op, to, un} {0.8995, 0.1, 0.0005}
st
2 xps = to ¬(µcmd

ps = open) {to, un} {0.9995, 0.0005}

st (xt = vt) gt Tt PTt

st
1 xt = id ¬(dim

t = in) {id, un} {0.9999, 0.0001}
st
2 xt = id ¬(dim

t = in) {id, un} {0.9999, 0.0001}

begin by expanding out the root node, as seen in Figure 4-7.

{ }

imux of0.4717{ }= imux in0.4717{ }=
imux un0.0009{ }=

Figure 4-7: Iteration 1 BFBSE expansion for the IMU Plant.

Once again, all the reachable modes for the IMU are expanded and placed in the

A∗ priority queue. The utility associated with each node represents the highest possi-

ble probability that could result when assignments are made to the remaining decision

variables. Since the utility is an optimistic guess, the heuristic is admissible and guar-

antees that the solutions returned by A∗ are optimal. The heuristic calculation for the

{ximu = of} node are shown below:

f(ximu = of) = (P(ximu = of |ximu = of)) (P(xps = op|xps = op)P(xt = id|xt = id)) p(st
1)

+ (P(ximu = of |ximu = of)) (P(xps = to|xps = to)P(xt = id|xt = id)) p(st
2)

= (0.4995)(0.8995 · 0.9999)(0.55) + (0.4995)(0.9995 · 0.9999)(0.45)

= 0.4717

As mentioned above, the target mode assignment for any particular mode variable

may not match for each incoming state transition. For the {ximu = of} node, the
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maximum component transition probability for the Power Switch was into the Open mode

in the first state transition and Tripped Open in the second state transition. Although

these two component transitions cannot combine into a single state, the heuristic allows

for quick computation that is admissible and provides a tight upper bound. The heuristic

is exact if all the maximum probability component transitions lead to the same target

mode.

{ }

imux of0.4717{ }= imux in0.4717{ }=
imux un0.0009{ }=

imu psx of x op0.2471{ , }= =
imu psx of x to0.2521{ , }= = imu psx of x un0.0003{ , }= =

Figure 4-8: Iteration 2 BFBSE expansion for the IMU Plant.

Iteration 2 of the BFBSE Conflict-directed A∗ search, shown in Figure 4-8, begins

by popping off the best value node in the queue and expands its children. In this case,

{ximu = of} and {ximu = in} are equally likely so either is valid. Since the second layer

of the tree assigns a value to the Power Switch, the heuristic calculation is bound to

evaluating that specific transition probability and no longer takes the maximum Power

Switch transition probability. The heuristic computation for the {ximu = of, xps = to}

node is shown below:

f(ximu = of, xps = to) = (P(ximu = of |ximu = of)P(xps = to|xps = op)) (P(xt = id|xt = id)) p(st
1)

+ (P(ximu = of |ximu = of)P(xps = to|xps = to)) (P(xt = id|xt = id)) p(st
2)

= (0.4995 · 0.1)(0.9999)(0.55) + (0.4995 · 0.9995)(0.9999)(0.45)

= 0.2521

In Iteration 3, the best cost node is {ximu = in} from the first layer in the search

tree with a utility of 0.4717. This node is then expanded in a similar fashion; adding all

the new children and computing their utility. Figure 4-9 illustrates this new expansion

and hides the children of {ximu = of} for readability. In this scenario, the children of
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{ }

imux of0.4717{ }= imux in0.4717{ }=
imux un0.0009{ }=

imu psx in x op0.2471{ , }= =
imu psx in x to0.2521{ , }= = imu psx in x un0.0003{ , }= =

Figure 4-9: Iteration 3 BFBSE expansion for the IMU Plant.

{ximu = of} and {ximu = in} happen to have the same values and assignments to the

remaining modes. As a result, there is another tie between {ximu = of, xps = to} and

{ximu = in, xps = to} in Iteration 4. We again chose to expand the furthest left node to

resolve the tie.

{ }

imux of0.4717{ }= imux in0.4717{ }=
imux un0.0009{ }=

imu psx of x op0.2471{ , }= =
imu psx of x to0.2521{ , }= = imu psx of x un0.0003{ , }= =

imu ps tx of x op x id0.2471{ , , }= = =
imu ps tx of x to x un0.00003{ , , }= = =

Figure 4-10: Iteration 4 BFBSE expansion for the IMU Plant.

After Iteration 4 (Figure 4-10), both {ximu = of, xps = to, xt = id} and {ximu =

in, xps = to} nodes have the same utility of 0.2471. The far left node is again chosen

and expanded in Iteration 5. At this point, {ximu = of, xps = to, xt = id} has no more

children, so it is returned by Kernel-Best-State as a candidate. Once Consistent?

has determined that this candidate is in fact consistent, it is then added to the list of

solutions to the OCSP. Recalling Figure 4-6, {ximu = of, xps = to, xt = id} was correctly

evaluated as the most likely consistent state in B̃t+1. This Conflict-directed A∗ search

would continue until 2 solutions are found (since we are tracking 2 states) or the search

space has been exhausted.
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This section has introduced Best-First Belief State Enumeration as an approximate

mode estimation technique that uses the HMM propagation equation directly as its utility

function, eliminating Approximation 2. This allows for a more compact representation

of the belief state evolution and increases estimator accuracy. In addition, this approach

allows PCCA estimation to be framed as a single OCSP, which improves estimator run-

time performance and heap memory usage. A complexity analysis and empirical results

for BFBSE are provided in Chapter 5.

Although BFBSE is capable of providing increased accuracy and performance, it still

relies on Approximation 3, which avoids computing the correct observation probabilities.

The next section provides a tractable approach to computing the observation probabilities

offline and compiling all possible combinations of observation probabilities into a compact

representation that can be used online with efficient triggering techniques.

4.4 Best-First Belief State Update

This chapter began by identifying the three common assumptions that have been used by

traditional monitoring and fault diagnosis approaches in order to meet the performance

margins required by embedded systems. We continue to leverage Approximation 1 in or-

der to reduce the PCCA estimation problem to the task of enumerating the k most likely

states in an approximate belief state, without significant loss in estimator accuracy. Sec-

tion 4.3 eliminated Approximation 2 by directly using the HMM propagation equation as

the OCSP utility function. This section focuses on an innovative approach to calculating

the correct observation probability distribution, in order to eliminate Approximation 3.

We incorporate the correct observation probabilities within BFBSE to provide a new

mode estimation technique, called Best-First Belief State Update (BFBSU) that uses the

full two-stage HMM belief state update equations as its utility function, further increas-

ing estimator accuracy. Although this technique requires additional computation, the

observation probabilities can be used to tighten the bound on the A∗ heuristic and pro-

vide enhanced guidance through the search space. Empirical results in Chapter 5 show

that, under certain conditions, BFBSU will outperform BFBSE in time and memory.
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For PCCA, a belief state is computed using the standard HMM belief state update

equations. This requires a priori knowledge of conditional observation probabilities, as

previously shown in Equation 3.2 on Page 29. The constraint-based observation proba-

bility distribution was first defined in GDE [6], and presented again here in Equation 3.4

on Page 31, but is difficult to calculate due to the large state space of sensory ob-

servations and component modes. As a result, GDE and Sherlock assumed that each

observation was independent of each other, simplifying the observation probability to

P(ot+1|st+1
j ) =

∏

oi∈ot+1 P(oi|s
t+1
j ). In addition, if the single observation assignment oi

was not entailed or refuted, GDE and Sherlock approximated the 1/m distribution by

fixing the value of m to |D(oi)|, regardless of the specific mode assignments.

Livingstone [21, 15] simplified the observation probability distribution further by as-

suming the observation probability is 1 or 0, depending on if the observation is simply

consistent or inconsistent with the next mode assignment. For a failure mode with one

or more consistent observations, the total observation probability density is incorrectly

≥ 1 and results in a probabilistic bias toward the failure mode, eventually leading to an

incorrect fault diagnosis. Recall the IMU Plant example in Figure 4-4 on Page 44. This

example shows that incorrectly computing the observation probability can significantly

discount the posterior state probability to the extent that the estimator no longer tracks

the state as a likely hypothesis.

Our approach eliminates the observation probability approximation (Approxima-

tion 3) by counting the number of consistent observations for a candidate mode as-

signment, while maintaining the overall computational efficiency required for real-time

mode estimation, through the following two-step process: We begin with offline genera-

tion of a compact set of observation probability rules (OPRs) that map system state to

observation probabilities. Each OPR represents an entry within a conditional probability

table (CPT), where the maximum size of table is the state space of the mode variables

that the OPR is dependent on. During each online estimation cycle, the appropriate

OPRs are quickly looked up in the CPT and used to compute the full HMM belief state

update equations.
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4.4.1 Observation Probability Rules

We first define the observation probability rule (OPR), in general, and then describe

how we can leverage from the OCSP formulation and PCCA structure in order to create

a compact representation of all the rules necessary to compute the precise observation

probability distribution that was defined in Equation 3.4. Compactness is essential for

BFBSU in order to be scalable to full-sized systems.

Definition 4.1. An Observation Probability Rule is a direct mapping from a partial state

assignment x̄ ∈ Σx to the observation probability associated with the partial assignment

ō ∈ Σo given assignment x̄, such that x̄ ⇒ P(ō | x̄). The set of partial assignments

Σx = Σm⇓x is the projection of Σm onto x ⊆ Πm and Σo = Σo⇓o is the projection of Σo

onto o ⊆ Πo.

Each OPR states that for a partial assignment to mode variables x̄, there is a specific

observation probability P(ō | x̄), regardless of the actual partial observation assignment

ō. As an example, one OPR for the IMU Plant is {ximu = of} ⇒ 1/2 since the data

valid flag odv
imu can be true or false when the IMU is Off. There are two assumptions that

make this claim legitimate: Given the PCCA observation probability distribution defined

in Equation 3.4, and displayed again here in Equation 4.6, there is a uniform probability

distribution across all observations that are consistent with st+1
j ∧M. In other words, the

observation probability is the same regardless of the particular observation assignment.

In the case where the observation is inconsistent with st+1
j ∧M, the probability is zero and

the uniform generalization does not hold. Fortunately, since we have framed estimation

as an OCSP, OPSAT will automatically determine the candidate to be inconsistent and

discard it. Due to the uniform probability distribution across all consistent observations

and OPSAT discarding inconsistent assignments, the precise observation probability can

be specified using OPRs.
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P(ot+1|st+1
j ) =











1 if st+1
j ∧M |= ot+1,

0 if st+1
j ∧M |= ¬ot+1,

1/m otherwise,

where m = number of consistent assignments to ot+1 for st+1
j and M.

(4.6)

One approach to using OPRs is to have a single rule for each combination of full

assignments to mode variables x̄ ∈ Σm. In this brute force approach, the number of

OPRs is exponential in the number of components and is obviously intractable for large

systems. More precisely, the maximum number of OPRs is
∏

xa∈Πm |D(xa)|. This problem

is exacerbated by the NP-hard task of determining how many consistent observations

there are for a given state when calculating the probability associated with each rule.

Fortunately, the number of OPRs can be greatly reduced by leveraging our OCSP

formulation as well as the sparse interconnections between different modes and obser-

vations. The simple reduction comes from recognising that the candidate solutions to

the OCSP used in BFTE and BFBSE have an intrinsic observation probability of 0 or

1, depending on if the candidate is inconsistent or consistent, respectively. For example,

if a candidate is found to be inconsistent, it is removed from the list of possible solu-

tions. This is equivalent to assigning an observation probability of zero. Likewise, if the

candidate is consistent, its utility value remains unchanged as if applying an observation

probability of one. Since the 0 and 1 probability values are already provided in OCSP so-

lutions, any OPRs that map to a probability of 0 or 1 are superfluous and can be deleted.

A more substantial reduction in the number of OPRs comes from a divide-and-conquer

approach that decomposes the OPR state space, by identifying which observation vari-

ables are dependent on which components. This is done by calculating a dependency

hypergraph between observation variables and mode variables. Since the majority of

sensory observations are only dependent on a small subset of all possible components,

the number of OPRs is greatly reduced. For example, if all the observation variables were

only dependent on xa, the precise number of OPRs is reduced to |D(xa)|. Using these

two reduction techniques, the maximum number of OPRs for the IMU Plant is reduced
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from 5 · 4 · 4 = 80 to the 4 shown below. In a larger model of a Mars Entry Decent and

Landing (EDL) subsystem [13], with 10 mode variables, the number of OPRs is reduced

from 1, 458, 000 to 307. The use of the OPRs during online best-first estimate search is

described in Section 4.4.3.

{ximu = of} ⇒ 1/2, {ximu = un} ⇒ 1/2,

{xt = id} ⇒ 1/2, {xt = un} ⇒ 1/2.

4.4.2 Offline Generation of Observation Probability Rules

Now that we have defined an OPR and provided some intuition on how the set of OPRs

can be compactly represented, this section describes how the OPRs are generated offline.

This process includes enumerating all relevant rules within a conditional probability table

and computing their precise observation probability, by counting the number of consistent

observation assignments.

The observation probability rules are quickly identified from a set of dissents (diag-

nosis rules) that are generated during offline model compilation [8, 4]. A dissent is a

mapping from a partial assignment to observation variables to a conflict. Given a set of

observations, the primary purpose of dissents is to quickly identify all conflicts through

rule triggering, before performing Conflict-directed A∗ search, instead of “discovering”

conflicts online using an exponential satisfiability engine.

Definition 4.2. A dissent is a mapping from a minimal partial assignment to observa-

tion variables ō to a conflict x̄, such that ō ⇒ ¬(x̄). A conflict x̄ is a minimal partial

assignment to mode variables that is inconsistent with ō ∧M(x̄) ∧Q.

Intuitively, the dissent declares that if observations ō have been received, x̄ is incon-

sistent and cannot be true. Dissents are useful for the purpose of generating OPRs, since

they implicitly specify which combinations of observations are inconsistent with which

mode variable assignments. We determine the compact set of OPRs as well as the obser-

vation probability associated with each rule using the following four step process: (1) We
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begin by constructing a hypergraph based on the dependencies between observation vari-

ables and mode variables, using all the dissents in the compiled model. We then separate

the hypergraph into maximally connected subgraphs. (2) Conditional probability tables

(CPTs) are created for each subset of mode variables x contained by the subgraphs,

where each element of the CPT is an OPR. (3) We then compute the maximum number

of consistent observation assignments for each OPR by simply calculating the state space

of o, and subtract the maximum number of consistent observations by the number of

inconsistent observations, using the dissents. The uniform 1/m conditional observation

probability P(ō | x̄) is the inverse of the remaining number of consistent observations

m. Finally, (4) we remove all the OPRs in the conditional probability table that have a

probability of 0 or 1. The top-level pseudo code is provided in Algorithm 4.4.

Algorithm 4.4 Generate-OPRs(dissents)

1: dh← Create-OPR-Dependency-Hypergraph(dissents)
2: cpts← Extract-CPTs-from-Dependency-Hypergraph(dh)
3: for all opr ∈ cpts do

4: max-num-consistent← Compute-Max-Consistent(opr)
5: num-consistent← max-num-consistent− Num-Inconsistent(opr, dissents)
6: opr probability ← 1/num-consistent
7: if opr probability = 0 or opr probability = 1 then

8: remove opr from cpts
9: return oprs

Create-OPR-Dependency-Hypergraph computes a dependency hypergraph by plac-

ing virtual edges between each observation and mode variable o∪x in each dissent. This

connects together all observation and mode variables that are dependent on one another.

As an example, consider all the relevant dissents for the IMU plant shown below3:

(odv
imu = true)⇒ ¬(ximu = in) (oal

t = tripped)⇒ ¬(xt = ru)

(odv
imu = true)⇒ ¬(ximu = si) (oal

t = not-tripped)⇒ ¬(xt = ex)

(odv
imu = false)⇒ ¬(ximu = me)

3Dissents are only relevant to OPR generation if o* 6= {}. In the case where o* = {}, the dis-
sent indicates mutually inconsistent mode assignments but provides no information about observation
probabilities. The complete list of dissents for the compiled IMU Plant are provided in Appendix A.3.
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Starting with this set of dissents, we use Create-OPR-Dependency-Hypergraph to

compute a dependency hypergraph by iterating through each dissent, placing edges be-

tween each observation and mode variables in o ∪ x across all dissents. In this simple

example, there are only two hyperedges that link ximu to odv
imu and xt to oal

t , as shown in

Figure 4-11. The subgraph on the left of Figure 4-11 was created by linking the obser-

vations variables and mode variables of the three dissents listed above on the left. The

right subgraph was generated using the other two dissents above.

imu
x

t
x

dv

imu
o

al

t
o

Figure 4-11: Observation probability rule dependency hypergraph for the IMU Plant.

Based on this dependency hypergraph, we can create a set of CPTs using

Extract-CPTs-from-Dependency-Hypergraph. In general, this task consists of tak-

ing the cross product of all assignments to mode variables in each maximally connected

subgraph. The OPRs in each CPT are used compute the observation probability for the

subset of observation variables that were connected in the subgraph. Since the OPR

antecedents in each CPT are mutually exclusive, only one OPR from each CPT can

be triggered at once. In this example, there are two maximally connected subgraphs

and each subgraph only has one mode variable. Thus, the number of OPRs is just

|D(ximu)| + |D(xt)| = 9 since there are two separate CPTs. In the worst case, all of the

observation variables would be dependent on all of the mode variables, resulting in one

CPT of size
∏

xa∈Πm |D(xa)|.

Recall that the maximum number of consistent observation assignments for each OPR

is Σo, where o is the set of all observation variables for the CPT that contains the OPR.

More precisely, Compute-Max-Consistent will return
∏

oi∈o |D(oi)|. In this example,

the maximum number of consistent observation assignments is 2 for all OPRs, since the

domain size of odv
imu and oal

t are both 2.

We compute Num-Inconsistent, by counting the inconsistent observation assign-
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ments provided by the dissents. The easiest approach to counting the number of incon-

sistent observations for each OPR is to start with a list that enumerates all observation

assignments L = ΣoO , where oO is the set of all observation variables that the OPR is

computing the probability for, and assume that they are all consistent. For each relevant

dissent we mark each element in L as being inconsistent, if oD ⊆ oO. A relevant dissent

contains the same mode variables xO, as the antecedent of the OPR, such that xD ⊆ xO,

where xD denotes the conflict variables in the dissent. We then simply count all the ele-

ments in L marked inconsistent and subtract it from the maximum number of consistent

observations. For this simple example, all we do is subtract 1 inconsistent observation as-

signment from the maximum of 2 consistent assignments for each OPR that corresponds

to an IMU Plant dissent. The inverse of the number of consistent observations is the

observation probability. The results are shown below:

(ximu = of)⇒
1

2
(xt = id)⇒

1

2

(ximu = in)⇒ 1 (xt = ru)⇒ 1

(ximu = me)⇒ 1 (xt = ex)⇒ 1

(ximu = si)⇒ 1 (xt = un)⇒
1

2

(ximu = un)⇒
1

2

Recalling that the OPRs that result in an observation probability of 0 or 1 are super-

fluous, the list of essential OPRs can be reduced to the following 4:

(ximu = of)⇒
1

2
(xt = id)⇒

1

2

(ximu = un)⇒
1

2
(xt = un)⇒

1

2

Since the observation probabilities in each CPT is independent of the observations

in other CPTs and each OPR in a CPT is mutually exclusive, the total observation

probability is the product of the triggered rules. These rules are triggered online when

the OPR implicant is entailed. For example, the observation probability for {ximu =

of, xps = op, xt = id} is 1
2
· 1

2
= 1

4
.
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There are other solutions to computing the number of consistent observations that

are more elegant and require less offline computation. One such method is to use the

observation assignments, for each relevant dissent, as a constituent kernel, and solve for

the kernels by computing the minimal set covering. This process is similar to candidate

generation introduced in GDE [6]. From the kernels, it is easy to compute all the ex-

tensions as all possible inconsistent observations. A second approach is to take the same

inconsistent observation assignments from the relevant dissents and place them into a

Binary Decision Diagram (BDD) [2]. Using the BDD formulation, it is easy to compute

the total number of inconsistent observations by calling Satisfy-count within the BDD

package. This operation has a time complexity of O(|G|), where |G| is the number of

vertices in the BDD. The number of vertices is worst case exponential.

4.4.3 Online BFBSU using Observation Probability Rules

Although computing the observation probability distribution is exponential in the size

of the largest hypergraph component, we retain real-time performance by shifting this

computation offline. This reduces the exponential satisfiability computation to the linear

process of online rule triggering [4]. Accuracy of online mode estimation is increased by

extending BFBSE of Section 4.3 to efficiently compute the estimate probabilities directly

from the complete HMM belief state update equations during its conflict-directed search.

Pseudo code for this novel mode estimation technique, called Best-First Belief State

Update (BFBSU), is provided in Algorithm 4.5.

It is important to note that the BFBSU OCSP formulation is nearly identical to

the exact PCCA estimation formulation on Page 36, except that we only track the k

most likely estimates in an approximate belief state B̃. This formulation has eliminated

both Approximations 2 (using the HMM propagation equation) and 3 (using the HMM

update equation), described in Section 4.1, to provide a highly accurate approximate

mode estimation capability. BFBSU is an improvement over BFBSE because, in addition

to using the HMM propagation equation (Equation 3.1), BFBSU also folds in the HMM

update equation (Equation 3.2) directly into its utility function. A tractable approach
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Algorithm 4.5 BFBSU(P, B̃t, µt, ot+1)

1: Setup the OCSP 〈y, f, C〉:

• The vector x includes a decision variable xa for each component of the plant, whose domain D(xa) is the
set of modes that are reachable from any current state st

i ∈ S̃t. For all st
i ∈ S̃t, the target mode for each

transition (xa = v′a) = τa(xa = va, ga) whose source (xa = va) ∈ st
i and guard ga are satisfied by Ct

M
∧st

i∧µt

is considered reachable, such that v′a ∈ D(xa). Ct
M = Q ∧ (∧(xa=va)∈st

i

Ma(xa = va)).

• The utility function f(x) is the posterior probability of next state x. More precisely, f(x) =�
Σst

i
∈StP(x | st

i, µ
t) · pt(si)

�
· P(ot+1 | x), where P(x | st

i, µ
t) =Π(xa=v′

a
)∈xP(xa = v′a | xa = va, st

i, µ
t),

pt(si) is the posterior probability for state st
i, and P(ot+1 | x) is the observation probability for x.

• C(y) encodes the constraint that x∧CMx ∧ot+1 must be consistent. CMx = Q∧(∧(xa=v′

a
)∈x

Ma(xa = v′a)).

2: Compute the k most likely solutions S̃t+1 = {x1, . . . ,xk} to OCSP〈y, f, C〉 in best-
first order using OPSAT.

3: Extract the normalized posterior state estimate probabilities, such that pt+1(sj) =
f(sj)/

∑

si∈S̃t+1 f(si) for all k solutions sj ∈ S̃t+1.

4: return the k most likely state estimates contained by B̃t+1 = 〈S̃t+1, pt+1〉.

to generating a compact set of observation probability rules was presented earlier in this

section in order to provide fast online heuristic computation. The heuristic function for

the BFBSU Conflict-directed A∗ search is provided in Equation 4.8 below:

P(st+1
j |o<0,t+1>, µ<0,t>) =

∑

st
i∈S̃t







∏

(xt+1
a =v′a)∈st+1

j

(

P(xt+1
a = v′a | x

t
a = va, s

t
i, µ

t)
)

·

P(st
i|o

<0,t>, µ<0,t−1>)






P(ot+1 | st+1

j ) (4.7)

f(n) =

∑

st
i∈S̃t

















∏

(xt+1
g =v′g)∈n

(

P(xt+1
g = v′g | x

t
g = vg, s

t
i, µ

t)
)

·

∏

(xt+1
h

=v′
h
)/∈n

max
v′

h
∈D(xh)

(

P(xt+1
h = v′h | x

t
h = vh, st

i, µ
t)
)

·

P(st
i|o

<0,t>, µ<0,t−1>)

















P(ot+1 | n)
(4.8)

Equation 4.7 is the combined form of the HMM belief state update equations without

the normalization factor in the update step. The BFBSU heuristic function (Equa-

tion 4.8) is the same HMM belief state update equation, but factored into a uniform-cost
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heuristic and a greedy heuristic in the same way BFBSE was factored.

The innovation in BFBSU is the addition of the observation probability as part of

the OCSP utility function, as well as the heuristic function that will help guide the A∗

search towards the most likely estimate. As A∗ explores deeper into the search tree, more

mode assignments will be made and will trigger an increasing number of OPRs. These

observation probabilities will tighten the heuristic value for the mode assignment as the

search gets closer to finding a full candidate assignment. A tight bound on the heuristic

function is important because it prevents the search from enumerating highly sub-optimal

assignments. P(ot+1 | n) represents an optimistic estimate of the observation probability

for the partial assignment to mode variables n. Since the observation probability is 1

until an OPR specifies otherwise, P(ot+1 | n) ≥ P(ot+1 | c∗), where c∗ is the optimal

extension to n. Hence, the new heuristic function is admissible.

4.4.4 Example: BFBSU for the IMU Plant

BFBSU is demonstrated using the same IMU Plant scenario that was originally intro-

duced in Figure 3-2 on Page 32 and also used in the BFBSE example in Section 4.3.2

of this chapter. This scenario is illustrated again in Figure 4-12 with the update step

separated into an observation probability update, followed by normalization, as specified

by the OCSP used in BFBSU.
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Figure 4-12: Best-First Belief State Update for the IMU Plant.

The best-first Conflict-directed A∗ search of BFBSU is nearly identical to that of
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BFBSE, except for the additional observation probability in the heuristic function. Fig-

ure 4-13 begins the search by expanding the root node, calculating the heuristic values

to all of the root’s children, and placing them onto the A∗ priority queue.

{ }

imux of0.2359{ }= imux in0.4717{ }=
imux un0.0005{ }=

Figure 4-13: Iteration 1 BFBSU expansion for the IMU Plant.

Notice that the utility values for the Layer 1 nodes are significantly different from the

utility values computed for Layer 1 of the BFBSE search (Figure 4-7). Recall from the

previous section that there were two OPRs for the IMU mode variable: (ximu = of)⇒ 1
2

and (ximu = un) ⇒ 1
2
. Since the node {ximu = of} assigns the Off value to the IMU

mode, the (ximu = of) ⇒ 1
2

rule is entailed and fired. The precise heuristic calculation

is shown below:

f(ximu = of) =

(

(P(ximu = of |ximu = of)) (P(xps = op|xps = op)P(xt = id|xt = id)) p(st
1)

+ (P(ximu = of |ximu = of)) (P(xps = to|xps = to)P(xt = id|xt = id)) p(st
2)

)

· P(ot+1 | ximu = of)

= ((0.4995)(0.8995 · 0.9999)(0.55) + (0.4995)(0.9995 · 0.9999)(0.45)) · 0.5

= 0.2359

The node {ximu = in}, on the other hand, does not have any OPRs associated with

it. As a result, an optimistic value of 1.0 is given to the observation probability as seen

below. BFBSU is innovative in the way that it uses the observation probabilities to

efficiently guide the search towards the best solution.

f(ximu = in) =

(

(P(ximu = in|ximu = of)) (P(xps = op|xps = op)P(xt = id|xt = id)) p(st
1)

+ (P(ximu = in|ximu = of)) (P(xps = to|xps = to)P(xt = id|xt = id)) p(st
2)

)

· P(ot+1 | ximu = in)

= ((0.4995)(0.8995 · 0.9999)(0.55) + (0.4995)(0.9995 · 0.9999)(0.45)) · 1.0

= 0.4717
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Now, the best valued node in the priority queue is clearly {ximu = in}. This node is

popped off the queue and expanded in Figure 4-14.

{ }

imux of0.2359{ }= imux in0.4717{ }=
imux un0.0005{ }=

imu psx in x op0.2471{ , }= =
imu psx in x to0.2521{ , }= = imu psx in x un0.0003{ , }= =

Figure 4-14: Iteration 2 BFBSU expansion for the IMU Plant.

In Layer 2 of Figure 4-14, none of the nodes have any applicable OPRs so we maintain

the optimistic observation probability of 1.0. As a result, the heuristic values for this

layer are identical to those of BFBSE.

{ }

imux of0.2359{ }= imux in0.4717{ }=
imux un0.0005{ }=

imu psx in x op0.2471{ , }= =
imu psx in x to0.2521{ , }= = imu psx in x un0.0003{ , }= =

imu ps tx in x to x id0.1261{ , , }= = =
imu ps tx in x to x un0.00001{ , , }= = =

Figure 4-15: Iteration 3 BFBSU expansion for the IMU Plant.

Both nodes in Layer 3 of Figure 4-15 have OPRs associated with them since it is

consistent for the alarm observation of the timer to be Tripped or Not Tripped in both

the Idle and Unknown modes. As a result, the uniform observation probability of 1
2

is

applied to both nodes.

The search continues along the same fashion until a candidate (full assignment to

mode variables) is popped off the queue. In this scenario, the candidate with the best

utility is {ximu = in, xps = to, xt = id}. After the candidate is generated, Conflict-

directed A∗ tests the candidate for consistency and determines that the candidate is
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inconsistent and not a valid solution. This inconsistency is generalized into the conflict

¬(ximu = in∧xps = to), which prunes the search space to avoid expanding any nodes that

are extensions to that conflict. The resulting two most likely estimates using BFBSU

were shown in Figure 4-12.

This chapter has discussed approximate techniques for PCCA estimation as a tractable

solution to the exact PCCA estimation problem. Previous approaches to monitoring and

fault diagnosis made three key assumptions in order to achieve performance demands

require by embedded systems, while attempting to preserve estimator accuracy. We have

presented BFBSE and BFBSU as improvements to PCCA estimation accuracy by elimi-

nating 2 of the 3 major assumptions. BFBSE computes an approximate belief state using

the HMM propagation equation directly as its utility function, and BFBSU extends the

BFBSE utility function to use the full two-stage HMM belief state update equations, by

generating a compact set of observation probability rules that can be efficiently triggered

online. In Chapter 5, we will compare the accuracy and performance of previous esti-

mation techniques to BFBSE and BFBSU, through theoretical analysis and empirical

results.





Chapter 5

Results and Discussion

This thesis has focused on two novel approximate mode estimation techniques, Best-First

Belief State Enumeration (BFBSE) and Best-First Belief State Update (BFBSU), that

achieve greater estimate accuracy through direct use of the HMM belief state update

equations. These improvements in estimate accuracy were indicated in Chapter 4 by the

elimination of 2 (out of 3) significant assumptions that were previously used in order

to meet stringent performance requirements set by severely constrained on-board flight

computers. In order for BFBSE an BFBSU to be ubiquitous across a wide range of

embedded systems, they must also meet these strict requirements and be scalable to

increasingly complex systems. This chapter presents theoretical and empirical results

that show increased estimator accuracy as well as improved performance, through a

reduction in memory usage and computation time, when compared to previous mode

estimation techniques.

5.1 Space and Time Complexity

As discussed in Chapter 1, previous approaches to mode estimation, including GDE/Sherlock

[6, 7], GDE+ [19], Livingstone [21, 15], model-checking [5] and Titan Mode Estimation

[20], used a technique called Best-First Trajectory Enumeration (BFTE) to approximate

the estimates by tracking a set of state trajectories and computing the estimate probabil-

ities using a variant of the Viterbi algorithm. BFTE uses the same OCSP formulation as

BFBSE and BFBSU, but differs by solving k OCSP problems (one for each source state)

to determine the k most likely single-step trajectories out of the current approximate

belief state. A description of BFTE, along with pseudo code, is provided in Appendix B.

71
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BFTE, BFBSE, and BFBSU all frame the PCCA estimation problem as instances of

an OCSP that can be solved efficiently using the Conflict-directed A∗ algorithm employed

in OPSAT. Since the OCSP constraints are identical in BFTE, BFBSE, and BFBSU;

every technique will identify the same conflicts for a given candidate solution. This

allows us to compare the algorithms by evaluating their space and time complexities

based on the A∗ candidate search portion of OPSAT.

There are two fundamental reasons why the performance of the BFBSE and BFBSU

differ from the BFTE: BFBSE and BFBSU generate estimates using only one instance

of OPSAT, instead of k instances as performed in BFTE; and each node generated by

BFBSE and BFBSU requires k times more arithmetic computations than BFTE since

we are summing over k incoming state transitions. BFBSU differs from BFBSE by

the additional observation probability lookup that is required to compute the HMM

update. To more clearly understand the complexity analysis, recall that the best case

time and space for A∗ is roughly n · b and the worst case time and space is bn, where

b is the branching factor and n is the depth of the tree. For our OCSP formulation, b

is the average number of reachable modes per component |D(xa)| and n is the number

of components in the model |Πm|. Table 5.1 shows the complexities for BFTE, BFBSE,

and BFBSU, as an augmented form of A∗ search.

Table 5.1: Space and Time Complexity for BFTE, BFBSE, and BFBSU
Best Case Worst Case

Space Time Space Time
BFTE k · n k · n · (n + C) k · bn k · bn · (n + C)
BFBSE n · b n · b · (n · k + C) bn bn · (n · k + C)
BFBSU n · b n · b · (n · k + C) bn bn · (n · k + C + R · bn)

Notice that this time complexity considers the time it takes to create each node in

addition to the number of nodes visited. This quantity (enclosed by parentheses) consists

of the time to evaluate the utility function plus a constant C for other data manipulating

operations. For BFBSU, R is a constant for the time it takes to do a single lookup

in the conditional observation probability table with a worst case of bn elements in the

table. We also note that the complexities for BFTE are multiplied by k because of the k
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instances of OPSAT; however, BFTE avoids expanding many of the search tree’s fringe

nodes by exploiting its mutually preferential independent [18] utility function, such that

b = 1 in the best case.

This analysis shows that whenever k > b, the space required by BFBSE and BFBSU

is always less than BFTE. Conversely, for large values of n, BFTE is faster in the best

case by a factor of b but both BFTE and BFBSE are equally fast in the worst case.

In the worst case, BFBSU could potentially contain an exponential sized conditional

probability table, but since most engineered systems do not have sensors that measure

the entire system state, this term will remain close to linear in the number of components

for real systems. In the following section, we will see that, for practical problems, b is

small and C dominates over the utility function term unless the model is very large. For

subsystem or modest size system models, BFBSE and BFBSU are more accurate, uses

less memory, and requires less computation time than BFTE.

5.2 Experimental Results

The following empirical comparison between BFTE, BFBSE, and BFBSU was conducted

using three different spacecraft models that are all roughly the size of a small subsys-

tem. These models include Earth Observing One (EO-1) [11], Mars Entry Decent and

Landing (EDL) system [13], and Space Technology 7 (ST7-A) [9]. All the algorithms

were implemented in C++ and results were gathered using a 1.7GHz Intel Pentium M

processor with 512MB of RAM.

Earth Observing One

The EO-1 satellite was originally launched in November of 2000 as part of the New Mil-

lennium Program to validate instruments and technologies that will improve the perfor-

mance of future Earth imaging observatories as well as reduce cost. Now in its extended

mission, Livingstone 2 [15] was place on-board in September of 2004 and flight validated

using models developed at NASA Ames. The model includes the Hyperion Imager, the

Advanced Land Imager, the WARP data recording device, and other data transferring



74 RESULTS AND DISCUSSION

components. The model has a total of 60 variables, including 12 mode variables with an

average domain size of 5.75.

Mars Entry Decent and Landing

The Mars EDL model was developed at MIT and contains all the major components

used in the critical Mars entry, decent, and landing sequence. This includes a spacecraft

propulsion system and a simplified navigation system. The model has a total of 42

variables, including 10 mode variables with an average domain size of 4.4.

Space Technology 7

The ST7-A model was developed as part of a NASA New Millennium concept definition

study conducted by MIT and Johns Hopkins Applied Physics Laboratory. The ST7-A

mission was to demonstrate autonomous science in low Earth orbit. The scaled down

version of the ST7-A model used in this thesis includes a communication subsystem

with a transmitter, switches, and redundant antennae. There are a total of 30 variables,

including 8 mode variables with an average domain size of 3.5.

Table 5.2: Experimental Model Properties

model number of number of mode average mode number of average clause
variables variables variable domain size clauses length

EO-1 60 12 5.75 195 2.39

MarsEDL 42 10 4.4 384 2.25

ST7-A 30 8 3.5 205 2.26

5.2.1 Accuracy

The single-step estimation scenario throughout Chapter 4 illustrated the likelihood-

ordering limitations caused by the three major approximations made by BFTE, and

the additional accuracy gained when eliminating two of the approximations in BFBSE

and BFBSU. In addition, by considering estimation over many cycles (Figures 5-1, 5-2,

and 5-3), the loss of belief state probability density for BFTE becomes readily apparent,

highlighting the amount of state knowledge lost over time. The reduction in probability
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density is exponential in the number of estimation cycles for both BFBSE and BFBSU

(as seen with the linear data for the semi-log plot on the right side of Figures 5-1, 5-

2, and 5-3), but this reduction is dramatically less for BFBSE and BFBSU. Figure 5-1

shows the belief state probability density results for EO-1 when tracking 1, 10, and 30

estimates for 30 estimation cycles, under nominal observation and command sequences.
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Figure 5-1: Probability density maintained over time for EO-1 model.

It is important to note that the loss in belief state probability density is identical for

BFBSE and BFBSU, regardless of the number of estimates tracked over time. This is be-

cause the addition of observation probabilities does not change the amount of belief state

probability consumed, it only adjusts the relative probabilities of the a priori estimates.

All three estimation techniques maintain the same amount of belief state probability

density when k = 1 since the utility function is the same for all of them when there is

only one state in the approximate belief state.

Notice that the rate at which the belief state probability density is lost varies between

models. The probability density quickly drops off for the EO-1 model and there is almost

no loss at all when using BFBSE or BFBSU on the ST7-A model when k ≥ 10. The

rate at which the probability density is lost is directly related to how the probability is

distributed across all the states in the belief state. As the number of reachable modes

increases, or the relative difference between nominal and failure transition probabilities
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Figure 5-2: Probability density maintained over time for the Mars EDL model.
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Figure 5-3: Probability density maintained over time for the ST7-A model.

decreases, the less concentrated the probability density will be. This is consistent with the

large average domain size of mode variables for the EO-1 model, as previously shown in

Table 5.2, since the probability is thinly distributed across many reachable modes. For

more realistic models, the failure transition probabilities would also be much smaller,

resulting in more probability concentrated in the leading estimates.

From the figures above, it is quite clear that BFBSE and BFBSU capture much more

of the belief state probability density while tracking the same number of estimates as
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BFTE. The less probability density lost, the more certain we can be about our estimates.

Figure 5-4 focuses on two specific estimates within the belief state and compares the

estimate probabilities between the three estimation techniques when k = 10. These two

plots only use the ST7-A model since it is small enough to generate the exact solutions

(indicated with circle marks) with only 512 enabled states. The plot on the left of

Figure 5-4 shown the nominal state being tracked over time, and the right plot is a

single-point failure state.
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Figure 5-4: Single state estimate probability over time for the ST7-A model.

For both the nominal and failure states, the BFTE probability remains stagnant since

it is continuously computing the same trajectory probabilities and then re-normalizing.

This coincidentally follows the exact solution well for the failure mode but fails for the

nominal mode. BFBSE tracks the model dynamics better but fails to udpate with the

observation probabilities, leading to a priori trends. BFBSU tracks both nominal and

failure modes closely since it uses the HMM belief state update equations directly as its

utility function.

5.2.2 Performance

The space and time performance results are shown in Figures 5-5, 5-6, and 5-7 for EO-1,

MarsEDL, and ST7-A, respectively. For a varying size initial belief state, space was
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measured by the maximum number of nodes placed in the A∗ priority queue, while es-

timation time was measured in milliseconds. Each estimation technique has two sets of

data points: the solid lines represent the space and time required to generate the single

best estimate from the k states in the initial belief state (extracting best case behav-

ior) and the dotted lines are the space and time required to generate the k most likely

estimates (simulating average case performance for the estimator in a real application).
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Figure 5-5: Best-case and average-case runtime performance for the EO-1 model.

The space and time performance results show good alignment with the complex-

ity analysis. The single-estimate memory results for BFBSE and BFBSU (left side of

the Figures 5-5, 5-6, and 5-7) reveal constant queue size, as predicted in the best case

complexity analysis. Similarly, we see linear queue growth for BFTE. Comparing the k

estimate trends show that queue size is significantly less for BFBSE and BFBSU. Since

Both BFBSE and BFBSU are framed as a single OCSP, their queue growth is identical in

the best case and similar in the average case. For the EO-1 model in Figure 5-5, BFBSU

has a smaller maximum queue size because its heuristic guided BFBSU to a different

portion of the search space.

The time results (right side of Figures 5-5, 5-6, and 5-7) are also closely aligned to

the complexity analysis. When enumerating only the single most likely state, BFTE

is linear in k and both BFBSE and BFBSU are nearly constant. This is because the
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Figure 5-6: Best case and average case runtime performance for the Mars EDL model.
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Figure 5-7: Best case and average case runtime performance for the ST7-A model.

arithmetic heuristic computation for each node is dominated by the constant term C for

these moderately sized models. The k estimate trends show linear time increase in k,

but BFBSE and BFBSU require significantly less computation time. BFBSU will always

require at least as much time to execute as BFBSE when exploring the same nodes of the

search tree. For the EO-1 model, BFBSU actually explored less nodes when searching for

the k most likely states (Figure 5-5), hence, took less time even though it had to trigger

the observation probability rules for each node. Although the Mars EDL model has less
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components than EO-1, the observations in Mars EDL are tightly coupled to multiple

components, resulting in more observation probability rules (shown in Table 5.3). The

affects of this on runtime performance are shown in Figure 5-6.

Table 5.3: Number of Observation Probability Rules for each Model
model maximum # of OPRs # OPRs required online

EO-1 1.77 · 108 64
MarsEDL 1.46 · 106 307

ST7-A 1.44 · 104 8

It is interesting to note that BFTE only outperforms BFBSE and BFBSU in both

space and time when, as expected, k < b where b ≈ 3 for most real models. Since it

is advantageous to set k > 3 (recall Figures 5-1, 5-2, and 5-3), BFBSE will outperform

BFTE in space and time for moderate size models and sufficiently sized belief states (e.g.,

k ≈ 10).



Chapter 6

Conclusion

This thesis presented Best-First Belief State Enumeration (BFBSE) and Best-First Belief

State Update (BFBSU) as approximate monitoring and diagnosis techniques for Proba-

bilistic Concurrent Constraint Automata (PCCA) that dramatically increases estimate

accuracy, by directly using the Hidden Markov Model (HMM) belief state update equa-

tions. Since exact PCCA estimation consists of a belief state that is exponential in the

number of components, previous approaches to mode estimation have made three sig-

nificant approximations: (1) Belief state accuracy is maintained by only tracking the

k most likely states in the belief state. (2) State estimate probabilities are efficiently

and accurately enumerated, by computing the k most likely trajectories. (3) The PCCA

observation probability distribution is simplified to 1 or 0, when the observations are

consistent or inconsistent with a given state and model, without significant loss in esti-

mation accuracy. BFBSE and BFBSU are novel in that they eliminate the last two of

the three approximations to increase estimation accuracy, while requiring less memory

and less computation time, when enumerating the approximate belief state for subsystem

sized models.

BFBSE also enumerates estimates in best-first order, but removes the trajectory ap-

proximation by computing the estimate probabilities directly from the HMM propagation

equation. This formulation allows for a more compact representation of the belief state

and improves estimation accuracy. BFBSE is innovative in the way that the HMM prop-

agation equation is used as a search guiding heuristic with a tight optimistic bound.

BFBSU extends BFBSE by updating the a priori state estimates with correct ob-

servation probabilities using both HMM belief state update equations. This is done
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efficiently by computing a compact set of observation probability rules that are quickly

triggered online. BFBSU is novel in the way it applies the observation probabilities to

the heuristic function to provide better diagnostic discrimination and avoid sub-optimal

candidates.

6.1 Summary of Results

For BFBSE and BFBSU to be employed across a wide range of embedded systems, it

is essential that they meet the stringent performance requirements imposed by these

severely constrained computers. These challenges are exacerbated as future space ex-

ploration missions reach unprecedented levels of complexity. Our complexity analysis

and empirical data shows that BFBSE and BFBSU outperform previous mode estima-

tion techniques, requiring less memory and less computational time for subsystem sized

models.

The most significant increase in computational performance comes from framing the

PCCA estimation problem as a single OCSP. This reduces the size of the search space

and removes redundant computations. BFBSE and BFBSU require additional heuristic

computation over previous approaches, but this cost is insignificant due to savings gained

from a more compact search space. In addition, BFBSU provides the search heuristic

with a tighter optimistic bound that guides the search more efficiently toward the most

likely estimates and avoids searching over sub-optimal candidates.

This thesis has introduced BFBSE and BFBSU as a mode estimation technique that

significantly increases estimation accuracy, while reducing memory and computation re-

quirements; providing an enabling monitoring and fault diagnosis technology for increas-

ingly complex space missions of the future.

6.2 Future Work

Further improvements to PCCA mode estimation will result from addressing the following

limitations: Since we use a factored HMM with concurrently operating components, we
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have made the assumption that all the components are independently transitioning. As

highlighted in the IMU example of Section 3.1.2, the plant models are not always specified

with independent transitions. In addition, the transition guards can occasionally be

neither entailed or refuted, as mentioned in Section 3.1.1, which further violates the

HMM propagation equation.

Mutually Inconsistent Modes

Recall the IMU plant scenario in Section 3.1.2. It is quite obvious that the IMU cannot be

Initializing while the Power Switch is Tripped Open or Open, since the Power Switch does

not supply the IMU with power in either of those modes. When framing PCCA estimation

as an OCSP, the states that have these mutually inconsistent modes are identified as

conflicts and are pruned out of the search space. Unfortunately, the transition probability

leading into these conflicting states is > 0, and by simply removing the conflicting state,

this probability goes unaccounted for. This results in the sum of the outgoing transitions

to be incorrectly < 1.

One solution to this is to add up the transition probabilities for all the enabled tran-

sitions that lead to consistent target states, and normalize the outgoing transitions. This

could be done efficiently by creating rules offline that identify when a state transition will

lead to mutually inconsistent modes, and allow the estimator to correct (normalize) the

transition probabilities prior to the best-first estimate search. Using the same approach

described in Section 4.4, the dissents that have an empty antecedent, such that o = ∅,

identify which modes are mutually inconsistent. Recall that these dissents were not rel-

evant for the observation probability computation because they were always conflicting,

regardless of the observation assignments.

Although these transition probability rules would lead to a valid probability distrib-

ution, we still assume that re-normalizing the transition probabilities is valid. A more

direct approach is to determine the mutually inconsistent modes during compile time, and

combine the components that are directly coupled (such as the IMU and Power Switch).

When combining the two components into one component, the new modes are the cross
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product of the mode assignments in each component and the mutually inconsistent modes

are then excluded from the new component. This is very similar to the approach taken

by Titan’s Reactive Planner [3], and maintains the transition probabilities that were

specified by the systems engineering who created the model.

Consistent Transition Guards

As referred to in Section 3.1.1, it is possible for a transition guard to be consistent without

being entailed or refuted. In order for the PCCA models to be probabilistically complete,

there should be a probability associated with a transition guard that is merely consistent.

The resulting component transition probability is shown in Equation 6.1.

P(st+1
j |s

t
i, µ

t) =
∏

(xt+1
a =v′a)∈st+1

j

(

P(xt+1
a = v′

a|x
t
a = va, ga) ·P(ga)

)

(6.1)

We can then take the same Maximum-Entropy approach that was used to define the

observation probability distribution and assume a uniform probability distribution over

the all possible consistent assignments to ga. The resulting distribution is shown below:

P(ga) =



























1 if st
i ∧ µt ∧Q |= ga,

0 if st
i ∧ µt ∧Q |= ¬ga,

1/m otherwise,

where m = number of consistent assignments to ga for st
i ∧ µt ∧Q.

(6.2)



Appendix A

IMU System Constraint Automata

Definitions

The PCCA formalism was discussed in Section 2.2 and an example using the simple IMU

system was provided; including a formal description of the IMU constraint automaton

Aimu in Section 2.2.2. Appendix A provides formal descriptions for the remaining Power

Switch Aps and the Timer At.

A.1 The Power Switch Constraint Automaton, Aps

As described in Section 2.1.2, the Power Switch (PS) provides the IMU with power. For

simplicity, we have assumed that the PS is always supplied with power and the power is

transfered to the IMU when the switch is closed. Recall the graphical representation of

Aps shown again in Figure A-1. A formal description of Aps is provided below:

1. Πps = {xps, µ
cmd
ps , dpo

ps} where {xps} = Πm
ps resides in 1 of 4 discrete modes D(xps) =

{op, cl, to, un}. Πr
ps = {µcmd

ps , dpo
ps} where µcmd

ps is used to open and close the PS

with D(µcmd
ps ) = {open, close, no-command} and dpo

ps is the power-out with D(dpo
ps) =

{zero, nominal} (same domain as dpi
imu). Σps = Σm

ps × Σr
ps is the set of all full

assignments over Πps with 4 · (3 · 2) = 24 elements.

2. Mps are the modal constraints for the PS, shown below in Table A.1.

3. The complete set of transition functions for Aps are shown in Table A.2 below.

4. The component transition probability distribution for each set of PS transition

functions is shown on the right side of Table A.2.
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( )

Closed

cl

( )
Unknown
un 0.0005

1.0

( )PScmd close=

( )PScmd close¬ = ( )PScmd open¬ =

( )PScmd open=

( )

Open

op

( )

Tripped

Open
to

( - )PSpower out nominal=

( - )PSpower out zero=

0.1

0.1

0.0005

(
)

PScmd
open=

( )PScmd open¬ =

0.0005

* Assumes constant 

input power 

( - )PSpower out zero=

Figure A-1: PS constraint automaton, Aps.

Table A.1: Aps Modal Constraints

(xps = vps) ∈ Σ
xps
ps Mps(xps = vps)

xps = op dpo
ps = zero

xps = cl dpo
ps = nominal

xps = to dpo
ps = zero

xps = un (unconstrained)

Table A.2: Aps Transition Functions / Probabilities
(xps = vps) gps ∈ C(Πr

ps) Tps(xps = vps, gps) PTps
(xps = vps, gps)

xps = op ¬(µcmd
ps = close) {op, to, un} {0.8995, 0.1, 0.0005}

xps = op µcmd
ps = close {cl, to, un} {0.8995, 0.1, 0.0005}

xps = cl ¬(µcmd
ps = open) {cl, to, un} {0.8995, 0.1, 0.0005}

xps = cl µcmd
ps = open {op, to, un} {0.8995, 0.1, 0.0005}

xps = to ¬(µcmd
ps = open) {to, un} {0.9995, 0.0005}

xps = to µcmd
ps = open {op, un} {0.9995, 0.0005}

xps = un (unconstrained) {un} {1}
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A.2 The Timer Constraint Automaton, At

The Timer (T) was originally described in Section 2.1.3. The Timer starts when the IMU

begins initializing and is used to determine if the IMU is stuck initializing. Recall the

graphical representation of At shown again in Figure A-2.

( )
Running

ru

( )
Unknown
un 0.0001

1.0

( )Talarm tripped=

( )

Expired

ex

0.0001

( )Timu-mode in=

( )

Idle

id

( )Talarm tripped¬ =

(
)

Timu-mode
in

¬
=

0.0001

( )Timu-mode in=

( )- Timu mode in=( )Timu-mode in=

( )Timu-mode in¬ =

(
)

Timu-mode
in

¬
=

Figure A-2: T constraint automaton, At.

A formal description of At is provided below:

1. Πt = {xt, o
al
t , dim

t } where {xt} = Πm
t resides in 1 of 4 discrete modes D(xt) =

{ex, ru, id, un}. Πr
t = {oal

t , dim
t } where oal

t is observation of the external continuous-

time alarm monitor that can be tripped or not-tripped and dim
t is the current IMU

mode with D(dim
t ) = {of, in, me, si, un} (as defined in Section 2.2.2). Σt = Σm

t ×Σr
t

is the set of all full assignments over Πt with 4 · (2 · 5) = 40 elements.

2. Mt are the modal constraints for the T, shown below in Table A.3.

Table A.3: At Modal Constraints

(xps = vt) ∈ Σxt

t Mt(xt = vt)

xt = ex oal
t = tripped

xt = ru ¬(oal
t = tripped)

xt = id (unconstrained)

xt = un (unconstrained)
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3. The complete set of transition functions for At are shown in Table A.4 below.

Table A.4: At Transition Functions / Probabilities
(xt = vt) gt ∈ C(Πr

t ) Tt(xt = vt, gt) PTt
(xt = vt, gt)

xt = ex dim
t = in {ex, un} {0.9999, 0.0001}

xt = ex ¬(dim
t = in) {id, un} {0.9999, 0.0001}

xt = ru dim
t = in {ex, ru, un} {0.49995, 0.49995, 0.0001}

xt = ru ¬(dim
t = in) {id, un} {0.9999, 0.0001}

xt = id dim
t = in {ru, un} {0.9999, 0.0001}

xt = id ¬(dim
t = in) {id, un} {0.9999, 0.0001}

xt = un (unconstrained) {un} {1}

4. The component transition probability distribution for each set of T transition func-

tions is shown on the right side of Table A.4 above.

A.3 Compiled IMU Plant Model Dissents

The dissent was defined in Definition 4.2 on Page 60 as a mapping from a partial assign-

ment to mode variables to a conflict. This section lists all the dissents for the IMU Plant

that are generated during offline model compilation:

(odv
imu = true)⇒ ¬(ximu = in) (oal

t = tripped)⇒ ¬(xt = ru)

(odv
imu = true)⇒ ¬(ximu = si) (oal

t = not-tripped)⇒ ¬(xt = ex)

(odv
imu = false)⇒ ¬(ximu = me)

( ) ⇒ ¬(ximu = of ∧ xps = cl)

( ) ⇒ ¬(ximu = in ∧ xps = op)

( ) ⇒ ¬(ximu = in ∧ xps = to)

( ) ⇒ ¬(ximu = si ∧ xps = op)

( ) ⇒ ¬(ximu = si ∧ xps = to)

( ) ⇒ ¬(ximu = me ∧ xps = op)

( ) ⇒ ¬(ximu = me ∧ xps = to)



Appendix B

Best-First Trajectory Enumeration

Given the PCCA plant model P, the current approximate belief state B̃t, commands µt,

and resulting observations ot+1, Best-First Trajectory Enumeration (BFTE) generates

the estimates in the next belief state B̃t+1 in best-first order according to the state tra-

jectory probability P(st+1
j | st

i, µ
t) · pt(si). BFTE leverages from all three approximations

presented in Section 4.1 on Page 39 to achieve the performance requirements of full-scale

embedded systems. This mode estimation technique was employed in Livingstone [21]

and Livingstone 2 [15]. Livingstone was flight validated as part of the Remote Agent

Experiment on-board Deep Space One in 1999 [17] and Livingstone 2 was flown on EO-1

in 2004. Pseudo code for the BFTE algorithm is shown in Figure B.1.

Algorithm B.1 BFTE(P, B̃t, µt, ot+1)

1: Setup the OCSP 〈y, f, C〉:

• The vector x includes a decision variable xa for each component of the plant, whose domain D(xa) is the set of
reachable target modes. The target mode for each transition (xa = v′a) = τa(xa = va, ga) is reachable when

the source (xa = va) ∈ st
i and guard ga are satisfied by Ct

M
∧st

i ∧µt. Ct
M

= Q∧ (∧(xa=va)∈st

i

Ma(xa = va)).

• The utility function f(x) is the prior trajectory probability of next state x. More precisely, f(x) = P(x |

st
i, µ

t) · pt(si), where P(x | st
i, µ

t) =Π(xa=v′

a
)∈xP(xa = v′a | xa = va, st

i, µ
t) and pt(si) is the posterior

probability for state st
i.

• C(y) encodes the constraint that x∧CMx ∧ot+1 must be consistent. CMx = Q∧(∧(xa=v′

a
)∈x

Ma(xa = v′a)).

2: Compute the k most likely solutions S̃t+1 = {x1, . . . ,xk} to ∧i=1..kOCSPi〈y, f, C〉
by comparing each next-best solution to the k instances of OPSAT.

3: Extract the prior probabilities pt+1 = {f(x1), . . . , f(xk)} for each solution xi ∈ S̃t+1.
4: return the k most likely trajectories contained by B̃t+1 = 〈S̃t+1, pt+1〉.

BFTE is a variation on the Viterbi algorithm [10], which calculates the most likely
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sequence of states for a HMM, given an initial state and a sequence of observations. The

main difference between the algorithms is that BFTE only solves for the k most likely

sequences in best-first order, instead of computing the solution to all estimates in the

belief state.

B.1 BFTE Heuristic Function

In order for OPSAT to enumerate states in best-first order, an admissible heuristic must

be specified for the OCSP utility function in BFTE. Recall the state trajectory probability

equation shown again in Equation B.1. By separating the equation into a uniform-cost

heuristic for the exact utility to partial assignments n, and a greedy heuristic as an

optimistic utility for the remaining assignments, the BFTE heuristic function is provided

in Equation B.2.

f(st+1
j ) =

∏

(xt+1
a =v′a)∈st+1

j

(

P(xt+1
a = v′a | x

t
a = va, s

t
i, µ

t)
)

·P(st
i | o

<0,t>, µ<0,t−1>)
(B.1)

f(n) =
















∏

(xt+1
g =v′g)∈n

(

P(xt+1
g = v′g | x

t
g = vg, s

t
i, µ

t)
)

·

∏

(xt+1
h

=v′
h
)/∈n

max
v′

h
∈D(xh)

(

P(xt+1
h = v′h | x

t
h = vh, st

i, µ
t)
)

·

P(st
i | o

<0,t>, µ<0,t−1>)

















(B.2)
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