
Achieving Real-time Mode Estimation through
Offline Compilation

by

John M. Van Eepoel

B.S. Aerospace Engineering
University of Maryland, 2000

SUBMITTED TO THE
DEPARTMENT OF AERONAUTICAL AND ASTRONAUTICAL ENGINEERING

IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN
AERONAUTICAL AND ASTRONAUTICAL ENGINEERING

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2002

© 2002 Massachusetts Institute of Technology. All Rights Reserved.

Signature of Author:
Department of Aeronautics and Astronautics

September 16, 2002

Certified by:
Brian C. Williams

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by:

Edward M. Greitzer
Professor of Aeronautics and Astronautics

Chair, Committee on Graduate Students

Achieving Real-time Mode Estimation through Offline Compilation 2

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 3

Achieving Real-time Mode Estimation through Offline Compilation

by

John M. Van Eepoel

Submitted to the Department of Aeronautics and Astronautics
on September 19, 2002 in Partial Fulfillment of the

Requirements for the Degree of Master of Science in
Aeronautics and Astronautics

ABSTRACT

As exploration of our solar system and outerspace move into the future, spacecraft are being
developed to venture on increasingly challenging missions with bold objectives. The spacecraft
tasked with completing these missions are becoming progressively more complex. This increases
the potential for mission failure due to hardware malfunctions and unexpected spacecraft
behavior. A solution to this problem lies in the development of an advanced fault management
system. Fault management enables spacecraft to respond to failures and take repair actions so
that it may continue its mission.

The two main approaches developed for spacecraft fault management have been rule-based and
model-based systems. Rules map sensor information to system behaviors, thus achieving fast
response times, and making the actions of the fault management system explicit. These rules are
developed by having a human reason through the interactions between spacecraft components.
This process is limited by the number of interactions a human can reason about correctly. In the
model-based approach, the human provides component models, and the fault management
system reasons automatically about system wide interactions and complex fault combinations.
This approach improves correctness, and makes explicit the underlying system models, whereas
these are implicit in the rule-based approach.

We propose a fault detection engine, Compiled Mode Estimation (CME) that unifies the
strengths of the rule-based and model-based approaches. CME uses a compiled model to
determine spacecraft behavior more accurately. Reasoning related to fault detection is compiled
in an off-line process into a set of concurrent, localized diagnostic rules. These are then
combined on-line along with sensor information to reconstruct the diagnosis of the system. These
rules enable a human to inspect the diagnostic consequences of CME. Additionally, CME is
capable of reasoning through component interactions automatically and still provide fast and
correct responses. The implementation of this engine has been tested against the NEAR
spacecraft advanced rule-based system, resulting in detection of failures beyond that of the rules.
This evolution in fault detection will enable future missions to explore the furthest reaches of the
solar system without the burden of human intervention to repair failed components.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor of Aeronautics and Astronautics

Achieving Real-time Mode Estimation through Offline Compilation 4

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 5

Acknowledgements

I want to say thanks to my family for their love and support through my years at the University
of Maryland and the toughest two years here at MIT. The support you gave me through all of
those years will come back ten-fold.

I want to especially thank Peggy Kontopanos for all of her love and support. Thank you for
carrying me through such a trying time and always being there to listen. Without her support,
much of this would not have been possible.

I would like to thank most importantly my advisor, Prof. Brian Williams for all of his guidance,
discussion and ideas that have made this thesis possible. His tutelage has helped me develop as a
researcher and the lessons I have learned are invaluable. I would also like to thank the
benefactors that made this research possible. Under the DARPA grant [F33615-00-C-1702], also
known as the MoBies program, research into advanced diagnostic systems has been possible.

Additionally, I would like to thank the Model-based Embedded and Robotics Systems (MERS)
group at MIT. Their friendship, technical advice and laughter helped make understanding such
difficult concepts fun. I extend many thanks to Rob Ragno, Seung Chung and Mitch Ingham
who were always willing to discuss the technical issues. I also want to thank other members of
the MERS group, Paul Elliott, Aisha Walcott, Andreas Wehowsky, Samidh Chakrabarti, Michael
Hofbaur, Melvin Henry and Jon Kennel.

Achieving Real-time Mode Estimation through Offline Compilation 6

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 7

Table of Contents
ABSTRACT ___ 3

ACKNOWLEDGEMENTS __ 5

LIST OF FIGURES ___ 11

1 INTRODUCTION___ 15
1.1 MOTIVATION __ 15
1.2 MODE ESTIMATION EVOLUTION__ 17
1.3 MODEL-BASED SPACECRAFT AUTONOMY __________________________________ 18
1.4 MODE ESTIMATION ___ 20

1.4.1 Inputs and Outputs ___ 21
1.4.2 Mode Estimation Example ___ 22

1.4.2.1 The Mode Estimation Process at a Glance ___________________________ 22
1.4.2.1 NEAR Spacecraft Power System __________________________________ 23
1.4.2.2 Mode Estimation Example _______________________________________ 27

1.4.3 Issues in Mode Estimation__ 31
1.4.4 Tracking System Trajectories _______________________________________ 31

1.5 COMPILATION ___ 32
1.5.2 The Basics __ 33
1.5.3 Compilation Example ___ 34

1.6 COMPILATION AND MODE ESTIMATION ____________________________________ 36

2 CONFLICT-BASED MODE ESTIMATION_________________________________ 37
2.1 MODEL-BASED MODE ESTIMATION FRAMEWORK ____________________________ 37
2.2 GENERAL DIAGNOSTIC ENGINE (GDE) ____________________________________ 39

2.2.1 GDE Inputs and Outputs___ 40
2.2.2 Diagnosis with GDE __ 41

2.2.2.1 Conflict Recognition __ 43
2.2.2.2 Candidate Generation ___ 44

2.2.3 Analysis of GDE ___ 45
2.3 SHERLOCK __ 46

2.3.1 Sherlock Inputs and Outputs __ 46
2.3.2 Diagnosis with Sherlock ___ 48
2.3.3 Analysis of Sherlock __ 51

3 COMPILATION OF CONFLICT-BASED MODE ESTIMATION ______________ 53
3.1 MOTIVATION FOR MODE COMPILATION____________________________________ 53
3.2 MINI-ME ___ 54

3.2.1 Mini-ME Example __ 55
3.3 MODE COMPILATION __ 57

3.3.1 Inputs and Outputs ___ 57
3.3.2 Mode Compilation Algorithm _______________________________________ 58
3.3.3 Optimal Constraint Satisfaction _____________________________________ 60
3.3.4 Dissent Generation as Optimal Constraint Satisfaction___________________ 61
3.3.5 Mode Compilation Example __ 63

Achieving Real-time Mode Estimation through Offline Compilation 8

3.3.6 Analysis of Mode Compilation and Mini-ME ___________________________ 66

4 CONFLICT BASED MODE ESTIMATION WITH TRANSITIONS ____________ 67
4.1 MODE ESTIMATION AND THE NEED FOR TRANSITIONS_________________________ 67
4.2 SYSTEM MODEL FRAMEWORK ___ 68

4.2.1 Hidden Markov Models__ 69
4.2.2 Concurrent Constraint Automata ____________________________________ 71

4.2.2.1 Constraint Automata __ 72
4.2.2.2 Constraint Automaton Example ___________________________________ 74
4.2.2.3 Concurrent Constraint Automata __________________________________ 76
4.2.2.4 CCA’s and Mode Estimation _____________________________________ 78

4.2.2.4.1 ME-CCA Example __ 81
4.2.2.4.2 Formal ME-CCA Algorithm ___________________________________ 83

4.3 LIVINGSTONE __ 84
4.3.1 Livingstone Inputs and Outputs _____________________________________ 85
4.3.2 Mode Estimation in Livingstone _____________________________________ 87

4.3.2.1 Mode Estimation Example _______________________________________ 90
4.3.2.2 Livingstone Diagnosis and ME-CCA _______________________________ 91

4.3.3 Analysis of Livingstone __ 92

5 COMPILED MODE ESTIMATION ________ERROR! BOOKMARK NOT DEFINED.

5.1 MOTIVATION FOR COMPILATION ___ 95
5.2 ARCHITECTURE __ 96
5.3 DISSENTS ___ 97
5.4 COMPILED TRANSITIONS ___ 98
5.5 ONLINE MODE ESTIMATION AT A GLANCE_________________________________ 100
5.6 COMPILATION __ 105

5.6.1 Compiled Concurrent Automata ____________________________________ 106
5.6.2 Transition Compilation ___ 107

5.6.2.1 Inputs and Outputs __ 107
5.6.2.2 Transition Compilation Algorithm ________________________________ 108

5.6.3 Transition Compilation Example ___________________________________ 111

6 ONLINE MODE ESTIMATION__ 115
6.1 ARCHITECTURE ___ 115
6.2 INPUTS / OUTPUTS ___ 116
6.3 COMPILED CONFLICT RECOGNITION _____________________________________ 118

6.3.1 Dissent and Transition Trigger Basics _______________________________ 119
6.3.2 Constituent Diagnosis Generator ___________________________________ 123

6.4 DYNAMIC MODE ESTIMATE GENERATION _________________________________ 126
6.4.1 Architecture__ 127
6.4.2 Dynamic Mode Estimate Generation at a Glance ______________________ 128
6.4.3 Generate Algorithm__ 130

6.4.3.1 Generate Overview __ 131
6.4.3.2 Generate Algorithm Example ____________________________________ 134
6.4.3.3 Generate Algorithm__ 140

6.4.4 Conflict-Directed A* ___ 141

Achieving Real-time Mode Estimation through Offline Compilation 9

6.4.4.1 CDA* Heuristics __ 142
6.4.4.2 Conflict Direction and Systematicity ______________________________ 144
6.4.4.3 CDA* Algorithm__ 147
6.4.4.4 CDA* Example ___ 149

6.4.5 Rank Algorithm ___ 152
6.4.5.1 Rank Algorithm Description _____________________________________ 153
6.4.5.2 Rank Algorithm Example _______________________________________ 157
6.4.5.3 Rank Algorithm and Belief Update________________________________ 158

6.5 MAPPING COMPILED MODE ESTIMATION TO ME-CCA _______________________ 159

7 COMPILED MODE ESTIMATION ALGORITHMS ________________________ 163
7.1 COMPILED CONFLICT RECOGNITION _____________________________________ 163

7.1.1 Constituent Diagnosis Generator ___________________________________ 164
7.2 DYNAMIC MODE ESTIMATE GENERATION _________________________________ 166

7.2.1 Generate __ 167
7.2.2 Conflict Directed A* ___ 170
7.2.3 Rank__ 179

7.3 ONLINE MODE ESTIMATION__ 181

8 EXPERIMENTAL VALIDATION __ 185
8.1 NEAR SPACECRAFT POWER SYSTEM ____________________________________ 186

8.1.1 System Block Diagram ___ 187
8.1.2 Component Models __ 188
8.1.3 Charger ___ 190
8.1.4 Battery __ 192

8.2 COMPILED MODEL ___ 194
8.3 SCENARIOS AND RESULTS ___ 196

8.3.1 Nominal Operation __ 199
8.3.1.1 Digital Shunt Test ___ 199
8.3.1.2 Nominal Battery and Charger Operation ___________________________ 201

8.3.2 Primary Analog Shunt Failure _____________________________________ 202
8.3.3 Failed Charger ___ 204
8.3.4 Digital Shunt Failure __ 206
8.3.5 Failed Charger and Failed Analog Shunt_____________________________ 210

8.4 DISCUSSION __ 212

9 CONCLUSIONS ___ 215
9.1 RESULTS___ 215
9.2 COMPILED MODE ESTIMATION__ 216

10 FUTURE WORK __ 219
10.1 COMPILED CONFLICT RECOGNITION _____________________________________ 219
10.2 DYNAMIC MODE ESTIMATE GENERATION _________________________________ 220

REFERENCES __ 225

APPENDIX A. NEAR POWER SYSTEM MODELS __________________________ 227
A.1 NEAR POWER GENERATION ___ 227

Achieving Real-time Mode Estimation through Offline Compilation 10

A.1.1 Solar Arrays __ 227
A.1.2 Digital Shunts ___ 228
A.1.3 Analog Shunts ___ 231

A.2 NEAR POWER STORAGE __ 232
A.2.1 Switch __ 232
A.2.2 Charger ___ 234
A.2.3 Battery __ 235

APPENDIX B. NEAR POWER STORAGE DISSENTS & TRANSITIONS _______ 237
B.1 DISSENTS __ 237
B.2 TRANSITIONS ___ 238

B.2.1 Charger Switch __ 238
B.2.2 Charger-1 __ 239
B.2.3 Charger-2 __ 241
B.2.4 Battery___ 243

APPENDIX C. ONLINE-ME DETAILED EXAMPLE ________________________ 247
C.1 OBSERVATIONS AND INITIAL MODE ESTIMATE _____________________________ 247
C.2 DISSENTS AND TRANSITIONS ___ 247

C.2.1 Enabled Dissents__ 247
C.2.2 Enabled Transitions ___ 248

C.3 CONSTITUENT DIAGNOSES ___ 250
C.4 REACHABLE CURRENT MODES__ 251
C.5 DYNAMIC MODE ESTIMATE GENERATION _________________________________ 252

APPENDIX D. CME SUPPORTING ALGORITHMS _________________________ 257
D.1 DISSENT AND TRANSITION TRIGGERS_______________________________________ 257

D.1.1 Triggering Supporting Algorithms_____________________________________ 260
D.2 DYNAMIC MODE ESTIMATE GENERATION ___________________________________ 262

D.2.1 Generate ___ 262

APPENDIX E. RESULTS AND ADDITIONAL EXPERIMENTS _______________ 265
E.1 DIGITAL SHUNT NOMINAL OPERATION _____________________________________ 265
E.2 ANALOG SHUNT NOMINAL OPERATION _____________________________________ 266
E.3 NOMINAL BATTERY OPERATION___ 268
E.4 FAILED ANALOG SHUNT ___ 269
E.5 SOLAR ARRAY DEGRADATION __ 269
E.6 FAILED CHARGER __ 272
E.7 FAILED DIGITAL SHUNTS__ 273
E.8 FAILED CHARGER AND FAILED ANALOG SHUNTS______________________________ 275

Achieving Real-time Mode Estimation through Offline Compilation 11

List of Figures
FIGURE 1-1 - MODEL-BASED EXECUTIVE ARCHITECTURE ______________________________ 19
FIGURE 1-2 - INPUTS AND OUTPUTS OF MODE ESTIMATION ____________________________ 21
FIGURE 1-3 - NEAR POWER SYSTEM ___ 24
FIGURE 1-4 - COMPONENT MODE BREAKDOWN OF THE NEAR POWER STORAGE SYSTEM_____ 26
FIGURE 1-5 - STEP 1 OF THE MODE ESTIMATION PROCESS _____________________________ 27
FIGURE 1-6 - SEARCH TREE EXPANSION USING COMPONENT MODES _____________________ 28
FIGURE 1-7 - SEARCH TREE EXPANSION WITH TWO COMPONENTS SHOWN_________________ 29
FIGURE 1-8 - TRACKING MODE ESTIMATES OVER TIME _______________________________ 32
FIGURE 2-1 - GENERAL DIAGNOSTIC ENGINE ARCHITECTURE___________________________ 40
FIGURE 2-2 - SIMPLIFIED NEAR POWER STORAGE SYSTEM FOR GDE EXAMPLE ____________ 42
FIGURE 2-3 - SHERLOCK DIAGNOSTIC ENGINE ARCHITECTURE __________________________ 47
FIGURE 2-4 - NEAR POWER STORAGE SYSTEM MODIFIED TO HAVE BEHAVIORAL MODES _____ 49
FIGURE 3-1 - ARCHITECTURE OF THE MINI-ME ENGINE _______________________________ 54
FIGURE 3-2 - NEAR POWER STORAGE SYSTEM EXAMPLE _____________________________ 55
FIGURE 3-3 - MODE COMPILATION INPUTS AND OUTPUTS______________________________ 58
FIGURE 3-4 - DEFINITION OF AN OPSAT PROBLEM___________________________________ 60
FIGURE 3-5 - ENUMERATION ALGORITHM AS OPSAT _________________________________ 62
FIGURE 3-6 - SWITCH AND REDUNDANT CHARGERS IN THE NEAR POWER STORAGE SYSTEM __ 63
FIGURE 3-7 - EXAMPLE SEARCH TREE FOR MODE COMPILATION ________________________ 64
FIGURE 3-8 - NEXT EXPANSION OF THE SEARCH TREE FOR MODE COMPILATION ____________ 65
FIGURE 4-1 - DEFINITIONS OF A HIDDEN MARKOV MODEL _____________________________ 69
FIGURE 4-2 - TRELLIS DIAGRAM ___ 71
FIGURE 4-3 - REPRESENTATION OF A CONSTRAINT AUTOMATON TRANSITION ______________ 73
FIGURE 4-4 - PROPOSITIONAL LOGIC FORM OF A CONSTRAINT __________________________ 74
FIGURE 4-5 - AUTOMATON OF THE NEAR POWER SYSTEM CHARGER ____________________ 74
FIGURE 4-6 - SWITCH AND BATTERY CHARGER FROM THE NEAR POWER SUBSYSTEM _______ 77
FIGURE 4-7 - CONSTRAINT AUTOMATON FOR A SWITCH _______________________________ 78
FIGURE 4-8 - MODE ESTIMATION ALGORITHM FOR CCA (ME-CCA) [WILLIAMS 2, 2002] _____ 84
FIGURE 4-9 - ARCHITECTURE OF THE LIVINGSTONE MODE ESTIMATION ENGINE ____________ 86
FIGURE 4-10 - MODE ESTIMATE CALCULATION IN LIVINGSTONE ________________________ 87
FIGURE 4-11 - EXPANSION OF CONFLICTS IN LIVINGSTONE _____________________________ 91
FIGURE 5-1 - COMPILED MODE ESTIMATION ARCHITECTURE ___________________________ 97
FIGURE 5-2 – GENERAL COMPONENT, COMPILED TRANSITION __________________________ 99
FIGURE 5-3 - DEFINITION OF A COMPILED TRANSITION _______________________________ 100
FIGURE 5-4 - DISSENTS AND COMPILED TRANSITIONS FOR NEAR POWER STORAGE EXAMPLE 101
FIGURE 5-5 - THE SET OF REACHABLE COMPONENT MODES ___________________________ 102
FIGURE 5-6 - EXPANSION OF FIRST SET OF CONSTITUENT DIAGNOSES ___________________ 103
FIGURE 5-7 - EXPANSION OF THE NEXT SET OF CONSTITUENT DIAGNOSES ________________ 104
FIGURE 5-8 - STEPS OF MODEL COMPILATION ______________________________________ 105
FIGURE 5-9 - INPUTS AND OUTPUTS OF TRANSITION COMPILATION______________________ 107
FIGURE 5-10 - DEPICTION OF A COMPILED TRANSITION ______________________________ 108
FIGURE 5-11 - TRANSITION COMPILATION AS OPSAT________________________________ 109
FIGURE 5-12 - DIAGRAM OF THE CHARGER AND BATTERY OF NEAR ____________________ 111
FIGURE 6-1 - INPUTS/OUTPUTS OF ONLINE MODE ESTIMATION_________________________ 116

Achieving Real-time Mode Estimation through Offline Compilation 12

FIGURE 6-2 - INPUT/OUTPUT DEFINITIONS FOR ONLINE COMPILED MODE ESTIMATION ______ 117
FIGURE 6-3 - PROCESSES WITHIN THE COMPILED CONFLICT RECOGNITION________________ 118
FIGURE 6-4 - SAMPLING OF DISSENTS OF THE NEAR POWER STORAGE SYSTEM ___________ 120
FIGURE 6-5 - TRIGGERED DISSENTS FROM OBSERVATIONS ____________________________ 120
FIGURE 6-6 – CALCULATION OF THE REACHABLE CURRENT MODES_____________________ 124
FIGURE 6-7 - DYNAMIC MODE ESTIMATE GENERATION ARCHITECTURE__________________ 127
FIGURE 6-8 - DEPICTION OF GENERATE AND CDA* RESULT___________________________ 128
FIGURE 6-9 - CALCULATION OF THE RANK ALGORITHM ______________________________ 129
FIGURE 6-10 - SEARCH TREE OF PREVIOUS MODE ESTIMATES _________________________ 131
FIGURE 6-11 - EXAMPLE OF STATE TRANSITIONS FOR THE GENERATE ALGORITHM _________ 135
FIGURE 6-12 - INITIAL ORDERING OF THE SEARCH TREE IN THE GENERATE ALGORITHM _____ 135
FIGURE 6-13 - SEARCH TREE AFTER 1ST ITERATION OF THE GENERATE ALGORITHM_________ 136
FIGURE 6-14 - SEARCH TREE AFTER 2ND ITERATION OF THE GENERATE ALGORITHM ________ 136
FIGURE 6-15 - SEARCH TREE AFTER 3RD ITERATION OF THE GENERATE ALGORITHM ________ 137
FIGURE 6-16 - SEARCH TREE AFTER 4TH ITERATION OF THE GENERATE ALGORITHM_________ 137
FIGURE 6-17 - SEARCH TREE AFTER 5TH ITERATION OF THE GENERATE ALGORITHM ________ 138
FIGURE 6-18 - SEARCH TREE AFTER 6TH ITERATION OF THE GENERATE ALGORITHM_________ 138
FIGURE 6-19 - SEARCH TREE AFTER 7TH ITERATION OF THE GENERATE ALGORITHM ________ 139
FIGURE 6-20 - SEARCH TREE AFTER 8TH ITERATION OF THE GENERATE ALGORITHM ________ 139
FIGURE 6-21 - EXAMPLE COST CALCULATION FOR A NODE ___________________________ 144
FIGURE 6-22 - DISSENT EXPANSION FROM NEAR POWER STORAGE SYSTEM (APPENDIX C) __ 144
FIGURE 6-23 - CDA* EXPANSION OF CONSTITUENT DIAGNOSIS #1 _____________________ 149
FIGURE 6-24 - EXPANSION OF CONSTITUENT DIAGNOSIS #7 FOR CDA* __________________ 150
FIGURE 6-25 - CDA* EXPANSION OF CONFLICT #9 __________________________________ 151
FIGURE 6-26 - EXPANSION OF CONSTITUENT DIAGNOSIS #14 __________________________ 152
FIGURE 6-27 - INPUTS AND OUTPUTS OF THE RANK ALGORITHM _______________________ 153
FIGURE 6-28 - RANK ALGORITHM PROBABILITY CALCULATION FOR A MODE ESTIMATE _____ 154
FIGURE 6-29 - DETERMINATION OF COMPONENT MODE ASSIGNMENT TRANSITIONS ________ 155
FIGURE 7-1 - INPUTS AND OUTPUTS OF CONFLICT GENERATOR_________________________ 164
FIGURE 7-2 - A REACHABLE CURRENT ASSIGNMENT WITH MULTIPLE PREVIOUS SOURCES ___ 164
FIGURE 7-3 – CONSTITUENT DIAGNOSIS GENERATOR ALGORITHM ______________________ 166
FIGURE 7-4 - INPUTS AND OUTPUTS OF THE GENERATE ALGORITHM_____________________ 167
FIGURE 7-5 - GENERATE ALGORITHM FOR DYNAMIC MODE ESTIMATE GENERATION________ 169
FIGURE 7-6 - INPUTS AND OUTPUTS OF THE DDA* ALGORITHM ________________________ 171
FIGURE 7-7 - CONFLICT DIRECTED A* ALGORITHM _________________________________ 172
FIGURE 7-8 - EXPAND AND INSERT ALGORITHM SUPPORTING THE CDA* ALGORITHM ______ 174
FIGURE 7-9 - ADD CONSTITUENT DIAGNOSIS AND ADD VARIABLE ALGORITHMS___________ 175
FIGURE 7-10 - UPDATE ALLOWABLE ASSIGNMENTS SUPPORTING DDA* ALGORITHM_______ 177
FIGURE 7-11 - INSERT NODE ALGORITHM SUPPORTING THE DDA* ALGORITHM ___________ 178
FIGURE 7-12 - INPUTS AND OUTPUTS OF THE RANK ALGORITHM _______________________ 179
FIGURE 7-13 - RANK ALGORITHM ___ 180
FIGURE 7-14 - INPUTS AND OUTPUTS FOR ONLINE MODE ESTIMATION ___________________ 181
FIGURE 7-15 - ONLINE MODE ESTIMATION ALGORITHM ______________________________ 182
FIGURE 8-1 - ARTIST'S DEPICTION OF THE NEAR SPACECRAFT ________________________ 185
FIGURE 8-2 - NEAR POWER SYSTEM SCHEMATIC___________________________________ 187
FIGURE 8-3 - SCHEMATIC OF SIMPLIFIED NEAR POWER SYSTEM _______________________ 188

Achieving Real-time Mode Estimation through Offline Compilation 13

FIGURE 8-4 - NEAR POWER SYSTEM BLOCK DIAGRAM ______________________________ 189
FIGURE 8-5 – CONSTRAINT AUTOMATON OF THE NEAR POWER SYSTEM CHARGERS _______ 190
FIGURE 8-6 – CONSTRAINT AUTOMATON OF THE NEAR POWER SYSTEM BATTERY_________ 192
FIGURE 8-7 - COMPILED TRANSITION FUNCTION FOR EACH COMPONENT _________________ 195
FIGURE 8-8 - RULES FOR THE NEAR POWER SYSTEM ________________________________ 197
FIGURE 8-9 - CME OUTPUT FOR DIGITAL SHUNT NORMAL OPERATION __________________ 200
FIGURE 8-10 - CME ENGINE OUTPUT FOR NOMINAL CHARGER AND BATTERY OPERATION___ 202
FIGURE 8-11 - CME OUTPUT FOR A FAILED ANALOG SHUNT __________________________ 204
FIGURE 8-12 - CME OUTPUT FOR FAILED CHARGER_________________________________ 206
FIGURE 8-13 - CME DIAGNOSIS OF THE DIGITAL SHUNT FAILURE ______________________ 207
FIGURE 8-14 - CME OUTPUT FOR A FAILED DIGITAL SHUNT __________________________ 210
FIGURE 8-15 - CME RESULTS ON DOUBLE FAILURE WITH THE ANALOG SHUN AND CHARGER_ 211
FIGURE 10-1 - EXAMPLE TRANSITION SYSTEM FOR NEW HEURISTIC_____________________ 221
FIGURE A-1 - CONSTRAINT AUTOMATON FOR THE NEAR POWER SYSTEM SOLAR ARRAYS __ 227
FIGURE A-2 - CONSTRAINT AUTOMATON FOR THE NEAR POWER SYSTEM DIGITAL SHUNTS _ 229
FIGURE A-3 - CONSTRAINT AUTOMATON FOR THE NEAR POWER SYSTEM ANALOG SHUNTS _ 231
FIGURE A-4 – CONSTRAINT AUTOMATON FOR THE NEAR POWER STORAGE SWITCH _______ 233
FIGURE C-1 - NEAR POWER STORAGE SYSTEM ____________________________________ 247
FIGURE C-2 - SPACE OF POSSIBLE COMPONENT MODES ______________________________ 251
FIGURE C-3 - EXPANSION OF CONSTITUENT DIAGNOSES 1_____________________________ 252
FIGURE C-4 - EXPANSION OF CONSTITUENT DIAGNOSES 7_____________________________ 252
FIGURE C-5 - EXPANSION UNDER 'CHARGER-1 = OFF' NODE OF CONSTITUENT DIAGNOSES 3 _ 253
FIGURE C-6 - EXPANSION OF CONSTITUENT DIAGNOSES 9_____________________________ 254
FIGURE C-7 - EXPANSION OF THE SET OF CONSTITUENT DIAGNOSES #4 __________________ 254
FIGURE C-8 - EXPANSION OF CONSTITUENT DIAGNOSES 12 UNDER THE GREEN PATH _______ 255
FIGURE D-1 - INPUTS AND OUTPUTS OF THE DISSENT AND TRANSITION TRIGGERS __________ 257
FIGURE D-2 - DISSENT TRIGGER ALGORITHM ______________________________________ 258
FIGURE D-3 - TRANSITION TRIGGER ALGORITHM ___________________________________ 259
FIGURE D-4 – UPDATE-TRUTH ALGORITHM SUPPORTING COMPILED CONFLICT RECOGNITION 261
FIGURE D-5 - COMPRESSION OF PREVIOUS BELIEF STATE _____________________________ 261
FIGURE D-6 - COMPRESS STATES ALGORITHM _____________________________________ 262
FIGURE D-7 - INSERT-IN-ORDER ALGORITHM SUPPORTING THE GENERATE ALGORITHM _____ 263

TABLE 6-1 - EXAMPLE OF TRUTH VALUES FOR ASSIGNMENTS__________________________ 121

Achieving Real-time Mode Estimation through Offline Compilation 14

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 15

1 Introduction

1.1 Motivation

Spacecraft face many challenges in current and future missions due to the harsh environment of

space and the complexity of spacecraft systems. Coupled with these challenges, additional

problems are created by the growing number of spacecraft being developed, system design and

manufacturing flaws and the increasing complexity of missions. These can cause unpredictable

spacecraft behavior as well as component and system failures, which can have deadly

repercussions. Spacecraft require a technology to increase robustness in the face of these

problems. Spacecraft autonomy, more specifically fault management, provides a solution that

permits space exploration and spacecraft to move beyond these obstacles. Fault management

embodies the spacecraft with the intelligence that allows it to reason about faulty components

and work around them to continue to achieve its mission goals. Spacecraft with this capability

reduce the impact of failures and increase the likelihood of mission success.

Fault management systems can be designed at varying levels and complexities. In the most basic

sense, a spacecraft can be considered autonomous if it has the ability to detect pre-specified

failures and take repair actions. This type of autonomous system is based on a set of scenarios

developed by human modelers and embedded in the spacecraft processor. Anything outside of

these scenarios causes the spacecraft to radio Earth for further instructions. In order to develop

more complex scenarios, a human would have to reason about multiple components, their

individual behaviors and failures. A more sophisticated fault management system automates this

reasoning using a model of the spacecraft and the foundations of artificial intelligence. A system

Achieving Real-time Mode Estimation through Offline Compilation 16

of this type reasons through component behaviors and interactions as prescribed by the model.

These two distinct approaches demonstrate the difference between current fault management in

spacecraft - rule-based systems that give repair actions for only certain specified faults, and the

model-based approach that determines system behavior and repair actions for many faults.

The necessity of fault management is best demonstrated by looking at the needs of past and

future missions. Take as an example the Mars Polar Lander. This spacecraft was scheduled to

land in the polar regions of Mars, an environment with assumedly harsh conditions. Upon

descent, the spacecraft prematurely cut its engine while it was still approximately 130 ft (40 m)

off of the ground. This command likely caused the spacecraft to plummet to the surface and

break apart on impact. It was determined that after the landing legs had deployed, a failed sensor

mistakenly read that its landing leg had touched the surface. A more sophisticated fault

management system would have enabled the spacecraft to compare the readings of all sensors,

including the laser range finder. With a majority of the landing sensors reading ‘no-ground-

contact’, and the laser range finder reading a distance of 40 m, it could have reasoned that there

was a faulty sensor and ignored it. This reasoning capability protects the spacecraft from

component failures, allowing it to recover and complete its mission.

Take as another example the MESSENGER [JHUAPL, 2002] mission to Mercury currently

being built and operated out of the Applied Physics Lab at Johns Hopkins University. System

failures caused by the harsh environment around Mercury are a primary challenge of this

mission. In addition, due to the time delay of communication, the dependence of the spacecraft

on transmissions from Earth hinders science collection and the completion of mission goals.

Spacecraft autonomy would enable the spacecraft to independently plan and execute activities,

and perform operations to maintain the health of the spacecraft. It offers the MESSENGER

spacecraft a robust approach to handling failures and completing mission goals with minimal

contact with Earth.

These examples give a variety of possible applications of basic and more sophisticated levels of

fault management and autonomy. These are essential for missions as they explore further into

our solar system and as spacecraft grow in complexity. If something unexpected occurs, the

Achieving Real-time Mode Estimation through Offline Compilation 17

spacecraft could recover and still complete the activity without ever having to contact the ground

for help. For the reasons detailed here, model-based autonomy and fault management will have

a prominent role in the development of future spacecraft.

1.2 Mode Estimation Evolution

A component of the fault management system is mode estimation, which determines the

behavior of the system using current sensor information. Mode estimation determines if

components are faulty, but also tracks the nominal behavior of the system. This is a key aspect

that enables an autonomous system to accurately control the spacecraft systems.

An accurate mode estimation engine must have several key attributes to achieve the goal of

detecting failures and determining system behavior accurately. The engine must be capable of

detecting single and multiple failures, using multiple sources of information to determine system

behavior, and have the ability to rank diagnoses of the system. Additionally, as available

resources, including time, computational power and storage space, for fault management on

board a spacecraft dwindle it becomes necessary to require faster response times and smaller

memory allocation for these software processes. The mode estimation engine that has been

developed, Compiled Mode Estimation (CME), was designed to address these concerns and be

an improvement over previous mode estimation approaches.

Mode estimation leverages models and reasoning algorithms to determine the behavior of the

system. Previous mode estimation engines required many computations in order to estimate the

system behavior using these models and the current sensor information. CME has been

developed to reduce the number of computations at run-time and address the real-time

performance issues of these previous engines. CME is divided into two steps, an offline model

compilation phase and online mode estimation engine. In the offline stage, the compiled model

is generated by removing particular information that is costly to determine at run-time. This

allows for the design of an any-time algorithm that can determine the system behavior in the

online phase. CME addresses the concerns faced by current and future missions by providing a

Achieving Real-time Mode Estimation through Offline Compilation 18

capability that can identify failures and nominal system behavior, and provide these for a real-

time system.

Additionally, previous mode estimation engines have the potential to increase the risk of a

mission. The benefits of developing models of the system and using reasoning algorithms to

determine system behavior are to have the ability to identify many behaviors of the system, not

just those that can be specified by a human modeler. However, the results of previous engines

were unpredictable prior to the operation of the system. One of the key benefits of CME is it

makes the possible diagnoses of the system explicit before the system operates due to the

compiled model. This enables a human modeler to inspect the diagnoses for correctness.

Compiled Mode Estimation only provides one capability of a larger autonomy system. The

following section presents the architecture of an autonomy system to highlight the utility of

mode estimation, and the capability of an autonomous system.

1.3 Model-based Spacecraft Autonomy

Several different methods have been explored to engineer an autonomous system for spacecraft.

To date, the two main approaches utilized have been rule-based and model-based systems.

Rule-based autonomy specifies repair actions in response to observations of undesirable sensor

information. These repair actions are based on a fixed set of scenarios identified by human

modelers that have reasoned through the spacecraft component interactions. Model-based

autonomy produces a robust approach to handling system failures by considering a larger set of

spacecraft behavior using models and reasoning algorithms. It offers a way for human modelers

to convey knowledge of failures in terms of common sense engineering models of spacecraft

components. These models enable reasoning algorithms to determine the current behavior of the

spacecraft, identify failures, diagnose and repair using sensor information. Model-based

autonomy was selected as the basis of this research as it allows the spacecraft to reason through

component interactions independent of a human modeler.

A model-based autonomous system is best understood through an explanation of its main

components, and their interactions. Shown in Figure 1-1 is the paradigm of a model-based

Achieving Real-time Mode Estimation through Offline Compilation 19

program and a model-based executive [Williams 2, 2002]. Here the fault management portion is

labeled as the ‘Deductive Controller’.

Observations

Model-based Executive

Deductive Controller

RMPL

Control
Program

System
Model

Sequencer

Mode
Estimation

Mode
Reconfiguration

Flight System Control

Real-time Control Layer

Commands

Mode Estimate
Configuration

Goals

Figure 1-1 - Model-based Executive Architecture

The architecture shows the model as the starting point, described in the Reactive Model-based

Programming Language (RMPL) [Ingham, 2001]. The model has two different levels, a control

program and a system model. The control program encodes a model of the intended behavior of

the spacecraft. This is a way to describe sequences of actions that achieve certain goals, such as

telling the propulsion system to thrust. The system model encodes the spacecraft component

behavior and their interactions.

The model-based executive acts as a high level controller using the estimated behavior of the

spacecraft to determine control actions, encoded as ‘commands’ in Figure 1-1, which place the

spacecraft in a desired configuration. The model-based executive is comprised of three major

components, the Sequencer, the Mode Reconfiguration engine, and the Mode Estimation engine.

The Sequencer’s task is to execute a specified sequence of actions, where the actions are

specified within the control program. These actions are then translated by the Sequencer to a

‘configuration goal’, which specifies the desired modes for the spacecraft components. The

Mode Reconfiguration engine then uses these configuration goals, the current mode estimate of

the system and the system model, to determine the control actions, or commands, to apply to the

spacecraft components in order to achieve the configuration goal. The final piece of the

architecture is the Mode Estimation engine that uses the observations, commands and the system

model to determine the current mode estimate of the system. Observations represent the current

readings of sensors in the spacecraft system and are vital to determining the current behavior of

Achieving Real-time Mode Estimation through Offline Compilation 20

the spacecraft. The Mode Estimation and the Mode Reconfiguration engines work together to

provide the spacecraft with a fault management capability. The mode estimates represent the

current behavior of the system, and are used to exact repairs on the system determined by the

Mode Reconfiguration engine.

A mode estimate represents the Mode Estimation engine’s best determination of the behavior of

the components in the spacecraft. The behavior of a component is encoded in the system model,

and the task of Mode Estimation is to determine the best mode for each component in the system

that is consistent with the observations, commands and the model. The Mode Estimation engine

can be thought of as the doctor on the spacecraft. It identifies the behavior of the spacecraft

including normal or faulty operation. It diagnoses the components’ behavior by determining the

most likely component modes. Estimating system behavior is an essential task for an autonomy

architecture to correctly and accurately control the system. Mode estimation provides an

accurate representation of the current behavior of the system, which is needed to control the

system. It is essential to increase the accuracy of mode estimation to enable the correct control

on the spacecraft by the model-based executive.

CME seeks to increase the accuracy of mode estimation and provide an engine with the

capabilities described previously. However, to understand the process of determining system

behavior, requires developing a very primitive mode estimation engine and demonstrating this

using an example. The following sections present an approach to mode estimation in 1.4,

followed by the enhancements to this process using model compilation in Section 1.5.

1.4 Mode Estimation

The Mode Estimation engine maps the system model, the observations and commands to a set of

component modes that reflect the behavior of the system. The task of mode estimation is to

choose the proper component modes that are consistent with the model constraints, and also

agree with the observations and commands. Mode estimation is an example of the task of

inferring hidden state [Wiliams 2, 2002]. Since the modes of these components cannot be directly

obtained, hence hidden, then they can only be estimated using the system model, observations

Achieving Real-time Mode Estimation through Offline Compilation 21

and commands. In the case of spacecraft systems, there are only observations that give insight

into the behavior of the components in the spacecraft. Mode estimation is framed using the

theory of hidden state problems, the foundations of logical inference and the theory of Hidden

Markov Models.

The process to estimate these component modes is best understood by first discussing the inputs

and outputs of the mode estimation algorithm, and then demonstrating the process on an example

spacecraft system. The example gives a context and a grounded way to discuss the basic steps of

mode estimation.

1.4.1 Inputs and Outputs

The mode estimation engine uses the system model, the current observations and commands to

determine an estimate of the component behavior, represented by a mode estimate. These have

been discussed briefly, but a more thorough definition of each of these inputs and outputs is now

given. Figure 1-2 depicts these inputs and outputs.

Mode
Estimation

System
Model

Observations

Commands

Mode
Estimate

Figure 1-2 - Inputs and Outputs of Mode Estimation

The ‘system model’ represents the behavior of each component in the system being monitored.

The components are modeled by a set of discrete modes. Each discrete mode is expressed by a

set of constraints that describe the component behavior within the mode and probabilistic

transitions to other modes of the component. These constraints relate the observations,

commands and intermediate variables. The ‘observations’ represent the sensor information of

the system. The ‘commands’ represent the control actions that the Model-based Executive may

perform on the system. The intermediate variables are an internal variable in the system model

that enables communication between different components.

Achieving Real-time Mode Estimation through Offline Compilation 22

The output ‘mode estimate’ is an assignment of modes, one for each component in the system

that is consistent with the system model, the observations and the commands. There are many

mode estimates of the system at any given time, which are ordered using probabilities. This

assignment of component modes is only an estimate since the system model includes

probabilistic transitions. Probabilistic transitions are necessary to capture the behavior of

failures and intermittency within a real system.

1.4.2 Mode Estimation Example

There have been many systems that solve the mode estimation problem [deKleer, 1987, deKleer,

1989, Williams 1996, Kurien, 2000, Hamscher, 1992]. This section presents the basic steps of

mode estimation, followed by a description of a spacecraft system, and ends with a description of

mode estimation applied to the example spacecraft system.

1.4.2.1 The Mode Estimation Process at a Glance

The ‘system model’, as described before, is comprised of models of each component in the

spacecraft system. Each of these models includes modes that characterize different behaviors of

the component within the overall spacecraft system. The modes are described by specified

model constraints that capture the behavior of that mode and by probabilistic transitions to

modes within the same component model.

Mode estimation determines the set of component mode assignments that are consistent with the

constraints associated with the component modes and the transitions. To accomplish this, mode

estimation must perform two key steps:

1. Determine a set of likely next mode assignments given likely mode assignments in

the previous state and the transitions.

2. Choose the most likely, current component modes that are consistent with the mode

constraints, the observations and control values.

Achieving Real-time Mode Estimation through Offline Compilation 23

Mode estimation computes the likely next mode assignments by choosing transitions that

mention mode assignments in the previous state and storing the targets of the transitions in the

set of likely next mode assignments. The second step of mode estimation computes the current

mode estimate by searching for combinations of component modes and determining if they are

consistent with the constraints. Effectively, the mode estimation process must choose the

optimal component modes, optimal due to the probabilistic transitions. Mode estimation is then

framed as an optimal constraint satisfaction problem where the solution is the set of component

modes that gives the highest probability, and that also satisfy the model constraints.

The process of mode estimation gives the system the ability to determine component behavior

accurately and at a higher level than the continuous dynamics of the system. Mode estimation

has the ability to determine faulty components in terms of discrete modes. For instance, mode

estimation is able to determine that a valve is stuck-open instead of specifying this in terms of

continuous sensor readings, such as flow = 0.54 ft3/min. This high level specification of the

system behavior enables the Model-based Executive to determine recovery actions.

1.4.2.1 NEAR Spacecraft Power System

The steps of the basic mode estimation are best demonstrated by example. Our example is taken

from the Near Earth Asteroid Rendezvous (NEAR) mission, operated by the Johns Hopkins

University Applied Physics Lab in Columbia, MD. The mission launched in February of 1996,

rendezvoused with the Eros asteroid on February 14, 2000. The spacecraft lasted much longer

than anticipated and performed a groundbreaking maneuver. It landed on the surface of the Eros

asteroid in February of 2001, and the spacecraft continued to transmit data back to Earth until it

ran out of power in February 28, 2001.

The NEAR spacecraft has eight systems interacting together to maintain the health of the

spacecraft, to control the attitude, to collect science information, to enable communication, and

to provide power to the spacecraft. The power system of the NEAR spacecraft is chosen as the

example system for its complexity and familiarity from everyday life. For instance, the

interactions of a battery and a charger are easy to understand since they are in cars, trains, cell

phones, etc. However, the power system of the NEAR spacecraft does offer interesting

Achieving Real-time Mode Estimation through Offline Compilation 24

complexities due to the collection of power in space. For instance, the power generated by the

solar arrays must be regulated to a specific level so that the sensitive instruments are not harmed.

The NEAR Power sub-system is shown below in Figure 1-3. The example focuses in particular

on the NEAR Power storage sub-system, highlighted with a circle in the figure.

Power Storage
System

Solar Arrays

Digital Shunts Analog Shunts

Power Bus

Figure 1-3 - NEAR Power System

The power system is built up using solar arrays that generate power, digital and analog shunts

that regulate the power, and components to store the power, built using a switch, redundant

battery chargers and a battery. The NEAR Power system is an example of a direct energy

transfer (DET) power system [Wertz, 1999]. All of the incoming power gathered from the solar

arrays is initially put on the power bus. However, this incoming power might be too much for

the power bus and spacecraft components to handle. The digital and analog shunts are placed in

the system to prevent this excess power from affecting the spacecraft components. These shunts

act to dissipate the excess power when they are enabled. These shunts are supported by the

analog and digital shunt drivers, and bus voltage regulator that determine when shunts should be

enabled or disabled.

The next stage of this power system is the power storage system. The components of the power

storage system are a switch, two redundant chargers, and a NiCd battery. The available sensors

for the power storage system measure the incoming bus voltage, the outgoing battery voltage,

and the temperature of the battery. The switch is linked to the redundant chargers to change the

charger that receives the bus voltage. This switch guarantees that only one charger can charge

Achieving Real-time Mode Estimation through Offline Compilation 25

the battery at any given time. The chargers use the voltage from the switch to output a current

that charges the battery. The chargers have two different charging modes, a trickle charge and a

full-on charge. The trickle charge is used if the battery is nearly fully charged so as to keep it at

a full charge. This mode delivers a small current to the battery. The full-on charge is used if the

battery charge is low. This mode delivers the maximum current possible to charge the battery as

quickly as possible. The battery behavior is based on the level of charge remaining in the battery

and the current rate of discharge of the battery. The indicator of the level of charge in the battery

is the temperature, since there is no direct sensor for the level of charge. The indicator for the

rate of discharge of the battery is the voltage sensor, depicted between the bottom of the battery

and the power bus in Figure 1-3. These observations indicate if the battery is currently

discharging, charging or full.

The power generation system, made up of the solar arrays, shunts and shunt drivers, and the

power storage system interact to give the voltage required by the NEAR spacecraft. The power

storage system reacts to the needs of the spacecraft and the available power generated from the

power generation components. If the solar arrays provide too much power, as is the case when

the spacecraft is near Earth, then the power storage system stores this extra power, up to the

capacity of the battery. If the solar arrays cannot provide enough power for the spacecraft, then

the power storage system reacts automatically and supplies the necessary voltage. The reason

that the solar arrays provide too much power near Earth is that the solar arrays are designed to

provide the required power for the spacecraft when it is at the asteroid, Eros. Since the asteroid

is further away from the sun than Earth, the solar power available is much less. It is for these

reasons that the power system has a means to dissipate, as well as store, excess power.

The power storage system is made the focus of further discussion and example because of its

component interactions and interesting component modes. The modes of the components and

interactions between the components are detailed in Figure 1-4. The different types of variables

and their domains are listed below.

 Observable: bus-voltage, battery-voltage, battery-temperature

 Intermediate: switch-voltage, charger-current

 Component: switch, charger-one, charger-two, battery

Achieving Real-time Mode Estimation through Offline Compilation 26

 Command: NONE

 The domains for each variable type are:

 voltage: zero, low, nominal, high
 temperature: low, nominal, high
 current: zero, trickle, nominal, high

Switch

Charger-One
Charger-Two
Stuck-Charger-One
Stuck-Charger-Two
Unknown

Charger-One

Full-On
Trickle
Off
Broken
Unknown

Charger-Two

Full-On
Trickle
Off
Broken
Unknown

Battery

Full
Charging
Discharging
Dead
Unknown

Switch
Voltage

Switch
Voltage

Charger Current

Bus Voltage

Battery Voltage

Battery
Temperature

Battery
Temperature

Figure 1-4 - Component Mode Breakdown of the NEAR Power Storage System

The power storage system has several design characteristics worth noting. For instance, Figure

1-4 and Figure 1-3 shows the chargers using the temperature of the battery as an input. This

sensor reading indicates the level of charge in the battery, which is used by the charger to

determine how to charge the battery. When the temperature is high, this means that the battery is

full, indicating to the charger that it only needs to trickle-charge the battery. When the

temperature is nominal, this means that the battery is not full, indicating to the charger that it

should apply the maximum current possible, putting the charger in the full-on mode.

The component modes shown here each have associated constraints describing their behavior.

The switch modes, for either ‘charger-1’ or ‘stuck-charger-1’, are used to pass the incoming

bus-voltage to charger-1. The difference between the two is that the mode ‘stuck-charger-1’ is a

Achieving Real-time Mode Estimation through Offline Compilation 27

failure mode indicating that the switch cannot move from the position for charger-1. The modes

of the charger model the type of charge being applied to the battery. In the full-on mode, the

charger is sending a nominal current to the battery to give it the highest charge possible. In the

trickle mode the charger sends only a trickle-charge to the battery to keep the charge level full.

The broken mode for the chargers may be deduced by detecting that the output ‘charger-current’

is high. The model for the charger is built using the switch voltage and the output charger

current to model the component modes, and using the battery temperature to model the

transitions between modes. For the battery, the ‘full’, ‘charging’ and ‘discharging’ modes

model the behavior described earlier using the input current from the charger and the output

battery voltage. The full representation of these component models is given in Appendix A.

1.4.2.2 Mode Estimation Example

This section demonstrates the two basic steps of mode estimation using the NEAR Power

Storage system. Recall that the first step of mode estimation assumes that there already exists a

previous mode estimate. Using the transitions and the previous mode estimate, the algorithm

determines the set of component modes that are reachable in one time step. To determine this,

the algorithm first finds the transitions whose source are the component modes in the previous

mode estimate. The constraints are then extracted from the transitions and added to the model

constraints. This is represented graphically in Figure 1-5.
Reachable Current

Modes (M(t+1))

Switch

Charger-One
Stuck-Charger-One
Stuck-Charger-Two

Unknown

Charger-One

Off Trickle
Broken Unknown

Battery

Discharging
Charging

Dead
Unknown

Charger-Two

Off Trickle
Broken Unknown

Previous Mode
Estimate (S(t),P(S(t)))

Charger-One

Off

Switch

Charger-One

Battery

Discharging

Charger-Two

Off

Figure 1-5 - Step 1 of the Mode Estimation Process

Achieving Real-time Mode Estimation through Offline Compilation 28

Depicted on the figure above is the previous mode estimate, which is the pair (S(t), P(S(t))). This

pair denotes the state, S(t), as a choice of a single mode for each component in the system, and the

probability of this mode estimate, P(S(t)). For this example, the probability of the previous mode

estimate is 1. The figure denotes the set of component modes that are reachable in the current

time step, ‘t+1’, and these are determined by the transitions. For instance, in the case of the

switch, the ‘charger-2’ mode is not allowed in the current modes because the switch only

transitions to ‘charger-2’ if charger-1 fails. Since charger-1 was ‘off’ in the previous mode

estimate, then the transition of the switch from ‘charger-1’ to ‘charger-2’ is not allowed.

To summarize, the first step of mode estimation has determined the transitions that are allowed

from the previous mode estimate, and calculated the set of reachable current component modes.

The mode estimation algorithm has added the constraints from all the transitions into the model

constraints and extracted the model constraints from the reachable current component modes.

These constraints and this set of reachable current component modes are then used in the second

step of mode estimation.

The second step of mode estimation determines which sets of reachable component modes are

consistent with the model constraints and the observations. In order to determine all different

combinations of the component modes, the calculation must be performed methodically. The

sets of current component modes are generated through systematic search. As a straw man,

mode estimation uses chronological search to determine the sets of component modes, depicted

in Figure 1-6.

{ }

Switch =
Charger-1

Switch =
Stuck-

Charger-1

Switch =
Unknown

Switch =
Stuck-

Charger-2

Figure 1-6 - Search Tree Expansion Using Component Modes

Achieving Real-time Mode Estimation through Offline Compilation 29

This first expansion shows the search using the current component modes of the switch. The

search then continues to expand the tree until it determines a mode to each component in the

power storage system. The search follows the first leaf of the tree, ‘switch = charger-1’ and

expands the next component under it, charger-1. Figure 1-7 depicts this expansion.

{ }

Switch =
Charger-1

Switch =
Stuck-

Charger-1

Switch =
Unknown

Charger-1
= Trickle

Charger-1
= OFF

Charger-1
= Broken

Charger-1
=

Unknown

Switch =
Stuck-

Charger-2

Figure 1-7 - Search Tree Expansion with Two Components Shown

The search would continue until it determined a complete set of component modes. From the

listing of current component modes in Figure 1-4, the first full choice of component modes is:

 (switch = charger-1), (charger-1 = trickle), (charger-2 = trickle), (battery = charging)

This set of reachable component modes must be checked to insure that it is consistent with the

mode constraints. To demonstrate this process, consider the following current observations of

the system.

 (bus-voltage = nominal), (battery-temperature = nominal), (battery-voltage = nominal)

To determine if the mode estimate is consistent, mode estimation begins by propagating variable

values through the model constraints of the component modes.1 This process enables mode

estimation to predict values for many of the observation and intermediate variables in the system.

For a mode estimate to be consistent, any value it predicts must agree with the current

observations. Using the mode estimate from above, the remaining values within the system that

must be determined are the switch-voltage and the charger-current, one of each per charger.

1 Using a complete satisfiability algorithm, if no variable value is predicted for a variable, an assignment must be
found that is consistent with the observations. [Williams, 2002]

Achieving Real-time Mode Estimation through Offline Compilation 30

Beginning at the switch, and using the observation ‘bus-voltage = nominal’, this is propagated

through the component model for ‘switch = charger-1’, which gives ‘charger-1.switch-voltage =

nominal’ and ‘charger-2.switch-voltage = zero’. These values are then propagated through the

models of the chargers for ‘charger-1 = trickle’ and ‘charger-2 = trickle’. The resultant value

for the output of charger-1 is ‘charger-1.charger-current = trickle’. When propagating through

the component model for the mode ‘charger-2 = trickle’, the input switch-voltage must be

‘nominal’ or ‘low’ according to the mode constraints. This results in conflicting results for the

variable ‘charger-2.switch-voltage’. The mode estimation algorithm then throww out this set of

component modes as an inconsistent mode estimate.

Once mode estimation determines if a set of component modes is consistent or inconsistent, it

uses the search tree to generate another set of component modes to test for consistency. This

process repeats until the generation of mode estimates has explored a certain amount of the

probability space, or the entire search tree is explored and all consistent mode estimates have

been generated. The steps of the mode estimation process described here have:

1. Generated a set of current component modes using the transitions and a previous
mode estimate.

2. Used this set of current component modes to generate mode estimates
3. Tested each for consistency, and kept those that are consistent.

The algorithm described above is an overly simplified approach to calculating these key steps.

However, even this simple algorithm contains many of the key attributes of a mode estimation

engine, described in section 1.2. It is able to use multiple sources of information to determine

the modes of components, and it is able to determine single and multiple faults. Finally, the

algorithm ranks mode estimates using probabilistic transitions. This information however can be

used more efficiently in the search. There have been many algorithms designed to perform a

variant of mode estimation [deKleer, 1987, deKleer, 1989, Williams, 1996, Kurien, 2000,

Ingham, 2001]. Earlier mode estimation engines [deKleer, 1987, deKleer, 1989] did not have

transitions in the models of components.

Achieving Real-time Mode Estimation through Offline Compilation 31

1.4.3 Issues in Mode Estimation

The mode estimation algorithm described in the previous section is a brute force approach to

generating mode estimates. The algorithm generates many combinations of component modes

that are inconsistent with the model constraints and observations. The problem with generating

these inconsistent mode estimates is the time spent in determining that it is inconsistent. The

propagation of model information and the search over possible component modes is an NP-hard

problem resulting in an exponential computation in the number of components.

The test for consistency of mode estimates is costly due to the search for possible assignments in

the system. The example above demonstrated this search and the ensuing propagation of

variable values. Notice in the example above the amount of time taken to determine the values

of the ‘charger-1.switch-voltage’ and the ‘charger-2.switch-voltage’. In particular, in order to

determine these values, mode estimation performed a search over variables whose values were

not determined by propagation. This results in an overall exponential computation. As the

number of components in the system increases, so do the number of variables that must be

determined for each mode estimate. Determining these values is the computational bottleneck of

mode estimation.

1.4.4 Tracking System Trajectories

Recent mode estimation engines have incorporated transitions into the models of system

components to enhance the accuracy of mode estimates [Williams, 1996, Kurien 2000]. These

systems tracked the behavior of the system over time by maintaining the likely mode estimates at

each time step. The trajectory tracking is depicted in Figure 1-8, where one path (noted in red) is

kept at each time increment.

Achieving Real-time Mode Estimation through Offline Compilation 32

St+1
1St

1

St+1
2

St+1
3

St+1
4

St+2
1

St+2
2

St+2
3

St+2
4

Figure 1-8 - Tracking Mode Estimates Over Time

Tracking mode estimates over time gives the benefit of diagnosing complex failures that evolve

over time. Trajectory tracking requires determining if certain transitions between states are

allowed. Determining this requires a consistency test, similar to the one described for mode

constraints. Tracking likely trajectories limits the computations required to determine if taking a

transition is consistent with the system model. However, only tracking likely mode estimates

limits the diagnoses of the system to these likely trajectories, but a less likely trajectory could

become a likely one in the future as more observations are collected to refine the mode estimates.

Systems that track likely trajectories may miss these types of diagnoses.

An alternative approach is to track consistent mode estimates from one time step to the next.

This approach enables more accurate estimation of the system behavior since states, not

trajectories, are tracked over time. A mode estimation engine with this capability tracks the

evolution of many mode estimates, requiring many more computations than the tracking of likely

trajectories. However, the benefits of tracking mode estimates over time is the increased

accuracy of the mode estimates and the ability to diagnose complex failures. CME develops an

approach for tracking mode estimates that is enabled by the compiled model.

1.5 Compilation

The performance of mode estimation may be improved by compiling the system model before

the system needs the mode estimates. This process removes the need to determine consistency of

mode estimates by identifying all sets of infeasible component modes in the system and

compiling transitions to remove the need for consistency determination at run-time. The

Achieving Real-time Mode Estimation through Offline Compilation 33

compilation process is the key enabling technology for the next evolution of mode estimation for

spacecraft, CME.

Compilation enables the mode estimation process to perform fewer computations to determine

consistent mode estimates, as well as making the reasoning process of mode estimation more

explicit. Compilation is a two step process of compiling the mode constraints and the transitions.

The compilation of the model constraints results in generating conflicts, which are a more

intuitive representation of the model constraints than an uncompiled model. The conflicts

represent infeasible assignments that correspond to particular observations. These are easier to

grasp and inspect by a human, making the diagnoses more explicit. By determining all conflicts

in an offline process, the exponential computation of consistency is no longer performed at the

time of execution.

The compilation process that has been designed is discussed first, followed by a simple example

to demonstrate the compilation process. This discussion focuses on the compilation of mode

constraints. The compilation of transitions is presented in Chapter 4.

1.5.2 The Basics

Recall, from the mode estimation example (Section 1.4.2.2), that the mode estimate was

inconsistent with the system model and observations. To determine the inconsistency, the

algorithm identified a discrepancy between the observed value for the ‘charger-2.switch-voltage’

and the value predicted from the system model. The identification of this discrepancy leads to a

conflict. A conflict is defined as a set of component modes that cannot be true given the current

observation. In the case of the example, the resulting conflict would be:

 ¬ [(charger-2 = trickle)]

This states that it is inconsistent to assign charger-2 the mode trickle because of the discrepancy

between the observation and the prediction. Identifying these discrepancies and determining the

infeasible sets of component mode assignments, conflicts, is the key to the compilation process.

By generating all conflicts, mode estimates can be generated without performing search and

propagation for assignments to intermediate variables. The savings of this compiled model

Achieving Real-time Mode Estimation through Offline Compilation 34

The outputs of the compilation process are all conflicts of the component mode constraints, and

the observations used to generate them. For instance, the observation (bus-voltage = nominal) is

associated with the conflict ¬ [(charger-2 = trickle)]. In order to determine all of the conflicts

within the system model, the compilation algorithm uses the component mode constraints, and

tries all combinations of observations. The different combinations of observation and

component mode variables are propagated through the system model, and compilation identifies

all conflicts using search techniques. So, the compilation process in effect pretends that the

observations are real, and stores all conflicts associated with a set of observations. This process

has the potential to be an exponential search due to the permutations of observations and

component modes, which increases dramatically as the system grows. Compilation is made

tractable by developing an algorithm that looks for the minimal set of conflicts and that does not

explore any supersets of a previously generated conflict. The algorithm designed to perform the

compilation of the system model is presented in Chapter 3. The process of transition compilation

is developed in Chapter 5.

1.5.3 Compilation Example

Recall that there are two parts to the system model, the constraints associated with the modes of

components and the constraints on transitions between these modes. The compilation process

compiles both of these portions separately. For simplicity, the example shown here only

describes the compilation of the constraints on the component modes.

Using the NEAR Power Storage system, the example shows the compilation of the intermediate

variable ‘charger-1.switch-voltage’ and ‘charger-2.switch-voltage’. In compiling this

intermediate variable, the compilation process searches over the observation and component

mode variables to identify inconsistent combinations. The compilation tests for inconsistency by

performing backtrack search and propagation. For instance, if the observation variable bus-

voltage is found in the search, it is then propagated through the switch, charger-1 and charger-2,

for different combinations of these modes. Considering the observation ‘bus-voltage =

nominal’, the compilation process then chooses a component mode for the switch by searching

Achieving Real-time Mode Estimation through Offline Compilation 35

for it. In choosing the component mode ‘switch = charger-1’, the compilation process then

propagates the variables and determines ‘charger-1.switch-voltage’ and ‘charger-2.switch-

voltage’. As before, these values are ‘charger-1.switch-voltage = nominal’ and ‘charger-

2.switch-voltage = zero’. The compilation process then tries different combinations of the

component modes for charger-1 and charger-2 to determine all conflicts.

The compilation process would determine that charger-1 could not be in the off mode if the

incoming voltage was nominal. This is because if the incoming voltage is greater than zero, then

the charger should be charging the battery in some manner, either trickle charging or giving it a

maximum charge. In the case of charger-2, compilation would identify that the charger could

not be in any mode, except for off, because the voltage coming into the charger is not greater

than zero. The compilation process then identifies the following conflicts for the observation

‘bus-voltage = nominal’.

 ¬ [(switch = charger-1) ∧ (charger-1 = off)]

 ¬ [(switch = charger-1) ∧ (charger-2 = trickle)]

 ¬ [(switch = charger-1) ∧ (charger-2 = full-on)]

The conflicts shown here represent the result of reasoning using observations and the constraints

of a system model. The conflict states that if the ‘bus-voltage = nominal’, then it is not possible

for the switch to be at the charger-1 position, and the charger-2 to be in the trickle or full-on

mode. The conflicts give an intuitive interpretation between observation values and modes of

components that are infeasible. By determining these conflicts before the spacecraft operates

makes mode estimates more explicit and inspectable by a human modeler. For instance it is

easier to understand the conflicts above than verifying the correctness of the mode estimate

using the uncompiled model.

 (switch = charger-1), (charger-1 = trickle), (charger-2 = off), (battery = charging)

This explicit representation increases the confidence in the underlying system model, allowing a

human modeler to inspect the correctness of the diagnoses before the operation of the system.

The intuitive representation of conflicts is easier to grasp. Being given a mode estimate and a set

of observations still requires a human to think about the component models and interactions to

Achieving Real-time Mode Estimation through Offline Compilation 36

insure correctness. However, a conflict is simpler as it ordinarily does not contain a large

number of component modes, thereby localizing the reasoning for a human to insure correctness.

1.6 Compilation and Mode Estimation

Compilation is only one piece that enables the next evolution of mode estimation. Compilation

transforms the system model into a representation that makes the computations of mode

estimates simpler. However, the two basic steps of mode estimation must still be performed

during the time the spacecraft is operating. The first step of the overall mode estimation process

is unchanged. The mode estimation algorithm still creates a list of reachable, current component

modes using the transitions. However, this is enabled by the compiled transitions so that the

engine does not require any satisfiability to determine if a transition is enabled.

The difference comes in the second step of the mode estimation process. The conflicts enable

the search algorithms to be designed such that the sets of current component modes generated

automatically satisfy the model constraints and are consistent with the observations. The

algorithms that perform these computations follow in the remaining chapters. Compiled Mode

Estimation is designed to contain the key attributes of a mode estimation engine described in

Section 1.2. This engine is capable of using multiple sources of information, determining single

and multiple faults, rank the mode estimates, and track multiple mode estimates over time.

Chapters 2, 3 and 4 present previous mode estimation systems and compilation, followed by the

formal presentation of Compiled Mode Estimation in Chapters 5 and 6. An advanced reader may

wish to skip these chapters and jump to the chapters relating to the Compiled Mode Estimation

engine. Chapter 7 presents the system used to validate the correctness of this new mode

estimation algorithm, accompanied by the results of the mode estimation algorithm diagnosing

this system. Chapter 8 presents conclusions drawn from this work, and Chapter 9 presents future

work that could further enhance model-based autonomy and the Compiled Mode Estimation

engine.

Achieving Real-time Mode Estimation through Offline Compilation 37

2 Conflict-Based Mode Estimation

2.1 Model-based Mode Estimation Framework

Model-based mode estimation identifies the behavior of a system’s components using a system

model and current observations and commands. It is the aim of this research to develop a

method to compile the system model to enable a mode estimation engine that is capable of

determining mode estimates more efficiently than previous mode estimation systems. Model

compilation is built upon the heritage of conflict-based algorithms designed to perform mode

estimation efficiently. The goals of this research are to develop the algorithms for a mode

estimation engine that exploits the properties of the compiled model. Our approach, called

Compiled Mode Estimation, builds upon the results of a series of diagnostic engines, in

particular the General Diagnostic Engine [deKleer 1987], Sherlock [deKleer 1989], Livingstone

[Williams, 1996] and Mini-ME [Chung, 2001] diagnostic tools.

It is important to review these engines to give the development of mode estimation and the

relation of each to Compiled Mode Estimation. The GDE engine developed the use of conflicts

to determine diagnoses efficiently. The Sherlock engine expanded upon GDE by using

behavioral modes and introduced incremental generation of the diagnosis through a ‘generate-

and-test’ approach. Mini-ME is the first diagnostic engine to use a compiled model to generate

diagnoses for the system. Finally, Livingstone was the first engine to incorporate transitions into

the system model and developed a modification to Sherlock’s ‘generate-and-test’ approach to

determine a diagnosis of the system. CME extracts these key benefits of each system described

Achieving Real-time Mode Estimation through Offline Compilation 38

here to build a mode estimation engine that is efficient in its computations, and explicit in its

diagnoses.

The General Diagnostic Engine (GDE) [deKleer, 1987] relies solely on the model of operational

modes to isolate faults. GDE detects failures using a model of correct behavior to determine

discrepancies between expected and observed behavior. GDE relates the discrepancy to the

component modes that predicted the behavior. These component modes are identified by GDE

as an infeasible combination of component modes, or a conflict. If the observations are

inconsistent with the model of correct behavior then a subset of the components are determined

to be faulty. However, GDE does not have the capacity to specify how components would fail.

The Sherlock [deKleer, 1989] diagnostic engine generalizes many of the ideas of GDE, such as

using the differences between expected and observed behavior, and generating conflicts to

determine the likely mode assignments. Sherlock uses nominal and faulty behavioral modes to

describe the model of components. The use of behavioral modes improves the diagnostic

discrimination over GDE and enables the ability of the engine to identify failure mechanisms.

This improved discrimination allows the overall autonomy system to determine the system

behavior more precisely. Note, however that Sherlock and GDE only give an instantaneous

diagnosis of the system as opposed to tracking variations in mode assignments over time.

The Mini-ME [Chung, 2001] diagnostic engine uses the GDE approach of divide and conquer,

but the divide step of diagnosis is performed in offline compilation. Mini-ME uses the Sherlock

model of behavioral modes to describe the models of components. However, it does not incur

the penalty of determining consistency of the mode estimate with the observations as this has

already been performed at compile-time. Mini-ME’s is able to give diagnostic discrimination

similar to Sherlock, but can still only determine instantaneous mode estimates of the system.

The ability to track mode estimates over time further improves diagnostic discrimination and

offers the ability to track intermittent faults. The Livingstone reactive system leverages the

foundations of GDE and Sherlock [Williams, 1996] to track the most likely mode estimate at

each time step. The mode estimation engine used within the Livingstone system built upon the

Achieving Real-time Mode Estimation through Offline Compilation 39

concept of behavioral modes in Sherlock, and introduced transitions between these behavioral

modes to track the behavior of the system over time. The introduction of transitions enabled

Livingstone to increase diagnostic discrimination of and extend it to intermittent faults. Like

GDE and Sherlock, Livingstone incorporates the use of conflicts into its mode estimation

algorithm, and introduces a method to test mode estimates more efficiently [Williams, 1998].

This was done so that Livingstone could be used in real-time to provide mode estimates and

enable a reactive autonomy system that controlled a spacecraft. Livingstone was tested on the

Deep Space One spacecraft that rendezvoused with Comet Borrelly in November 2001. The test

successfully demonstrated the benefits and uses of fault management and planning on-board a

spacecraft under an array of fault scenarios.

These three systems are first presented to lay the groundwork for Compiled Mode Estimation

and the approach to compiling the system model. This chapter discusses the GDE and Sherlock

diagnostic engines. This framework is then used to present the Mini-ME diagnostic engine in

Chapter 3 along with the approach to compiling the mode constraints. Chapter 4 discusses the

underlying system model used within the Livingstone system, and the Livingstone process of

generating mode estimates. These are then used to present the Compiled Mode Estimation

engine and the compilation of transitions in Chapter 5.

2.2 General Diagnostic Engine (GDE)

One of the early systems to perform multiple diagnostic tasks was the General Diagnostic Engine

(GDE), developed by deKleer and Williams [deKleer, 1987]. GDE diagnoses systems through a

divide and conquer approach. As mentioned previously, GDE uses the notion of a conflict to

direct its search for the correct diagnosis. GDE uses the conflicts to ‘divide’ the problem of

diagnosis into sub-problems, and then combines the solutions to these sub-problems, or

‘conquers’ them, into a full, consistent diagnosis of the system. Our approach, Compiled Mode

Estimation, uses a similar divide and conquer approach, but shifts the first step, conflict

recognition, to an offline process called Dissent Generation.

Achieving Real-time Mode Estimation through Offline Compilation 40

This section reviews diagnosis in GDE by first defining the inputs and outputs of the

architecture, then detailing the algorithm by example, and concluding with an analysis of GDE.

2.2.1 GDE Inputs and Outputs

GDE uses observations and a system model as inputs to determine a set of diagnoses that

represents the possible behavior of the system at a particular point in time. The architecture of

GDE denoting this is shown in Figure 2-1.

Conflict
Recognition

Observations

System
Model

Candidate
Generation

Conflicts Diagnoses

Figure 2-1 - General Diagnostic Engine Architecture

The observations are an assignment to each observation variable in the system model and

represent the sensor information. The conflicts represent infeasible sets of component modes.

GDE generates all conflicts for a given set of observations in the Conflict Recognition phase.

Each output diagnosis assigns to each component in the system a mode that expresses its current

behavior. The diagnosis is constrained to be consistent with the observations and the system

model. A diagnosis is similar to a mode estimate, except that a diagnosis generated by GDE has

only two modes per component, ok and not ok.

The constraints on the ‘ok’ mode express the normal operation of the component. The ‘not ok’

mode does not have any constraints associated with it, thereby being consistent with any

behavior outside of normal operation. GDE was developed to model components such as simple

logic systems (and, or, not, etc. gates) and mathematical operators (addition, subtraction,

multiplication, division, etc.), which consist of a single operating mode.

Figure 2-1 identifies the two steps of the GDE algorithm. The first, ‘conflict recognition’, uses

the system model and observations to generate conflicts. Conflicts are a representation of

Achieving Real-time Mode Estimation through Offline Compilation 41

infeasible mode assignments, as described in Chapter 1. The second step, ‘candidate

generation’, uses these conflicts to generate the current diagnoses for the system. Within the

‘candidate generation’ phase several computations occur that transform the conflicts first into

constituent diagnoses that represent feasible mode assignments, and then into kernel diagnoses

that represent the minimal sets of component modes that satisfy the constituent diagnoses.2 The

definitions of the inputs, outputs and internal types to GDE are given below.

() ()

() ()
()

 Candidate ,..., where 1
 = number of mode variables in the system.

 Diagnosis (D) ,..., where , 1
 with D

x ok or not ok x ok or not ok xm nm im im
n

x ok or not ok x ok or not ok xm nm im im
tCMi

• ≡ = − = − ∈ Π

• ≡ = − ¬ = − ∈ Π

∧ ∧ () ()

()

1 consistent, where represents the mode constraints, and
1 represents the current observations.

tt CMi
t

+

+
O

O

() () Conflict ,..., where , and , where 1
 = number of mode variables in the system. Denotes that the combination of component modes

 is not true, so it cannot be true

x ok x ok x p nm pm im im
n

• ≡ ¬ = = ∈ Π ≤

 that is and is .1x ok x okm pm
() () Constituent Diagnosis () ,..., where1

 and . The assignment = is considered a constituent diagnosis,

 and represents the set of con

cd x ok or not ok x ok or not okm pm

x p n x okim im im
cd

• ≡ = − = −

∈ Π ≤

stituent diagnoses for a conflict.

() () Kernel Diagnosis () ,..., where1

 and . The kernel diagnosis represents a minimal set covering of the set

 of conflicts.

kd x ok or not ok x ok or not okm pm

x p nim im

• ≡ = − = −

∈ Π ≤

2.2.2 Diagnosis with GDE

Recall that GDE relies on a divide and conquer paradigm to generate diagnoses for the system.

The divide step is embodied in the ‘conflict recognition’ phase of the algorithm, while the

conquer step is given by the ‘candidate generation’ phase. This section details each of these

steps through an example. For a formal discussion on the theory of GDE, see [deKleer, 1987].

2 This is a rational reconstruction of GDE according to [REF OPSAT Paper]

Achieving Real-time Mode Estimation through Offline Compilation 42

The diagnostic process of GDE has the key property of generating conflicts from discrepancies

in observations. This is leveraged extensively in the compilation of the system model that

enables the Compiled Mode Estimation engine. Additionally, the ‘candidate generation’ phase

and the approach to generating kernel diagnoses lays the groundwork for the online mode

estimation engine of CME. The following example gives the intuition for generating conflicts

and the process to use these to determine diagnoses.

Consider the example of the NEAR Power system described in Chapter 1, with the simplification

shown in Figure 2-2. The models cannot capture the complexity of the different modes of the

NEAR Power Storage system, but is adequate to demonstrate the GDE diagnostic process.

Switch
OK: Out(S) = In(S)
Not OK: []

Charger-1
OK: Out(Ch-1) =
 [In(Ch-1)]2
Not OK: []

Adder
OK: Out(AD) =
In1(AD) + In2(AD)
Not OK: []

Battery
OK: Out(B) =
 In(B) / 100
Not OK: []

Charger-2
OK: Out(Ch-2) =
 [In(Ch-2)]2
Not OK: []

A

X Y

B C

Z

D

Figure 2-2 - Simplified NEAR Power Storage System for GDE Example

In this figure, the observable variables, Πo, are represented by ‘A’, ‘B’, ‘C’, and ‘D’, and the

hidden, or intermediate variables Πd, are represented by ‘X’, ‘Y’ and ‘Z’. The figure shows the

constraints on each component mode variable as well. The operations that each component

Achieving Real-time Mode Estimation through Offline Compilation 43

performs are explained as follows. The switch delivers its input to the chargers if it is in the ‘ok’

mode. The chargers take the output from the switch and square it. For an input of A = 2, this

results in the chargers outputting B = 4 and C = 4. These values are then summed by an adder, to

result in Z = 8 in this case, and then passed to the battery. The battery outputs its input divided

by 100, which results in the value D = 2/25.

2.2.2.1 Conflict Recognition

The process of conflict recognition relies on several operations to determine all conflicts. First,

the process must identify discrepant values, or symptoms. Second, these symptoms must be

traced back to the mode assignments used to predict the discrepant values in the symptom.

These mode assignments comprise the conflict that represents the infeasible mode assignments

for the current observations. GDE generates the minimal set of conflicts for all symptoms using

a combination of constraint propagation and an Assumption-based Truth Maintenance system

[deKleer 2, 1987]. The details of the ATMS is beyond the scope of this document.

Consider the following observations: A = 5, B = 9, C = 9, and D = 0.18. Using the model in

Figure 2-2, GDE generates all conflicts for this set of observations by propagating values

through the models of the components of a candidate and comparing the observed behavior and

the predicted behavior. If a discrepancy is found, then a conflict is extracted from the candidate.

To demonstrate this, assume that the switch, charger-1, charger-2, adder and battery are all in

the ‘ok’ mode. GDE first searches over single component mode assignments to test in the

conflict recognition phase. Consider the mode (switch = ok). Propagating the input A = 5

through this results in the values X = 5 and Y = 5. This does not result in any discrepant values,

so GDE continues to search for combinations of component mode assignments to test. Consider

the combination {(switch = ok), (charger-1 = ok)}, and propagating the observation B = 9 back

through the charger-1 constraints results in the value X = 3. GDE recognizes that the two values

do not agree and has identified a symptom. GDE then traces this symptom back to the

components used to determine the values for X to identify the conflict. GDE determines that the

component modes switch = ok and charger-1 = ok are the conflict for this symptom. GDE

Achieving Real-time Mode Estimation through Offline Compilation 44

continues to propagate and search for symptoms to generate the minimal set of conflicts. For

this set of observations GDE generates the conflicts:

¬ [(switch = ok) ∧ (charger-1 = ok)]

¬ [(switch = ok) ∧ (charger-2 = ok)]

These conflicts are used in the next phase of GDE, ‘candidate generation’.

2.2.2.2 Candidate Generation

The candidate generation phase uses the conflicts to determine the minimal set of component

mode assignments that resolve the conflicts, represented as kernel diagnoses. The conflicts can

be transformed through logic operations to obtain:

[¬ (switch = ok) ∨ ¬ (charger-1 = ok)]

[¬ (switch = ok) ∨ ¬ (charger-2 = ok)]

This is interpreted, in the case of the first conflict, that the switch is not-ok or the charger-1 is

not-ok. Either of these component mode assignments will resolve the first conflict, associated

with the discrepant values B = 9 and B = 25. Similarly, the assignments switch = not-ok and

charger-1 = not-ok resolve the second conflict associated with the discrepancy in C. The

minimal set of component mode assignments that resolves all conflicts, the kernel diagnosis, is

generated by performing a minimal set covering over the conflicts. For this example, the

resulting kernel diagnosis is (switch = not-ok) as it is the only mode assignment that satisfies the

two constituent diagnoses. A full diagnosis is given by extending the kernel diagnosis to include

a mode for each component in the system. Any superset of a kernel diagnosis is also a diagnosis,

so GDE finds many diagnoses for the system. Each of these full diagnoses must contain the

mode (switch = not-ok) to be correct. Some of the diagnoses are:

(switch = not-ok), (charger-1 = ok), (charger-2 = ok), (adder = ok), (battery = ok)

(switch = not-ok), (charger-1 = ok), (charger-2 = ok), (adder = not- ok), (battery = ok)

(switch = not-ok), (charger-1 = ok), (charger-2 = not-ok), (adder = ok), (battery = ok)

(switch = not-ok), (charger-1 = ok), (charger-2 = ok), (adder = ok), (battery = not-ok)

Achieving Real-time Mode Estimation through Offline Compilation 45

This example demonstrates the basic steps of the GDE algorithm. This section demonstrated the

steps of the ‘candidate generation’ phase, and used the results of the ‘conflict recognition’ phase.

The ‘candidate generation’ phase not only generates a single diagnosis, but also generates all

diagnoses of the system for a given set of observations and ranks them. For instance, the

example above is ordered by likelihood since the diagnosis with a single fault, switch = not-ok is

listed first, and the remaining diagnoses all contain two failed components.

The combination of conflict recognition and candidate generation solves an NP hard problem,

and hence is worst case exponential in the number of mode variables. GDE uses several

techniques to focus the search in the conflict recognition phase, given in [deKleer, 1987].

2.2.3 Analysis of GDE

GDE has many benefits in its approach to determining system behavior. The diagnostic process

of GDE is predicated on identifying all conflicts for a given set of observations, and

reconstructing all possible diagnoses from these conflicts. GDE has shown that the complete set

of conflicts is sufficient to generate all diagnoses. This is the key point of developing GDE

because CME is predicated on the same approach. The difference is that CME shifts the

identification of conflicts to an offline compilation phase, and reconstructs the diagnoses from

these conflicts online.

GDE focused on the diagnosis of static systems and assumed no knowledge of failure models.

Sherlock, discussed in the next section, introduces fault models and focuses diagnosis on

generating the most likely diagnoses. Mini-ME is a compiled version of Sherlock because it

identifies conflicts in an offline phase, while still generating only the most likely diagnoses

online. Livingstone generalized Sherlock to systems with dynamic, time-varying behavior.

Achieving Real-time Mode Estimation through Offline Compilation 46

2.3 Sherlock

GDE addressed the diagnosis problem for static systems where the behavior of components are

expressed as either ok or not-ok. Sherlock [deKleer, 1989] extends the space of possible

behaviors for components by incorporating knowledge of nominal and failure modes. Sherlock

improves upon the conflict-based approach to diagnosis of GDE by focusing on generating only

most likely diagnoses. The approach to generating most likely diagnoses is the key contribution

of Sherlock to CME.

The introduction of behavioral modes creates a significant increase in the computations needed

to determine a diagnosis. Sherlock addresses this by generating diagnoses in a generate and test

approach. Instead of generating all conflicts associated with the current observations as GDE

has done, Sherlock generates the conflicts incrementally by identifying likely combinations of

component mode assignments, candidates, using the probabilities.

This section gives an overview of the Sherlock diagnostic process by first discussing its inputs

and outputs, and then demonstrating the Sherlock algorithm by example.

2.3.1 Sherlock Inputs and Outputs

Sherlock uses a best-first ‘generate and test’ approach to determine the likely diagnoses for a set

of current observations. Sherlock first generates a set of component mode assignments, a

candidate, and then tests this candidate to determine if it is consistent with the current

observations and system model. If the candidate is not consistent, then it generates one or more

conflicts for the candidate, which are returned to the generator. The generator then determines

the next most likely set of component mode assignments that satisfy the known conflicts, similar

to GDE’s candidate generation. This loop continues until all possible diagnoses have been

generated or some stopping criterion has been met, such as a particular number of diagnoses.

The architecture of Sherlock is shown in Figure 2-3.

Achieving Real-time Mode Estimation through Offline Compilation 47

Test
Candidate

Observations

System
Model

Diagnosis

Conflict-directed
Search Conflicts

Most-likely
Candidate

Figure 2-3 - Sherlock Diagnostic Engine Architecture

The input system model is expanded from the model of GDE by using behavioral modes to

describe component behavior. These modes are capable of describing constraints for different

nominal operational modes and for different fault modes. Fault modes always include the

unknown mode, which contains no constraint. Sherlock expresses mode constraints similar to

GDE by generalizing the domain of the variables from {ok, not-ok} to {nominal, … fault …,

unknown }. The Sherlock system model is defined as follows:

() () ()System Model , , where the 1. Denotes

 that each component mode, , has an associated constraint, and an associated probability.

x v C p x v p x vim ij Mi im ij im ijxim
x vim ij

∑≡ = = = =

=

∪

The set of observations, a candidate, a diagnosis and conflicts are similar to GDE. The set of

observations are an assignment to each observation variable. A candidate is an assignment to

mode variables, and a diagnosis is a candidate that is consistent with the mode constraints and

observations. The conflicts represent inconsistent sets of component mode assignments. The

candidate and diagnosis have an associated probability, give as:

() ()
im ij

im ij
x v C

P C p x v
= ∈

= =∏

Equation 2-1 - Probability of a Candidate in Sherlock

The remaining section give the intuition of Sherlock’s best-first generate and test algorithm

through an example.

Achieving Real-time Mode Estimation through Offline Compilation 48

2.3.2 Diagnosis with Sherlock

Sherlock frames diagnosis as a best-first generate and test search where candidates are generated,

tested for consistency, and conflicts are extracted from the candidate if it is inconsistent. These

conflicts are used to generate a new candidate. This process is necessary since the behavioral

modes explodes the space of possible diagnoses, making them exponential in the number of

components. It is infeasible to enumerate and test these diagnoses for consistency since the test

for consistency is an exponential computation.

Instead, Sherlock uses the probabilities on component modes to focus the diagnosis to test likely

candidates for consistency before testing less likely candidates. The probability of a candidate,

defined in Equation 2-1, is given by the product of the probabilities of the component mode

assignments in that candidate. The probability of a candidate is updated using the probability,

P(O). The update equation is given as follows:

()
() ()
() ()

| im i

im j

i im ij
x C

i
j im ij

j x C

P O p x v
P C O

P O p x v
∈

∈

• =
=

• =

∏

∑ ∏

The numerator represents the probability that a candidate predicts all current observations, and

the denominator is a normalization factor. P(O) represents the probability that a candidate

correctly predicts an observation. If a candidate predicts all observations correctly, then P(O) =

1. If a candidate does not predict, or refutes, the observations, then P(O) = 0. Finally, if a

candidate neither predicts or refutes an observation, then any value in the domain of the

observation is equally likely, so P(O) = 1/n, where n is the number of possible values for the

observation. As an example, a candidate that contains the unknown mode of a component makes

no predictions on the observation variable q, so in that case P(O) = 1/nq, assuming the candidate

correctly predicts the remaining observations.

To demonstrate the best-first candidate generation of Sherlock, consider the NEAR Power

storage system used in GDE, modified now to have behavior modes.

Achieving Real-time Mode Estimation through Offline Compilation 49

Switch
OK: Out(S) = In(S) p = 0.99
Stuck-High: Out(S) > In(S p = 0.001
Stuck-Low: Out(S) < In(S) p = 0.008
Unknown: [] p = 0.001

Charger-1
OK: Out(Ch-1) =
 [In(Ch-1)]2 p = 0.99
Stuck-High: Out(Ch-1) >
 [In(Ch-1)]2 p = 0.008
Stuck-Low: Out(Ch-1) <
 [In(Ch-1)]2 p = 0..001
Unknown: [] p = 0.001

Adder
OK: Out(AG) =
 In1(AG) + In2(AG) p = 0.99
Stuck-High: Out(AG) >
 In1(AG) + In2(AG) p = 0.008
Stuck-Low: Out(AG) <
 In1(AG) + In2(AG) p = 0.001
Unknown: [] p = 0.001

Battery
OK: Out(B) =
 In(B) / 100 p = 0.99
Stuck-High: Out(B) >
 In(B) / 100 p = 0.008
Stuck-Low: Out(B) <
 In(B) / 100 p = 0.001
Unknown: [] p = 0.001

A

X Y

B C

Z

D

Charger-2
OK: Out(Ch-2) =
 [In(Ch-2)]2 p = 0.99
Stuck-High: Out(Ch-2) >
 [In(Ch-2)]2 p = 0.008
Stuck-Low: Out(Ch-2) <
 [In(Ch-2)]2 p = 0.001
Unknown: [] p = 0.001

Figure 2-4 - NEAR Power Storage System modified to have Behavioral Modes

The modes of the components give additional fault modes, and still maintain the operational

mode described in GDE, and the unknown mode that does not have any model constraints. The

probability for each component mode is shown to the right of its constraint. The fault modes for

the switch are stuck-high, and stuck-low capturing that the output sent to the chargers is either

higher or lower than expected. The chargers are modeled with a stuck-high and a stuck-low fault

mode that captures when the output is higher or lower than the expected squaring, respectively.

The adder and battery have similar modes stuck-high and stuck-low that constrain the output to

be greater or lower than expected.

Sherlock generates conflicts for a given set of observations and a candidate in the same way

GDE performed conflict recognition, except that Sherlock does not determine all conflicts for a

given set of observations, but only those relevant to the particular candidate. As more

observation information is incorporated, more conflicts are generated enabling Sherlock to focus

the diagnosis more.

Achieving Real-time Mode Estimation through Offline Compilation 50

Sherlock is able to determine instantaneous diagnoses given the current observations for A, B, C

and D, and the system model. Sherlock first chooses a candidate, and in the absence of conflicts,

chooses the most likely mode assignment for each component. Suppose that A = 5, B = 9, C = 9

and D = 0.18. Sherlock determines that the most likely candidate is:

 {switch = ok, charger-1 = ok, charger-2 = ok, adder = ok, battery = ok} with p = 0.95.

Sherlock then tests if this candidate is consistent with the system mode constraints and the

observations. The consistency check identifies a discrepancy in the values of X and Y. The

mode switch = ok predicts that X = 5 and Y = 5. However, the modes charger-1 = ok and

charger-2 = ok results in X = 3 and Y = 3, respectively. The resultant conflicts are:

 ¬ [(switch = ok), (charger-1 = ok)]

 ¬ [(switch = ok), (charger-2 = ok)]

Sherlock uses these conflicts and the probabilities of component modes to focus on likely

diagnoses. The conflict identifies infeasible sets of assignments. To resolve the conflicts,

Sherlock chooses other component modes not mentioned in the conflict. For instance the modes

that would resolve the first conflict include: switch = stuck-high, switch = stuck-low, switch =

unknown, charger-1 = stuck-high, charger-1 = stuck-low, charger-1 = unknown. Sherlock

chooses the minimal set of most likely component modes that resolves all conflicts, or kernel

diagnoses. Sherlock only generates the most likely kernel diagnosis, and then extends this to a

candidate to be tested. In the case of these conflicts, the most likely kernel diagnosis is:

 (switch = stuck-low, p = 0.008)

This results in the candidate:

 { switch = stuck-low, charger-1 = ok, charger-2 = ok, adder = ok, battery = ok }

with p = 0.00768.

Although this probability is low, it has not been normalized by the sum of all the probabilities of

the diagnoses. Sherlock then tests this candidate for consistency. In performing this, Sherlock

identifies that the component mode switch = stuck-low predicts X < 5 and Y < 5. Using the

component modes charger-1 = ok and charger-2 = ok results in X = 3 and Y = 3. The

consistency test does not identify any more conflicts, so this is then labeled as a diagnosis of the

system.

Achieving Real-time Mode Estimation through Offline Compilation 51

The key feature to note is the speed with which Sherlock found the most likely diagnosis of the

system. The benefits of using a conflict-directed search and guiding the choice of candidates by

probability focus the search for the most likely diagnosis. A detailed, updated presentation of a

Sherlock-like algorithm is presented in [Williams, 2002], with the original algorithm given in

[deKleer, 1989].

2.3.3 Analysis of Sherlock

The Sherlock diagnostic system has built upon the foundations of the GDE algorithm and its use

of conflicts to generate diagnoses. Sherlock has the ability to use multiple sources of

information, the observations, to determine the current behavior of the system. The key benefit

of Sherlock is its approach to generating most likely diagnoses in a best-first order using a

conflict-directed search and the probabilities of component modes. This search enables Sherlock

to solve the problem of exponential cost in the candidate generation phase. The CME engine

leverages this search approach to generate mode estimates online in a best first order. The

combination of the compilation and the conflict-directed best first search enable CME to track

multiple mode estimates over time. The drawback of the Sherlock approach is the exponential

cost of satisfiability to generate conflicts at run-time. The Mini-ME engine addresses this issue

by compiling the mode constraints on component modes in an offline process.

Achieving Real-time Mode Estimation through Offline Compilation 52

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 53

3 Compilation of Conflict-Based Mode Estimation

3.1 Motivation for Mode Compilation

The GDE and Sherlock methods of diagnosis both incur significant computational costs at run-

time while generating conflicts. This is exponential in the worst case. In addition, for GDE,

candidate generation determines all possible diagnoses for the system, while only a few most

likely diagnoses are required. The set of all diagnoses is exponential in the worst case. Sherlock

addresses the problem with candidate generation through best first enumeration. However, it

incurs an exponential cost testing consistency of the candidate and extracting the conflicts of the

candidate. The goal of Mini-ME is to increase performance by removing the need for

satisfiability and conflict generation in the online determination of system behavior. The key

insight from GDE and Sherlock is that all conflicts are sufficient to reconstruct the diagnoses of

the system. Mini-ME then moves the process of conflict generation to an off-line process.

This relates directly to CME and the goal of removing satisfiability completely from the online

process. GDE, Sherlock and Mini-ME do not incorporate transitions into the system model.

This is done in the Livingstone system, discussed in Chapter 4. CME must then compile both

portions of the system model, the mode constraints and the transitions, to have the capability to

track mode estimates over time without the need for satisfiability. Mini-ME develops the

approach for one portion, mode compilation that is leveraged by CME. The approach for

transition compilation is developed in Chapter 5. This chapter presents the Mini-ME engine and

its method of using the compiled model online to generate diagnoses in Section 3.2. Section 3.3

presents the method employed to compile mode constraints for Mini-ME and CME.

Achieving Real-time Mode Estimation through Offline Compilation 54

3.2 Mini-ME

The first step towards model compilation for CME is a compiled version of Sherlock, called

Miniature Mode Estimation (Mini-ME) [Chung, 2001]. This engine compiled component mode

constraints into conflicts, and used these conflicts in an online mode estimation algorithm to

determine mode estimates for the system. The online mode estimation algorithm is similar to the

candidate generation step of GDE, and uses probabilities to generate likely mode estimates

similar to Sherlock. The conflicts are used to generate a kernel diagnosis that satisfies all

conflicts, and this kernel diagnosis is extended to a mode estimate by ensuring that all

components in the system have an assigned mode. The architecture of the Mini-ME engine is

shown below in Figure 3-1.

Mini-ME

Offline

Dissent
Generator

Online

Partial
Diagnosis

Trigger

Best-first
Kernel

Diagnosis
Generator

Monitors

Partial
Diagnosis

Rule
Generator

System
Model

Most Likely
Diagnosis

Dissents ConflictsPartial Diagnosis
Rules

Discrete
Observations

Continuous
Observations

Figure 3-1 - Architecture of the Mini-ME Engine

The architecture denotes the generation of dissents in an offline process. Dissents are a mapping

of observations to conflicts. The dissents are transformed by Mini-ME offline into partial

diagnoses. These partial diagnoses have a similar representation to the constituent diagnoses in

GDE, so the term constituent diagnosis is used to refer to these partial diagnoses. This offline

transformation enables Mini-ME to avoid performing this step online. In the online portion,

Mini-ME only needs to determine the appropriate sets of constituent diagnoses to use given the

current observations. The final step to generating a consistent diagnosis is to determine the

smallest set of component mode assignments, kernel diagnoses, that are a minimal set covering

of the constituent diagnoses. By choosing assignments in the constituent diagnoses, Mini-ME

reconstructs the diagnosis from the conflicts, enabling the assignments chosen to satisfy all

Achieving Real-time Mode Estimation through Offline Compilation 55

conflicts and be consistent with the observations. Mini-ME uses component mode probabilities

to generate the most likely kernel diagnoses, and then extends the kernel to a full diagnosis.

3.2.1 Mini-ME Example

The diagnostic process of Mini-ME is best demonstrated by example using the NEAR Power

storage system described in Chapter 1. Focusing on the interaction of the switch and redundant

chargers with the observation variables of the bus-voltage, Figure 3-2 depicts the system.

Switch-voltage

Switch - voltage

Bus-Voltage

Figure 3-2 - NEAR Power Storage System Example

The modes of the components are given below (note that the unknown mode is not shown):

 switch

 (charger-1, p=0.49), (charger-2, p=0.49), (stuck-charger-1, p=0.01), (stuck-charger-2, p=0.01)

 charger-1, charger-2

 (full-on, p = 0.39), (trickle, p = 0.39), (off, p = 0.2), (broken, p = 0.02)

 bus-voltage : { zero, low, nominal }

The following are some of the relevant dissents:
[] ⇒ ¬[SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = FULL-ON]

[] ⇒ ¬[SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = TRICKLE]

[] ⇒ ¬[SWITCH = CHARGER-2 ∧ CHARGER-1 = FULL-ON]

[] ⇒ ¬[SWITCH = CHARGER-2 ∧ CHARGER-1 = TRICKLE]

[] ⇒ ¬[SWITCH = CHARGER-1 ∧ CHARGER-2 = FULL-ON]

[] ⇒ ¬[SWITCH = CHARGER-1 ∧ CHARGER-2 = TRICKLE]

[BUS-VOLTAGE = LOW] ⇒ ¬[SWITCH = CHARGER-1 ∧ CHARGER-1 = FULL-ON]

[BUS-VOLTAGE = LOW] ⇒ ¬[SWITCH = CHARGER-1 ∧ CHARGER-1 = OFF]

[BUS-VOLTAGE = NOMINAL] ⇒ ¬[SWITCH = CHARGER-1 ∧ CHARGER-1 = OFF]

Achieving Real-time Mode Estimation through Offline Compilation 56

These dissents express the links between switch and charger modes so that only one charger is

on at any time, and that the charger that is on corresponds to the position of the switch. The

dissents make this explicit. For instance, in the third and fourth dissents, note that the

component modes that are inconsistent are the switch = charger-2 and the mode charger-1 =

full-on or trickle. This limits the modes of the charger-1 to be either off, broken or unknown.

The first step in Mini-ME is to use the current observations to determine the relevant dissents,

and their consequents, the conflicts. Consider the observation that the bus-voltage = nominal.

Mini-ME triggers those dissents that mention the observable bus-voltage = nominal, and any that

do not mention an observable. The following constituent diagnoses represent the first two

dissents:
[SWITCH = CHARGER-1, SWITCH = CHARGER-2, SWITCH = STUCK-CHARGER-2, CHARGER-2 =

TRICKLE, CHARGER-2 = OFF, CHARGER-2 = BROKEN]

[SWITCH = CHARGER-1, SWITCH = CHARGER-2, SWITCH = STUCK-CHARGER-2, CHARGER-2 = FULL-

ON, CHARGER-2 = OFF, CHARGER-2 = BROKEN]

The remaining sets of constituent diagnoses are not shown here for brevity. Mini-ME uses these

sets of constituent diagnoses to generate kernel diagnoses, which represent a minimal set

covering of the constituent diagnoses. This process is similar to the GDE process of ‘candidate

generation’. The generation of kernel diagnoses is guided by the probability of component mode

assignments. The set covering begins by determining the most likely component mode

assignment in the first set of constituent diagnoses. In this case, this results in:

 switch = charger-1, p = 0.49

To perform the minimal set covering, Mini-ME determines the sets of constituent diagnoses that

mention this assignment as a constituent diagnosis. Additionally, Mini-ME chooses a set of

constituent diagnoses that this one does not appear. For instance, the assignment switch =

charger-1 would not appear in the set of constituent diagnoses derived from dissents 5 and 6.

The sets of constituent diagnoses for dissent 5 are:
[SWITCH = CHARGER-2, SWITCH = STUCK-CHARGER-1, SWITCH = STUCK-CHARGER-2, CHARGER-2 =

TRICKLE, CHARGER-2 = OFF, CHARGER-2 = BROKEN]

Mini-ME uses this set of constituent diagnoses to choose a mode assignment for charger-2 that

is the most probable. This corresponds to the mode assignment (charger-2 = trickle) with p =

Achieving Real-time Mode Estimation through Offline Compilation 57

0.39. This results in the set of assignments { (switch = charger-1), (charger-2 = trickle) } with p

= 0.1911. Mini-ME would however recognize that this set of assignments is infeasible because

of the 6th dissent that says that the two are infeasible. Mini-ME would then choose another

constituent diagnosis from the constituent diagnoses for dissent 5. The next most likely

component mode assignment is charger-2 = off with p = 0.2. The combination of assignments

results in a p = 0.098. This set of assignments does satisfy the current dissents for this

observation. This results in Mini-ME extending this kernel diagnoses to a full diagnosis by

choosing the most likely component mode for charger-1, which results in full-on with p = 0.49.

The mode estimate determined by Mini-ME is the most likely of all possible mode estimates

since the search for it was guided by probabilities. Mini-ME determines the most likely

diagnosis using the dissents that pertain to the current observations. This diagnosis is guaranteed

to be consistent with the observations because the set of conflicts are sufficient to generate all

diagnoses, as shown by GDE and Sherlock. What remains is to develop the process of mode

compilation to generate dissents offline.

3.3 Mode Compilation

This section focuses on the offline compilation of the system model, more specifically the

compilation of the mode constraints. The compilation process is developed by first discussing

the inputs and outputs, and then discussing the mode compilation algorithm. Finally, the section

concludes with an example demonstrating mode compilation.

3.3.1 Inputs and Outputs

The mode compilation algorithm uses a system model to compile the constraints on the modes of

components in the system. The algorithm outputs a set of dissents that map the observations to

the conflicts. The dissents are generated by identifying conflicts for sets of observations and

component modes. Compilation is related to the GDE step of conflict recognition, but now uses

Achieving Real-time Mode Estimation through Offline Compilation 58

all combinations of observations and component modes. Figure 3-3 shows these inputs and

outputs below.

Mode
Compilation

System
Model

Dissents

Figure 3-3 - Mode Compilation Inputs and Outputs

The system model is the same representation used in the Sherlock diagnostic engine, with

constraints restricted to propositional logic. The system model is comprised of behavioral modes

for each component, each with associated constraints. Mode compilation compiles these

constraints into conflicts, encoded as dissents.

To achieve efficiency, all conflicts should be generated offline. This is accomplished by

generating all conflicts for all possible combinations of observations. The dependency between

the observations and the conflicts is encoded compactly in the dissents. A dissent has the

following general form:

• dissent (d) ≡ observations ⇒ conflict

This definition states that a combination of observation assignments implies a conflict, or an

infeasible set of component mode assignments. The definitions of the inputs and outputs are

then:

() () System Model , , where and is

 expressed using discrete observation assignments, , and component

x v C p x v x Cim ij Mi im ij im m Mi
xio

• ≡ = = ∈ Π
∪

() () () (){ }1

 mode assignments, .

 Dissents (D) 1 1 11 1

 where and , also and

xim
x v x v x v x vo l po pl m l qm qlj p q j

x x p n q nio o im m o m

• ≡ = ∧ ∧ = ⇒ ¬ = ∧ ∧ =

∈ Π ∈ Π ≤ ≤

∪

3.3.2 Mode Compilation Algorithm

Achieving Real-time Mode Estimation through Offline Compilation 59

Dissents are generated from the system model by enumerating all possible combinations of

observations and component mode assignments. In order to determine if a particular

combination of observations and component mode assignments is a dissent, the algorithm must

determine if it is inconsistent with the mode constraints. This follows from the logical statement:

()| observations conflictΦ = ⇒

Equation 3-1 - Logical Statement for Dissent Generation

This states that the system model, Φ, entails the dissent, or the statement that observations imply

a conflict. This is transformed to a statement of inconsistency:

modes is inconsistentobservationsΦ ∧ ∧

Here modes represents the component modes in conflict. The mode compilation algorithm then

tests various combinations of observation and component mode assignments and determines if

they are inconsistent with the system model.

The mode compilation algorithm only generates the smallest number of dissents that captures the

constraints of the system model. This requires generating the minimal set of dissents so that no

dissent is a superset of another. So, to be a dissent, a combination of observations and

component modes must be inconsistent with the system model and not be a superset of any

previously generated dissents. The mode compilation algorithm uses a conflict-directed

Enumeration algorithm to guarantee that the minimal set of dissents is generated.

The Enumeration algorithm is framed as an optimal constraint satisfaction problem. The key is

to use the satisfiability engine as an unsatisfiability engine that is capable of determining if sets

of assignments are inconsistent with the constraints of the model. The Enumeration algorithm

seeks to generate the minimal set of dissents by enumerating from longest to shortest by length

and performing a subsumption check so that no supersets of a dissent are generated. To increase

performance, the Enumeration algorithm uses dissents that have been generated to limit the

search tree of the OCSP. The algorithm adds a dissent as a conflict of the search, thus pruning

those branches of the search tree that would explore the assignments in the dissent. For example,

if the Enumeration algorithm identifies that {bus-voltage = nominal, switch = charger-1,

Achieving Real-time Mode Estimation through Offline Compilation 60

charger-1 = off} as a dissent, then this combination of assignments is used so that no supersets

are ever explored.

This frames the Enumeration algorithm as an OCSP thus leveraging the previous work of OCSP

solvers [Williams, 2002]. In order to develop the enumeration algorithm, the problem of optimal

constraint satisfaction is reviewed, followed by the algorithm that generates dissents using the

optimal constraint satisfaction solver, OPSAT

3.3.3 Optimal Constraint Satisfaction

An optimal constraint satisfaction problem finds a solution, x, that satisfies a set of constraints

and maximizes a cost function, f(x). Formally, an OCSP is defined as:

 Given a set of variables ‘x’ and their domains, choose the best assignment to all

 variables that will maximize the function f(x), subject to constraints Gx.

Obtaining the solution, x, to these problems has been the focus of much research and many

algorithms. One such algorithm that solves OCSP’s is the OPSAT algorithm [Williams, 2002].

OPSAT solves the constraint satisfaction problem by determining the best assignments to a set of

optimization variables, y, that are a subset of x. The choice of these assignments is guided by the

optimization function, f. An OPSAT problem is stated as follows.

()
() , ,

 , ,

 all variables in the system model
 the domains of the vector of variables,
 the model constraints to be satisfied, or unsatisfied

OPSAT s y f CSP

CSP s x D Gx x

where
x

D xx
Gx

y

≡

≡

≡
≡
≡

"

"

"
"

" a subset of the variables to be optimized
 a function to optimize

() an assignment to each variable

x
f

OPSAT s x

≡
≡

→

"

"

Figure 3-4 - Definition of an OPSAT Problem

Achieving Real-time Mode Estimation through Offline Compilation 61

The solution generated by OPSAT is an assignment to all variables in x a value from their

domain, Dx that satisfies the constraints Gx, where the assignments to the subset of variables y

maximizes the function f . OPSAT determines the assignments for the variables, y, in a generate

and test approach, similar to Sherlock. OPSAT generates candidates using a conflict directed

search, and then tests these candidates for consistency using the modeling constraints, Gx. The

test for consistency is captured in satisfiability and unsatisfiability engines. Recall that Sherlock

used the probabilities on component modes and maximized the product of the probabilities to

generate candidates. OPSAT generalizes this to a function, f, to use to find the optimal set of

assignments to y. OPSAT uses the function f to guide the generation of candidates so that likely

candidates are explored before less likely candidates. OPSAT uses a full satisfiability approach

to determine consistency that is similar to GDE and Sherlock.

The satisfiability engine generates conflicts by identifying discrepancies in variable values.

OPSAT generates only the minimal set of conflicts, meaning that no supersets of a conflict are

generated. To achieve this, OPSAT maintains all conflicts generated and installs them in the

satisfiability engine. Recall in Sherlock that the conflict recognition phase tested various

component mode assignments with observations to propagate variable values. By installing

previously generated conflicts, this removed component mode assignments from ever being

explored again. This means that when the consistency check is performed, the installed conflicts

prune the search space to decrease the number of combinations in the search.

OPSAT is capable of not only determining a set of assignments that are consistent with the

constraints, Gx, but can also determine a set of assignments that are inconsistent with the

constraints. This is performed by using a complete sat engine as an unsatisfiability engine. This

dual use enables the OPSAT algorithm to solve many different types of optimal constraint

satisfaction problems.

3.3.4 Dissent Generation as Optimal Constraint Satisfaction

The entailment statement above frames the generation of dissents as a search for sets of

observation and component mode assignments that are inconsistent with the constraints. This is

Achieving Real-time Mode Estimation through Offline Compilation 62

framed as an OPSAT problem to generate the dissents. The entailment statement in section 3.3.2

denotes the combination of observation and component mode assignments as an inconsistent set

of assignments. The unsatisfiability engine within OPSAT is used to determine this

inconsistency. The Enumeration algorithm is then framed as an OPSAT problem as follows:

()
() , ,

 , ,

 observations, component mode and intermediary variables
 the domains of the vector of variables,
 the mode constraints to be unsatisfied

OPSAT s y f CSP

CSP s x D Gx x

where
x

D xx
Gx

≡

≡

≡
≡
≡

"

"

"
"

 observation and component mode variables
 sum of the number of assignments in a dissent

() an assignment to each variable

y
f

OPSAT s y

≡
≡

→

"

"

Figure 3-5 - Enumeration Algorithm as OPSAT

The Enumeration algorithm uses the OPSAT unsatisfiability engine to test candidates for

inconsistency. Candidates in OPSAT now represent the combinations of observation and

component mode assignments. The process of generating the dissents first generates candidates

guided by length. This means that singleton candidates are explored and tested first, followed by

length two, three and so on. When a candidate is generated, the Enumeration algorithm tests it

for inconsistency. If the candidate is inconsistent, then it is identified as a dissent and installed

as a conflict in the unsatisfiability engine. This enables the unsatisfiability engine to improve

performance as it generates more dissents as described in section 3.3.3. The generated Dissents

are also used to prune branches of the conflict directed search by performing a subsumption

check whenever a candidate is generated. Installing dissents as conflicts in the unsatisfiability

search and subsumption checking guarantee that supersets of dissents are not generated. Since

dissents are generated by increasing length, then this guarantees that the minimal set of dissents

are generated by the Enumeration algorithm.

The resulting Enumeration algorithm is summarized below.

Enumeration Algorithm(CM, y, Dy)

1 Create a queue, Q, that maintains the list of nodes, where a node is made up of a list of
assignments, and the cost, which is the length of the set of assignments

Achieving Real-time Mode Estimation through Offline Compilation 63

2 Create a list of dissents, D that will hold the newly generated dissents
3 Loop while Q is not empty
4 Extract shortest list of assignments from Q, the best-node
5 Test best-node for subsumption using D
6 if best-node not subsumed, then unsat(best-node, CM) to test for inconsistency
7 if best-node and CM are inconsistent, then place assignments of best-node in D and place
 best-node as a conflict in unsat
8 otherwise, extend best-node as follows
9 for a variable, yi in y, not mentioned in best-node
10 for each element vij in Dyi of variable yi
11 create a new-node adding yi = vij to best-node
12 add new-node to Q by length
13 end for
14 end if
15 end while
16 return D

The Enumeration algorithm described here attempts all combinations of observation and

component mode assignments. This generates all dissents in the system model. Since any

diagnosis can be reconstructed from the conflicts in the system, then the Enumeration algorithm

compiles the model without loss of information.

3.3.5 Mode Compilation Example

The Enumeration Algorithm is next demonstrated using the NEAR Power Storage system

described in Chapter 1. This example focuses on the interactions between the switch, charger-1

and charger-2, depicted in Figure 3-6. Notice that the switch and chargers communicate through

the shared variable, switch-voltage. It is this variable that compilation removes from the mode

constraints.

Switch-voltage

Switch - voltage

Bus-Voltage

Charger-1
Current

Charger-2
Current

Figure 3-6 - Switch and Redundant Chargers in the NEAR Power Storage System

Achieving Real-time Mode Estimation through Offline Compilation 64

For the example, the component mode variables to assign to are the switch.mode, charger-

1.mode, charger-2.mode, and the observables are the bus-voltage, charger-1.charger-current,

and charger-2.charger-current. The domains of each variable are as follows:

 switch.mode { charger-1, charger-2, stuck-charger-1, stuck-charger-2 }
 charger-1.mode { full-on, trickle, off, broken }
 charger-2.mode { full-on, trickle, off, broken }
 bus-voltage { zero, low, nominal }

charger-1.current { zero, trickle, nominal }
 charger-2.current { zero, trickle, nominal }

The Enumeration algorithm can be visualized as a search tree where the first step expands on all

assignments, and each expansion that follows depends on which variables have not been

assigned. Using the subset of the NEAR Power Storage system described in Figure 3-6, the

following depicts the example search tree.

{ }

Switch =
CHARGER-2

Charger-1 =
FULL-ON

Charger-2 =
TRICKLE

Bus Voltage
= Nominal

Switch =
STUCK-

CHARGER-2

Charger-2 =
BROKEN

Switch =
CHARGER-1

Switch =
CHARGER-2

. . .

Switch =
STUCK-

CHARGER-2

Switch =
STUCK-

CHARGER-1

Figure 3-7 - Example Search Tree for Mode Compilation

From the search tree, assume the algorithm follows the path bus-voltage = nominal and switch =

charger-1. This by itself is not a dissent because it is consistent with the model as it predicts that

charger-1.switch-voltage = nominal and charger-2.switch-voltage = zero. The next expansion

using the component charger-1, several dissents are produced in the unsatisfiability engine.

Achieving Real-time Mode Estimation through Offline Compilation 65

{ }

Switch =
CHARGER-2

Charger-1 =
FULL-ON

Charger-2 =
TRICKLE

Bus Voltage
= Nominal

Switch =
STUCK-

CHARGER-2

Charger-2 =
BROKEN

Switch =
CHARGER-1

Switch =
CHARGER-2

. . .

Switch =
STUCK-

CHARGER-2

Switch =
STUCK-

CHARGER-1

Charger-1 =
FULL-ON

Charger-1 =
TRICKLE

Charger-1 =
OFF

Charger-1 =
BROKEN

1 2 3 4

Figure 3-8 - Next Expansion of the Search Tree for Mode Compilation

The different combinations of component mode assignments from this expansion are:

1. (bus-voltage = nominal), (switch = charger-1), (charger-1 = full-on)

2. (bus-voltage = nominal), (switch = charger-1), (charger-1 =trickle)

3. (bus-voltage = nominal), (switch = charger-1), (charger-1 = off)

4. (bus-voltage = nominal), (switch = charger-1), (charger-1 = broken)

The unsatisfiability engine in the Enumeration algorithm determines that for the first candidate

charger-1.switch-voltage = nominal by propagating the bus-voltage = nominal through the

constraints for switch = charger-1. When propagating using the mode assignment charger-1 =

full-on, the switch-voltage attains the same value. Since there is no discrepancy, candidate 1 is

determined to be consistent with the model constraints, and therefore not a dissent. The

unsatisfiability continues and tests the third candidate. This results in charger-1.switch-voltage

= zero using the charger-1 = off component mode constraints. The resulting discrepancy is

identified by the unsatisfiability engine, and this candidate is then marked as a dissent. The

Enumeration algorithm then places this in the list of dissents and continues exploring the search

tree for other dissents.

The search and propagation performed here by the unsatisfiability engine is the exponential

computation that is removed from the online process. Attempting this many combinations of

Achieving Real-time Mode Estimation through Offline Compilation 66

component modes and observation variables online would render the mode estimation algorithm

inoperable in a large system. This determination has been deferred to an offline process so that

the exponential computation is avoided at run-time.

3.3.6 Analysis of Mode Compilation and Mini-ME

The mode compilation process described here enables the Mini-ME diagnostic engine to perform

diagnosis with fewer computations online. The Mini-ME engine provides instantaneous mode

estimates of the system using current observations. Mini-ME addresses the problems of

Sherlock and GDE’s exponential computation to determine consistency of mode estimates. Like

GDE and Sherlock, Mini-ME is capable of using multiple sources of information to determine a

diagnosis of the system. Mini-ME is also capable of ranking these diagnoses using the

associated probabilities on component modes, similar to Sherlock. This enables Mini-ME to

overcome the problem of diagnostic discrimination in GDE. However, like GDE and Sherlock,

Mini-ME is still only capable of providing instantaneous mode estimates of the system. Even

though it can diagnose time varying systems, it does not gain diagnostic discrimination of these

systems because it does not track the behavior over time. This capability was first introduced in

the Livingstone engine with the addition of transitions to the system model. The CME engine

also gains this capability because it tracks mode estimates over time.

Achieving Real-time Mode Estimation through Offline Compilation 67

4 Conflict Based Mode Estimation with Transitions

4.1 Mode Estimation and the Need for Transitions

Tracking mode estimates over time is the next step in developing a fault management system that

can handle single and multiple faults, and diagnose complex behaviors of time varying systems.

Tracking mode estimates requires a more expressive model and different algorithms to use this

new information. A system developed after GDE and Sherlock, the Livingstone diagnostic

engine addressed the problem of tracking mode estimates.

The previous diagnostic systems, GDE, Sherlock and Mini-ME limited the expressiveness of the

model to contain component modes, constraints on these component modes, and probabilities on

these modes. These diagnostic systems are able detect a number of types of instantaneous

failures in a system. While GDE, Sherlock and Mini-ME handle novel failures, they require that

the symptoms propagate from the failure mode to the observation variables in the same time step,

otherwise they are unable to diagnose the failure.

For example, consider the switch in the NEAR Power storage system. It has a charger-1

operational mode and a stuck-charger-1 failure mode. Each of these modes exhibits the same

behavior by passing the input to charger-1 only. Sherlock and Mini-ME would not be able to

differentiate between these two modes. The use of transitions allows components to move

between modes, enabling an engine to determine the difference. To discriminate between these

two modes, a transition between the modes of the switch, charger-1 and charger-2 is specified

with the constraint that an input command must be given to make the transition. If the command

Achieving Real-time Mode Estimation through Offline Compilation 68

is given to transition from charger-1 to charger-2, then charger-1 is not a valid component mode

in the current time step. So, if the observations support the behavior for the mode switch =

charger-1, then it must be that the true mode is actually switch = stuck-charger-1. Without

transitions, this type of reasoning could never occur.

The first system that used behavioral modes and transitions between modes was the Livingstone

reactive system [Williams, 1996]. Livingstone generates mode estimates similar to Sherlock in a

best-first generate and test fashion. The difference is that Livingstone uses the transitions to

adjust the component mode probabilities at run-time, whereas these values were static in

Sherlock. The Livingstone engine is presented in section 4.3. In order to discuss the mode

estimation performed in Livingstone, it is necessary to review the system model and define its

elements, which is given in section 4.2.

4.2 System Model Framework

The system model used within Livingstone includes behavioral modes for components, and adds

in transitions with an associated probability. The system model is described as a Concurrent

Constraint Automaton (CCA) [Williams 2, 2002] that has the following constituents:

1. Discrete modes

2. Model constraints

3. Constraints describing communication between components

4. Probabilistic transitions

The constituents of a CCA create a compact encoding of a Hidden Markov Model (HMM). An

HMM is a framework for expressing the hidden state problems for dynamic systems. Mode

estimation is an example of this problem since the component modes are not directly observable.

The HMM framework offers equations to calculate probabilities of mode estimates, known as

belief update.

A CCA’s compact encoding builds up the system model using constraint automata, one automata

for each component in the system. Concurrency here relates to the operation of constraint

Achieving Real-time Mode Estimation through Offline Compilation 69

automata acting synchronously, as do components in a system. Constraints are used to represent

component modes, transitions, and interactions between components. Probabilistic transitions

are used to model the stochasticity of component behavior such as failures and intermittent

behavior (resettable failures). The following sections give the background for Hidden Markov

Models and the standard belief update equations, followed by Concurrent Constraint Automata,

and the roles they play in performing mode estimation.

4.2.1 Hidden Markov Models

The theory of Hidden Markov Models [Elliott, 1995, Williams 2, 2002] offers an approach to

framing the hidden state problem. This section reviews HMMs and gives the standard belief

update equations.

An HMM is given by a tuple , , , ,P P PθΣ OO ΤΤΤΤ
, where each element is defined as:

()[]
() ()[] ()

0

1 1

 finite set of feasible states,
 finite set of observations,

 denotes the probability that is the initial state
 denotes the conditional probability that is

i

i

i i

t t t
i j j

s
o

P s s s
P s s s

θ

+ +

• Σ ≡
• ≡
• =
•

O

#ΤΤΤΤ

()

() ()[] ()

()

 the next state given that is the current state.
 denotes the conditional probability that is

 observed given state .

t
i

t tt
i k k

t
i

s
P s o o

s
• O #

Figure 4-1 - Definitions of a Hidden Markov Model

The elements of a Hidden Markov Model are defined in Figure 4-1, with Pθ known as the initial

state function, PT the transition function and PO the observation function. The set of states, Σ,

represents all combinations of component modes in the system. The set of observations, oi,

represents the sensor information in the system. The transition function captures the constraints

between modes of a component and the probabilities associated with these transitions. The

observation function captures the constraints associated with component modes and the

probability that a particular state, si
(t), predicts the observations, o(t).

Achieving Real-time Mode Estimation through Offline Compilation 70

An HMM is used to perform belief update. Belief update computes the likelihood of each state,

si
(t), at each time step. Belief update is an incremental process, performed each time observations

are made and control actions are given to the system. Belief update computes the likelihood of

the current mode estimate using transition probabilities, previous mode estimate probabilities and

the current observations and control actions. The equations for this operation are as follows.
() [] () () () () ()

() [] () () () () ()

1 1 0 0

1 1 0 1 0

| ,..., , ,...,

| ,..., , ,...,

t t t t
i i

t t t t
i i

s P s o o

s P s o o

σ µ µ

σ µ µ

+ +

+ + +

 ≡
 ≡

i

i

Equation 4-1 - Belief Update Equations for HMMs

Here, σ(• t+1) is used to determine an a-priori probability for state si that includes observations and

control actions up to time ‘t’. The posterior probability, σ(t+1•), adjusts the a-priori calculation to

include observations up to time ‘t+1’. This brings the mode estimate up to the time of the latest

observations. These calculations are performed for each state, si, giving a corresponding σ(t+1•).

The set of all pairs 〈si, σ(t+1•)〉 is known as the belief state.

The Markov property is exploited to compute the belief state at time ‘t+1’, using only the control

actions at time ‘t’ and the observations at time ‘t+1’. The control actions are assumed implicit in

the transition function, PT. The standard belief update equations are:

() [] ()

() [] () [] []
() []

1

1

1 1
1

1

nt t
i j j i

j

t t i k
i i tn

i j kj

s s P s s

P s o
s s

s P s o

σ σ

σ σ
σ

+

=

+ +
+

=

≡

≡

∑

∑

i i

i i
i

#

#
#

ΤΤΤΤ

ΟΟΟΟ

ΟΟΟΟ

Equation 4-2 - Standard Belief Update Equations

These equations express the link between the probabilities in the system model and the

probabilities on a state at a specified time. The first equation calculates the a-priori probability

of a state by taking the probability of a previous state, sj, and multiplying it by the probability of

transitioning from state sj to the current state si. The total a-priori probability is then given by the

sum over all previous states. The posteriori probability is calculated by updating the a-priori

Achieving Real-time Mode Estimation through Offline Compilation 71

using the observations. The numerator denotes the product of the a-priori probability for state si

and the probability that it predicts the observations ok. The denominator is a normalization factor

ensuring that the posteriori probability does not exceed 1. The Sherlock equation for calculating

probabilities on component modes was derived from the posteriori probability for HMMs.

The belief states and system trajectories can be visualized using a trellis diagram shown in

Figure blah. Belief update associates a probability with each state in the figure. Paths through

the diagram represent trajectories of the states of the system. The process of mode estimation

tracks these trajectories over time to estimate the state of the system.

s

t1

. . .

t0 t2 tN-1 tN

Figure 4-2 - Trellis Diagram

Model-based mode estimation extends the belief update to systems encoded using constraints

through the compact encoding of Concurrent Constraint Automata (CCA).

4.2.2 Concurrent Constraint Automata

CCAs used within Livingstone offer a compact encoding of constraints and transitions. The

concurrent constraint automata for a system are built up from constraint automata. These

constraint automata capture the model of individual components, including the modes,

constraints on these modes, and transitions between modes. The concurrent constraint automata

capture the individual constraint automata, and the constraints between these individual

automata. This section first develops the definition of a constraint automata followed by the

concurrent constraint automata.

Achieving Real-time Mode Estimation through Offline Compilation 72

4.2.2.1 Constraint Automata

A constraint automaton is characterized by a mode variable, with an associated domain. Given a

mode variable, a mode assignment is a value from the domain, with an associated constraint.

The constraints are expressed over the attribute variables of the automaton. For instance,

consider the NEAR Power storage system described in Chapter 1. The battery chargers,

charger-1 and charger-2, have attribute variables switch-voltage, battery-temperature and

charger-current. A constraint automaton can change modes as specified by a transition function.

In constraint automaton, there is a set of specified transitions for each mode assignment, each

having an associated probability. These constraints and transition function allow the

representation of the behavioral modes of a component including nominal, failure and

intermittent operation.

A constraint automaton for a component ‘i’ is a tuple , , , , ,P Pi i i ii iθΠ Μ Τ Τ % where:

is a set of variables for the component where each in ranges over a finite domain .
 is partitioned into a singleton set, , containing the component , , and a set

x (x)i i i
mode variable xim im

• Π Π Π
Π

D

 of . The constraints of the component each range over .
 The representation of constraints follows the definition of a constraint automaton.

ia
attribute variables xia ia

Π
Π

() ()
() ()

: , associates with each mode variable assignment = a finite

 domain constraint = . This constraint captures the components behavior
 in a given mode.

D x vim ii im ij
x vim ij ii

• Μ Π → Π

Μ ∈ Π

&

&

() () ()
() () ()

: associates with each mode variable assignment =

 a set = of transition functions. Each transition function = =
 specifies an assignment to

x vim i imi im ij
kx v x v x vim ij im ij im iji i i

xim

• Π × Π → Π

∈

D D&ΤΤΤΤ

Τ Τ ΤΤ Τ ΤΤ Τ ΤΤ Τ Τ

()
 at time 1, given assignments to the variables , at time (including

 =). The transitions representing nominal behavior are denoted by = . These

 transitions allow for trans

t tinx v x vim ijim ij i

+ Π
ΤΤΤΤ

itions to other mode assignments in the component, as well as the same mode
 assignment, known as the idle transition.

(): 0,1 denotes the probability that = is the initial mode for component .P x v iim im ijiθ
 • Π → ℜ D

()
()

: = 0,1 denotes for each mode assignment = , a probability

 distribution over the possible transition functions = .

P x v x vim iji im iji
k x vim iji

 • → ℜ ΤΤΤΤΤΤΤΤ

ΤΤΤΤ

Achieving Real-time Mode Estimation through Offline Compilation 73

Equation 4-3 - Definition of a Constraint Automata [Williams 2, 2002]3

The definition of a constraint automaton denotes the single mode variable, Πm, and its set of

attribute variables, Πia. These attribute variables can include observation, intermediary and other

component mode variables. The constraint automaton also maintains constraints on mode

variables and constraints on transitions. In order for a mode estimate to be consistent now

requires using the component mode constraints and the constraints on transitions. The definition

of the constraint automaton also incorporates the probabilities on transitions in the probability

distribution, PTi.

The transition functions are specified on each component mode variable, as denoted by Ti(xim =

vij). Each transition function Ti
k(xim = vij) is represented as a set of transition pairs (lim, vin).

Here, lim is a set of labels on the transition, denoted by c if entailed and c if not entailed, where c

∈ C(Πi). The destination mode of the transition is denoted by vin, where vin ∈ D(xim). This

corresponds to the traditional representation of a transition with labeled arcs in a graph, and is

visualized in the following figure.

1p ≤
()x vim ij= ()x vim in=

lim

Figure 4-3 - Representation of a Constraint Automaton Transition

The constraints in the component modes and transitions are expressed using standard

propositional logic. Expressions are created using propositions and composed using standard

logical connectives. The following specifies the form of these expressions using the Backus-

Naur Form (BNF):

3 Note that reward is not included here as it is irrelevant to mode estimation.

Achieving Real-time Mode Estimation through Offline Compilation 74

|

TRUE | FALSE | | (NOT)

 (variable = value) or (=)

AND | OR | IM

constraint proposition wff

proposition assignment assignment

assignment x vi ij

wff ask constraint connective ask constraint

connective

→

→

→

→

→ PLIES | IFF

Figure 4-4 - Propositional Logic Form of a Constraint

This concludes the specification of constraint automata and all of the constituents. The

definitions and their uses are best demonstrated by example.

4.2.2.2 Constraint Automaton Example

Consider the battery-charger in the NEAR Power Storage system described in Chapter 1. Its

inputs are the switch-voltage and the battery-temperature, and outputs the charger-current, all of

which are attribute variables. The domain of this component is D(battery-charger) = {full-on,

trickle, off, broken, unknown}. The switch-voltage has the domain {zero, low, nominal}, and the

battery-temperature has the domain {low, nominal, high}. The output variable, charger-current

has the domain {zero, trickle, nominal, high}. A figure showing the charger and the charger

automata are given below.

Charger

Switch Voltage

Battery Temperature

Charger Current

Full-On
Switch Voltage
 = nominal
Charger Current
 = nominal

Trickle
Switch Voltage
 = low
Charger Current
 = trickle

Off
Switch Voltage
 = zero
Charger Current
 = zero

Broken
Charger Current
 = high

Unknown

Battery Temperature !=
High

Battery Temperatue =
High

Battery
Temperature

= Low

Battery
Temp
= High

Battery
Temp

!= High

Battery
Temp
!= Low

Figure 4-5 - Automaton of the NEAR Power System Charger

Achieving Real-time Mode Estimation through Offline Compilation 75

The figure denotes the model constraints, Mi as:

() () ()

() () ()

M battery-charger=trickle switch-voltage = low charger-current = tricklebattery-charger

M battery-charger= full -on switch-voltage = nominal charger-current = nominalbattery-charger

M batterbattery-charger

= ∧

= ∧

() () ()

() ()

()

y-charger=off switch-voltage = zero charger-current = zero

M battery-charger=broken charger -current = highbattery-charger

M battery-charger=unknown TRUEbattery-charger

= ∧

=

=

The transition function, Ti, is denoted on the figure as the following:

() ()
()
()

,battery-temperature != high, full -on
nT battery-charger=trickle battery-temperature = high, tricklebattery-charger

TRUE, off

 =

() ()
()

f TRUE, broken T battery-charger=tricklebattery-charger TRUE, unknown

 =

() ()
()
()

,battery-temperature = high, trickle
nT battery-charger= full -on battery-temperature != high, full -onbattery-charger

TRUE, off

 =

() ()
()

f TRUE, broken T battery-charger= full -onbattery-charger TRUE, unknown

 =

() ()
()

,battery-temperature = low, trickle nT battery-charger=offbattery-charger battery-temperature != low, off

 =

() ()
()

f TRUE, broken T battery-charger=offbattery-charger TRUE, unknown

 =

() ()
()

,f TRUE, unknown T battery-charger=brokenbattery-charger TRUE, broken

 =

() (){ }f
T battery-charger=unknown TRUE, unknown battery-charger =

In these transition functions, the probabilities must be specified in order to complete the

definition of this constraint automaton. The total probability of enabled transitions out of a

component mode must sum to one. This makes the probability on nominal transitions, Tn
battery-

charger equal to 0.95, and for fault transitions, Tf
battery-charger equal to 0.04 for transitioning to

Achieving Real-time Mode Estimation through Offline Compilation 76

‘broken’, and 0.01 for transitioning to ‘unknown’. Not specified here is the probability

distribution on initial modes.

4.2.2.3 Concurrent Constraint Automata

Using the foundation of the constraint automaton, the concurrent constraint automata (CCA)

definition can now be elaborated. A CCA models the spacecraft system as a group of constraint

automata all acting concurrently, executing transitions in a synchronous manner. This group of

constraint automata represents the components in the plant, one automata for each component.

The framework of the CCA captures the interconnections between the constraint automata and

the interactions the plant has with the environment.

A CCA is described by a tuple , ,A Π I , where:

{ }, , ,..., denotes the finite set of constraint automata that are associated with the1 2 3
 components in the plant system.

A A A A An
n

• =

() () is a set of where each ranges over a finite domain .
 denotes the set of finite constraints over . is partitioned into sets of , , m

plant variables x x tell
tell mode variables

obse

• Π ∈ Π Π
Π Π Π

D &

{ }

, , , , and , . o c d
 Mode variables, , represent the different modes of a component in the plant. The set m
 = | 1.. m

rvable variables control variables dependent variables

i nim

Π Π Π
Π

Π Π =
i

∪ contains all of the mode variables.
 Observable variables capture the information of the plant sensors. They represent a subset of the
 of the set of component constraattribute variables
i

{ }int automata, . Formally, 1..
 Control variables provide a way to assert external actions on the plant. Commands to components
 such as actuators are relayed through these v

A i niaoΠ ⊂ Π =|∪
i

{ }
ariables. They too represent a subset of the

 of the set of component constraint automata, . Formally, 1.. c
 and = .

 Dependent variables repre

attribute
 variables A i nia

o c

Π ⊂ Π =
Π ∩ Π ∅

|∪

i sent the shared variables between the components in the plant or the
 interconnections. These are used to propagate effects of the and the

througho
control variables observable

 variables
{ }

ut the plant. They represent another subset of the of the set
 of component constraint automata, . Formally 1.. with the condition d
 that = , d d

attribute variables
A i nia

c

Π ⊂ Π =
Π ∩ Π ∅ Π ∩ Π

|∪
{ }= , and = 1.. . d i niao c o∅ Π Π Π Π =|∪ ∪ ∪

Achieving Real-time Mode Estimation through Offline Compilation 77

 The state space of , denoted , is the cross product of the () for all variables .

 The state space of the plant component modes, , is then () ()

 for all v

x x

x xim im imim

Π ∈ ΠΠ
Π ×Π

D D

D = D D

i

()ariables . A state snapshot, , of the plant components at time is then

 an assignment to all mode variables a value from their domain, ().

tx s tim im
x xim im im

∈ Π

∈ Π D

() is a conjunction of constraints modeling the interconnections

 between the of the set of constraint automata, .

c o d

attribute variables A

• ∈ Π Π ΠI & ∪ ∪

Equation 4-4 - Definition of a Concurrent Constraint Automaton [Williams 2, 2002]

Using this definition of a CCA, it is now possible to describe multiple components and

characterize their interactions via the intermediate variables. The sensor and control information

can be brought into the component model to incorporate these constraints. The following

example shows the use of these definitions of a CCA.

Consider the NEAR Power Storage system from Chapter 1, focusing on the switch and the

charger depicted in Figure 4-6. The component models are simplified to decrease the number of

modes since only the interactions between the switch and one charger are considered for this

example. The switch has the domain {charger-1, off, broken}, and the charger has the domain

of {full-on, trickle, off, broken}. The attribute variables of the switch are the inputs switch-cmd

and bus-voltage, and the output switch-voltage. The attribute variables of the charger are the

input switch-voltage and the output charger-current.

Switch-voltage
Bus-Voltage

Charger-1
Current

Figure 4-6 - Switch and Battery Charger from the NEAR Power Subsystem

The automata for the switch component is shown below and would be expressed in the set, A, of

constraint automata for the CCA. Recall the automata in Figure 4-5 of a general charger and

consider it without the unknown mode. The constraints on each mode are also shown along with

the constraints on the transitions.

Achieving Real-time Mode Estimation through Offline Compilation 78

Switch

Bus Voltage

Command

Charger-1-
Voltage

Charger-1
charger-1-voltage
 = Bus Voltage
charger-2-voltage
 = zero

Command = to-off

Command = to-charger-1

Command
!= to-off Command !=

to-charger-1

Off
charger-1-voltage
 = zero

Broken

Figure 4-7 - Constraint Automaton for a Switch

The components communicate through the shared variable switch-voltage, therefore this is the

only member of the set Πd, with Πd = {switch.switch-voltage, charger-1.switch-voltage}. The

control variables in this example are represented by the command to the switch, with Πc =

{switch-cmd}. The observable variables are noted as Πo = {bus-voltage, charger-1-current}.

The interconnection between the switch-voltage of the switch and the switch-voltage of the

charger is then described by the set: I = {

(switch.switch-voltage = low) IFF (charger-1.switch-voltage = low)
(switch.switch-voltage = nominal) IFF (charger-1.switch-voltage = nominal)
(switch.switch-voltage = zero) IFF (charger-1.switch-voltage = zero) }

This example demonstrates the use of the different elements of a CCA. Once the constraint

automata have been specified, then the links between these automata can be made using the

framework of a CCA and the interconnection constraints, I.

4.2.2.4 CCA’s and Mode Estimation

The remaining portion of the CCA specification is to detail the execution of concurrent

constraint automata properly to determine mode estimates. Recalling the trellis diagram of

Figure 4-2, identifying mode estimates is then the process of selecting a trajectory through the

trellis diagram to arrive at a particular mode estimate. This trajectory is constrained to be

consistent with the transitions, the model constraints of the CCA and the current observations.

Achieving Real-time Mode Estimation through Offline Compilation 79

The task of mode estimation is to determine the likely trajectories through the trellis diagram

using the probabilities on the transitions to guide the choice of the trajectory. The choice is

guided by the belief update equations of HMMs applied to CCAs.

A CCA, while a compact encoding of an HMM, makes explicit certain structural properties left

out of the definition of an HMM. The observation and transition functions are not explicitly

defined in an HMM but are defined in a CCA. The transition function of a CCA is given by the

individual transition functions of the constraint automata. The observation function is implicit in

the mode constraints of the individual constraint automata and in the constraints between

automata in the CCA. Additionally, a CCA is concurrent, denoting that all components make a

transition at each time step, which is also not expressed in an HMM.

What remains is to define the probabilities associated with the transition and observation

functions to be used in the belief update equations. The constraints expressed in a CCA and the

transitions divide the space of mode estimates into feasible and infeasible sets. Mode estimation

uses the constraints and transitions to determine the feasible mode estimates, and constrain the

probability of any infeasible mode estimate to be zero. The definitions of PT and PO for CCA

must capture this.

To define the transition function probability, recall that a plant transition T for a state ‘sk’ of a

CCA is comprised of a set of component transitions, one for each component mode assignment

in the state. Using the individual component transition probabilities PT(xim = vij), calculating PT

then only requires determining the product of these individual transitions with the key

assumption that component mode transitions are independent of one another, given the current

state, ‘sk’. The equation to calculate PT is given as follows:

() ()
() i

i ij k
k i ij

x v s
P s P x v

= ∈
= =∏Τ ΤΤ ΤΤ ΤΤ Τ

Equation 4-5 - Calculation of the Transition Function Probability

The next step is to define the observation function, PO. The calculation of the observation

probabilities is performed using the constraints on the state, ‘sk’. These constraints are built up

Achieving Real-time Mode Estimation through Offline Compilation 80

from the individual component constraints Mi(xim = vij) of each mode assignment in ‘sk’. If an

observation is entailed by the constraints and the mode estimate, then PO = 1. If an observation

is refuted, or not entailed, then PO = 0. In the case that entailment of an observation cannot be

determined, the observation is neither entailed nor refuted. One approach to assume a uniform

prior probability and set PO = 1/n, where ‘n’ is the number of different values in the domain of

the observation. GDE was the first to develop and use this approach to calculating the

observation function, and this same approach is used in Sherlock and Mini-ME

The definitions for PT and PO enable a mode estimation algorithm for CCA that uses the

standard belief update equations. The algorithm takes as an input the model of the system

expressed as a CCA, a set of previous mode estimates, B(t), which are the pair 〈si
(t) σ(t•)〉, the

commands, µ(t), and current observations, o(t+1). ME-CCA returns the current set of mode

estimates, B(t+1), which are the pair 〈sj
(t+1), σ(t+1•)〉. The steps of the mode estimation algorithm

for CCA (ME-CCA) are given below in words, followed by a detailed mathematical expression.

1. Identify the constraints CMi
(t) associated with each state si

(t) ∈ S(t)

2. For each state si
(t) ∈ S(t), build the states sj

(t+1) using the transition function PT[si → sj], and

take their union

a. For each mode assignment mik in si
(t)

i. identify the transitions enabled by the constraints CMi
(t)

ii. add the targets of each enabled transition to the set of reachable next

assignments, N(mjk
(t)).

b. Using the sets N(mjk
(t)), create all possible next states, sj

(t+1), by taking the cross

product of the N(mjk
(t)), for all mij ∈ si

(t), and calculate PT as specified by Equation 4-5

3. For each state sj
(t+1), calculate the a-priori probability by summing over the previous

mode estimates, si
(t), the posteriori probability σ(t•)[si] • PT[si → sj].

4. Extract the constraints CMj
(t+1) for each state sj

(t+1) ∈ S(t+1)

5. Determine the consistent states, sr
(t+1), using the current observations o(t+1) and the

constraints CMj
(t+1), determining PO[sr

(t+1) → oi
(t+1)] in the process

6. Calculate the posterior probability of each consistent state, sr
(t+1), using the standard belief

update equation and PO from step 5

7. Return the set of pairs 〈sr
(t+1), σ(t+1•)〉

Achieving Real-time Mode Estimation through Offline Compilation 81

The pedagogical ME-CCA algorithm given above calculates mode estimates in a brute force

approach by first generating all reachable states using the transition function and previous mode

estimates. The algorithm then determines if a state is consistent with the observations and model

constraints. If a state is consistent, then the observation function probability is calculated. If it is

not, the state is marked as inconsistent and is associated the value PO = 0. The final step of the

ME-CCA algorithm is to calculate the posteriori probability on the states using the belief update

equation.

4.2.2.4.1 ME-CCA Example

The steps of this algorithm are demonstrated using the NEAR Power storage system, in

particular the switch and charger combination detailed in section 4.2.2.3. Considering the

following inputs for the ME-CCA algorithm:

 S(t) = { switch = charger-1, charger-1 = trickle }

 σ(t•) = 1.0

 µ(t) = switch.cmd = to-off

 o(t+1) = {bus-voltage = zero, charger-1.current = zero, battery-temperature = nominal}

Applying the first step of the ME-CCA algorithm extracts the constraints on the modes switch =

charger-1 resulting in CMi
(t) = { charger-1.voltage = bus-voltage }, and for charger-1 = trickle,

CMi
(t) = { switch-voltage = low and charger-1.charger-current = trickle }.

These constraints and the commands are used to determine the enabled transitions. The

command switch.cmd = to-off results in the transition switch = charger-1 to switch = off with a

probability of 0.99. ME-CCA identifies the transitions for the charger from trickle to off, broken

and trickle because of the idle transition. The calculations of step 2 of the informal ME-CCA

algorithm result in the following set of component modes each with an associated probability.

N(mjk
(t+1)) = { 〈switch = off, p = 0.99〉, 〈switch = broken, p = 0.01〉, 〈charger-1 = trickle, p =

0.95〉, 〈charger-1 = off, p = 0.04〉, 〈charger-1 = broken, p = 0.01〉.

Achieving Real-time Mode Estimation through Offline Compilation 82

The second phase of step 2 would generate all combinations of the component mode assignments

and calculate their transition probabilities. For brevity, not all are detailed here, but a few are:

 { switch = off, charger-1 = trickle, p = 0.9405 }

 { switch = off, charger-1 = off, p = 0.0396 }

 { switch = broken, charger-1 = off, p = 0.0004 }

The third step of the ME-CCA algorithm determines the apriori probability for each state

generated in the previous step. Since there is only one previous mode estimate with a probability

of 1.0, then the probability calculated by step 2 is unchanged.

The fourth step of the ME-CCA algorithm extracts the constraints on the different states

generated in step 2. This requires extracting the constraints on all of the different component

modes within the states. Not all are listed here for brevity. The first constraint is from the

system model constraints constraining the output of the switch to be equal to the input of

charger-1.

 CMj
(t+1) (switch-charger CCA) = { switch.charger-1-voltage = charger-1.switch-voltage }

 CMj
(t+1) (switch = off) = { charger-1.voltage = zero }

 CMj
(t+1) (switch = broken) = { }

 CMj
(t+1) (charger-1 = off) = { charger-1.switch-voltage = zero, charger-1.current = zero }

The fifth step of ME-CCA now determines the states that are consistent with the observations

and the system constraints. This computation results in the consistent states and their associated

observation function probabilities. A few of the states generated by this step are given below.

 { switch = off, charger-1 = off , p = 1 }

 { switch = off, charger-1 = broken, p = 1/3 }

 { switch = off, charger-1 = trickle, p = 0.0 }

These probabilities are used in determining the posteriori probability calculation as defined by

the standard belief update equations. This calculation results in the following probabilities for

the states listed above. The first two mode estimates are returned from the ME-CCA algorithm,

along with the remaining mode estimates not listed here that are also consistent. The final mode

Achieving Real-time Mode Estimation through Offline Compilation 83

estimate listed here is not returned since it has a zero probability, and is thus labeled as an

inconsistent mode estimate.

 { switch = off, charger-1 = off , p = 0.912 }

 { switch = off, charger-1 = broken, p = 0.076 }

 { switch = off, charger-1 = trickle, p = 0.0 }

4.2.2.4.2 Formal ME-CCA Algorithm

The formal statement of the ME-CCA algorithm is given in this section. The inputs to the ME-

CCA algorithm are denoted by P as the system model, S(t) as the previous states, with an

associated posteriori probability given by σ(t•), µ(t) as the control actions, and the current

observations given by o(t+1). The output belief state of the algorithm is denoted by S(t+1) as the

state, and σ(t+1•) as the associated posteriori probability.

() () ()() () ()()

() () () () ()
() () (){ }

1 1 1(), , , , , ::

1. 1 : , | , t
km kl i

t t t t tt

t t t tt
x v si Mi i Mi k km kl

ME CCA P S o S

M s C s S C M x v

σ µ σ+ + +

= ∈

− →

= ∈ = =∧

i i

() () () (){
() () () ()()}

1

1

2. 2 : , , | , 1,

, , ,

t t t t
i j ij i Mi

t t t t
j ij i Mi

M s s p s C M

s p s C µ

+

+

= ∈

∈Τ

() () () () ()

()

1 13. 3 : , | , , 2,
t

i

t t t tt
j j i j ij j i ij

s

M s p s s p M p s pσ+ +
 = ∈ =

∑ i

() () (){
()

() () ()}1

1 1 1

1

4. 4 : , , | , 3,

t
km kl j

t t t
j j Mj j j

t
x v sMj k km kl

M s p C s p M

C x v+

+ + +

+
= ∈

= ∈

= Μ =∧

() () (){
() () () () ()}

1 11

1 1 11 1

5. 5 : , , | , , 4 ,

 is consistent, then =

t tt
r j j j Mj

t t tt t
j Mj r j

M s p P s p C M

s C o s s

+ ++

+ + ++ +

= ∈

∧ ∧

O

() () (){ }11 16. 6 : , | , , 5tt t
r j jM s s p P Mσ ++ += ∈O

i

7. 6return M

Achieving Real-time Mode Estimation through Offline Compilation 84

The function T used in step 2 of ME-CCA performs the operations outlined in parts 2a and 2b of

the informal algorithm. More precisely,
() () ()(), ,t t ts Ci Mi µΤΤΤΤ computes the following:

() () ()

() () ()

()()

t For each mode variable assignment , and for each transition function :
t identify the transition pair , that is by and

 add the pair , to

km s m mi i i
tl v enabled Cim in Mi

kx v P lisim in mi

µ

• ∈ ∈

= Τ

i

i

Τ ΤΤ ΤΤ ΤΤ Τ

()

()()

()

() ()

 Let = . This cross product gives the full set of possible destination states
t for a given , and assigns each a probability.

 For each = , ,..., , , de1 1 11

t m

tTP list mm si
si

tp x v p x v p TPj m l nm nl nn

• ∏ ∈

• = = ∈
() () ()

()

fine:
1 = ,...,1 1 1

 = 1..
1 Return , j

ts x v x vm l nm nlj n
p pij kk n

ts pijj

+ = =

∏ =
+•

i

i

∪

Figure 4-8 - Mode Estimation Algorithm for CCA (ME-CCA) [Williams 2, 2002]

4.3 Livingstone

The next step in model-based mode estimation after GDE and Sherlock is the Livingstone engine

[Williams, 1996]. Livingstone uses the framework of CCA and builds upon the conflict based

algorithms of Sherlock to produce a mode estimation engine capable of tracking mode estimates

over time. To characterize Livingstone as solely a diagnostic engine is inaccurate. Livingstone

was developed to provide mode estimates and use these mode estimates to determine control and

repair actions to achieve goals. The architecture of Livingstone is similar to the architecture of a

model-based executive presented in Chapter 1. The Livingstone system was validated on the

Deep Space 1 spacecraft in 1999.

The pedagogical ME-CCA algorithm presented in the previous section in not practical for

systems with large numbers of components due to the large belief state, which grows

exponentially with the number of components in the system. Livingstone approximates the

belief state by tracking the most likely trajectories in the trellis diagram in Figure 2-2.

Livingstone builds upon the algorithm developed by Sherlock, generate and test, where conflicts

Achieving Real-time Mode Estimation through Offline Compilation 85

are incrementally generated, and then a search determines the smallest set of component mode

assignments that satisfies these conflicts. The addition of transitions enables the generation of

conflicts to be more focused than in Sherlock. The price is that now Livingstone must determine

if a transition is enabled. This computation requires a satisfiability computation using the

constraints on transitions. This is exponential in the number of trajectories tracked. Since

Livingstone maintains a similar method to testing a candidate as Sherlock, it incurs the same

penalty in the satisfiability phase. To avoid further computational problems, Livingstone limits

the trajectories tracked at each time step to only a single mode estimate. In order to avoid this

limitation, Compiled Mode Estimation seeks to compile the transitions from the CCA to remove

the need for full satisfiability. This compilation process is presented in section 5.4. The study of

the Livingstone engine gives an approach to generating mode estimates using the transitions.

This approach is also used within the CME engine to generate mode estimates online.

This section focuses on the mode estimation process of the Livingstone engine by first presenting

the architecture of the mode estimation engine and discussing its inputs and outputs. Section

4.3.2 discusses the process of mode estimation in Livingstone and concludes with a mapping of

the steps of Livingstone to the ME-CCA algorithm presented in section 4.2.2.4. The final

section discusses the limitations of Livingstone.

4.3.1 Livingstone Inputs and Outputs

Livingstone determines mode estimates by identifying conflicts with a candidate, the system

model and the observations. It then resolves the conflict by assigning different component

modes to the candidate. The search for component modes is guided by the probabilities of the

transitions. Livingstone builds upon the Sherlock architecture, with the addition of a processs

that determines if transitions are enabled. The resultant architecture is shown below:

Achieving Real-time Mode Estimation through Offline Compilation 86

Test
Candidate

System
Model

Next State
Candidate
Generation Conflicts

Most Likely
Candidate

Transition
Determination

ObservationsCommands

R
eachable C

om
ponent

M
odes

Mode
Estimate

Figure 4-9 - Architecture of the Livingstone Mode Estimation Engine

The Livingstone mode estimation architecture draws on the architecture of Sherlock and its ‘test

candidate’ and ‘conflict directed search’ loop. It adds a function called ‘Transition

Determination’ that determines the reachable component modes. This step is similar to that

performed in step 2 of the ME-CCA algorithm in Section 4.2.2.4.2. The ‘transition

determination’ function maps the current commands and the system model to a set of reachable

component modes.

The system model representation used by Livingstone is a CCA. The commands represent an

assignment, vij, to each control variable, xic ∈ Πc within the system model. Similarly the

observations represent an assignment, vij, to each observation variable xio ∈ Πo in the system

model.

The output of the Livingstone engine is a set of most likely mode estimates. A mode estimate is

the pair of a state and the probability of that state. The assignments in a mode estimate must be

consistent with the current observations, commands and model constraints. Livingstone chooses

the best mode estimate to track in the next time increment.

The internal variables in Livingstone are the reachable component modes, the conflicts and the

most likely candidate. The set of reachable component modes is defined as the set of pairs of a

component mode that is the target of an enabled transition, and the associated transition

Achieving Real-time Mode Estimation through Offline Compilation 87

probability, 〈mik
(t+1), pik〉. The conflicts maintain the same definition as that used in GDE and

Sherlock, that is, a representation of infeasible component mode assignments. Livingstone limits

the conflict directed search to produce only a single most likely candidate. This most likely

candidate is represented as a partial set of component mode assignments. This enables

Livingstone to incrementally generate the conflicts. The definitions of the inputs, outputs and

internals of the Livingstone-ME engine are:

() () () (){ } ()

() ()

System Model

1Mode Estimate ,..., ,1 1 1

1 1 where is consistent

CCA

t tME s x v x v xi m l nm nl im mi n

t tME C oi Mi

σ

≡

+≡ = = = ∀ ∈ Π

+ +∧ ∧

i

() () (){ }Reachable Component Modes , , , ,..., ,1 1 1 1 2 11 1 2 2

 where and denotes the probability of the mode.

Most Likely Candida

x v p x v p x v pm l l m l l nm nl nln n

x p
im m ij

≡ = = =

∈ Π

() ()te ,..., where denotes a full set of 1 1 1
 component mode assignments satisfying all known

x v x v xm l nm nmln im m
conflicts

≡ = = ∈ Π

4.3.2 Mode Estimation in Livingstone

The overall process of mode estimation in Livingstone is best described as choosing the best

transition from the previous mode estimate to a current, consistent mode estimate. A depiction

of the Livingstone calculation is shown in Figure 4-10.

Previous
Mode

Estimate
S(t), P = 1

S1
(t+1), P1

.

.

.

T1

T 2

T n

Current
Mode

Estimate
S(t+1), P = 1

S2
(t+1), P2

Sn
(t+1), Pn

Figure 4-10 - Mode Estimate Calculation in Livingstone

Achieving Real-time Mode Estimation through Offline Compilation 88

Although Livingstone does not explicitly enumerate the reachable mode estimates, it does

enumerate the reachable modes of the individual components. To achieve this, Livingstone first

determines if the constraints on the transitions are satisfied, which requires full satisfiability.

However, the “causal nature of the constraints of the system model enable full satisfiability to

require little search” [Williams, 1996]. This statement relates to a simplification in the

constraints on transitions, where only the commands and the previous mode estimate are enough

to determine the reachable next modes. The result is a simpler search to determine transition

consistency as now the transition system of the components are deterministic.

The assumption of a single previous mode estimate enables Livingstone to simplify the

calculations of the probabilities of the reachable component modes. Recall in the ME-CCA

algorithm that probabilities are specified on mode estimates, given by the standard belief update

equations. In the apriori probability of Equation 4-2, the transition probability between mode

estimates is multiplied with the product of the previous mode estimate. However, since there is

only a single mode estimate, the apriori probability of a mode estimate is then just the transition

probability. The steps of ‘transition determination’ in Livingstone are summarized below:

1. for a mode assignment, mik
(t) in the previous mode estimate Si

(t)

a. for each transition, Ti
k(mik

(t)), determine if its constraint is consistent with Si
(t)

and the commands, µ(t)

b. if the transition, Ti
k(mik

(t)) is enabled, then add its target to the list N(mjk
(t+1))

of reachable component modes with the associated transition probability, pT.

2. return N(mjk
(t+1))

Next, recall that the transition probability between a previous and a current mode estimate is

comprised of the individual component transitions (Equation 4-1). In order to determine the

likely transitions from the previous mode estimate, Livingstone uses the probabilities on the

individual component modes to focus in on likely candidates. Instead of constructing all

possible mode estimates using the reachable component modes, Livingstone incrementally

generates the likely trajectories from the previous mode estimate, guided by the conflicts in the

‘test candidate’ and ‘conflict-directed search’ loop, similar to Sherlock. However, since only a

Achieving Real-time Mode Estimation through Offline Compilation 89

single most likely candidate is generated each time, the loop used within Livingstone is known as

a Conflict-Directed A* (CDA*).

The CDA* algorithm incrementally generates solutions using as inputs the reachable component

modes and their associated transition probabilities, denoted as X, the component mode

constraints, denoted as C, and an optimization function, f, defined to be the product of the

transition probabilities. CDA* seeks to maximize f, thereby maximizing the probability of the

mode estimate. The algorithm is stated below:

CDA* (X, C, f)
 Agenda = { {best-solution(X)}}; Result = ∅ ;
 while Agenda is not empty do
 Soln = pop(Agenda)
 if Soln satisfies C then
 Add Soln to Result ;
 if enough solutions have been found then
 return Result ;
 else Succs = immediate successors Soln ;
 else
 Conf = a conflict that subsumes Soln ;
 Succs = immediate successors of Soln not subsumed by Conf
 endif
 Insert each solution in Succs into Agenda in decreasing order of f ;
 endwhile
 return Result
end CBFS

The algorithm above generates mode estimates by maintaining an Agenda of unprocessed

candidates. The first step is to remove the most likely candidate from the Agenda and test if it is

a Soln. The test for consistency of the Soln using the constraints, C, returns true if it is

consistent, or returns conflicts if it is not. If Soln is consistent with the constraints, then Soln is

added to the Result. If the Soln is not consistent, then the conflict returned from the satisfiability

engine is stored and used to generate successors, Succs, that satisfy the conflict. The conflict

returned is a subset of the assignments in Soln. This focuses the CBFS by pruning infeasible

combinations of component mode assignments. The Succs are candidates that are not supersets

of any of the conflicts in Conf. The CBFS algorithm then places Succs in order of decreasing f in

the Agenda and continues to test another possible Soln. The CBFS algorithm stops only when

the Agenda is empty, denoting that all possible mode estimates have been explored, or when

Achieving Real-time Mode Estimation through Offline Compilation 90

some stopping condition has been met. Livingstone specified this halting condition similar to

Sherlock where it terminated when a certain percentage of the probability space had been

explored.

The CDA* algorithm is capable of generating many solutions, representing the mode estimates,

using the constraints of the system model and observations. However on DS1, Livingstone only

maintained the most likely mode estimate due to the expensive computations of tracking multiple

mode estimates at each time step and extreme limitations of the flight processor.

4.3.2.1 Mode Estimation Example

The Livingstone process of mode estimation is best demonstrated by example. Consider as a

simple example the NEAR Power Storage system described in Chapter 1. Focusing on the

switch and chargers, assume the following for the previous mode estimate and observations:

S(t) : {switch = charger-1, charger-1 = trickle, charger-2 = zero }

o(t+1): {bus-voltage = nominal, chager-1.current = nominal, charger-2.current = zero}

µ(t) : { switch.cmd = no-command }

The ‘transition determination’ function results in the following reachable component modes:

 〈switch = charger-1, p = 0.99〉, 〈switch = broken, p = 0.01〉
 〈charger-1 = trickle, p = 0.49〉, 〈charger-1 = full-on, p = 0.49〉, 〈charger-1 = broken, p = 0.02〉
 〈charger-2 = trickle, p = 0.49〉, 〈charger-2 = off, p = 0.49〉, 〈charger-2 = broken, p = 0.02〉

These component modes are used within the CDA* algorithm of Livingstone to determine the

most likely mode estimates. Beginning with an empty agenda, CDA* would choose the most

likely assignment for each component in the system as this maximizes the probability function:

 switch = charger-1, charger-1 = trickle, charger-2 = trickle

CDA* then calls the satisfiability engine to test this candidate, and returns a single conflict,

which results in the following:

 ¬ [switch = charger-2 ∧ charger-1 = trickle]

Achieving Real-time Mode Estimation through Offline Compilation 91

In addition, the algorithm determines many more conflicts of the system and the assignments.

These are a few that are generated from the compilation process.

 ¬ [switch = charger-1 ∧ charger-2 = trickle]

 ¬ [charger-1 = trickle]

These conflicts focus the CDA* search for candidates and successors. The conflicts relay the

fact that it is infeasible for both the switch to be in the mode charger-2 and that the charger-1 be

in the trickle mode. Similar reasoning applies for the second conflict. In order to determine the

most likely candidate that resolves these conflicts, the CBFS performs a search by expanding the

conflicts above. The resultant expansion of the first conflict is shown below:

switch =
charger-1

charger-1
= full-ON

switch =
broken

{ }

charger-1
= broken

Figure 4-11 - Expansion of Conflicts in Livingstone

Choosing any assignment in this expansion resolves the first conflict. Subsequent expansions on

the remaining conflicts results in the following candidate, or successor:

 { switch = charger-1, charger-1 = full-on, charger-2 = off } with a probability of p = 0.238

This candidate is then tested again by the satisfiability engine for consistency with the system

model and the observations. If no more conflicts are generated as a result of this candidate, then

it is stored in the Result and the CBFS continues to generate mode estimates.

4.3.2.2 Livingstone Diagnosis and ME-CCA

The incremental generation of a diagnosis can be related back to the steps of ME-CCA mode

estimation outlined in Figure 4-8. The process of ME-CCA is a brute force approach to

generating mode estimates while tracking multiple trajectories, but can give no performance

guarantees since both transition enablement and consistency are exponential computations, in the

Achieving Real-time Mode Estimation through Offline Compilation 92

worst case. Livingstone leverages the conflict direction algorithms of GDE and Sherlock, and

simplifies the tracking of mode estimates to a single mode estimate to reduce the computations

necessary to compute mode estimates. The correspondence of Livingstone to the ME-CCA

algorithm is given below:

 Step 1:
a. ME-CCA extracts constraints, CMi

(t), from state s(t)
b. Livingstone extracts constraints, CMi

(t), from the previous mode estimate
 Step 2:

a. ME-CCA calculates all next states, sj
(t+1) using the transition function Ti(si → sj)

b. Livingstone calculate the reachable component modes, N(mik(t+1))
 Step 3:

a. ME-CCA calculates sj
(t+1) probabilities using posterior probabilities of si

(t)
b. Livingstone does not calculate this since only one previous mode estimate is tracked

 Step 4:
a. ME-CCA extracts the constraints CMi

(t+1) from the states sj
(t+1)

b. CBFS uses the constraints, C relating to the reachable component modes.
 Step 5:

a. ME-CCA prunes the states sj
(t+1) that are inconsistent with the observations, o(t+1) and

the constraints, CMi
(t+1)

b. Livingstone performs this step incrementally through the use of conflicts as described
in the CBFS algorithm.

 Step 6:
a. ME-CCA combines all states sj

(t+1) that are the same state
b. Livingstone does not calculate this since no mode estimate generated is identical to

another.

4.3.3 Analysis of Livingstone

The Livingstone engine was the first to incorporate transitions into the system model and use

them to perform mode estimation. Transitions give the ability to track behaviors over time and

diagnose intermittent failures. The price is that in order to determine if transitions are enabled,

full satisfiability must be performed. Livingstone avoided full satisfiability by restricting the

guards of the transitions to only the command and component mode assignments in the system.

However, transitions of component modes do not have to be restricted to these. A CCA allows

for the transitions to be expressed over any combination of attribute variables, which contain

control, component mode and intermediate variables. The CME engine allows for transitions to

be specified in this manner, but removes the need for full satisfiability by compiling the

Achieving Real-time Mode Estimation through Offline Compilation 93

transitions in an offline process. This enables CME to enhance the mode estimation approach of

Livingstone and track multiple mode estimates at each time step instead of just the most likely

mode estimate. This will enable CME to track complex behaviors of the system that evolve over

time. Chapter 5 presents the method employed by CME to compile transitions.

Achieving Real-time Mode Estimation through Offline Compilation 94

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 95

5 Compilation for Mode Estimation

5.1 Motivation for Compilation

Mission failures and the harsh environment of space are only two reasons that motivate the need

for autonomy and mode estimation. Processing power, system memory and time are tight

resources on-board a spacecraft. Additionally, the harsh environment of space requires a

minimization of risk and error in software processes. These challenges require that a fault

management system be able to determine system behavior in real time and minimize the

footprint in the system memory. To address the minimization of risk, the results of the fault

management engine must be made explicit to system engineers before operation of the system. A

human modeler must be able to inspect the diagnoses of the engine and insure that it is correct

with the system model. The engine developed in this research, Compiled Mode Estimation

(CME) addresses these concerns. CME extends the concepts of GDE, Sherlock and Livingstone

in order to improve mode estimation for spacecraft. CME gives the engineer the ability to

inspect the diagnoses and the accuracy of the system model through the process of compilation.

The compiled model enables CME to determine mode estimates in real time, in addition to

requiring a smaller onboard memory footprint. Finally, CME can determine mode estimates

more accurately than the Livingstone system by tracking multiple mode estimates over time.

Compiled Mode Estimation, uses a ‘divide and conquer’ approach, similar to GDE, with the key

difference that the divide step is performed at compile time, rather than at run-time. Recall that

GDE determines a diagnosis by dividing the diagnosis problem into sub-problems. The divide

step involves identifying discrepancies between predicted observations and the actual

Achieving Real-time Mode Estimation through Offline Compilation 96

observations, and then identifying the component modes involved in the prediction. The conquer

step requires choosing other component modes to remove all discrepancies between predicted

and actual observations. The compilation process performs the divide step of diagnosis by

identifying all potential conflicts within the system model. This results in the compiled

observation function, encoded as dissents, and the compiled transition function encoded as

compiled transitions. The steps yet to be developed are to use the dissents and compiled

transitions to obtain a diagnosis of the system, and develop the process to compile the transitions.

This chapter introduces the architecture and process of Compiled Mode Estimation through an

example and details the compilation stage of this process. Chapter 4 presented the method for

compiling component mode constraints. This chapter completes the development of compilation

by presenting the method to compile transitions in Section 5.6.2. To better understand the utility

of the compiled model, the architecture of CME is presented in Section 5.2 followed by an

example in Section 5.5 that demonstrates the online determination of mode estimates. The

algorithms and detail of CME are presented in Chapter 6, with the detailed implementation of

these algorithms given in Chapter 7.

5.2 Architecture

The process of Compiled Mode Estimation (CME) generates diagnoses that are consistent with

the observations collected and commands given up to time ‘t+1’ and the model. Compiled Mode

Estimation, using the architecture shown in Figure 5-1, relies on inputs of a ‘System Model’,

‘Observations’ and ‘Commands’, and outputs a set of ‘Current Mode Estimates’, representing the

diagnoses of the system. The ‘System Model’ adheres to the definition of Concurrent Constraint

Automata (CCA), given in Section 3.2. The ‘Observations’ are defined as an assignment to each

observation variable, xio ∈ Πo. The ‘Commands’ are defined similarly as an assignment to each

command variable, xic ∈ Πc. The output ‘Current Mode Estimates’ is the same as defined for the

GDE, Sherlock and Livingstone diagnostic systems, where a mode estimate assigns to each

component variable, xim ∈ Πm, a value from its domain, and these assignments resolve all

Achieving Real-time Mode Estimation through Offline Compilation 97

conflicts. A mode estimate has an associated probability, which indicates the likelihood of the

component mode assignments.

Compiled Mode Estimation

Offline Online

Compiled
Conflict

Recognition

Dynamic Mode
Estimate

Generation

Monitors

Transition
Compilation

Dissents

Discrete
Observations

Continuous
Observations

Compiled
Transitions

System
Model

Model
Compilation

Commands

Enabled
Transitions

Reachable
Current Modes

Current Mode
Estimates

Constituent
Diagnoses

Figure 5-1 - Compiled Mode Estimation Architecture

The inputs and outputs of CME are defined formally as follows.

() (){ }
() (){ }

(){ } () (){ }

System Model

Observations ,...,1 1

Commands ,...,1 1
() () ()Current Mode Estimates , where ,...,1 1

Concurrent Constraint Automata

x v x v x1o l no nl io on
x v x v x1c l nc nl ic cn

t t tS P S S x v x v x1m l nm nl im mi i i n

≡

≡ = = ∀ ∈ Π

≡ = = ∀ ∈ Π

≡ ≡ = = ∀ ∈ Π

()() () () satisfies all conflicts at time , and is the probability of t t tS t P S Si i i

Compiled Mode Estimation is divided into two processes. In the “offline” stage the system

model is compiled into ‘Dissents’ and ‘Compiled Transitions’. This maps the ‘System Model’,

expressed as a CCA, to a compiled concurrent automata (CMPCA), expressed using the

‘Dissents’ and ‘Compiled Transitions’. In the ‘online’ stage, CME uses the CMPCA, the

‘Observations’ and ‘Commands’ over the time period ‘t’ to ‘t+1’ to generate the ‘Current Mode

Estimates’ of the system.

5.3 Dissents

Recall that dissents are a compiled form of the observation function of Hidden Markov Models,

and represent the component mode constraints of a CCA. A dissent maps observations to a set of

Achieving Real-time Mode Estimation through Offline Compilation 98

component mode assignments that are infeasible, a conflict. As an example, consider the dissent

below from the NEAR Power Storage system.

()[] () ()[]bus voltage = nominal switch = charger-1 charger-1 = off⇒ ¬ ∧

Equation 5-1 – Example Dissent

This dissent expresses the observation ‘bus voltage = nominal’ and the link between the

infeasible component modes switch = charger-1and charger-1 = off. This inconsistency of

component mode assignments arises because if the incoming bus voltage is nominal, then the

charger must be either trickle charging or giving a full charge to the battery, otherwise, the

switch cannot be at that charger position. It follows then that the switch is either at charger-2 or

broken in some manner, or that the charger-1 is in trickle or full-on charge mode.

Dissents encode the relationship of observations and component mode assignments through the

logical implication connective. The process of generating dissents using the enumeration

algorithm is described in Section 2.4. The characteristics to note here are that the dissents are

comprised of information known in the antecedent (observations) and information that is

inconsistent, or that cause a conflict, in the consequent (component modes). This is exploited in

the online phase of CME to simplify the diagnosis process, which is demonstrated in Section 5.5.

5.4 Compiled Transitions

Compiled transitions encode the transition function of a Hidden Markov Model and represent the

component mode transitions of a CCA. They are compiled as specified by the transition

compilation process described in Section 5.6.2. A transition function specifies reachable

component modes from a previous state, and the compiled transitions encode the transition

function using only the component mode variables, xim, and the control variables, xic.

Intermediate variables, are not included in a compiled transition. Take as an example a compiled

transition from the NEAR Power Storage System of Chapter 1.

() ()[] ()battery = Full charger-1 = Trickle battery = Charging∧ ⇒

Equation 5-2 – Example Transition

Achieving Real-time Mode Estimation through Offline Compilation 99

Looking at Equation 5-2, recall that the charger-1 mode was not an input to the battery, but the

‘charger-current’ was an input. Since the ‘charger-current’ is not a direct observable it is

compiled away using the transition compilation process. The result of this compilation is to

replace the ‘charger-current’ with the mode of charger-1 that would entail the same assignment,

in this case replacing ‘charger-current = trickle’ with ‘charger-1 = trickle’.

In general, a compiled transition is represented as:

() ()t tMµ ∧

1p ≤
()()t

im ijx v= ()()1t
im ijx v +=

Figure 5-2 – General Component, Compiled Transition

In this generalized transition, note that the source and targets are assignments to a single mode

variable. The same variable is used in both assignments, but the value contained in the

assignments may or may not be the same, allowing for idle transitions. In order for a transition

to be taken, its source mode must be in the previous mode estimate, and its guard must be

satisfied, meaning that the assignments in the guard must be true. The ‘µ(t)’ represents the

commands, and ‘M(t)’ represents the component mode assignments at time ‘t’. This allows for

transitions of components to be conditioned on other components in the system. Finally, each

transition has an associated probability, capturing the probabilistic behavior of actual

components.

Notice that the compiled transitions are also expressed with assignments that are known at the

time of execution as opposed to assignments that have to be deduced, as was the case in

Livingstone. These include the previous commands, and the previous component modes at time

‘t’. This fact is exploited in the online mode estimation algorithms demonstrated in Section 5.5.

The formal definition of a compiled transition is.

Achieving Real-time Mode Estimation through Offline Compilation 100

() ()

()

()

1

1

TRUE |

...1

...1 , w

t ttransition antecedent implies consequent

tantecedent assignment guardim
tconsequent assignmentim

guard commands modes

commands assignment assignmentc nc

modes assignment assignmentm jm

+→

→ ∧

+ →

→ ∧

→ ∧ ∧

→ ∧ ∧

()
()

here j i

assignment x vim im ij

assignment x vic ijic

≠

→ =

→ =

Figure 5-3 - Definition of a Compiled Transition

This definition breaks the compiled transition into three distinct pieces, the source component

mode assignment, the guard or transition constraint, and the destination component mode

assignment. The source and destination component mode assignments are restricted to the same

component variable, xim. The guard is made up of any combination of command and component

mode variables. The only exception is that the ‘modes’ cannot contain the component mode

variable xim that is in the source and destination.

5.5 Online Mode Estimation at a Glance

The mapping of the compiled model to the current mode estimates is demonstrated using the

NEAR Power Storage system described in Chapter 1. Considering the observations ‘bus-voltage

= nominal’, ‘battery-voltage = nominal’, ‘battery-temperature = nominal’ and the initial mode

estimate ‘switch = charger-1’, ‘charger-1 = full-on’, ‘charger-2 = off’, and ‘battery =

charging’, the following is a subset of the dissents and transitions for the NEAR Power Storage

System. The full set of dissents and transitions are given in Appendix B, and the full example

for this set of observations and initial state is shown in Appendix C.
1. [] ⇒ ¬[SWITCH = STUCK-CHARGER-2 ∧ CHARGER-1 = FULL-ON]

2. [] ⇒ ¬[SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = FULL-ON]

3. [] ⇒ ¬[SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = TRICKLE]

Achieving Real-time Mode Estimation through Offline Compilation 101

4. [BATTERY-TEMPERATURE = NOMINAL] ⇒ ¬[BATTERY = FULL]

5. [BATTERY-VOLTAGE=NOMINAL] ⇒ ¬[BATTERY = DISCHARGING]

6. [BUS-VOLTAGE = NOMINAL] ⇒ ¬[SWITCH = CHARGER-1 ∧ CHARGER-1 = OFF]

7. [BUS-VOLTAGE = NOMINAL] ⇒ ¬[SWITCH = CHARGER-2 ∧ CHARGER-2 = TRICKLE]

…

Switch
FROM CHARGER-1 GUARD (NOT (CHARGER-1.MODE = BROKEN)) TO CHARGER-1

p = 0.9899)
FROM CHARGER-1 GUARD NIL TO STUCK-CHARGER-1

p = 0.01)

…
Charger-1
FROM FULL-ON GUARD (NOT (BATTERY-1.BATT-TEMP = HIGH)) TO FULL-ON

p = 0.89)
FROM FULL-ON GUARD NIL TO OFF

p = 0.1)

…
Charger-2
FROM OFF GUARD NIL TO OFF

p = 0.1)
FROM OFF GUARD NIL TO BROKEN

p = 0.01)

…
Battery
FROM CHARGING GUARD (CHARGER-1.MODE = FULL-ON) TO FULL

p = 0.99)
FROM CHARGING GUARD NIL TO DEAD

p = 0.001)

…
Figure 5-4 - Dissents and Compiled Transitions for NEAR Power Storage Example

The transitions above specify the source component mode assignment after “FROM”, and the

target after “TO”. The constraints on the transition are specified after the keyword “GUARD”,

where ‘NIL’ represents an empty constraint.

Using the observation, initial mode estimate and control action values, a subset of the dissents

and compiled transitions are used to determine the current mode estimates. This first step is

performed by the Compiled Conflict Recognition, which determines the dissents and compiled

transitions that pertain to the current observations, control actions and previous mode estimates.

These are mapped to a set of ‘Constituent Diagnoses’, ‘Reachable Component Modes’ and

Achieving Real-time Mode Estimation through Offline Compilation 102

‘Enabled Transitions’. From the example dissents shown in Figure 5-4, a subset of the

‘Constituent Diagnoses’ is:
1. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-1=TRICKLE ∨ CHARGER-1=OFF ∨

SWITCH=STUCK-CHARGER-1 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

2. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-2=TRICKLE ∨ CHARGER-2=OFF ∨

SWITCH=STUCK-CHARGER-2 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

4. [BATTERY = CHARGING ∨ BATTERY = DISCHARGING ∨ BATTERY = DEAD ∨ BATTERY=UNKNOWN]
7. [SWITCH=CHARGER-1 ∨ CHARGER-2=FULL-ON ∨ CHARGER-2=OFF ∨ SWITCH=STUCK-CHARGER-1 ∨

SWITCH=STUCK-CHARGER-2 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

The set of constituent diagnoses represent the feasible space of mode assignments that can be

chosen to satisfy each conflict. Each component mode assignment is referred to as a constituent

diagnosis of the conflict, and the set is referred to as the constituent diagnoses of the conflict. By

choosing component mode assignments mentioned in these constituent diagnoses, the mode

assignments then resolve the conflicts. A full diagnosis resolves a conflict if it contains at least

one of the constituent diagnoses of the conflict.

The compiled transitions further reduce the space of feasible component mode assignments by

determining the set of ‘reachable component mode assignments’. The reachable component

mode assignments represent those component modes that are the target modes of transitions from

the previous mode assignments at time ‘t’. Recall the introductory example where the initial

mode estimate and the transitions determined the possible mode assignments for each

component. The ‘reachable component modes’ represents this same set of component mode

assignments. For this example, the set of reachable component modes is shown in Figure 5-5.
Previous
State (St)

Charger-One

Full-On

Switch

Charger-1

Battery

Charging

Charger-Two

Off

Reachable Component
Modes (st+1)

Switch

Charger-1
Stuck-Charger-1
Stuck-Charger-2

Unknown

Charger-One

Off Full-On
Broken Unknown

Battery

Full
Dead

Unknown

Charger-Two

Off Trickle
Broken Unknown

Figure 5-5 - The Set of Reachable Component Modes

Achieving Real-time Mode Estimation through Offline Compilation 103

Not noted on this figure are the probabilities associated with each component mode. These are

shown in Appendix C with the full example. This set of component modes further reduces the

space by eliminating the ‘battery = discharging’ mode and the ‘switch = charger-2’ mode. This

set of component mode assignments is determined by Compiled Conflict Recognition by first

determining the set of ‘Enabled Transitions’ and then using the target modes of these enabled

transitions to create the list of ‘Reachable Component Modes’.

Having mapped the dissents and transitions to the ‘Constituent Diagnoses’, ‘Reachable

Component Modes’ and the ‘Enabled Transitions’, these are used in a modified version of

conflict-directed A* search [Williams, 2002] to determine mode estimates. This process is

similar to Livingstone’s process of generating kernel diagnoses. The difference is that the CME

process tracks an approximate belief state while Livingstone tracks the most likely trajectories.

The conflict-directed A* search is guided by the constituent diagnoses to determine the minimal

set of component mode assignments, with the added constraint of generating the most likely

mode estimate using the transition probabilities.

This is demonstrated using the example constituent diagnoses given above and the space of

reachable component modes shown in Figure 5-5. The full tree associated with this example is

detailed in Appendix C. From the first set of constituent diagnoses above, the search tree

expands to:

{ }

Switch =
CHARGER-1
p = 0.9899

Switch =
STUCK-

CHARGER-2
p = 0.01

Charger-1 =
OFF

p = 0.1

Switch =
STUCK-

CHARGER-1
p = 0.01

Switch =
UNKNOWN
p = 0.0001

Charger-1 =
UNKNOWN
p = 0.0001

Charger-1 =
BROKEN
p = 0.01

Figure 5-6 - Expansion of First Set of Constituent Diagnoses

The Dynamic Mode Estimate Generation procedure then chooses the most likely node from this

search tree. From the above search tree, the proper assignment to choose is ‘switch = charger-1’

with a likelihood of 0.9899. The next step of the algorithm is to determine which constituent

diagnoses this assignment satisfies, and choose a constituent diagnosis to expand from this node.

Achieving Real-time Mode Estimation through Offline Compilation 104

For instance, the component mode assignment switch = charger-1, satisfies constituent

diagnoses 2 and 7 listed above, as well as 1. The following figure shows the subsequent

expansion of the next constituent diagnosis from the node ‘switch = charger-1’.

{ }

Switch =
CHARGER-1
p = 0.9899

Switch =
STUCK-

CHARGER-2
p = 0.01

Charger-1 =
OFF

p = 0.1

Switch =
STUCK-

CHARGER-1
p = 0.01

Switch =
UNKNOWN
p = 0.0001

Charger-1 =
UNKNOWN
p = 0.0001

Charger-2 =
OFF

p = .09899

Charger-2 =
BROKEN

p = .009899

Charger-2 =
UNKNOWN
p = .9899E-4

Charger-1 =
BROKEN
p = 0.01

Charger-2 =
TRICKLE
p = 0.8809

Figure 5-7 - Expansion of the Next Set of Constituent Diagnoses

Dynamic Mode Estimate Generation would again choose the most likely node and expand

another constituent diagnosis. This process of expansion and choosing likely nodes describes an

conflict-directed A* search that is modified to use constituent diagnoses in the expansion phase.

A similar search is used in Livingstone to generate the most likely mode estimates. For this

example, the resultant mode estimate, as shown in Appendix C, is:

(switch = charger-1), (charger-1 = full-on), (charger-2 = off), (battery = charging)

with a probability of p = .04396.

The Dynamic Mode Estimate Generation process does not require a satisfiability test since the

set of conflicts is complete and the transitions are compiled. It is enough to use these constituent

diagnoses to reconstruct the full diagnosis of the system. Additionally, Dynamic Mode Estimate

Generation tracks multiple mode estimates at each time step. This is an improvement upon the

Livingstone system that tracked a single mode estimate at each time step.

This example grounds the mapping of the compiled model as dissents and compiled transitions,

to constituent diagnoses, reachable component modes, and enabled transitions. These outputs of

the Compiled Conflict Recognition are then used in the Dynamic Mode Estimate Generation

algorithm to produce the current mode estimates. The benefits of the enabled transitions are in

the Dynamic Mode Estimate Generation algorithm. They were not needed here since the

example assumed a single previous mode estimate.

Achieving Real-time Mode Estimation through Offline Compilation 105

5.6 Compilation

The number of trajectories that can be tracked by CCA mode estimation is limited by the

significant cost of determining the satisfiability of transition constraints and determining the

consistency with the observations. Compiled Mode Estimation increases the number of

trajectories tracked by removing the need for online satisfiability completely. The Mini-ME

engine developed the process of compiling modes to dissents, hence eliminating the need for full

satisfiability to test consistency with the observations. The remaining step is to develop an

algorithm to compile the transition guard constraints of the component modes, hence eliminating

the need for full satisfiability to determine if transition guards are entailed.

Recall that the Mini-ME engine, by compiling the component mode constraints, mapped the

observation variables to a set of conflicts, encoded as dissents. These dissents represent the

observation function of a Hidden Markov Model (HMM). The transition function of a Hidden

Markov Model is encoded using the compiled transitions. These two elements are essential in

Compiled Mode Estimation since they enable the use of standard belief update equations to

determine mode estimates. Full model compilation is then broken up into two steps, depicted

below:

Mode
Compilation

Transition
Compilation

Dissents

Compiled
Transitions

System
Model

Figure 5-8 - Steps of Model Compilation

This section develops the theory and algorithm for transition compilation. First, the definition of

the resultant compiled automata, Compiled Concurrent Automata (CMPCA), is given in section

5.6.1. Section 5.6.2 develops the compilation of transition constraints. The section concludes

with an example demonstrating transition compilation.

Achieving Real-time Mode Estimation through Offline Compilation 106

5.6.1 Compiled Concurrent Automata

A Compiled Concurrent Automata (CMPCA) describes an automaton compiled from a CCA.

The CCA is a compact encoding of a Hidden Markov Model, so the CMPCA is a compact

encoding of the compiled observation and transition functions of an HMM. A CMPCA is

encoded using the system variables, partitioned into observation, control and component mode

variables. A CMPCA is built up from the dissents and compiled transitions.

A CMPCA is the tuple , , , ,
Ci iCiD P PθΤΠ Τ :

 is a set of system variables where each ranges over a finite domain (x). is partitioned into

 sets of , , , , and , .m o c
 Mode varia

x

mode variables observable variables control variables

• Π ∈ Π Π

Π Π Π

D

i

{ }

{ }

bles, , represent the different modes of components in the system. The set m
 = | 1..mm
 Observable variables capture the values of the spacecraft sensors. The set = | 1..oo
 C

i n

i n

Π

Π Π =

Π Π =

∪

∪i

i { }ontrol variables provide the means to assert actions on the system. The set = | 1..cc i nΠ Π =∪

() () ()
() ()

 Dissents map observations to infeasible component mode assignments. This is the set , where

 elements of are of the form ...1 1 2 21 3

 .1 1 2 21 4

x v x v x vo l o l po plp

x v x vm l m l

•

= ∧ = = ⇒

¬ = ∧ =

D

D

().. where n and Ox v p q nqm qlq M∧ = ≤ ≤

() () ()

()
 : associates with each component mode a set of compiled i

 transitions . Each compiled transition function specifies an assignment, in i

 the next time step, '

D Dm i m

x v x vim ij im ij

t + 1

• Π × Π → Π

= =

&ΤΤΤΤ

ΤΤΤΤ

() ()
', given partial assignments to the variables in at time ' '. The constraints

t are defined using the set of variables , where

t
tMi µ

Π

Π ≡ ∧

&

&

() []

()

: 0,1 represents the probability associated with each transition

k T for each mode variable in the system.i

P x vim ijii
x vim ij

• Τ = → ℜΤ

=

() []: 0,1 denotes the probability that = is the initial mode.P D x vm im ijiθ• Π → ℜ

Equation 5-3 - Definition of a Compiled Concurrent Automata

The definition given here for the compiled concurrent automata follows from the definitions of

the constraint automata and concurrent constraint automata. This definition captures the

Achieving Real-time Mode Estimation through Offline Compilation 107

behaviors of the original model that are encoded in the dissents and compiled transitions. The

definition maintains the probabilities on the compiled transitions, and the probability on initial

modes. Each of these elements are used in the Compiled Mode Estimation algorithm developed

in Chapter 4.

5.6.2 Transition Compilation

The final piece to enable Compiled Mode Estimation is the compilation of the transitions

between component modes. Compiling transitions requires removing the need for full

satisfiability of transition constraints at the time of execution. By removing this exponential

computation, Compiled Mode Estimation is capable of increasing performance significantly.

Mode compilation has removed the need for satisfiability with respect to the mode constraints in

the system model. To complete the removal of satisfiability in determining mode estimates, the

transitions must be compiled.

Transition compilation is developed by first discussing the inputs and outputs of transition

compilation, followed by the development of the theory and resulting algorithm.

5.6.2.1 Inputs and Outputs

The compilation of transitions maps the system model to a set of compiled transitions. The

figure below depicts this:

Transition
Compilation

System
Model

Compiled
Transitions

Figure 5-9 - Inputs and Outputs of Transition Compilation

The system model taken as input to the transition compilation algorithm is defined as a CCA. In

particular the transition guards in the CCA are expressed over the control, component mode and

intermediate variables. In order to remove the need for a satisfiability engine, the guard is

Achieving Real-time Mode Estimation through Offline Compilation 108

replaced with an equivalent guard that contains only control and component mode variables, but

no intermediate variables. Transition compilation removes these from the transition guards.

The compiled transitions are expressed similar to un-compiled transitions, with a source and a

target component mode assignment, and a guard. The label is expressed using only the control

variables and the component mode variables. The compiled transition is represented graphically

in Figure 5-10.

() ()t tMµ ∧
1p ≤

()im ij t
x v= () 1im in tx v +=

Figure 5-10 - Depiction of a Compiled Transition

Note that the probability is carried over from the original un-compiled transition in the system

model.

5.6.2.2 Transition Compilation Algorithm

Generating compiled transitions requires maintaining equivalence with the original system model

transitions and associated guards. The compiled transition guard must convey the same

constraints as the original transition guard. To compile a transition for a particular source

component mode assignment, the algorithm determines all combinations of control and

component mode assignments that entail the original guard:

() ()|im ijx v cg g= ∧ Φ = ⇒

Equation 5-4 - Entailment Question for Transition Compilation

where cg represents the compiled guard and g represents the original transition guard. This

logical statement is equivalent to:

() are inconsistentim ijx v cl l= ∧ Φ ∧ ∧ ¬

This requires the transition compilation to individually compile the transitions for each

component mode assignment in the system model. The transition compilation algorithm must

search for combinations of component mode assignments involving only the control and

component mode assignments, and the negation of the assignments in the original label. The set

Achieving Real-time Mode Estimation through Offline Compilation 109

of possible component mode variables to search over is decreased by one due to the source

component mode assignment.

Transition compilation solves a similar constraint satisfaction problem as mode compilation.

Combinations of control and component mode assignments are generated and tested for

inconsistency with the system model. This is framed as an OPSAT problem so as to generate the

minimal set of compiled guards for the transitions. Transition compilation instantiates an

OPSAT problem for each component mode assignment and its associated transition guard from

the original system model. The set ‘x’ of the system variables are all variables within the system

model, except the source component mode assignment. The source component mode assignment

is added in as a constraint to the set of constraints Gx. This ensures that the source component

mode assignment appears in the compiled result. Additionally, the transition guard, g, is negated

and added as a constraint in the set of system model constraints, Gx of the OPSAT instantiation.

The set of variables, ‘y’, to be optimized are set to be the control and component mode variables

in the system. Finally, the optimization function is given as the length of the candidates

generated so that a candidate with fewer assignments has a better cost. Transition compilation

generates the minimal set of compiled guards by performing a subsumption check on a candidate

with the current list of compiled guards. Transition compilation as an OPSAT problem is stated

as follows:

()
() , ,

 , ,

 all variables in the system model, except the source of the transition
 the domains of the vector of variables,
 the mode constraints

OPSAT s y f CSP

CSP s x D Gx x

where
x xim

D xx
Gx

≡

≡

≡
≡
≡

"

"

"
"

 to be unsatisfied, including

 the control variables, , and component mode variables,
 minimize the length of assignments in a conflict

() an assignment to each

l x vim ij
y x xjm im
f

OPSAT s

µ
¬ ∧ =

≡ ≠
≡

→

"

 variable x"

Figure 5-11 - Transition Compilation as OPSAT

Transition compilation is framed as an OPSAT problem that uses the unsatisfiability engine to

determine inconsistency. Upon adding to the constraints, Gx, the negation of the original

Achieving Real-time Mode Estimation through Offline Compilation 110

transition label and the source component mode assignment, the compiled result will contain

these elements, along with the compiled label. The compiled result is given as:

()im ijx v g cg= ∧ ¬ ∧

Transition compilation extracts the labels, cg, from the compiled result and returns the compiled

transition including the original source and target component mode assignments, as well as the

transition probability. The resultant transition compilation algorithm is given below:

Transition-Compilation(Model-CCA)

1 create a list Tc to hold the compiled transitions
2 for each xim = vij in Model-CCA
3 for each Ti

k(xim = vij → xim = vin) ∈ Ti
4 extract guard g, probability p, and target xim = vin from Ti

k
5 add xim = vij and ¬g to constraints CM of Model-CCA
6 create a queue, Nodes, that maintains the candidates of the search tree
7 while Nodes is not empty
8 best-node = extract shortest from Nodes
9 if best-node is not subsumed by cl, then
10 if unsat(best-node, CM), then add best-node to cl
11 otherwise, extend best-node as follows:
12 for an xi = xic, xim in Model-CCA unassigned in best-node
13 for each vij ∈ D(xi)
14 new-node = best-node ∪ xi = vij
15 insert new-node in Nodes by length
16 end for
17 end if
18 end if
19 end while
20 remove the constraint ¬g from CM
21 extract cg from the compiled result
22 create compiled transition Tci using xim = vij, xim = vin, cg, and p
23 Tc = Tc ∪ Tci
24 return Tc

The transition compilation algorithm described above iterates over the different source

component mode assignments in the system model, performing several operations. First, the

algorithm extracts the label, probability and target mode assignment of a particular transition.

Then the source mode assignment and the negation of the label, l are added to the system

constraints, CM. The next phase is the “generate-and-test-loop” that determines the compiled

label, cl. The algorithm creates a queue of candidates and extracts the shortest candidate from

Achieving Real-time Mode Estimation through Offline Compilation 111

the queue. This candidate is first tested for subsumption with the existing compiled label. If the

candidate is not subsumed, then the candidate is tested for inconsistency using the constraints,

CM. If the candidate is inconsistent it is added to the compiled label. If it is not, then the

candidate is extended by expanding the tree using an unassigned control or component mode

variable. The expansion is restricted to not include the mode variable in the source of the

transition. Once the expansion occurs, the newly generated nodes are added to the queue in

order of length. The generation of candidates terminates only when the entire search tree has

been explored. Branches of the tree are pruned at the time of subsumption to increase efficiency.

Once the compiled label has been generated, the compiled transition is reconstructed using the

source and target mode assignment, extracting the compiled label from the compiled result, and

associating the original transition probability to this compiled transition. The algorithm exits

once all component mode assignments in the source of a transition have been used.

5.6.3 Transition Compilation Example

This section details an example to demonstrate the steps of the transition compilation algorithm.

Consider the NEAR Power storage system of Chapter 1. This example focuses on the interaction

of the battery and a charger in the system to compile the transitions of the battery. Figure 5-12

depicts the interactions between the charger and the battery.

Charger-current

Battery-
voltage

Battery-
temperature

Figure 5-12 - Diagram of the Charger and Battery of NEAR

Achieving Real-time Mode Estimation through Offline Compilation 112

The battery and the charger communicate using the dependent variable ‘charger-current’. The

battery uses this output in the transitions between component modes. For instance, the transition

between the modes ‘charging’ and ‘full’ is determined when the ‘charger-current = nominal’.

This value indicates that the charger has increased the current coming to the battery. However,

in order for the ‘charger-current’ to be ‘nominal’, the charger can only be in the ‘full-on’ mode.

The process of transition compilation determines the variable values that entail the same

information as the ‘charger-current’. For the battery, the following list of transitions must be

compiled. There is no other variable information associated with these transitions other than the

‘charger-current’.

1. source mode: (battery = full) destination mode: (battery = charging)

2. source mode: (battery = full) destination mode: (battery = discharging)

3. source mode: (battery = charging) destination mode: (battery = full)

4. source mode: (battery = charging) destination mode: (battery = discharging)

5. source mode: (battery = discharging) destination mode: (battery = charging)

 Associated transition labels:

1. l(full → charging) = {charger-current = nominal }

2. l(full → discharging) = { charger-current = zero }

3. l(charging → full) = { charger-current = trickle }

4. l(charging → discharging) = { charger-current = zero }

5. l(discharging → charging) = { charger-current = nominal }

The remaining transitions of the battery all have an empty label since they are fault transitions.

The full constraint automaton associated with the battery is given in Appendix A.

The transition compilation algorithm first identifies one of the battery modes. Assume that the

algorithm chooses the component mode battery = full and compiles its transitions. The

algorithm extracts the label, negates it and adds it to the constraints first. Assuming the

algorithm is compiling the first transition, the associated label is charger-current = nominal.

The algorithm is capable of searching over control variables and component modes. In this

example there are no control variables, and the available component modes are switch.mode, and

charger-1.mode.

Achieving Real-time Mode Estimation through Offline Compilation 113

Focusing on the component mode charger-1.mode, the transition compilation algorithm would

try different modes of this component to determine inconsistency. The possible component

mode assignments are { full-on, trickle, off, broken }. In testing the first assignment charger-1 =

full-on and the model constraints for inconsistency, the algorithm determines that this

combination is inconsistent. The component mode charger-1 = full-on is then determined to be

part of the compiled label, and added to cl. The algorithm proceeds to test the different modes of

components, now using the charger-1 = trickle component mode. By testing this component

mode, the algorithm predicts that charger-current = trickle for this component mode. However,

this value is consistent with the model constraints and the negated label, so the component mode

is not part of the compiled label. The transition compilation algorithm continues to try different

values of the charger-1.mode and the switch.mode. However, only the component mode

charger-1 = full-on is one that is inconsistent with the system model constraints. The algorithm

would not test any superset of this component mode as it is not allowed by subsumption.

The remaining transitions of the battery are compiled in a similar manner. The resulting

compiled transitions are then:

 1. battery = full → battery = charging l : charger-1 = full-on p = 0.95

 2. battery = full → battery = discharging l : charger-1 = off p = 0.04

 3. battery = charging → battery = full l : charger-1 = trickle p = 0.95

 4. battery = charging → battery = discharing l : charger-1 = off p = 0.04

 5. battery = discharing → battery = trickle l : charger-1 = full-on p = 0.99

This example completes the development of model compilation. The process of model

compilation has built upon the conflict-based algorithms of GDE, Sherlock, Livingstone and

Mini-ME. Compiled Mode Estimation extends Livingstone by tracking multiple trajectories of

mode estimates. It is enabled by the results of the compilation algorithms given in this chapter

and Chapter 2. The algorithms of Compiled Mode Estimation are described in Chapter 4 and

detailed in Chapter 5.

Achieving Real-time Mode Estimation through Offline Compilation 114

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 115

6 Online Mode Estimation

6.1 Architecture

This chapter develops the second portion of the CME architecture, the process of determining

online mode estimates of the spacecraft system. In the architecture shown in Figure 5-1, the

dissents and compiled transitions are taken as an input to the online phase and, together with the

observations and commands, are used to determine a set of current mode estimates that are

consistent with these inputs. The mode estimate is determined by using the conflicts in the

dissents to identify infeasible sets of component mode assignments. The compiled transitions are

used to encode probabilities of component mode assignments, enabling diagnostic discrimination

based on likelihood. Online-ME then tracks an approximated belief state over time by

determining the most likely transitions from mode estimates in the previous belief state to mode

estimates in the current belief state. Additionally, the current mode estimates must resolve all

conflicts associated with the current observations.

To perform the process of mode estimation, the ‘online’ portion of CME is divided into two

steps, shown in Figure 6-1. The first step, Compiled Conflict Recognition, determines the

dissents and transitions that relate to the current observations and commands. The next step is to

generate mode estimates using the reachable component modes determined from the compiled

transitions, and the conflicts transformed into constituent diagnoses. The Dynamic Mode

Estimate Generation process uses the transformed conflicts to guide the choice of component

mode assignments, using a modified conflict directed A* search.

Achieving Real-time Mode Estimation through Offline Compilation 116

Online

Compiled
Conflict

Recognition

Dynamice Mode
Estimate

Generation

Constituent
Diagnoses

Discrete
Observations

Current Mode
Estimates

Commands

Dissents

Compiled
Transitions

Enabled
Transitions

Reachable
Current Modes

Previous Mode
Estimates

Figure 6-1 - Inputs/Outputs of Online Mode Estimation

The following section describes more formally the inputs and outputs of the online compiled

mode estimation system, focusing on the ‘Constituent Diagnoses’, ‘Reachable Current Modes’,

‘Enabled Transitions’ and the ‘Previous Mode Estimates’. Sections 6.3 and 6.4 discuss the

‘Compiled Conflict Recognition’ and the ‘Dynamic Mode Estimate Generation’ algorithms,

respectively.

6.2 Inputs / Outputs

This section defines the inputs and outputs of the Online Mode Estimation process. All inputs to

Online Mode Estimation have been defined earlier. The definition of the compiled model has

been given previously in Section 5.6.1. This section then focuses on the definitions for the

‘Constituent Diagnoses’, the ‘Reachable Component Modes’ and the ‘Enabled Transitions’.

Building on the example in the section 5.5, the definitions of the internal inputs and outputs are:

() () (){ } Constituent Diagnoses ,..., where and , where 1 1 1
 is the number of components in the system. The assignment = is a constituent diagnosis that

 resolves the

cd x v x v x p n nm l pm plp im m
x vim ij

≡ = = ∈Π ≤i

 conflict used to determine the constituent diagnoses of .cd

Achieving Real-time Mode Estimation through Offline Compilation 117

()() () (){
() () }

t+1 Reachable Component Modes m , , , ,...,1 1 1 1 1 11 1 2 2

 , , ,1 1

 For each assignment, =

x v p x v pm l l m l l

x v p x v p xnm nl nl nm nl nln n im m

x vim

≡ = =

= = ∀ ∈ Π

i

, there is an associated probability, determined by the transition function,

 . A variable, , can have more than one assignment possible in the current time, 1 as well.

ij
k x ti imΤ +

() (){

}
 Enabled Transitions | , and the guard of is satisfied by a modeEN

 estimate at time 't'. The set, , is the union of all enabled transitions for all component variablesEN

k k kT x vi im iji i iΤ ≡ Τ Τ ∈ = Τ
Τ

i

 .xim m∈Π

Figure 6-2 - Input/Output Definitions for Online Compiled Mode Estimation

The constituent diagnoses, as described here, are a disjunction of component mode assignments,

represented as a set. By choosing an assignment in the constituent diagnoses of a conflict, the

conflict is then satisfied. The set of reachable component modes is a set of pairs consisting of a

component mode variable assignment, and an associated probability. This probability is derived

from the transition, Ti
k, that mentions the assignment, xim = vij, as a target. The list of reachable

component mode assignments is generated using the ‘enabled transitions’. These ‘enabled

transitions’ are the set of transitions whose source is in the previous mode estimates, and the

guard is satisfied by the set of commands and previous mode estimates.

The final internal element of the Online Mode Estimation process that has not been described is

the set of previous mode estimates. A mode estimate is defined as a pair 〈Si
(t), P(Si

(t)) 〉, where

Si
(t) denotes a state of the system, and P(Si

(t)) denotes the probability of that state. The set of

these mode estimates is defined as a belief state, B(t). The belief state must be computed at each

time step to track the trajectories of the system. Recall the trellis diagram of Figure 2-2, that

denoted sets of states at each time step, ‘t’. To calculate mode estimates, Compiled Mode

Estimation in effect creates a moving window over the trellis diagram. This belief state stored at

each time step is represented by the set of ‘previous mode estimates’ denoted on the architecture

in Figure 6-1.

Mentioned previously, this mode estimation engine is an improvement on the Livingstone engine

and its assumption of a single previous mode estimate. The Compiled Mode Estimation engine

Achieving Real-time Mode Estimation through Offline Compilation 118

tracks a set of mode estimates at each time step to improve accuracy and hold to the theory of

belief state update developed in Section 3.2 for Hidden Markov Models.

6.3 Compiled Conflict Recognition

This section describes the algorithm that maps the compiled model in the form of dissents and

compiled transitions to a set of constituent diagnoses, a set of enabled transitions and a set of

reachable component modes. Figure 6-3 denotes the architecture designed to map the compiled

model to the desired outputs.

Dissents

Compiled
Transitions

Compiled Conflict Recognition

Dissent Trigger

Transition Trigger

Discrete
Observations Commands

Constituent
Diagnosis
Generator

Constituent
Diagnoses

Enabled
Transitions

Reachable
Current Modes

Enabled
Dissents

Enabled
Transitions

Previous Mode
Estimates

Figure 6-3 - Processes within the Compiled Conflict Recognition

The role of the Dissent Trigger is to trigger the appropriate dissents from the full list of dissents

using the observations. Recall the form of a dissent, defined in Section 5.3. The examples show

that the antecedent of the implication, the observation information, is all that is necessary to

determine if a particular dissent needs to be enabled. For example, to determine if the dissent

below is enabled, the observation ‘bus-voltage = nominal’ must occur, then the dissent is

triggered and added to the list of enabled dissents, DEN.
[BUS-VOLTAGE=NOMINAL] ⇒ ¬[SWITCH=CHARGER-2 ∧ CHARGER-2 =TRICKLE]

The Transition Trigger performs the same operation, but for the set of ‘compiled transitions’.

Recall that a transition has a more complicated form involving component mode assignments as

Achieving Real-time Mode Estimation through Offline Compilation 119

well as control variable assignments. However, each of these are known at the time that the

mode estimates are determined. The process of triggering the proper compiled transitions is to

determine if all the fields of a transition are in the list of previous component mode assignments,

m(t), and commands, µ(t).

The final step to the Compiled Conflict Recognition algorithm is the Constituent Diagnosis

Generator. This algorithm maps the Enabled Dissents and Enabled Transitions to the output

‘Constituent Diagnoses, ‘Reachable Current Modes’ and ‘Enabled Transitions’. The Enabled

Dissents map to the Constituent Diagnoses, and the Enabled Transitions map to the Reachable

Current Modes.

6.3.1 Dissent and Transition Trigger Basics

The dissents and transitions are triggered incrementally, using the standard methods used for

rule-based and truth maintenance systems. In particular, the method employed is to maintain

counters on the dissents and transitions that maintain a record of the unsatisfied antecedents. In

the case of a dissent, there is a counter for the observations. For a transition, there are three

different counters, one for the component mode assignment in the source of the transition, one

for the control variable assignments and one for the component mode assignments in the

constraint of the transition.

For the purposes of example and simplicity, the triggering process is described using dissents.

The process is easily extended to transitions by simply repeating the process for the different

types of variables in the transition.

As an example, consider a subset of the dissents generated from the system described in Chapter

1, with the full list of dissents given in Appendix A. The counters of the dissents are shown on

the right, with the number of observations in the antecedent shown first, followed by the number

of observation variables not in the current list of observations. So, the 1:1 is interpreted to mean

that the dissent has one observation assignment, and that this assignment is not in the current list

Achieving Real-time Mode Estimation through Offline Compilation 120

of observations. A 1:0 would indicate that the dissent has one observation assignment, and that

the observation is in the current list of observations.
[] ⇒ ¬[SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = FULL-ON] 0:0

[] ⇒ ¬[SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = TRICKLE] 0:0

[] ⇒ ¬[SWITCH = CHARGER-2 ∧ CHARGER-1 = FULL-ON] 0:0

[] ⇒ ¬ [SWITCH = CHARGER-2 ∧ CHARGER-1 = TRICKLE] 0:0

[BATTERY-TEMPERATURE = HIGH] ⇒ ¬ [BATTERY = CHARGING] 1:1

[BATTERY-VOLTAGE = ZERO] ⇒ ¬ [BATTERY = CHARGING] 1:1

[BATTERY-TEMPERATURE = LOW] ⇒ ¬ [BATTERY = FULL] 1:1

[BATTERY-TEMPERATURE = NOMINAL] ⇒ ¬ [BATTERY = FULL] 1:1

[BATTERY-VOLTAGE = NOMINAL] ⇒ ¬ [BATTERY = DISCHARGING] 1:1

[BUS-VOLTAGE = LOW] ⇒ ¬ [SWITCH = CHARGER-1 ∧ CHARGER-1 = OFF] 1:1

[BUS-VOLTAGE = NOMINAL] ⇒ ¬[SWITCH = CHARGER-1 ∧ CHARGER-1 = OFF] 1:1

[BUS-VOLTAGE = ZERO] ⇒ ¬[SWITCH = STUCK-CHARGER-2 ∧ CHARGER-2 = FULL-ON] 1:1

[BUS-VOLTAGE = LOW] ⇒ ¬[SWITCH = STUCK-CHARGER-2 ∧ CHARGER-2 = OFF] 1:1

Figure 6-4 - Sampling of Dissents of the NEAR Power Storage System

A dissent is triggered by determining if each observable in the antecedent is in the current list of

observations. This is implemented efficiently using a counter discipline. Each dissent is given a

counter, initialized to the number of its antecedents. For each observation assignment in the

current list of observations, the counter for all dissents that mention that observation are

decremented. If the counter on a dissent goes to zero, then it is triggered. Given the observations:

 (bus-voltage = nominal), (battery-temperature = low), (battery-voltage = nominal)

These observations would trigger the following dissents since their counters go to zero.
[] ⇒ ¬[SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = FULL-ON] 0:0

[] ⇒ ¬[SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = TRICKLE] 0:0

[] ⇒ ¬[SWITCH = CHARGER-2 ∧ CHARGER-1 = FULL-ON] 0:0

[] ⇒ ¬[SWITCH = CHARGER-2 ∧ CHARGER-1 = TRICKLE] 0:0

[BATTERY-TEMPERATURE = LOW] ⇒ ¬[BATTERY = FULL] 1:0

[BATTERY-VOLTAGE = NOMINAL] ⇒ ¬[BATTERY = DISCHARGING] 1:0

[BUS-VOLTAGE = NOMINAL] ⇒ ¬[SWITCH = CHARGER-1 ∧ CHARGER-1 = OFF] 1:0

Figure 6-5 - Triggered Dissents from Observations

Achieving Real-time Mode Estimation through Offline Compilation 121

These dissents are placed in the list of enabled dissents, DEN. The triggering of the proper

dissents is performed with efficiency in mind since the Compiled Mode Estimation process is

designed for real time systems. There are two outstanding issues. First is to know not just when

to decrement the counts in a dissent or transition, but to also increment the counts. The second is

to avoid iterating through all of the dissents and transitions when decrementing and incrementing

the counts. The approach to handling these nuances is demonstrated using the above example.

A count is decremented or incremented only when an observation variable has changed its value

from time step ‘t’ to ‘t+1’. For example, if the bus-voltage had the value ‘nominal’ at time ‘t’,

and then ‘low’ at time ‘t+1’, then any dissents mentioning the assignments ‘bus-voltage =

nominal’ would be incremented, and those mentioning ‘bus-voltage = low’ must be

decremented. Knowing when a variable has changed values then requires maintaining a previous

truth value and a current truth value within the variable that signals if it has changed values.

Then the algorithm can increment and decrement the dissent counters based on the truth-values

of a particular assignment. To illustrate this, consider the two sets of observable values below.

 Previous: (bus-voltage = low), (battery-temperature =nominal), (battery-voltage = nominal)

 Current: (bus-voltage = nominal), (battery-temperature = low), (battery-voltage = nominal)

The truth values for these observations in the current time step would be:

Truth Value bus-voltage =
nominal

bus-voltage =
low

battery-
temperature =

low

battery-
temperature =

nominal

battery-
voltage =
nominal

Previous false true false true true
Current true false true false true

Table 6-1 - Example of Truth values for Assignments

From this table, the algorithm would then increment any dissent that mentions the observable

values (bus-voltage = low) and (battery-temperature = nominal), and decrement any dissents

mentioning (bus-voltage = nominal) and (battery-temperature =low). The algorithm would not

bother changing the counters for the observable variable ‘battery-voltage’ since its value did not

change from the previous time step to the next.

Achieving Real-time Mode Estimation through Offline Compilation 122

Finally, to update the dissents and transitions, it is inefficient to iterate through the complete list

in a brute force fashion. Instead, only the dissents that mention the changed observation

variables need to be updated. Assuming that an observation assignment has a link to the dissents

that mention it, all that is required is to iterate through the list of changed observations, and

increment or decrement the linked dissents.

This completes the description of the triggering process for dissents. This triggering is extended

to transitions by simply updating the truth-values for control variables in the same way as for

observation variables. For component mode variables, the truth-values are updated using the list

of ‘previous mode estimates’. The steps of the algorithm for triggering are described below.

1. Update truth values of

a. all xio ∈ Πo using the current set of observations

b. all xic ∈ Πc using the current set of commands

c. all xim ∈ Πm using the previous mode estimates

d. Create lists OBS, CMDS, and MODEPrev, that represent the lists of

assignments that have changed

2. For each xio = vij ∈ OBS

a. Increment or Decrement all OBS counters in dissents that mention xio = vij

b. Increment or Decrement all OBS counters in transitions that mention xio = vij

3. For each xic = vij ∈ CMDS

a. Increment or Decrement all CMD counters in transitions that mention xic = vij

4. For each xim = vij ∈ MODEPrev

a. Increment or Decrement all source mode counters in transitions that mention

xim = vij

b. Increment or Decrement all mode counters for constraints in transitions that

mention xim = vij

5. Determine which Dissents have ‘counter = 0’, and put them in DEN

6. Determine which Transitions have ‘counter = 0’ for the source, observations,

command and mode variable counters, and put them in TEN

Achieving Real-time Mode Estimation through Offline Compilation 123

The above steps outline the Dissent and Transition triggering algorithms, creating the lists of

enabled dissents, DEN, and enabled transitions, TEN. Along with the previous mode estimates,

these outputs are used in the Constituent Diagnosis Generator to determine the constituent

diagnoses, the reachable current modes and the enabled transitions.

6.3.2 Constituent Diagnosis Generator

The final step in Compiled Conflict Recognition is to use the enabled dissents and transitions

from the dissent and transition triggers to create a list of constituent diagnoses and the set of

reachable current modes. First the transformation of a dissent to a constituent diagnosis is

presented, followed by the mapping of enabled transitions and previous mode estimates to the set

of reachable current modes.

The consequent of a dissent represents an infeasible space of assignments. This can be turned

around to describe the remaining feasible assignments. The constituent diagnoses are generated

by logically transforming the conflict. The logical transformation is as follows.

() () () () ()

() () ()

1 1 2 2 1 1 2 2 3 31 2 1 1 2
 or by example

 = = =

x v x v x v x v x vo l o l m l m l m l

bus-voltage nominal switch charger-1 charger-1 off

 = ∧ = ⇒ = ∧ = ∧ =

 ⇒ ∧

¬

¬

Equation 6-1 - Logical Statement of a Dissent

 Assuming that this dissent has been enabled, then the consequent is a conflict:

() () ()
() ()[]

1 1 21 1 2 2 3 3

 or by example

= =

m l m l m lx v x v x v

switch charger - 1 charger - 1 off

¬ = ∧ = ∧ =

¬ ∧

In clausal form, these are equivalent to:

() () ()
() ()

1 1 21 1 2 2 3 3
 or by example

= =

m l m l m lx v x v x v

switch charger - 1 charger -1 off

¬ = ∨ ¬ = ∨ ¬ =

¬ ∨ ¬

These statements logically say that the variables cannot all have the values specified here. So,

the ‘switch’ cannot have the value charger-1 at the same time that the ‘charger-1’ is off.

Achieving Real-time Mode Estimation through Offline Compilation 124

However, the variables can take on any other value in its domain. So, the following is the logical

equivalent of the above statements.

() () () () () ()
() ()

2 2 3 1 3 31 1 2 2 2 2 3 3 3 3 1 1
 or by example

=

m l m l m l m l m l m lx v x v x v x v x v x v

switch charger - 2 charger -1= full - on charger -1= tri

= ∨ = ∨ = ∨ = ∨ = ∨ =

∨ ∨ () ...ckle ∨

Equation 6-2 - Final Statement after Logical Transformation

The clause here is represented by the constituent diagnoses, defined as a set of component mode

assignments in Equation 6-2. Each assignment in the set is referred to as a constituent diagnosis

of the conflict because each assignment resolves the conflict. The set of constituent diagnoses

represents a single conflict, so the ‘Constituent Diagnoses’ is represented as a set of sets of

constituent diagnoses of the form defined in Equation 6-2.

The final step of the Constituent Diagnosis Generator is to generate a list of reachable current

modes using the enabled transitions, and to determine the likelihood of these assignments. This

likelihood is taken from the transition probability specified on component mode assignments.

After determining the enabled transitions, the set of reachable component modes is generated

using the previous mode estimates and identifying the enabled transitions where a component

mode assignment in the source is also in the previous mode estimate. A component mode

assignment in the set of reachable component mode assignments is the target of these enabled

transitions. Figure 6-6 depicts the calculation.

S1
(t)

x1
m

x2
mS2

(t)

Sn
(t)

.

.

.
x1

m

x2
m

Time 't'
Previous Belief State

Time 't+1'
Reachable Current Modes

Figure 6-6 – Calculation of the Reachable Current Modes

Achieving Real-time Mode Estimation through Offline Compilation 125

The figure denotes different component mode assignments in the previous mode estimate Si
(t).

Shown are the transitions from two different components in each mode estimate, and from two

different mode estimates in the previous belief state. The Constituent Diagnosis Generator then

adds the component mode assignments on the right of the figure to the set of reachable current

modes. So, the component mode assignments for x1m and x2m that are reachable from the

previous mode estimates S1
(t) and Sn

(t) are added to the list of reachable current modes. There is

a complication related to overlap of the reachable component modes generated from different

previous mode estimates. In determining the reachable current modes, there is nothing to

preclude two previous mode estimates from having transitions to the same current mode. When

this occurs, the transitions are maintained separately. This enables the next phase of CME to

compute the current belief state using the individually stored transitions. The approach to

dealing with the overlap of reachable component modes is addressed in the detailed algorithms

of Chapter 7.

Similarly to Livingstone, the set of reachable component modes is computed from each previous

mode estimate using the enabled transitions. Each component mode assignment in the reachable

current modes represents the transition using the probability of the transition and the previous

mode estimate that is the source of this transition. The transition probability for the component

mode assignment is given by the following equation:

() () ()()()|k
i im ij

k t
im ij g i im ij ix v

P x v P P x v S
Τ =

= = Τ =i

Equation 6-3 - Probability Equation for Assignment Estimation

Here, the probability of a component mode assignment is dependent on the transition probability,

PT, and the guard probability, Pg. The guard probability is 1 or 0 depending on whether or not

the guard is satisfied. The notation for ‘Pg’ is necessary to note that the transition probability is

dependent on the entire state ‘Si
(t)’, including all, commands and previous component mode

assignments. The union of the pairs of component mode assignments and the associated

probabilities, 〈xim = vij, pij〉 where xim = vij is the target of the transition and pij represents the

probability calculated in Equation 6-3 comprise the set of reachable current modes.

Achieving Real-time Mode Estimation through Offline Compilation 126

The following are the steps of the algorithm for the Constituent Diagnosis Generator.

1. For each ‘dissent’ in the Enabled Dissents

a. Transform the consequent of each dissent to a constituent diagnosis, and place

in the set CD

2. For each ‘transition’ in the Enabled Transitions

a. Create a list of reachable current modes with the proper cost per Equation 6-3

3. Return the set CD, the Reachable Current Modes, and the Enabled Transitions

This completes the basic description of the Compiled Conflict Recognition algorithm design and

computations that map the compiled knowledge to the set of constituent diagnoses, reachable

current modes and the enabled transitions. The next step in the process of Online Mode

Estimation is to use these to determine consistent mode estimates.

6.4 Dynamic Mode Estimate Generation

The previous sections have laid the foundation for Compiled Mode Estimation. Section 6.1

presented the overall architecture, and Section 6.2 gave the definitions of the inputs and outputs

of the Online Mode Estimation process. Section 6.3 developed the approach to determining the

conflicts relevant to the current observations, and the set of component modes that are reachable

from the previous belief state. This section details the approach to tracking the approximate

belief state over time. The Dynamic Mode Estimate Generation (DMEG) algorithms track the

approximated belief state by enumerating the most likely transitions from mode estimates in the

previous belief state. DMEG uses the conflicts from the Compiled Conflict Recognition process

to ensure that mode estimates are consistent with the current observations.

The Dynamic Mode Estimate Generation algorithms are developed by first presenting the

architecture in Section 6.4.1 and then developing the general approach of DMEG in Section

6.4.2. Each phase of the DMEG process is described in Sections 6.4.3 through 6.4.5. The

chapter concludes with a mapping of CME to the ME-CCA algorithm described in Chapter 4.

Achieving Real-time Mode Estimation through Offline Compilation 127

6.4.1 Architecture

Dynamic Mode Estimate Generation (DMEG) is broken into three pieces, Generate, CDA* and

Rank. The architecture of DMEG is shown below in Figure 6-7. The description of the

Dynamic Mode Estimate Generation algorithm then proceeds by describing the Generate

algorithm, followed by Conflict-Directed A* Search, and then ending with the Rank algorithm.

Interleaved in each section are examples to demonstrate the steps of the algorithm and show the

mapping of inputs to outputs intuitively.

Dynamic Mode Estimate Generation

Generate
Constituent
Diagnoses

Rank

Conflict Directed
A* Search

Reachable
Component Modes'

Constituent Diagnoses

Likely Current
Mode Estimate

Likely
Current Mode

Estimate

Reachable
Current Modes

Enabled
Transitions

Current
Belief State

Previous Mode
Estimates

Figure 6-7 - Dynamic Mode Estimate Generation Architecture

The inputs of DMEG that have been previously defined include the constituent diagnoses, the

reachable current modes, the enabled transitions, and the set of previous mode estimates. This

section focuses on the remaining elements in the architecture, the ‘current belief state’, the

‘likely current mode estimate’, and the ‘reachable component modes*’.

The current belief state is defined as the set of pairs, 〈Si
(t+1), P•(Si

(t+1))〉, where each Si
(t+1) is

consistent with the observations at time ‘t+1’ and commands given between time ‘t’ and ‘t+1’

and P•(Si
(t+1)) is the posterior probability as given by the belief update equations. The ‘likely

current mode estimate’ is defined as the pair 〈Si
(t+1), •P(Si

(t+1))〉. However, •P(Si
(t+1)) denotes the

probability of the mode estimate from CDA*. This probability is updated to the posterior

probability, P•(Si
(t+1)), in the Rank algorithm. The state, Si

(t+1) that is returned from the CDA*

algorithm has the highest •P(Si
(t+1)) of all states remaining in the search.

Achieving Real-time Mode Estimation through Offline Compilation 128

The set of ‘reachable component modes’’ is a mapping of the set of ‘Reachable Current Modes’

to a reduced set of component mode assignments. The Generate algorithm determines this

reduced set of component mode assignments for the CDA* algorithm. The set is reduced to

denote that not all component mode assignments in the set of Reachable Component Modes

appear in the set of reachable component modes*.

6.4.2 Dynamic Mode Estimate Generation at a Glance

DMEG is tasked with determining a current belief state from a previous belief state, requiring

tracking multiple mode estimates at every time increment. The approach to mapping the

previous mode estimates to the current belief state is a ‘generate-and-rank’ approach where mode

estimates are generated using the ‘Generate’ and ‘CDA*’ algorithms, and then ranked by their

posteriori probability in the current belief state by the ‘Rank’ algorithm.

The combination of the Generate and CDA* algorithms can be related back to the Livingstone

approach for generating mode estimates. The Generate and CDA* algorithms combine to choose

likely transitions from previous mode estimates to current mode estimates. This is exactly the

Livingstone process of generating the likely mode estimate, without the need for satisfiability.

So, the Generate and CDA* algorithms are considered as multiple instances of Livingstone, one

for each previous mode estimate. Figure 6-8 demonstrates the desired calculation of Generate

and CDA*, with the approximated belief state maintained by the DMEG algorithm in white.

Previous Belief State
B(t)

S1
(t)

Sn
(t)

Si
(t)

S2
(t)

Sj
(t)

. . .

Current Belief State
B(t+1)

S1
(t+1)

S2
(t+1)

S3
(t+1)

Sn
(t+1)

Si
(t+1)

T11

T12

T23

Tii

Tin

Figure 6-8 - Depiction of Generate and CDA* Result

Achieving Real-time Mode Estimation through Offline Compilation 129

The Generate and CDA* algorithms choose the transitions, Tij, from mode estimates in the

approximated previous belief state to mode estimates in the approximated current belief state.

The approach is to choose a previous mode estimate from the previous belief state, and then

determine its most likely transition to a current mode estimate in the current belief state. The

resultant probability of a current mode estimate is then the probability of the transition multiplied

by the probability of the previous mode estimate. For instance, P(S3
(t+1)) = P(S2

(t)) • P(T23).

The next step of the DMEG algorithm is to determine the probability of a current mode estimate

from every previous mode estimate. This step is necessary to determine the posterior probability

of the current mode estimate given by the belief update equations (Equations 3-1). The Generate

and CDA* algorithms do not determine this. The calculation of the Rank algorithm is depicted

below:

Previous Belief State
B(t)

S1
(t)

Sn
(t)

Si
(t)

S2
(t)

Sj
(t)

. . .

Current Mode Estimates

S1
(t+1)

S2
(t+1)

S3
(t+1)

Sn
(t+1)

Si
(t+1)

Figure 6-9 - Calculation of the Rank Algorithm

Denoted here, is the determination of all possible transitions to a current mode estimate from the

previous belief state. The Rank algorithm determines the transitions from all Si
(t) to a particular

Sj
(t+1) to compute the posterior probability of Sj

(t+1), given by the standard belief update equations.

The posterior probability is then used to rank the current mode estimates in order of decreasing

probability.

Achieving Real-time Mode Estimation through Offline Compilation 130

To summarize, the DMEG process of ‘generate-and-rank’ performs the following three steps to

determine the current belief state:

6.1 Choose a previous mode estimate, Si
(t) in the previous belief state (Generate algorithm)

6.2 Choose the most likely transition from Si(t) to a current mode estimate, Sj(t+1) that

resolves all conflicts (CDA* algorithm)

6.3 Determine all transitions from the previous belief state to the current mode estimate

Sj(t+1) to calculate the posterior probability (Rank algorithm)

These three algorithms are the approach used within CME to calculate mode estimates and rank

them in the current belief state. The following sections detail these algorithms, beginning with

the Generate algorithm in Section 6.4.3, followed by the CDA* algorithm in 6.4.4 and concludes

with the Rank algorithm in Section 6.4.5.

6.4.3 Generate Algorithm

The first step of Dynamic Mode Estimate Generation is the ‘Generate’ algorithm. The main task

is to choose a previous mode estimate from the previous belief state. The goal of DMEG is to

generate current mode estimates in a best-first order. In order to generate a mode estimate, a

previous mode estimate is chosen, and then the most likely transition from the previous mode

estimate is chosen by the CDA* algorithm. However, in order to find the current mode

estimates, the Generate algorithm must choose previous mode estimates that lead to the likely

current mode estimates.

One approach is to choose the previous mode estimates that have a high probability in the

previous belief state. This could result in high probability current mode estimates. For instance

choosing state Si
(t) with probability 0.7 results in Sj

(t+1) with a transition probability of 0.7.

However, this could also result in low probability mode estimates. For example, choosing state

Si
(t) with probability 0.7 could result in transitioning to Sm

(t+1) with probability 0.01, but choosing

state Sk
(t) with probability 0.3 could result in transitioning to Sp

(t+1) with probability 0.7. A better

approach would be to have a metric that represents the likelihood of a previous mode estimate

Achieving Real-time Mode Estimation through Offline Compilation 131

transitioning to the current mode estimates. This metric could then be used as a selection

criterion to choose the previous mode estimates.

An additional role of the Generate algorithm is to pass along the set of constituent diagnoses to

the Conflict-Directed A* algorithm, and to pass along the likely current mode estimate from the

Conflict-Directed A* algorithm to the Rank algorithm. This section develops the approach the

Generate algorithm uses to select the previous mode estimate, with the detailed algorithm and

implementation details given in Chapter 7.

6.4.3.1 Generate Overview

Choosing the previous mode estimate is framed as a specialized tree search problem. The search

tree is depicted in Figure 6-10. From the root of the tree, the previous mode estimates are

expanded in the first level. From each previous mode estimate, Si
(t), a set of reachable current

mode estimates, Sj
(t+1) is expanded. The task of the Generate algorithm is to find a path from the

root to a leaf that is the most probable.

S1
(t)

{ }

S2
(t) S3

(t) Si
(t) SN

(t)... ...

S1
(t+1)

... ...

S2
(t+1) Sn

(t+1) S1
(t+1) Si

(t+1) Sn
(t+1)

Figure 6-10 - Search Tree of Previous Mode Estimates

Choosing a previous mode estimate requires a cost that represents the probability of transitioning

to reachable current mode estimates that have not been enumerated. The cost is associated with

nodes in the tree, and is defined using the probability of the current mode estimate, so that a high

cost represents a highly likely current mode estimate. If a previous mode estimate has generated

high probability current mode estimates, then choosing that previous mode estimate may

continue to generate high probability current mode estimates. Tree search offers a systematic

way to choose the high cost node after calculating the cost of the nodes.

Achieving Real-time Mode Estimation through Offline Compilation 132

The cost of a node is the sum of the probability of transitioning to a current mode estimate plus a

residual. The transition probability is a lower bound on the cost, while the residual is an upper

bound. The residual represents the probability of transitioning to any current mode estimate in

the belief state that has not been enumerated. The sum then represents the potential of the

previous mode estimate to transition to high probability current mode estimates.

To calculate the lower bound of the cost, recall step 2 of DMEG in Section 6.4.2 where CDA*

was used to choose the most likely transition from a previous mode estimate. This transition

probability is multiplied by the probability of the previous mode estimate to give the lower

bound. For instance, if the previous mode estimate S1
(t) has a probability of 0.5, and transitions

to S1-1
(t+1) with a probability of 0.3, then the lower bound is 0.15.

The residual or upper bound is calculated using the results of the Rank algorithm. The Rank

algorithm is called each time a current mode estimate is generated by the CDA* algorithm to

determine transitions to the current mode estimate from all previous mode estimates. This

probability is used to continually update the residual as current mode estimates are generated.

For instance, if the Rank algorithm updated the probability of S1
(t+1) to be 0.25, then the residual

is 1 – 0.25 = 0.75, assuming that S1
(t+1) is the only current mode estimate in the tree. Then the

cost of the node for S1
(t+1) under S1

(t) is then 0.9. The cost is only associated with the previous

mode estimate that was used to generate the current mode estimate.

The relevant formulae for calculating the cost of a node are given below. The first equation

denotes the probability of a current mode estimate using the transition probability determined by

CDA* and the probability of the previous mode estimate. The second value represents the

posterior probability of the current mode estimate. This is used to calculate the residual

probability remaining in the current belief state using the mode estimates that have been

generated. The final equation is the cost, denoted as the sum of equations 1 and 3.

Achieving Real-time Mode Estimation through Offline Compilation 133

()() ()() () ()

()() ()() () ()() ()

()()
() ()

()() ()()

1

1

1 1

1

1

1

1 1

 (from CDA* algorithm)

(from Rank Algorithm)

1

t tS Si j

t tS St t jkk

t t
j

t t
j i

tt
j k

S B

t
j

S B

t t
j j

P S P S P

P S P S P

R P S

Cost S P S R

+→

+→

+ +

+
Τ

• +
Τ

∈

• +

∈

+ +

= •

= •

= −

= +

∑

∑

Equation 6-4 - Cost Equations for the Generate Algorithm

The Generate algorithm chooses the node in the search tree with the highest cost, representing

the highest likely current mode estimate in the search tree. This guides the Generate algorithm to

choose the previous mode estimate that is the parent of this node. For instance, from the above

tree, if S2
(t+1) has the best cost of 0.9, the Generate algorithm chooses S1

(t) for CDA* to pick its

next most likely transition. This results in generating node S3
(t+1) with a cost of 0.6. Next,

suppose that this cost is less than the cost of node S4-1
(t+1). The Generate algorithm would then

choose S4
(t) for CDA* to pick its next most likely transition.

A consequence of choosing a previous mode estimate is that now, not all component mode

assignments in the set of Reachable Current Modes are necessarily reachable from Si
(t). Recall

Figure 6-6 that determined the Reachable Current Modes from all previous mode estimates as a

union. The set of reachable component modes from any one previous mode estimate is a subset

of this union. The component mode assignments that are not reachable from a previous mode

estimate must be removed from the set of Reachable Current Modes. These are now stored in

the set of ‘reachable component modes’’. Consider the example mode estimates:

 S1
(t): (switch = charger-1), (charger-1 = trickle), (charger-2 = off), (battery = charging)

with P(S1
(t)) = 0.9

 S2
(t): (switch = stuck-charger-1), (charger-1 = trickle), (charger-2 = off), (battery = charging)

with P(S2
(t)) = 0.1

The set of ‘Reachable Current Modes’ for these two mode estimates is then:

 (switch = charger-1), (switch = stuck-charger-1), (switch = stuck-charger-2),

 (switch = broken), (switch = unknown)

Achieving Real-time Mode Estimation through Offline Compilation 134

Only the switch modes are shown, as the rest of the reachable component modes would be the

same. The set of Reachable Current Modes contains more component modes than are reachable

from S2
(t). For instance, the component mode (switch – charger-1) is not reachable from the

failure mode (switch = stuck-charger-1). The Generate algorithm would then reduce the set of

mode assignments for the switch to (switch = stuck-charger-1) and (switch = unknown) for

mode estimate S2
(t).

These are the key steps that enable DMEG, and CME, to track the approximated belief state over

time. The Generate algorithm, by choosing a previous mode estimate, enables the CDA*

algorithm to choose the most likely transition from the previous mode estimate. The Generate

algorithm is demonstrated through a simple example in the next section.

6.4.3.2 Generate Algorithm Example

The example in Figure 6-11 denotes a set of previous mode estimates, the transitions, and the

current mode estimates. The probabilities associated with the previous mode estimates are

shown to the left of the diagram, the transition probability is noted on the arc, and the probability

of the current mode estimates are noted to the right of the figure. The current mode estimate

probability was calculated using the standard belief update equation, which simplifies to the

following for this example.
()() ()()

1

1
jiS St t

t t
j iP S P S Pτ

→ +

+ = •

Equation 6-5 - Calculation of Current State Probability

For example, the first state, S1
(t+1) is calculated using S1

(t) and S2
(t). The probability of state S1

(t+1)

is then 0.5 × 1.0 + 0.3 × 0.4 = 0.62. The previous belief state, B(t) is ordered by decreasing

probability, and the current belief state, B(t+1) is not ordered in any particular manner.

Achieving Real-time Mode Estimation through Offline Compilation 135

S1
(t) S1

(t+1)1.0

0.4

0.35

0.7

0.3

0.4

0.5

0.3

0.15

0.05

0.25

0.6

0.62

0.0375

0.24

0.0875

0.015

B(t) B(t+1)

S2
(t)

S3
(t)

S4
(t)

S2
(t+1)

S3
(t+1)

S4
(t+1)

S5
(t+1)

Figure 6-11 - Example of State Transitions for the Generate Algorithm

The previous mode estimates are used to expand the first level of the search tree in the Generate

algorithm. Initially the tree is ordered according to the posterior probability of the previous

mode estimate, depicted in Figure 6-12.

S1
(t)

{ }

S2
(t) S3

(t) S4
(t)

Figure 6-12 - Initial Ordering of the Search Tree in the Generate Algorithm

The Generate algorithm begins by choosing the most likely previous mode estimate, S1
(t) in this

case, and chooses its most likely transition. This results in generating the mode estimate S1
(t+1)

with a P(T11) = 0.6. The Rank algorithm then determines the posterior probability of the mode

estimate to be 0.39, as shown in Figure 6-11. The Generate algorithm then calculates the

residual value, R = 1 – 0.62 = 0.38. The resulting cost of the node S1
(t+1) in the search tree is C =

P(S1
(t+1)) + R = 0.50 + 0.38 = 0.88. The search tree that results from this first iteration of the

Generate algorithm is:

Achieving Real-time Mode Estimation through Offline Compilation 136

S1
(t)

{ }

S2
(t) S3

(t) S4
(t)

S1
(t+1)

L = 0.88

Figure 6-13 - Search Tree after 1st Iteration of the Generate Algorithm

The Generate algorithm then chooses S2
(t) as the previous mode estimate to generate its most

likely transition, not S1
(t). The Generate algorithm first generates the most likely transition from

each mode estimate in the approximated previous belief state so that the search is not biased

towards highly likely previous mode estimates. The result of choosing S2
(t) is to choose its most

likely transition, which results in generating S3
(t+1). This mode estimate is then ranked to give the

posterior probability 0.24. The Generate algorithm then uses this value to update the residual to

R = 1 – 0.62 – 0.24 = 0.14. The cost of the nodes are updated to obtain the search tree:

S1
(t)

{ }

S2
(t) S3

(t) S4
(t)

S1
(t+1)

L = 0.64
S3

(t+1)

L = 0.38

Figure 6-14 - Search Tree after 2nd Iteration of the Generate Algorithm

The Generate algorithm then proceeds to select the previous mode estimate S3
(t) to generate its

most likely current mode estimate. This results in CDA* generating S3
(t+1) by taking the most

likely transition P(T33) = 0.4. However, this mode estimate already exists in the current belief

state, so the Generate algorithm only updates the cost of S3
(t) to obtain C = R + P(S3

(t+1)) = 0.14 +

0.06 = 0.2. The resulting search tree is then:

Achieving Real-time Mode Estimation through Offline Compilation 137

S1
(t)

{ }

S2
(t) S3

(t) S4
(t)

S1
(t+1)

L = 0.64
S3

(t+1)

L = 0.38 L = 0.20

Figure 6-15 - Search Tree after 3rd Iteration of the Generate Algorithm

The Generate algorithm then proceeds to choose the previous mode estimate S4
(t) to generate the

next current mode estimate. The result of choosing this mode estimate is to generate S4
(t+1) by

choosing P(T44) = 0.7. The posterior probability of S4
(t+1) is updated by the Rank algorithm to

obtain 0.0875. The Generate algorithm then updates the residual to obtain R = 1 – 0.62 – 0.24 –

0.0875 = 0.0525. The cost of the new node is then C = P(S4
(t+1)) + R = 0.035 + 0.0525 = 0.0875.

The remaining nodes in the search tree are also updated to obtain:

S1
(t)

{ }

S2
(t) S3

(t) S4
(t)

S1
(t+1)

L = 0.5525
S3

(t+1)

L = 0.2325
S4

(t+1)

L = 0.0875L = 0.1125

Figure 6-16 - Search Tree after 4th Iteration of the Generate Algorithm

The Generate algorithm then chooses the node with the highest cost to determine another

consistent mode estimate. From Figure 6-16, the cost of S1
(t+1) is the highest, so the Generate

algorithm chooses S1
(t). The result of choosing this does not generate a new current mode

estimate since there is only one consistent current mode estimate from S1
(t) in Figure 6-11. The

Generate algorithm then chooses the node with the next highest cost, in this case S2
(t). However,

in choosing the most likely transition from S2
(t) results in P(T21) = 0.4. However, this transition

results in generating S1
(t+1), which is in the current belief state. The Generate algorithm then only

updates the cost of this node to C = P(S1
(t+1)) + R = 0.12 + 0.0525 = 0.1725. The tree is updated

to obtain:

Achieving Real-time Mode Estimation through Offline Compilation 138

S1
(t)

{ }

S2
(t) S3

(t) S4
(t)

S4
(t+1)

L = 0.0875L = 0.1125L = 0.1725

Figure 6-17 - Search Tree after 5th Iteration of the Generate Algorithm

The resulting tree no longer contains a link to the previous mode estimate S1
(t+1) because no more

transitions to current mode estimates exists. The resulting search tree causes the Generate

algorithm to choose S2
(t) as the highest cost node. When attempting to choose another likely

transition, CDA* determines that there are no more consistent mode estimates from S2
(t). The

result is to remove S2
(t) as a branch in the search tree. The Generate algorithm then chooses S3

(t)

as the highest cost node and determines its most likely transition. This results in choosing the

transition T34 and generating S4
(t+1). However, this current mode estimate has already been

generated by S4
(t). The Generate algorithm then updates the cost of S3

(t) to obtain C = P(S4
(t+1)) +

R = 0.0525 + 0.0525 = 0.105. The resulting search tree is shown below.

S1
(t)

{ }

S2
(t) S3

(t) S4
(t)

S4
(t+1)

L = 0.0875L = 0.105

Figure 6-18 - Search Tree after 6th Iteration of the Generate Algorithm

The Generate algorithm again determines the node with the highest cost value, which is S3
(t)

again. The result of choosing its next most likely transition, T32 results in generating the current

mode estimate S2
(t+1). The Rank algorithm then determines the posterior probability of this mode

estimate to be P(S2
(t+1)) = 0.0375. The Generate algorithm then proceeds to update the residual

value, resulting in R = 1 – 0.62 – 0.24 – 0.0875 – 0.0375 = 0.015. The node associated with S3
(t)

Achieving Real-time Mode Estimation through Offline Compilation 139

and S4
(t) are updated to obtain C = 0.0375 + 0.015 = 0.0525 and C = 0.035 + 0.015 = 0.0.05,

respectively. The search tree is updated to obtain:

S1
(t)

{ }

S2
(t) S3

(t) S4
(t)

S2
(t+1)

L = 0.0525
S4

(t+1)

L = 0.05

Figure 6-19 - Search Tree after 7th Iteration of the Generate Algorithm

The Generate algorithm determines that the highest cost mode estimate is again S3
(t). Upon

determining a current mode estimate from S3
(t) results in CDA* discovering that there are no

more transitions to consistent current mode estimates from S3
(t). As a result, the Generate

algorithm removes S3
(t) from the tree, leaving only S4

(t) . By choosing S4
(t), the CDA* identifies

that S5
(t+1) is the target of the most likely transition T45. The Rank algorithm then computes the

posterior probability of S5
(t+1) = 0.015, as shown in Figure 6-11. The Generate algorithm then

updates the residual to obtain R = 1 – 0.62 – 0.24 – 0.0875 – 0.0375 – 0.015 = 0.0. The search

tree is updated to obtain:

S1
(t)

{ }

S2
(t) S3

(t) S4
(t)

S5
(t+1)

L = 0.015

Figure 6-20 - Search Tree after 8th Iteration of the Generate Algorithm

The Generate algorithm then is only left to choose S4
(t). Upon attempting to determine its next

most likely transition the CDA* cannot identify another consistent mode estimate from S4
(t).

Without a new consistent mode estimate, the Generate algorithm removes S4
(t) from the search

tree. There are no more nodes to explore in the tree, causing the algorithm to exit.

Achieving Real-time Mode Estimation through Offline Compilation 140

The example above demonstrates the steps of the Generate algorithm and its process of choosing

a previous mode estimate by exploring the search tree. The Generate algorithm expands the

most likely transition under each previous mode estimate first. This design choice enables the

algorithm to track less likely trajectories of the system. This is beneficial since only the

approximate belief state is tracked, so a less likely mode estimate may prove to be more likely in

the future. Another characteristic of the Generate algorithm is that under each previous mode

estimate, only a single node is maintained that represents the most recently generated current

mode estimate from the previous mode estimate. This is done to reflect the likelihood of the

remaining current mode estimates that are targets of the previous mode estimate. For instance,

S1
(t) has a high likelihood due to the high posterior probability of the current mode estimate

S1
(t+1). It stands to reason that S1

(t) would produce more high probability mode estimates. So, the

cost maintained for each node is designed to reflect this. Other methods for calculating the

residual and updating the cost of nodes are discussed in Future Work.

6.4.3.3 Generate Algorithm

From the example above, an algorithm is extracted to perform these same steps. The full detail

of the Generate Algorithm is given in Chapter 7. The following lists the steps of the algorithm.

1. Choose the highest cost node from the search tree. Nodes represent the current mode

estimates

2. Choose the previous mode estimate, Si
(t), associated with the node.

3. Choose the most likely transition from Si
(t) using CDA*, giving a mode estimate,

Sj
(t+1) that satisfies all conflicts

4. Calculate the posterior probability of Sj
(t+1) in the Current Belief state, B(t+1) using the

Rank algorithm

5. Update the residual value, R, as described in the example above

6. Update the leaves in the tree, one for each previous mode estimate

Notice in step 6 that there is one branch maintained for each previous mode estimate. Any

consistent mode estimates that have already been generated from a previous mode estimate are

not considered. The cost is designed to reflect the likelihood of the remaining mode estimates

Achieving Real-time Mode Estimation through Offline Compilation 141

that could be generated from a previous mode estimate. The algorithm then only needs to

consider the most recently generated branch from a previous mode estimate. Recall the basic

premise of this algorithm was to choose a previous mode estimate until the likelihood of its most

recently generated current mode estimate is lower than another previous mode estimate’s most

recently generated current mode estimate. In the example above, the algorithm chose ‘S3
(t)’ over

‘S4
(t)’ when its most recently generated mode estimate had a higher likelihood than the one

generated from ‘S4
(t)’ (L(S2

(t+1)) = 0.0525 vs. L(S4
(t+1)) = 0.050).

The generate algorithm adheres to A* search by using an optimistic estimate to guide the

ordering of nodes. The optimistic estimate is achieved through the use of the ‘residual’

probability to overestimate the true probability of a mode estimate. This overestimate guides the

choice of a previous mode estimate to generate a current mode estimate. However, the search

tree is not explored to completion, meaning that not all consistent current mode estimates are

generated. The number of consistent current mode estimates is exponential, resulting in too

many to track and calculate at each time increment. For instance, in the NEAR Power System,

there are 410 states (~ 1 million) states. To avoid this exponential search, the Generate algorithm

uses halting conditions to stop the search. These conditions are detailed in Chapter 5.

The Generate algorithm makes use of other algorithms as well. In the steps of the algorithm

above, the Conflict-Directed A* algorithm is used to generate consistent current mode estimates,

and the Rank algorithm is used to determine the posterior probability of a mode estimate. These

algorithms are detailed in sections 6.4.4 and 6.4.5, respectively.

6.4.4 Conflict-Directed A*

GDE, Sherlock and Livingstone all relied on the theory of conflict-directed A* search to solve

the constraint satisfaction problem posed by model-based diagnosis. GDE and Sherlock used a

modified A* search to determine diagnoses, while Livingstone used a modified A* search called

Conflict Directed A* (CDA*) [Williams, 2002]. The search engine for Compiled Mode

Estimation also uses conflict-directed A* search to solve the constraint satisfaction problem. In

Compiled-ME, the constraints are represented by the set of dissents triggered by the Dissent

Achieving Real-time Mode Estimation through Offline Compilation 142

Trigger. The role of the Conflict-Directed A* (DDA*) algorithm is to determine a set of

component mode assignments that satisfy the conflicts encoded in the triggered dissents and that

mode estimate generated are optimal solutions. CDA* offers fundamental theory to guarantee

that solutions generated are optimal [Williams, 2002] and that the search guarantees

systematicity [Ragno, 2002]

This section presents the formulation of Conflict Directed A* as a search, showing how the

algorithm adheres to the theory of A* search. The heuristics for the A* search are presented

first, followed by a description of the CDA* algorithm in Section 6.4.4.2. Section 6.4.4.3 then

presents the algorithm, and the section ends with an example. The full algorithm is presented in

Chapter 5.

6.4.4.1 CDA* Heuristics

Heuristics are the key to performing search. In order to gain the guarantees afforded by an A*

search, the heuristics used must satisfy certain properties. The general equation for the A*

search heuristic is represented in the following equation, from [Russell, 1995].

() () ()f n g n h n= +

Equation 6-6 – A* Heuristic Equation

The above equation represents the uniform cost heuristic, g(n), and the greedy cost heuristic,

h(n). The uniform cost heuristic represents the best cost from the root of the tree to the node ‘n’.

The greedy cost heuristic is a value representing the best cost to the goal from the node ‘n’.

Specific equations for these heuristics are dependent on the purpose and application of the search

problem. In the case of mode estimation, the goal of the search is an assignment to each

component mode variable in the system that is consistent with the system model and

observations. Additionally, this set of component mode assignments maximizes the probability

of each component mode variable. The search represents sets of assignments as paths through

the search tree, linked by the branches. Recall from the development of the Compiled Conflict

Recognition and Generate algorithms that the component mode assignments in the constituent

diagnoses each have an associated cost, set to the transition probability. The search heuristic for

Achieving Real-time Mode Estimation through Offline Compilation 143

mode estimation uses these probabilities to determine the likelihood of sets of component mode

assignments. The CDA* search heuristic is based upon the same equation that is used in belief

update for CCAs, shown below.

()() ()

() ()1

1
it

i ij i

t
i i ij

x v S

P S P x v
+

+

= ∈

= =∏Τ ΤΤ ΤΤ ΤΤ Τ

Equation 6-7 - CDA* Equation for Search Heuristics

As from belief update for CCAs, the probability of a mode estimate is determined from the

probability of the transitions from a previous mode estimate to a current mode estimate. To note,

this equation assumes that transitions between component mode assignments are independent of

other components in the system. Since the goal of CDA* is to maximize the probability of

Equation 6-7, if the search maximizes the probability of the individual component mode

assignments (xim = vij), then this ensures that the highest estimate possible for the mode estimate

is used. Using this, expressions for g and h are determined as follows.

() ()
()

() ()()max
im ij

im

im ij
x v Node

im ij
x Node

g n P x v

h n P x v
= ∈

∉

≡ =

≡ =

∏

∏

ΤΤΤΤ

Equation 6-8 - CDA* Search Heuristics Defined

The above equations state in notation the following. The uniform cost heuristic is the probability

of the assignments from the tree root to the node. This gives the lower bound on the probability

of a node. The heuristic, h(n), states that for all variables ‘xim’ not currently assigned a value in

the ‘node’, choose its highest probability assignment ‘vij’ as the desired value. Then take the

product of the probabilities of the assignments, P((xim = vij)). This, along with g(n) gives an

upper bound on the probability of a node and includes an assignment to each component in the

system. Take as an example the system described in Chapter 1.

Achieving Real-time Mode Estimation through Offline Compilation 144

() ()[]
() () ()
() () ()

 : = =
 = =

 = =

Node switch Charger -1 charger - 1 Trickle
g Node P switch Charger -1 P charger -1 Trickle
h Node P charger - 2 Off P battery Charging

=
=

i
i

Figure 6-21 - Example Cost Calculation for a Node

The heuristic equations shown here are correct and adhere to the restrictions of heuristics for A*

search. The g(n) equation properly estimates the cost of a node from the root to a leaf in the

tree, and the heuristic, h(n) gives the desired over-estimate of the cost of the node to the goal.

The heuristic is formulated to give the highest possible probability of the assignments in the

node.

6.4.4.2 Conflict Direction and Systematicity

The CDA* algorithm relies on the input constituent diagnoses and the set of reachable

component modes to enable the expansion of the search tree. At each level of the search tree, a

set of constituent diagnoses is expanded. A set of constituent diagnoses corresponds one to one

with each conflict, and choosing a component mode assignment from the constituent diagnoses

resolves the conflict. The A* search is then conflict directed in the sense that the constituent

diagnoses for a particular conflict are used to expand the nodes in the search tree. Recall from

the example earlier in this chapter where the nodes expanded represented component mode

assignments. The example expansion is given below.

{ }

Switch =
CHARGER-1
p = 0.9899

Switch =
STUCK-

CHARGER-2
p = 0.01

Charger-1 =
OFF

p = 0.1

Switch =
STUCK-

CHARGER-1
p = 0.01

Switch =
UNKNOWN
p = 0.0001

Charger-1 =
UNKNOWN
p = 0.0001

Charger-1 =
BROKEN
p = 0.01

Charger-2 =
TRICKLE

p =0.08899

Charger-2 =
OFF

p =0.01

Switch =
STUCK-

CHARGER-2
p =0.001

Switch =
UNKNOWN

p = 1E-5

Charger-2 =
UNKNOWN

p = 1E-5

Switch =
CHARGER-1
p = 0.09899

Figure 6-22 - Dissent Expansion from NEAR Power Storage System (Appendix C)

Achieving Real-time Mode Estimation through Offline Compilation 145

Figure 6-22 shows the expansion of the first constituent diagnosis of the example in Appendix C.

The CDA* algorithm, by choosing the constituent diagnosis charger-1 = off, has satisfied the

conflict associated with these constituent diagnoses. The next step of the CDA* algorithm is to

determine other conflicts that this same assignment would satisfy. This requires determining if

the constituent diagnosis charger-1 = off appears in other sets of constituent diagnoses triggered

from Compiled Conflict Recognition. If it does appear as a constituent diagnosis, then the

constituent diagnoses do not need to be expanded under the branch. As an example, the

constituent diagnosis charger-1 = off also satisfies the second conflict as it appears in the second

set of constituent diagnoses. The relevant conflicts and constituent diagnoses are shown below.

Conflicts:
1. ¬ [SWITCH = STUCK-CHARGER-2 ∧ CHARGER-1 = FULL-ON]

2. ¬ [SWITCH = STUCK-CHARGER-2 ∧ CHARGER-1 = TRICKLE]

3. ¬ [SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = FULL-ON]

Corresponding sets of constituent diagnoses:
1. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-1=TRICKLE ∨ CHARGER-1=OFF ∨

SWITCH=STUCK-CHARGER-1 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

2. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-1=FULL-ON ∨ CHARGER-1=OFF ∨

SWITCH=STUCK-CHARGER-1 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

3. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-2=TRICKLE ∨ CHARGER-2=OFF ∨

SWITCH=STUCK-CHARGER-2 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

So, the CDA* algorithm does not expand these constituent diagnoses, and instead expands the

third set of constituent diagnoses. This is denoted on Figure 6-22 as the expansion under the

node charger-1 = off.

When the CDA* algorithm expands a set of constituent diagnoses, two operations are performed

to guarantee systematicity. First, note on Figure 6-22 that the constituent diagnoses related to

unreachable component mode assignments are not expanded from constituent diagnosis 3. For

example, the assignment switch = charger-2 and charger-2 = trickle are not allowed under the

path for charger-1 = off because they are not in the set of reachable component modes.

Achieving Real-time Mode Estimation through Offline Compilation 146

Second, note on Figure 6-22 that the assignment switch = charger-1 is not allowed under the

charger-1 = off search path. This is because the assignment switch = charger-1 is a sibling of

charger-1 = off in the previous level of the search tree. CDA* maintains that siblings, and their

children, cannot contain assignments to the left of the node. So, the result is that the children of

the charger-1 = off mode assignment cannot contain the mode assignment switch = charger-1

because it is a sibling on the left of charger-1 = off. Performing this computation enables the

CDA* search to guarantee systematicity, as proven in [Ragno, 2002].

CDA* implements this by reducing the set of reachable component modes for each sibling node

as the constituent diagnoses are expanded by placing assignments that are not allowed in a ‘do-

not-use’ list of assignments. This ‘do-not-use’ list of assignments is then used to remove

assignments from the reachable component modes that are associated with each node. As an

example, the ‘do-not-use’ list of component mode assignments for the constituent diagnosis

charger-1 = broken is:

 { switch = charger-1, charger-1 = off, switch = stuck-charger-1, switch = stuck-charger-2 }

This list reduces the reachable component modes under the charger-1 = broken path to:

 { switch = unknown, charger-2 = off, charger-2 = broken, charger-2 = unknown, battery =

 full, battery = charging, battery = dead, battery = unknown }

Note that the assignments for the switch have been reduced, and that assignments to charger-1

are no longer allowed since it has been assigned a value. The ‘do-not-use’ list of component

mode assignments is only used when constituent diagnoses are expanded. The list is cleared

when all constituent diagnoses have been expanded.

CDA* must then compute the following at each expansion of a constituent diagnosis:

1. Use the ‘do-not-use’ list of component mode assignments to update the set of

reachable component modes (note, initially the list is empty, but assignment are

added as the constituent diagnoses are added to the search tree)

2. Determine if the constituent diagnosis is allowed for expansion by checking the set

of reachable component modes

3. If the constituent diagnosis is allowed, then add it to the ‘do-not-use’ list of

component mode assignments.

Achieving Real-time Mode Estimation through Offline Compilation 147

4. Determine all other conflicts that are satisfied by the constituent diagnosis.

Additionally, CDA* must compute the cost for each constituent diagnosis added to the search

tree. The cost is calculated per the heuristic equations given in Equation 6-8. The calculation of

the cost of each node guarantees that CDA* will find the optimal solutions with the fewest

number of expansions [Williams, 2002]. Additionally, the expansion of constituent diagnoses

described above guarantees systematicity [Ragno, 2002]. The CDA* algorithm that

encompasses these capabilities is described in the next section.

6.4.4.3 CDA* Algorithm

The algorithm that explores the search tree described above for consistent sets of component

mode assignments to constituent diagnoses is described in this section. The full algorithm

description and implementation details are presented in Chapter 5. The search maintains the

history and expansions of the tree by using a queue of nodes, where each node represents the

path from the root to the node. The algorithm is specified below:

CDA* (reachable component modes’, set of constituent diagnoses)

1. Pop node from top of queue

2. Test node

a. if assignments in the path from root to node resolve all current conflicts and make

an assignment to all mode variables in the system, then return node

b. if assignments in the path from root to node make an assignment to all mode

variables but do not resolve all current conflicts, then explore siblings of node

c. else GOTO 3

3. Expand node

a. if there are no more constituent diagnoses to expand

i. find a mode variable xim that is unassigned in the path from root to node

ii. expand node such that a child corresponds to a vij in the domain of xim, and

each child has a different vij.

iii. for each child of node

1. remove child xim = vij if not in the reachable component modes’

Achieving Real-time Mode Estimation through Offline Compilation 148

2. if xim = vij is in the reachable component modes, then add xim = vij

as a child of node

3. calculate cost of child using Equation 6-6 and Equation 6-8

4. insert child into queue in order of decreasing cost

b. otherwise, choose a new set of constituent diagnoses, cd, and expand each

constituent diagnosis as a child of node

c. for each child, constituent diagnosis (xim = vij) of node

i. remove assignments in ‘do-not-use’ list of the current expansion from the

reachable component modes

ii. remove xim = vij if not in reachable component modes

iii. add constituent diagnosis xim = vij to the ‘do-not-use’ list

iv. calculate the cost of child node xim = vij using Equation 6-6 and Equation

6-8

v. insert child into queue in order of decreasing cost

d. return queue

e. GOTO 1

The algorithm as outlined above will first extract a node from the queue, the node with the

highest cost, or best probability. The algorithm then tests the node to determine if it is complete,

meaning that it has satisfied all conflicts and that it assigns to each component mode variable a

value from its domain. If the set of assignments in node is not complete, the node is expanded.

The expansion steps are as demonstrated previously. First a set of constituent diagnoses that

remains is expanded. Each assignment in the constituent diagnoses is first checked to determine

if it is allowable in this path of the tree. If the assignment is not in the reachable component

modes list, then it is not expanded. If the assignment can be expanded, this is done by copying

the node, adding the assignment to the node, and then updating the cost, or probability, of the

node. This cost is calculated using Equation 6-8. Finally, the node is inserted in the queue by

decreasing cost, or decreasing probability.

Achieving Real-time Mode Estimation through Offline Compilation 149

6.4.4.4 CDA* Example

The CDA* algorithm is best demonstrated by example using the NEAR Power storage system

detailed in Chapter 1. Consider the following previous mode estimate and observations:

 (switch = charger-1), (charger-1 = full-on), (charger-2 = off), (battery = charging)

 (bus-voltage = nominal), (battery-voltage = nominal), (battery-temperature = nominal)

The following is a sampling of the triggered dissents for this example, with the full list given in

Appendix C.
1. [] ⇒ ¬ [SWITCH = STUCK-CHARGER-2 ∧ CHARGER-1 = FULL-ON]

2. [] ⇒ ¬ [SWITCH = STUCK-CHARGER-2 ∧ CHARGER-1 = TRICKLE]

3. [] ⇒ ¬ [SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = FULL-ON]

4. [] ⇒ ¬ [SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = TRICKLE]

10. [BATTERY-TEMPERATURE = NOMINAL] ⇒ ¬ [BATTERY = DISCHARGING]

11. [BATTERY-VOLTAGE = NOMINAL] ⇒ ¬ [BATTERY = DISCHARGING]

12. [BATTERY-TEMPERATURE = NOMINAL] ⇒ ¬ [BATTERY = DEAD]

The set of reachable component modes for the previous mode estimate are:

‘switch’ = { (charger-1, p = 0.9899), (stuck-charger-1, p = 0.01), (stuck-charger-2, p = 0.01),

 (unknown, p = 0.0001) }

‘charger-1’ = { (full-on, p = 0.8899), (off, p = 0.1), (broken, p = 0.01), (unknown, p = 0.0001) }

‘charger-2’ = { (off, p = 0.1), (trickle, p = 0.8899), (broken, p = 0.01), (unknown, p = 0.0001) }

‘battery’ = { (full, p = 0.499), (charging, p = 0.499), (dead, p = 0.001), (unknown, p = 0.0001) }

CDA* expands the constituent diagnoses from the first conflict, which result in:

{ }

Switch =
CHARGER-1

p = 1.39

Charger-1 =
OFF

p = 0.539

Switch =
UNKNOWN
p = 0.395

Charger-1 =
BROKEN
p = 0.45

Charger-1 =
UNKNOWN
p = 0.440

Switch =
STUCK-

CHARGER-2
p = 0.405

Switch =
STUCK-

CHARGER-1
p = 0.405

Figure 6-23 - CDA* Expansion of Constituent Diagnosis #1

Achieving Real-time Mode Estimation through Offline Compilation 150

The costs of each node are shown along with each assignment. As an example, consider the

calculation of the cost of the charger-1 = broken node. The g(n) portion of the heuristic is given

by the transition probabilities, so g(n) = 0.01. The h(n) portion is calculated using the highest

probability mode assignments for the remaining components. So, h(n) uses switch = charger-1,

charger-2 = trickle, and battery = full to determine that h(n) = 0.440. The resulting cost is the

sum of g(n) and h(n) which is 0.450.

The CDA* algorithm chooses the highest cost node, which is switch = charger-1. This

constituent diagnosis also satisfies conflicts 2, 3, and 4 shown above, as well as conflicts 5, 6 and

16 through 21 out of 21 conflicts, shown in Appendix C. Upon choosing to expand this node,

CDA* determines that the next conflict to satisfy is conflict #7, given below.
7. ¬ [SWITCH = CHARGER-1 ∧ CHARGER-2 = FULL-ON]

Also, since it is the first node of the search tree, all assignments are allowed under the paths of

this node, except for assignments to the switch. The resultant expansion of the constituent

diagnosis for this conflict is shown below:

Charger-2 =
OFF

p = .543

Charger-2 =
BROKEN
p = .454

Charger-2 =
UNKNOWN

p = .444

Charger-2 =
TRICKLE
p = 1.325

{ }

Switch =
CHARGER-1

Charger-1 =
OFF

p = 0.539

Switch =
UNKNOWN
p = 0.395

Charger-1 =
BROKEN
p = 0.45

Charger-1 =
UNKNOWN
p = 0.440

Switch =
STUCK-

CHARGER-2
p = 0.405

Switch =
STUCK-

CHARGER-1
p = 0.405

Figure 6-24 - Expansion of Constituent Diagnosis #7 for CDA*

The CDA* algorithm computes the costs associated with each node using the heuristic equations,

which results in the best cost path being { switch = charger-1, charger-2 = trickle }. Upon

going down this path, CDA* determines that it cannot satisfy the following conflict:
8. ¬ [SWITCH = CHARGER-1 ∧ CHARGER-2 = TRICKLE]

CDA* then chooses the next likely node in the search tree, which results in the path { switch =

charger-1, charger-2 = off }. Additionally, when CDA* expanded the constituent diagnosis in

Achieving Real-time Mode Estimation through Offline Compilation 151

Figure 6-24, the path switch = charger-1 and charger-2 = off has a reduced set of reachable

component modes due to the charger-2 = trickle sibling. CDA* determines that this path

satisfies conflicts 7 and 8 using charger-2 = off, and conflicts 1 through 6 and 16 through 21

using switch = charger-1. CDA* then expands the constituent diagnosis related to conflict #9:
9. ¬ [BATTERY = FULL]

The resultant expansion of the related constituent diagnosis is shown below.

Charger-2 =
OFF

Charger-2 =
BROKEN
p = .454

Charger-2 =
UNKNOWN

p = .444

Charger-2 =
TRICKLE
p = 1.325

Battery =
DEAD

p = .890

Battery =
UNKNOWN
p = .8899

{ }

Switch =
CHARGER-1

Charger-1 =
OFF

p = 0.539

Switch =
UNKNOWN
p = 0.395

Charger-1 =
BROKEN
p = 0.45

Charger-1 =
UNKNOWN
p = 0.440

Switch =
STUCK-

CHARGER-2
p = 0.405

Switch =
STUCK-

CHARGER-1
p = 0.405

Battery =
CHARGING
p = .9393

Figure 6-25 - CDA* Expansion of Conflict #9

The expansion shown above guides the CDA* search to follow the path { switch= charger-1,

charger-2 = off, battery = charging } because the cost of this node is 0.9393, which is greater

than the next highest cost node charger-1 = off with p = 0.539. CDA* determines that by adding

the assignment battery = charging satisfies conflicts 9 through 13. The remaining conflicts to be

satisfied from Appendix C are:
14. ¬ [SWITCH = CHARGER-1 ∧ CHARGER-1 = TRICKLE]

15. ¬ [SWITCH = CHARGER-1 ∧ CHARGER-1 = OFF]

CDA* expands conflict #14 under the best cost path { switch = charger-1, charger-2 = off,

battery = charging } resulting in the following expansion in Figure 6-26. This expansion results

in satisfying all conflicts by choosing the path { switch – charger-1, charger-1 = full-on,

Achieving Real-time Mode Estimation through Offline Compilation 152

charger-2 = off, battery = charging }. However, the cost associated with this path is 0.0440.

CDA* does not identify this as the highest cost node because the node charger-1 = off has cost

of 0.539. CDA* would then expand constituent diagnoses under this node in the same process

detailed here. The difference under this node is that the assignment switch = charger-1 is not

allowed in any children of charger-1 = off, as depicted in Figure 6-22. The full example is given

in Appendix C.

Charger-2 =
OFF

Charger-2 =
BROKEN
p = .454

Charger-2 =
UNKNOWN

p = .444

Charger-2 =
TRICKLE
p = 1.325

Battery =
DEAD

p = .890

Battery =
UNKNOWN
p = .8899

Charger-1 =
FULL-ON
p =.0440

Charger-1 =
OFF

p = .00494

Charger-1 =
BROKEN

p = .494E-4

Charger-1 =
UNKNOWN
p = .494E-6

{ }

Switch =
CHARGER-1

Charger-1 =
OFF

p = 0.539

Switch =
UNKNOWN
p = 0.395

Charger-1 =
BROKEN
p = 0.45

Charger-1 =
UNKNOWN
p = 0.440

Switch =
STUCK-

CHARGER-2
p = 0.405

Switch =
STUCK-

CHARGER-1
p = 0.405

Battery =
CHARGING

Figure 6-26 - Expansion of Constituent Diagnosis #14

Once the CDA* algorithm finds a node that is complete, it returns the node to the Generate

algorithm. The final step of the Dynamic Mode Estimate Generation algorithm is to then call the

Rank algorithm to determine the total probability of the state.

6.4.5 Rank Algorithm

The final step in determining the current belief state, B(t+1), is to rank each mode estimate. The

Rank algorithm uses the current mode estimate generated from the Generate and CDA*

algorithms, with the enabled transitions and previous belief state, B(t), to determine the posterior

Achieving Real-time Mode Estimation through Offline Compilation 153

probability of the current mode estimate. Once the posterior probability has been calculated, the

Rank algorithm places the current mode estimate in the current belief state, B(t+1), in order of

decreasing probability. The inputs and outputs of the algorithm are shown below.

Rank

Enabled
Transitions

Likely Current
Mode Estimate

Current
Belief State

Previous
Mode

Estimates

Figure 6-27 - Inputs and Outputs of the Rank Algorithm

The definitions of the inputs and outputs are as follows. The ‘enabled transitions’ are the

transitions from the Compiled Conflict Recognition whose source modes mentioned a

component mode assignment in the previous mode estimates, and where all assignments in the

guard were in the current commands and previous mode estimates. The ‘previous mode

estimates’ represent the approximate previous belief state, B(t), and map the previous set of states

at time ‘t’ to their respective probabilities. The ‘likely current mode estimate’ is the mode

estimate returned from the Generate and CDA* algorithms that is consistent with the current

conflicts. Consistency of this mode estimate implies that the component mode assignments in

the state of the mode estimate agree with the commands given and predict the observations made

between time ‘t’ and ‘t+1’. Finally, the current belief state, B(t+1), holds all mode estimates

generated for time ‘t+1’.

6.4.5.1 Rank Algorithm Description

The Rank algorithm calculates the posterior probability of a mode estimate using mode estimates

in the previous belief state that transition to the current mode estimate, Sj
(t+1). This requires

determining all transitions from the previous mode estimates to the current mode estimate. The

representation for this calculation is shown below. Noted on the figure is the state and its

associated probability, where P(Sj
(t+1)) is to be determined. The transition probabilities, PT, are

noted on the arcs between previous mode estimates and the current mode estimate.

Achieving Real-time Mode Estimation through Offline Compilation 154

The approach taken is to determine the enabled transitions that have in their targets, the

component mode assignments in Sj
(t+1), and then store the source component modes of these

transitions. Using this list of source component modes, the Rank algorithm then iterates through

the previous mode estimates in B(t), and determines if all component mode assignments in Si
(t) are

in the list of source component mode assignments.

.

.

.

S1
(t)

Sn
(t)

Si
(t)

S2
(t)

Sj
(t+1)

.

.

.

B(t) Bt+1

S3
(t)

.

.

.

.

.

.

P = 0.6

P = 0.2

P = 0.1

P = 0.09

P = 0.001

P = 0.??

PT

PT

PT

Figure 6-28 - Rank Algorithm Probability Calculation for a Mode Estimate

The Rank algorithm determines the transition, PT, from a mode estimate, Si
(t), in the previous

belief state to the current mode estimate, Sj
(t+1). The determination of a transition between states

is dependent on the individual component transitions. The algorithm must then determine if the

component mode assignments mentioned in state Si
(t) can transition to the component mode

assignments mentioned in state Sj
(t+1). This can be represented graphically as follows.

Achieving Real-time Mode Estimation through Offline Compilation 155

Si
(t) Sj

(t+1)

(x1m = v11)t

(x2m = v23)t

(x3m = v33)t

(x4m = v43)t (x4m = v43)t+1

(x1m = v12)t+1

(x2m = v21)t+1

(x3m = v32)t+1

pT

pT

pT

pT

Figure 6-29 - Determination of Component Mode Assignment Transitions

The enabled transitions identified by the Transition Trigger are used to determine if the

component mode assignments in state Si
(t) can transition to the component mode assignments in

state Sj
(t+1). The example in Figure 6-29 denotes the component transitions, but assuming that the

transition from (x3m = v33)t to (x3m = v32)t+1 has a probability, pT, of zero, then the resulting

transition probability from Si
(t) to Sj

(t+1) is zero.

To determine these transition probabilities, the Rank algorithm identifies the enabled transitions

that have in their targets the component mode assignments in Sj
(t+1). The Rank algorithm then

stores the component mode assignments that are in the source of the transitions in the list

‘source-modes’. The transition probability pT, is extracted and used in the determination of the

overall transition probability, using the equation below

() () () ()() ()
11 t tt tS S im ij im ijti j im ij i

x v x v
x v S

P p ++→ = → =
= ∈

= ∏ΤΤΤΤ ΤΤΤΤ

Equation 6-9 - Probability Equation for Transitions Between States

This equation is the same used for mode estimation for CCAs, described in Chapter 2. To use

this equation, the Rank algorithm must determine, for a given Si
(t), if the component mode

assignments are in the list of ‘source-modes’. If all component mode assignments in Si
(t) are in

the list ‘source-modes’, then PT is non-zero, and can be calculated using Equation 6-9. This

equation assumes that component mode transitions are independent of other transitions. This

equation also assumes that the guards on these transitions are already satisfied. This then means

that, from Equation 6-3, PG is 1, for all transitions used by the Rank algorithm since they are

‘enabled transitions’. Once the Rank algorithm has determined the transition from the previous

Achieving Real-time Mode Estimation through Offline Compilation 156

mode estimate, it can then calculate the probability of the current mode estimate, Sj
(t+1), given

that source state, Si
(t) using:

()
() ()() ()() () ()1 1

1 | t t t tS Si j i j

t t
j iS S

P S P S P+ +→

+
Τ→

Τ = i

Equation 6-10 - Probability of a State Transition

This equation uses the probability of the previous mode estimate, Si
(t), and the transition

probability determined by Equation 6-9. The final step in determining the total probability of the

current mode estimate is to then sum all of the individual state probabilities from the previous

belief state, B(t).
() ()() ()() () ()() 1

1 |
t tS St i jti

t t t
j i

S B
P S B P S P

+→

+
Τ

∈
= ∑ i

Equation 6-11 - Total Probability for a Mode Estimate

The equations given here describe the process of the Rank algorithm and the calculation of the

total probability of a current mode estimate. This calculation is performed each time a consistent

mode estimate is generated from the Generate and DDA* algorithms. The Generate algorithm

then uses the total probability in its algorithm, as described in Section 6.4.3.

As described in the Generate algorithm, the generation of current mode estimates is an

incremental process. As a result, the Rank algorithm must determine if a current mode estimate

has already been generated and ranked. This requires checking if the current mode estimate,

Sj
(t+1) is the same as any of the mode estimates that have been recorded in the current belief state,

B(t+1). If the current mode estimate, Sj
(t+1) is the same as a mode estimate already ranked in the

current belief state then B(t+1) is not altered.

The steps described here are listed below, and a more thorough description is given in Chapter 7.

Rank(Sj(t+1), B(t), Enabled Transitions)

1. For each Sk
(t+1) in B(t+1)

a. if Sj
(t+1) is equal to Sk

(t+1), then return B(t+1)

2. For each Si
(t) in B(t)

a. Use Equation 6-9 and Enabled Transitions to calculate PT

Achieving Real-time Mode Estimation through Offline Compilation 157

b. Use Equation 6-10 to calculate P(Sj
(t+1) | Si

(t))

c. Use Equation 6-11 to keep calculate P(Sj
(t+1) | B(t))

3. Insert Sj
(t+1) in B(t+1) in order of decreasing probability

6.4.5.2 Rank Algorithm Example

The process of the Rank algorithm is best demonstrated using an example. Recall the example

state transition system shown in Figure 6-11. Using this example and the steps of the Generate

algorithm described in 6.4.3, the steps of the Rank algorithm are demonstrated as follows.

In step 2 of the example, the probability of the current mode estimate () ()()1 1,1 1
t tS P S+ + was

determined to be 0.62. In the steps of the Generate and CDA* algorithms, only the probability of

0.5 was determined by using the previous mode estimate () ()()1 1, 0.51 1
t tS P S+ + = , and its most

likely transition PT = 1.0. The Rank algorithm updated the probability of the mode estimate by

determining that the previous mode estimate () ()()1 1, 0.32 2
t tS P S+ + = had a transition to S1

(t+1)

with PT = 0.4. This determination results in the following values.

 P(S1
(t+1) | S1

(t)) = P(S1
(t)) * PT = 0.5 * 1.0 = 0.50

 P(S1
(t+1) | S2

(t)) = P(S2
(t)) * PT = 0.3 * 0.4 = 0.12

The remaining previous mode estimates did not have any transitions to the current mode

estimate, so the values of PT for these were 0. The resultant total probability of the current mode

estimate S1
(t+1) is then given by:

 P(S1
(t+1) | B(t)) = P(S1

(t+1) | S1
(t)) + P(S1

(t+1) | S2
(t)) = 0.50 + 0.12 = 0.62.

This result is the same probability noted on Figure 6-11, and this example demonstrates how to

arrive at that value.

Step 3 of the example in 6.4.3.2 demonstrates the need for the first steps of the Rank algorithm.

In this step, the Generate algorithm has chosen S3
(t) as the source. This causes the DDA*

Achieving Real-time Mode Estimation through Offline Compilation 158

algorithm to generate S3
(t+1) as the most likely mode estimate, but this mode estimate has already

been generated by S2
(t). As a result, the Rank algorithm does not calculate the total probability of

this mode estimate again. The Rank algorithm determined this by checking the mode estimate

generated against the mode estimates already in the current belief state, which include S1
(t+1) and

S3
(t+1). This determination then causes the Generate algorithm to proceed as described in the

remainder of the example in 6.4.3.2.

6.4.5.3 Rank Algorithm and Belief Update

The equations used by the Rank algorithm are the same as those given in Chapter 2 for belief

update of Hidden Markov Models. As such, the Rank algorithm enables Compiled Mode

Estimation to perform full belief update. The equations describing belief update are repeated

below.

() [] ()

() [] () [] []
() []

1

1

1 1
1

1

nt t
i j j i

j

t t i k
i i tn

i j kj

s s P s s

P s o
s s

s P s o

σ σ

σ σ
σ

+

=

+ +
+

=

≡

≡

∑

∑

i i

i i
i

#

#
#

ΤΤΤΤ

ΟΟΟΟ

ΟΟΟΟ

Equation 6-12 - Standard Belief Update Equations for Hidden Markov Models

To use the standard belief update equations, a transition function, PT, and an observation

function, PO must be defined for Compiled Mode Estimation. The transition function, PT[sj →

si], is described by the enabled transitions, with the probability of transitions between mode

estimates defined in Equation 6-9. The Rank algorithm uses Equation 6-9 to calculate the

transitions between previous and current mode estimates. The right hand side of the first belief

update equation is then the same as Equation 6-10, with the posterior probability of a previous

mode estimate, σ(t•)[sj], represented by P(Si
(t)). The full apriori probability of a current mode

estimate, σ (• t+1)[si] is the same as the expression of Equation 6-11.

The observation function, PO, for each mode estimate generated is automatically 1. In using the

dissents and compiled transitions, the mode estimates generated from the Dynamic Mode

Achieving Real-time Mode Estimation through Offline Compilation 159

Estimate Generation are guaranteed to be consistent with the observations. This is guaranteed

because the compilation process is complete and generates all conflicts and removes the need for

any satisfiability of the system model and transitions. Recall from the definition of the

observation function for CCA that the observation function value would change only if a mode

estimate would not predict an observation. In these cases the PO would be either 0 or 1/n, where

n represented the number of possible assignments to a particular observation value. However, by

using the dissents, which represent the compilation of the observation function, the mode

estimates generated are guaranteed to be consistent with the observations.

The final piece missing from the Rank algorithm is the normalization performed by the second

belief update equation in Equation 6-12. This step is performed once the current belief state has

been completely generated, but is performed at the top level of the Online Mode Estimation

algorithm.

6.5 Mapping Compiled Mode Estimation to ME-CCA

The steps of CME can be related to the mode estimation algorithm for Concurrent Constraint

Automata presented in Chapter 2, ME-CCA. The steps of CME are slightly different because of

the model used and the compilation process. The following comparison first describes the step

of CME, followed by the corresponding step in ME-CCA.

Step 1: CME
NONE

Step 1: ME-CCA
Extracts constraints, CMi

(t) from the previous mode estimates, B(t)

The constraint extraction by ME-CCA performed in Step 1 is done so that these constraints can

be used in determining the set of transitions that are enabled given those previous constraints.

The allowable transitions are determined in Step 2 of the ME-CCA algorithm. In the case of

CME, this is not necessary because of the dissents and compiled transitions. All that is needed is

the previous mode estimates, not their constraints, and the commands to determine if a transition

is enabled.

 Step 2: CME

Achieving Real-time Mode Estimation through Offline Compilation 160

 Calculates the set of reachable current modes using the previous mode estimates, B(t) and
 the control variables, µ(t) to first determine the enabled transitions, TEN. The reachable
 current modes are then the targets of TEN

Step 2: ME-CCA
Calculates all reachable current mode estimates, 〈Sj

(t+1), pij〉 using the previous mode
estimates, Si

(t), constraints CMi
(t) and the control variables, µ(t)

CME determines the set of reachable component modes from set of enabled transitions without

performing any satisfiability determination. ME-CCA however requires satisfiability to check

transition guards in order to generate all reachable current mode estimates. CME has removed

the need for satisfiability by compiling the transitions through the process described in Section

5.6. CME does not determine all reachable current mode estimates, but instead maintains the

representation of the individual component modes.

Step 3: CME
 NONE
Step 3 : ME-CCA

Calculates the apriori probability of each current mode estimate 〈Sj
(t+1), pj〉 using the

standard belief update equation, pj = Σ σ(t*)[Si
(t)] * pij

CME does not calculate the posterior probability of mode estimates at this time since the current

mode estimates have not been determined. ME-CCA performed this calculation because it has

determined all reachable current mode estimates.

 Step 4: CME
Determines the current constraints, represented by the set of enabled dissents, DEN, using the
current observations, O(t+1)

 Step 4: ME-CCA
 Extracts the current constraints, CMi

(t+1) from the set of reachable current mode estimates,
 ∪ 〈Sj

(t+1), pj〉

The CME step requires triggering the dissents to determine the enabled dissents through the

triggering process described in Section 6.3.1. These dissents represent the constraints on the

current mode estimates because these conflicts must be resolved by the current mode estimate for

it to agree with the observations. The constraints that the ME-CCA algorithm extracts are the

mode constraints associated with the reachable current mode estimates determined in Step 2.

Achieving Real-time Mode Estimation through Offline Compilation 161

Step 5: CME
Generates a mode estimate, 〈Sj

(t+1), pj〉 that resolves all conflicts of DEnabled and is
automatically consistent with the observations, O(t+1) using the Generate and DDA*
algorithms described in Sections 6.4.3 and 6.4.4, respectively.

 Step 5: ME-CCA
 Determines if the mode estimate, 〈Sj

(t+1), pj〉 is consistent with the constraints
 CMi

(t+1) and the current observations, O(t+1).

The overall goal of this step of CME and ME-CCA is the same, however the approach is very

different. CME does not require satisfiability to determine consistent mode estimates. All that is

required is for the mode estimate to resolve the conflicts. The conflicts generated through

compilation are enough to reconstruct the diagnosis of the system online, removing the need for

a satisfiability check of the mode estimates. ME-CCA however does require satisfiability to

determine if a reachable current mode estimate is consistent with the observations and

constraints of the system model. Additionally, CME incrementally generates current mode

estimates, while ME-CCA determines if all reachable current mode estimates are consistent.

This means that there are some reachable current mode estimates that are inconsistent. The time

taken to test these is a point of wasted effort by ME-CCA. This step demonstrates the

computational savings of CME because of the removal of the NP-hard problem of satisfiability.

 Step 6: CME
 Calculates the apriori and posterior probabilities of a consistent current mode estimate,

〈Sj
(t+1), pj〉 generated from Step 5 using the standard belief update equations with PT

and PO as defined in Section 6.4.5. Step 5 and Step 6 of CME are performed iteratively
until the current belief state, B(t+1), is complete.

 Step 6: ME-CCA
 Calculates the posterior probability by summing like states Si

(t) to Sr
(t) and applying the

 observation function values determined in Step 5 of ME-CCA.

The final step of the CME algorithm is to determine the posterior probability of a mode estimate

generated by the Generate and CDA* algorithms using the Rank algorithm. The Rank algorithm

determines all possible transitions from the previous belief state to a current mode estimate. ME-

CCA calculates the posterior probability using the apriori probability calculated in Step 3.

By mapping the steps of CME to the ME-CCA algorithm, this highlights the major benefit of the

computations of CME. Since the online algorithms are enabled by the compiled model, many of

Achieving Real-time Mode Estimation through Offline Compilation 162

the computations that were necessary in ME-CCA are now removed from the algorithms of

CME. The computational savings for CME are explicated when comparing the generation of

consistent mode estimates to ME-CCA in step 5. ME-CCA tests consistency of many mode

estimates, whereas CME only generates consistent mode estimates.

This chapter concludes the presentation of CME, with the implementation details in Chapter 7.

To this point, the process of compilation has been developed that maps the system model to a

CMPCA, which is a compact encoding of the system model as dissents and compiled transitions.

The dissents are generated through the Enumeration algorithm given in Section 3.3. The process

for generating compiled transitions was described in Section 5.6. This chapter first developed

Compiled Conflict Recognition in Section 6.3 to determine the dissents and compiled transitions

that pertain to the current observations and commands. This process uses standard rule-

triggering methods tailored to the dissents and compiled transitions. The second phase of Online

Mode Estimation, Dynamic Mode Estimate Generation was developed in Section 6.4. This

portion determines the likely transitions from previous mode estimates to current mode

estimates, using the conflicts to guide the choice of component mode assignments in a conflict-

directed A* search.

The CME engine and the Online Mode Estimation engine have been designed with several key

attributes. The engine is capable of reconstructing mode estimates from conflicts in real-time

using the Online-ME algorithms. CME reduces memory utilization through the compact

encoding of the model constraints as dissents and compiled transitions. Additionally, the

dissents express the diagnostic rules of the system model, encoded as “observations imply

conflict”. These enable inspection of the mode estimates for correctness by a human. Finally,

CME is capable of using multiple sources of information to determine the most likely mode

estimates, and track these mode estimates over time to diagnose complex system failures.

This chapter presented the underlying ideas of the CME engine. What remains is to present the

algorithms of CME in Chapter 7, and validate these algorithms through experimentation in

Chapter 8. Chapter 9 draws conclusions from the validation, and is followed by Future Work in

Chapter 10.

Achieving Real-time Mode Estimation through Offline Compilation 163

7 Compiled Mode Estimation Algorithms

Chapter 3 presented the ideas and innovations for performing mode estimation using a compiled

model. The online mode estimation algorithms have been described to convey the key ideas

behind each algorithm. This chapter details the algorithms for all portions of Online Mode

Estimation, and gives specifics for implementation. The methods described in this chapter have

been used to generate results for the validation experiments described in Chapter 6.

The chapter begins with the detail of the Compiled Conflict Recognition algorithms in section

7.1, followed by the Dynamic Mode Estimate Generation algorithms in section 7.2. The chapter

ends with a description of the top level Online Mode Estimation algorithm, which enables the

Compiled Conflict Recognition and the Dynamic Mode Estimate Generation algorithms to work

together to produce mode estimates.

7.1 Compiled Conflict Recognition

The Compiled Conflict Recognition algorithm maps the compiled model in the form of dissents

and compiled transitions to a set of Constituent Diagnoses, Reachable Component Modes, and

Enabled Transitions. These outputs are generated through the three top-level algorithms

described in Chapter 3, the Dissent Trigger, the Transition Trigger and the Constituent Diagnosis

Generator. This section only presents the Constituent Diagnosis Generator for brevity. The

algorithm for the Dissent and Transition Triggers are presented in Appendix D.

Achieving Real-time Mode Estimation through Offline Compilation 164

7.1.1 Constituent Diagnosis Generator

The Constituent Diagnosis Generator uses the Enabled Dissents and Enabled Transitions to

determine the set of Constituent Diagnoses and Reachable Current Modes. In addition, it passes

on the Enabled Transitions. There are two distinct tasks within the Constituent Diagnosis

Generator that produce the desired outputs. The first is to use the enabled transitions to

determine the set of reachable current modes as described in Chapter 6. The second task is to

map the enabled dissents to the set of constituent diagnoses, also described in Chapter 6. The

inputs and outputs of the Constituent Diagnosis Generator are shown below.

Constituent
Diagnosis
Generator

Enabled
Dissents

Enabled
Transitions

Constituent
Diagnoses

Reachable
Current Modes

Enabled
Transitions

Figure 7-1 - Inputs and Outputs of Conflict Generator

A reachable current mode in the set of reachable current modes, Πm
Current, stores:

1. Transition probabilities for a given Reachable current mode

2. List of previous mode estimates for a given Reachable current mode

3. xim = vij identifying this reachable current mode

A particular component mode may be the target of more than one transition, depicted in Figure

7-2.

(x2m = v23)t

(x2m = v24)t

(x2m = v21)t

(x2m = v22)t+1

pT

pT

pT

Figure 7-2 - A Reachable Current Assignment with Multiple Previous Sources

If a component mode is reachable from multiple previous mode estimates, then the probability of

the component mode changes with respect to the previous mode estimate at time ‘t’. The

component mode assignment, (x2m = v22), stores the previous mode estimates that mention (x2m =

Achieving Real-time Mode Estimation through Offline Compilation 165

v21), (x2m = v23) and (x2m = v24), as well as the individual transition probabilities, pT for each

transition, giving the transition probability distribution. Storing this information is enabled by

the previous list of component modes determined by the Compress-Mode-Estimates algorithm,

given in Appendix D. All that is required is to go through the list of enabled transitions, and

access the stored component modes in the source and the transition probabilities.

This computation results from the need to track the previous belief state, not just a single

previous mode estimate. A reachable component mode stores the transition probability

distribution and the previous mode estimates that are the sources of these transitions. This is

used to simplify the calculations of the Dynamic Mode Estimate Generation algorithm.

The second step of the Constituent Diagnosis Generator algorithm transforms the Enabled

Dissents into Constituent Diagnoses. This transformation uses the set of all component mode

assignments, Πm in the approximate belief state and the dissents to determine the set of

constituent diagnoses for the conflict in each Enabled Dissent. The conflicts restrict the

component modes by specifying infeasible combinations. The algorithm then looks for all

assignments of a particular component variable not in the conflict, and places these in the set of

constituent diagnoses of the conflict. The set of constituent diagnoses corresponds one to one

with the set of enabled dissents. The resultant Constituent Diagnosis Generator algorithm that

captures these computations is given below.

function Constituent-Diagnosis-Generator(DSEN, TEN, Πm)
 returns Reachable current modes, Πm

Current, Constituent diagnoses, CD, and enabled
transitions, TEN
 for each Ti in TEN
 for (xim = vij) in destination mode of Ti
 transition probability ← P(Ti) for (xim = vij)
 mode estimate ← mode estimate from source (xim = vij) of Ti
 unless (xim = vij) ∉ Πm

Current
 Πm

Current ← (xim = vij) ∪ Πm
Current

 end

 for each di in DSEN
 for each (xim = vij) in di
 cd ← cd ∨ (xim = vim) ∀ vim ≠ vij ∈ D(xim)

Achieving Real-time Mode Estimation through Offline Compilation 166

 end
 CD ← cd ∪ CD
 end

 return Πm

Current, CD, and TEN

Figure 7-3 – Constituent Diagnosis Generator Algorithm

The algorithms given here for the Compiled Conflict Recognition map the compiled model, the

current observations and commands to the Constituent Diagnoses, the Reachable Current Modes,

and the Enabled Transitions. This information, along with the constituent diagnoses and enabled

transitions, guide the search that produces the current mode estimates.

7.2 Dynamic Mode Estimate Generation

The presentation of the Online Mode Estimation algorithms now focuses on the algorithms in the

Dynamic Mode Estimate Generation process that uses the information of the Compiled Conflict

Recognition. The Dynamic Mode Estimate Generation process takes the constituent diagnoses,

the reachable current modes and the enabled transitions and determines the current mode

estimates of the system that are consistent with the observations and commands.

The Dynamic Mode Estimate Generation process is broken into three distinct functions:

Generate, Conflict Directed A* and Rank algorithms. The Generate algorithm maps the

reachable current modes to a reduced set, called the reachable component modes’, which enables

the Conflict Directed A* (CDA*) algorithm to search for the most likely mode estimate that

satisfies the constituent diagnoses. The Rank algorithm then determines the probability of this

mode estimate using the enabled transitions, and ranks it in the current belief state. This section

details each of these algorithms and any supporting algorithms, beginning with the Generate

algorithm, then specifying the CDA* algorithm and ending with the Rank algorithm.

Achieving Real-time Mode Estimation through Offline Compilation 167

7.2.1 Generate

The Generate algorithm performs several tasks to enable the Dynamic Mode Estimate

Generation algorithm. Its main task, as described in Chapter 3, is to choose a previous mode

estimate that reduces the set of reachable current modes, to the set of reachable component

modes’. Each previous mode estimate has a corresponding reachable component modes’ that is

computed per Figure 3-14. The other important task of the Generate algorithm, is to enable the

communication of the Conflict Directed A* algorithm and the Rank algorithm. This

communication path sends the ‘likely current mode estimate’ from the CDA* algorithm to the

Rank algorithm. This is passed through the Generate algorithm because it too must know and

use the current mode estimates in its main task of choosing a previous mode estimate.

The inputs and outputs for the Generate algorithm are shown below.

GeneratePartial
Diagnoses
Possible

Current Modes

Possible
Component Modes*

Likely Current
Mode Estimate

Partial
Diagnoses

Previous Mode
Estimates

Figure 7-4 - Inputs and Outputs of the Generate Algorithm

The creation of the reduced set of component modes becomes a simple task using the stored

information in each component mode assignment. Recall that the previous mode estimate and

associated transition probability are stored in a reachable current mode. All that is required is to

search the full list of reachable current modes for ones that are reachable from the chosen

previous mode estimate, which is specified by the transition contained in the reachable current

mode. This computation only has to be done once for a previous mode estimate and then

recalled when the previous mode estimate is chosen again.

The exploration of the tree for the Generate algorithm is driven by a queue. This queue is

comprised of nodes of the tree. Recall from Chapter 6, that the nodes of the tree represent the

current consistent mode estimates generated from the CDA* algorithm. Also, only one node is

Achieving Real-time Mode Estimation through Offline Compilation 168

maintained under each previous mode estimate, representing the most recently generated current

mode estimate. The information contained in each node is then the cost of the node, the current

mode estimate, Sj
(t+1), and the previous mode estimate, Si

(t). The cost of a node that has not been

Ranked is given by f(n) = g(n) + h(n):

() ()() () ()

()
1t tS Si j

t
ig node P S P

h node Residual
+→

Τ=

=

i

Equation 7-1 - Heuristics for the Generate Tree Search

If a current mode estimate has been ranked, then the posterior probability is known. The

Generate algorithm uses this probability as the cost for the previous mode estimate. Generate

chooses a node in the search tree that has a high cost, representative of the probability that the

previous mode estimate will transition to current mode estimates. This cost and maintaining the

proper ordering of the queue enable the Generate algorithm to properly explore the search tree

and choose the appropriate previous mode estimate.

The computations described here and in Chapter 6 are captured in the Generate algorithm below.

The set of reachable component modes’ is denoted by Πm RCM’.

function Generate(B(t), Πm
Current, CD, TEN)

 returns a likely current mode estimate Sj
(t+1), or the current belief state, B(t+1) when exiting

 for each Si
(t) in B(t)

 Nodes ← Nodes ∪ Si
(t) , with a cost of 1, ordered by P(Si

(t))
 end
 Residual ← 1
 loop do
 if Nodes is empty
 then exit
 else node ← Remove-Best(Nodes)
 for Si

(t) in node
 if previous CDA* output is empty
 then for each (xim = vij) in Πm

Current
 for each Si

(t) in mode estimate of (xim = vij)
 if Si

(t) = Si
(t)

 then Πm RCM’ ← (xim = vij) ∪ Πm
PCM’

 end
 end
 Sj

(t+1) ← CDA*(Πm RCM’, CD)

Achieving Real-time Mode Estimation through Offline Compilation 169

 else
 Sj

(t+1) ← CDA*(Πm RCM’, CD)
 if Sj

(t+1) is empty
 then remove Si

(t) from Nodes
 else
 〈 Sj

(t+1), P(Sj
(t+1)) 〉 ← Rank(Sj

(t+1), B(t), TEN)
 Residual ← Residual – P(Sj

(t+1))
 node-cost ← P(Sj

(t+1))
 for each node in Nodes
 node-cost ← P(Sk

(t+1)) + Residual
 end
 Nodes ← InsertInOrder(node, Nodes)

 highest probability ← max(P(Sj

(t+1) ∈ Nodes))
 lowest probability ← min(P(Sj

(t+1) ∈ Nodes))
 number current mode estimates ← number current mode estimates + 1

 while(¬ halting conditions)
 return B(t+1) ← Rank

halting conditions ≡ [total probability ≥ set value and
 comp-time ≥ set time and
 highest probability ≥ Residual and
 lowest probability ≥ Residual and
 number next states ≥ factor * Nposs]

Figure 7-5 - Generate Algorithm for Dynamic Mode Estimate Generation

The algorithm first sets up the queue by creating ‘nodes’ that hold a previous mode estimate and

an initial cost of 1. This is done to force the algorithm to generate a current mode estimate from

each previous mode estimate. The next step initializes the Residual to 1, followed by the loop

that executes the generation of mode estimates. The first step in this loop is to remove the best

node from the top of the ‘Nodes’ queue. Once extracted, the node is tested to determine if it has

a child branch. If it does, then there is no need to generate the reduced set of component modes,

Πm RCM’. If it does not, then the algorithm proceeds to create this list by iterating through the full

list of reachable current modes, Πm
Current, and extracting those that are from the desired previous

mode estimate. An example of this computation was given in 6.4.3. The algorithm then uses the

list Πm RCM’ and the constituent diagnoses to generate a new current mode estimate. If there is no

Achieving Real-time Mode Estimation through Offline Compilation 170

current mode estimate returned, then the algorithm removes the previous mode estimate from the

queue so it is never used again.

Once a current mode estimate has been generated, the total probability must be updated,

performed by the Rank algorithm. The Generate algorithm then uses this total probability,

P(Sj
(t+1)), to update the residual value according to Equation 7-1. Using this updated residual, the

algorithm then calculates the new cost for each node. Since the residual only decreases as more

nodes are added, there is no need to reorder the queue. A better approach to calculating costs on

nodes is given in Future Work (Chapter 9). Instead all that remains is to insert this new node

into the queue in the appropriate order. This is done by making a call to the ‘Insert-In-Order’

function, detailed in Appendix D. Once the new node has been inserted in the queue, the loop

can restart or terminate, if necessary.

The final step in this process is to test the halting conditions of the loop. The halting conditions

shown above represent three different types of halting conditions, hard, soft and items that will

always cause a halt. An example of the last type of halting condition is encoded in the algorithm

itself. When there are no more items in the queue, representing the fact that there are no more

mode estimates to generate, then the algorithm exits. An example of a hard halt is when the

lowest probability of a mode estimate is greater than the residual. Using this halting condition

gives the guarantee that the most likely ‘N’ mode estimates have been generated. Another hard

halt is encoded to stop the task of Online Mode Estimation if the process is taking too long to

determine an estimate of the system behavior. The final condition, a soft condition, halts the

mode estimate generation when a certain space of the consistent current mode estimates has been

explored. This is represented as a factor multiplied by the number of Reachable current states,

‘Nposs’. This condition is used to stop the search from going unnecessarily long should the total

probability not reduce significantly with each newly generated current mode estimate. Once the

algorithm exits, this forces the end of the Dynamic Mode Estimate Generation algorithm, and the

current belief state is returned.

7.2.2 Conflict Directed A*

Achieving Real-time Mode Estimation through Offline Compilation 171

Called within the Generate algorithm is the Conflict-Directed A* that performs the search for an

optimal mode estimate that satisfies the constituent diagnoses. This search is framed as an A*

search as described in Chapter 6. The CDA* algorithm uses the constituent diagnoses to guide

the search, and the probabilities of the reachable component modes to calculate the heuristic for

the cost used in the search. This cost is given in Equation 4-9, and utilizes the transition and

component mode probabilities. The inputs and outputs of the CDA* algorithm are shown in

Figure 7-6. This section presents the detail of the CDA* algorithm and any supporting functions

required.

Conflict Directed
A* Search

Likely Current
Mode Estimate

Reachable
Component Modes*

Constituent
Diagnoses

Figure 7-6 - Inputs and Outputs of the DDA* Algorithm

The CDA* algorithm used here is the Conflict Directed A* algorithm [Williams, 2002] with

systematic search [Ragno, 2002] to guide the expansion of nodes in the search tree using the

constituent diagnoses. Guaranteeing systematicity requires storing the following for each node

in the search tree.

1. All component mode assignments on the path from the root to the node

2. A list of allowable assignments

3. A list of unsatisfied constituent diagnoses

4. Cost of the node

Each time a new node is added to the search tree the fields stored in each node are updated as

follows:

1. Add the new component mode to the previous list of modes

2. Using a ‘do-not-use’ list of component mode assignments, update the list of allowable

component mode assignments

3. Determine the constituent diagnoses that the new component mode assignment

satisfies and remove them from the list of unsatisfied constituent diagnoses

4. Update the cost of the node with the new component mode

Achieving Real-time Mode Estimation through Offline Compilation 172

The following is the CDA* algorithm and initialization algorithm. The initialization algorithm

creates a single node in the tree that holds the set of reachable component modes*, Πm RCM’, and

the Constituent diagnoses, CD. The set of reachable component modes is transformed into a list

ordered by component mode variable, where the different component modes are sequentially

ordered. This new list is noted as Πm
VCM’, noting the variable component modes’ list. The

CDA* algorithm uses this node to expand the first constituent diagnosis, making a call to a

supporting function, ‘Expand-and-Insert’. The CDA* algorithm continues to expand nodes until

the queue, Nodes, is empty or a node has generated a consistent mode estimate.

function Initialize-CDA*(Πm RCM’, CD)
 returns initialized queue, Nodes that holds the transformed list, Πm

VCM’
 for each (xim = vij) in Πm RCM’
 Πm VCM* ← Πm

VCM* ∪ (xim = vij), where Πm
VCM’ is ordered by xim

 end
 Nodes ← Πm

VCM’, CD
 return Nodes

function CDA*(Nodes, Πm RCM’, CD)
 returns current consistent mode estimate, 〈Sj

(t+1), P(Sj
(t+1))〉

 if Nodes is empty
 then Nodes ← Initialize-CDA*(Πm RCM’, CD)
 for node in Nodes
 Nodes ← ExpandAndInsert(node, Nodes)

 loop do
 node ← Remove-Best(Nodes)
 if Node-Complete(node) is successful
 then return 〈Sj

(t+1), P(Sj
(t+1))〉 in node, and Nodes

 else
 Nodes ← ExpandAndInsert(node, Nodes)
 while Nodes is not empty
 return an empty 〈Sj

(t+1), P(Sj
(t+1))〉 and Nodes

Figure 7-7 - Conflict Directed A* Algorithm

The CDA* algorithm detailed above gave the top-level description. First, the CDA* algorithm

always returns not only the current mode estimate but also the queue remaining in the search

Achieving Real-time Mode Estimation through Offline Compilation 173

tree. This enables the Generate algorithm to use the same previous mode estimate without

having the CDA* algorithm regenerate the search tree. Second, CDA* uses several supporting

algorithms, the ‘Remove-Best’, ‘Node-Complete’ and the ‘Expand-and-Insert’ algorithms. The

‘Remove-Best’ simply removes the node at the top of the queue, which represents the best cost

node. The ‘Node-Complete’ algorithm determines if the mode estimate in the node contains a

state, and that this state satisfies all constituent diagnoses. The ‘Expand-and-Insert’ algorithm

performs the computations listed previously.

The next step is to detail the ‘Expand-and-Insert’ algorithm. This algorithm expands a

constituent diagnosis and updates all of the fields within a node, as specified in the list of

required computations above. This algorithm returns the updated queue to the CDA* algorithm.

function Expand-And-Insert(node, Nodes)
 returns an updated queue, Nodes
 if 〈Sj

(t+1), P(Sj
(t+1))〉 in node is empty

 then cdi ← first Constituent diagnosis in CD, stored in node
 else cdi ← ConstituentDiagnosis-To-Expand(node)
 if cdi is empty
 then for a xim in Πm

VCM’ in node that has not been assigned
 for each (xim = vij) that is allowed for xim
 new node ← copyNode(node)
 new node ← update-Πm

VCM* (new node, do-not-use)
 new node ← add-Variable-Assignment(new node, (xim = vij))
 if new node creation failed
 then move to next (xim = vij) in xim
 else
 do-not-use ← (xim = vij) ∪ do-not-use
 Nodes ← insertNode(new node, Nodes)
 end
 return Nodes

 for each (xim = vij) in cdi
 new node ← copyNode(node)
 new node ← add-ConstituentDiagnosis-Assignment(new node, (xim = vij))
 if new node failed to be created
 then move to next (xim = vij) in cdi
 else
 new node ← update-Πm

VCM’ (new node, do-not-use)
 do-not-use ← (xim = vij) ∪ do-not-use
 Nodes ← insertNode(new node, Nodes)

Achieving Real-time Mode Estimation through Offline Compilation 174

 end
 return Nodes

Figure 7-8 - Expand and Insert Algorithm Supporting the CDA* Algorithm

The ‘Expand-and-Insert’ function performs the task of expanding a constituent diagnosis, or if all

constituent diagnoses are satisfied, then expands using an unassigned variable. The first step of

the algorithm is to determine a Constituent diagnosis to expand. If the node does not have a

mode estimate, then the algorithm chooses the first constituent diagnosis in the list, CD.

Otherwise, the algorithm uses ‘ConstituentDiagnosis-to-Expand’ to determine the best

constituent diagnosis to expand.

Once a constituent diagnosis has been chosen, then each component mode is expanded to new

nodes. The ‘Expand-and-Insert’ algorithm makes use of several functions to enable this

expansion. First, the algorithm copies the node before it adds a component mode, because there

are normally more than one component modes mentioned in a constituent diagnosis. Once

copied, the algorithm attempts to add the component mode by calling the ‘add-

ConstituentDiagnosis-Assignment’. This algorithm performs the computations associated with

step 3 and step 4 specified above. The next task is to update the allowable list of component

modes by removing any component modes previously expanded from its list of reachable

component modes, Πm
VCM’. This task is performed by the ‘update-Πm

VCM’’ algorithm.

If there is not a constituent diagnosis to expand, then the algorithm expands any component

variable that has not been assigned a value. The expansion places new nodes corresponding to

the allowable component modes in the Πm
VCM’ list for the chosen component variable. The

algorithm that performs the addition of a component mode under these conditions is the ‘add-

Variable-Assignment’ algorithm. Under this path, the ‘do-not-use’ list is also used, but is

computed in the same manner as when constituent diagnoses are expanded. The final task is to

insert the node in order of decreasing probability into the queue, Nodes. The following details

the ‘add-ConstituentDiagnosis-Assignment’ and the ‘add-Variable-Assignment’.

Achieving Real-time Mode Estimation through Offline Compilation 175

function add-ConstituentDiagnosis-Assignment(node, (xim = vij))
 returns node with (xim = vij) added if possible
 if (xim = vij) ∉ Πm

VCM’ of node
 then mark node as a dead end
 return node
 if xim is already assigned in Sj

(t+1) of node
 then mark node as a dead end
 return node
 for each cdi in CDUnsat of node
 if (xim = vij) ∈ cdi
 then remove cdi from CDUnsat of node
 if xim ∈ cdi & cdi not removed
 then decrement the counter of usable assignments in cdi

 if cdi has only 1 variable remaining to be assigned
 then next constituent diagnosis ← cdi of the node
 if cdi has no variables remaining to be assigned
 then mark node as a dead end
 end
 if node not marked as a dead end
 then Sj

(t+1) ← Sj
(t+1) ∪ (xim = vij) of node

 node-cost ← P(Sj
(t+1)) • PT(xim = vij) + Π max[PT(xim = vij)] ∀ xim ∉ Sj

(t+1)
 if next constituent diagnosis has not been updated
 next constituent diagnosis ← first Constituent diagnosis in CDUnsat
 return node

function add-Variable-Assignment(node, (xim = vij))
 returns node with (xim = vij) added if possible
 if (xim = vij) ∉ Πm

VCM’
 then mark node as a dead end
 return node
 if xim is already assigned in Sj

(t+1) of node
 then mark node as a dead end
 return node
 Sj

(t+1) ← Sj
(t+1) ∪ (xim = vij) of node

 node-cost ← P(Sj
(t+1)) • PT(xim = vij) + Π max[PT(xim = vij)] ∀ xim ∉ Sj

(t+1)
 return node

Figure 7-9 - Add Constituent Diagnosis and Add Variable Algorithms

The ‘add-ConstituentDiagnosis-assignment’ and the ‘add-Variable-assignment’ algorithms

perform key operations enabling the CDA* algorithm. These include early detection of dead

Achieving Real-time Mode Estimation through Offline Compilation 176

ends in the search tree, adding a component mode assignment to the mode estimate of the node,

and updating the cost of the node. The ‘add-ConstituentDiagnosis-assignment’ performs an

essential operation of determining other constituent diagnoses that are satisfied by adding this

assignment to the mode estimate.

The ‘add-ConstituentDiagnosis-assignment’ algorithm begins by performing several operations

to determine if, by making the assignment, that the resultant mode estimate is a dead end. The

first is to determine if the particular assignment is even in the allowable list of component

modes, Πm
VCM’. If it is, then the algorithm proceeds to check if the component mode variable,

xim, is already assigned a value in the mode estimate of the node. If it is not, then the algorithm

proceeds to check the constituent diagnoses for a dead end. The algorithm uses the component

mode assignment, (xim = vij), to determine which constituent diagnoses it satisfies. The algorithm

also checks if a constituent diagnosis mentions the component mode variable, xim, but not the

particular component mode assignment. In this case, the component mode assignments are

reduced because no assignments associated with xim can be used to satisfy that constituent

diagnosis. Within each constituent diagnosis is a counter indicating the different component

mode variables, xim, it contains. The algorithm uses this to detect dead ends and near dead ends.

If a constituent diagnosis does not have any more component mode variables it can use, then the

mode estimate can never be a satisfying solution. This is represented when the counter in the

constituent diagnosis is equal to zero. The detection of a near dead end is when this counter is 1,

representing that the Constituent diagnosis only has one more component mode variable that it

can use. The algorithm places this constituent diagnosis so that it is the next to be expanded.

Once the ‘add-ConstituentDiagnosis-assignment’ has determined that the component mode

assignment does not make the node a dead end, it adds the component mode assignment to the

mode estimate and updates the cost of the node using the mode estimate probability equation.

The equation is simplified since the mode estimate is generated incrementally. All that is

required is to multiply the current probability of the mode estimate, P(Sj
(t+1)) by the transition

probability, PT(xim = vij) of the component mode assignment. To complete the calculation of the

CDA* heuristic developed in Chapter 6, the product of the highest transition probabilities of

components not yet assigned a mode are used in the h(n) heuristic. This is added to the

Achieving Real-time Mode Estimation through Offline Compilation 177

probability of the mode estimate, given by the heuristic, g(n). Calculating this gives the desired

optimistic estimate for the search heuristic.

The next supporting algorithm used within the ‘Expand-and-Insert’ function is the ‘update-

Πm
VCM’’ algorithm. The task of this algorithm is to remove component mode assignments that

are not allowed along a certain path of nodes. The ‘Expand-and-Insert’ algorithm builds up this

list of component mode assignments as it expands from left to right. The ‘update-Πm
VCM’’

algorithm uses the ‘do-not-use’ list of assignments from the ‘Expand-and-Insert’ algorithm to

perform this task. The algorithm is detailed below.

function update-Πm

VCM*(node, do-not-use)
 returns the node after updating Πm

VCM*

 for each (xim = vij) in do-not-use
 node-Πm

VCM* ← remove (xim = vij) from Πm
VCM* of node

 end
 if ∃ xim in Πm

VCM* there are no more assignments & xim ∉ Sj
(t+1) of node

 then mark node as a dead end
 return node

Figure 7-10 - Update Allowable Assignments Supporting DDA* Algorithm

The ‘update-Πm
VCM’’ algorithm not only removes component mode assignments, but also checks

for a dead end. If by removing enough component mode assignments, it is possible that all

Reachable component modes could be removed for a component mode variable, xim. In this case,

the node would not be able to ever be a complete mode estimate, so the algorithm marks it as a

dead end.

Once the node has been updated by the ‘add-ConstituentDiagnosis-assignment’ or ‘add-Variable-

assignment’, and the ‘update’ algorithms, the ‘Expand-and-Insert’ algorithm checks the node to

see if it has been marked as a dead end. If it has, then the node is never added to the queue and is

thrown out. However, if the node is not marked as a dead end, then it is ready to be inserted into

the queue, Nodes. The ‘Insert-Node’ algorithm performs this task by iterating through the queue

to determine the point where the node should be inserted. The algorithm maintains the queue in

Achieving Real-time Mode Estimation through Offline Compilation 178

order of decreasing cost, as calculated by the heuristic equations given in Chapter 3. The ‘Insert-

Node’ algorithm is specified below.

function Insert-Node(new node, Nodes)
 returns Nodes, updated with new node
 for each node in Nodes
 if cost(new node) = cost(node)
 then put new node after node in Nodes
 if cost(new node) < cost(node) & cost(new node) > cost(node+1)
 then put new node between node and node+1 in Nodes
 end
 return Nodes

Figure 7-11 - Insert Node Algorithm Supporting the DDA* Algorithm

The ‘Insert-Node’ algorithm is designed to be similar to the insert algorithm for the Generate

algorithm. The first condition states that if two nodes have equal cost, then the tie goes to the

node on the queue. This eliminates the potential for greedy search. The second condition states

that if the ‘node’ is between two values in ‘Nodes’, then it should be placed in between these two

nodes.

The remaining algorithms that enable the ‘Expand-and-Insert’ algorithm of the CDA* algorithm

are the ‘copyNode’, and ‘ConstituentDiagnosis-to-Expand’ algorithms. The ‘copyNode’

algorithm is rather straightforward. It copies every field within a node including the current set of

component mode assignments, the list of remaining constituent diagnoses to be satisfied, and the

list of allowable component mode assignments. The other algorithm, the ‘ConstituentDiagnosis-

to-Expand’ simply extracts the next best constituent diagnosis stored within the node. Recall

that the ‘add-ConstituentDiagnosis-assignment’ determined the best Constituent diagnosis to

expand, as described in Figure 7-9.

These descriptions and the prior specifications complete the detail of the CDA* algorithm and all

of its supporting algorithms. These enable the CDA* algorithm to perform the search for an

optimal set of component mode assignments that satisfy the constituent diagnoses. Once the

CDA* algorithm has determined this, it returns the mode estimate and the current queue, Nodes,

Achieving Real-time Mode Estimation through Offline Compilation 179

to the Generate algorithm. The Generate algorithm will use the queue the next time it uses the

previous mode estimate, Si
(t), associated with this queue. The CDA* algorithm is Conflict

Directed A* algorithm used in OPSAT [Williams, 2002], with systematicity from [Ragno, 2002].

This algorithm guarantees the generation of only consistent mode estimates by using the

constituent diagnoses. Through the framing of this algorithm as an A* search, the CDA*

algorithm also guarantees that the fewest number of nodes are expanded.

7.2.3 Rank

The final phase in generating a current belief state is to rank the mode estimate generated by the

CDA* algorithm. This requires calculating the posteriori probability of the mode estimate, as

defined in Chapter 6. To perform this calculation, the Rank algorithm uses the current mode

estimate, the enabled transitions and previous mode estimates, to calculate the posteriori

probability using Equation 6-9 through Equation 6-11. Once the posteriori probability has been

calculated, the current mode estimate can be appropriately inserted into the current belief state,

B(t+1). The inputs and outputs of the Rank algorithm are shown below.

Rank

Enabled
Transitions

Likely Current
Mode Estimate

Current
Belief State

Previous
Mode

Estimates

Figure 7-12 - Inputs and Outputs of the Rank Algorithm

The steps of the Rank algorithm, as explained in Chapter 6, begin with determining if the current

mode estimate, Sj
(t+1) already exists in the current belief state. To determine this, the algorithm

iterates through the mode estimates in the current belief state, and compares the current mode

estimate to these for equality. Equality is defined as containing the same, identical state. If the

mode estimates are equal, then the current belief state is unchanged. If the current mode estimate

does not exist in the current belief state, then the Rank algorithm proceeds to calculate the total

probability of the current mode estimate.

Achieving Real-time Mode Estimation through Offline Compilation 180

The total probability calculation requires iterating through each previous mode estimate and

determining if the component mode assignments in a given previous mode estimate, Si
(t), can

transition to the component mode assignments in the current mode estimate, Sj
(t+1). Computing

this, as specified in Chapter 6, requires identifying if there is an enabled transition for each pair

of component mode assignments, where the source is the component mode in the previous mode

estimate and the targer is the component mode in the current mode estimate. If there is an

enabled transition for each pair, then the transition probability is non-zero, and is calculated by

the Rank algorithm. The algorithm is detailed below.

function Rank(Sj
(t+1), B(t), B(t+1), TEN)

 returns B(t+1) when Generate exits, otherwise returns 〈 Sj
(t+1), P(Sj

(t+1)) 〉, if possible
 for each Sm

(t+1) in B(t+1)
 if Sj

(t+1) = Sm
(t+1)

 then return 〈 Sj
(t+1), P(Sj

(t+1)) 〉 with P(Sj
(t+1)) = 0.

 end
 P(Sj

(t+1) | B(t)) ← 0
 for each Si

(t) in B(t)
 if ∀ (xim = vij) ∈ Si

(t) there exists a Ti ∈ TEN where a (xim = vin) ∈ Sj
(t+1) is the target

 then
 P(Sj

(t+1) | Si
(t)) ← P(Si

(t)) • Π PT((xim = vij) ∈ Si
(t) → (xim = vin) ∈ Sj

(t+1))
 P(Sj

(t+1) | B(t)) ← P(Sj
(t+1) | B(t)) + P(Sj

(t+1) | Si
(t))

 end
 B(t+1) ← Insert-in-Order(B(t+1), Sj

(t+1))
 return B(t+1) when Generate exits, otherwise return 〈 Sj

(t+1), P(Sj
(t+1)) 〉

Figure 7-13 - Rank Algorithm

The first steps of the Rank algorithm determine if the current mode estimate is equivalent to any

mode estimate in the current belief state. If this is not the case, then the algorithm proceeds to

calculate the posteriori probability by first initializing P(Sj
(t+1) | B(t)), to be zero. Then, the

algorithm iterates through the previous mode estimates and for an Si
(t), if a transition exists to the

current mode estimate, then the transition probability is calculated per Equation 6-9 and Equation

6-10. This transition probability is then summed to the running total P(Sj
(t+1) | B(t)). Once the

posteriori probability is calculated, the mode estimate is inserted in order of decreasing

probability in the current belief state. The algorithm that performs this operation, the ‘Insert-in-

Achieving Real-time Mode Estimation through Offline Compilation 181

Order’ algorithm, is the same as the ‘Insert-Node’ algorithm defined for the CDA* algorithm,

given in Figure 7-11.

The specification of the Rank algorithm completes the algorithm definitions for the Online Mode

Estimation process. These algorithms work together to map the compiled model, current

observations and control variables to a set of consistent mode estimates, ordered from most

likely to least likely. The final step is to tie the Compiled Conflict Recognition and the Dynamic

Mode Estimate Generation algorithms together.

7.3 Online Mode Estimation

This algorithm drives the process of mode estimation during the time the spacecraft system is

executing operations. The algorithms given thus far for the mode estimation process were

designed to generate the current belief state between times ‘t’ and ‘t+1’. The final phase of

mode estimation is to perform these computations as time marches forward and track the system

over time. The inputs and outputs of this process are shown below.

Online
Mode

Estimation

Dissents

Compiled
Transitions

Current
Belief State

Observations Commands

Figure 7-14 - Inputs and Outputs for Online Mode Estimation

The Online Mode Estimation algorithm ties together the algorithms of the Compiled Conflict

Recognition and of the Dynamic Mode Estimate Generation. Online Mode Estimation calls the

algorithms of the Compiled Conflict Recognition in a particular order. First, the truth-values of

the observations and commands must be updated before any triggering can occur. Once this

process is successful, the Dissent and Transition Trigger algorithms are invoked to create the

lists of Enabled Dissents and Enabled Transitions. The Constituent Diagnosis Generator uses

Achieving Real-time Mode Estimation through Offline Compilation 182

these inputs, along with the internal Previous Mode Estimates to determine the Constituent

Diagnoses, the Reachable Current Modes, and passes along the Enabled Transitions.

The Online Mode Estimation algorithm then invokes the Generate algorithm that drives the

computation of the current belief state from the Constituent Diagnoses, the Reachable Current

Modes and the Enabled Transitions. The Online-Mode-Estimation algorithm is detailed below.

function Online-Mode-Estimation(Dissents, TCOMPILED, Πo
Current, Πc

Current)
 returns a current belief state, B(t+1)
 [Πm, Πo, Πc] ← initialize assignment types once
 loop do
 if B(t) is empty
 then
 [Πo

Changed, Πc
Changed] ← Initialize-Truth(Πo, Πc, Πo

Current, Πc
Current)

 Πm
Previous ← Πm

 DSEN ← Dissent-Trigger(Πo
Changed, Dissents)

 [Πm
Current, CD, empty] ← Constituent-Diagnosis-Generator(DSEN, empty, Πm

Previous)
 B(t+1) ← Generate(empty, Πm

Current, CD, empty)
 return B(t+1)

 else
 [Πo

Changed, Πc
Changed] ← Update-Truth(Πo, Πc, Πo

Current, Πc
Current)

 Πm
Previous ← Compress-States(B(t))

 DSEN ← Dissent-Trigger(Πo
Changed, Dissents)

 TEN ← Transition-Trigger(Πo
Changed, Πc

Changed, Πm
Previous, TCOMPILED)

 [Πm
Current, CD, TEN] ← Constituent-Diagnosis-Generator(DSEN, TEN, Πm

Previous)
 B(t+1) ← Generate(B(t), Πm

Current, CD, TEN)
 return B(t+1)
 while(true)

Figure 7-15 - Online Mode Estimation Algorithm

The algorithm shown here is only a skeleton that makes the appropriate invocations of the

algorithms detailed previously. The Online Mode Estimation algorithm must be capable of

interfacing with a real system. This results in the need for an interface for the ‘Observations’ and

‘Commands’. This has not been specified because an interface of this type changes for each

individual system.

Achieving Real-time Mode Estimation through Offline Compilation 183

The Online-Mode-Estimation algorithm is not necessarily an algorithm that ever exits under

normal operation. The algorithm is executing in parallel with many other processes in the

system and continuously determining mode estimates. When the system requires a mode

estimate, the algorithm returns it to the system. This type of design enables the Online-Mode-

Estimation algorithm to not only be used in a real time system, but to enable the architecture of

the Model-based Executive presented in Chapter 1.

Compiled Mode Estimation performs the specified function within the Model-based Executive of

providing mode estimates representative of the system behavior. It maps the system model,

observations and commands to a set of mode estimates. Compiled Mode Estimation is able to

use multiple sources of information to determine the mode estimates, is able to track multiple

system trajectories at each time step, increasing the accuracy of the mode estimates.

Additionally, CME is able to diagnose single and multiple faults. These are the desired

capabilities specified in Chapter 1 of the next evolution of the mode estimation engine.

This brings to a close the description of the theory, and algorithms associated with Compiled

Mode Estimation. Chapter 2 discussed the compilation process to obtain dissents and compiled

transitions from a system model. Chapter 3 described in detail the use of this compiled

information in performing online mode estimation, giving the main ideas and detailing the

necessary computations. This chapter presented the formal algorithms that perform the Online

Mode Estimation process. The formal algorithms that describe the compilation of the system

model are presented in Appendix A.

The Online Mode Estimation produces consistent mode estimates that agree with the system

model, observations and commands. The goal of this research was to not just develop a working

mode estimation engine, but to also validate this approach to mode estimation. The validation of

an algorithm of this type can only be done through experimentation and verification of the results

against an existing system. The next chapter discusses the validation of the Compiled Mode

Estimation approach using the NEAR spacecraft.

Achieving Real-time Mode Estimation through Offline Compilation 184

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 185

8 Experimental Validation

The Compiled Mode Estimation system and algorithms have been developed through the

presentation of previous mode estimation approaches and the process of compilation in Chapters

2, 3, 4 and 5. The algorithms that make use of the compiled model to perform mode estimation

were given in Chapters 6 and 7. The next step is to validate CME through experimentation.

Our experiments include CME operating on scenarios of nominal operation and component

failures. These scenarios specify sequences of observations and command values, while CME

determines the expected behavior of the system. The experiments will demonstrate that CME

correctly determines the expected behavior of the system. The experiments support the claim

that the compiled model requires a smaller memory footprint than the full model. In addition,

the set of dissents enable the diagnoses, which CME produces, to be inspectable for correctness

by a human before they are needed by the system.

Our example is drawn from the NEAR spacecraft. An artist’s depiction of the NEAR spacecraft

is shown below.

Figure 8-1 - Artist's Depiction of the NEAR Spacecraft

Achieving Real-time Mode Estimation through Offline Compilation 186

Recall that the Near Earth Asteroid Rendezvous mission was ground breaking for the Johns

Hopkins University Applied Physics Lab. This spacecraft rendezvoused with the Eros asteroid

appropriately on February 14, 2000. NEAR mapped the surface completely and performed

experiments to determine the composition of the asteroid. The NEAR spacecraft provided a

wealth of information over its mission lifetime of 2 years. Of the many systems on-board the

spacecraft, the power system is one of the most essential to the operation of the spacecraft.

Without the necessary power, the spacecraft would be rendered inoperable, so it is critical that

the power system operate even in the face of failures.

The presentation of the Compiled Mode Estimation process has relied on the power storage

system from the NEAR spacecraft to demonstrate the theory and algorithms. The validation

experiments developed in this chapter use the entire NEAR power system. The models of the

power system are presented in Section 8.1, followed by the compiled model in Section 8.2. The

experiments designed to use these models to test the Compiled Mode Estimation and the results

of these experiments are presented in Section 8.3. The chapter concludes with a discussion of

the results in Section 8.4.

8.1 NEAR Spacecraft Power System

The use of existing systems enables the detailed modeling necessary for mode estimation. In

using existing systems, the components, sensors and component interactions are understood,

specified and well documented. Additionally, potential failures have been determined for

existing systems, and there is a wealth of information for failures that have occurred in previous

systems. The experiments focus on these failures for the NEAR Power system and test if the

compiled mode estimation algorithms can properly estimate the modes of the components to

diagnose these failures.

This section details some of the component models of the NEAR Power system by first

presenting the power system block diagram, and then detailing some of the individual component

models. Any that are not presented here are given in Appendix A. After presenting the

component models, the compiled model is given in section 8.2.

Achieving Real-time Mode Estimation through Offline Compilation 187

8.1.1 System Block Diagram

The NEAR power system was designed as a direct energy transfer (DET) system. Scientific

devices and spacecraft components are designed to use a specific voltage level, so the power

system must regulate the incoming power to this level. The DET design uses mechanisms to

dissipate power to regulate the voltage and current in the spacecraft. The schematic of the

NEAR Power system is shown in Figure 8-2. This figure was presented earlier in Chapter 1, and

is presented now for clarity, with all pertinent components labeled.

Solar Arrays

Digital Shunts Analog Shunts

Power Bus

Current
Sensors

Redundant
Battery Chargers Charger Switch

Battery

Battery
Temperature Sensor

Battery Voltage &
Current Sensors

Figure 8-2 - NEAR Power System Schematic

Noted on the figure are the main components of the system, the solar arrays, the primary and

redundant digital and analog shunts, the switch for the chargers, the redundant chargers and the

battery. A shunt is the least intuitive component in the power system. It acts to dissipate power

generated from the solar arrays. The two types, digital and analog, can be thought of as

switches, that when closed dissipate power, and when open allow power to flow to the bus.

Noted on the figure are the sensors in the system, the current sensors for the solar arrays, one for

the primary and redundant digital shunts, one each for the primary and redundant analog shunts,

Achieving Real-time Mode Estimation through Offline Compilation 188

and a temperature and voltage sensor for the battery. These sensors are used to extract the

observation information from the power system.

The components in the schematic that are not referenced are the digital and analog shunt drivers,

as well as the bus voltage regulator. The digital and analog shunt drivers send commands to the

digital and analog shunts to open or close a certain number of shunts to dissipate the appropriate

power. The bus voltage regulator is the source of these commands. This component can be

thought of as a software process that determines which commands to send to the drivers to

dissipate the appropriate amount of power. These components are not modeled in this

experiment. Instead the drivers and bus voltage regulator are abstracted away and the commands

are an input to the system model, specifically the digital and analog shunts. Removing these

components from the system model simplifies the model slightly, but does not take away from

the complexities that the model expresses. The encoding of software processes is an extension to

the modeling language used for this experiment.

8.1.2 Component Models

A new representation of the NEAR Power system is developed using the simplification described

above. Figure 8-3 depicts the simplified schematic.

Solar Array
Current

Digital Shunt
Current

Primary Analog
Shunt Current

Secondary Analog
Shunt Current

1 2 21

Primary
Charger

Secondary
Charger

Charger
Current

Charger
Current

Voltage TLM

Battery
Battery

Temperature

Switch

Sun

Battery
Current

Figure 8-3 - Schematic of Simplified NEAR Power System

Achieving Real-time Mode Estimation through Offline Compilation 189

Noted on the schematic are the redundant digital and analog shunts. Drawn around the digital

shunts and the solar arrays is a box that denotes a single solar array panel. The NEAR spacecraft

has four solar panels, as shown in Figure 8-1, and each solar panel has five solar cell groups,

depicted in Figure 8-3. This schematic is broken down into the following representation that

shows the components, their inputs and outputs and all observation and commands that are

within the system.

Bus Current (Ibus)

Solar Array
Panel1

Digital
Shunts1

P

Primary
Analog Shunts

Digital
Shunts1

R

Isa
1 Ishunt_D

1

Solar Array
Panel2

Digital
Shunts2

P

Digital
Shunts2

R

Isa
2 Ishunt_D

2

Solar Array
Panel3

Digital
Shunts3

P

Digital
Shunts3

R

Isa
3 Ishunt_D

3

Solar Array
Panel4

Digital
Shunts4

P

Digital
Shunts4

R

Isa
4 Ishunt_D

4

Ishunt_D

Redundant
Analog Shunts

Ishunt_P

Ishunt_R

Bus Voltage (Vbus)

Vsa
1

Vsa
2

Vsa
3

Vsa
4

Switch

Primary
Charger

Redundant
Charger

Battery

Ibattery

Battery
Temperature

Battery
Temperature

Switch
VoltageP

Switch
VoltageR

Charger
CurrentP

Charger
CurrentR

Vbattery

Primary Analog Shunt
Command (µshunt_P)

Redundant Analog Shunt
Command (µshunt_R)

Primary Digital Shunt
Command (µshunt_DP

1)

Redundant Digital Shunt
Command (µshunt_DR

4)

Switch
Command

Figure 8-4 - NEAR Power System Block Diagram

Some of the components noted on the figure are detailed in the following sections with the

remaining in Appendix A. By removing the digital and analog shunt drivers, the commands for

the shunts must now be specified as inputs to the system. The figure denotes these commands

for the analog shunts and digital shunts. The following sections detail the models of the battery

and chargers. Their complex interaction results in a complex failure scenario. The reader is

referred to Appendix A to review pertinent models to understand the specific scenarios and

results presented in this chapter.

Achieving Real-time Mode Estimation through Offline Compilation 190

8.1.3 Charger

The power system chargers use the input voltage from the spacecraft power bus, noted as the

bus-voltage, and transform it into a current to charge the battery. The internal pieces that

perform this transformation are too complex to model individually. The chargers are not

modeled to this level of detail because there is no observability into the operation of the chargers.

There is only the observable of the output of the charger, the charger-current. There is no direct

observable of the input to the charger, the voltage coming from the switch. However, the

additional information of the battery-temperature enables the models of the charger to use this

information to determine its mode, or how it is charging the battery. This additional input allows

the modeling of the charger at a high level, neglecting the internal specifics of the charger.

The modes of the charger are specified by determining the interaction between the charger and

the battery. For instance, if the battery temperature is nominal, then the battery level of charge

is not full, so the charger can continue to charge it. However, if the battery temperature is high,

then this indicates that the battery charge level is full, so the charger only needs to trickle-charge

the battery to keep it full. Using these characteristics, the model of the charger is specified

below in Figure 8-5.

charger

switch-voltage

battery-temperature

charger-current

Full-On
switch-voltage
 = nominal
charger-current
 = nominal

Trickle
switch-voltage
 = low or nominal
charger-current
 = trickle

Off
switch-voltage
 = zero
charger-current
 = zero

Broken
charger-current
 = high

Unknown

battery-temperature !=
High

battery-temperature =
High

battery-
temperature

= low

battery-
temp

= high

battery-
temp

!= high

battery-
temp
!= low

Figure 8-5 – Constraint Automaton of the NEAR Power System Chargers

The model uses the input switch-voltage and the output charger-current to constrain the modes

of the charger. The switch-voltage has the domain {zero, low, nominal}, and the charger-

current has the domain {zero, trickle, nominal, high}. The charger mode trickle is characterized

Achieving Real-time Mode Estimation through Offline Compilation 191

by a low or nominal input switch-voltage, and a trickle output for the charger-current. This

mode is modeled to capture the behavior of normal operation on the spacecraft. The spacecraft

should be using most of the power generated from the solar array and the battery should be fully

charged most of the time. As a result, the battery only needs to be trickle charged to maintain its

full charge. The next operational mode is denoted by the full-on mode for the charger. This

mode models the charger having a higher amount of voltage to charge the battery, indicated by

the switch-voltage being at nominal. The output current is then constrained to be nominal

indicating that the battery requires more of a charge to get it back to the full level. The final

operational mode, off, denotes that the charger has been turned off because there is no input

voltage from the bus, indicated by the value zero for the switch-voltage. As a result, the charger

can only have one output value, a charger-current of zero.

The failure modes for the charger include a broken and an unknown mode. The broken mode

captures the behavior that the charger has a short in it that is causing the output current to be

high. As a result, the charger has failed in some way, and cannot be used any more. When this

happens, the redundant charger is then used to charge the battery. The automatic changing of the

switch is expressed using the following constraints between the switch-command and the

charger-current:

 (if (charger-currentP = high) ⇒ (switch-command = to-charger-p))
 (if (charger-currentR = high) ⇒ (switch-command = to-charger-r))

These constraints enable the switch to move to the charger-p or charger-r position automatically

when a charger fails. When a charger has failed, then the switch can no longer be at that

position, and the mode constrains this automatically. When a charger fails in the broken mode,

no other operational modes are allowed ever again, which is restricted by the transitions. The

unknown fault mode captures any other behavior of the battery charger that has not been

considered.

The discussion of the transition system of the charger is detailed in Appendix A. The reader is

referred to the section of the charger model for the expression of constraints between the output

charger-current and the input to the battery.

Achieving Real-time Mode Estimation through Offline Compilation 192

8.1.4 Battery

The battery is the NEAR Power system’s means to store excess power generated from the solar

arrays for later use. It is also the NEAR spacecraft’s means to operate the spacecraft in the event

that the solar arrays cannot provide the necessary power for the spacecraft. This can happen on

many occasions during the normal operation of the spacecraft. For instance, if the NEAR

spacecraft flies into the shadow of an object, such as the Earth or the Eros asteroid, then the

battery would provide power to the spacecraft. The battery has different levels of being charged,

indicated by it either being full, charging, discharging and dead. These behaviors are captured in

the model of the battery in Figure 8-6.

The battery uses the inputs of the charger-current and the outputs battery-voltage, battery-

current, and the battery-temperature to constrain the modes. The input charger-current is used

to transition between the modes of the battery, and the constraints on the modes are expressed

using the outputs. Recall that in the previous modeling of the NEAR Power Storage system,

only the battery voltage was considered as an output of the battery. However, having now

included the remaining components of the NEAR Power system, it becomes necessary to include

the battery current as an output because it adds to the output current of the analog shunts of the

power generation components. The resultant component model is shown below in Figure 8-6.

battery

charger-current

battery-temperature

battery-voltage

Unknown

charger-current = nominal

charger-current = trickle

charger-
current =
trickle or
nominal

1

1 Charger Current = zero
2 Charger Current = trickle

charger-current
= zero

2

charger-
current =
trickle or
nominal

charger-
current =

zero

Full

battery-temp.
= high

battery voltage
 = nominal

battery current
 = nominal

Charging

battery-temp.
 = nominal
battery-voltage
 = nominal
battery-current

 = low

Discharging

battery-temp.
 = low

battery-voltage
 = low

battery-current
 = low

battery-current

Dead

battery-temp.
 = low

battery-voltage
 = zero

battery-current
 = zero

Figure 8-6 – Constraint Automaton of the NEAR Power System Battery

Achieving Real-time Mode Estimation through Offline Compilation 193

The operational modes of the battery are given as charging, full, and discharging. The

component mode charging is characterized by a nominal battery-voltage, a nominal battery-

temperature and a low battery-current. This combination of output values indicates that the

level of charge in the battery is not where it should be, so it needs to be put on a full charge. The

full mode is characterized by a high reading for the battery-temperature, a nominal reading for

the battery-current and a nominal reading for the battery-voltage. This combination of values

indicates that the battery level of charge is full and that it only needs to be kept at this level by

the battery charger. Notice that the reading of the battery current has changed, but the voltage

level stays the same. The battery always maintains the same voltage level, but the level of

charge is indicated by the current and the temperature. In the case of the discharging mode, the

output values are given by a low reading for the battery-temperature, a low reading for the

battery-voltage and a low value for the battery-current. These values indicate that the battery

temperature has dropped because the chargers are no longer heating it up through charging.

Also, the battery-voltage and the battery-current have also dropped below the normal values to

low because the level of charge in the battery has decreased.

The fault modes of the battery are given as a dead and an unknown mode. When the battery is

dead, it no longer has any charge, resulting in the loss of the spacecraft. The output values given

in the model for this component mode are a low value for the battery-temperature, a zero value

for both the battery-voltage and the battery-current. These values characterize when the battery

does not have charge remaining so it cannot discharge any voltage or current. The final mode of

the battery, unknown, captures any behavior not modeled with these component modes.

The operational modes of the battery transition to other modes based on the value of the input

charger-current. The transitions constrained by the charger-current are between the modes

charging, full, and discharging. The battery transitions from the charging mode to the full mode

when the input charger-current is at the trickle level. This constraint also characterizes the

transition of the battery from discharging to charging. There is only one transition to an

operational mode allowed from the discharging mode for the same reason expressed with the

chargers. When the battery no longer needs to supply extra power to the spacecraft for its

operations, there will not be an excess of power to allow for the full charging of the battery. As a

Achieving Real-time Mode Estimation through Offline Compilation 194

result, the battery will only be able to begin charging using a trickle charge. The final

operational transition allowed is between the full mode to the charging mode. This transition is

allowed only if the input charger-current is nominal, because the battery level of charge is lower

than full, requiring as much current as possible to get the level of charge back to full.

The final step of the model for the NEAR Power system is to constrain the inputs and outputs of

the components to be the same. These constraints link the components together and are

expressed in the concurrent constraint automaton that incorporates these individual constraint

automata. The models given here capture the behaviors of the NEAR Power system and are

expressed as a concurrent constraint automaton. However, to develop the simulation for the

Compiled Mode Estimation system, the CCA must be compiled into dissents and compiled

transitions.

8.2 Compiled Model

The NEAR Power system having been developed using concurrent constraint automata must be

transformed for the Compiled Mode Estimation system. The compiled model is presented below

to show the compactness of the model. The uncompiled model specified above has not only

individual component modes and their constraints, but also constraints on intermediary variables

between components. The compactness of the compiled model allows for a human to determine

correctness without requiring the need to reason over the entire system. The following figures

denote the compiled transition systems of the individual components in the NEAR Power

system.

switch

Charger-P Charger-R

Stuck-
Charger-P

Stuck-
Charger-R

Unknown

(CH-P = full-on or
CH-P = trickle or

CH-P = off)
NIL

p = 0.9899

p = 0.9899

CH-P = broken
p = 0.9899

1: NIL p = 0.01

1 1
1

1

2 2

2: NIL p = 0.99
to Unknown: NIL p = 0.0001

solar array

Operational Broken

Unknown

p = 0.001

p = 0.0001p = 0.0001

p = 0.99 p = 0.99

Achieving Real-time Mode Estimation through Offline Compilation 195

digital shunts

None-
closed One-closed

Two-closed

Three-
closed

Four-closed

Five-closed

Stuck-
Closed Stuck-Open

Unknown

1

1

1

11

2
2

2

2
2

1: DS-CMD = close p = 0.97
2: DS-CMD = open p = 0.97
3: DS-CMD = no-cmd p = 0.97

3 3

3

3

3

3

to Unknown: NIL p = 0.0001
analog shunts

None-
closed One-closed

Two-closed

Three-
closed

Four-closed

Five-closed

Stuck-
Closed Stuck-Open

Unknown

1

1

1

1

1

2 2

2

2

2

1: AS-CMD = close p = 0.97
2: AS-CMD = open p = 0.97
3: AS-CMD = no-cmd p = 0.97

3 3

3

3

3

3

to Unknown: NIL p = 0.0001

Six-closed

Seven-
closed

3

3

1

1

2

2

to Stuck-Open: NIL p = 0.01
to Stuck-Closed: NIL p = 0.01

to Stuck-Open: NIL p = 0.01
to Stuck-Closed: NIL p = 0.01

charger

Trickle Full-On

Off Broken

Unknown

battery-temp =
nominal or low

p = 0.8899
p = 0.8899

1: NIL p = 0.1

1 1
2

2: NIL p = 0.01
to Unknown: NIL p = 0.0001

battery-
temp = high

2

2

battery-temp = nominal or low
p = 0.8899

NIL
p = 0.99

battery-
temp = low

battery-temp =
nominal p = 0.99

p = 0.99

battery-temp = high
p = 0.8899

battery

Full Charging

Discharging Dead

Unknown

charger-P = full-on or
charger-R = full-on

p = 0.99

charger-P = trickle or
charger-R = trickle

p = 0.99

charger-P = full or
charger-R = full-on

p = 0.99

charger-P = trickle or
charger-R = trickle

p = 0.99

1

1 2

1: charger-P = off or
 charger-R = off p = 0.99
2: charger-P = trickle or
 charger-R = trickle p = 0.99

33

3

3: NIL p = 0.01
to Unknown: NIL p = 0.0001

charger-P = off or
charger-R = off

p = 0.99

NIL
p = 0.99

Figure 8-7 - Compiled Transition Function for Each Component

The full list of dissents for the compiled model is given in Appendix D. A sampling of these

dissents are given below.
1. BUS-VOLTAGE=ZERO -> ¬SOLAR-ARRAY-1.MODE=OPERATIONAL

2. BUS-VOLTAGE=LOW -> ¬SOLAR-ARRAY-1.MODE=OPERATIONAL

3. SOLAR-ARRAY-CURRENT=ZERO -> ¬SOLAR-ARRAY-1.MODE=OPERATIONAL

4. SOLAR-ARRAY-CURRENT=LOW -> ¬SOLAR-ARRAY-1.MODE=OPERATIONAL

5. BATT-CURRENT=ZERO -> ¬BATTERY.MODE=CHARGING

6. BATT-CURRENT=NOMINAL -> ¬BATTERY.MODE=CHARGING

7. BATT-TEMPERATURE=LOW -> ¬BATTERY.MODE=CHARGING

44. BUS-VOLTAGE=LOW -> ¬[CHARGER-P.MODE=OFF, SWITCH.MODE=CHARGER-P]

45. BUS-VOLTAGE=NOMINAL -> ¬[CHARGER-P.MODE=OFF, SWITCH.MODE=CHARGER-P]

Achieving Real-time Mode Estimation through Offline Compilation 196

46. BUS-VOLTAGE=LOW -> ¬[CHARGER-P.MODE=OFF, SWITCH.MODE=STUCK-CHARGER-P]

47. BUS-VOLTAGE=NOMINAL -> ¬[CHARGER-P.MODE=OFF, SWITCH.MODE=STUCK-CHARGER-P]

48. BUS-VOLTAGE=ZERO -> ¬[CHARGER-P.MODE=FULL-ON, SWITCH.MODE=CHARGER-P]

49. BUS-VOLTAGE=LOW -> ¬[CHARGER-P.MODE=FULL-ON, SWITCH.MODE=CHARGER-P]

50. BUS-VOLTAGE=ZERO -> ¬[CHARGER-P.MODE=FULL-ON, SWITCH.MODE=STUCK-CHARGER-P]

51. BUS-VOLTAGE=LOW -> ¬[CHARGER-P.MODE=FULL-ON, SWITCH.MODE=STUCK-CHARGER-P]

52. BUS-VOLTAGE=ZERO -> ¬[CHARGER-P.MODE=TRICKLE, SWITCH.MODE=CHARGER-P]

53. BUS-VOLTAGE=ZERO -> ¬[SWITCH.MODE=STUCK-CHARGER-R, CHARGER-R.MODE=TRICKLE]

The dissents and compiled transitions shown here offer an intuitive way to verify the possible

diagnoses of the system and to verify correctness of the model. Notice in the dissents that the

conflicts are localized to only a few components and observations. This enables a human to

verify the correctness of a conflict very easily by inferring what is meant by the set of infeasible

mode assignments. For instance, in dissent 46, the observation bus-voltage = low implies the

conflict between the mode charger-p = off and switch = stuck-charger-p. This conflict is

correct, and upon reasoning over the behaviors of the component modes, it cannot be possible

that the charger is off if it is receiving a non-zero voltage from the bus through the switch. If

there is excess power being generated, this power must be used to charge the battery.

Doing this for each dissent however does require a substantial amount of time due to the large

number of dissents. For instance, the dissents for the system modeled here Instead, to verify

correctness of the model, a human develops scenarios that simulate spacecraft operations, where

the result of the task is already known. The following section details several scenarios developed

using these models and the results of the CME engine on these scenarios.

8.3 Scenarios and Results

The NEAR spacecraft relied on a rule-based system to handle any failures in the spacecraft

system. This rule based system mapped sensor information to recovery actions. The behavior of

the system is implicit in this rule because a human modeler developed the rule by reasoning

through the component interactions. It is the aim of this validation experiment to show that the

Compiled Mode Estimation diagnoses these failures, and combinations of these failures. This

will demonstrate that CME is capable of not only diagnosing failures in the NEAR rule set, but

Achieving Real-time Mode Estimation through Offline Compilation 197

can diagnose multiple simultaneous failures. In addition, CME can determine many more

failures by reasoning about many different combinations of component modes and is not

restricted to a specified set of failures as in a rule-based system.

The power system of the NEAR spacecraft has several associated rules to handle failures. The

complete NEAR rule set incorporates over 150 rules for its eight sub-systems, and the nine

associated with the power system are listed in Figure 8-8. The rules were designed to only

handle critical component failures that have potential to cause the loss of the mission.

Figure 8-8 - Rules for the NEAR Power System

The notation of the rules above is as follows:

• ‘Id’ : regulated current level on the bus.

• ‘Ishunt_PA’ : current from the primary analog shunts

• ‘Ishunt_RA’ : current from the redundant analog shunts

• ‘Ishunt_D’ : current of the digital shunts

• ‘Vbus’ : the voltage level on the bus

• ‘Ichr’ : the output current of the charger

• ‘Tbatt’ : battery temperature

The validation experiments have been tailored to these rules. The same observations are input to

CME, and the result is the component modes inherent in these rules. Although the behavior of

the system is not explicit in the rule, the component modes can be inferred using the

observations, the resultant repair action and the system model. The discussion to follow explains

the rule, and the component modes that are deduced from the rule. It is these component modes

that are the desired output by the CME engine.

Achieving Real-time Mode Estimation through Offline Compilation 198

The necessary inputs for the system that are specified for each test are:

• Initial mode of the system

• Sequence of observations

• Sequence of commands

The output presented for each test is a screen shot of the CME engine’s output. This output

represents the approximated belief state with mode estimates ordered by decreasing likelihood.

The tests were conducted with the following suite of components:

• 1 solar array (SA)

• 1 primary and 1 redundant set of digital shunts (DS-P, DS-R)

• 1 set of analog shunts (AS)

• 1 switch (S)

• 1 primary and 1 redundant charger (CH-P, CH-R)

• 1 battery (B)

The observation and command variables, with their respective domains, are:

• Solar Array Current (Isa) { zero, low, nominal }

• Digital Shunt Current (Ishunt_D) { zero, low, nominal, high }

• Analog Shunt Current (Ishunt_PA) { zero, low, nominal, high }

• Charger Current (Ichr) { zero, trickle, nominal, high }

• Bus Voltage (Vbus) { zero, low, nominal }

• Battery Temperature (Tbatt) { low, nominal, high }

• Battery Voltage (Vbatt) { zero, low, nominal }

• Battery Current (Ibatt) { zero, low, nominal }

• Prim. Digital Shunt Command (DS-P-CMD) { open, close, no-command }

• Red. Digital Shunt Command (DS-R-CMD) { open, close, no-command }

• Analog Shunt Command (AS-CMD) { open, close, no-command }

Note that the suite of components is not the full NEAR Power system. The example system used

only includes one solar array, its associated primary and redundant digital shunts, and a single set

of analog shunts instead of a primary and redundant set. This simplification has been made for

Achieving Real-time Mode Estimation through Offline Compilation 199

testing purposes but does not impact the goals of the validation. By demonstrating that CME can

diagnose failures of one solar array means that it can be extended to the remaining solar arrays

by incorporating each solar array and its associated set of digital shunts into the system model.

The same holds for the analog shunts. Since the primary and redundant analog shunts are in

parallel, the redundant mirrors the primary. So, showing that CME can diagnose the failure of

the primary analog shunts translates to a similar diagnosis of the redundant shunts since they

each have an individual sensor.

8.3.1 Nominal Operation

CME does not only determine faults, but provides current behavior of the system. This includes

providing the correct mode estimate under normal operations. Examples of this include

engaging digital or analog shunts when commanded, or determining that the charger switches

modes based on the temperature of the battery. This section details these scenarios to

demonstrate that CME provides the correct mode estimate for normal operation of the digital and

analog shunts, and the charger and battery.

8.3.1.1 Digital Shunt Test

This test uses CME to confirm the opening and closing of the digital shunts when commanded.

The system is assumed in the following initial mode:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS = none-closed, S =

CH-P, CH-P = trickle, CH-R = off, B = full }

with the following observations:

{ Isa = nominal, Ishunt_D = nominal, Ishunt_PA = nominal, Vbus = nominal, Ichr =

trickle, Tbatt = high, Vbatt = nominal, Ibatt = nominal }

In order to induce the digital shunt to close, the NEAR system would relay the commands DS-P-

CMD = close and DS-R-CMD = close, since the redundant shunts shadow the operation of the

primary shunts. Additionally, the system gives the analog shunts no command, which is

Achieving Real-time Mode Estimation through Offline Compilation 200

represented by AS = no-command being input to the simulation. Once the commands are given

and observations collected, then the primary and digital shunts should each be in the mode one-

closed. The observations are unchanged because as long as normal operation ensues, which is

the assumption of this test, then the output current of the digital shunts is nominal, and the

remaining portions of the system are not affected. The desired output for the following

observations:

{ Isa = nominal, Ishunt_D = nominal, Ishunt_PA = nominal, Vbus = nominal, Ichr =

trickle, Tbatt = high, Vbatt = nominal, Ibatt = nominal }

is:

{ SA = operational, DS-P = one-closed, DS-R = one-closed, AS = none-closed, S = CH-

P, CH-P = trickle, CH-R = off, B = full }

The following screen shots demonstrates this test:

The input mode estimate and the current observations and commands are shown above. The

result of the CME algorithm is to produce a belief state from these inputs. The figure below

denotes only the most likely mode estimate in the belief state. The full belief state for this

experiment is given in Appendix E.

Figure 8-9 - CME Output for Digital Shunt Normal Operation

Achieving Real-time Mode Estimation through Offline Compilation 201

This demonstrates CME’s ability to track the mode estimates from one time step to the next and

use the command correctly.

8.3.1.2 Nominal Battery and Charger Operation

This nominal operation test involves the charger and the battery. To demonstrate the nominal

operation of the charger and battery, the system is assumed operating normally as in the two

previous nominal tests. However, the NEAR spacecraft requires more power from the power

system than the solar arrays can provide. This means that the battery must be enabled to provide

the necessary power. This necessitates the battery changing from the full mode to now

discharging. In addition, since the spacecraft requires more power, then this means that there is

no power to charge the battery. As a result, the primary charger turns off since there is no power

coming in to it. This test will demonstrate CME’s ability to estimate the behavior of multiple

components and their interaction.

The initial mode estimate for this scenario assumes all components are operating normally as:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS = none-closed, S =

CH-P, CH-P = trickle, CH-R = off, B = full }

The observations that correspond to this scenario are then:

{ Isa = nominal, Ishunt_D = nominal, Ishunt_PA = nominal, Ichr = zero, Vbus = zero,

Tbatt = low, Vbatt = low, Ibatt = low }

The observations of interest are the charger current and battery temperature, voltage and current.

These observations indicate that the battery is discharging. Since the charge level in the battery

is dropping, then the current drops as well as the battery temperature since the charger is not

charging it any longer. The resulting most likely mode estimate of the system is then:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS = none-closed, S =

CH-P, CH-P = off, CH-R = off, B = discharging }

The output from the CME engine for this scenario is as follows:

Achieving Real-time Mode Estimation through Offline Compilation 202

Using the inputs shown above, the CME engine produces the following mode estimates.

The mode estimates shown above have the exact same probability. The only difference between

the two is the mode assignment for the switch is charger-p in one and and charger-r in the other.

This results because since there is no incoming bus voltage, the switch could be at either

position.

Figure 8-10 - CME Engine Output for Nominal Charger and Battery Operation

8.3.2 Primary Analog Shunt Failure

The first failure scenario considered involves the analog shunts. This test will demonstrate

CME’s ability to use commands and the conflicts to correctly identify faulty behavior. A shunt

Achieving Real-time Mode Estimation through Offline Compilation 203

can either fail in the open position or in the closed position and will remain that way. This

failure scenario involves a shunt failing in the open position. A shunt that fails in this manner

causes the output shunt current to be higher than expected because the system believes that the

shunt should be closed, thus dissipating power. However, if the shunt remains open, the power is

not dissipated, causing a higher output current than expected.

This scenario corresponds to rules 22 and 23 of the NEAR fault management system. This rule

states that if the bus current, Id, is greater than 1.0 A and the analog shunt current, Ishunt_PA or

Ishunt_RA, is greater than 0.8 A, then the group of shunts has failed. The symptom then states

that if the analog shunt current is high, then the bank of analog shunts has failed. Due to a lack

of observability of the shunts, the symptom only identifies the entire bank of shunts as failed, but

cannot identify any one particular shunt.

The experiment for this scenario begins with all components operating in the modes below:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS-P = none-closed, S =

CH-P, CH-P = trickle, CH-R = off, B = full }

The following commands are then issued to the system:

{ DS-P-CMD = no-command, DS-R-CMD = no-command, AS-CMD = close }

The resultant observations of the system, denoting the high analog shunt current, are:

{ Isa = nominal, Ishunt_D = nominal, I_shunt_PA = high, Ichr = nominal, Vbus =

nominal, Tbatt = high, Vbatt = nominal, Ibatt = nominal }

The most likely mode estimate of the system is then:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS-P = stuck-closed, S =

CH-P, CH-P = trickle, CH-R = off, B = full }

This set of component modes demonstrates that by observing a high current from the analog

shunt output means that an analog shunt has failed in the stuck-open position. The resulting

output from the CME engine for this is given below:

Achieving Real-time Mode Estimation through Offline Compilation 204

The observations, commands and initial mode estimate then generate the likely mode estimates:

Figure 8-11 - CME Output for a Failed Analog Shunt

The figure above shows that the CME engine has correctly determined that the analog shunts

have failed in the stuck-open position. The remaining mode estimates in the belief state are

given in Appendix C.

8.3.3 Failed Charger

The next failure considered involves the charger in the NEAR Power storage system. A charger

failure is indicated by the output current exceeding a threshold. Rule 28 in the NEAR fault

management system is associated with this type of failure. If the charger current exceeds 0.8 A,

then there is a short within the charger causing a high output current. In the discrete modeling,

this is indicated by the observation Ichr = high. The charger failure offers an interesting

characteristic. A result of the charger failing, is the switch immediately is moved to the charger-

Achieving Real-time Mode Estimation through Offline Compilation 205

r position and charger-r is turned on so it can charge the battery. So, this demonstrates that the

CME engine is capable of determining if multiple components changed modes at the same time.

The experiment for this scenario begins with the components in the following modes:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS = none-closed, S =

CH-P, CH-P = trickle, CH-R = off, B = full }

The following observations are made, with no commands being given to the shunts.

{ Isa = nominal, Ishunt_D = nominal, Ishunt_PA = nominal, Ichr = high, Vbus =

nominal, Tbatt = high, Vbatt = nominal, Ibatt = nominal }

{ DS-P-CMD = no-command, DS-R-CMD = no-command, AS-CMD = no-command }

The diagnosis of the failed charger using the above observations first identifies the failed

charger, CH-P. Since it is the only charger that is on then the observation Ichr = high reflects

the behavior of this component. Next, CME determines that because the primary charger has

failed, that the switch must be moved to position charger-r and that charger-r must be turned on

and begin trickle charging the battery. The constraint that at least one charger must always be on

if the incoming bus-voltage is greater than zero was encoded in the original model, and carried

through to the compiled model and the dissents. The following is a sampling of the relevant

dissents.
29. [] -> ¬[SWITCH.MODE=CHARGER-P, CHARGER-R.MODE=FULL-ON]

30. [] -> ¬[SWITCH.MODE=CHARGER-P, CHARGER-R.MODE=TRICKLE]

31. [] -> ¬[SWITCH.MODE=STUCK-CHARGER-P, CHARGER-R.MODE=FULL-ON]

32. [] -> ¬[SWITCH.MODE=STUCK-CHARGER-P, CHARGER-R.MODE=TRICKLE]

33. [] -> ¬[CHARGER-P.MODE=FULL-ON, SWITCH.MODE=STUCK-CHARGER-R]

34. [] -> ¬[CHARGER-P.MODE=FULL-ON, SWITCH.MODE=CHARGER-R]

The expected diagnosis of the system with these observations is:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS = none-closed, S =

CH-R, CH-P = broken, CH-R = trickle, B = full }

The output of the CME engine for this scenario is given below.

Achieving Real-time Mode Estimation through Offline Compilation 206

These observations and commands result in the following mode estimate.

Figure 8-12 - CME Output for Failed Charger

The most likely mode estimate given above identifies the primary charger as being broken, and

has placed the switch at the redundant charger position. The redundant charger is then turned on

to the trickle mode and charges the battery. CME correctly estimates the modes of all three

components using multiple observations to identify the failed charger and to choose the correct

modes for the switch and charger-r.

8.3.4 Digital Shunt Failure

Another critical failure of the power system involves a failure of the digital shunts. In this case,

if a shunt fails stuck open, then the resulting current is going to be higher than expected. This

failure is similar to the analog shunts. However, in this case, the diagnosis is much more

difficult because there is only a single observable for the digital shunt current, Ishunt_D. So, if

the shunt current is higher than expected, the failure could be in either the primary or redundant

shunts.

Achieving Real-time Mode Estimation through Offline Compilation 207

This failure is captured in the NEAR rules under numbers 24 and 25. If the digital shunt current

exceeds 6 A, then one of the banks of digital shunts has failed. The NEAR rule set automatically

determines whether the primary or redundant charger has failed by executing the recovery

actions “Find_Bad_Bus_Reg” and then “Try_Sec_Bus_Reg_Off”. By executing

“Find_Bad_Bus_Reg”, the power system disables the primary digital shunts, and as a result the

output of these shunts does not appear in the Ishunt_D output. This leaves the redundant digital

shunts enabled, and thus its output is reflected in Ishunt_D. Then, the system waits for another

reading of the observation, and if it exceeds 6 A again, then the fault is isolated in the redundant

digital shunts. However, if the Ishunt_D was not greater than 6 A on the second reading, the

recovery action “Try_Sec_Bus_Reg_Off” is executed which enables the primary digital shunts

and disables the redundant digital shunts. If the observation is 6 A this time, then the fault is

isolated in the primary digital shunts.

This scenario offers a prime example to demonstrate the utility of CME and its tracking of

multiple mode estimates. By tracking multiple mode estimates, CME determines in different

mode estimates that either the primary or redundant digital shunts has failed. However, the most

likely mode estimate may not be the correct one. This is disambiguated by the second

observation though because if the observation persists, then one trajectory becomes highly

unlikely, while the other one becomes very likely. The following figure visualizes this.

S1
(t)

S2
(t+1)

DS-R = stuck-
open

S1
(t+1)

DS-P = stuck-
open

.

.

.

S1
(t+2)

DS-R = stuck-
open

S2
(t+2)

DS-P = stuck-
open

Ishunt_D = highIshunt_D = high

.

.

.

B(t+1) B(t+2)

Figure 8-13 - CME Diagnosis of the Digital Shunt Failure

Achieving Real-time Mode Estimation through Offline Compilation 208

For instance, if the most likely mode estimate contains the component mode DS-P = stuck-open,

but in reality the mode estimate containing DS-R = stuck-open is correct. When the next

observation is made that the digital shunt current is still high, then the likelihood that DS-P =

stuck-open drops considerably, while the likelihood of DS-R = stuck-open increases.

In diagnosing the digital shunt failure, the scenario begins with all components in their normal

operation, with one digital shunt closed. The initial mode estimate is then:

{ SA = operational, DS-P = one-closed, DS-R = one-closed, AS = none-closed, S = CH-

P, CH-P = trickle, CH-R = off, B = full }

The set of observations and commands for the scenario are:

{ Isa = nominal, Ishunt_D = high, Ishunt_PA = nominal, Ichr = trickle, Vbus = nominal,

Tbatt = high, Vbatt = nominal, Ibatt = nominal }

{ DS-P-CMD = close, DS-R-CMD = close, AS-CMD = no-command }

The first step of determining the mode estimate for this scenario results in identifying the

primary set of digital shunts failing. This mode estimate is followed closely by the mode

estimate containing the redundant digital shunts as failing.

{ SA = operational, DS-P = stuck-open, DS-R = one-closed, AS = none-closed, S = CH-

P, CH-P = trickle, CH-R = off, B = full }

followed by:

{ SA = operational, DS-P = one-closed, DS-R = stuck-open, AS = none-closed, S = CH-

P, CH-P = trickle, CH-R = off, B = full }

The next step in this scenario asserts that the digital shunt current is still high to test if CME

actually does isolate the failure to the appropriate bank of digital shunts. This should result in

identifying the redundant set of digital shunts as being the source of the failure. The

observations and commands input to the system are:

{ Isa = nominal, Ishunt_D = high, Ishunt_PA = nominal, Ichr = trickle, Vbus = nominal,

Tbatt = high, Vbatt = nominal, Ibatt = nominal }

{ DS-P-CMD = no-command, DS-R-CMD = no-command, AS-CMD = no-command }

Achieving Real-time Mode Estimation through Offline Compilation 209

These observations assert that the digital shunts still in operation are causing the fault. The result

of these inputs should be to diagnose the other bank of digital shunts as faulty. Depending on

which bank of digital shunts failed in the first step above, then the other should be isolated as the

failed component. The resulting mode estimate should be:

{ SA = operational, DS-P = one-closed, DS-R = stuck-open, AS = none-closed, S = CH-

P, CH-P = trickle, CH-R = off, B = full }

with the following mode estimate being much less likely,

{ SA = operational, DS-P = stuck-open, DS-R = one-closed, AS = none-closed, S = CH-

P, CH-P = trickle, CH-R = off, B = full }

The results of this scenario are shown in the following screen shots.

This initial set of observations results in the following mode estimates:

Achieving Real-time Mode Estimation through Offline Compilation 210

Notice that CME has identified that the primary digital shunts and the redundant digital shunts

have failed with high probability, with the primary failing with a slightly higher likelihood. This

causes the disabling of the primary digital shunts. However, given the next set of observations:

CME gives the following mode estimates. Notice that the two have changed positions and that

the mode estimate containing DS-P = stuck-open becomes less likely because the observations

persist, thus identifying DS-R = stuck-open as the failed component mode. The full belief state

returned by CME for this experiment is given in Appendix D.

Figure 8-14 - CME Output for a Failed Digital Shunt

8.3.5 Failed Charger and Failed Analog Shunt

The final scenario developed for the validation of the CME engine involves diagnosing two

simultaneous component failures. The failures chosen are the difficult diagnosis of the failed

charger, and the diagnosis of an analog shunt. This scenario demonstrates CME’s ability to

diagnose multiple component failures, in this case, in different parts of a system. The diagnosis

of a charger is independent of the diagnosis of an analog shunt, even though they are both in the

power system. This scenario uses a combination of observation and command values from the

scenarios detailed in sections 8.3.2 and 8.3.3.

Achieving Real-time Mode Estimation through Offline Compilation 211

The initial mode estimate for the system begins with the components in normal operating modes:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS = none-closed, S =

CH-P, CH-P = trickle, CH-R = off, B = full }

The commands then given to the system are:

{ DS-P-CMD = no-command, DS-R-CMD = no-command, AS-CMD = close }

The resulting observations for the scenario:

{ Isa = nominal, Ishunt_D = nominal, Ishunt_PA = high, Ichr = high, Vbus = nominal,

Tbatt = high, Vbatt = nominal, Ibatt = nominal }

The resultant diagnosis for this set of commands and observations should be:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS = stuck-open, S-CH-R, CH-P

= broken, CH-R = trickle, B = full }

The results of the CME engine are given below:

These observations result in the following mode estimate determined by CME:

Figure 8-15 - CME Results on Double Failure with the Analog Shun and Charger

Achieving Real-time Mode Estimation through Offline Compilation 212

This most likely estimate reflects the desired result of the stuck-open analog shunts and the

broken primary charger. The approximate belief state returned by CME is given in Appendix D.

8.4 Discussion

The suite of tests in Section 8.3 demonstrates several of the important capabilities of the CME

engine. These include diagnosing single and multiple failures using multiple pieces of

information, ranking the diagnoses, and the benefits of using a compiled model. These benefits

include a smaller memory footprint for the model and the mode estimation engine, diagnoses that

are inspectable for correctness before spacecraft operation, and more intuitive modeling of

components.

The model of the NEAR Power system used for this experiment before being compiled had a

memory footprint of 107 KB as tabulated on a Microsoft Windows 2000 operating system. The

compiled model of dissents and transitions requires approximately 30% less memory.

Additionally, the CME program has a footprint of only 250 KB, but could easily be reduced with

better coding techniques. In comparison, the Livingstone engine has a footprint of 500 KB, in

addition to the size of the model. The combination of these two gives a mode estimation

capability that takes up little space in systems where it is so precious. This result is encouraging,

however more data points need to be collected to verify this.

The experiments above began with three tests of nominal behavior, where these included

commanding digital shunts and analog shunts to close, followed by the test using the charger and

battery where the battery was discharging. These tests demonstrated that CME could identify

nominal behavior of the system accurately and ensure that it identifies normal operations of the

components, not just faulty behavior. The tests using the digital and analog shunts demonstrated

that CME uses the commands and observations properly to track mode estimates from one time

step to the next. The scenario to note in these nominal tests is the operation of the charger and

battery. This demonstrated CME’s ability to track nominal behavior correctly of multiple

components and their interactions.

Achieving Real-time Mode Estimation through Offline Compilation 213

The failure scenarios developed and tested highlight the capabilities of CME. The first failure

experiments involving the digital and analog shunts required the use of several pieces of

information. The commands given to the shunts and the resultant observations of the output

currents being higher than expected are used to determine that the digital-shunts = stuck-open.

The next scenarios to highlight are the failing of the charger and the failure of the digital shunts.

These two experiments are of prime interest because they demonstrate the power of CME. The

models for these two scenarios express complex faults simply by developing the model

constraints appropriately. In the case of the failed charger, CME is able to not only identify the

failed component, but also identify that the switch must change modes to the charger-r mode,

and that charger-r must be turned on to trickle charge the battery. This diagnosis is made

possible through the simple constraints that at least one charger must be on if the incoming bus-

voltage is greater than zero. The dissents shown in Section 8.3.3 present the conflicts that

express these same constraints. The conflicts are very intuitive because they are expressed with

component mode assignments in proximity to one another making verification of the correctness

of conflicts easier for a human. For instance the conflict ¬[SWITCH.MODE=CHARGER-P, CHARGER-

R.MODE=TRICKLE] is expressed using switch and charger-p modes, which are two components in

sequence. This makes reasoning about the conflict for verification focused. Most of the

conflicts for the NEAR Power system have this property, and are given in Appendix D.

The true benefit of the CME engine is demonstrated using the failure of the digital shunts. This

experiment showed the benefit of tracking the belief state over time because the proper behavior

could not be determined immediately. In this scenario, CME identified the primary digital

shunts as having failed due to the reading of Ishunt_D = high. This mode estimate would cause

the NEAR system to disable the primary shunts. However, the sensor reading persists in the

scenario, indicating that the redundant digital shunts are the true faulty components CME

determines this without any problems because it tracked this mode estimate in the previous belief

state, and the observation only increases its likelihood, as demonstrated in Section 8.3.4. CME

also reduces the likelihood of the previous mode estimate that indicated that the primary digital

shunts were faulty. This diagnosis may not have been possible with Livingstone because it only

tracked the most likely trajectory of the system. Livingstone would have identified the primary

Achieving Real-time Mode Estimation through Offline Compilation 214

digital shunts as having failed and thrown away the less likely diagnosis involving the redundant

digital shunts. When the observation persists into the next time step, Livingstone may not have

been able to identify that the redundant digital shunts had failed and that the primary digital

shunts are still working. This is the key benefit of CME to identify when less likely trajectories

of the system become the most likely mode estimate.

The final experiment presented demonstrates the capability of CME to identify multiple

simultaneous component failures. The experiment involved observations that indicate a failed

analog shunt and a failed charger. The CME engine correctly diagnoses that these components

have failed using the multiple sources of observation information.

These experiments derived from the NEAR rules demonstrate that CME is capable of diagnosing

the same failures. Rule 22 and 23 involve the determination that the analog shunts have failed if

the current output is high. CME correctly determined that the primary analog shunts have failed

in 8.3.2. Rule 24 and 25 relate to a failure of the digital shunts. CME correctly identifies that the

redundant digital shunts have failed in 8.3.4. Rule 26 relates to a failure of the solar arrays,

which is discussed in Appendix E. Rule 27 relates to stopping the monitoring of rules 28 and 29

if the redundant battery charger is on. Rules 28 and 29 relates to failures of the primary charger,

so if it has failed, indicated by the redundant charger being on, then the rules are no longer

useful. Rules 28 and 29 are covered by CME in 8.3.3 where it correctly determined that the

charger was failed and that the switch and charger had to change modes. The final rule, Rule 30

relates to the automatic switching of the charger based on the temperature of the battery. If the

battery temperature is high, this indicates that the battery is full, so the charger only needs to

trickle charge it. This rule is covered by the nominal behavior of the charger and battery

discussed in Section 8.3.1.2.

The validation experiments detailed here have demonstrated the various capabilities of the CME

engine. CME gives savings in the memory footprint because of the compiled model and the

online portion of the algorithm. Additionally, the experiments demonstrate CME’s ability to

diagnose single, and multiple component failures, as well as the benefits of tracking the belief

state instead of most likely trajectories.

Achieving Real-time Mode Estimation through Offline Compilation 215

9 Conclusions

This thesis has developed an improvement to mode estimation that unifies the rule-based and

model-based approaches to fault management. We have developed a system, Compiled Mode

Estimation that compiles a system model to a Compiled Concurrent Automata (CMPCA).

CMPCA encodes the system model as a set of conflicts, encoded as dissents, and compiled

transitions. The CMPCA is used online to determine a set of mode estimates that are consistent

with the observations. Compiled Mode Estimation (CME) tracks multiple mode estimates at

each time step to increase accuracy of the mode estimate. This enables CME to diagnose a

multitude of faults, including multiple component failures, and diagnose complex spacecraft

behavior and component interactions. The results of the previous chapter highlight these benefits

through the experiments.

9.1 Results

The experiments of the previous chapter involved a suite of nominal and failure scenarios using

the NEAR power system. These scenarios were developed from the rules used by the NEAR

spacecraft to diagnose failures. The experiments to note are the failures of a charger, a digital

shunt, and the combination of a failed charger and an analog shunt. CME was able to diagnose

all of the failed components correctly. Each of these scenarios highlights a key capability of

CME. The failure of the charger highlights CME’s ability to determine a failed component from

multiple sources of information. In this failure scenario, the charger current was high and the

remaining observations were all nominal. CME uses this information to determine that no other

Achieving Real-time Mode Estimation through Offline Compilation 216

components are faulty, and identified only the charger. Additionally, CME is able to determine

that the switch and redundant charger have changed modes as a result of the failed charger. This

highlights the capability of CME to identify the changed behavior of multiple components.

The next scenario of interest is the failure of the digital shunts. This experiment exploited

CME’s tracking of mode estimates and demonstrated the significant benefit of the approach.

The primary digital shunts were first diagnosed as being the most likely fault by CME.

However, when the observation persisted in the next time step, CME was able to determine that

the failed component was the redundant digital shunts. CME was only able to determine this

because it tracked additional mode estimates with the most likely mode estimate.

The final scenario involved the failure of a charger and the primary analog shunts. CME

determined the correct mode estimate for this set of observations, demonstrating that it is capable

of diagnosing multiple, simultaneous failures in different subsystems. This is a key capability

for a mode estimation system to be able to discriminate diagnoses and focus in on the most likely

ones. Even though by probability, single faults are more likely than multiple faults, CME was

able to determine the correct diagnosis using the conflicts.

These experiments validate the CME engine and the compiled model. The CME engine has

demonstrated that the conflicts are indeed sufficient to reconstruct the diagnoses of the system

[deKleer, 1987]

9.2 Compiled Mode Estimation

Recall the initial capabilities list for a mode estimation system for spacecraft:

“A fault management engine must be capable of detecting single and multiple failures,

using multiple sources of information to determine system behavior, and have the ability

to rank diagnoses of the system. Additionally, as available resources, including time,

computational power and storage space, for fault management on board a spacecraft

dwindle it becomes necessary to require faster response times and smaller memory

allocation for these software processes.”

Achieving Real-time Mode Estimation through Offline Compilation 217

- Introduction

CME has been developed with this list of capabilities in mind. CME is able to detect single and

multiple failures of components by using conflicts in an online process to choose the correct

component modes that are consistent with the observations. CME is able to rank the diagnoses it

generates using the probabilities of transitions in the system model. The addition of transitions

enables CME to track mode estimates over time as well. CME is able to give real time

guarantees when determining mode estimates. The compiled model enables the design of any-

time algorithms for the online process of generating mode estimates. By removing satisfiability

from the online determination of mode estimates, CME only requires a minimal set covering of

the current conflicts to determine mode estimates that are consistent with the observations and

the system model. Not only does this enable CME to give real-time performance, it also reduces

the memory footprint in the system. The compiled model is a compact encoding of the original

mode constraints and transitions. Furthermore, the algorithms for Online-ME are simplified by

exploiting the properties of the compiled model, requiring less space for the actual executable.

These benefits of CME are essential for spacecraft as missions continue to push deeper into the

solar system. CME has the ability to determine the system behavior accurately and efficiently,

which is a necessity for space explorers tasked with venturing further out into the solar system.

CME could provide this capability as a standalone in order to give the spacecraft the ability to

determine system behavior. Alternatively, CME has a much more powerful use within a larger

autonomy architecture, as described in Chapter 1. As a piece in the Model-based Executive,

CME enables the spacecraft to be reactive to diagnose and repair failures, reconfigure the

spacecraft to achieve goals and be more robust. For space exploration to overcome the hurdles

of failures due to spacecraft complexity and tackle difficult missions, enhanced fault

management, and possibly larger autonomy systems, will be required. CME is an advancement

to enhance the capabilities of fault management through the use of common sense models, but to

also allow the spacecraft engineer the ability to inspect the diagnostic results of the engine before

the operation of the spacecraft. By unifying the rule-based and model-based approaches to fault

management, CME has combined the strengths of an explicit representation of the diagnostic

results from rule-based systems, and the benefits of automated reasoning of component

Achieving Real-time Mode Estimation through Offline Compilation 218

interactions from model-based systems to deliver a fault detection engine that spacecraft will

need if they are to be successful in future missions.

Achieving Real-time Mode Estimation through Offline Compilation 219

10 Future Work

The CME mode estimation engine addresses the problems of tracking an approximated belief

state over time. However, the engine as developed and implemented here can be made more

efficient. This chapter details a few extensions to the algorithms in the online portion of CME

that may have an impact on the performance and accuracy of the mode estimates.

10.1 Compiled Conflict Recognition

The most expensive computation in this portion of Online-CME is the triggering of dissents and

transitions. This step requires determining those dissents and transitions that are enabled by the

observations, commands and component mode assignments in the previous mode estimates. As

detailed previously, the algorithm iterates through the dissents and compiled transitions of a

changed observation, command or component mode assignment. While this is a standard

efficient indexing method, the process could be designed to require fewer computations on

average.

A SAT solver, Chaff [Moskewicz, 2001] has been developed to perform satisfiability very

efficiently. Its approach to solving the expensive cost of Boolean constraint propagation is to

monitor only particular literals in a clause, and if the variable becomes false, chooses another

literal in the clause to monitor. Once all but one of the values in a clause become false, then the

remaining literal is true. This approach has provided an order of magnitude speed up in finding a

solution to the SAT problem. This idea of monitoring particular literals is extended to the

Dissent and Transition Triggering to monitor only particular assignments.

Achieving Real-time Mode Estimation through Offline Compilation 220

By focusing on particular observations or command assignments, this requires only determining

if the dissents and compiled transitions associated with these assignments are triggered. This

could save many computations by not testing dissents and compiled transitions that would not be

enabled. To use this technique, a method must be developed to choose assignments to monitor.

This could be based on the probability of an assignment, where least likely assignments are

monitored before more likely assignments. This is a good approach because unlikely

assignments are hardest to satisfy.

This approach could speed up computations by never looking at dissents or transitions because

the assignment focused on is not in the current set of observations, commands or previous

component modes.

10.2 Dynamic Mode Estimate Generation

The Dynamic Mode Estimate Generation algorithms for CME have been built upon A* search.

The CDA* algorithm leverages conflicts to direct the A* search to find the optimal solution.

The Generate algorithm uses tree search to choose a previous mode estimate so that CDA* can

determine its most likely transition to a current mode estimate. The choice of the previous mode

estimate is guided by the heuristics described in Section 6.4.3.1. However, this heuristic does

not add as much guidance to the search as desired. The calculation of the residual has a minimal

effect on the ordering of the nodes. A different approach to calculating an admissible heuristic is

presented in this section.

The previous heuristic used the residual plus the transition probability from a previous mode

estimate to put an upper bound on the probability that a previous mode estimate would transition

to a current mode estimate. However, this did not effect the ordering of the tree very much.

What has not been incorporated into the calculation is the probability of a previous mode

estimate’s transitions that have not been enumerated. This probability is useful to get a better

estimate on the upper bound. To better describe this, consider the following figure:

Achieving Real-time Mode Estimation through Offline Compilation 221

S2
(t)

S1
(t)

S3
(t)

S1
(t+1)

S2
(t+1)

S3
(t+1)

S4
(t+1)

S5
(t+1)

p = 0.7

p = 0.2

p = 0.1

Previous
Mode

Estimates

Unranked
Current
Mode

Estimates

Ranked
Current
Mode

Estimates

S1
(t+1)

S5
(t+1)

p = 0.29

p = 0.34

p = 0.6

p = 0.3

p = 0.1

Figure 10-1 - Example Transition System for New Heuristic

Noted on this figure is the previous mode estimates to the left. In the middle of the figure are the

current mode estimates that have not been ranked, and to the left are current mode estimates that

have been ranked, and their probability is noted to the right. The example focuses on the state

transitions from S2
(t) to states two through four at ‘t+1’. Consider that the state S2

(t+1) has been

generated and the Generate algorithm must calculate the cost of this node. First, the residual is

calculated as R = 1 – Σ P(Sr
(t+1)), where Sr

(t+1) are mode estimates that have been ranked by the

Rank algorithm. The residual represents the probability of all current mode estimates that have

not been enumerated. In the current Generate algorithm, this probability was added to the

transition probability of the current mode estimate to arrive at the cost.

To tighten the cost, we use the knowledge that current mode estimates from the same previous

mode estimate are distinct from one another. For instance, S3
(t+1) and S4

(t+1) are necessarily

distinct from S2
(t+1), but current mode estimates from S1

(t) may not necessarily be distinct from

S2
(t+1). The cost defined for the Generate algorithm for S2

(t+1) should not include transitions from

the previous mode estimate, S2
(t), to other current mode estimates, S3

(t+1) and S4
(t+1). For example,

having generated the current mode estimate S2
(t+1), the residual is R = 1 – 0.34 – 0.29 = 0.37.

Adding this residual to P(S2
(t+1)) = 0.7 × 0.3 = 0.21, results in 0.58. Notice that this value

Achieving Real-time Mode Estimation through Offline Compilation 222

includes transitions to current mode estimates S3
(t+1) and S4

(t+1). These should not be incorporated

in the cost of S2
(t+1), because they are all generated from the same previous mode estimate.

Instead, these should be subtracted from the residual to obtain a tighter upper bound on the cost

of S2
(t+1).

The key issue is to be able to subtract these probabilities without explicitly enumerating them.

Using the example above, the probability of S3
(t+1) is given as P(S2

(t)) × PT(S2
(t) → S3

(t+1)) = 0.3 ×

0.2. Similarly for S4
(t+1), P(S4

(t+1)) = 0.3 × 0.1. These transition probabilities represent the

probability that the previous mode estimate, S2
(t) does not transition to the state S2

(t+1). This is the

same as saying that the probability of an element is the same as taking one minus the probability

of things that are not that element. So, the probability that S2
(t) does not transition to S2

(t+1) is

given as P(S2
(t)) × (1 – PT(S2

(t) → S2
(t+1))). This equation results in: 0.3 × (1 – 0.7) = 0.09. This is

the same values as the sum of P(S3
(t+1)) and P(S4

(t+1)).

The new residual incorporates the probability of remaining transitions from a previous mode

estimate that are not to the current mode estimate. To estimate the cost of the state S2
(t+1) with a

tighter upper bound, the transition probability for states S3
(t+1) (p = 0.2 × 0.3 = 0.06) and S4

(t+1) (p

= 0.1 × 0.3) = 0.03 are subtracted away. This results in the calculation for a new upper bound

cost for S2
(t+1) as:

 C(S2
(t+1)) = R – p(S3

(t+1)) – p(S4
(t+1)) + p(S2

(t+1))

 = 0.37 – 0.06 – 0.03 + 0.21 = 0.49.

Substituting P(S2
(t)) × (1 – PT(S2

(t+1))) for the sum of P(S3
(t+1)) and P(S4

(t+1)) results in the

following for the cost:

 C(S2
(t+1)) = R – P(S2

(t)) × (1 – PT(S2
(t) → S2

(t+1))) + P(S2
(t+1))

 = 0.37 – 0.3 × (1 – 0.7) + 0.21 = 0.49

This shows that the same value for the cost is determined, but the benefit of the second

calculation is that S3
(t+1) and S4

(t+1) did not have to be enumerated.

This demonstrates the computations of the new cost of a current mode estimate in the Generate

search tree, but also highlights what it incorporates. The new cost calculation encompasses not

just the likelihood of the current mode estimate, but also the probability of the transitions that are

Achieving Real-time Mode Estimation through Offline Compilation 223

not to the current mode estimate. This new computation could enable the Generate algorithm to

explore the search tree with a little more guidance.

Achieving Real-time Mode Estimation through Offline Compilation 224

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 225

References

[Cadoli, 1997] Cadoli, M. and Donini, F. “A survey on Knowledge Compilation”, The

European Journal for Artificial Intelligence, Vol. 10, pp. 137 – 150, 1997.

[Chandra, 2000] Chandra, A. and Simon, L. “Multi-resolution on Compressed Sets of Clauses”,

Proceedings of the International Conference on Tools with Artificial Intelligence, pp.
449-454, 2000.

[Chung, 2001] Chung, S., Van Eepoel, J. and Williams, B.C., “Improving Model-based Mode

Estimation through Offline Compilation”, Proceedings of the 6th International
Symposium on Artificial Intelligence, Robotics & Automation in Space, 2001.

[deKleer, 1987] deKleer, J and Williams, B.C., “Diagnosing Multiple Faults”, Journal of

Artificial Intelligence, Vol. 32, pp. 97 – 130, 1987.

[deKleer 2, 1987] deKleer, J. “An assumption-based truth maintenance system”, Readings in

Nonmonotonic Reasoning, Morgan Kaufmann, Los Altos, Ca, 1987.

[deKleer, 1989] deKleer, J and Williams, B.C., “Diagnosis with Behavioral Modes”,

Proceedings of International Joint Conference on Artificial Intelligence, pp 1324-1330,
1989.

[deKleer, 1992] deKleer, J., Mackworth, A.K., Reiter, R., “Characterizing Diagnoses and

Systems”, Journal of Artificial Intelligence, Vol. 56, pp. 197-222, 1992.

[Elliott, 1995] Elliott, R.J., Hidden Markov Models: Estimation and Control, Springer, 1995.

[Hamscher, 1992] Hamscher, W, Console, L. and deKleer, J. Readings in Model-based

Diagnosis, Morgan Kaufmann, San Mateo, CA, 1992.

[Ingham, 2001] Ingham, M., Ragno, R., Williams, B.C., “A Reactive Model-based Programming

Language for Robotic Space Explorers”, Proceedings of the 6th International Symposium
on Artificial Intelligence, Robotics & Automation in Space, 2001.

[JHUAPL, 2002] Johns Hopkins University Applied Physics Lab, The MESSENGER Spacecraft,

http://messenger.jhuapl.edu/, JHU APL, Laurel, MD, 2002.

 [Kurien, 2000] Kurien, J. “Back to the Future for Consistency-based Trajectory Tracking”,

Proceedings of the 17th National Conference on Artificial Intelligence, 2000.

http://messenger.jhuapl.edu/

Achieving Real-time Mode Estimation through Offline Compilation 226

[Moskewicz, 2001] Moskewicz, M. et. al., "Chaff: Engineering an Efficient SAT Solver", 39th
Design Automation Conference, Las Vegas, June 2001

[Ragno, 2002] Ragno, R. Clause Directed A*, MIT M.Eng Thesis in Electrical Engineering and

Computer Science, May 2002.

[Russell, 1995] Russell, P., Norvig, P., Artificial Intelligence: A Modern Approach, Prentice

Hall, 1995.

[Wertz, 1999] Wertz, J., Space Mission Analysis and Design, Microcosm Books, 3rd ed., 1999.

[Williams, 1996] Williams, B.C., Nayak, P. “A Model-based Approach to Reactive Self-

Configuring Systems”, Proceedings of the 13th National Conference on Artificial
Intelligence, 2000.

[Williams, 1998] Williams, B.C., and Millar, B., “Decompostional Model-based Learning and Its

Analogy to Model-based Diagnosis”, Proceedings of the 15th National Conference on
Artificial Intelligence, 1998.

[Williams, 2002] Williams, B.C. and Ragno, R. “Conflict-directed A* and its Role in Model-

based Embedded Systems”, accepted for publication in Special Issue on Theory and
Applications of Satisfiability Testing, Journal of Applied Math, 2002.

[Williams 2, 2002] Williams, B.C., Ingham, M., Chung, S., Elliott, P., “Model-based

Programming of Intelligent Embedded Systems and Robotic Space Explorers”, accepted
for publication in the IEEE Proceedings Special Issue on Embedded Software, July 2002.

Achieving Real-time Mode Estimation through Offline Compilation 227

Appendix A. NEAR Power System Models

A.1 NEAR Power Generation

A.1.1 Solar Arrays
The solar arrays are the means by which the spacecraft harnesses the energy of the sun and turns

it into usable power. The four solar arrays are divided into five solar cell groups, and each solar

cell group has its own digital shunt. There is only a single observable for the current produced

by the solar array, noted as Isa
i. The solar array voltage is a fixed value, chosen by the system

designers to be 12 volts. The behavior of the solar array that must be captured is when the solar

array produces a lower current than expected. Solar arrays are a passive power generation

method, meaning that it does not use any mechanical or moving parts to transform the energy of

the sun into usable power. The solar arrays merely absorb the energy from the sun, and through

a chemical reaction produce current and voltage.

The passive behavior of solar arrays requires that the model capture when the solar array is

degraded, thus impacting production of power. Additionally, the solar array may have broken in

some way impacting power production. Each of these behaviors manifest themselves in the

same way: the current produced is lower than expected. The model is depicted in below.

solar array

Operational

solar array
current

= nominal
solar array current

(Isa)

Broken

solar array
current
= low

Unknown

Figure A-1 - Constraint Automaton for the NEAR Power System Solar Arrays

The solar array is expressed using constraint automata given in Chapter 2, with discrete modes,

constraints on these modes, and constraints between modes. The model shown in Figure A-1

Achieving Real-time Mode Estimation through Offline Compilation 228

expresses the model of a single solar array. A solar array is modeled using three modes,

operational, broken, and unknown modes. The operational mode captures the normal behavior

of the solar array where the output current, Isa
i, is nominal. The broken mode captures any fault

behavior that manifests itself with an output current equal to low. These fault behaviors include

the degradation of the solar array. Since solar arrays are passive, then the current can never be

higher than nominal. Recall that for the charger, the current could increase above any normal

value due to a short in the wiring. However, for a solar array, if a short occurs it only acts to

reduce the current produced by the solar array. Finally, the unknown mode captures any

behavior not already modeled. The output of the solar arrays, Isa
i, can take on the values {zero,

low, nominal}. There are no constraints on the transitions in the solar array because they are

passive, the sun being the only input required to produce power.

The entire bank of solar arrays is built by duplicating this model four times, one for each solar

array on the NEAR spacecraft. The resultant current, Isa, is determined by summing the

individual currents from each solar array. This constraint captures the behavior of the overall

solar array current since the solar arrays are connected in parallel. This knowledge is very useful

in planning tasks on the spacecraft so that the power required does not exceed the power the

solar arrays provide.

A.1.2 Digital Shunts

The digital shunts are a device that removes a solar array from adding to the power in the

spacecraft. They are considered to be like a switch, that when open, allow the power from the

solar array to be used in the spacecraft. However, if the total power becomes too high for the

spacecraft to handle, the digital shunts are commanded to close to short out a solar array. Each

solar array has its own bank of digital shunts, as shown in the schematic in Chapter 8. There are

five digital shunts associated with each individual solar array. Recall that there are five solar cell

groups per solar array, making a single digital shunt connected with a single solar cell group.

The digital shunts are necessary only when the power produced by the solar arrays is too high for

the spacecraft to handle. The digital shunts are used to short out, or shunt the power, produced

Achieving Real-time Mode Estimation through Offline Compilation 229

from a solar cell group. This is a method to give coarse adjustments to the power produced from

the solar arrays. By shorting out a whole solar cell group, the power generated is significantly

reduced. This type of power control is necessary when the spacecraft is near Earth. The solar

arrays are designed to produce the necessary power when the spacecraft is orbiting the asteroid,

and is further away from the sun than Earth. So, the digital shunts provide a means to reduce the

power generated by the solar arrays.

The digital shunts are modeled as a single unit. As shown in the schematic, there is only a single

input, the solar array current, Isa
i, and single output, the digital shunt current, Ishunt_D

i, that give

insight into the behavior of the digital shunts. As a result, the digital shunts are modeled as a

single unit, similar to the solar array groups. The constraint automaton for a group of digital

shunts is shown below in Figure A-2.

digital shunts

None-
Closed

I shunt_D
= I-solar array

solar array current
(Isa)

digital shunt command
(DS-cmd)

digital shunt current
(Ishunt_D

i)

One-
Closed

I shunt_D
= I-solar array

Two-
Closed

I shunt_D
= I-solar array

Three-
Closed

I shunt_D
= I-solar arrayFour-

Closed

I shunt_D
= I-solar array

Five-
Closed

I shunt_D
= I-solar array

Stuck-
closed

I shunt_D
= low

Stuck-
open

I shunt_D
= high

Unknown

DS-cmd = close

DS-cmd = open

DS-cmd = close

DS-cmd = close

DS-cmd = close

DS-cmd = open

DS-cmd = open DS-cmd = open

D
S-

cm
d

=
op

en

D
S-cm

d = close

Figure A-2 - Constraint Automaton for the NEAR Power System Digital Shunts

The figure denotes the different modes of the group of digital shunts. The component has modes

that denote how many of the digital shunts are closed. In each case, the modeling constraint only

states that the output current is nominal. This relays the behavior that the shunts are operating

normally. The fault modes stuck-open, stuck-closed and unknown are modeled in the

component. The stuck-open mode denotes that the digital shunts do not close when commanded.

Since the digital shunts are modeled as a group, it is impossible to tell if one, two or five are

stuck open. This mode is characterized by an output current higher than expected because a

shunt commanded to close has remained open, making more power available. The mode stuck-

Achieving Real-time Mode Estimation through Offline Compilation 230

closed captures the behavior that a shunt has not closed when commanded. As a result, the

output current is lower than expected because the shunt staying closed reduces the available

power. The unknown mode captures any behavior not considered that does occur.

The transitions between the modes of the digital shunt are conditioned on the input command,

µshunt_D
i. Note that idle transitions and transitions to the fault modes are not shown for clarity.

There are commands associated with the primary and redundant digital shunts. Each group is

commanded independently, giving a total of eight input commands to the system. The

transitions are designed in a way to restrict the opening and closing of the digital shunts. Only

one digital shunt can be opened or closed at any time. The allowable commands for the digital

shunt are {open, close, no-command}.

A complication arises because of the single output, Ishunt_D
i, for the two groups of digital shunts,

the primary and redundant, for each solar array. The individual outputs of the digital shunt

groups must be constrained to output a single value. This constraint specifies that if the two

outputs, Ishunt_D_P
i and Ishunt_D_R

i, are the same, that the Ishunt_D
i, is this value. When the two

values are different, the constraint must define which output to use. Since the output indicates

when the digital shunt group has failed in some way, then the output, Ishunt_D
i, should indicate this

as well. The current can only have values of {low, nominal, high}, so the different combinations

are enumerated as follows.

 (if (Ishunt_D_P
i = nominal) ∧ (Ishunt_D_R

i = nominal) ⇒ (Ishunt_D
i = nominal))

 (if (Ishunt_D_P
i = low) ∧ (Ishunt_D_R

i = low) ⇒ (Ishunt_D
i = low))

 (if (Ishunt_D_P
i = high) ∧ (Ishunt_D_R

i = high) ⇒ (Ishunt_D
i = high))

 (if (Ishunt_D_P
i = nominal) ∧ (Ishunt_D_R

i = low) ⇒ (Ishunt_D
i = low))

 (if (Ishunt_D_P
i = nominal) ∧ (Ishunt_D_R

i = high) ⇒ (Ishunt_D
i = high))

 (if (Ishunt_D_P
i = low) ∧ (Ishunt_D_R

i = nominal) ⇒ (Ishunt_D
i = low))

 (if (Ishunt_D_P
i = low) ∧ (Ishunt_D_R

i = high) ⇒ (Ishunt_D
i = low))

 (if (Ishunt_D_P
i = high) ∧ (Ishunt_D_R

i = nominal) ⇒ (Ishunt_D
i = high))

 (if (Ishunt_D_P
i = high) ∧ (Ishunt_D_R

i = low) ⇒ (Ishunt_D
i = high))

For each solar array, there is a primary and redundant set of digital shunts, each with a single

output current, Ishunt_D
i. These individual outputs are summed to obtain the output, Ishunt_D.

Achieving Real-time Mode Estimation through Offline Compilation 231

A.1.3 Analog Shunts

The analog shunts are another mechanism of dissipating power generated from the solar arrays.

These shunts behave differently than the digital shunts because they dissipate the power through

resistors instead of just short-circuiting the solar array. These resistors are shown in the

schematic of Chapter 8. The schematic shows that these resistors are connected to switches that

enable or disable them. When the switch is closed, it enables the resistor, and allows power to be

dissipated. The analog shunts are used to fine-tune the power generated from the solar arrays to

the level necessary for the spacecraft. The resistors only dissipate power, so they do not

completely remove a group of solar cells.

In each set of analog shunts, there are seven resistors, each with their own switches. It is the

mechanics of the switch that determine if an analog shunt is used or not. The inputs to the

analog shunts are the overall current from the digital shunts, Ishunt_D, and the command, µshunt_P

and µshunt_R, denoting commands for the primary and redundant analog shunts, respectively. The

output from the analog shunts is the current, Ishunt_P and Ishunt_R, denoting the primary and

redundant again. Since there is only a single output, then this leads to modeling the analog

shunts as a single entity, similar to the digital shunts. The model is given below in Figure A-3.

analog shunts

None-
Closed

I shunt_P,R
= I-solar array

analog shunt command
(AS-cmd)

analog shunt current
(Ishunt_P,R)

One-
Closed

I shunt_P,R
= I-solar array

Two-
Closed

I shunt_P,R
= I-solar array

Three-
Closed

I shunt_P,R
= I-solar array

Four-
Closed

I shunt_P,R
= I-solar array

Five-
Closed

I shunt_P,R
= I-solar array

Stuck-
closed

I shunt_P,R
= low

Stuck-
open

I shunt_P,R
= high

Unknown

AS-cmd = close

AS-cmd = open

AS-cmd = close

AS-cm
d = close

AS-cmd = close

AS-cmd = open

AS-cmd = open

AS
-c

m
d

=
op

en
AS

-c
m

d
=

op
en

AS-cm
d = close

digital shunt current
(Ishunt_D

i)

Six-
Closed

I shunt_P,R
= I-solar array

Seven-
Closed

I shunt_P,R
= I-solar array

AS-cmd = close

AS-cm
d = close

AS-cmd = open

AS-cm
d = open

Figure A-3 - Constraint Automaton for the NEAR Power System Analog Shunts

The analog shunts are modeled with modes denoting how many analog shunts are closed. The

constraint for these modes denotes that the output current is nominal. This denotes that the

Achieving Real-time Mode Estimation through Offline Compilation 232

analog shunts are operating normally. The fault modes used in this model are stuck-open, stuck-

closed, and unknown. These modes denote the same behavior as the digital shunts. If the output

current is lower than expected, then this means that an analog shunt did not open when it was

commanded, so the overall analog shunts are stuck-closed. Since there is only a single

observable value for the analog shunts, then only the group of analog shunts can be pinpointed as

having failed, and not individual shunts.

The component model describes a single group of analog shunts. The NEAR Power system has

primary and redundant, each with their own output current, denoted as Ishunt_P and Ishunt_R

respectively. Ideally, as redundant systems, the two groups of analog shunts behave identically.

So, when the primary group closes a shunt, the redundant group of shunts does the same.

However, the two groups are maintained completely separately so that if one fails, the other is

not adversely affected. For the system model to acquire this behavior, two separate groups of

analog shunts are created, each with their own command, µshunt_P and µshunt_R, and their own

current output.

A.2 NEAR Power Storage

A.2.1 Switch

The first component is a switch that toggles between the primary and redundant chargers in the

NEAR Power system. The switch changes between these positions when commanded by an

outside source, ordinarily the spacecraft computer. The behavior of the switch is captured using

the inputs bus-voltage and the command switch-command, and the outputs charger-p-voltage

and charger-r-voltage. The constraint automaton for the switch is shown below in Figure A-4.

Achieving Real-time Mode Estimation through Offline Compilation 233

switch

Charger-P
charger-1-voltage
 = Bus Voltage
charger-2-voltage
 = zero

bus-voltage

command

chargerP-voltage

chargerR-voltage

Unknown

Command = to-charger-2

Command = to-charger-1

Command !=
to-charger-2 Command !=

to-charger-1

Charger-R
charger-1-voltage
 = zero
charger-2-voltage
 = Bus Voltage

Stuck-
Charger-P

charger-1-voltage
 = Bus Voltage
charger-2-voltage
 = zero

Stuck-
Charger-R

charger-1-voltage
 = zero
charger-2-voltage
 = Bus Voltage

Figure A-4 – Constraint Automaton for the NEAR Power Storage Switch

The behavior of the switch is modeled with two operational modes, charger-p and charger-r, and

the fault modes stuck-charger-p, stuck-charger-r, and unknown. The modes constrain the

outputs to be particular values. In the case of the mode charger-p, the output voltage charger-p-

voltage is constrained to be equal to the input voltage, and the charger-r-voltage is constrained to

be zero. This constraint captures the behavior of the switch only being able to route the input

bus-voltage to one charger only. The constraints are similar for the other component modes.

The unknown mode captures any behavior outside of the specified modes as it has no constraints.

The switch transitions between operational modes only. In order to transition from the mode

charger-p to charger-r, the switch must receive the input command, to-charger-r. Unless the

switch receives this command, it will remain in the charger-p mode. This constraint is expressed

similarly between modes charger-r and charger-p, with the command to-charger-p. Under most

cases the switch remains at the charger-p position since it is the primary charger. However, if

the primary charger fails, the switch automatically changes position to charger-r. This behavior

is captured using constraints between the primary charger and the switch-command that are

discussed in the next section.

Achieving Real-time Mode Estimation through Offline Compilation 234

A.2.2 Charger

charger

switch-voltage

battery-temperature

charger-current

Full-On
switch-voltage
 = nominal
charger-current
 = nominal

Trickle
switch-voltage
 = low or nominal
charger-current
 = trickle

Off
switch-voltage
 = zero
charger-current
 = zero

Broken
charger-current
 = high

Unknown

battery-temperature !=
High

battery-temperature =
High

battery-
temperature

= low

battery-
temp
= high

battery-
temp

!= high

battery-
temp
!= low

The transitions of the charger use the input battery-temperature to determine when to change

modes. This is consistent with the physical interactions of the charger and battery. The charger

would not begin to trickle charge the battery unless the battery was full. The battery-

temperature allows the charger to determine if the battery is full. As a result, the charger

changes between the operational modes trickle and full-on only when the battery-temperature

changes to high. A high battery temperature indicates that the battery charge is full and has

heated up due to excess charging. The charger transitions between the modes off and trickle only

if the battery-temperature is low. This indicates that the battery has been discharging, and the

temperature has dropped below the nominal level. As a result, the charger begins to charge the

battery with a trickle charge, not a full charge. If the battery has been discharging, then the

voltage is not high enough for the charger to give a full charge to the battery. Instead the charger

trickle charges the battery until the switch-voltage increases enough to allow a full charge from

the charger. This behavior is captured in the transitions from the off mode to the trickle mode,

and then from the trickle mode to the full-on mode. This cascading captures the physical

behavior of the power system with the battery and charger interactions.

To fully characterize the NEAR Power storage system and the chargers, there must be

constraints between the outputs of the two chargers that give a single output, charger-current.

There are two chargers in the system, a primary and a redundant charger, each with associated

output currents, charger-currentP and charger-currentR. The resultant charger-current should

take on the higher value of these two as that indicates the true charger-current from the one that

Achieving Real-time Mode Estimation through Offline Compilation 235

is on and working. However, should both output charger currents be zero, this only indicates

that both are off. The constraints that express this behavior are as follows.

 (if (charger-currentP = nominal) ∧ (charger-currentR = zero) ⇒ (charger-current = nominal)
 (if (charger-currentP = trickle) ∧ (charger-currentR = zero) ⇒ (charger-current = trickle)
 (if (charger-currentP = high) ∧ (charger-currentR = zero) ⇒ (charger-current = high)
 (if (charger-currentP = zero) ∧ (charger-currentR = nominal) ⇒ (charger-current = nominal)
 (if (charger-currentP = zero) ∧ (charger-currentR = trickle) ⇒ (charger-current = trickle)
 (if (charger-currentP = zero) ∧ (charger-currentR = high) ⇒ (charger-current = high)
 (if (charger-currentP = zero) ∧ (charger-currentR = zero) ⇒ (charger-current = zero)

These constraints capture the behavior of the interactions between the two chargers and the input

to the battery, the charger-current.

A.2.3 Battery

battery

charger-current

battery-temperature

battery-voltage

Unknown

charger-current = nominal

charger-current = trickle

charger-
current =
trickle or
nominal

1

1 charger-current = zero
2 charger-current = trickle

charger-current
= zero

2

charger-
current =
trickle or
nominal

charger-
current
!= zero

Full

battery-temp.
= high

battery voltage
 = nominal

battery current
 = nominal

Charging

battery-temp.
 = nominal
battery-voltage
 = nominal
battery-current

 = low

Discharging

battery-temp.
 = low

battery-voltage
 = low

battery-current
 = low

battery-current

Dead

battery-temp.
 = low

battery-voltage
 = zero

battery-current
 = zero

Achieving Real-time Mode Estimation through Offline Compilation 236

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 237

Appendix B. NEAR Power Storage Dissents & Transitions

B.1 Dissents

[] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-1 = FULL-ON]

[] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-1 = TRICKLE]

[] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = FULL-ON]

[] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = TRICKLE]

[] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-1 = FULL-ON]

[] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-1 = TRICKLE]

[] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-2 = FULL-ON]

[] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-2 = TRICKLE]

[BATTERY-TEMPERATURE = LOW] ⇒ ![BATTERY = CHARGING]

[BATTERY-TEMPERATURE = HIGH] ⇒ ![BATTERY = CHARGING]

[BATTERY-VOLTAGE = ZERO] ⇒ ![BATTERY = CHARGING]

[BATTERY-VOLTAGE = LOW] ⇒ ![BATTERY = CHARGING]

[BATTERY-TEMPERATURE = LOW] ⇒ ![BATTERY = FULL]

[BATTERY-TEMPERATURE = NOMINAL] ⇒ ![BATTERY = FULL]

[BATTERY-VOLTAGE = ZERO] ⇒ ![BATTERY = FULL]

[BATTERY-VOLTAGE = LOW] ⇒ ![BATTERY = FULL]

[BATTERY-TEMPERATURE = NOMINAL] ⇒ ![BATTERY = DISCHARGING]

[BATTERY-TEMPERATURE = HIGH] ⇒ ![BATTERY = DISCHARGING]

[BATTERY-VOLTAGE = ZERO] ⇒ ![BATTERY = DISCHARGING]

[BATTERY-VOLTAGE = NOMINAL] ⇒ ![BATTERY = DISCHARGING]

[BATTERY-TEMPERATURE = NOMINAL] ⇒ ![BATTERY = DEAD]

[BATTERY-TEMPERATURE = HIGH] ⇒ ![BATTERY = DEAD]

[BATTERY-VOLTAGE = LOW] ⇒ ![BATTERY = DEAD]

[BATTERY-VOLTAGE = NOMINAL] ⇒ ![BATTERY = DEAD]

[BUS-VOLTAGE = ZERO] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-1 = TRICKLE]

[BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-1 = TRICKLE]

[BUS-VOLTAGE = ZERO] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-1 = FULL-ON]

[BUS-VOLTAGE = LOW] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-1 = FULL-ON]

[BUS-VOLTAGE = LOW] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-1 = OFF]

[BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-1 = OFF]

[BUS-VOLTAGE = ZERO] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-2 = TRICKLE]

[BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-2 = TRICKLE]

[BUS-VOLTAGE = ZERO] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-2 = FULL-ON]

Achieving Real-time Mode Estimation through Offline Compilation 238

[BUS-VOLTAGE = LOW] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-2 = FULL-ON]

[BUS-VOLTAGE = LOW] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-2 = OFF]

[BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-2 = OFF]

[BUS-VOLTAGE = ZERO] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-1 = TRICKLE]

[BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-1 = TRICKLE]

[BUS-VOLTAGE = ZERO] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-1 = FULL-ON]

[BUS-VOLTAGE = LOW] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-1 = FULL-ON]

[BUS-VOLTAGE = LOW] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-1 = OFF]

[BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-1 = OFF]

[BUS-VOLTAGE = ZERO] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-2 = TRICKLE]

[BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-2 = TRICKLE]

[BUS-VOLTAGE = ZERO] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-2 = FULL-ON]

[BUS-VOLTAGE = LOW] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-2 = FULL-ON]

[BUS-VOLTAGE = LOW] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-2 = OFF]

[BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-2 = OFF]

B.2 Transitions
B.2.1 Charger Switch
(TRANSITION SWITCH

FROM-VALUE CHARGER-1
TO-VALUE CHARGER-2
GUARD (AND (CHARGER-1 = BROKEN))
PROBABILITY 0.9899)

(TRANSITION SWITCH
FROM-VALUE CHARGER-2
TO-VALUE CHARGER-2
GUARD NIL
PROBABILITY 0.9899)

(TRANSITION SWITCH
FROM-VALUE CHARGER-1
TO-VALUE CHARGER-1
GUARD (NOT (CHARGER-1 = BROKEN))
PROBABILITY 0.9899)

(TRANSITION SWITCH
FROM-VALUE CHARGER-1
TO-VALUE STUCK-CHARGER-1
GUARD NIL
PROBABILITY 0.01)

(TRANSITION SWITCH
FROM-VALUE CHARGER-1
TO-VALUE STUCK-CHARGER-2
GUARD NIL

 PROBABILITY 0.01)

(TRANSITION SWITCH
FROM-VALUE CHARGER-2

Achieving Real-time Mode Estimation through Offline Compilation 239

TO-VALUE STUCK-CHARGER-1
GUARD NIL
PROBABILITY 0.01)

(TRANSITION SWITCH
FROM-VALUE CHARGER-2
TO-VALUE STUCK-CHARGER-2
GUARD NIL
PROBABILITY 0.01)

(TRANSITION SWITCH
FROM-VALUE STUCK-CHARGER-1
TO-VALUE STUCK-CHARGER-1
GUARD NIL
PROBABILITY 0.99)

(TRANSITION SWITCH
FROM-VALUE STUCK-CHARGER-2
TO-VALUE STUCK-CHARGER-2
GUARD NIL
PROBABILITY 0.99)

(TRANSITION SWITCH
FROM-VALUE CHARGER-1
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION SWITCH
FROM-VALUE CHARGER-2
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION SWITCH
FROM-VALUE STUCK-CHARGER-1
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION SWITCH
FROM-VALUE STUCK-CHARGER-2
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION SWITCH
FROM-VALUE UNKNOWN
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 1)

B.2.2 Charger-1
(TRANSITION CHARGER-1

FROM-VALUE FULL-ON
TO-VALUE FULL-ON
GUARD (NOT (BATTERY-TEMPERATURE = HIGH))
PROBABILITY 0.8899)

(TRANSITION CHARGER-1
FROM-VALUE FULL-ON
TO-VALUE TRICKLE
GUARD (BATTERY-TEMPERATURE = HIGH)
PROBABILITY 0.8899)

(TRANSITION CHARGER-1

Achieving Real-time Mode Estimation through Offline Compilation 240

FROM-VALUE FULL-ON
TO-VALUE OFF
GUARD NIL
PROBABILITY 0.1)

(TRANSITION CHARGER-1
FROM-VALUE FULL-ON
TO-VALUE BROKEN
GUARD NIL
PROBABILITY 0.01)

(TRANSITION CHARGER-1
FROM-VALUE FULL-ON
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION CHARGER-1

FROM-VALUE TRICKLE
TO-VALUE TRICKLE
GUARD (BATTERY-TEMPERATURE = HIGH)
PROBABILITY 0.8899)

(TRANSITION CHARGER-1
FROM-VALUE TRICKLE
TO-VALUE FULL-ON
GUARD (NOT (BATTERY-TEMPERATURE = HIGH))
PROBABILITY 0.8899)

(TRANSITION CHARGER-1
FROM-VALUE TRICKLE
TO-VALUE OFF
GUARD NIL
PROBABILITY 0.1)

(TRANSITION CHARGER-1
FROM-VALUE TRICKLE
TO-VALUE BROKEN
GUARD NIL
PROBABILITY 0.01)

(TRANSITION CHARGER-1
FROM-VALUE TRICKLE
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION CHARGER-1

FROM-VALUE OFF
TO-VALUE OFF
GUARD NIL
PROBABILITY 0.1)

(TRANSITION CHARGER-1
FROM-VALUE OFF
TO-VALUE TRICKLE
GUARD NIL
PROBABILITY 0.8899)

(TRANSITION CHARGER-1
FROM-VALUE OFF
TO-VALUE BROKEN
GUARD NIL
PROBABILITY 0.01)

Achieving Real-time Mode Estimation through Offline Compilation 241

(TRANSITION CHARGER-1
FROM-VALUE OFF
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION CHARGER-1
FROM-VALUE BROKEN
TO-VALUE BROKEN
GUARD NIL
PROBABILITY 0.99)

(TRANSITION CHARGER-1
FROM-VALUE BROKEN
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION CHARGER-1
FROM-VALUE UNKNOWN
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 1)

B.2.3 Charger-2
(TRANSITION CHARGER-2

FROM-VALUE FULL-ON
TO-VALUE FULL-ON
GUARD (NOT (BATTERY-TEMPERATURE = HIGH))
PROBABILITY 0.8899)

(TRANSITION CHARGER-2
FROM-VALUE FULL-ON
TO-VALUE TRICKLE
GUARD (BATTERY-TEMPERATURE = HIGH)
PROBABILITY 0.8899)

(TRANSITION CHARGER-2
FROM-VALUE FULL-ON
TO-VALUE OFF
GUARD NIL
PROBABILITY 0.1)

(TRANSITION CHARGER-2
FROM-VALUE FULL-ON
TO-VALUE BROKEN
GUARD NIL
PROBABILITY 0.01)

(TRANSITION CHARGER-2
FROM-VALUE FULL-ON
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION CHARGER-2

FROM-VALUE TRICKLE
TO-VALUE TRICKLE
GUARD (BATTERY-TEMPERATURE = HIGH)
PROBABILITY 0.8899)

(TRANSITION CHARGER-2

Achieving Real-time Mode Estimation through Offline Compilation 242

FROM-VALUE TRICKLE
TO-VALUE FULL-ON
GUARD (NOT (BATTERY-TEMPERATURE = HIGH))
PROBABILITY 0.8899)

(TRANSITION CHARGER-2
FROM-VALUE TRICKLE
TO-VALUE OFF
GUARD NIL
PROBABILITY 0.1)

(TRANSITION CHARGER-2
FROM-VALUE TRICKLE
TO-VALUE BROKEN
GUARD NIL
PROBABILITY 0.01)

(TRANSITION CHARGER-2
FROM-VALUE TRICKLE
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION CHARGER-2

FROM-VALUE OFF
TO-VALUE OFF
GUARD NIL
PROBABILITY 0.1)

(TRANSITION CHARGER-2
FROM-VALUE OFF
TO-VALUE TRICKLE
GUARD NIL
PROBABILITY 0.8899)

(TRANSITION CHARGER-2
FROM-VALUE OFF
TO-VALUE BROKEN
GUARD NIL
PROBABILITY 0.01)

(TRANSITION CHARGER-2
FROM-VALUE OFF
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION CHARGER-2
FROM-VALUE BROKEN
TO-VALUE BROKEN
GUARD NIL
PROBABILITY 0.99)

(TRANSITION CHARGER-2
FROM-VALUE BROKEN
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION CHARGER-2
FROM-VALUE UNKNOWN
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 1)

Achieving Real-time Mode Estimation through Offline Compilation 243

B.2.4 Battery
(TRANSITION BATTERY

FROM-VALUE FULL
TO-VALUE FULL
GUARD (AND (NOT (CHARGER-1 = TRICKLE))

(NOT (CHARGER-1 = OFF)))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE FULL
TO-VALUE FULL
GUARD (AND (NOT (CHARGER-2 = TRICKLE))

(NOT (CHARGER-2 = OFF)))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE FULL
TO-VALUE CHARGING
GUARD (AND (CHARGER-1 = TRICKLE))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE FULL
TO-VALUE CHARGING
GUARD (AND (CHARGER-2 = TRICKLE))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE FULL
TO-VALUE DISCHARGING
GUARD (AND (CHARGER-1 = OFF))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE FULL
TO-VALUE DISCHARGING
GUARD (AND (CHARGER-2 = OFF))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE FULL
TO-VALUE DEAD
GUARD NIL
PROBABILITY 0.001)

(TRANSITION BATTERY
FROM-VALUE FULL
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 0.0001)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE CHARGING
GUARD (AND (NOT (CHARGER-1 = FULL-ON))

(NOT (CHARGER-1 = OFF)))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE CHARGING
GUARD (AND (NOT (CHARGER-2 = FULL-ON))

(NOT (CHARGER-2 = OFF)))
PROBABILITY 0.99)

Achieving Real-time Mode Estimation through Offline Compilation 244

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE FULL
GUARD (AND (CHARGER-1 = FULL-ON))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE FULL
GUARD (AND (CHARGER-2 = FULL-ON))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE DISCHARGING
GUARD (AND (CHARGER-1 = OFF))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE DISCHARGING
GUARD (AND (CHARGER-2 = OFF))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE DEAD
GUARD NIL
PROBABILITY 0.001)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 10.0e-7)

(TRANSITION BATTERY

FROM-VALUE DISCHARGING
TO-VALUE DISCHARGING
GUARD (AND (NOT (CHARGER-1 = TRICKLE)))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE DISCHARGING
TO-VALUE DISCHARGING
GUARD (AND (NOT (CHARGER-2 = TRICKLE)))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE DISCHARGING
TO-VALUE CHARGING
GUARD (AND (CHARGER-1 = TRICKLE))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE DISCHARGING
TO-VALUE CHARGING
GUARD (AND (CHARGER-2 = TRICKLE))
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE DISCHARGING
TO-VALUE DEAD
GUARD NIL
PROBABILITY 0.001)

Achieving Real-time Mode Estimation through Offline Compilation 245

(TRANSITION BATTERY
FROM-VALUE DISCHARGING
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 10.0e-7)

(TRANSITION BATTERY
FROM-VALUE DEAD
TO-VALUE DEAD
GUARD NIL
PROBABILITY 0.99)

(TRANSITION BATTERY
FROM-VALUE DEAD
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 10.0e-7)

(TRANSITION BATTERY
FROM-VALUE UNKNOWN
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 1)

Achieving Real-time Mode Estimation through Offline Compilation 246

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 247

Appendix C. Online-ME Detailed Example

This appendix demonstrates the steps of the Online Mode Estimation algorithms through an

example. It goes through in gross detail each step and calculation using the NEAR Power

Storage System. The architecture of the system is shown below.

Battery
Charger 1

Battery
Charger 2

Charger
Current

Charger
Current

Voltage TLM

Battery

Ba
tte

ry
Te

m
pe

ra
tu

re

Charger
Switch

Bus Voltage

Voltage

Figure C-1 - NEAR Power Storage System

C.1 Observations and Initial Mode Estimate
The initial state for this example is:

 (switch = charger-1), (charger-1 = Full-On), (charger-2 = Off), (battery = charging)

The observations for this example are as follows:

 (bus-voltage = nominal), (battery-voltage = nominal), (battery-temperature = nominal)

C.2 Dissents and Transitions
Using the dissents and transitions from Appendix B, and the observations and initial state above,

the following dissents and transitions are triggered for this example.

C.2.1 Enabled Dissents
4. [] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-1 = FULL-ON]

Achieving Real-time Mode Estimation through Offline Compilation 248

5. [] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-1 = TRICKLE]

6. [] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = FULL-ON]

7. [] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-2 = TRICKLE]

8. [] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-1 = FULL-ON]

9. [] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-1 = TRICKLE]

10. [] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-2 = FULL-ON]

11. [] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-2 = TRICKLE]

12. [BATTERY-TEMPERATURE = NOMINAL] ⇒ ![BATTERY = FULL]

13. [BATTERY-TEMPERATURE = NOMINAL] ⇒ ![BATTERY = DISCHARGING]

14. [BATTERY-VOLTAGE = NOMINAL] ⇒ ![BATTERY = DISCHARGING]

15. [BATTERY-TEMPERATURE = NOMINAL] ⇒ ![BATTERY = DEAD]

16. [BATTERY-VOLTAGE = NOMINAL] ⇒ ![BATTERY = DEAD]

17. [BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-1 = TRICKLE]

18. [BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = CHARGER-1 ∧ CHARGER-1 = OFF]

19. [BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-2 = TRICKLE]

20. [BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = CHARGER-2 ∧ CHARGER-2 = OFF]

21. [BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH =STUCK-CHARGER-1 ∧ CHARGER-1 = TRICKLE]

22. [BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = STUCK-CHARGER-1 ∧ CHARGER-1 = OFF]

23. [BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH =STUCK-CHARGER-2 ∧ CHARGER-2 = TRICKLE]
24. [BUS-VOLTAGE = NOMINAL] ⇒ ![SWITCH = STUCK-CHARGER-2 ∧ CHARGER-2 = OFF]

C.2.2 Enabled Transitions
(TRANSITION SWITCH

FROM-VALUE CHARGER-1
TO-VALUE CHARGER-1
GUARD (NOT (CHARGER-1 = BROKEN))
PROBABILITY 0.9899)

(TRANSITION SWITCH
FROM-VALUE CHARGER-1
TO-VALUE STUCK-CHARGER-1
GUARD NIL
PROBABILITY 0.01)

(TRANSITION SWITCH
FROM-VALUE CHARGER-1
TO-VALUE STUCK-CHARGER-2
GUARD NIL

 PROBABILITY 0.01)
(TRANSITION SWITCH

FROM-VALUE CHARGER-1
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 10E-6)

(TRANSITION CHARGER-1
FROM-VALUE FULL-ON
TO-VALUE FULL-ON

Achieving Real-time Mode Estimation through Offline Compilation 249

GUARD (NOT (BATTERY-TEMP = HIGH))
PROBABILITY 0.89)

(TRANSITION CHARGER-1
FROM-VALUE FULL-ON
TO-VALUE OFF
GUARD NIL
PROBABILITY 0.1)

(TRANSITION CHARGER-1
FROM-VALUE FULL-ON
TO-VALUE BROKEN
GUARD NIL
PROBABILITY 0.01)

(TRANSITION CHARGER-1
FROM-VALUE FULL-ON
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 10.0e-7)

(TRANSITION CHARGER-2
FROM-VALUE OFF
TO-VALUE OFF
GUARD NIL
PROBABILITY 0.1)

(TRANSITION CHARGER-2
FROM-VALUE OFF
TO-VALUE TRICKLE
GUARD NIL
PROBABILITY 0.89)

(TRANSITION CHARGER-2
FROM-VALUE OFF
TO-VALUE BROKEN
GUARD NIL
PROBABILITY 0.01)

(TRANSITION CHARGER-2
FROM-VALUE OFF
TO-VALUE UNKNOWN
GUARD NIL
PROBABILITY 10.0e-7)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE FULL
GUARD (AND (CHARGER-1 = FULL-ON))
PROBABILITY 0.499)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE CHARGING
GUARD (AND (NOT (CHARGER-1 = OFF)))
PROBABILITY 0.499)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE DEAD
GUARD NIL
PROBABILITY 0.001)

(TRANSITION BATTERY
FROM-VALUE CHARGING
TO-VALUE UNKNOWN

Achieving Real-time Mode Estimation through Offline Compilation 250

GUARD NIL
PROBABILITY 0.0001)

C.3 Constituent Diagnoses
4. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-1=TRICKLE ∨ CHARGER-1=OFF ∨

SWITCH=STUCK-CHARGER-1 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

5. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-1=FULL-ON ∨ CHARGER-1=OFF ∨

SWITCH=STUCK-CHARGER-1 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

6. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-2=TRICKLE ∨ CHARGER-2=OFF ∨

SWITCH=STUCK-CHARGER-2 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

7. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-2=FULL-ON ∨ CHARGER-2=OFF ∨

SWITCH=STUCK-CHARGER-2 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

8. [SWITCH=CHARGER-1 ∨ CHARGER-1=TRICKLE ∨ CHARGER-1=OFF ∨ SWITCH=STUCK-CHARGER-1 ∨

SWITCH = STUCK-CHARGER-2 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

9. [SWITCH=CHARGER-1 ∨ CHARGER-1=FULL-ON ∨ CHARGER-1=OFF ∨ SWITCH=STUCK-CHARGER-1 ∨

SWITCH = STUCK-CHARGER-2 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

10. [SWITCH=CHARGER-2 ∨ CHARGER-2=TRICKLE ∨ CHARGER-2=OFF ∨ SWITCH=STUCK-CHARGER-1 ∨

SWITCH = STUCK-CHARGER-2 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

11. [SWITCH=CHARGER-2 ∨ CHARGER-2=FULL-ON ∨ CHARGER-2=OFF ∨ SWITCH=STUCK-CHARGER-1 ∨

SWITCH = STUCK-CHARGER-2 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

12. [BATTERY = CHARGING ∨ BATTERY = DISCHARGING ∨ BATTERY = DEAD ∨ BATTERY = UNKNOWN]

13. [BATTERY = CHARGING ∨ BATTERY = FULL ∨ BATTERY = DEAD ∨ BATTERY = UNKNOWN]

14. [BATTERY = CHARGING ∨ BATTERY = FULL ∨ BATTERY = DISCHARGING ∨ BATTERY = UNKNOWN]

15. [SWITCH=CHARGER-2 ∨ CHARGER-1=FULL-ON ∨ CHARGER-1=OFF ∨ SWITCH=STUCK-CHARGER-1 ∨

SWITCH=STUCK-CHARGER-2 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

16. [SWITCH=CHARGER-2 ∨ CHARGER-1=FULL-ON ∨ CHARGER-1=TRICKLE ∨ SWITCH=STUCK-CHARGER-1

∨ SWITCH=STUCK-CHARGER-2 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

17. [SWITCH=CHARGER-1 ∨ CHARGER-2=FULL-ON ∨ CHARGER-2=OFF ∨ SWITCH=STUCK-CHARGER-1 ∨

SWITCH=STUCK-CHARGER-2 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

18. [SWITCH=CHARGER-1 ∨ CHARGER-2=FULL-ON ∨ CHARGER-2=TRICKLE ∨ SWITCH=STUCK-CHARGER-1

∨ SWITCH=STUCK-CHARGER-2 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

19. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-1=FULL-ON ∨ CHARGER-1=OFF ∨

SWITCH=STUCK-CHARGER-2 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

Achieving Real-time Mode Estimation through Offline Compilation 251

20. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-1=FULL-ON ∨ CHARGER-1=TRICKLE ∨

SWITCH=STUCK-CHARGER-2 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]
21. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-2=FULL-ON ∨ CHARGER-2=OFF ∨

SWITCH=STUCK-CHARGER-1 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

22. [SWITCH=CHARGER-1 ∨ SWITCH=CHARGER-2 ∨ CHARGER-2=FULL-ON ∨ CHARGER-2=TRICKLE ∨

SWITCH=STUCK-CHARGER-1 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

Notice that the number of partial diagnoses does not equal the number of dissents specified in

Section C.2.1. In transforming the dissents related to the battery voltage and current, the partial

diagnoses resulting from dissents 10 and 11, and 12 and 13 are the same.

C.4 Reachable Current Modes
The space of possible current modes is generated using the compiled transitions that are enabled

and the initial state specified in Section C.1. The following figure shows the initial state and the

space of possible modes.

Initial State (St)

Charger-One

Full-On

Switch

Charger-1

Battery

Charging

Charger-Two

Off

Possible Component
Modes (st+1)

Switch

Charger-1
Stuck-Charger-1
Stuck-Charger-2

Unknown

Charger-One

Off Full-On
Broken Unknown

Battery

Full
Charging

Dead
Unknown

Charger-Two

Off Trickle
Broken Unknown

Figure C-2 - Space of Possible Component Modes

The space of possible component modes is shown above, and each mode also has an associated

probability. The probabilities are as follows:
‘switch’ = { (Charger-1, p = 0.9899), (Stuck-Charger-1, p = 0.01), (Stuck-Charger-2, p = 0.01),

(Unknown, p = 0.0001) }

‘charger-1’ = { (Full-On, p = 0.8899), (Off, p = 0.1), (Broken, p = 0.01), (Unknown, p = 0.0001) }

Achieving Real-time Mode Estimation through Offline Compilation 252

‘charger-2’ = { (Off, p = 0.1), (Trickle, p = 0.8899), (Broken, p = 0.01), (Unknown, p = 0.0001) }

‘battery’ = { (Full, p = 0.499), (Charging, p = 0.499), (Dead, p = 0.001), (Unknown, p = 0.0001) }

C.5 Dynamic Mode Estimate Generation
This portion of the Online Mode Estimation algorithm uses the partial diagnoses and the space of

possible component modes to determine a diagnosis. Using the modified A* search described

previously, the tree expansion is as follows. Since there is only one source state, the initial state,

the process is simplified to only using this state to generate consistent current states. This

section expands the partial diagnoses and walks through the expansion step by step.

{ }

Switch =
CHARGER-1
p = 0.9899

Switch =
STUCK-

CHARGER-2
p = 0.01

Charger-1 =
OFF

p = 0.1

Switch =
STUCK-

CHARGER-1
p = 0.01

Switch =
UNKNOWN
p = 0.0001

Charger-1 =
UNKNOWN
p = 0.0001

Charger-1 =
BROKEN
p = 0.01

Figure C-3 - Expansion of Constituent diagnoses 1

The expansion of the first constituent diagnoses is shown above, and of these nodes, the search

chooses the most likely node, in this case the component mode assignment ‘switch = charger-1’.

The next step of the algorithm then determines which partial diagnoses this assignment satisfies.

In the case of ‘switch = charger-1’, this assignment satisfies partial diagnoses 1 through 6 and 14

through 19. The next constituent diagnoses that is expanded then is 7, giving the following

search tree:

{ }

Switch =
CHARGER-1
p = 0.9899

Switch =
STUCK-

CHARGER-2
p = 0.01

Charger-1 =
OFF

p = 0.1

Switch =
STUCK-

CHARGER-1
p = 0.01

Switch =
UNKNOWN
p = 0.0001

Charger-1 =
UNKNOWN
p = 0.0001

Charger-2 =
OFF

p = .09899

Charger-2 =
BROKEN

p = .009899

Charger-2 =
UNKNOWN
p = .9899E-4

Charger-1 =
BROKEN
p = 0.01

Charger-2 =
TRICKLE
p = 0.8809

Figure C-4 - Expansion of Constituent diagnoses 7

Achieving Real-time Mode Estimation through Offline Compilation 253

Upon expanding the next available constituent diagnoses, 7, only the component mode

assignments to ‘charger-2’ are expanded because an assignment to the ‘switch’ has already been

chosen. Again, the search chooses to follow the most likely node of the search tree, in this case

being to follow the ‘switch = charger-1’ and ‘charger-2 = trickle’ path of component mode

assignments. However, upon following this path, the search determines that it is a dead end

because there is no way to satisfy constituent diagnoses 8. As a result, this path of the search

tree is cut off and is not considered any further. The search then finds the next most likely node

in the tree, and this is the node ‘charger-1 = off’. This node satisfies partial diagnoses 1, 2, 5, 6,

12 and 16. The next constituent diagnoses that is expanded is then constituent diagnoses 3. The

resultant expansion is represented in Figure C-4. The previous expansion under the ‘switch’ is

not shown so as to simplify the figure. These nodes are still considered in the search.

{ }

Switch =
CHARGER-1
p = 0.9899

Switch =
STUCK-

CHARGER-2
p = 0.01

Charger-1 =
OFF

p = 0.1

Switch =
STUCK-

CHARGER-1
p = 0.01

Switch =
UNKNOWN
p = 0.0001

Charger-1 =
UNKNOWN
p = 0.0001

Charger-1 =
BROKEN
p = 0.01

Charger-2 =
TRICKLE

p =0.08899

Charger-2 =
OFF

p =0.01

Switch =
STUCK-

CHARGER-2
p =0.001

Switch =
UNKNOWN

p = 1E-5

Charger-2 =
UNKNOWN

p = 1E-5

Figure C-5 - Expansion under 'Charger-1 = OFF' Node of Constituent diagnoses 3

Using the expansion shown here, and the expansion of Figure C-4, the most likely path is under

‘switch = charger-1’ and ‘charger-2 = off’. The constituent diagnoses that are satisfied by this

path are 1 through 6, 7, 8, and 14 through 19. The next constituent diagnoses that is expanded

under this search path is then constituent diagnoses 9, involving the ‘battery’. The expansion of

this constituent diagnoses is shown in Figure C-6. Again, the expansion shown in Figure C-5 is

not shown here for clarity.

Achieving Real-time Mode Estimation through Offline Compilation 254

{ }

Switch =
CHARGER-1
p = 0.9899

Switch =
STUCK-

CHARGER-2
p = 0.01

Charger-1 =
OFF

p = 0.1

Switch =
STUCK-

CHARGER-1
p = 0.01

Switch =
UNKNOWN
p = 0.0001

Charger-1 =
UNKNOWN
p = 0.0001

Charger-2 =
OFF

p = .09899

Charger-2 =
BROKEN

p = .009899

Charger-2 =
UNKNOWN
p = .9899E-4

Charger-1 =
BROKEN
p = 0.01

Charger-2 =
TRICKLE
p = 0.8809

Battery =
CHARGING
p = 0.0494

Battery =
DEAD

p = .9899E-4

Battery =
UNKNOWN
p = .9899E-5

Figure C-6 - Expansion of Constituent diagnoses 9

The expansion shown above only shows the component mode assignments for the battery for

‘charging’, ‘dead’ and ‘unknown’ because the ‘discharging’ mode assignment is not in the

allowable assignments for the battery. From the expansions of Figure C-6 and Figure C-5 the

search follows the most likely path of the tree. This next most likely path that the search finds is

then ‘charger-1 = off’ and ‘charger-2 = trickle’ with p = 0.08899. The partial diagnoses

satisfied by this set of assignments are 1 through 3, 5 through 7, 12, 15, 16 and 19. The next

expansion is then performed using constituent diagnoses 4.

{ }

Switch =
CHARGER-1
p = 0.9899

Switch =
STUCK-

CHARGER-2
p = 0.01

Charger-1 =
OFF

p = 0.1

Switch =
STUCK-

CHARGER-1
p = 0.01

Switch =
UNKNOWN
p = 0.0001

Charger-1 =
UNKNOWN
p = 0.0001

Charger-1 =
BROKEN
p = 0.01

Charger-2 =
TRICKLE

p =0.08899

Charger-2 =
OFF

p =0.01

Switch =
STUCK-

CHARGER-2
p =0.001

Switch =
UNKNOWN

p = 1E-5

Charger-2 =
UNKNOWN

p = 1E-5

Switch =
CHARGER-1
p = .08809

Switch =
STUCK-

CHARGER-2
p = .8899E-3

Switch =
UNKNOWN
p = .8899E-5

Figure C-7 - Expansion of the set of Constituent Diagnoses #4

Achieving Real-time Mode Estimation through Offline Compilation 255

Upon performing this expansion, each of the paths are checked for a dead end. Looking at the

path ‘charger-1 = off’, ‘charger-2 = trickle’, and ‘switch = charger-1’, the remaining partial

diagnoses to be satisfied are 8, 9 through 11 and 13, shown below.
8. [SWITCH=CHARGER-2 ∨ CHARGER-2=FULL-ON ∨ CHARGER-2=OFF ∨ SWITCH=STUCK-CHARGER-1 ∨

SWITCH = STUCK-CHARGER-2 ∨ CHARGER-2=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-2=UNKNOWN]

9. [BATTERY = CHARGING ∨ BATTERY = DISCHARGING ∨ BATTERY = DEAD ∨ BATTERY = UNKNOWN]

10. [BATTERY = CHARGING ∨ BATTERY = FULL ∨ BATTERY = DEAD ∨ BATTERY = UNKNOWN]

11. [BATTERY = CHARGING ∨ BATTERY = FULL ∨ BATTERY = DISCHARGING ∨ BATTERY = UNKNOWN]

13. [SWITCH=CHARGER-2 ∨ CHARGER-1=FULL-ON ∨ CHARGER-1=TRICKLE ∨ SWITCH=STUCK-CHARGER-1

∨ SWITCH=STUCK-CHARGER-2 ∨ CHARGER-1=BROKEN ∨ SWITCH=UNKNOWN ∨ CHARGER-1=UNKNOWN]

It is impossible for this branch of the search tree under ‘charger-1 = off’ and ‘charger-2 =

trickle’ to satisfy all partial diagnoses. This branch is marked as a dead end by the search. The

next node that the search then finds to expand is under the path ‘switch = charger-1’, ‘charger-2

= off’ and ‘battery = charging’. The remaining partial diagnoses to be satisfied under this path

are 12 and 13. The expansion of constituent diagnoses 12 is shown in the Figure C-8.

{ }

Switch =
CHARGER-1
p = 0.9899

Switch =
STUCK-

CHARGER-2
p = 0.01

Charger-1 =
OFF

p = 0.1

Switch =
STUCK-

CHARGER-1
p = 0.01

Switch =
UNKNOWN
p = 0.0001

Charger-1 =
UNKNOWN
p = 0.0001

Charger-2 =
OFF

p = .09899

Charger-2 =
BROKEN

p = .009899

Charger-2 =
UNKNOWN
p = .9899E-4

Charger-1 =
BROKEN
p = 0.01

Charger-2 =
TRICKLE
p = 0.8809

Battery =
CHARGING
p = 0.0494

Battery =
DEAD

p = .9899E-4

Battery =
UNKNOWN
p = .9899E-5

Charger-1 =
FULL-ON
p =.04396

Charger-1 =
OFF

p = .00494

Charger-1 =
BROKEN

p = .494E-3

Charger-1 =
UNKNOWN
p = .494E-5

Figure C-8 - Expansion of Constituent diagnoses 12 under the Green Path

Following the path noted in ‘green’ on the search tree, and choosing the most likely node of the

expansion, the search determines that all partial diagnoses have been satisfied by the assignment

Achieving Real-time Mode Estimation through Offline Compilation 256

‘charger-1 = full-on’. The search does continue however to generate consistent mode estimates

until the halting conditions are met. For this example, the remaining states that are generated are

as follows, ordered from most likely to least likely.

() () () (){ }
() () () (){ }
()

 = C , = , = , = , 0.489 1

 = C , = , = , = , 0.489 2

 = C ,

switch harger-1 charger-1 Full -On charger-2 Off battery Charging p E

switch harger-1 charger-1 Full -On charger-2 Broken battery Charging p E

switch harger-1 charger-1

= −

= −

() () (){ }
() () () (){ }
() () ()

= , = , = , 0.494 3

 = C , = , = , = , 0.494 4

 = C , = , = ,

Broken charger-2 Off battery Charging p E

switch harger-1 charger-1 Broken charger-2 Broken battery Charging p E

switch harger-1 charger-1 Full -On charger-2 Unknown b

= −

= −

(){ }
() () () (){ }
() () () (){ }

 = , 0.489 4

 = C , = , = , = , 0.494 5

 = C , = , = , = , .8809 5

attery Charging p E

switch harger-1 charger-1 Unknown charger-2 Off battery Charging p E

switch harger-1 charger-1 Full -On charger-2 Off battery Unknown p E

switc

= −

= −

= −

() () () (){ } = C , = , = , = , .9799 6h harger-1 charger-1 Full -On charger-2 Broken battery Unknown p E= −

() () () (){ }
() () () (){ }
()

 = C , = , = , = , 0.494 6

 = C , = , = , = , 0.494 6

 = C ,

switch harger-1 charger-1 Unknown charger-2 Broken battery Charging p E

switch harger-1 charger-1 Broken charger-2 Unknown battery Charging p E

switch harger-1 charger

= −

= −

() () (){ }
() () () (){ }
() () ()

 = , = , = , .9899 7

 = C , = , = , = , .9899 8

 = C , = , = ,

-1 Broken charger-2 Off battery Unknown p E

switch harger-1 charger-1 Broken charger-2 Broken battery Unknown p E

switch harger-1 charger-1 Full -On charger-2 Unknown

= −

= −

(){ }
() () () (){ }
() () () (){ }

 = , .980 8

 = C , = , = , = , .494 8

 = C , = , = , = , .9899 9

battery Unknown p E

switch harger-1 charger-1 Unknown charger-2 Unknown battery Charging p E

switch harger-1 charger-1 Unknown charger-2 Off battery Unknown p E

swi

= −

= −

= −

() () () (){ }
() () () (){ }
()

 = C , = , = , = , .9899 10

 = C , = , = , = , .9899 10

 = C ,

tch harger-1 charger-1 Unknown charger-2 Broken battery Unknown p E

switch harger-1 charger-1 Broken charger-2 Unknown battery Unknown p E

switch harger-1 charger-1

= −

= −

() () (){ }= , = , = , .9899 12Unknown charger-2 Unknown battery Unknown p E= −

Achieving Real-time Mode Estimation through Offline Compilation 257

Appendix D. CME Supporting Algorithms

D.1 Dissent and Transition Triggers

Recall that the Dissent and Transition Trigger algorithms are based on the property that the

dissents and transitions involve antecedents that are known at the time of execution. In the case

of dissents, there are observation assignments. The transitions involve command and component

mode variables. This is exploited to simplify the triggering of dissents and transitions.

The basic idea of triggering is to determine if the assignments in the antecedents of the dissent or

transition all appear in the current set of observations, and control variables, and in the previous

mode estimates. If they do, then the dissent or transition is triggered, and referred to as enabled.

A counter discipline is employed to determine when a dissent or transition is enabled. The

triggered dissents are then placed in the list of Enabled Dissents, and the triggered transitions are

placed in the Enabled Transitions. The complication alluded to in Chapter 6 is determining these

lists with the fewest computations, and using truth-values to decrement and increment the

counters. This section details the algorithms that perform these computations, beginning with

the dissent and transition triggers, followed by the supporting algorithm that computes the truth-

values of the different variables.

The inputs of the Dissent and Transition Trigger algorithms are shown below.

Dissent TriggerDissents
Transition Trigger

Compiled
Transitions

Enabled
Transitions

Enabled
Dissents

Observations Observations Commands

Previous
Mode Estimates

Figure D-1 - Inputs and Outputs of the Dissent and Transition Triggers

The Dissent Trigger only requires the observation information to determine when a particular

dissent is enabled. The observations in this list are ones whose truth values have changed from

Achieving Real-time Mode Estimation through Offline Compilation 258

time ‘t’ to ‘t+1’. This list is denoted as Πo
Changed. To simplify the implementation, the

observations in this list have the added capability of knowing which dissents mention them.

Storing this information enables the Dissent Trigger to only iterate through the list of changed

observations instead of the full list of dissents. This is a standard indexing device which saves

many computations over a brute force approach of iterating through the dissents and determining

if the observations mentioned in the dissent are in the changed list of observations, Πo
Changed.

The steps for incrementing and decrementing are formalized in the Dissent Trigger algorithm

below.

function Dissent-Trigger(Πo

Changed, Dissents)
 returns the enabled dissents, DSEN
 for each (xio = vij) in Πo

Changed
 if truth-current = true & truth-previous = false
 then for each dissent, di, in dissents of (xio = vij)

 decrement the OBS-counter in di
 if OBS-counter(di) equals zero
 then place di in DSEN
 end

 if truth-current = false & truth-previous = true
 then for each dissent, di, in dissents of (xio = vij)
 increment the OBS-counter in di
 end
 end
 return DSEN

Figure D-2 - Dissent Trigger Algorithm

The truth-values used by the Dissent Trigger are stored in two locations. The ‘truth-previous’

represents if the observation assignment was true in the previous time step ‘t’. The ‘truth-

current’ represents if the observation assignment is true in the current time step, ‘t+1’.

The Transition Trigger uses the same list of changed observations as the Dissent Trigger,

Πo
Changed. The Transition Trigger uses a set of control variables reduced from the full set. This

reduced set of assignments, represented by Πc
Changed, are the control variables that have changed

value from time ‘t’ to ‘t+1’. The remaining inputs, the previous mode estimates, B(t), and the

compiled transitions, TCompiled, are unchanged external to the Transition Trigger algorithm.

Achieving Real-time Mode Estimation through Offline Compilation 259

The transition trigger is enabled by an algorithm that creates a single list of previous component

modes, Πm
Previous. This list is culled from all of the previous mode estimates by the algorithm

‘Compress-Mode-Estimates’. This list of component modes allows the Transition Trigger

algorithm to perform the same computation as it does for the observation and control variables.

The algorithm iterates through these three lists, incrementing and decrementing the counters

associated with each variable type and places the appropriate transitions in the list of enabled

transitions, TEN. The algorithm is detailed below.

function Transition-Trigger(Πc
Changed, B(t), TCompiled)

 returns a list of enabled transitions, TEN
 Πm

Previous ← Compress-Mode-Estimates(B(t))
 for each (xim = vij) in Πm

Previous
 if truth-previous = true
 then for each Ti in transitions of (xim = vij)
 if (xim = vij) is a source of transition Ti
 then decrement the SOURCE-counter for Ti
 if (xim = vij) is in the guard of transition Ti
 then decrement the MODE-counter for Ti
 if OBS-counter = 0 & CMD-counter = 0 &
 SOURCE-counter = 0 & MODE-counter = 0
 then place Ti in TEN
 end

 for each (xic = vij) in Πc

Changed
 if truth-current = true & truth-previous = false
 then for each Ti in transitions of (xic = vij)
 decrement the CMD-counter for Ti
 if OBS-counter = 0 & CMD-counter = 0 &
 SOURCE-counter = 0 & MODE-counter = 0
 then place Ti in TEN
 if truth-current = false & truth-previous = true
 then for each Ti in zi

CMD transitions
 increment the CMD-counter for Ti
 end
 return TEN

Figure D-3 - Transition Trigger Algorithm

The transition trigger algorithm is broken into two major steps. The first calls the ‘Compress-

Mode-Estimates’ algorithm that returns the list of previous component modes, Πm
Previous. The

Achieving Real-time Mode Estimation through Offline Compilation 260

next portion of this first step is using these previous component modes to decrement the count of

the transition’s ‘Source’ and ‘Mode’ counters. The second step updates the ‘CMD’ counters

using the list of changed control variables, Πc
Changed. At each step the counts for each variable

type are checked to determine if the particular transition is enabled. If the transition is enabled, it

is added to the list, TEN.

This algorithm requires fewer computations than iterating through the list of transitions and

determining if a variable in either the source or guard is in the current list of observations,

commands or previous component modes.

D.1.1 Triggering Supporting Algorithms

The Dissent and Transition Trigger algorithms relied on two algorithms to enable their

computations. The updating of truth values and the creation of reduced lists of observation and

control variable assignments is the task of the ‘Update-Truth’ algorithm. The other is the

‘Compress-Mode-Estimates’ algorithm that takes the belief state, B(t), and produces a set of

component modes culled from the belief state.

The ‘Update-Truth’ algorithm uses the full set of observations and control assignments, Πo and

Πc, and the current lists of each, Πo
Current and Πc

Current, to determine the changed list of

observation and control assignments. The algorithm first moves the ‘truth-current’ value of each

assignment to the ‘truth-previous’ field. The algorithm then iterates through the full list to

determine if an assignment is in Πo
Current or Πc

Current. If an assignment is in the current list, then

the truth-current is updated to true. After updating each assignment’s ‘truth-current’ field, the

two truth-values are compared, and if they are different, then the assignment is placed in the

appropriate list of changed observations or control variables. Figure D-4 details the algorithm.

function Update-Truth(Πo, Πc, Πo
Current, Πc

Current)
 returns list of changed observations, Πo

Changed, and commands, Πc
Changed

 for each (xio = vij) in Πo
 truth-previous ← truth-current for (xio = vij)
 if (xio = vij) ∈ Πo

Current

Achieving Real-time Mode Estimation through Offline Compilation 261

 then truth-current ← true for (xio = vij)
 else truth-current ← false for (xio = vij)
 if truth-previous ! = truth-current
 then Πo

Changed ← (xio = vij) ∪ Πo
Changed

 end

 for each (xic = vij) in Πc
 truth-previous ← truth-current for (xic = vij)
 if (xic = vij) ∈ Πc

Current
 then truth-current ← true for (xic = vij)
 else truth-current ← false for (xic = vij)
 if truth-previous ! = truth-current
 then Πc

Changed ← (xic = vij) ∪ Πc
Changed

 end
 return Πo

Changed and Πc
Changed

Figure D-4 – Update-Truth Algorithm Supporting Compiled Conflict Recognition

The final supporting algorithm of the Dissent and Transition Triggers is determining the list of

previous modes. The set of previous modes is generated from all mode estimates in the previous

belief state, ‘B(t)’. The following figure shows the desired calculation.

Sn
(t)

Si+1
(t)

Si
(t)

S1
(t)

.

.

.

.

.

.

() () (){ }
11 1 , ..., , ...,

j nm l im il nm nlx v x v x v= = =

Figure D-5 - Compression of Previous Belief State

Achieving Real-time Mode Estimation through Offline Compilation 262

The compression of the belief state consists of a set of every component mode assignment that is

mentioned in the individual mode estimates. When compressed, the list must represent the belief

state, keeping knowledge of the mode estimate probabilities. Note that a component mode

should appear at most once in the list, but may be mentioned in multiple mode estimates. The

‘Compress-Mode-Estimates’ algorithm is shown below.

function Compress-Mode-Estimates(B(t))
 returns a set of previous modes, Πm

Previous
 for each Si

(t) in B(t)
 for each (xim = vij) in Si

(t)
 mode estimate ← 〈 Si

(t),P(Si
(t)) 〉 for (xim = vij)

 if (xim = vij) ∉ Πm
Previous

 Πm
Previous ← (xim = vij) ∪ Πm

Previous
 truth-previous ← true for (xim = vij)
 truth-current ← false for (xim = vij)
 end
 end
 return Πm

Previous

Figure D-6 - Compress States Algorithm

The algorithm iterates through each mode estimate in the previous belief state, and for each

assignment places a reference to the mode estimate within a field in the assignment. Should an

assignment be mentioned in more than one previous mode estimate, this field simply becomes a

list. Also the ‘truth-current’ value is cleared since this is to be determined by the Dynamic Mode

Estimate Generation.

D.2 Dynamic Mode Estimate Generation

D.2.1 Generate

The ‘Insert-In-Order’ algorithm will place a ‘node’ in the list of ‘Nodes’ in order of decreasing

cost. The minor complexity is that if a node on the queue has a cost of 1, then this supercedes

any other node in the queue. This is to force the Generate algorithm to choose each previous

mode estimate at least once. With this in mind, the algorithm is as follows.

Achieving Real-time Mode Estimation through Offline Compilation 263

function Insert-In-Order(new node, Nodes)
 returns updated Nodes list
 for each node in Nodes
 if cost(node) = 1
 then move to next node
 if cost(new node) = cost(node)
 then put new node after node
 if cost(new node) > cost(node)
 then put node before node
 end
 return Nodes

Figure D-7 - Insert-In-Order Algorithm Supporting the Generate Algorithm

This algorithm as designed puts the ‘new node’ after any node that has a cost of 1. This

algorithm will also place ‘new node’ after one on the list if they both have the same cost, giving

a tie to the node already in the queue. Finally, if the cost of the ‘new node’ is greater than the

cost of the node in the list, the ‘new node’ is inserted before the one on the list.

Achieving Real-time Mode Estimation through Offline Compilation 264

This page intentionally left blank.

Achieving Real-time Mode Estimation through Offline Compilation 265

Appendix E. Results and Additional Experiments

E.1 Digital Shunt Nominal Operation

Achieving Real-time Mode Estimation through Offline Compilation 266

E.2 Analog Shunt Nominal Operation

The nominal test of the analog shunts follows the same pattern as the digital shunts. In this case,

the system is assumed operating normally with all components functioning. The NEAR

spacecraft determines that too much power is being produced, so it gives the command, AS =

close for the analog shunt to dissipate power. Under normal operation, this would result in the

output current Ishunt_PA = nominal.

To begin the test, the system is assumed in the same modes as above for the digital shunts. The

commands given to the system are:

{ DS-P-CMD = no-command, DS-R-CMD = no-command, AS-CMD = close }

The observations input to the simulation are then:

{ Isa = nominal, Ishunt_D = nominal, Ishunt_PA = nominal, Ichr = trickle, Vbus = nominal,

Vbatt = nominal, Tbatt = high, Ibatt = nominal }

The resultant mode estimate should include the changed component mode, one-closed for the

analog shunts. The desired output is then:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS = one-closed, S = CH-P, CH-

P = trickle, CH-R = off, B = full }

The following is the output of the CME engine.

The inputs above produce the following most likely mode estimate. This is the same mode

estimate expected for the scenario. The output here only shows the most likely mode estimate.

Achieving Real-time Mode Estimation through Offline Compilation 267

Achieving Real-time Mode Estimation through Offline Compilation 268

E.3 Nominal Battery Operation

Achieving Real-time Mode Estimation through Offline Compilation 269

E.4 Failed Analog Shunt

E.5 Solar Array Degradation

Achieving Real-time Mode Estimation through Offline Compilation 270

The next rule considered in the NEAR power system rules is one that indicates a low voltage on

the bus caused by solar array degradation. The NEAR power system was designed to output a

constant voltage at 24 V, and rule #26 addresses the situation when this voltage level drops

below 23 V. Over time, the solar array productivity decreases due to many factors, such as

thermal cycling, micrometeorite impacts, and the duration of exposure to the sun’s radiation. If

the solar array degrades enough, its power output is not at the expected level. This limits the

operations the spacecraft can perform and is essential information to schedule tasks so that the

available power is not exceeded.

The failure scenario described here is demonstrated assuming that all components are operating

normally initially, which is given by the mode estimate:

{ SA = operational, DS-P = none-closed, DS-R = none-closed, AS-P = none-closed, S = CH-P,

CH-P = trickle, CH-R = off, B = full }

The following are the observations and commands for this scenario:

{ Isa = low, Ishunt_D = nominal, Ishunt_PA = nominal, Ichr = trickle, Vbus = low, Tbatt = high,

Vbatt = nominal, Ibatt = nominal }

{ DS-P-CMD = no-command, DS-R-CMD = no-command, AS-CMD = no-command }

The symptom of a low bus voltage and the low solar array output current is the indication that

the solar array has broken in some way. One of these failures is due to solar array degradation.

The desired output from the CME engine should contain the mode estimate:

{ SA = broken, DS-P = none-closed, DS-R = none-closed, AS-P = none-closed, S = CH-P, CH-P

= trickle, CH-R = off, B = full }

The following is the output from the CME engine.

Achieving Real-time Mode Estimation through Offline Compilation 271

The observations, commands and previous mode estimate above result in the most likely mode

estimate shown below.

Achieving Real-time Mode Estimation through Offline Compilation 272

E.6 Failed Charger

Achieving Real-time Mode Estimation through Offline Compilation 273

E.7 Failed Digital Shunts

Achieving Real-time Mode Estimation through Offline Compilation 274

Result of Second Observations

Achieving Real-time Mode Estimation through Offline Compilation 275

E.8 Failed Charger and Failed Analog Shunts

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Motivation
	Mode Estimation Evolution
	Model-based Spacecraft Autonomy
	Mode Estimation
	Inputs and Outputs
	Mode Estimation Example
	The Mode Estimation Process at a Glance
	NEAR Spacecraft Power System
	Mode Estimation Example

	Issues in Mode Estimation
	Tracking System Trajectories

	Compilation
	The Basics
	Compilation Example

	Compilation and Mode Estimation

	Conflict-Based Mode Estimation
	Model-based Mode Estimation Framework
	General Diagnostic Engine (GDE)
	GDE Inputs and Outputs
	Diagnosis with GDE
	Conflict Recognition
	Candidate Generation

	Analysis of GDE

	Sherlock
	Sherlock Inputs and Outputs
	Diagnosis with Sherlock
	Analysis of Sherlock

	Compilation of Conflict-Based Mode Estimation
	Motivation for Mode Compilation
	Mini-ME
	Mini-ME Example

	Mode Compilation
	Inputs and Outputs
	Mode Compilation Algorithm
	Optimal Constraint Satisfaction
	Dissent Generation as Optimal Constraint Satisfaction
	Mode Compilation Example
	Analysis of Mode Compilation and Mini-ME

	Conflict Based Mode Estimation with Transitions
	Mode Estimation and the Need for Transitions
	System Model Framework
	Hidden Markov Models
	Concurrent Constraint Automata
	Constraint Automata
	Constraint Automaton Example
	Concurrent Constraint Automata
	CCA’s and Mode Estimation
	ME-CCA Example
	Formal ME-CCA Algorithm

	Livingstone
	Livingstone Inputs and Outputs
	Mode Estimation in Livingstone
	Mode Estimation Example
	Livingstone Diagnosis and ME-CCA

	Analysis of Livingstone

	Compilation for Mode Estimation
	Motivation for Compilation
	Architecture
	Dissents
	Compiled Transitions
	Online Mode Estimation at a Glance
	Compilation
	Compiled Concurrent Automata
	Transition Compilation
	Inputs and Outputs
	Transition Compilation Algorithm

	Transition Compilation Example

	Online Mode Estimation
	Architecture
	Inputs / Outputs
	Compiled Conflict Recognition
	Dissent and Transition Trigger Basics
	Constituent Diagnosis Generator

	Dynamic Mode Estimate Generation
	Architecture
	Dynamic Mode Estimate Generation at a Glance
	Generate Algorithm
	Generate Overview
	Generate Algorithm Example
	Generate Algorithm

	Conflict-Directed A*
	CDA* Heuristics
	Conflict Direction and Systematicity
	CDA* Algorithm
	CDA* Example

	Rank Algorithm
	Rank Algorithm Description
	Rank Algorithm Example
	Rank Algorithm and Belief Update

	Mapping Compiled Mode Estimation to ME-CCA

	Compiled Mode Estimation Algorithms
	Compiled Conflict Recognition
	Constituent Diagnosis Generator

	Dynamic Mode Estimate Generation
	Generate
	Conflict Directed A*
	Rank

	Online Mode Estimation

	Experimental Validation
	NEAR Spacecraft Power System
	System Block Diagram
	Component Models
	Charger
	Battery

	Compiled Model
	Scenarios and Results
	Nominal Operation
	Digital Shunt Test
	Nominal Battery and Charger Operation

	Primary Analog Shunt Failure
	Failed Charger
	Digital Shunt Failure
	Failed Charger and Failed Analog Shunt

	Discussion

	Conclusions
	Results
	Compiled Mode Estimation

	Future Work
	Compiled Conflict Recognition
	Dynamic Mode Estimate Generation

	References
	Appendix A.	NEAR Power System Models
	NEAR Power Generation
	A.1.1 Solar Arrays
	A.1.2 Digital Shunts
	A.1.3 Analog Shunts

	NEAR Power Storage
	Switch
	Charger
	Battery

	Appendix B.	NEAR Power Storage Dissents & Transitions
	B.1 Dissents
	B.2 Transitions
	B.2.1 Charger Switch
	B.2.2 Charger-1
	B.2.3 Charger-2
	B.2.4 Battery

	Appendix C.	Online-ME Detailed Example
	Observations and Initial Mode Estimate
	Dissents and Transitions
	Enabled Dissents
	Enabled Transitions

	Constituent Diagnoses
	Reachable Current Modes
	Dynamic Mode Estimate Generation

	Appendix D.	CME Supporting Algorithms
	D.1 Dissent and Transition Triggers
	D.1.1 Triggering Supporting Algorithms

	D.2 Dynamic Mode Estimate Generation
	D.2.1 Generate

	Appendix E.	Results and Additional Experiments
	E.1 Digital Shunt Nominal Operation
	E.2 Analog Shunt Nominal Operation
	E.3 Nominal Battery Operation
	E.4 Failed Analog Shunt
	E.5 Solar Array Degradation
	E.6 Failed Charger
	E.7 Failed Digital Shunts
	E.8 Failed Charger and Failed Analog Shunts

