
Managing Temporal Uncertainty Under Limited Communication:

A Formal Model of Tight and Loose Team Coordination

by

John L. Stedl

B.S. in Aeronautics and Astronautics Engineering
University of Illinois, Urbana-Champaign, 1996

Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the

requirements for the degree of

Masters of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2004

© Massachusetts Institute of Technology 2004. All rights reserved.

Author………………………………………………………………………………………

Department of Aeronautics and Astronautics
August 19, 2004

Certified by…………………………………………………………………………………
 Brian C. Williams

Associate Professor
Thesis Supervisor

Accepted by………………………………………………………………………………...

Jaime Peraire
Professor of Aeronautics and Astronautics, Chair, Committee on Graduate Students

 2

 Managing Temporal Uncertainty Under Limited Communication:
A Formal Model of Tight and Loose Team Coordination

by

John L. Stedl

September 8, 2004

Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the
requirements for the degree of

Masters of Science in Aeronautics and Astronautics

 In the future, groups of autonomous robots will cooperate in large networks in order to
achieve a common goal. These multi-agent systems will need to be able to execute
cooperative temporal plans in the presence of temporal uncertainty and communication
limitations. The duration of many planned activities will not be under direct control of
the robots. In addition, robots will often not be able to communicate during plan
execution. In order for the robots to robustly execute a cooperative plan, they will need to
guarantee that a successful execution strategy exists, and provide a means to reactively
compensate for the uncertainty in real-time. This thesis presents a multi-agent executive
that enables groups of distributed autonomous robots to dynamically schedule temporally
flexible plans that contain both temporal uncertainty under communication limitations.

Previous work has presented controllability algorithms that compile the simple
temporal networks with uncertainty, STNUs, into a form suitable for execution. This
thesis extends the previous controllability algorithms to operate on two-layer plans that
specify group level coordination at the highest level and agent level coordination at a
lower level. We introduce a Hierarchical Reformulation (HR) algorithm that
reformulates the two-layer plan in order to enable agents to dynamically adapt to
uncertainty within each group plan and use a static execution strategy between groups in
order to compensate for communication limitations. Formally, the HR algorithm ensures
that the two-layer plan is strongly controllable at the highest level and dynamically
controllable at the lower level. Furthermore, we introduce a new fast dynamic
controllability algorithm that has been empirically shown to run in O(N3) time.

The Hierarchical Reformulation algorithm has been validated on a set of hand coded
examples. The speed of the new fast dynamic controllability algorithm has been tested
using a set of randomly generated problems.

Thesis Supervisor: Brian C Williams
Title: Associate Professor of Aeronautics and Astronautics

 3

Acknowledgements

If you are reading this then you should believe in miracles. The experience of writing a
thesis is one in which …

I would like to thank Pooja Rajaram for all the support and love that made this thesis
possible. I would like to thank her for of the late nights she spent supporting me in the
rover lab and for the encouragement to finish, as well as all of the late nights editing this
thesis.

I would like to thank all the members in the MERS group. Specifically, Rob Ragno
whose few words set forth the whole direction of my thesis. I would also like to thank
Andreas Wehowsky, Samidh Chakrabarthi, Stano Funiak, and Aisha Walcott for their
technical support and friendship. Furthermore, I would like to thank Brad Hasegawa for
his help in formatting.

I would like to thank my advisor Brian Williams for supporting me through the entire
project.

Finally, I would like to thank my entire family for their love and support.

This thesis also could not have been completed without the sponsorship of the DARPA
NEST program under contract F33615-01-C-1896.

 4

Table of Contents
1.1 Motivation... 12

1.2 Distributed Multi-Agent Scenario .. 13

1.3 Research Challenges .. 15

1.4 Basic Centralized Architecture ... 18

1.5 Problem Statement... 21

1.6 Proposed Approach.. 21

1.7 Key Technical Contributions .. 29

1.8 Grand Vision .. 29

1.9 Range of Applicability ... 29

1.10 Roadmap for Thesis ... 29

2 BACKGROUND ..31

2.1 Introduction.. 31

2.2 Temporal Constraint Satisfaction Problem ... 31

2.3 Simple Temporal Network and Temporal Plan Networks ... 32

2.4 Dynamic Execution of TPNs.. 38

2.5 Simple Temporal Networks with Uncertainty ... 47

2.6 Summary... 48

3 HIERARCHICAL REFORMULATION ALGORITHM49

3.1 Introduction.. 49

3.2 Communication Assumption... 53

3.3 Communication Controllability .. 54
3.3.1 Primary Types of Controllability... 54
3.3.2 Formal Definition of Communication Controllability... 58

3.4 Two-Layer Multi-Agent Plans .. 66
3.4.1 Group Programming Language (GPL) .. 70
3.4.2 Converting Multiagent Plans to Two-Layer MTPNUs.. 74

3.5 The Decoupling Algorithm .. 77
3.5.1 Strong Controllability.. 78
3.5.2 Strong Controllability Checking Algorithm .. 81

 5

3.5.3 The Decoupling Algorithm.. 91

3.6 The Hierarchical Reformulation Algorithm.. 94
3.6.1 HR Algorithm Pseudo-Code.. 94

4 FAST DYNAMIC CONTROLLABILITY ALGORITHM103

4.1 Introduction.. 103

4.2 Overview ... 105

4.3 The Dynamic Controllability Algorithm.. 109
4.3.1 Triangular Reductions ... 111
4.3.2 Regression of Conditional Constraints .. 118
4.3.3 Pseudo-Code for the Dynamic Controllability Algorithm... 123

4.4 Fast Dynamic Controllability Algorithm ... 125
4.4.1 Incremental Dispatchability Maintenance ... 126
4.4.2 Back-Propagation .. 129
4.4.3 Back-Propagating when a Negative Requirement Edge Changes ... 130
4.4.4 Back-Propagation Rule when Positive Requirement Edge Changes 132
4.4.5 Back Propagating Conditional Edges .. 133
5.1.1 Pseudo-Code for BACK-PROPAGATE ... 134

4.5 Fast Dynamic Controllability Pseudo-Code... 135

4.6 Summary... 140

5 RESULTS AND CONCLUSION ..141

5.1 Introduction.. 141

5.2 Implementation of the Hierarchical Reformulation algorithm.. 141

5.3 Run Time Complexity of the FAST-DC Algorithm .. 143

5.4 Limitations and Future Work... 151
5.4.1 Improvements in Group Macro Representation .. 151
5.4.2 Improvements in the Decoupling Algorithm... 152
5.4.3 Variations on the Two-Layer Architecture.. 153
5.4.4 Towards a Fully Distribution Architecture.. 153
5.4.5 Other opportunities for future work... 154

5.5 Conclusion... 155

 6

List of Figures
Figure 1-1 Examples of Future Multi-Agent Systems ... 13
Figure 1-2 The proposed TechSat21 was a proposed mission that uses a cluster of small

distributed satellites to perform space based sensing using interferometry. The
satellites need to tightly coordinate their activities when imaging or reconfiguring
the cluster. ... 14

Figure 1-3 (a) In the leader-follower architecture the leader makes all of the scheduling
decisions. If communication is unavailable during part of the mission, the leader is
unable to dynamically schedule tasks to the follower. (b) In a distributed
architecture, the scheduling decisions are made by multiple agents; therefore, the
system is robust to communication limitations. For example, if the communication
link between agent2 and agent4 is unavailable, as long as agent3 and agent4 do not
need to synchronize their activities with the other agents, they will be able to
successfully execute their local plan... 16

Figure 1-4 Different Types of coordination architectures for multi-agent systems......... 17
Figure 1-5 Centralized Planning/Execution Architecture An executive is a

scheduler that converts a partially ordered temporal plan into a sequence of
hardware commands. The executive consists of a reformulator, which prepares the
plan for execution, and a dispatcher, which schedules tasks in real-time in order to
adapt the schedule to the uncertain events. ... 19

Figure 1-6 In order to adapt to runtime uncertainty within each tightly coordinating
group plan, the agents use a dynamic execution strategy, and in order to cope with
limited communication between the groups, the agents use a static execution
strategy.. 21

Figure 1-7 The Masters Student's Birthday Party Problem (a) The mission plan shows the
interaction between the three group plans: Watch-Movie, Bake-Cake, and Birthday-
Party. (b) The Watch-Movie group plan involves the Student and Brother going to
see a movie. (c). The Bake-Cake group plan involves the mother baking a cake. (d)
The Birthday-Party group plan involves everyone participating in a traditional the
birthday cake eating ritual... 25

Figure 1-8 Overview of Hierarchical Reformulation Algorithm...................................... 27
Figure 1-9 Distributed Executive Block Diagram ... 28
Figure 2-1 (a) Simple Temporal Network (STN) (b) The associated distance graph of the

STN... 33
Figure 2-Error! Not a valid bookmark self-reference.2-2 The TPN specifies a plan where

two rovers explore separate regions then wait for the other to arrive. Their activities
are constrained with respect to one another as well as with respect to the sunset,
which occurs 60 minutes after the start of the plan. ... 34

Figure 2-3 Different types of STN links .. 36
Figure 2-4 (a) The distance graph containing only the original constraints (b) The edges

AC and CA are deduced by computing the shortest path ABC and CBA,
respectively. .. 37

Figure 2-5 The distance graph is inconsistent because there is a negative cycle ABDCA.
... 37

Figure 2-6 Plan Runner Block Diagram .. 38
Figure 2-7 Pseudo-Code for the STN_DISPACHING Algorithm................................... 39

 7

Figure 2-8 The network is properly executed by using local propagation....................... 40
Figure 2-9 This network is improperly executed because the dispatcher did not respect

the enablement conditions... 42
Figure 2-10 There is an implicit temporal ordering between B and C. Specifically, B

must be??? C must be executed exactly 1 time unit before B. 42
Figure 2-11 Definitions of upper dominance and lower-dominance 43
Figure 2-12 (top) An example of upper-dominated edge AC (bottom) An example of a

lower-dominated edge AC. ... 44
Figure 2-13 Mutual Dominance Example.. 44
Figure 2-14 Pseudo-Code for Filtering Algorithm ... 45
Figure 2-15 Basic Steps to STN Reformulation ... 46
Figure 2-16 Pseudo-Code for Basic STN Reformulation Algorithm 46
Figure 2-17 Example of the Fast STN Reformulation Algorithm 47
Figure 2-18 Anatomy of a TPNU .. 48
Figure 3-1 A two-layer multi-agent plan consists of a mission plan and set of group

plans. The mission plan specifies loose coordination between a set of tightly
coordinating group plans... 51

Figure 3-2 Heterogeneous Robotic Group Scenario... 52
Figure 3-3 Overview of the Hierarchical Reformulation Algorithm 53
Figure 3-4 The duration of drive_to(rock1) and position_arm(loc1) activities are

uncertain; however, the duration of spectrometer_reading() is determined by the
agent.. 55

Figure 3-5 Distribution of a STNU. The timepoints of the STNU are uniquely assigned
to an agent. .. 59

Figure 3-6 Communication Availability Graph The directed edges represent state
transition criteria, and the undirected edges represent communication availability. 60

Figure 3-7 (a) The STNU contains a contingent link AB with bounds [5,10] constraining
the uncontrollable duration ωAB (b) The associated distance graph also contains the
uncontrollable duration even though there is no contingent link.............................. 61

Figure 3-8 Example of a Projection of a STNU... 62
Figure 3-9 Two-Layer Multi-Agent Temporal Plan Network with Uncertainty 70
Figure 3-10 (a) This shows the GPL to MTPNU mapping for a controllable activity in

general (b) This is specific example of a controllable activity mapping. 71
Figure 3-11 (a) general wait mapping (b) specific example of wait mapping................. 71
Figure 3-12 (a) General mapping between a GPL uncontrollable activity and

MTPNU. (b) A specific example. .. 72
Figure 3-15 Clustering Example .. 76
Figure 3-16 Pseudo Code for CONSTRUCT_TWO_LAYER_PLAN............................ 77
Figure 3-17 (a) The original mission plan containing requirement edges connecting

contingent timepoints (b) The mission plan after the contingent timepoints are
decoupled by the strong controllability algorithm. Note, all requirement edge
connecting contingent timepoints are removed. (c) The decoupling algorithm fixes
the start time for each executable timepoints. This eliminates the need to propagate
scheduling times during execution.. 78

Figure 3-18 (a) A strongly controllable plan. (b) An example of a plan that is not
strongly controllable. .. 79

 8

Figure 3-19 (a) This plan in not strongly controllable. (b) This plan is not strongly
controllable. ... 80

Figure 3-20 The requirement edges fall one of four types depending on the type of start
timepoint and type of end timepoint. They timepoints are either executable or
contingent.. 82

Figure 3-21 (a) The DGU containing an executable/contingent requirement edge CB. (b)
A new constraint CA is derived by computing shortest path CBA through the
arbitrary projection of the DGU. (c) This edge CA is tightest when wAB = uAB and
dominates the edge CB in all situations.. 85

Figure 3-22: (a) The DGU containing the contingent/executable edge BC. (b) A new
edge AC is derived by computing the shortest path BAC in the projection of the
DGU. (c) The tightest constraint AC occurs in the situation when ωAB = lAB and
dominates the edge BC in all situations.. 86

Figure 3-25 (a) The original DGU, G. (b) The transformed distance graph T used in the
strong controllability algorithm. ... 91

Figure 3-26 Pseudo Code for Decoupling Algorithm.. 92
Figure 3-27 (a) The input mission plan (b) The input group plans (c) The transformed

graph with SDSP distances (d) The group plans with fixed start times.................... 93
Figure 3-28 (a) The simple two-layer mission plan, (b) group plan1 (c) group plan2. ... 95
Figure 3-31 The UPDATE_MACRO function updates the edges associated with the

macros in the mission plan. AB is updated to 9 and CD is updated to 4................. 98
Figure 3-33 (a) APSP-graph (b) Updated mission plan (c) Updated Group Plan 1 (d)

Updated group plan 2.. 100
Figure 3-34 (a) The transformed STN (b) The start time of group plan1 is fixed at T = 0

(c) The start time of group plan2 is fixed at T = 1.. 101
Figure 4-1 Each uncertain duration contains a lower and upper bounds as specified by

the associated contingent link. The uncontrollable duration is squeezed if its lower
bound is increased or its upper bound of the decreased.. 106

Figure 4-2 (a) The DGU with a uncontrollable duration between timepoints A and B (b)
The APSP-graph exposes the temporal constraints imply a tighter upper bound on
the uncontrollable duration; therefore, the uncontrollable duration is squeezed. ... 107

Figure 4-3 (a) A DGU with uncontrollable duration AB. (b) The APSP-graph does not
further constraint the contingent edges. .. 107

Figure 4-4 (a) The execution windows for the plan are shown after executing A at time
= 0. (b) The execution window of the contingent timepoint B is squeezed from
[5,10] to [8,10] after executing the timepoint C at time = 5. 109

Figure 4-5 Basic Steps of Dynamic Controllability Algorithm 110
Figure 4-6 (a) The Triangular STNU (b) The associated triangular DGU. 111
Figure 4-7 Temporal ordering relationships of a timepoint C with respect to a contingent

Timepoint B. ... 112
Figure 4-8 (a) In the student’s plan, timepoint C must follow the contingent timepoint B.

(b) The APSP-graph reveals that the plan is pseudo-controllable. (c) Timepoint A is
executed at T = 0 and the execution windows are updated (d) Timepoint B is
executed at T = 7, and the execution window for C is updated. In this situation, the
student must get to the office some time between 12 and 17 minutes.................... 113

 9

Figure 4-9 (a) The STNU where timepoint C must precede the contingent timepoint B.
(b) The APSP-graph of the STNU. (c) The resulting distance graph after applying
the precede reduction. d(CA) + d(AB) = d(CB) and both AB and BC are positive;
therefore, CB is dominated. Also, d(BA) + d(AC) = d(BC) and both BA and BC are
negative, so BC is dominated. (d) The distance graph after CB and BC are removed.
... 114

Figure 4-10 (a) The student’s plan where the execution order of B and C is unordered (b)
The APSP-graph of the student’s plan (c) The distance graph after applying the
conditional unordered reduction ... 117

Figure 4-11 (a) A CDGU with conditional constraint CA <-4,B> where lower bound of
the uncontrollable duration, 5, is greater than the wait period, 4, of the conditional
constraint (b) The unconditional unordered reduction converts the conditional
constraint CA of <-4,B> in to a requirement constraint CA of -4. 118

Figure 4-12 (a) The conditional constraint CA is potentially violated by the incoming
positive edge DC (b) Imposing a conditional constraint of DA of <-5,B> prevents
the original CA from being violated at execution time... 119

Figure 4-13 (a) A four timepoint DGU. (b) The CDGU after appling the conditional
unordered reduction to triangle ABC. (c) The CDGU after regressing the conditional
edge CA through AC and DC. (d) The CDGU after converting the conditional
constraints to requirement edge via the unconditional unordered reduction 122

Figure 4-14 Pseudo-Code for Dynamic Controllability (DC) algorithm [Morris 2001] 124
Figure 4-15 Back-Propagation Example... 128
Figure 4-16 If either a requirement, or conditional edge changes, in order to maintain the

dispatchability of the CDGU, the effects only need to be back-propagated........... 129
Figure 4-17 Back-Propagation Rules for Negative Requirement Edge......................... 131
Figure 4-18 Back-Propagation Rule for Positive Requirement Edges 132
Figure 4-19 Back-Propagation Rules for Conditional Edges .. 133
Figure 4-20 Pseudo-Code for BACK-PROPAGATE... 135
Figure 4-21 Sample Group Plan ... 136
Figure 4-22 Pseudo-Code of Fast Dynamic Controllability Algorithm (Fast-DC) 136
Figure 4-23 CDGU of the Sample Group Plan .. 137
Figure 4-24 MPDG of the Sample group plan... 138
Figure 4-25 Pseudo-Code for BACK-PROPAGATE-INIT ... 139
Figure 4-26 Dispatchable CDGU after back-propagation .. 140
Figure 4-27 CDGU of sample group plan after trimming the redundant edge............... 140
Figure 5-1 The MTPNU GUI allows the user to quickly create, visualize and manipulate

multi-agent temporal plan with uncertainty.. 142
Figure 5-2 Rover Test-Bed used to test STN reformulation algorithms........................ 142
Figure 5-3 Randomly placing activities within the 2D plan space 144
Figure 5-4 Place requirement edges between neighboring timepoints 145
Figure 5-5 Pseudo-Code for ADD_ REQURIEMNT_LINK 146
Figure 5-6 Pseudo-Code for RAND_STNU ... 146
Figure 5-7 A randomly generated TPNU generated by the RAND_TPNU algorithm

... 148

 10

Figure 5-8 Experimental Results of the Run-Time Complexity for the FAST-DC
algorithm. The graph shows the results of a cubic regression curve fit to the
overall run-time of the DC algorithm. .. 150

Figure 5-9 Experimental Results for Run-Time Complexity of Back-Propagation for
the FAST-DC algorithm ... 150

Figure 5-10 (a) The group activities in the mission plan are decoupled using two
steps. (b) First the contingent end timepoints are decoupled using the strong
controllability algorithm [Vidal 2000] (c), Second, the activity start timepoints
are decoupled using the STN decoupling algorithm [Hunsberger 2002]......... 152

 11

List of Tables

Table 1 Back-Propagation Rules Summary ... 130

 12

1 Introduction

1.1 Motivation
 In the future, groups of distributed autonomous robots will need to cooperate in order
to solve complex problems. In the not too distant future, teams of autonomous robots
will be exploring the surface of Mars and aiding humans in the exploration of the planet.
NASA is currently exploring tight coordination between two autonomous rovers
[Huntsberger 2004]. Furthermore, NASA’s Earth and Space Science Enterprises are
planning the creation of sensor webs that will quickly and accurately characterize
weather, fire, planetary eruptions, and other scientific events in real time. These sensor
webs will consist of heterogeneous robots that range from Earth orbiting satellites to
autonomous Unmanned Aerial Vehicles (UAVs). Observations will require the
coordinated activities of multiple spacecraft that will be organized in constellations, space
interferometers, telecommunication clusters, or other organizations of Earth and Deep
Space observing systems. Proposed and planned NASA missions involving the
coordination of multiple spacecraft include Earth Observing missions, such as COACH,
Leonardo, Global Precipitation, ATOMS, and A-train and deep space missions, such as
Terrestrial Planet Finder, Constellation–X, LISA and Starlight. NASA has identified both
formation flying and autonomy as enabling technologies in its current vision of space
exploration [Aldridge 2004]. On the terrestrial front, large groups of tiny wireless
processors forming ad hoc networks will soon pervade the landscape, performing traffic,
weather, or building monitoring.

 In general, these autonomous multi-agent systems will be composed of a set of self-
reliant agents that plan, sense, act, and communicate in an uncertain world, in order to
achieve a common goal. Moreover, the agents will require cooperative plans that encode
temporal synchronization, in order to achieve mission critical goals. Distributing the
intelligence across several agents will make these systems more robust, efficient and
adaptive. Spacecraft autonomy has successfully been demonstrated for single agent
space systems such as Remote Agent [Muscettola 1999]; however, distributed space
autonomy has yet to be realized. One of the major components required for realization of
these complex distributed multi-agent systems is a distributed robust executive that
enables a set of agents to collectively schedule coordinated tasks, while dynamically
reacting to uncertainty under limited communication.

 13

Figure 1-1 Examples of Future Multi-Agent
Systems

(left) A group of autonomous rovers that will explore Mars, (right) a
constellation of three satellites for NASA’s proposed Terrestrial
Planet Finder mission.

1.2 Distributed Multi-Agent Scenario
 Consider a simple sensor web scenario that involves a cluster of low Earth orbiting
satellites and a fleet of UAVs, in which the satellite observations guide the more detailed
observations of the UAV fleet. The UAVs know the general location of the science
targets; however, they require the imagery data from the satellites in order to identify
specific science targets. In order to complete the mission, the satellite cluster and UAV
fleet will need to loosely coordinate their activities. Specifically, in order for the UAVs
to use the satellite imagery, the satellites must complete their imaging before the UAVs
start their observations. In addition, the UAVs in the fleet and the satellites in the cluster
will require tight coordination with one another. Some of the low level group behavior,
such as station keeping or flying in formation, will be achieved by a purely reactive feed-
back loop; however, other group behavior, such as coordinated observation, or
reconfiguration, will require the agents to synchronize their actions through temporal
planning. For example, the satellite cluster requires tight coordination in order to use
interferometry, as shown in Figure 1-2. Interferometry is a technique which allows a
cluster of satellites flying in a more or less uniform pattern to produce high resolution
image using multiple apertures. Radar interferometry requires each satellite to illuminate
the same area, “the footprint,” simultaneously. An echo is received by each satellite and
each portion of the image is constructed by pairwise interference of signals. The full
image is then constructed by processing the data collected from all the satellites. This

communicating

planning

sensing
acting

waypoint2waypoint1

 14

entire process requires tight temporal coordination between the satellites. The satellites
will also need to tightly coordinate their activities when the cluster reconfigures.

Figure 1-2 The proposed TechSat21 was a proposed mission that uses a cluster
of small distributed satellites to perform space based sensing using interferometry.
The satellites need to tightly coordinate their activities when imaging or
reconfiguring the cluster.

 The UAVs will also need to tightly coordinate their activities. For example, consider
a scenario in which the UAVs start from a base station, fly to a science target, disperse to
make individual observations, then rendezvous before returning to a base station as a
group. In this scenario, the UAVs will need to synchronize their activities at a set of
distinct timepoints.

 In the above scenario, portions of the full cooperative plan will require tight
coordination, for example inter-cluster or inter-fleet coordination, whereas, other portions
of the plan will only require loose coordination. The term tight coordination refers to a
portion of the plan where the activities are both heavily coupled (the execution time of
one activity affects the feasible execution times of many other activities) and relativity
inflexible, meaning the constraints between the activities are tight. At the extreme, tight
coordination corresponds to bunches of activities being rigidly constrained. Loose
coordination is the opposite of tight coordination; the activities are relatively decoupled
and the temporal constraints that do exist between the activities are flexible.

 15

1.3 Research Challenges
 One major challenge is to enable the agents to robustly synchronize their activities in
the face of uncertainty and limited communication. In order for multiple agents to
synchronize their activities, they require a cooperative temporal plan, some means to
determine the feasibility of the plan, and some means to execute that plan. [Dechter
1991] introduced a formalism, called Simple Temporal Networks (STNs), in order to
model the temporal constraints between activities along with a centralized means to
detect if the plan is temporally consistent. Given a consistent plan, the simplest approach
to execute the plan is to generate a fixed schedule offline, then dispatch the tasks at the
pre-scheduled time. However, this approach does not allow the executive to adapt the
schedule in response to uncertain events at execution time. A fixed schedule is inflexible
to uncertainty.

 An alternative approach defers the scheduling to execution time. [Muscettola 1998a]
showed how to efficiently perform this type of online execution in order to adapt to some
amount of unmodeled uncertainty for single agent systems. In this approach, the plan
retains temporal flexibility and the executive exploits this flexibility by scheduling the
activities based on previous scheduling decisions. The temporal constraints of the plan
are compiled (reformulated) offline in order to enable the executive to consistently and
efficiently perform this online scheduling. However, this approach makes no guarantee
about the ability to respond to uncertain events.

 In order to ensure some level of robustness to uncertainty, the executive needs a model
of uncertainty so that it can reason about its ability to respond to events of uncertain
duration. For example, one of the most basic tasks for a mobile robot is to move from
one location to another. The duration of this activity is uncertain. The robot is unable to
predict the exact time it reaches its intended location because of wheel slippage.
However, the plan may contain other activities that are constrained with respect to this
uncertain outcome. These plans are called partially controllable because the agent only
has control over the execution time of a subset of the events. In general, these uncertain
events are either controlled by nature (as in the case of wheel slippage) or are under the
control of some other agent. In order to be robust to this temporal uncertainty, the robot
should determine (prior to execution) whether it can appropriately adjust the schedule of
the plan in all possible situations. In some cases, where there is a large amount of
flexibility in the plan, it is possible to statically schedule the controllable events;
however, if tight coordination is required, the agent must dynamically adapt to the
uncertainty.

 [Vidal 1996] introduced a formalism, called Simple Temporal Networks with
Uncertainty (STNU), which introduced a means to model temporal uncertainty within
STNs. [Vidal 2000] introduced a strong controllability algorithm to determine if the plan
contained enough temporal flexibility in order to fix the schedule without knowing the
uncontrollable outcomes. In the cases where the plans are not strongly controllable,
[Morris 2001] introduced a dynamic controllability algorithm, which enables the
executive to determine if there is enough flexibility in the plan to compensate (at
execution time) for the temporal uncertainty in the plan. This dynamic controllability

 16

algorithm reformulates the plan into a dispatchable form, in order to enable the executive
to efficiently react to the uncertainty, by using a type of execution monitoring. [Morris
2001] also introduced a means to dynamically execute these partially controllable plans
by using local updates at execution time. However, these techniques are centralized
algorithms developed for single agent systems.

 The simplest approach to extend these techniques to multi-agent systems is to use a
 leader-follower architecture in which one agent (the leader) performs all of the offline
reasoning and online scheduling decisions. The leader schedules each task, then
dispatches the tasks to the followers. The followers simply receive commands, executes
them, and then sends updates to the leader when the activities are complete. This leader-
follower architecture is illustrated in Figure 1-3 (a). There are several disadvantages to
using this architecture. First, there is a communication bottleneck through the leader,
which prevents this architecture from scaling to a large number of agents. Second, the
leader introduces a single point of failure in to the system. Third, if one of the followers
moves out of communication range, the follower loses its ability to receive commands
and to send updates to the leader. Thus, the leader can not properly perform the online
execution required to compensate for the uncertainty in the plan. In order to dynamically
execute the plan under communication limitations, the plan needs to be distributed among
several agents, such that each agent can participate in making the online execution
decisions. The distributed architecture is shown in Figure 1-3 (b).

Leader

follower3

follower1

follower2

follower4

agent3

agent1

agent2

agent4

agent5

(a)
(b)

Figure 1-3 (a) In the leader-follower architecture the leader makes
all of the scheduling decisions. If communication is unavailable
during part of the mission, the leader is unable to dynamically
schedule tasks to the follower. (b) In a distributed architecture, the
scheduling decisions are made by multiple agents; therefore, the
system is robust to communication limitations. For example, if the
communication link between agent2 and agent4 is unavailable, as
long as agent3 and agent4 do not need to synchronize their
activities with the other agents, they will be able to successfully
execute their local plan.

 17

 There exist several basic categories of distributed architectures. [Schetter 2003]
discusses several basic types of distributed agent hierarchies for autonomous control of
satellite clusters. The architectures differ based on how the intelligence (decision making,
planning, scheduling, and execution) is distributed among the agents, and how they
interact. The four basic general type of organization (as shown in Figure 1-4) are:

• Top-down coordination
• Centralized coordination
• Hierarchicalyl distributed coordination
• Fully distributed coordination

Leader

Follower 3Follower 1

Agent3

Agent1

Agent2

Agent4

Agent5

Follower 2

All decision
making planning
and scheduling

Only receive/
execute

commands

Top Down Coordination

Leader

Follower 3Follower 1 Follower 2

High-level
decision making,

planning and
scheduling

Low-Level
decision making,

planning and
scheduling

Centralized Coordination

Co-Leader A

Follower A3Follower A1 Follower A2

Co-Leaders use
distributed algorithms to

do high-level decision
making, planning and

scheduling

Low-Level
decision making,

planning and
scheduling

Hierarchical Distributed Coordination

Co-Leader B

Follower B3Follower B1 Follower B2

Fully Distributed Coordination
All agents have

“full group
intelligence”

Figure 1-4 Different Types of coordination
architectures for multi-agent systems

In the top-down architecture, there is one intelligent leader that does all of the decision
making, planning and scheduling. The followers simply receive and execute commands.

 In the centralized architecture there still is a single leader that coordinates the clusters
as a whole; however, the follower agents have increased intelligence and can interact

 18

with the leader to aid in the planning and scheduling. For example, the leader may send a
task to the follower to move to a position; however, it is left up to the follower to
generate the low level command sequence to achieve the task. Furthermore, the follower
agents may perform local computations and may send information back to the leader, in
order to enable the leader to determine the state of the whole system or aid it in doing the
high level planning. Consider a case when the leader sends out a set of possible plans to
a follower. The follower must then determine the best plan, and then inform the leader of
its choice so that the leader can schedule the system as a whole.

 In the hierarchical distributed coordination architecture, the cluster’s high-level
intelligence, including decision making, planning, and scheduling, is distributed among
several co-leaders. Each co-leader uses a set of distributed planning and scheduling
algorithms in order to coordinate the clusters. Each co-leader coordinates the decisions,
planning and execution with a set of follower agents, organized similar to the centralized
architecture. The distributed architecture reduces the communication bottleneck and
makes better utilization of the computation resources of the cluster.

 In a fully distributed architecture, each agent in the system has equal intelligence. All
agents participate in decision making, planning, and scheduling for the cluster as a whole.
[Schetter 2003] described these agents as having “full group intelligence”. This system
has the benefit of being highly adaptable, reliable and scalable; however, the architecture
must handle increased communication cost.

 In summary, in order to be robust to temporal uncertainty, the executive needs to
dynamically schedule activities based on the outcome of uncertain durations. Dynamic
execution requires the agents to communicate. However, communication between the
agents may be limited during certain portions of the mission. In order to be robust to
communication limitations, the plan needs to be distributed among the agents so that each
agent can participate in making the online execution decisions. This leads us to the focus
of this thesis, which is to create a distributed executive that can react efficiently and
robustly to the temporal uncertainty, under limited communication.

1.4 Basic Centralized Architecture
 The goal of this thesis is to extend the centralized autonomous planning and execution
architecture, shown in Figure 1-5, to distributed Multi-Agent Systems (MAS).
Specifically, this thesis focuses on developing an executive that enables a set of
distributed agents to cooperatively schedule a partially controllable temporal plan in the
presence of communication limitations.

 The centralized architecture consists of several different functional layers, which
collectively translate a set of mission goals into hardware commands. The different
functional layers each play a part in converting abstraction to reality. At the top, either a
human programmer or generative planner converts the mission goals into a temporal
plan. The temporal plan consists of a set of strategies for achieving the mission goals.
This plan contains a set of activities along with a set of temporal and symbolic

 19

constraints, constraining the activities in the plan. The temporal plan is specified with a
set of functionally redundant means to achieve the mission goals. The temporal planner’s
job is to select one means to achieve the goals based on viability or optimality [Williams
2001, Kim 2000]. It defers the scheduling of the plan to the executive. When the
executive receives the plan it still contains some temporal flexibility.

 The goal of the executive is to dynamically schedule each task of the plan. The
executive is composed of two main components: a reformulator and a dispatcher. The
reformulator compiles the temporal constraints of the plan offline in order to enable the
dispatcher to efficiently schedule the tasks at execution time. The reformulator provides
a guarantee that the dispatcher can consistently and dynamically execute the plan. The
dispatcher uses a dynamic execution strategy, which schedules and executes the tasks
simultaneously. The dispatcher uses a type of online execution monitoring in order to
adapt the schedule of each task based on the outcome of uncertain events at execution
time. The dispatcher sends the tasks to a reactive controller, which determines the current
state of the agent and determines the low level means to achieve each task. The reactive
controller directly interacts with the hardware by sending commands and receiving
observations from the sensors. The executive schedules mid-level tasks such as “place
manipulator at position x”, whereas, the reactive controller is in charge generating the
low-level commands to the actuators in order to achieve this task.

Human or Generative Planner

Temporal Planner

 plan

mid-level tasks execution status

execution status

plan status

Executive

partially ordered
temporal plan

low-level commands

Reactive Controller

Hardware

observations

Executive

Reformulator

Dispatcher

dispatchable plan

mid-level tasks
execution status

partially ordered
temporal plan

execution status

execution status

Figure 1-5 Centralized Planning/Execution Architecture An
executive is a scheduler that converts a partially ordered temporal
plan into a sequence of hardware commands. The executive
consists of a reformulator, which prepares the plan for execution,
and a dispatcher, which schedules tasks in real-time in order to
adapt the schedule to the uncertain events.

 The above planning/execution architecture achieves robustness by combining both
reactive and deliberative components (a hybrid system). The reactive controller provides

 20

the ability to adapt tasks to the current state of the agent and the dispatcher provides the
ability to adapt to temporal uncertainty. In this thesis we are particularly interested in the
reformulator, which reasons about the temporal uncertainty in the plan prior to execution.
The reformulator guarantees that the execution will be successful barring some hardware
failure, while allowing the agent to adapt the schedule to run-time uncertainty.

 The architecture described above is in contrast to purely reactive systems, popularized
by [Brooks 1986], which continue to gain popularity in the Multi-Agent Systems
community through swarm intelligence [Eberhart 2001, et. al]. [Parker 2001] gives a
good reference for current work in distributed robotics with emphasis on current behavior
based approaches. Furthermore, NASA is investigating a distributed behavior based
architecture called CAMPOUT [Huntsberger 2003]. Behavior based approaches generate
actions through interaction – there is no explicit plan. These are able to adapt to novel
situations and works well to control low level coordination when the agents are able to
maintain constant communication. However, the architecture lacks the ability to do any
complex temporal planning. Furthermore, it lacks the ability to coordinate the agents’
tasks when they cannot communicate. For this reason, these systems cannot guarantee
that their execution strategy will succeed. Theses systems rely on a set of emergent
behaviors to achieve their mission goals, making them difficult to analyze. For this
reason, there has been a strong reluctance to allow these purely reactive autonomous
systems to manage mission critical tasks, particularly within the risk averse space
exploration community.

 At the other end of the spectrum, there are complete deliberative systems that offer
the programmer a stronger level of control over the systems behavior, by explicitly
generating a consistent temporal plan prior to execution, such as Kirk, ASPEN, Europa,
and LPGP. [Kim 2001, Chien 2000, Johnson 2000, Long 2002]. These systems allow the
programmer to generate plans for tight temporal coordination and provide a level of
assurance that the plan will succeed. Furthermore, they provide some limited ability to
react to temporal uncertainty at execution time by using a dynamic execution strategy.
However, without using an explicit model of uncertainty, these systems cannot guarantee
that plans that require tight coordination will succeed. Uncertainty makes these plans
susceptible to execution failure. In order to deal with plan failure at execution time, the
system must re-plan. In order to efficiently re-plan, the system must either pre-compute a
set of contingent plans that it chooses from upon failure or must provide a fast means to
re-plan. For example, [Drummond 1994] proposed a method to compute contingencies
for the most likely failure mode; however, it requires exponential space in the worst case.
Furthermore, recent methods of incremental temporal consistency checking [Shu 2003]
have mitigated the cost of temporal reasoning during replanning; however, replanning
still carries the burden of requiring exponential time in the worst case.

 21

1.5 Problem Statement
 The problem addressed in this thesis is to efficiently reformulate cooperative multi-
agent temporal plans that contain an explicit model of uncertainty, in order to enable a set
of distributed agents to robustly and efficiently execute these plans when communication
is limited between the agents at execution time.

1.6 Proposed Approach
 In this thesis we introduce a two layer approach that clusters the tightly coordinating
portions of the cooperative multi-agent plan into a set of group plans such that each group
plan loosely coordinates with one another. The group plan clustering is done such that the
agents that participate in each tightly coordinating group plan are able to reliably
communicate with each other at execution time; however, they may not be able to
communicate with agents outside their group. This isolates the problem of dealing with
communication limitations to inter-group communication limitations. Given this two-
layer plan structure, we introduce a hierarchical reformulation (HR) algorithm that
compiles the temporal constraints of the plan such that each group plan are scheduled
statically with respect to one another, while still enabling the activities within each group
plan to be scheduled dynamically. Statically scheduling the group plans with respect to
one another removes the need for the agents to communicate outside their group and
dynamically scheduling the tightly coordinating group plans enables the agents to
robustly adapt to temporal uncertainty at execution time. The basic approach is
represented in Figure 1-6.

Loose
Coordination

Tight
Coordination

Tight
Coordination

Tight
Coordination

Dynamic
Execution

Strategy

Static
Execution
Strategy

Communication limitations may
exist between the groups

Agents within each group can
reliably communicate

Figure 1-6 In order to adapt to runtime uncertainty within
each tightly coordinating group plan, the agents use a
dynamic execution strategy, and in order to cope with limited
communication between the groups, the agents use a static
execution strategy.

 22

 The proposed approach exploits the observation that communication availability tends
to be conjunct with tight coordination and tight coordination is necessary when you need
to communicate. In a distributed multi-agent system, when a set of agents need to tightly
coordinate their activities and some of their activities have uncertain durations, they need
to send one another updates (either explicitly or implicitly) so the rest of the agents can
dynamically adjust their schedules. Note that it is the relative flexibility of the temporal
constraints between the activities compared to the uncertainty of the activities themselves
that determine whether communication is required. For example, even though a dance
troupe requires tight synchronization between the dancers, they can achieve this tight
synchronization without communicating with one another by practicing. Practicing
removes the uncertainty of their actions to a point in where they can synchronize their
actions using a fixed schedule (i.e. triggered by the beat). The uncertainty is small
compared to the synchronization requirements. However, when the uncertainty is large
compared to temporal requirements imposed between the activities, the agents need to
communicate. In other cases communication is required in order to be efficient. For
example, consider a scenario when two UAVs plan to rendezvous, then fly off together to
another common location. In this case, the UAVs should leave as soon as both UAVs
have arrived at the rendezvous point, rather than waiting around (and wasting fuel) for
some pre-specified departure time.

 In general, tight coordination requires communication; however, communication may
be limited. Fortunately, the agents require tight coordination only when the agents are in
close proximity with one another and this is when they can communicate. Therefore,
when communication is needed, it is available. Conversely, when the agents are far apart,
communication may be impossible or expensive. However, in these cases we expect the
agents only to require loose coordination, and this loose coordination enables the agents
to synchronize their actions by fixing their activities with respect to one another.
Therefore, when communication is unavailable, it is not needed.

 Consider the sensor web scenario. The satellite cluster requires tight coordination and
hence communication, in order to perform its interferometry task; the satellites’ close
proximity enables them to maintain reliable and relatively inexpensive communication.
Therefore, the satellites are able to send execution updates to one another in order to
dynamically adjust their schedules. In contrast, the satellite cluster may not always be
able to communicate with the UAV fleet. However, the satellites’ tasks and the UAVs’
tasks are fairly decoupled. In this case, the UAV fleet can synchronize their activities
with the satellite cluster by statically scheduling the start of their group plans with respect
to one another.

 The two layer approach proposed in this thesis is similar to the type of schedule that
people use to manage a large project, such as designing a spacecraft, building a home, or
managing a sports organization. The total number of people and activities required in
order to complete the entire job is enormous. Furthermore, there typically contains many
concurrent activities with complex temporal constraints between the activities. However,
the project manager is able to manage the project as a whole without getting into the

 23

details of each activity. For example, a spacecraft project manager can fix the schedule
of the design, build, test, and launch phases without considering the interactions of every
engineer. Similarly, the baseball schedule is fixed at the beginning of the season without
getting into the detailed time constraints of each player. The project manager is able to
generate this schedule by considering the expected duration for each high level activity,
then scheduling them to satisfy the inherent temporal constraints. The detailed scheduling
of each low level activity is left up to the individuals within the group. Each group is
able to dynamically adjust their schedules on a day-by-day, hour-by-hour, or minute-by-
minute basis, as needed. By statically scheduling at the high level, each team is able to
work independently. However, the project can get into trouble if the project manager
does not adequately assess the uncertainty of the system or does not appropriately
consider the temporal constraints between each activity.

 In this thesis we provide a set of algorithms that analyze temporal uncertainty of the
activities and the constraints between these activities, in order to enable the executive to
schedule the high level activities prior to execution and the low level activities at
execution time. In general, a large project may contain several layers of management.
Each level of management may consider the project at a different level of detail.
However, in this thesis we limit our approach to two layers.
 In this thesis we introduce a two layer plan in order to simplify the executive’s task of
reasoning about both temporal and communication constraints. The two-layer plan
consists of a top level mission plan, and a set of lower level group plans. The mission
plan specifies the temporal constraints between each group plan and each group plan
specifies a set of temporal constraints between the agent activities. The set of agents that
participate in each group plan are simply referred to as a group. We assume that agents
within a group are able to maintain reliable communication with one another; however,
this is not necessarily true for agents in different groups. The details of each group plan
are hidden from the mission plan. This is done by using a simple abstraction for each
group plan, called a macro, in the mission plan. The macro is an executive summary of
the group plan that represents the feasible duration of the group plan. Replacing the
group plan with the macro enables the executive to reason about the group plan
interaction at a high level without getting in to the details of each group plan.

Example 2-1:

 In order to ground our discussion, consider the real life scheduling problem called the
master’s student’s birthday party problem. The two layer plan is shown in Figure 1-7 and
is representative of the types of plans our executive intends to solve. This rather simple
scheduling problem successfully exposes several interesting aspects of multi-agent
scheduling. If the reader is unfamiliar with STNs or STNUs, the reader should read the
appropriate sections in Chapter 2 before proceeding with this example.

 The plan is carried out by three “agents”: Mother, Brother, and Student. All three of
them must coordinate their activities in order to have a successful birthday party.

 24

However, it is undesirable to have everybody updating one another after completing
every action. The two-layer plan structures the plan such that the agents only need to
update members of their own group. The high-level plan structure is represented by the
mission plan shown in Figure 1-7(a). In this plan the brother and student go to the
movies (Watch-Movie group plan) while the mother bakes the birthday cake (Bake-Cake
group plan). This is followed by all three of them getting together for the birthday party
(Birthday-Party group plan). The mission plan specifies a set of loose temporal
constraints between each high-level activity. Specifically, the mission plan specifies that
that the brother and student must be done watching the movie between [10, 90] minutes
before the party starts. Similarly, the mother must finish baking the cake between [10, 60]
before the party starts. Furthermore, the entire mission must not take longer than 360
minutes. Note that the mission plan places no constraints on the duration of the group
activities, hence the [0, INF] bound is initially placed on each group activity.
Furthermore, there does not exist any explicit constraints restricting when the brothers
need to start the Watch-Movie group plan nor when the mother needs to start Bake-Cake
group plan. These constraints need to be deduced.

 25

K [0,180]

Student.drive(theater)

[0,180]B

D [7,10]

IC

E

[3,6]

Brother.drive(theater)

[0,5]

[0,5]

[0,10]

Student.watch(movie)

[0,1]

Brother.watch(movie)

[0,5]
A

[0,10]

P [5,10] Q

Brother.drive(home)

R [5,10] S

Student.drive(home)

[0,5]

A [2,3]

Brother.light(candles)

(b) Watch-Movie Group Plan

(d) Birthday-Party Group Plan

J

[30,40][30,40]

bake(cake)

(c) Bake-Cake Group Plan

L

F

[120,130]

[0,0]
[0,0]

[0,0]

N

C

F [1,1]

Brother.sing(happy birthday)
B

Mother.turn-off(lights)

C [1,2] H [1,1]

[0,0]

[0,0]

[0,1]K

Student.blow_out(candles)

F

[10,20] P
Brother.eat(cake)

[10,20]M Q
Student.eat(cake)

[0,1]

O

R
Mother.eat(cake)I

Mother.sing(happy birthday)

E [0,INF]

watch-movies

A

C [0,INF]

B

D

[0,INF]
[0,INF]

FZ

[0,INF] bake-cake

[10,90]

(a) Mission Plan

[0,360]

start of mission birthday-party

[0,1]

[0,1]

D

[10,60]

Z [0,INF]

[10,15]

Mother.prepare(cake)

A B E[1,2]

Mother.place-on(rack) cool(cake)

[8,10] M
burn_out(candles)

E

[0,0]

G

J

[0,0]

[0,0]
S[10,20]

T

[0,0]

[0,0]

[0,0]
[0,1]

[0,INF]

Z [0,INF]

Z

[0,360]

[0,INF]

L

[30,30]
G

play(movie)

H

[0,0]

[0,30]

D[0,5] H[10,15]

Mother.decorate(cake)

G[0,60]

[0,5]
[-10,15]

O T

[0,1]

[0,5]

[0,5]

C[0,1]

A[0,5] G[0,0]

E

Figure 1-7 The Masters Student's Birthday Party Problem (a) The
mission plan shows the interaction between the three group plans:
Watch-Movie, Bake-Cake, and Birthday-Party. (b) The Watch-
Movie group plan involves the Student and Brother going to see a
movie. (c). The Bake-Cake group plan involves the mother baking a
cake. (d) The Birthday-Party group plan involves everyone
participating in a traditional the birthday cake eating ritual.

 The three group plans are shown in Figure 1-7(b,c,d). Each group plan specifies a set
of tightly coordinated activities, performed by one or more agents, that are needed in
order accomplish each high level activity. Note that each “agent” participates in multiple
group plans but never participates in the same group plan at the same time. Furthermore,
each group plan shares a special timepoint Z (zero timepoint) with the mission plan. This

 26

timepoint is executed before all others. Specifically, this timepoint is always executed at
time = 0. By sharing this common timepoint, the group plans have the same temporal
reference frame. It is a reference point from which to express constraints in absolute time.
For example, in the Watch-Movie group plan there is a constraint ZG that specifies the
movie start exactly 30 minutes after the start of the plan. Assuming the mission starts at
4:00 PM, this constraint specifies that the movie starts at 4:30 PM. Without this fixed
point Z, the group plan would not be able to represent these types of constraints. Note
that our approach is to fix the start of each group plan; however, this start time is not
known a priori.

 In order to schedule each group plan, the agents need to resolve several different types
of scheduling issues. First, the executive needs to be able to dynamically respond to
uncertain events. This includes responding to the uncertainty of one another’s activities,
as well as responding to the uncertainty of “natural” events. For example, in the Bake-
Cake group plan, the mother needs to respond to the uncertainty in baking time of the
cake. The cake will take between 30 and 40 minutes to bake; and the plan specifies that
she needs to remove the cake from the oven no more than 5 minutes after it is baked
through. In order to satisfy this constraint she must monitor the cake and adjust her
schedule accordingly. Second, the executive needs to reason about uncertainty prior to
execution, placing additional constraints on the plan where necessary, in order to ensure
that the explicit constraints in the plan are satisfied at execution time. For example, in the
Watch-Movie group plan, the executive needs to reason about the uncertainty in both the
brother’s and student’s drive times and must restrict their start times with respect to one
another, in order to ensure that neither one is waiting at the theater for more than 5
minutes alone. Third, the executive needs to reason about the relationship between the
constraints within each group plan and the constraints of the mission plan, in order to
ensure that the execution times selected for start of each are consistent.

 This plan is typical of multi-agent plans, in that the plan as a whole consists of a set of
concurrent and serial activities with a set of complex temporal and communication
constraints relating these activities. However, the reasoning required in order to schedule
the plan is simplified by breaking the plan down into a set of smaller sub-plans and by
coordinating the sub-plans by using a set of fixed synchronization points.

 In order to prepare the plan for execution, we introduce a novel hierarchical
reformulation (HR) algorithm, illustrated in Figure 1-8. The HR algorithm first structures
the plan into a two layer plan as previously described. The HR algorithm applies a
decoupling algorithm based on the strong controllability algorithm introduced by [Vidal
2000] in order to generate a fixed schedule for each high level activity. This removes the
need for communication between each group plan at execution time. Then we apply a
new dynamic controllability algorithm in order to ensure that each group plan can be
scheduled dynamically, in order to respond to uncertainty at execution time. We also
apply an edge trimming algorithm to the resulting group plan, in order to efficiently
execute each group plan.

 27

Scheduled dynamically
to adapt to uncertainty

z

Two-Layer Multi-Agent Plan Decoupled Plans at
Mission Layer

group1-
plan

group2-
plan

group3-
plan

group-
plan1

group-
plan2

group-
plan3

Multi-Agent Plan

z
b) Decoupling via

Strong Controllablity

c) Reformulati on via

Dynamic Control lability

Algorithm

a) Group Modeling

Scheduled statically to
remove the need for

communication

Dynamically
Controllable Group Plan

d) Edge Trimming

Minimal Dispatchable
Group Plan

Set of Group
Layer Plans

Mission
Layer Plan

group plan1 group plan2 group plan3

Figure 1-8 Overview of Hierarchical Reformulation Algorithm

 The overall block diagram of our approach is shown in Figure 1-9. The two layer plan
is created either by compiling a plan that is specified in an augmented version of the
Reactive Model-Based Programming Language (RMPL), called the Group Planning
Language (GPL), or by clustering the tightly coordinated portions of a fully elaborated
plan. The temporal constraints of the two-layer plan are compiled using a centralized
reformulator. The heart of the reformulator is the Hierarchical Reformulation (HR)
algorithm, which uses a combination of a dynamic controllability algorithm and a
decoupling algorithm in order to prepare the plan for execution. After reformulation,
each group plan is distributed to a leader of each group. The leader of each group is in
charge of dispatching commands to each agent in the group.

 28

Centralized
Reformulator

group plan1

Group Plan Distribution

Hierarchical Reformulation
Algorithm

Dynamic Controllability
Algoroithm

Decoupling Algorithm

set of decoupled dispatchable group plans

GPL Compiler

OR
Two-Layer Compiler

two-layer multi-agent plan two-layer multi-agent plan

GPL Specification Fully Elaborated Plan

Group
Leader

scheduled
tasks

Dispatcher

execution
status

Reactive
Controller

Hardware

scheduled
tasks

Follower 1
Reactive
Controller

Hardware

commands observations

Follower N
Reactive
Controller

Hardware

commands observations

...

scheduled
tasks execution

status

execution
status commands observations

Group 1 Group N
...

group plan N

Figure 1-9 Distributed Executive Block Diagram

 There are several benefits to organizing the plan in a two layer structure. First it
provides an efficient way to deal with communication limitations between agents.
Second, the two layer structure enables a divide-and-conquer approach in which the
dynamic controllability algorithm, the most expensive operation, is only applied to plans
of limited size. Third, although we focus on addressing communication requirements
associated with dynamic scheduling, this two-layer structure also ensures that any
communication required by the reactive controller, such as state updates, is available
between agents within the group.

 The algorithms presented in this thesis are presented in the context of execution;
however, this work also falls into the realm of temporal planning. Specifically, the task of
the hierarchical reformulation algorithm is to reformulate the plan for execution;
however, this reformulation is not guaranteed to succeed. The techniques presented in
this thesis can be applied during planning, in order to detect if a candidate plan is

 29

feasible. Furthermore, the approach taken in this thesis should not be seen as a
replacement for the behavior based multi-agent approaches, but rather as a complement
to them. In the future, autonomous robots will need to use both deliberative planning and
scheduling techniques, as well as more purely reactive behaviors in order to be robust and
adaptive

1.7 Key Technical Contributions
 This thesis makes three technical contributions. First, we introduce the Hierarchical
Reformulation (HR) algorithm, which exploits strong and dynamic controllability in
order to enable a group of agents to dynamically schedule their activities under
communication limitations. Second, we present a formal treatment of the dynamic
controllability of systems that contain communication limitations, termed communication
controllability. Third, we provide a novel, fast dynamic controllability (FAST-DC)
algorithm. This algorithm is applicable to both multi-agent and single agent systems.

1.8 Grand Vision
The approach introduced by this thesis makes steps toward a completely distributed
planning and execution architecture. In the grand vision, each agent in the system
operates autonomously using a set of distributed algorithms in order to plan and execute
their cooperative plans. In the future work section, we provide initial work on how both
the reformulation and dispatching algorithms can be mapped to a distributed algorithm.

1.9 Range of Applicability
Although most of the examples focus on robotics, particularly Mars exploration, the ideas
presented in this thesis are applicable to a wide variety of real-world scheduling
problems, including but not limited to the following:

• Groups of rovers exploring Mars,
• Cluster of satellites for interferometry missions,
• Coordinated activities within a single spacecraft, where each component is treated

as a separate agent, and
• Execution of commands on a set of distributed tiny processors.

1.10 Roadmap for Thesis
 Chapter 2 presents background on Simple Temporal Networks (STNs) and Simple
Temporal Networks with Uncertainty (STNUs). Specifically, we show how to
reformulate and dispatch STNs in the centralized case. Chapter 3 starts by presenting the
formal definition of communication controllability. Next, it formally defines the two-
layer MTPNUs and shows how to construct these two-layer plans. Then it presents the
decoupling algorithm and the Hierarchical Reformulation (HR) algorithm. Chapter 4
presents the fast dynamic controllability (Fast-DC) algorithm. Chapter 5 discusses the

 30

implementation of the Hierarchical Reformulation algorithm, along with empirical results
for Fast-DC algorithm. It also discusses directions for future work.

 31

2 Background

2.1 Introduction
 This chapter provides the necessary technical background needed to understand
dynamic execution of temporally flexible plans. As such, the reader may need to refer
back to this chapter many times, while reading the subsequent technical chapters. The
reader should focus on gaining a good working knowledge of the high level ideas by
studying the canonical examples given in this chapter.

 The outline of the chapter is as follows. First, we review the theory of Simple
Temporal Networks (STNs) and the Temporal Plan Networks (TPNs) which encode
temporally flexible plans. Then we review the reformulation and execution algorithms
introduced by [Tsarmardinos 1998] and [Muscettola 1998a]. Executing a temporally
flexible plan is a two step process that consists of 1) the offline reformulation phase that
compiles the temporal constraints of the plan, and 2) an efficient online dynamic
dispatching phase, which dynamically schedules the timepoints in the reformulated plan.
The reformulation phase enables the dispatcher to efficiently and consistently schedule
the plan during execution. Then we review Simple Temporal Networks with Uncertainty
(STNUs) [Vidal 1996] and the associated Temporal Plan Networks with Uncertainty
(TPNU), which introduce an explicit model of uncertainty into the temporal plan. A
TPNU enables the plan to represent activities whose durations are not controlled by the
executive, but rather by nature. Hence, these plans are referred to as partially controllable
plans.

 By the end of this chapter, the reader should have a good working knowledge of
STNs. Specifically, the reader should 1) understand how to reformulate STNs into a
dispatchable network, 2) understand how the dispatcher dynamically executes these
reformulated networks, and 3) understand how to represent an explicit model of
uncertainty within temporal plans.

2.2 Temporal Constraint Satisfaction Problem
 In this thesis we are concerned with temporally flexible plans. These temporal plans
are a set of partially ordered activities along with a set of temporal constraints, which
model the duration of each activity and constrain the execution time of each activity with
respect to one another. Each activity in the plan is associated with two instantaneous
events, called timepoints. Specifically, the start of each event is associated with a start
timepoint and the end of each activity is associated with an end timepoint. The start and
end timepoints are separated by a non-negative duration. The temporal constraints of the
plan are represented by a set of inequalities, which constrain the timepoints of the
activities with respect to one another. The actual time occurrence of a timepoint A is
written T(A), or TA.

 32

 For example consider how the following statement is converted into temporal constraints
involving inequalities.

• “Study for the exam for at least 1 hour and at most 3 hours”
 1 hour ≤ T(end_study) – T(start_study) ≤ 3 hours

In general, the set of constraints form an instance of a Temporal Constraint Satisfaction
Problem (TCSP) [Dechter 1991].

A TCSP:

• A set of timepoints Xi at which the events occur
• A set of disjunctive unary constraints: (ao ≤ Xi ≤ bo) or (a1 ≤ Xi ≤ b1) …
• A set of disjunctive binary constraints: (ao ≤ Xj - Xi ≤ bo) or (a1 ≤ Xj– Xi ≤ b)..

A solution to the TCSP is a schedule, T, which is an assignment to each timepoint Xi
such that all of the temporal constraints are satisfied. In general, solving the TCSP is NP
hard [Dechter 91], because the algorithm that generates the schedule, T, must consider
every possible combination of disjunctive constraints. In the next section, we review
simple temporal networks that only use non-disjunctive binary constraints.

2.3 Simple Temporal Network and Temporal Plan Networks

 In this section we review Simple Temporal Networks (STNs) and Temporal Plan
Networks (TPNs). An STN only contains simple binary temporal constraints between
timepoints. The STN is simple, because it does not allow disjunctive temporal
constraints. Specifically, it only allows one interval between each pair of timepoints.
STNs have been widely used in planning and scheduling, because they enable fast
temporal consistency checking and can be scheduled dynamically, yet they are expressive
enough to represent many real-world problems. The temporal consistency of an STN can
be checked in polynomial time using a Single-Source Shortest-Path (SSSP) algorithm
such as Bellman-Ford SSSP [CLR 1990, Dechter 1991]. Furthermore, other well known
graph algorithms, such as Floyd-Warshall All-Pairs Shortest-Path (APSP) [CLR 1990]
algorithm can be used to derive a set of implied constraints encoded by the explicit
constraints.

 An STN is visualized as a directed graph G = <N,E>, where the timepoints of the
graph represent the timepoints, and the directed edges represent the simple temporal
constraints. Each edge, AB, between timepoints A and B, contains a lower and upper
bound [lb,ub] such that, lb ≤ TB - TA ≤ ub. For example, consider the STN shown in
Figure 2-1(a). The STN contains four timepoints and four directed edges constraining
the execution time of the timepoints. Consider the edge AB, the interval [0,8] imposes
one upper bound constraint, TB – TA ≤ 8, and one lower bound constraint, TB – TA ≥ 0.

Paul Robertson
Did you mean vertices?

 33

A

C

[0,10]

B

D

[0,8]

[2,3]

[1,1]
A

C

10

B

D

8

3

1
0

-1

0 -2

(a) STN (b) Associated Distance
Graph

Figure 2-1 (a) Simple Temporal Network (STN) (b) The
associated distance graph of the STN

The formal definition of a STN is given below:

Definition 2-1 (STN [Dechter 1991]): A STN is a 4-tuple <N, E, l, u> where, N is a set
of timepoints, E is a set of directed edges. Each edge E, between timepoints A and B
contains a lower and upper bound temporal constraint, where, l : E ℜ ∪ {-∞} and u :
E ℜ ∪ {+∞} are functions mapping edges to the extend Real Number such that l(AB)≤
T(B) –T(A) ≤ u(AB).

 A Temporal Plan Network (TPN) generalizes the STN to include activities. A TPN is
a set of activities to be performed, each of which includes a start and end time, together
with a set of temporal constraints that specify the valid start and end times for each
activity. The temporal constraints are specified as simple temporal constraints. Hence, a
TPN is a generalization of a STN consisting of a set of activities A, and a mappings, T+:
A N, and T-:A N, mapping the start and end times to the timepoints in the STN. We
say a TPN is constrained by a STN.

 Consider the simple TPN shown in The TPN specifies a plan where the two rovers
explore two different regions. The rovers are free to start exploring any time between
[0,10] minutes. Each rover is free to explore for [30,60] minutes before returning to
some rendezvous location. Once at the rendezvous location, the plan specifies that the
rovers should not wait more than 5 minutes. Furthermore, the rovers must complete their
exploring at least 10 minutes before the sunsets, which occurs 60 minutes after the start
of the plan. Note that the +INF bound on the link EF corresponds to places no
constraints on the plan. Also, note that the TPN also contains a special timepoint Z

Paul Robertson
Since the locations are different the sunsets could occur at different times and so your sentence is strictly correct however since you mention that the sunsets occur 60 minutes after the start of the plan they actually occur at the same time. That being so the sentence is easier to read if you say “10 minutes before sunset” rather than “10 minutes before the sunsets”.

 34

which is not associated with any activity. The plan is flexible, and only partially
ordered.

Z

C

[0,10]

B

D

[30,60]

[30,60]

rover1.explore(region1)

rover2.explore(region2)

A

[0,10]
E

[0,5]

[0,5]

[0,0]

F
[60,60]

G

sunset

[10,INF]

rover1.wait

rover2.wait

Figure 2-Error! Not a valid bookmark self-reference.2-2 The TPN specifies a
plan where two rovers explore separate regions then wait for the other to arrive.
Their activities are constrained with respect to one another as well as with respect
to the sunset, which occurs 60 minutes after the start of the plan.

 Every STN has an equivalent representation, called the distance graph [Dechter 1991].
The distance graph is a simple, but extremely useful representation of the temporal
constraints. In the distance graph, every edge only contains one constraint. Specifically,
each edge AB in the distance graph has a distance, b(A,B), which specifies the constraint:
TB – TA ≤ b(A,B).

 A distance graph edge represents an upper bound on B with respect to A if the b(A,B)
≥ 0, and, the edge represents a lower bound on B with respect to A if b(A,B) < 0. The
reason a negative edge represents a lower bound is easily seen by performing some
simple algebra. Consider a situation where the time of B must occur at least 5 minutes
after A. This is represented by the inequality: TB – TA ≥ 5. However, this does not fit the
form of the distance graph edge. Simply multiplying the inequality by -1, results in a
new inequality: TA – TB ≤ -5, which is in the proper form. This corresponds to an
distance graph edge BA with distance b(B,A) = -5.

 In order to avoid confusion, the constraints in the STN are referred to as links,
whereas, the constraints in the distance graph are referred to as edges. An STN can be
converted into a distance graph by replacing each link in the STN with a pair of directed
edges, such that each link AB ∈ [lb,ub] in the STN is replaced by one upper bound edge
AB with b(A,B) = ub, and one lower bound edge BA with b(B,A) = –lb. Note that the

Paul Robertson
In some places you write “a STN” and on other you write “an STN” you should pick one and stick to it.

 35

lower bound value is negated. For example, Figure 2-1(a) shows a STN and Figure
2-1(b) shows the associated distance graph. In particular, consider the STN link CD of
[2,3], in Error! Reference source not found.(a). This STN link is converted into one
upper bound edge CD with b(C,D) = 3, and one lower bound edge DC with b(D,C) = -2,
in Figure 2-1(b).

The formal definition of a distance graph is given below.

Definition 2-2 (Distance Graph [Dechter 1991]) A distance graph, D = < N, E, b >, is
a weighted directed graph, where N is the set of timepoints, E is the set of directed edges
and b: E ℜ ∪ {+∞,}∪ {-∞,} maps the edges, E, to the extended Real Numbers. A
distance b(AB) imposes an constraint that T(B) – T(A) ≤ b(A,B).

 The links of the STN fall into different categories depending on the values of the
lower and upper bound. Consider a STN link AB ∈ [x,y]. Figure 2-3 shows the 5
different types of STN links along with the associated distance graph. If x,y ≥ 0, and y >
x, then STN link represent a true upper and lower bound on B with respect to A, as
shown in Figure 2-3 (a). In this case timepoint A must always precede timepoint B. If x
= y, then the B is rigidly constrained with respect to A (i.e. there is no flexibility in the
execution time), as shown in Figure 2-3 (b). In the special case when x = y = 0, then the
timepoints A and B are zero-related by a zero-zero constraint, as shown in Figure 2-3
(c). If x < 0 and y > 0, then the edge represent two upper bounds. In this case the
execution order between A and B is undetermined, as shown in Figure 2-3 (d). If x > y
then the constraint is inconsistent, as shown in Figure 2-3 (e). In this case the lower
bound is greater than the upper bound, which is a direct inconsistency. Specifically, B
must wait at least 5 time units after A, but no more that 3 time units. Finally, if x ≥ 0 and
y < 0, then this corresponds to two lower bound edges, which is an extreme example of
temporal inconsistency, as shown in Figure 2-3 (f). In this case, A must execute before
B, and B must execute before A.

 36

A B[1,8] A B8
-1

A B[3,3] A B3
-3

A B[0,0] A B0
0

A B[-3,10] A B10

3

(a) lower and upper bound
constraint

(b) rigid constraint

(c) zero-zero constraint

(d) two upper bound
constraints

A B[5,3](e) inconsistent constraint A B3
-5

A B[3,-2](f) two lower bounds A B-2
-3

Figure 2-3 Different types of STN links

 The distance graph provides a means to derive the implicit constraints. The implicit
constraints are simply derived by computing shortest paths in the distance graph. The
implicit constraints are derived by simply combining inequalities imposed by the edges.
For example, consider the distance graph in Figure 2-4(a). The implied constraint AC is
derived by combining the constraint on edge AB and edge BC as follows.

 TB - TA ≤ 8 : edge AB
 TC – TB ≤ 1 : edge BC

 TC - TA ≤ 9 : derived edge AC

 In this simple example, there is only one possible path from A to C; however, in a
general distance graph there exist many possible paths. In order to compute the tightest
(most restricted) implied constraint we must consider all possible paths. Fortunately,
finding shortest paths in directed graphs is a well studied problem. Specifically, the
tightest constraints between every pair of timepoints can by computed by either the well
known Floyd-Warshall All-Pair Shortest-Path (APSP) algorithm which runs in Θ(N3)
time or computed using Johnson’s algorithm, which runs in O(NE lg N) time when
implemented using a binary-heap [CLR 1990].

 37

A

B

C

8 1
0

-1 A

B

C

8 1
0

-1
9

-1

(a) (b)

Figure 2-4 (a) The distance graph containing only the
original constraints (b) The edges AC and CA are deduced by
computing the shortest path ABC and CBA, respectively.

 The consistency of the STN is also determined by computing the shortest paths in the
distance graph. [Dechter 1991] showed that a STN is temporally consistent iff the
associated distance graph contains no negative cycles. By definition, an STN is consistent
if there is an assignment to the timepoints that is consistent with every temporal
constraint. Consider the distance graph shown in Error! Reference source not found.
The negative cycle ABDCA implies an edge AA of -1. This means T(A) – T(A) ≤ -1,
which is inconsistent because T(A) – T(A) is always 0.

 Negative cycles can be checked by computing the APSP graph then checking for
negative distances on the diagonals [CLR 1990]. There also exist other well known
algorithms, such as Bellman-Ford Single-Source Shortest-Path, which detects negative
cycles without constructing the APSP graph, which requires N2 space [CLR 1990].
Furthermore, the Bellman-Ford SSSP algorithm runs in O(NE) time [CLR 1990].

A

C

10

B

D

8

5

1
0

-1

-6 -4

Figure 2-5 The distance graph is inconsistent because there is a negative cycle
ABDCA.

 38

Two good resources that formally cover other properties of STN include [Dechter 1991]
and [Hunsberger 2002].

2.4 Dynamic Execution of TPNs
 In this section we describe the process of dynamically scheduling a TPN. A TPN
contains temporal flexibility and in order to exploit this flexibility, the timepoints are
scheduled online. Executing a TPN can be broken down into two phases, an offline
reformulation phase, followed by an online dispatching phase as shown in Figure 2-6.
The offline reformulation phase compiles the temporal constraints in to a minimal
dispatchable network. This enables the dispatcher to efficiently execute the plan using a
small number of local propagations during execution.

Consistent TPN

Minimal Dispachable Network
Reformulation

Planner

Dispatcher

Minimal Dispachable Network

HardwareCommands

Executive Offline

Online

Figure 2-6 Plan Runner Block Diagram

 The goal of the dispatcher is to dynamically generate a consistent schedule for
timepoints in the plan. The dispatcher uses a least commitment execution strategy,
where the timepoints are scheduled and tasks associated with the time point are executed,
simultaneously. Specifically, the dispatcher starts any activity whose start time is
associated with the timepoint being executed or stops any activity whose end time is
associated with the time point being executed. The dispatcher determines the schedule for
future timepoints by using the execution times of the past. In doing so, it makes
scheduling decisions only after as much uncertainty about the past has been resolved.

 The dispatcher dynamically schedules the timepoints by switching between executing
timepoints and locally propagating the execution time to future timepoints. These
propagations are used to update the execution window for unexecuted timepoints.
[Dechter 1991] showed that the initial execution window can be computed by using two
SSSP computations. An execution window consists of lower and upper bounds, which
represents the range of feasible execution times for each timepoint. The dispatcher is free
to choose any time within the timepoint’s execution window as long as the timepoint is

 39

both alive and enabled. The next example will help us to define what we mean by alive
and enabled and the STN_DISPATCHING algorithm shown in Figure 2-7.

Figure 2-7 Pseudo-Code for the
STN_DISPACHING Algorithm

Example 2-1:

 Figure 2-8 shows a sample execution of a simple STN. The initial feasible execution
windows for each timepoint are computed by considering the edges in the distance graph.
A is the start of the plan and is assumed to be executed at T = 0. This gives us fix
reference point. We can then compute the maximum feasible execution time for each

function STN_DISPATCHING(G)
Input: a dispatchable distance graph G
Effects: dynamically schedules each timepoint in G
1. Let
 A= {start_time_point}
 current_time = 0
 S= {}

2. Arbitrarily pick a time point TP in A such that current_time
belongs to TP’s time bound;

3. Set TP’s execution time to current_time and add TP to S;

4. Propagate the time of execution to its IMMEDIATE NEIGHBORS
in the distance graph;

5. Put in all time points TPx such that all negative edges starting from
TPx have a destination that is already in S;

6. Wait until current_time has advanced to some time between
 min{lower_bound (TP) : TP in A} and
 min{upper_bound} (TP) : TP in A};

7. Go to 2 until every time point is in S.

 40

timepoint by computing the shortest paths from A to all other timepoints. Similarly, the
smallest feasible lower bound is computed by computing the SDSP from all timepoints to
A.

A C
10

B
10

-1 -5
T = 0

[0,0] [1,10] [6,20]

A C
10

B
10

-1 -5

[0,0] [7,7] [12,17]

A C
10

B
10

-1 -5

[0,0] [7,7] [15,15]

T = 7

T = 15

(a)

(b)

(c)

Figure 2-8 The network is properly executed by using local
propagation

 Timepoint A is executed at T = 0, as shown in Figure 2-8 (a). This execution time
needs to be propagated to all neighboring timepoints through the constraints. The upper
bounds of the execution windows are updated by forward propagation and lower bounds
are updated by backward propagation. Consider the forward edge AB. It imposes an
upper bound constraint on B with respect to A. Specifically, TB – TA ≤ 10. Therefore,
once we know that TA = 0, we can deduce TB ≤ 10. This is an example of forward
propagation. Similarly, the edge BA imposes the constraint that TA – TB ≤ -1. Therefore,
when we know that TA = 0, we can derived the constraint TB ≥ 1. This is an example of
backward propagation along a negative edge. However, this propagation provides no
new information because we already knew that TA = 0 when we computed the initial
execution windows. In general, propagation does not always impose more restrictive
bounds on the execution windows.

 In general, say we execute timepoint A and there exists a forward (outgoing) edge AB.
This edge imposes a constraint TB – TA ≤ b(A,B). Once we know, TA, we can deduce an
upper bound on B of TB ≤ TA + b(A,B). Similarly, a backward (incoming) edge BA,
imposes a constraint TA – TB ≤ b(B,A). Once, TA is known, we can derive a new lower
bound on B of TB ≥ TA – b(B,A).

 The dispatcher now has the freedom to choose any execution time for B that falls
between its execution window of [1,10]. However, recall that the dispatcher executes and
schedules at the same time. Therefore, it must wait until the current time falls within the
execution window. We say the timepoint is alive if the current time is between the
timepoints execution window.

 41

 Suppose the dispatcher waits until T = 7 until it executes B, as shown in Figure 2-8
(b). Once it executes B, the dispatcher must propagate this execution time to its
neighbors. It does not need to backward propagate the time through the positive edge AB
nor forward propagate the execution time through the negative edge BA because it
already used those constraints to select the time for B. However, it does need to
propagate its execution time to C. Specifically, it needs to propagate through edges BC
and CB in order to update the execution window of C. Specifically, C’s new upper bound
is TB + b(B,C) or 7 + 10 = 17, and C’s new lower bound is TB – b(C,B) or 7 + 5 = 12.
The dispatcher is now free to choose any execution time between [12,17]. Figure 2-8 (c)
shows the case where the dispatcher waits until T = 15 to execute C. �

Example 2-2:

 In the previous example, we executed B before C. However, if we executed C before
B, this would cause a problem. For example, consider the execution sequence shown in
Error! Reference source not found. Timepoint A is executed at T = 0 as before.
However, the dispatcher waits until T = 8. At which point both B and C are alive. The
dispatcher mistakenly chooses timepoint C for execution. This propagates a new upper
bound to B, via the edge CB, and a new lower bound to B, via BC. The new execution
window for B is now [2,3]. Choosing any time between [2,3] is consistent; however, it is
in the past! In order to prevent the dispatcher from making this mistake we impose an
enablement condition on each timepoint. The enablement conditions are derived by
considering the negative edges in the distance graph. Consider the edge BA. This impose
a constraint that TA – TB ≤ -1 or TB – TA ≤ 1. Hence B must always be executed at least 1
time unit after A.

 In general, a timepoint B is enabled only if all timepoints that must precede B have
been executed. The set of enablement timepoints are all timepoints A for which there
exist an outgoing negative edge BA. A timepoint can only be executed if it is both alive
and enabled.

 42

A C
10

B
10

-1 -5
T = 0

[0,0] [1,10] [6,20]

A C
10

B
10

-1 -5

[0,0] [2,3] [8,8]

A C
10

B
10

-1 -5

[0,0] [2,2] [8,8]

T = 8

T = 15

(a)

(b)

(c)

Figure 2-9 This network is improperly executed because the dispatcher did not
respect the enablement conditions.

Example 2-3:

The dispatcher may still run into problems, even when the dispatcher only executes
enabled and alive timepoints. The temporal constraints in the distance graph explicitly
express the pair wise ordering constraints. However, there may exist implicit ordering
constraints that need to be exposed before the dispatcher can properly execute the
network. Consider the following STN and associated distance graph shown in Figure 2-
10. After executing A at T = 0, both timepoint B and timepoint C are alive and enabled.
However, timepoint C must be executed before B. Specifically, C must be executed
exactly 2 time units before D and B must be executed exactly 1 time unit before D,
therefore, C must be executed 1 time unit before B. If the dispatcher chooses to execute
B before C, then the dispatcher will fail. Note that these implicit ordering constraints
exist for networks even it they do not contain rigid constraints.

A

B

C

D

10

0

10

0

2

-2

1

-1

A

B

C

D

[0,10] [1,1]

[0,10] [2,2]

(a) Simple Temporal Network (b) Associated Distance Graph
Figure 2-10 There is an implicit temporal ordering between B and C.
Specifically, B must be??? C must be executed exactly 1 time unit before B.

 43

 [Muscettola 1998a] showed that any consistent STN it can be transformed into an
equivalent dispatchable graph. If the graph is dispatchable, it can always generate a
consistent schedule by using local propagation to future timepoints. [Muscettola 1998a]
showed that an STN can be converted into a equivalent dispatchable graph by first
computing the associated distance graph then computing the All-Pair Shortest-Path graph
(APSP-graph) of this distance graph. Note that APSP-graph is called a d-graph by
[Dechter 1991]. Furthermore, given a dispatchable graph, upper bounds only need to be
forward propagated along outgoing non-negative edges and lower bound only need to be
backward propagated along incoming negative edges. Computing the All-Pairs Shortest
Path (APSP) graph performs two tasks: 1) it compiles the temporal constraints, such that
all implicit constraints are exposed, and 2) is exposes the enablement conditions of the
distance graph.

 The APSP graph is dispatchable; however, the dispatcher must perform N
propagation every time it executes a timepoint. For large graphs this can be
computationally expensive and may prohibit real-time execution. In order to reduce the
propagation cost at execution time, the APSP is trimmed of all redundant edges. An edge
is redundant if in all possible executions, there exists another edge that always propagates
a tighter bound. The two cases are shown in Figure 2-11. [Muscettola 1998a] showed
that the dominated (redundant) edges can be removed without adversely affecting the
ability of the dispatcher to dynamically execute the network.

A

B

C
+

+

A

B

C-

-

The edge non-negative edge AC is
upper-dominated by another non-
negative edge BC if, the upper bound
propagated to C via BC is always
smaller (more restricting) than the upper
bound to C propagated by AC.

The edge negative edge AC is lower-
dominated by another negative edge BC
if, the lower bound propagated to A via
AB is always greater (more restricting)
than the lower bound propagated to A
via AC

Figure 2-11 Definitions of upper dominance and lower-dominance

[Muscettola 1998a] showed that an edge is only dominated edge satisfies the triangle
rule. We use notation |AB| is the shortest path distance as constructed by the APSP-
graph.

Triangle Rule [Muscettola 1998a] Consider a consistent STN where the associated
distance graph???

 44

 (1) A non-negative edge AC is upper-dominated by another non-negative edge BC if and
only if |AB| + |BC| = |AC|
(2) A negative edge AC is lower-dominated by another negative edge AB if and only if
|AB| + |BC| = |AC|

A

B

C
10

91

A

B

C-10

-11

A

B

C

91

AC is upper-dominated
by BC, therefore we can

safely remove it from
distance graph

1

AC is lower-dominated
by AB, therefore we can

safely remove it from
distance graph

A

B

C

-11 1

Figure 2-12 (top) An example of upper-dominated edge AC
(bottom) An example of a lower-dominated edge AC.

The APSP-graph can be converted into a minimal dispatchable graph by applying the
filtering algorithm introduced by [Muscettola 1998b]. A minimal dispatchable graph is a
dispatchable graph that contains the fewest number of edges. The minimal dispatchable
graph enables the dispatcher to perform efficient execution. The pseudo-code for the
filtering algorithm is given in Figure 2-14. Note that one edge can dominate one another
as shown in Figure 2-13. This case only occurs when the intersecting edges are related
by a rigid set of edges.

A

B

C
10

91

A

B

C

91

AC and BC dominate
each other. In this case
only remove on edge

-1 1

Figure 2-13 Mutual Dominance Example

 45

Figure 2-14 Pseudo-Code for Filtering Algorithm

A

B

C

D

10

0

10

0

2

-2

1

-1

A

B

C

D

[0,10] [1,1]

[0,10] [2,2]

(a) Simple Temporal Network (b) Associated Distance Graph

A

B

C

D1 -1

9

0

1

-1

(c) APSP-graph (d) Minimal Dispatchable Graph

A

B

C

D

10

0

9

0

2

-2

1

-1

-11

11

-2

function FILTERING_ALGORITHM (G)
Input: A dispatchable APSP-graph G
Output: A minimal dispatchable graph
1 for each pair of intersecting edges in G
2 if both dominate each other
3 if neither is marked
4 arbitrarily mark one for elimination
5 end if
6 else if one dominates the other
7 mark dominated edge for elimination
8 end if
9 end for
10 remove all marked edges from graph
11 return G

 46

Figure 2-15 Basic Steps to STN Reformulation

The pseudo-code for the basic reformulation algorithm, which converts an arbitrary STN
into a minimal dispatchable graph, is given in Figure 2-16 [Muscettola 1998a]. The steps
of the reformulation algorithm are illustrated in Figure 2-15. First the STN is converted
into the distance graph. Then APSP-graph is computed from the distance graph. Recall,
the APSP-graph is dispatchable; however, typically contains many redundant edges.
These redundant edges are removed by applying the filtering algorithm. Recall that the
filtering algorithm is based on the triangle rule.

Figure 2-16 Pseudo-Code for Basic STN
Reformulation Algorithm

 The problem with the basic reformulation algorithm is that it causes an intermediate
graph explosion. Specifically, the APSP graph requires O(N2) space. Furthermore, the
basic STN reformulation algorithm requires Θ(N3) time to run the filtering algorithm
[Tsarmardinos 1998] presented a more sophisticated ``fast'' reformulation algorithm that
alleviates both these problems. The fast algorithm interleaves the APSP computation with
the edge trimming elimination, such that the full APSP never needs to be built.
Furthermore, it only requires linear space and has a time complexity comparable to
Johnson's algorithm. This is referred to as the fast reformulation algorithm. The six main
steps of the fast algorithm are shown in Figure 2-17. See [Tsarmardinos 1998] for details
on the fast STN reformulation algorithm.

function BASIC_STN_REFORMULATION(G)
Input: A STN G
Output: A minimal dispatchable distance graph M
1. Convert the STN, G in to a distance graph D
2. Compute the of APSP-graph, A, from D via Floyd-Warshall
3. Apply Filtering Algorithm to A, compute minimal dispatchable
graph M.
4. return M

 47

1. Input STN

2. Distance Graph

3. P-Graph

RC

Contracted Graph

6. Optimized Dispatchable Graph

4. Contracted Graph and RCs

5. Minimal Dispatchable Graph

large number
of arcs

1. Input STN

2. Distance Graph

3. P-Graph

RC

Contracted Graph

6. Optimized Dispatchable Graph

4. Contracted Graph and RCs

5. Minimal Dispatchable Graph

large number
of arcs

Figure 2-17 Example of the Fast STN
Reformulation Algorithm

2.5 Simple Temporal Networks with Uncertainty

A STNU is a temporal constraint graph similar to a STN that contains an explicit model
of uncertainty [Vidal 1996]. The edges of the STNU fall into one of two categories: the
first are those representing temporal constraints that specify the allowable time that
events are permitted to occur, and are called requirement links. These are exactly the
same as STN constraints. The second category of edges represents uncontrollable
activity durations, and are called contingent links. The timepoints that terminate
contingent activities are controlled by nature and are called contingent timepoints; all
other nodes are considered executable timepoints. The key point is that only a subset of
nodes can be controlled by the executive and we call this network partially controllable.

 The formal definition is of an STNU is provided below.

Definition 2-3 (STNU): A STNU is a 5-tuple < N, E, l, u, C >, similar to an STN, where
N is a set of timepoints, E is a set of edges and l : E ℜ ∪ {-∞} and u : E ℜ ∪ {+∞}
are functions mapping the edges to lower and upper bound temporal constraints. The
STNU also contains C, which is a subset of the edges that specify the contingent links, the
others being requirement links. We assume 0 < l(e) < u(e) for each contingent link.

 48

A Temporal Plan Network with Uncertainty (TPNU) is a plan similar to a TPN except the
activities are constrained by an STNU. For example consider the TPNU shown in Figure
2-18. Rover2 is able to control when it stops charging its battery; however, rover1 cannot
control the exact duration of its drive-to(rock1) activity.

D
rover1.drive-to(rock1)

[5,10]C

A

[0,10]

[3,10]

executable
timepoint

requirement link

contingent
timepoint

rover2.charge-battery[3,10]

controllable
activity

Executable Timepoint

Contingent Timepoint

Requirement Link

Contingent Link

B

contingent link

uncontrollable
activity [1,10]

Figure 2-18 Anatomy of a TPNU

 Every STNU has an associated Distance Graph with Uncertainty (DGU). The
conversion of a STNU into a DGU is similar to the process of converting a STN into a
distance graph. The DGU is formed by replacing each requirement link with two
requirement edges and each contingent link is replaced by two contingent edges.

2.6 Summary
In this chapter we showed how to reformulate plans constrained by an STN for dynamic
execution and introduced STNUs. In the next chapter, we introduce our Hierarchical
Reformulation algorithm.

Paul Robertson
This summary is rather brief.

 49

3 Hierarchical Reformulation Algorithm

3.1 Introduction
 This chapter is the first of two technical chapters that serve to describe a coordinated,
distributed executive. This distributed executive is novel in its ability to dynamically
schedule tasks for multi-agent plans that contain both temporal uncertainty and
communication constraints. Recall that an executive is composed of two components: a
centralized reformulator and a distributed dispatcher. This chapter describes the
reformulator, which prepares the multi-agent plan for execution by the dispatcher. The
reformulator partitions a multi-agent plan into a set of decoupled group plans such that
the agents that participate in each group plan can properly synchronize their activities,
without communication outside their group. Within each group, the agents are allowed to
communicate in order to adapt to runtime execution uncertainty.

 In general, a distributed dispatcher requires communication to dynamically execute a
plan. Recall that a dispatcher is an online dynamic scheduling algorithm that exploits the
temporal flexibility of the plan, by waiting to schedule events until the last possible
moment. In this least commitment execution strategy, the dispatcher schedules and
dispatches the tasks simultaneously, rather than scheduling the tasks prior to execution.
This dynamic execution strategy allows the agents to adapt to runtime uncertainty at the
cost of some online computation. In the centralized case, the dispatcher must propagate
the execution times of each event towards future events, every time an event is executed.
This propagation enables the dispatcher to select consistent execution times for these
future events. In the distributed case, this propagation translates into communication. If
the agents are unable to keep in constant communication with one another, the agents
may fail to properly execute the plan.

 The simplest, although most restrictive, way to deal with communication limitation is
to completely fix the schedule prior to execution. Pre-scheduling the activities removes
the need for propagation, and hence removes the need for communication. However, in
order to be robust to the uncertainty of uncontrollable events, the agent may need to be
overly conservative about scheduling the time of execution of the activities, thus
degrading the performance of the overall system. In other words, fixing the schedule
prior to execution may require the agents to wait around when they could be doing
something useful instead. Even beyond the issue of performance, there exists the
question of viability. If a plan requires tight synchronization with respect to uncertain
outcomes, then fixing the schedule will not work. In this case, a dynamic execution
strategy is required in order to enable the agents to adapt to the uncertain outcomes. For
example, consider a scenario where you plan on getting on a bus. This plan consists of
two activities, going to the bus stop and boarding the bus. It may be possible to pre-
schedule the time when you starting going to the bus stop; however, in order to
successfully board the bus, you need to adapt the uncertainty of the bus’ arrival time.
Simply walking forward to board the bus at some pre-scheduled time is not a wise

 50

execution strategy. In order use a dynamic execution strategy, the plan needs to retain
some temporal flexibility.

 This chapter presents a novel hierarchical reformulation algorithm that mitigates the
need for communication, while retaining much of the temporal flexibility inherent in the
plan, in order to dynamically adapt to uncertainty. It preserves the flexibility in places
where tight coordination is required and fixes the schedule in places where the agents
only require loose coordination.

 In order to resolve which events should be scheduled dynamically and which events
should be scheduled statically, we need to consider two factors: (1) when is a dynamic
execution strategy required and (2) when is it possible. In general, a dynamic execution
strategy is required when the agents have tight timing constraints between coordinated
activities and a dynamic execution strategy is typically possible when agents can
communicate. Fortunately, a dynamic execution strategy is possible when it is needed.
We make the observation that communication availability tends to be synergistic with
need. For example, robots tend to require tight coordination when they are close together
and communication tends to be available when the robots are in close proximity.

 In this thesis, we divide the full multi-agent plan into a set of tightly coordinated
clusters. We assume that the agents that participate in these plan clusters are free to
communicate with one another. We refer to these clusters as communication clusters.
Note that we make no assumptions on the ability of the agents to communicate outside of
their communication cluster. Given a clustering we organize the multi-agent plan into
two layers, as shown in Figure 3-1. This two-layer plan consists of a mission plan and a
set of group plans. The group plans specify tight coordination between a set of agents
(one corresponding to each communication cluster) and the mission plan specifies loose
coordination between the group plans. The mission plan uses a simplified abstraction for
each group plan that hides the details of the group plan This encapsulation enables the
reformulator to reason about the overall mission without getting into the details of the
group plans.

 51

Group Plan
agent

agent agent

tight
coordination

Group Plan
agent

agent agent

tight
coordination

Group Plan
agent

agent agent

tight
coordination

Loose
Coordination

Mission Plan

Figure 3-1 A two-layer multi-agent plan consists of a mission plan
and set of group plans. The mission plan specifies loose
coordination between a set of tightly coordinating group plans.

 We call the set of agents that participate in each group plan simply a group. Each
agent can only participate in one group at a time, but an agent may participate in multiple
groups (group plans) over the lifetime of the mission. For example, in a Mars exploration
scenario, a robot specializing in moving heavy objects may participate in some science
gathering activity by turning over rocks early in the mission and then be used to clear a
path in some exploration activity later in the mission.

 The goal of the reformulator is to transform the two-layer plan into a form such that
each group plan can be dynamically scheduled, without requiring the agents to
communicate outside their group. This enables the groups to dynamically execute their
plans in cases where inter-group communication is unavailable, unreliable or costly.

 For example, consider the autonomous Mars exploration scenario illustrated in Figure
3-2. The robots are organized into two groups, a science group, and an exploration
group. The science group consists of a set of science rovers specializing in data
acquisition, along with a tethered blimp, which provides aerial reconnaissance for the
science rovers. The science group’s job is to take samples at the science site. The
exploration group consists of a set of agile rovers used to explore future science sites. The
groups will need to coordinate their intra-group activities more tightly than their inter-
group activities. The two groups may need to periodically rendezvous to share data;
however, we can expect the plan to be fairly flexible about when this occurs.
Furthermore, it is reasonable to expect reliable communication within each group,
because of the group member’s proximity; however, communication between the groups

 52

may be costly or unavailable, as the science team explores regions far from the current
science site.

Tethered Blimp: Tracks
the rover posit ions and
builds a local map.

Scout Rover: A fast agile
rover, used to identify science
targets and to find traversable
paths for larger rovers.

Science Rover: Large, slow
moving rover that contains an
onboard science laboratory

Science Group

Exploration Group

The science group and exploration group must cooperate to
complete the mission. The goal of the reformulator is to enable
each group to work independently in order to be robust to inter-
group communication limitations.

 The high level overview of the reformulator is shown in Figure 3-3. First it transforms
the multi-agent plan into a two layer multi-agent plan (Figure 1-3a). Then the
reformulator applies the Hierarchical Reformulation (HR) algorithm, which converts the
two-layer plan into a set of decoupled dispatchable group plans. The HR algorithm
operates on both layers of the multi-agent plan in this reformulation. The HR algorithm
decouples each group plan by applying a variant of the strong controllability algorithm
[Vidal 2000] to the mission plan (Figure 3-3b) and applies the fast dynamic
controllability algorithm to each group plan (Figure 3-3c). The dynamic controllability
algorithm prepares the group plans for the dispatcher. Finally, the reformulator applies
an edge trimming algorithm to the dispatchable group plans (Figure 3-3d). The edge
trimming algorithm removes the redundant constraints from the dispatchable plan in
order to improve dynamic scheduling. The final form of each group plan is called a
minimal dispatchable group plan.

Figure 3-2 Heterogeneous Robotic Group Scenario

 53

Scheduled dynamically
to adapt to uncertainty

z

Two-Layer Multi-Agent Plan Decoupled Plans at
Mission Layer

group1-
plan

group2-
plan

group3-
plan

group-
plan1

group-
plan2

group-
plan3

Multi-Agent Plan

z
b) Decoupling via

Strong Controllablity

c) Reformulati on via

Dynamic Control lability

Algorithm

a) Group Modeling

Scheduled statically to
remove the need for

communication

Dynamically
Controllable Group Plan

d) Edge Trimming

Minimal Dispatchable
Group Plan

Set of Group
Layer Plans

Mission
Layer Plan

group plan1 group plan2 group plan3

Figure 3-3 Overview of the Hierarchical Reformulation Algorithm

 The outline for this chapter is as follows. Section 3.2 discusses the communication
assumptions used in this thesis. Section 3.3 reviews the existing controllability theory
and discusses the general problem of finding a viable dynamic multi-agent execution
strategy for plans that contain both uncertainty and communication constraints. This new
problem is called communication controllability. In Section 1.4 we formally introduce
the two-layer Multi-agent Temporal Plan Networks with Uncertainty (two-layer
MTPNU) and show how to specify these plans using a variant of the Reactive Model-
Based Programming Language (RMPL). In Section 1.5 we review the strong
controllability algorithm presented by [Vidal 2000] and present the decoupling algorithm
based on this strong controllability algorithm. Finally, in Section 1.6 we present our novel
Hierarchical Reformulation (HR) algorithm. Some of the details of the HR algorithm are
deferred to Chapter 4. Specifically, Chapter 4 presents a new fast dynamic controllability
and the edge trimming algorithm.

 By the end of the chapter the reader should: 1) understand the definition of
communication controllability, 2) know how to model multi-agent plans that involve
temporal uncertainty and communication limitation as a two-layer MTPNU, and 3) know
how to reformulate a two-layer MTPNU into a set of decoupled, minimally dispatchable
plans using the HR algorithm.

3.2 Communication Assumption
 In general, agents require communication if they participate in cooperative activities.
If communication is always both available and reliable, programming these distributed
systems would be a lot less complex; however, most real distributed systems must cope

 54

with communication limitations. Specifically, real distributed systems must deal with
hardware failures, and lost or dropped messages. Furthermore, mobile robots that use
radio communication must cope with a limited communication range and physical
obstacles that occlude communication pathways. Most of us have experienced these
limitations first hand, when using cell phones. In this chapter, we address the problem of
dynamically scheduling tasks in the presence of communication limitations.

 This chapter makes the important assumption; when communication is available, it is
reliable. We assume that the agents can achieve reliable communication by using some
existing communication protocol, such as TCP/IP. Our focus is on multi-agent systems
where communication is limited, yet predictable. For example, consider two rovers
exploring Mars. In this domain, the rovers will be able to reliably communicate when in
close proximity; however, when the rovers are separated by far distances or by some
obstruction, the rovers will lose this reliable communication. Thus, depending on the
relative position of each rover, it is possible to determine if communication is available.

3.3 Communication Controllability
 This section formally defines the problem of verifying if there exists a successful
multi-agent execution strategy for plans that contain both an explicit model of uncertainty
and communication limitations. In doing so, this section develops several supporting
definitions used throughout this thesis.

 Previous work [Vidal 2000] has defined a set of controllability properties for STNUs.
This controllability work has been concerned with the ability to generate an execution
strategy for plans that contain uncertainty. Of particular interests is the ability to
dynamically schedule these uncertain plans [Morris 2001]. In this section, we extend the
notion of dynamic controllability to include the ability to cope with communication
limitations as well as uncertainty. Plans for which it is possible to dynamically schedule
by a set of agents that contain communication limitations between one another are called
communicationally controllable.

 First we will quickly review the four types of controllability that were previously
introduced by [Vidal 2000 and Morris 2001]. This will help place the derivation of
communication controllability in the context of previous work.

3.3.1 Primary Types of Controllability

 Recall that a partially controllable plan is constrained by a Simple Temporal Network
with Uncertainty (STNU). A STNU is a temporal constraint network that contains a set
of timepoints and a set of temporal constraints, specifying the valid execution times of
the timepoints. The timepoints of an STNU fall into two types: executable timepoints and
contingent timepoints.1 Executable timepoints are scheduled by the agent, while the times

1 For a more thorough discussion of STNUs, refer to Chapter 2.

 55

of the contingent timepoints are controlled externally rather than by the agent. Thus the
execution times of the contingent timepoints are observed, rather than scheduled. The
links2 that connect the timepoints of the STNU also fall into two categories: contingent
links and requirement links. A contingent link models the uncontrollable duration
associated with an uncertain activity, and a requirement link represents a constraint on the
duration between two timepoints.

Example 3-1:
 Consider the contingent link associated with the drive_to activity on the left of Figure
3-4. The contingent link specifies that the duration of the drive_to activity is uncertain
and will last between 5 and 10 time units. Thus, the contingent timepoint, e1, will be
executed between 5 and 10 time units after the agent executes the executable timepoints,
s1. A requirement link imposes a temporal constraint on the duration between two
timepoints. Consider the requirement link associated with the spectrometer_reading
activity at the right of Figure 3-4. The rover must perform the spectrometer_reading
activity between 10 and 20 minutes.

e1

drive-to(rock1)

[5,10]s1 e2[2,4]s2[0,3]

spectrometer-reading()position-arm(loc1)

[10,20]s3[0,1] e3

Executable Timepoint

Contingent Timepoint

Requirement Link

Contingent Link

Figure 3-4 The duration of drive_to(rock1) and
position_arm(loc1) activities are uncertain; however, the
duration of spectrometer_reading() is determined by the
agent.

 Overall, Figure 3-4 denotes a partially controllable plan that contains three activities.
The duration of both the drive-to and position-arm activities is uncertain; however, the
duration of the spectrometer-reading activity is determined by the rover. The rover’s job
is to execute each timepoint in the plan in a fashion that is consistent with the temporal
constraints of the STNU. The rover has two choices. It may either schedule the
timepoints offline, hence fixing the schedule prior to execution, or it may dynamically
schedule the plan. We are interested in the latter.

 Informally, an execution strategy is a policy for scheduling the timepoints in the plan.
In the case of an STNU, an execution strategy only specifies a policy for scheduling the
executable timepoints. Recall that the contingent timepoints are not under the control of
the agent. Furthermore, an execution strategy is called viable if the schedule it produces
is temporally consistent for all possible situations. Here we use the term situation to

2 Links contain both a lower and upper bounds, whereas, edges only contain a single upper bound constraint.

 56

mean some outcome of uncertain events. Furthermore, we call an execution strategy
dynamic if the execution and scheduling of the timepoints occurs simultaneously. In this
section we are interested in viable dynamic execution strategies. From now on we will
use the term dynamic execution strategy for a viable dynamic execution strategy, unless
otherwise stated.

 Designing a dynamic execution strategy for the plan in Figure 3-4 is straight forward.
One possible viable dynamic execution strategy is as follows:

1. Execute the start of drive_to(rock1) activity at Time = 0. 2. After
observing that the rover reached rock1, immediately start positioning the
arm. This satisfies the constraint that the position arm activity must start
between 0 and 3 time units after getting to the rock. 3. Immediately after
observing that arm is positioned at loc1, start taking the spectrometer
reading. This satisfies the constraint that the spectrometer reading must
occur between 0 and 1 time units after positioning the arm. 4. Stop the
spectrometer reading activity after 15 time units have passed. This
satisfies the constraint that the spectrometer_reading activity lasts between
10 and 20 time units.

 For plans constrained by more complex STNU topologies, designing a viable dynamic
execution strategy becomes much more complex. In these cases we need a principled
method to generate an execution strategy. This is why controllability algorithms have
been developed. In our discussion of controllability the STNU is the important part of
the plan, as such, we refer to the controllability of the STNU to be short for the
controllability of the plan.

 Informally, a STNU is controllable if there is a viable execution strategy for
scheduling the executable timepoints. Controllability refers to an agent’s ability to
“control” the consistency of the schedule, despite the uncertainty in the plan. In general,
the more temporal flexibility a plan contains, the more likely that the plan is controllable.
Controllability is a battle between flexibility against uncertainty. However, the flexibility
must be in a place where an execution strategy can use it.

 Abstractly, there are three fundamental problems related to executing plans with
uncertainty, however, in practice they are all related. First there is a problem of
determining if there exists a viable execution strategy (controllability verification). After
verifying the controllability of a plan, there still remains the problem of actually
generating an execution strategy. Generating an execution strategy boils down to
compiling the temporal constraints (reformulation) into a form that a dispatcher can
readily use. If this reformulation succeeds, the plan is said to be dispatchable. The last
problem is to execute the plan using a dispatcher (dispatching). Verification,
reformulation, and dispatching are all interrelated. Verification is done by reformulating
the plan, meaning that if the reformulation succeeds, then the plan is controllable and

 57

dispatchable. Furthermore, the reformulation algorithm is done with a specific
dispatching algorithm in mind.

 Controllability was first introduced by [Vidal et. al. 1996]. There are three levels of
controllability: strong, dynamic, and weak. Algorithms for checking weak and strong
controllability were developed soon there after. A dynamic controllability checking
algorithm took a few more years. [Morris 1999] first introduced a new controllability
property, called waypoint controllability, which generalizes strong and weak
controllability, as a first attempt to make a dynamic controllability checking algorithm.
Then [Morris 2000] presented a algorithm to verify, reformulate and dynamically execute
an STNU.

 The three primary levels of controllability differ in that they make different
assumptions on when the uncertain durations in the plan are observed. For strong
controllability we assume no uncertain durations are known when the scheduling
decisions are made. In dynamic controllability, we assume that the agent knows the
outcomes of uncertain durations as they are completed. Therefore, agents can only use
uncertain durations that happened in the past to make its scheduling decisions. In weak
controllability we assume that all uncertain durations are known at the time of
scheduling.

 The amount of information known to the agent increases from strong to dynamic to
weak control. Therefore it should come as no surprise that the three primary forms of
controllability follow an implication rule. Specifically, [Morris and Vidal] have formally
shown that, if a network is strongly controllable, then it is dynamically controllable, and
if a network is dynamically controllable, then it is weakly controllable. Also note that
both strong and dynamic controllability of a STNU can be checked in polynomial time;
however, weak controllability is a co-NP-complete problem [Vidal, 1999].

 Waypoint controllability, introduced by [Morris, 1999], combines the properties of
strong and weak controllability. Waypoint controllability applies to plans for which a
subset of the timepoints are designated as waypoints. Waypoint controllability refers to
an execution strategy that schedules the waypoints using a strong control strategy and the
remaining timepoints in a weakly controllable fashion. In other words, a waypoint
controllable execution strategy schedules the waypoints prior to knowing the uncertain
outcomes, then once all of the uncertainty is resolved, the remaining timepoints are
scheduled. Waypoint controllability is of limited utility because it makes no guarantees
on the ability to dynamically execute that plan. Furthermore, the waypoint controllability
checking algorithm runs in exponential time [Morris 2000].

 Waypoint controllability is discussed because there is an interesting relation between
the property that we seek in our two-layered approach and waypoint controllability.
While waypoint controllability combines strong and weak controllability, the two layered
approach presented in this thesis combines strong and dynamic controllability.
Specifically, we show that a portion of the plan can be scheduled offline without knowing

 58

the uncertain durations, while the remaining portion is scheduled dynamically. Recall,
that we schedule a portion offline in order to compensate for lack of communication.

3.3.2 Formal Definition of Communication Controllability

 In this section, we extend the definition of dynamic controllability to plans executed
by a set of distributed agents that may not always be in constant communication. Here
we are interested in the ability or inability of the agents to communicate the dynamically
scheduled execution times, as required by a dynamic execution strategy, between one
another. If a plan is dynamically executed on a set of distributed agents, inter-agent
communication limitations may preclude the agents from propagating execution times.
For example, consider a Mars exploration scenario where two rovers need to cooperate,
yet one rover moves out of communication range from another rover, during the
execution of the plan. In such a scenario, we are interested in knowing whether there
exists a successful dynamic execution strategy to enable the rovers to cooperatively
execute the plan. In this case, if we can devise a multi-agent execution strategy that is
guaranteed to succeed, then we say that the cooperative multi-agent plan is
communication controllable.

 If the plan is strongly controllable, then the agents can cope with this information
deficiency by fixing the schedule prior to execution; hence, eliminating the need for any
communication at execution time. However, we are interested in the more general case
in which the plans are not strongly controllable, and the agents must use a dynamic
execution strategy. In this case, a plan is communication controllable only if the agents
can make scheduling decisions with partial knowledge of the execution history.

 In order to formally define communication controllability, we first describe how the
plan is distributed among the agents. Distributed dynamic scheduling is a process in
which multiple agents collaborate in order to dynamically schedule the timepoints of a
multi-agent plan. Each agent takes ownership of a portion of the timepoints. An agent
must schedule each timepoint it owns. The ownership of timepoints is defined by a
distribution.

Definition 3-1 (Distribution): Given a STNU, Γ =<N,E,l,u,C>, and a set of agents, A; a
distribution, D, is a mapping, D: N → A, such that each timepoint x ∈ N is uniquely
assigned to an agent a∈ A. D(x), also written Dx, is the agent that owns timepoint x.
Furthermore, the set of timepoints assigned to an agent, a, in distribution, D, is written
Na

.

 Figure 3-5 shows a distribution of a STNU over two rovers. For simplicity, the time
bounds are not shown on the links of the STNU. The gray timepoints are mapped to
rover1, and the white timepoints are mapped to rover2.

 59

e3

s4

rover1.drive-to(rock1)

s1

s2

s3e1

e2

rover2.drive-to(rock2)

e5

rover1.sample(rock1)

s6

s5

rover2.sample(rock2)

e6

rover1.uplink-data()

rover2.uplink-data()

rover1.drive-to(base)

s7 e7

s8 e8

rover2.drive-to(base)

e4

Figure 3-5 Distribution of a STNU. The timepoints of the
STNU are uniquely assigned to an agent.

 Next, for a distributed STNU, we need to know when the agents can communicate
with one another. We introduce a communication availability graph (CAG) in order to
model the communication availability between the agents. The communication
availability graph combines a finite state automaton with a set of communication
constraints. The CAG is composed of a set of agent states, a set of directed edges
representing the criteria for state transition, and a set of undirected, communication
availability edges. If a communication availability edge connects two states, then reliable
communication is available between those states. For simplicity, the state of an agent is
determined solely determined by monitoring the execution status of the timepoints in the
associated STNU. Communication between two timepoints is then available, if a
communication availability edge exists between the locations of the activities of the two
timepoints.

 For example, consider the communication availability graph shown in Figure 3-6,
which is associated with the STNU given in Figure 3-5. The CAG contains two states for
each rover. In this case, the states of the rovers represent their location. Rover1 (gray
states) is either in the at-base state or at-rock1 state. Similarly, rover2 (white states) is
either in the at-base state or at-rock2 state. A rover is always able to communicate with
itself; therefore, there is a communication availability edge between states. Furthermore,
we assume that the rovers are free to communicate with each other when they are both at
base as indicated by the communication availability edge AC. However, when rover1
reaches rock1 it is no longer able to communicate with rover2(i.e. no communication
availability edge BC nor BD) Similarly, rover2 is unable to communicate with rover1
when it reaches rock2 (i.e. no communication availability edge DA nor DB). Rover1
transitions from state A to state B when it executes timepoint e2 (in the TPNU), and
transitions back to state A when it executes timepoint e7. Similarly, rover 2 transitions
from state C to D when it executes timepoint e3, and transitions back to C when it
executes timepoint e8.

 60

C

...

e2at-base

D

A B
at-rock1

at-base

e3

at-rock2

e7

e8

Figure 3-6 Communication Availability Graph The
directed edges represent state transition criteria, and the
undirected edges represent communication availability.

Definition 3-2 (Communication Availability Graph): Given an STNU, Γ = <N,E,l,e,
C>, and a set of agents Q, a communication availability graph, Π = <S,T,U> of Γ and
Q, is a graph where S is a set of states where each state is mapped to an agent A.
Furthermore, T is a set of directed edges representing state transitions and U is a set of
undirected communication availability edges. We say that reliable communication exists
between states Si and Sj if there exists an edge Uij∈ U.

 The purpose of introducing a communication availability graph is not to cover all the
details of modeling communication between a set of distributed agent but rather just to
put forth a rational model of communication.

 Controllability is a property of a STNU that states whether there exists a policy for
consistently scheduling the executable timepoints in any situation. Communication
controllability is a property of a STNU that specifies whether there exists a multi-agent
execution strategy for STNU that is constrained by a communication availability graph.
In order to develop this concept, we first define the standard concept of a schedule.

Definition 3-3 (Schedule [Morris 2000]): A schedule, T, for a set of timepoints, N, is a
mapping T: N→ ℜ, which maps each timepoint x ∈ N to a scheduled time, where T(x),
also written Tx, is the scheduled time of timepoint x.

 The dispatcher’s job is to consistently schedule all of the timepoints contained in a
STN. We call a schedule feasible if the assignments do not violate the simple temporal
constraints in the STN.

Definition 3-4 (Feasible Schedule of a STN): Given an STN, Γ =<N,E,l,u>, a schedule
of Γ ,T(Γ), is a schedule for all of the timepoints n∈ N. This schedule is feasible if l(XY)≤
T(x)-T(y) ≤ u(XY) holds for each pair of timepoints x,y∈ N, and for each link XY ∈ E.

 61

 Recall that for STNUs, only a subset of the timepoints are scheduled by the dispatcher.
Specifically, the agent only schedules the executable timepoints Ne, whereas, the agent
observes the outcomes of the contingent timepoints, Nc. In order to explicitly define the
uncertain outcomes we introduce a set of variables corresponding to the uncontrollable
durations. These uncontrollable durations are constrained by the contingent links in the
STNU. Here we make a distinction between the contingent link, which specifies the
constraint on the uncontrollable duration and the variable that is assigned a value upon
observing the uncontrollable duration. For example, see Figure 3-7.

rover1.drive-to(rock)

A B[5,10]

rover1.drive-to(rock)

A B
10

0

(a) (b)

ωΑΒ ωΑΒ

Figure 3-7 (a) The STNU contains a contingent link AB with
bounds [5,10] constraining the uncontrollable duration ωAB (b)
The associated distance graph also contains the uncontrollable
duration even though there is no contingent link.

Definition 3-5 (Uncontrollable Duration [Vidal 2000]): Given an STNU, Γ
=<N,E,l,u,C>, for each contingent link AB in Γ there exists an uncontrollable duration
ωAB∈ [l(AB),u(AB)] which is a variable representing the duration between the timepoints
A and B, whose outcome is uncertain.

In order to talk about the possible outcomes of the uncontrollable durations, we define a
situation. A partial situation is an assignment to the subset of the uncontrollable
durations and a complete situation, also called a situation, is an assignment to all the
uncontrollable durations. The assignments to the uncontrollable durations are done such
that they respect the constraints imposed by the contingent links.

Definition 3-6 (Complete/Partial Situation [Vidal 2000]): A situation is an assignment
to the uncontrollable durations, i.e. ωXY = d ∈ [l(XY), u(XY)]. A partial situation is a
partial assignment to the uncontrollable durations, and a complete situation, also called
a situation, is a full assignment to the uncontrollable durations.

In order to define a feasible schedule for STNUs, we use the concept of a projection,
introduced by [Vidal 2000]. A projection is another way to represent a complete

 62

situation. Given a complete situation, a projection transforms a STNU into a STN by
transforming the contingent links into a set of rigid STN links whose lower and upper
bound equals the value of the corresponding duration in the situation. Note that each
uncontrollable duration, ω, may take on any value between the lower and upper bound
specified by the corresponding contingent link. Therefore, a STNU defines a set of
projections.

Definition 3-7 (Projection [Vidal 2000]): Given an STNU, Γ = <N,E,,l,u,C>, a
projection, Γ’ = <N,E,l,u>’, of Γ, is a Simple Temporal Network (STN), where each
requirement link is replaced by an identical STN link, and each contingent link e∈ E is
replaced by a rigid STN link, where the lower and upper bound is [ω,ω], for some ω
such that l(e) ≤ ω ≤ u(e). The projection of Γ is written P(Γ).

 For example, consider the projection shown in Figure 3-8(b) of the STNU given in
Figure 3-8(a). This projection is just one of many possible projections of the STNU.
The projection shown in Figure 3-8(b) corresponds to a situation where the
uncontrollable duration, ω1, corresponding to the rover1.drive-to(rock1) activity is 7 time
units, and the uncontrollable duration, ω2, corresponding to the rover2.drive-to(rock2)
activity is 10 time units.

rover1.drive-to(rock1)

s1

s2 [7,15]

e1

e2

[5,10]

rover2.drive-to(rock2)

[0,10] ...

a) STNU

ω1

ω2

rover1.drive-to(rock1)

s1

s1 [10,10]

[7,7]

rover2.drive-to(rock2)

[0,10]

ω1 =7

ω2 = 10

...

b) Projection

e1

e2

Figure 3-8 Example of a Projection of a STNU

 The concept of projection is useful because it transforms the idea of a set of
uncontrollable outcomes into data structure we are familiar with working with, i.e. an
STN. The feasible schedule of an STNU is defined in terms of its possible projections.
Specifically, a schedule of an STNU is feasible if the schedule corresponds to some
feasible STN schedule of one of its projections.

Definition 3-8 (Feasible Schedule of an STNU): Given an STNU, Γ = <N,E,,l,u,C>, a
STNU schedule T of Γ , is a schedule for all of the timepoints n∈ N. A feasible STNU
schedule of Γ is a feasible STN schedule of one of Γ’s projections, written T(P(Γ)).

Note that the schedule includes both the executable and contingent timepoints.

 63

Now we turn our attention to the process of generating a schedule of an STNU. An
execution strategy specifies a policy for scheduling the controllable timepoints of the
STNU for all possible projections (or situations). Furthermore, we call the execution
strategy viable if the execution strategy generates a feasible schedule for all possible
projections. By definition, a viable execution strategy will succeed, given it knows the
projection prior to generating the schedule; therefore, the existence of a viable execution
strategy is equivalent to saying that the STNU is weakly controllable [Morris 2000].

Definition 3-9 (Execution Strategy [Morris 2000]): Given an STNU, Γ, an execution
strategy S: P→T of Γ, is a mapping of projections, P, to schedules, T, for the timepoints
of Γ. An execution strategy, S, is viable if the schedule, S(p), is consistent with Γ, for
every projection p∈ P.

 Communication controllability is inherently a multi-agent concept; hence, we will
generalize our notion of schedules and histories to multi-agent systems. For a distributed
multi-agent system, each agent is in charge of its portion of the plan. Specifically, each
agent must schedule the timepoints that it owns, as specified by a distribution D.
Therefore, we define agent schedule as the set of timepoint assignments made by that
individual agent.

Definition 3-10 (Agent Schedule): Given an STNU, Γ = <N,E,l,u,C>, a set of agents A,
and distribution D; an agent schedule, Ta, is a schedule for all timepoints owned by
agent a. Furthermore, Ta(x), also written Ta

x, is the scheduled time of individual
timepoint x, owned by the agent a in a schedule Ta.. Given an agent schedule for each
agent a∈ A, the schedule of Γ, T(Γ), is the union of each agent schedule Ta, for all
agents a∈ A.

 Now we extend the concept of feasibility to agent schedules. The definition of a
feasible agent schedule is analogous to the corresponding centralized concept.. An agent
schedule is feasible if the agent’s schedule is consistent with the temporal constraints of
the full STNU.

Definition 3-11 (Feasible Agent Schedule): Given an STNU, Γ = <N,E,l,u,C>, a set of
agents A, a distribution D, and an agent schedule, Ta; For each a∈ A the schedule Ta is
feasible if and only if each timepoint n ∈ Na is consistent with the full set of temporal
constraints in Γ. Furthermore, if the union of all agent schedules are feasible, then T(Γ)
is feasible.

 To define a communication limited, multi-agent strategy, we first extend the notions
of execution strategies to a distributed multi-agent system. For a distributed multi-agent
system, the schedule for the entire plan is generated by using a set of agent execution
strategies, where each agent schedules the timepoints assigned to it by some distribution.

Definition 3-12 (Agent Execution Strategy and Multi-Agent Execution Strategy):
Given an STNU, Γ, a set of agents, A, and a distribution, D, an agent execution strategy,
Sa: P→Ta, for agent a∈ A maps the projections, P, to an agent schedule Ta. An agent

 64

execution strategy, Sa, is viable if the resulting agent schedule is feasible for all
projections p∈ P. A multi-agent execution strategy uses a set of agent execution
strategies, M, for all agents a∈ A to map projections, P, to schedules, T = ()

a

a

S M

S p
∈
U .

Furthermore, a multi-agent strategy, M, is viable if each agent strategy, ()
a

a

S M

S p
∈
U is

viable.

 Note that a complete schedule, T, of the STNU, is the union of all agent schedules, Ta,
generated by the corresponding agent execution strategy, Sa.

 Generalizing from dynamic controllability, communication controllability pertains to a
dynamic scheduling process in which each agent makes scheduling decision solely based
on past outcomes. In general, each agent may use outcomes it directly observes or
outcomes observed from other agents to make scheduling decisions. In the centralized
case, a plan is dynamically controllable if an agent can create an execution strategy that
schedules each timepoint x, knowing only the uncertain outcomes that happened prior to
x. However, as we will see in Chapter 4, a viable dynamic execution strategy depends on
the ability to propagate both scheduling decisions and uncertain outcomes to unscheduled
timepoints. It is useful to define the portion of the full schedule that each agent can
observe when it makes each scheduling decision and to separate this set into controllable
and uncontrollable timepoints.

 In the centralized case, when the agent dynamically schedules a timepoint x, the agent
only has access to the uncertain durations that happened prior to scheduling the timepoint
x. and scheduling decisions made prior to scheduling x. Collectively, this information is
called the scheduling history of timepoint x, referred to as simply the history at timepoint
x. This history is composed of both a contingent history, which is the set of contingent
timepoint assignments made prior to x, and a scheduled history, which is the set of
executable timepoint assignments made prior to x. To summarize, the history of x is just
the portion of the schedule fixed prior to scheduling timepoint x.

Definition 3-13 (History): Given an STNU, Γ = <N,E,l,u,C> and a schedule T for Γ,
 (a) The history at timepoint x, H(T,x), is the assignment in T to timepoints n∈ N,
scheduled prior to timepoint x ∈ N.
 (b) The contingent history at timepoint x, Hc(T,x), is the assignment in T to contingent
timepoints n∈ Nc, scheduled prior to x ∈ N.
 (c) The scheduled history at timepoint x, Hs(T,x), is the assignment in T to executable
timepoints n∈ Ne, scheduled prior to timepoint x∈ N.

 Communication controllability deals with agents that that contain communication
limitations. The agents must in addition cope with the communication limitations
imposed by the communication availability graph, Π. Due to communication limitations,
one agent may not communicate its schedule to another agent at execution time. Hence,
at any given time, each agent may only be able to know part of the history. Note that
each agent’s knowledge of the full schedule is dependent on both the schedule and on the

 65

communication availability graph. Depending on when an agent schedules a timepoint,
the value of the assignment may change, as well as its ability to communicate this
scheduling decision to other agents. We introduce a concept of an agent’s knowable
history at one of its owned timepoints x, as the portion of the schedule that is knowable to
the agent at the time of scheduling x. This is called the agent’s knowable history at x. We
break the knowable history into a knowable contingent history and a knowable scheduled
history.

Definition 3-14 (Agent’s Knowable History): Given an STNU, Γ = <N,E,l,u,C>, a
CAG, Π, a schedule T(Γ), a set of agents A, and distribution, D,
 (a) The agent a’s knowable history at timepoint x, written Ha(T,Π,x), is the schedule
of all timepoints n∈ N, scheduled prior to timepoint x ∈ Na that could have been
communicated given the communication availability Π.
 (b) The agent a’s knowable contingent history at timepoint x, written Hc

a(T, Π,x), is
the schedule of the contingent timepoints of c∈ H(T,Π,x).
 (c) The agent a’s knowable scheduled history at timepoint x, written Hs

a
 (T,Π,x), is

the schedule of executable timepoints n∈ H(T,Π,x).

 We are finally ready to formally define the communication controllability property,
that specifies whether or not there exists a viable, dynamic, multi-agent execution
strategy, for a distributed, partially controllable STNU, in the presence of communication
availability imposed by a communication availability graph, Π. Recall that the complete
multi-agent execution strategy is the union of each agent execution strategy. For this
communication controllable there exists a viable dynamic multi-agent execution strategy,
such that the schedule it generates is independent of future or unobservable events, where
the implication in the definition below captures this independence.

Definition 3-15 (communication controllability): Consider an STNU, Γ =
<N,E,l,u,C>, distributed over a set of agents A, according to a distribution D, and
constrained by a communication availability graph, Π. Then Γ is communication
controllable, if there is a viable, dynamic, multi-agent execution strategy, given the
communication availability specified by Π. That is there exists a viable agent execution
strategy, Sa , where S(p) is defined as the union Sa(p) over all agents, for each timepoint
x∈ N, such that:

 Ha(S(p1),Π ,x) = Ha(S(p2),Π ,x) ⇒ [Sa(p1)]x = [Sa(p2)]x,

for each agent a∈A, and for each pair of projections, p1 and p2, of Γ.

 In other words, a STNU is communication controllable if there exists a viable,
dynamic, multi-agent execution strategy for scheduling each executable timepoint in the
presence of limited communication availability. This viable dynamic multi-agent
execution strategy is composed of a set of viable, dynamic, agent execution strategies,
where each agent’s execution strategy only depends on a subset of the past to make a
scheduling decision for each timepoint x. Recall that this subset of the past is called the

 66

agent’s observable history at timepoint x (as defined in Definition 3-14). The equation in
Definition 3-15 states that if the agent’s knowable history at timepoint x is the same in
two separate projections (outcomes of uncertain durations), then there exists a viable
agent execution strategy to generate the same schedule for timepoint x. Hence, the
agent’s execution strategy for timepoint x is only dependent on the agent’s observable
history at timepoint x.

 One major problem is that for an arbitrary communication availability graph, there is
no easy way to compute the agent’s observable history for each timepoint. This is left for
future work. In this thesis we simplify the problem by restricting the form of the
communication availability graph. Specifically, we only consider plans that are
partitioned into a set fully communicating clusters, where each cluster has a fully
connected communication availability graph. Thus the knowable history for each agent
is a total history of the communication cluster.

 The problem is reduced to two simpler problems: 1) finding the schedule for the start
of the group plan, only knowing the time of the start of the mission, and 2) generating a
schedule for the timepoints in each group for which each agent knows the group plan’s
full history and the start time of the mission. These problems are still coupled, hence we
further simplify the problem by imposing a two layer structure on the plan and solve the
two problems with only very limited coupling between them. In the next section, we will
precisely describe these two layer multi-agent plans, which enable us to simplify the
communication controllability problem.

3.4 Two-Layer Multi-Agent Plans
 This section precisely describes the two-layer, partially controllable, multi-agent plans
that contain communication constraints. For simplicity, these plans are referred to as
two-layer plans. This section also describes how to construct these two-layer plans. The
two-layer plans are generated by either 1) clustering a fully elaborated plan, or 2)
specifying the two layer plan using a variant of the Reactive Model-Based Programming
Language (RMPL) [Williams 2003], [Kim 2001], called the Group Planning Language
(GPL).

 The two-layer plan consists of a mission plan and a set of group plans. The mission
plan describes the high level structure of the mission. It specifies a set of constraints on a
set of abstract group activities. The group activities are abstract, meaning the group
activities are not executable primitives, but rather represent a place holder for a detailed
group plan. Each group plan is executed by a set of agents, called a group. The
constraints in the mission plan include both temporal and communication constraints.
The temporal constraints serve two purposes, first they model the uncertain duration of
each group activity and second, they constrain the valid execution times of the start and
end of each group activity. The communication constraints specify when the groups can
communicate with each other. The group plans specify the details of each group activity.
Specifically, each group plan contains a set of activities to be executed by a set of agents.
Each group plan also contains a set of internal temporal and communication constraints.

 67

The temporal constraints of a group plan are used to model uncertain duration and place
temporal constraints to restrict the feasible execution times of the group’s agent activities.
The communication constraints specify when the agents can communicate with other
members within the group.

 The two-layer plan encapsulates each group plan within a simple abstraction, called a
group plan macro, or macro for short. A macro consists of an abstract group activity, an
executable start timepoint, a contingent end timepoint, and a contingent link connecting
the start and end timepoint, which specifies a range of possible durations of the group
activity. The contingent link in the macro models the possible duration of the group
activity. For each macro in the mission plan there is an associated group plan and vice
versa. Given a macro, the corresponding group plan is returned by calling a
GET_GROUP_PLAN function and similarly, given a group plan, the corresponding
macro in the mission plan is returned by calling a GET_MACRO function.

 The macro assumes that each group plan is executed in a distributed fashion. This
means that the agents that participate in each group plan are in charge of executing their
own activities, as compared to some centralized dispatcher, which makes execution
decisions. Therefore, with respect to the mission plan, the duration of all group activities
are uncertain (i.e. controlled by the groups). This is true even in the case where all the
activities in a group plan are controllable. The macros enable terse representation of the
mission, an executive summary of sorts, in which the details of the group activities are
hidden. This allows the executive to reason about scheduling the group activities without
dealing with the specifics of how each activity in the group is accomplished. The macros
achieve this simplicity at the cost of loss of information. The macros simply model the
feasible duration of each group plan as an uncertain duration. This is the simplest way to
model the group plans at the mission level. In Chapter 5, we discuss an alternative macro
representation that preserves more information about the group plan.

 The two layer, partially controllable, multi-agent plans with communication
constraints are formalized as a two-layer Multi-Agent Temporal Plan Network with
Uncertainty (MTPNU). Recall that a TPN is a set of activities to be performed, each of
which includes a start and end time, together with a set of temporal constraints that
specify the valid activity start and end times for each activity, specified as a simple
temporal constraint. Hence a TPN is a generalization of a STN consisting of a set of
activities A, and a mappings, T+: A N, and T-:A N, mapping the start and end times
to the timepoints in the STN. A TPN under uncertainty (TPNU) is analogous, where the
temporal constraints are expressed as a STNU. A multi-agent TPNU (MTPNU) extends
the TPNU in two fundamental ways. First it introduces a set of agents, Q, and a
distribution, D: N Q, mapping the timepoints, N, to an agent, Q. Thus, each timepoint is
owned by a specific agent. Second, the MTPNU introduces a set of communication
constraints, formalized as a communication availability graph (CAG), which specifies
when the agents are able to communicate with one another.

 A two-layer MTPNU extends the definition of the MTPNU. The two-layer MPTNU
is the tuple <M,G,B>, where M is a mission layer MTPNU (mission plan) and G is a set

 68

of group layer MTPNUs (group plans), and B is a function mapping the macros in the
mission plan to the group plans. The mission plan, macro, group plans are formally
described below.

The mission plan, M = <Γ, A, T, Q, D, Π, Ψ >, where:

• Γ: is the STNU = <N, E, l, u, C> that specifies the temporal constraints of the
plan.

• A: is a set of abstract group activities. These group activities are an abstraction of
the group plans. Each group activity is associated with a group plan.

• T: consists of two functions T+: A N, and T-:A N, which map the start time
and end time respectively of each group activity to a timepoint.

• Q: is a set of groups which consists of a set of agents. There is one special group
which contains no agents, called the mission group. This mission group is
associated with all timepoints that are not explicitly part of a macro.

• D: is a group distribution function, D: N Q, mapping each timepoint in the
mission plan to a group.

• Π: is a communication availability graph that specifies when the groups can
communicate with one another.

• Ψ is a set of macros associated with each group in Q.

A macro Ψ = <γ,a,t> of the mission plan M, where:

• γ is a two timepoint STNU = <N,E,l,u,C> containing one executable start
timepoint, s, and a contingent end timepoint, e, and a contingent link between
s and e where γ ⊆ Γ[M].

• a is group activity where a ∈ A[M]
• t ⊆ T[M] is a function mapping the start time of a to s and the end time of a to

e.

A group plan g ∈ G is a tuple < Γ, A, T, Q, D, Π >, where:

• Γ is a STNU = <N,E,l,u,C> that specifies the temporal constraints of the group
plan.

• A is a set of activities executed by the agents in the group.
• T is a mapping T+: A N, and T-:A N, which map the start time and end time

of each activity to a timepoint in Γ.
• Q is a set of agents.
• D is a distribution which is a mapping D: N Q that maps each timepoint in the

group plan to an agent in Q.
• Π is a communication availability graph (CAG) specifying when each agent can

communicate with one another.

 In this thesis, we only consider group plans that have fully connected communication
availability graphs. The communication availability graph in the group plan is fully
connected. This means that the group members of each group plan are allowed to
communicate throughout the group plan. In the mission plan, we only assume that the

 69

communication availability graph is specified such that each group is able to
communicate with the agent that executes the start of the plan. Thus, during execution,
each group knows when the mission starts.

 Consider the two-layer MTPNU shown in Figure 3-9. This two-layer plan encodes a
mission where four rovers, R1, R2, R3, and R4, participate in three group activities:
search, sample, and send-data, to achieve the mission. In the mission plan the search and
sample activities occur concurrently, and are followed by the send-data activity. In the
search group activity, R1 and R2 search for new science targets. In the sample group
activity, R3 and R4 sample a rock at the current science site. In send data group activity,
R1 and R2 send R3 what they discovered exploring, while R4 sends R3 the science data
it collected. Then R4 relays this data back to Earth.

 The mission plan, shown in Figure 3-9 contains three group activities: search, sample
and transmit_receive. Each group activity is contained in group macro. Recall that a
macro consists of an executable start timepoint, a contingent end timepoint, the group
activity, and the contingent link connecting the start and end timepoint. Each timepoint
in the mission plan is mapped to a group. The start and end timepoints of each macro are
associated with their corresponding group plan. In particular, timepoints A and B are
associated with the search group (light gray), timepoints C and D are associated with the
sample group (dark gray), and timepoints F and G, are associated with the
transmit_receive group (black). The mission plan also contains two special mission
timepoints (white), namely, timepoint Z, which is the start of the mission, and timepoint
E which serves as a connector timepoint. Furthermore, the mission plan contains a set of
requirement links constraining the possible execution times of each timepoint in the
mission plan.

 The group plans are also shown in Figure 3-9. Each timepoint of a group plan is
mapped to an agent. The white timepoints are associated with R1, light gray timepoints
are associated with R2, dark gray timepoints are associated with R3, and black timepoints
are associated with R4.

 70

J [10,20]

R1.drive_to(locA)
[10,20]B

D [7,10]

HC

E

[3,6]

R2.drive_to(locA)

[0,5]

[0,5]

[0,5]

R1.explore(area1) [0,1]

R2.explore(area2)

[0,1]

A

[0,5]

P [5,10] Q

R2.drive_to(base)

N [5,10] O

R1.drive_to(base)
R[0,10]

[0,10]

D [1,10] E
R2.send_data(R3)

B [1,10] C

J

[0,10]

[0,10]A

[0,5]

[0,5]

R1.send_data(R3)

F [1,10] G

[0,5] [0,10]R3.recieve_data(all)

H [1,10] I
R4.send_data(R3)

[0,5] [0,10]

K [20,40] L

R3.send_data(Earth)

[0,20]

(b) Search Group Plan

(d) Transmit-Receive Plan

F [0,51]

search

A

C [0,35]

B

D

[0,70]
[1,10] Transmit-

Receive
GZ

[0,10] sample

[0,60]

[0,60]

(a) Mission Plan

I

C

D [0,15]

[0,10]B
[0,1]

R3.spec_reading(rock1)

R4.take_pic(R1)
A

[0,1]

(c) Sample Group Plan

K

F G

[0,1]

[0,1]

[0,1] M

[0,5]

[0,5]

L

G [10,20]

R4.sample(rock1)

H

E

F

[0,5]

[0,5]

[0,1]

[0,1]

E [0,0]

[0,120]

[0,35]

[0,51]

[0,70]

start of mission

Figure 3-9 Two-Layer Multi-Agent Temporal Plan Network with
Uncertainty

 In the next three sections we discuss two methods used for constructing the two-layer
plans. First, we describe how to use a variant of the Reactive Model-Based Programming
Language (RMPL) in order to specify a two-layer plan. Second, we describe how a fully
elaborated plan is converted into a two-layer plan, by clustering the plan into a set of
tightly coordinating sub-plans

3.4.1 Group Programming Language (GPL)

 The group programming language (GPL) is a programming language that enables a
programmer to specify the two-layer MTPNUs. The GPL is a variant of the RMPL
language [Williams 2003, Kim 2001]. Similar to RMPL, GPL explicitly allows for:
concurrency, serialization, temporal constraints. However, GPL does not include many
advanced features of the RMPL. The GPL language is a high level, object orientated
programming language similar to C++. It uses a set of classes and a set of methods to
define the plan. GPL provides a means to distinguish between requirement constraints
and contingent constraints in the plan. It also introduces a special wait command that
encodes a temporal constraint without imposing an activity. In order to specify two-layer
plans, GPL, uses two special classes called the mission class and the group class. Using

 71

these classes explicitly defines the distinction between the set of constraints that are a part
of the mission plan and set of constraint that are a part of each group plan. GPL assumes
that each agent can communicate within other agents in the same group; however, the
groups may not be able to communicate with one another. Adding explicit
communication constraints to GPL is left for future work.

The following describes the primitives of GPL and its mapping to a MTPNU.

Controllable Activity: agent.activity (params) [lb, ub];
A controllable activity contains an agent assignment, activity name, and a set of
parameters for the activity. It also contains lower and upper time bounds on the duration
of the activity. The controllable activity is converted into one executable start timepoint
and one executable end timepoint, with a contingent link connecting the start and end
timepoints. Both start and end timepoints are associated with an agent specified in the
activity. The lower and upper bounds are used to create a requirement link between the
start and end timepoints. The start and end of the activity is associated with the start and
end timepoint. Figure 3-10 illustrates the mapping between the GPL and MPTNU for a
controllable activity.

agent.activity
[lb,ub]s

R1.explore(region1)
s

R1.explore(region1) [10,20];agent.activity(parameters) [lb,ub];

e
e[10,20]

(a) (b)
Figure 3-10 (a) This shows the GPL to MTPNU mapping
for a controllable activity in general (b) This is specific
example of a controllable activity mapping.

Wait: wait [lb, ub];
There is one special controllable activity called a wait, which encodes a purely temporal
constraint. The wait does not contain an agent association. When the Wait is converted
into a MTPNU it looses its activity status. It is used to place a temporal requirement in
the plan without an activity. For example, consider the mapping between the GPL wait
and the resulting MTPN is shown in Figure 3-11.

[lb,ub]s s

wait [10,20];wait [lb,ub];

e
e[10,20]

(a) (b)
Figure 3-11 (a) general wait mapping (b) specific

example of wait mapping

 72

Uncontrollable Activity: agent.activity (params) <lb, ub>;
The GPL specification for defining an uncontrollable activity is similar to that of a
controllable activity except that timebounds are used to create a contingent link between
the start and end timepoints. Note that the brackets of the timebounds are different. The
GPL to MTPNU mapping for an uncontrollable activity is shown in Figure 3-12.

agent.activity
[lb,ub]s

R1.drive_to(region1)
s

R1.explore(region1) <10,20>;agent.activity(parameters) <lb,ub>;

e
e[10,20]

(a) (b)
Figure 3-12 (a) General mapping between a GPL uncontrollable
activity and MTPNU. (b) A specific example.

GPL contains two combinators: sequence and parallel, which encode serialization and
concurrency, respectively. The combinators are applied to either primitives or a
combination of primitives. The sequence and parallel combinators are defined as:

Sequential Structure: sequence {statement1; statement2,…} [lb, ub];
The sequential structure specifies that the two or more statements in the expression must
be applied in sequence. The lower and upper bound place a requirement constraint
between the start and end timepoint of the whole sequence. The sequence combinator
inserts dummy timepoints into the plan, in order to connect the statements that are not
associated with any specific agent. Figure 3-11 shows the mapping between sequence
GPL combinator and an equivalent MTPNU.

Parallel Structure: parallel {statment1, stament2,…} [lb, ub];
The parallel combinator specifies that the two or more statements in the expression must
be performed concurrently. Furthermore, the statements must start and end at the same
time. The lower and upper bound specify a temporal requirement between the start and
end of the parallel structure. Similar to the sequential combinator, the parallel
combinator applies inserts dummy timepoints into the plan that are not associated with
any specific agent. For example see Figure 3-9.

The rover MTPNU, shown in Figure 3-9, is specified in GPL in Figures 3-14 and 3-15.
The GPL mission plan is shown in Figure 3-14 and the three group plans are shown in
Figure 3-15.

 73

Class mission
{
 rover_mission() {
 sequence {
 parallel {
 sequence { wait() [0,10]; search(); wait() [0,60] };
 sequence { wait() [0,10]; sample(); wait() [0,60] };
 }
 wait() [0,10];
 send_data();
 } [0,120]
}

Figure 3-13 Mission Plan in GPL

 74

3.4.2 Converting Multiagent Plans to Two-Layer MTPNUs

 In this subsection we describe the process of converting a MTPNU into a two-layer
MTPNU. This conversion is done by clustering the tightly coordinated group plans
within the original plan into a set of clusters. Next, each cluster is extracted from the
original plan to become a group plan. Then we compute the feasible timebounds for the
group plan. These feasible timebounds are used to model the duration of each group plan
in the mission plan. Finally, we replace the cluster with a macro in order to form the
mission plan.

Class group
{
 Rovers R1, R2, R3, R4; // define rover objects

 sample() {
 sequence {
 parallel {
 sequence { wait() [0,1]; R3.spec_reading(rock1) <0,10>; wait() [0,5] }
 sequence { wait() [0,1]; R4.take_image(rock1) <0,15>; wait() [0,5] }
 }
 wait() [0,1];
 R4.sample_rock(rock1) <10,20 >
 } [0,35]
 }

 send_data() {
 sequence {
 parallel {
 sequence { wait() [0,5]; R1.send_data(R3) <1,10>; wait() [0,10] }
 sequence { wait() [0,5]; R2.send_data(R3) <1,10>; wait() [0,10] }
 sequence { wait() [0,5]; R3.recieve_data() <1,10>; wait() [0,10] }
 sequence { wait() [0,5]; R4.send_data(R3) <1,10>; wait() [0,10] }
 }
 wait() [0,20];
 R4.send_data(Earth) <20,40 >;
 } [0,51]
 }

 search()
 sequence {
 parallel {
 sequence{ wait() [0,5]; R1.drive_to(locA) <3,6>; wait()[0,5] };
 sequence{ wait() [0,5]; R2.drive_to(locA) <7,10>; wait()[0,5] };
 }
 wait() [0,1];
 parallel {
 sequence{ wait() [0,1]; R1.explore(region1) <10,20>; wait()[0,5] };
 sequence{ wait() [0,1]; R2.explroe(region2) <10,20>; wait()[0,5] };
 }
 wait()[0,1];
 parallel {
 sequence{ wait() [0,1]; R1.drive_to(base) <5,10>; wait()[0,5] };
 sequence{ wait() [0,1]; R2.drive_to(base) <5,10>; wait()[0,5] };
 }
 }[0,70];
}

Figure 3-14 The Three Group Plans in GPL

 75

 Recall that a macro is a simple abstraction of the group plan, where the macro consists
of an executable start timepoint, a contingent end timepoint, and a contingent link,
connecting the start and end timepoint with a lower an upper bound. This simple
abstraction hides the details of each group plan within the mission plan.

 Also, recall that the duration of the macro is modeled as an uncontrollable duration,
because the mission plan has no control over how each group decides to execute their
plan - each group plan is executed independently. Using this simple representation makes
it easy to compute the macro and preserves the maximum flexibility in each group plan.

 We assume that the planner (human or automated) can identify the portions of the plan
that require tight coordination. These portions are called clusters of tight coordination.
Automatically determining how to cluster an arbitrary plan is left for future work.
Furthermore, we assume that within each cluster of tight coordination, the agents are able
to communicate with one another. In other words, we assume that tight coordination is
conjunct with communication. The following describes a communication cluster which
corresponds to a cluster of tight coordination.

Definition 3-16 (Communication Cluster): Given an STNU G = <N,E,l,u,
C> a communication cluster is a set of timepoints, B ⊆ N, where each agent, a ∈ A, that
owns a timepoint in B, maintains communication with all other agents A, during the
entire execution duration of all timepoints n∈ N.

Furthermore, we say that a plan is completely clustered if all timepoints associated with
activities are a member of a cluster, and the start and end of each activity is in the same
cluster. This ensures the each activity will be a member of a group plan, when the plan is
converted into a two layer plan.

 We assume that there exists one timepoint that precedes all others and one timepoint
that finishes after all others. If these timepoint do not exist, then they can be added to the
cluster. These are referred to as the start and end cluster points, respectively.
Furthermore, we assume that all edges connecting timepoints within the cluster to
timepoints outside the cluster are connected through the start and end timepoints. If this
condition is not satisfied, then the complete clustering is invalid. Consider the complete
clustering shown in Figure 3-15. Cluster 1 and 3 are valid; however, cluster 2 contains a
timepoint G, which is neither a start or end timepoint of the cluster, yet it contains an
edge GI, connecting it to another cluster.

 76

E[1,6]

B[2,10]

[0,40]

[0,40]

start timepoint
of mission

A

C

D

Z

F

[1,2]

G

I

activity1

[1,5]
H

[0,10]

[0,15]
[1,2]

[1,2]

[1,2]

activity1

activity2 [0,10]

[0,40]

[-30,40]

Cluster1

Cluster2

Cluster 3

activity3

activity4

activity5

Violates
Clustering

Rules

Figure 3-15 Clustering Example

 After completely clustering the plan, the next step is to determine the range of feasible
execution times for each cluster. These feasible execution times are specified as the
lower and upper bound on the macro’s contingent link. [Dechter et. al. 1990] showed
that the feasible durations of each timepoint in a distance graph can be computed using
two Single-Source Shortest-Path (SSSP) computations.

 The macro’s upper bound is set to the shortest distance from the clusters start
timepoint to the clusters end timepoint. Similarly, the macros lower bound is set to the
negation of the shortest path from the clusters end timepoint to the clusters start
timepoint. These two shortest paths are computed via the Bellman-Ford SSSP algorithm
[CLR 1990].

After computing the feasible duration for each cluster, the next steps involve separating
the clusters from the multi-agent plan, forming group plans from these clusters, and
substituting each cluster with its group plan macro activity with the macro. The pseudo-
code for the entire conversion from multi-agent plan to MTPNU is given in Figure 3-16.

 77

Figure 3-16 Pseudo Code for CONSTRUCT_TWO_LAYER_PLAN

3.5 The Decoupling Algorithm
 In this section we describe the mission plan decoupling algorithm, which decouples
each group macro in the mission plan. The decoupling of the macros in the mission plan
allows each group plan to be scheduled independently. The simplest method to perform
this decoupling is to use a slight variation of the strong controllability algorithm
introduced by [Vidal 2000]. Figure 3-17 shows the decoupling procedure. First, the
strong controllability algorithm decouples the executable timepoint from the contingent
timepoints, by making all requirement edges that connect contingent timepoints
dominated (redundant). Then the decoupling algorithm selects a consistent assignment to
the executable timepoints in the mission plan.

CONSTUCT_TWO_LAYER_PLAN (F, C)
Input: MTPNU F and valid set of clusters C which completely cluster F
Output: Two-Layer MPTN, T, with a mission plan M and a set of group plans G
1 for each cluster c ∈ C
2 s start timepoint of cluster c
3 e end timepoint of cluster c
4 g CREATE_GROUP_PLAN(F,c)
5 add g to G
6 if ¬BELLMAN_FORD_SSSP(g, s) return NIL
7 ub d[e]
8 BELLMAN-FORD_SSSP (g, e)
9 lb d[s]
10 macro CREATE_MACRO(s,e,lb,ub, g)
11 substitute macro for cluster c in the MTPNU F
12 end for
13 M[T] G
14 G[T] F
15 return T

 78

group2.drive_to(B)
e2

e3

group3.drive_to(C)

[5,15]

[5,10]

e1

[0,30]

[5,15]

[10,20]

[0,15]

[0,15]

group3.drive_to(B)
e2

e3

group3.drive_to(C)

[5,15]

[5,10]

group1.drive_to(A)

e1

[5,15]

[10,20]

[0,15]

[0,15]

constraints relating
contingent timepoints
are transformed into
constraints relating
executable timepoints

A new set of
requirement links
between executable
timepoints

start timepoint
of mission

(a) (b)

[5,15]

[10,25]

s1

s2

s3

z
s2z

s1

s3

group2.drive_to(B)
e2

e3

group3.drive_to(C)

[5,15]

[5,10]

group1.drive_to(A)

e1[10,20]

(c)

s2z

s1

s3

Tz = 0

Ts1 = 10

Ts2 = 5

Ts3 = 15

requirements on
contingent timepoints

group1.drive_to(A)

[0,30]

fixed schedule for
executable timepoints

requirement constraint no
longer needed

Figure 3-17 (a) The original mission plan containing requirement edges
connecting contingent timepoints (b) The mission plan after the contingent
timepoints are decoupled by the strong controllability algorithm. Note, all
requirement edge connecting contingent timepoints are removed. (c) The
decoupling algorithm fixes the start time for each executable timepoints.
This eliminates the need to propagate scheduling times during execution.

 In the future work section of Chapter 5, we explore an improved decoupling algorithm
that combines the STN decoupling algorithm, introduced by [Berger 2003], with the
strong controllability algorithm to enable the start time of each group plan to retain some
flexibility, with respect to the start time of the mission.
 First we explore strong controllability with some simple examples. Then we present
the strong controllability checking algorithm introduced by [Vidal 2000]. Finally, we
present the decoupling algorithm.

3.5.1 Strong Controllability

 First let’s clarify the definition of strong controllability. Recall that a plan is strongly
controllable, if there exists a viable execution strategy that does not depend on knowing
the outcomes of the uncontrollable durations. Therefore, the schedule of the executable
timepoints of a strongly controllable plan can be generated offline. Recall, that the
viability of an execution strategy simply means that the schedule for the executable
timepoints generated by the execution strategy is consistent for all situations. However,
often there are many schedules of the executable timepoints that are consistent in all
situations. In these cases, rather than committing to a schedule prior to execution, it is
possible to dynamically generate the schedule. This process is exactly the same as

 79

dynamically scheduling an STN. Strong controllability does not mean that the plan must
be executed statically, it just means it can.

 In this subsection, we explore some simple examples in order to demonstrate strong
controllability. These examples also help set the stage for the strong controllability and
decoupling algorithms to follow.

Example 3-2
 Consider a scenario in which a rover must drive to a location on limited battery power.
Assume that we can reliably determine that the battery will last between 5 and 10
minutes. Consider the following two cases. In the first case, the rover must drive to
location A, which will take the rover between 1 to 2 minutes, and in the second case, the
rover must drive to location B, which will take between 1 to 8 minutes. The duration of
these drive-to activities is uncertain. In both cases, let’s assume that the rover may start
driving at anytime; however, the rover must reach the location before the battery dies.
The plan for driving to location A is shown in Figure 3-18(a) and the plan for driving to
location B is shown in Figure 3-18(b).

Figure 3-18 (a) A strongly controllable plan. (b) An
example of a plan that is not strongly controllable.

 Let’s consider whether the plans shown in Figure 3-18 are strongly controllable. For
simplicity, let’s assume that the start time of each plan, timepoint s1, is a priori fixed at
zero, thus, T(s1) = 0.. In order for the plan to be strongly controllable, we need to be able
to schedule the start of the drive-to activity, timepoint s2, such that the assignment T(s2) is

battery dies
s1

s2 [1,2]

e1

e2

[5,10]

drive-to(A)

[0,inf][0,inf]

battery dies
s1

s2 [1,8]

e1

e2

[5,10]

drive-to(B)

[0,inf][0,inf]

Even if the rover start to drive
immediately, there exists a situation,
namely {w1 = 5, w2 = 8}, when the rover
will not get to B before the battery dies.

ω1

ω2

w1

w2

If the rover starts to drive immediately, in the
worst case, the rover will get to location
A at T = 2, which is before the
earliest time the battery could die, at T = 5.

start of
plan the rover

must complete
drive-to event
before the battery
dies

the rover
is free to start
driving at any
time after the

start of the
plan (a) (b)

 80

consistent in all situations. Recall, that a situation is defined as one valid assignment of
the uncertain durations. In this example, a situation, ω, consists of an assignment to both
the duration of the lifetime of the battery, ω1, and the duration of the drive-to activity ω2.
The only non-trivial temporal constraint plan is a lower bound constraint between
timepoints e2 and e1, which specifies that the drive-to activity must occur before the
battery dies.

 The plan for driving to location A, shown in Figure 3-18(a), is strongly controllable. If
the rover starts driving immediately (scheduling T(s2) = 0) the latest time that the rover
could arrive at location A is at T = 2, corresponding to a situation where ω2 = 2. This
corresponds to an arrival time, T(e2) = 2. This arrival time is before the earliest possible
time the battery could die at T(e2) = 5, which occurs in a situation where, ω1 = 5.

 The plan for driving to location B, shown in Figure 3-18(b), is not strongly
controllable. Even if we start the drive-to(B) activity immediately, hence, scheduling
T(s1) = 0. Then there exists a situation, namely {ω1 = 5, ω2 = 8 }, when the rover arrives
at location B, after the battery dies. In this case, T(e1) = 5 and T(e2) = 8 and the
constraint between e2 and e1 is violated.

Example 3-3:
 Now consider a scenario in which a rover must performing Entry, Descent, and
Landing (EDL) on to the Martian surface, and then communicate its status back to Earth.
Suppose we know that the EDL activity will take between 10 and 20 minutes and
communicating to Earth will take between 10 and 20 minutes. Again, let’s consider two
cases. In the first case, the scientists are in charge of scheduling the rover activities, and
require that the rovers must start communicating with Earth between 0 to 5 minutes after
EDL. In the second case, the engineers are in charge and require that the rover starts
reporting back some time between 10 and 30 minutes after landing. The plan for each
case is shown in Figure 3-19. In order for the plan to be strongly controllable, we need to
be able to schedule the start of the communicate activity, s2, offline. Again, we assume
that the start of the mission is at T = 0.

EDL
e1[10,20]s1

communicate
e2[10,20]s2[0,5]

EDL
e1

[10,20]s1

communicate
e2

[10,20]s2[0,30]

(a)

(b)

ω1

ω1

ω2

ω2
Figure 3-19 (a) This plan in not strongly
controllable. (b) This plan is not strongly
controllable.

 81

 Let’s first consider the plan in Figure 3-19(a). In order to determine if the plan is
strongly controllable, let’s consider the valid execution time for timepoint s2 in various
situations. Specifically, let’s consider how the valid execution time of s2 is affected by the
duration of the EDL activity. In the earliest possible situation, ω1= 10, and s2 must occur
between [10, 15] minutes. In the latest possible situation, ω1= 20, and s2 must occur
between [20, 25] minutes. There is no overlap in the execution windows for s2 in these
two situations; therefore, it is impossible to schedule s2 such that it satisfies the
constraints both situations. Hence, the plan is not strongly controllable.

 Now let’s consider the plan in Figure 3-19(b). In the earliest situation ω1= 10 and s2
must occur between [30, 50] minutes. In the latest situation ω1= 20, and s2 must occur
between [30, 50] minutes. In this case there is an overlap between the valid execution
windows of s2. This intersection is precisely the execution times for s2 that are consistent
for all possible situations. Specifically, if s2 is scheduled anytime between [30, 40]
minutes, it will be consistent for all situations. Therefore, the plan is strongly
controllable.

 In the EDL scenario, the flexibility between the end of the EDL activity and the start
of the communicate activity as compared to the uncertainty in the EDL activity,
determined whether or not the plan was strongly controllable. Also, note that we only
needed to consider the extreme values of the EDL uncertainty in order to determine the
valued execution times for s2.

 In the previous examples we used a type of worst situation analysis to determine if the
plans were strongly controllable. [Vidal 2000] generalized this type of worst situation in a
strong controllability checking algorithm. This algorithm is presented in the next
subsection, which is followed by the decoupling algorithm.

3.5.2 Strong Controllability Checking Algorithm

 The strong controllability algorithm introduced by [Vidal 2000] uses a type of worst
situation analysis to reduce the problem of checking strong controllability into a problem
of checking temporal consistency. The algorithm is composed of two steps: a
transformation step, followed by a consistent checking step. In this section we operate on
the associated distance graph (DGU) of an STNU. In the transformation step, the
algorithm decouples the executable timepoints from the contingent timepoints, meaning
that the allowed execution times for the executable timepoints are no longer a function of
the times of the contingent timepoints. The algorithm achieves this type of decoupling by
transforming the requirement edges of the DGU that relate contingent timepoints into
requirement edges that only relate executable timepoints. For example, the transformation
uses a type of worst situation analysis to ensure that the transformed constraint entails the
original temporal constraints in all possible situations. The transformed edges are placed
in a new distance graph called the transformed graph. For example, the transformed
graph does not contain any contingent timepoints; therefore, the schedule of the

 82

transformed graph is not dependent on the uncontrollable durations. In the temporal
consistency checking step, the algorithm checks if the transformed graph is temporally
consistent. If the transformed graph is temporally consistent then the original graph is
strongly controllable. The temporal consistency checking step is done by checking for
negative cycles in the transformed graph. This check is done using the Bellman-Ford
SSSP [CLR], although any negative cycle checking algorithm works.

 In the transformation step, we need to consider four possible types of requirement
edges. Specifically, a requirement edge may start on either an executable or a contingent
timepoint, and similarly, it may end on either an executable or a contingent timepoint.

 The distance graph in Figure 3-20 shows the four types of requirement edges we need
to consider. It contains an (executable/executable) edge CA, a (contingent/executable)
edge BC, an (executable/contingent) requirement edge CB, and a (contingent/contingent)
requirement edge DB. Each edge has a distance of a, b, c and d, respectively.

 The distance graph in Figure 3-20 contains two uncontrollable durations: ω1 ∈ [l1,u1]
and ω2 ∈ [l2,u2]. These uncontrollable durations are associated with the contingent
timepoints B and D, respectively. The first uncontrollable duration, ω1, starts at the
executable timepoint A, and finishes on the contingent timepoint B. The second
uncontrollable duration, ω2, starts on timepoint C, and finishes on timepoint D. Recall
that upper and lower bounds of the uncontrollable durations is precisely the same
information contained in the contingent edges. In the derivation of the transformation
rules we will use the uncontrollable durations for convenience.

A B
uAB

C D

(executable / executable) a
c d

(contingent / executable)

(executable / contingent)

(contingent / contingent)
-lAB

uCD

-lCD

b

ωAB ∈ [lAB,uAB]

ωCD ∈ [lCD,uCD]
Figure 3-20 The requirement edges fall one of
four types depending on the type of start timepoint
and type of end timepoint. They timepoints are
either executable or contingent.

 The strong controllability transformation rule for each type of requirement edge is
now presented. The transformation rules describe how to convert the requirement edges

 83

of a DGU into a new requirement edge that only relates executable timepoints. For each
transformation rule we present both an algebraic and a graphical derivation of the rule,
except for rule 1 which is trivial. The transformation rules reference the DGU shown in
Figure 3-20.

Case 1 (executable/executable)
 Requirement edges that start and finish on an executable timepoint are precisely in the
format that we seek; therefore, these constraints remain unchanged in the transformation.
For example, the edge CA in Figure 3-20 remains unchanged in the transformation. Note
however, that this edge may be tightened as a result of some other transformation.

(Executable/Executable) Transformation Rule: Any requirement edge CA,
constraining two executable timepoints is unchanged in the strong controllability
transformation step.

Case 2 executable/contingent
 Consider requirement edge CB with d(CB) = b, as shown in Figure 3-20. This edge
constrains the execution time of the contingent timepoint B w.r.t the executable timepoint
C. Our goal is to derive a new constraint CA such that, no matter how long the
uncontrollable duration, ωAB ∈ [lAB,uAB], takes, the original requirement constraint, CB,
is satisfied. In other words, we seek a new constraint CA, which makes the edge CB
dominated in all situations. The algebraic derivation of this new constraint CA is given
below.

 84

 (1) TB – TC ≤ b : original constraint BC
 (2) TB = TA + ωAB : execution of B in terms of the uncontrollable duration
 (3) TA - TC ≤ b - ωAB : sub (2) into (1) and rearrange
 (4) TA - TC ≤ b – uAB : tightest constraint for all possible situations

 The original constraint imposed by CB is expressed in (1). Equation (2) represents the
execution time of B in terms of the execution time of A and the uncontrollable duration
ωAB ∈[lAB,uAB]. Substituting (2) into (1) and rearranging results in equation (3), which
relates execution times of C and A, and explicitly contains the uncontrollable duration
ωAB. Notice that Equation (3) no longer contains the execution time of contingent
timepoint B. Equation (3) corresponds to an edge CA in the DGU. In order for this
constraint to be satisfied in all situations it is sufficient to consider the worst situations.
Equation (3) imposes the most restrictive constraint when ωAB = uAB. We call this the
worst situation because it imposes the tightest constraint on the timepoints of the distance
graph. Applying the constraint in equation (4) ensures that the original constraint BC is
satisfied (i.e. dominated) in all situations. This constraint corresponds to an edge CA
with distance b - uAB. After applying this new constraint CA to the distance graph, the
original constraint CB can be removed from the graph. The strong controllability
transformation rule for a contingent/executable requirement edge is given below.

(Executable/Contingent) Transformation Rule Given an uncertain duration ωAB

∈[lAB,uAB], any requirement edge CB with d(CB) = b between an executable timepoint C
and contingent timepoint B is transformed into a new requirement edge CA with d(CA) =
b – uAB in the strong controllability transformation step.

 The graphical derivation of this transformation rule is illustrated in Figure 3-21. The
derivation relies on a shortest path argument in the projection of the DGU. The DGU
shown in Figure 3-21(a) contains the executable/contingent edge CB. The arbitrary
projection of this DGU is shown in Figure 3-21(b). The new constraint CA is derived
by computing the shortest path CBA in this arbitrary projection. The worst possible
situation (which imposes the tightest constraint) occurs when ωAB = uAB. This tightest
constraint is shown in Figure 3-21(c). After applying this new constraint CA, the path
CAB is always shorter than the direct path CB; therefore, the edge CB is dominated in all
situations and can be removed.

 85

Figure 3-21 (a) The DGU containing an executable/contingent requirement edge CB. (b)
A new constraint CA is derived by computing shortest path CBA through the arbitrary
projection of the DGU. (c) This edge CA is tightest when wAB = uAB and dominates the

edge CB in all situations.

Case 3: contingent/executable
 Consider the contingent/executable requirement edge BC with d(BC) = c, as shown in
Figure 3-20. For this edge we seek a new constraint AC, which dominates BC for all
situations. The algebraic derivation of this new constraint AC is given below.

 (5) TC – TB ≤ c : original constraint BC
 (6) TB = TA + ωAB : execution time of B in terms of uncontrollable duration
 (7) TC – TA ≤ ωAB + c : sub (6) into (3) and rearrange
 (8) TC – TA ≤ lAB + c : tightest in all possible situations

 The original requirement BC is given in (5). The execution time of B in terms of the
uncontrollable duration ωAB ∈ [lAB, uAB] is given in (6). Combining (5) and (6), results in
a new equation that relates execution times of A and C in terms of the uncontrollable
duration ωAB. The worst situation (which imposes the tightest constraint) occurs when
ωAB = lAB. Equation (8), gives this tightest constraint, which corresponds to an edge CA
with d(CA) = lAB + c. After applying this new constraint CA, the original constraint BC
is dominated for all possible situations, and therefore, removed from the distance graph.

(Contingent/Executable) Transformation Rule: Given an uncontrollable duration ωAB
∈ [lAB, uAB], any requirement edge BC with d(BC) = c, starting on an contingent
timepoint B and ending on an executable timepoint C, is transformed into a new
requirement edge AC with d(AC) = lAB+ c in the strong controllability transformation
step.

A B
uAB

C

- lAB

boriginal requirement
edge CB

A B

C

btightest constraint occurs
when ωAB = uAB

b - uAB original edge CB is dominated for all situations
because the path CAB is always less than or
equal to the direct path CB

ωΑΒ ∈ [lAB,uAB]

A BωΑΒ

C

-ωAB

(b) Projection of the
DGU

b

uAB

- lAB

(a) DGU

(c) Transformed DGU

constraint derived by
considering shortest
path CBA

ωAB∈ [lAB,uAB]

ωAB ∈ [lAB,uAB]

b - ωAB

 86

 The graphical derivation of this transformation rule is illustrated in Figure 3-22. The
DGU containing the contingent/executable edge BC is shown in Figure 3-22(a). The
arbitrary projection of the DGU is shown in Figure 3-22(b). A new edge AC can be
derived by computing the shortest path ABC in this arbitrary projection. This constraint is
the same as the constraint in equation (7). The worst situation (which results in the
tightest edge AC) occurs when ωAB = lAB. The tightest constraint AC is shown in Figure
3-22(c). After applying this tightest constraint AC, the path BAC is always shorter than
the direct path of BC; therefore, BC is dominated and can be removed from the graph.

Figure 3-22: (a) The DGU containing the
contingent/executable edge BC. (b) A new edge
AC is derived by computing the shortest path BAC
in the projection of the DGU. (c) The tightest
constraint AC occurs in the situation when ωAB =
lAB and dominates the edge BC in all situations.

A B

C

original edge BC

c

A B

C

lAB + c c
tightest constraint AC
occurs when ωAB = lAB

uAB

- lAB

ωAB∈ [lAB,uAB]

A B
ωAB

C

-ωAB

(b) Projection
of the DGU

c

uAB

- lAB

original edge is dominated for all
situations because the path BAC is
always less than or equal to the
direct path BC

(a) DGU

(c) Transformed DGU

ωAB + c

new constraint derived
by computing the the
shortest path ABC

ωAB∈ [lAB,uAB]

ωAB∈ [lAB,uAB]

 87

Case 4 (contingent/contingent)

 Consider the contingent/contingent requirement edge DB with d(DB) = d, as shown in
Figure 3-20. In this case we seek a requirement edge DA to dominate DB for all
situations. This edge is derived by using sequential applications of the
executable/contingent transformation rule and contingent/executable transformation rule.
If we ignore the fact that D is a contingent timepoint, we can apply the
executable/contingent transformation rule to derive a new edge DA. This new edge DA
has distance of d + uAB. The edge DB then is transformed by the contingent/executable
transformation rule into a new edge CA with a distance of d + lCD – uAB. The
contingent/contingent transformation rule is given below.

(Contingent/Contingent Transformation Rule 4) Given the uncontrollable durations
ωAB ∈ [lAB, uAB], and ωCD ∈ [lCD, uCD], any requirement edge DB with d(DB) = d,
starting on a contingent timepoint D and ending on a contingent timepoint B, is
transformed into a new edge CA with d(CA) = lCD + d + uAB in the strong controllability
transformation step.

 88

 The graphical derivation of the contingent/contingent transformation rule is similar to
the previous two graphical derivations and is illustrated in Figure 3-22. The DGU
containing the contingent/contingent edge DB is shown in Figure 3-22(a). A new
constraint CA is derived by considering the shortest path CDBA in the arbitrary
projection of the DGU, as shown in Figure 3-22(b). The worst case situation occurs when
ωAB = uAB, and ωCD = lAB. The resulting constraint is shown in Figure 3-22(c). After
applying this constraint, the path DCAB is always less than or equal to the path DB;
therefore, the edge DB is dominated in all situations and can be removed from the
distance graph.

A B

C D

d

original edge
requirement
between two
contingent
timepoints

A B

C D

 lCD + d - uAB

original edge is dominated
for all situations because
the path DCAB is always
less than or equal to the
direct path DB

d
This constraint is the
tightest when ωAB = uAB
and ωCD = lCD

A B

C D

d

ωAB ∈ [lAB,uAB]

ωAB

-ωAB

ωCD ∈ [lCD,uCD]
ωCD

-ωCD

uAB

- lAB

uCD

- lCD

uAB

- lAB

uCD

- lCD

(a) DGU (b) Projection of
DGU

(c) Transformed DGU

ωΑΒ ∈ [lAB,uAB]

ωCD ∈ [lCD,uCD]

ωAB ∈ [lAB,uAB]

ωCD ∈ [lCD,uCD]
ωCD + d - ωAB

new constraint
derived by the
shortest path
CDBA

Definition 3-17 (a) The DGU contains a
contingent/contingent edge DB. (b) A new edge CA is
computed by considering the shortest path CDBA in the
projection of the DGU. (c) This tightest constraint CA occurs
the situation when ωAB = uAB, and ωCD = lAB and dominates
DB for all situations.

 The strong controllability checking algorithm [Vidal 2000] simply applies
transformation rules defined above to create a transformed distance graph, then checks if
this transformed graph is temporally consistent.

 The pseudo code for the strong controllability checking algorithm is given in Figure 1-
19. In Line 1, the executable timepoints of the input distance graph, G, are copied to a
new transformed distance graph, T. After this, every executable timepoint in G has a
corresponding executable timepoint in T. In Line 2, all of the edges of T are initialized to
NIL. Lines 3-6 compute the transformed distance graph T by looping through each

 89

requirement edge in the input distance graph G. Line 4 applies the strong controllability
transformation rule to each requirement edge (u,v) in G and generates a transformed edge
(u’,v’) with d(u’,v’) = x. In Line 5, the corresponding edge (u’,v’) in T is updated by
calling the UPDATE_EDGE function. The pseudo-code for the UPDATE_EDGE
function is shown in Figure 3-22. If the edge (u’,v’) does not exists in T, then the function
adds a new edge (u’,v’) to T with distance x; otherwise, it updates the distance of the
edge (u’,v’) to x, if the new value is smaller than the existing distance.

 After the algorithm completes the transformation process, the transformed distance
graph, T, contains a set of executable timepoints corresponding to the set of executable
timepoints in G, and a set of requirement edges constraining these executable timepoints.
The question of strong controllability is resolved in Lines 7-8. The algorithm calls the
Bellman-Ford Single-Source Shortest-Path (SSSP) algorithm [CLR] to check if the
transformed distance graph, T, contains any negative cycles. Note that any negative-
cycle detecting graph-algorithm could be used in place of the Bellman-Ford SSSP
algorithm. If the transformed distance graph, T, does not contain any negative cycles,
then T is temporally consistent, and the strong controllability algorithm returns true. If
the transformed graph is temporally inconsistent, then the algorithm returns false.

 90

Example 3-4:
 Consider the distance graph shown Figure 3-23(a). The strong controllability
algorithm first copies the timepoints A, B and D to the transformed graph, T, and
initializes the edges of T. The executable/executable edges AB, BA, AD and DA are
simply copied over to T. The contingent/executable edge CA with d(CA) = 5 is
converted into a new edge BA with d(BA) = -5. The contingent/contingent edge EC with
d(EC) = 12 is converted into an edge DB with d(DB) = 5. The executable/contingent
edge AE with d(AE) = 15 is converted into an edge AD with d(AD) = 2. The resulting
transformed distance graph is shown in Figure 3-23(b). The algorithm then runs the
Bellman-Ford SSSP from the source timepoint A on the transformed distance graph T.

function UPDATE_EDGE(T, u ,v, x)
Input: a distance graph T, start timepoint u, end timepoint v, and distance x
Effects: updates the distance d(u,v) if it exists, otherwise adds a new edge (u,v) with d(u,v) = x
1 if T.Get_Edge(u,v) = NIL
2 T.Add_Edge(u,v)
3 T.d(u,v) x
4 else
5 T.d(u,v) MIN(T.d(u,v), x)
6 end if

Figure 3-22 Pseudo Code for UPDATE_EDGE

IS_STRONGLY_CONTROLLABLE (G)
Input: a distance graph with uncertainty G
Returns: TRUE if G is strongly controllable, otherwise FALSE
1 copy all executable timepoints of G to T
2 initialized all edges of T to NIL
3 for each requirement edge (u,v) ∈ E[G]
4 transform the edge (u,v) using SC transformation rules to an edge (u’,v’) with d(u’,v’) = x
5 UPDATE_EDGE(T, u’, v’, x)
6 end for
7 s start timepoint in T
8 consistent BELLMAN_FORD_SSSP(T, s)
9 return consistent

Figure3-22 Pseudo-Code for IS_STRONGLY_CONTROLLABLE

 91

The transformed distance graph T contains no negative cycles; therefore, the algorithm
returns true, indicating that the original distance graph is strongly controllable.

B
10

C

D

10

act1

0

-5

E10
-3

12

act2

A
15

-10

10
0

B

D

10
-5

A

2
0

5

a) b)

Figure 3-23 (a) The original DGU, G. (b) The transformed
distance graph T used in the strong controllability algorithm.

 The strong controllability checking algorithm runs in polynomial time. Copying the
executable timepoints runs in O(N) time. Each transformation runs in constant time;
therefore, the transformation of the requirement constraints runs in O(E) time. The
running time of the Bellman-Ford algorithm runs in O(NE) time [CLR]. The running
time of the strong controllability checking algorithm is dominated by this computation;
therefore, the strong controllability algorithm runs in O(NE) time.

3.5.3 The Decoupling Algorithm

 In this section we present a decoupling algorithm that is used to decouple the group
plan. This decoupling algorithm operates on the mission plan in order to generate a fixed
schedule for the start timepoint of each macro. These fixed start times are then passed to
their respective group plans. The resulting group plans can be scheduled independently.
The decoupling builds upon the strong controllability checking algorithm presented in the
last subsection. The decoupling algorithm transforms the distance graph of the mission
plan using the strong controllability transformation rules. If this transformed graph is
consistent, the decoupling algorithm generates a schedule for the timepoints of the
transformed graph. Note that any consistent schedule would work; however, we elect to
schedule the group activities as early as possible. This schedule is used to fix the time of
the corresponding group plans.

 The pseudo-code for the decoupling algorithm is shown in Figure 3-24. The
algorithm takes in a two-layer plan, consisting of a mission plan, M and a set of group
plans, G. In Line 1 the decoupling algorithm gets the distance graph of the mission plan,
Gm. Lines 2-12 are similar to the strong controllability checking algorithm. These lines
compute the transformed graph T from the mission plan’s distance graph and returns
false if the transformed graph is inconsistent. The only difference between the
decoupling algorithm and the strong controllability algorithm up to this point is that the
decoupling algorithm runs a Single-Destination Shortest-Path (SDSP) algorithm instead

 92

of the Single-Source Shortest-Path (SSSP) algorithm on the transformed distance graph,
in order to detect negative cycles. Both the SSSP and SDSP algorithms detect negative
cycles; however, the SDSP algorithm computes the earliest feasible time for each
timepoint instead of the latest feasible time.

 In Lines 13-22 the decoupling algorithm sets the schedule of the group plans. It loops
through each executable timepoint n in the transformed graph T. In Line 15, it gets the
macro associated with the timepoint by calling GET_MACRO function. If the timepoint
is not part of a macro, then the GET_MACRO function returns NIL. If the timepoint is
part of a macro, then the algorithm finds the corresponding group plan g ∈ G by calling
the GET_GROUP_PLAN function in Line 17. In Line 18 the decoupling algorithm fixes
the start time of the group plan associated with timepoint n. The start time of each group
is set to the negation of the SDSP distance of n as computed in Line 7. Finally, in Line
22, the decoupling algorithm returns true.

Figure 3-24 Pseudo Code for Decoupling Algorithm

Example 3-5

Decouple (M, G)
Input: A mission plan M and a set of group plans G
Effects: Decouples the group plans by generating a fixed schedule for the start of each group plan
Returns: TRUE if decoupling algorithm succeeds, otherwise FALSE
1 Gm get distance graph of mission plan.
2 copy all executable timepoints of Gm to T
3 initialized all edges of T to NIL
5 for each requirement edge (u,v) ∈ E[Gm]
6 transform the edge (u,v) using SC transformation rules to an edge (u’,v’) with d(u’,v’) = x
7 UPDATE_EDGE(T, u’, v’, x)
8 end for
9 s start timepoint of T
10 consistent BELLMAN-FORD-SDSP(T, s)
11 if ¬ consistent
12 return FALSE
13 else
14 for each timepoint n ∈ N[T]
15 macro GET_MACRO(n)
16 if macro ¬ NIL
17 g GET_GROUP_PLAN(macro)
18 fix the start time of g to –d[n] computed by BELLMAN-FORD-SDSP algorithm
19 end if
20 end for
21 end if
22 return TRUE

 93

 This example extends Example 3-4. Consider the mission plan and set of group plans
shown in Figure 3-25(a-b). This mission plan’s distance graph is exactly the same as the
distance graph used in Example 3-4. In Lines 1-8 the decoupling algorithm computes the
transformed distance graph, T, of the mission plan. The transformed graph T shown in
Figure 3-25c. In Line 10 the decoupling algorithm computes the Single-Destination
Shortest-Path (SDSP) distances (as shown in Figure 3-25c.) from timepoint A to all
timepoints in the plan These distances are used in Line 18 to fix the start time of the
group plans, as shown in Figure 3-25d. The start time of group plan1 is fixed at T = 5
and the start time of the group plan2 is fixed T = 0. Finally, in Line 22 the decoupling
algorithm returns true, indicating that the decoupling algorithm succeeded.

B
10

C

D

10

group1
macro

0

-5

E10
-3

12

group2
macro

A
15

-10

10
0

(a)
A

10
B-5

A

10 10
-1-1

A
8

B-2 C
-1

2

(b)

B

D

10
-5

A

2
0

5

(c)
A

10
B-5

A

10 10
-1-1

A
8

B-2
C

-1

2

(d) T= 5

T= 0

group1 plan

group2 plan

group1 plan

group2 plan

SDSP Distances
d[A] = 0
d[B] = -5
d[C] = 0

Figure 3-25 (a) The input mission plan (b) The input group
plans (c) The transformed graph with SDSP distances (d) The
group plans with fixed start times.

 The decoupling algorithm runs in polynomial time. Lines 1-13 run in the same time as
the strong controllability algorithm (i.e. O(NE)). In Lines 14-20 the decoupling
algorithm loops through each timepoint and fixes the start time of each group plan.
Using a simple lookup the GET_MACRO and GET_GROUP_PLAN run in linear time in
the number of group plans. Therefore, Lines 14-20 run in O(NG), where G is the number
of group plans. The number of group plans G is less than the number of edges in the
distance graph; therefore, the decoupling algorithm is dominated by the Bellman-Ford
SDSP computation. The running time of the decoupling algorithm is O(NE).

 94

3.6 The Hierarchical Reformulation Algorithm
 In this section, we present our novel Hierarchical Reformulation (HR) algorithm. The
HR algorithm is a centralized reformulation algorithm that transforms a two-layer plan
into a set of decoupled, minimally dispatchable group plans. The HR algorithm
combines the decoupling algorithm, presented in the Section 1.5, with our novel fast
dynamic controllability algorithm, presented in Chapter 4. The HR algorithm is used to
enable the each group plan to be dynamically executed independently.

3.6.1 HR Algorithm Pseudo-Code

 The HR algorithm operates on both layers of the two-layer plan. The fast dynamic
controllability algorithm operates on the group plans, whereas, the decoupling algorithm
primarily operates on the mission plan. Recall that the information contained in the
group plans and mission plan are related. Specifically, the timebounds of the macros
(contained in the mission plan) represent the feasible duration of the group plans. The HR
algorithm must keep the information of the macros and group plans in sync. When the
timebounds on the macros change, the HR algorithm updates the corresponding group
plans via the UPDATE_GROUP_PLANS function. Similarly, when the feasible
durations of the group plans are modified, the HR algorithm updates the timebounds of
the corresponding macros using the UPDATE_MACROS function.

 The pseudo-code for the HR algorithm is shown in Figure 2-23. The algorithm takes
in a two-layer MTPNU, P = <M,G>, consisting of a mission plan, M, and a set of group
plans, G, and generates a set of decoupled dispatchable MTPNUs with fixed start times.
The algorithm returns true if the reformulation succeeds; otherwise, it returns false.

 The HR algorithm may fail for several reasons. The HR algorithm fails if either the
mission plan or group plans are temporally inconsistent. Furthermore, the HR algorithm
fails if the group plans are not dynamically controllable or if the mission plan is not
strongly controllable. The HR interleaves these failure checks throughout the algorithm.

 Recall that a two-layer plan can be created in one of two ways: 1) it can be specified
using a Group Plan Language (GPL) file, or 2) it can be created by calling
CONSTRUCT_TWO_LAYER_PLAN function, given a fully elaborated plan, and
associated clustering.

 The HR algorithm is described using the two-layer plan, illustrated in Figure 3-26.
This is referred to as the simple two-layer plan hence forth. The mission plan (shown in
Figure 3-26a) contains two group activities: group act1 and group act2. The
corresponding group plans, called group plan1 and group plan2, are shown in Figure
3-26b,c. Both of the group plans consist of three timepoints, with one contingent activity.

 95

A
10

B

C

0

group act1

1

0

D5
-1

8
0

group act2

Mission Plan

A
5

B

act1

-2 C5

0

Group Plans

A
3 B

act2

0 C
1

0

group plan1

group plan 2

(a) (b)

(c)

Figure 3-26 (a) The simple two-layer mission plan, (b) group
plan1 (c) group plan2.

 Lines 1-3 of the HR algorithm, Figure 3-28, calls the UPDATE_MACROS function
and returns false if the update detects a temporal inconsistency in the group plans. The
UPDATE_MACROS function first computes the feasible duration of each group plan.
Then it updates the timebounds of the corresponding macros in the mission plan. This
function is called at the beginning of the HR algorithm, in order to sync the macros
within the mission plan with the constraints of the group plans. The pseudo code for the
UPDATE_MACROS is shown in Figure 3-26.

 96

Figure 3-28 Pseudo Code for HR algorithm

function Hierachical_Reformulation (P)
Input: A two-layer MTPNU P = <M,G> consisting of a mission plan M and set of
group plans G
Effects: A set of decoupled dispatchable group plans G
Returns: TRUE if the reformulation succeeds, otherwise FALSE
1 consistent UPDATE_MACROS(G, M)
2 if (¬ consistent)
3 return FALSE
4 consistent COMPUTE_APSP_GRAPH(M)
5 if (¬ consistent)
6 return FALSE
7 UPDATE_GROUP_PLANS(G, M)
8 for each g ∈ G
9 controllable FAST_DC(g)
10 if(¬ controllable)
11 return FALSE
12 end if
13 end for
14 UPDATE_MACROS(G, M)
15 success DECOUPLE(M, G)
16 return success

 97

The UPDATE_MACROS function loops through each group plan (Lines 1-12). For each
loop, the algorithm performs two shortest path computations on the group plan’s distance
graph. These shortest path computations compute the lower and upper bound on the
feasible duration of each group plan. After computing the range of feasible durations, the
algorithm updates the timebounds of the corresponding macro contained in the mission
plan.

 In Lines 2-6, the UPDATE_MACROS function computes the largest feasible duration
of the group plan. This is done by computing the largest single source shortest path
(SSSP) from the start timepoint to all other timepoints. This computation is done using
the Bellman-Ford SSSP algorithm. If the Bellman-Ford algorithm detects any negative
cycles (i.e. detects any temporal inconsistency) then the UPDATE_MACROS function
returns false in Line 5. The Bellman-Ford SSSP algorithm places the shortest path
distances for each timepoint into an array d. The largest feasible duration of the group
plan is equal to the maximum SSSP distance as computed in Line 6.

 In Lines 7-8, the UPDATE_MACROS function computes the smallest feasible
duration of the group plan. This is done by computing the smallest single destination
shortest path (SDSP) from all the timepoints in the plan to the start timepoint of the group
plan using the Bellman-Ford Single-Destination Shortest-Path (SDSP) algorithm. The
SDSP distances are placed in the array d. Note that SDSP distances are all less than or
equal to zero, reflecting the fact that all the timepoints must occur at or after the start

function UPDATE_MACROS(M, G)
Input: A mission plan M and set of group plans G
Effects: Computes the feasible duration of each group plan and updates the
corresponding timebounds of the macros in the mission plan.
Returns: True if the Group
1 for each group plan g ∈ G
2 s get start timepoint of g
3 consistent BELLMAN_FORD_SSSP(g, s)
4 if ¬consistent
5 return FALSE
6 ub max(d[n] for each n ∈ N[g])
7 BELLMAN_FORD_SDSP(g ,s)
8 lb -min(d[n] for each n ∈ N[g])
9 macro GET_MACRO(g)
10 UPDATE_EDGE(M, GET_START(macro), GET_END(macro), ub)
11 UPDATE_EDGE(M, GET_END(macro), GET_START(macro), -lb)
12 end for
13 return TRUE

Figure 3-26 Pseudo-code for UPDATE_MACRO

 98

timepoint of the plan. The smallest feasible duration of the group plan is equal to the
negation of the minimum SDSP distance contained in the array d.

 In Lines 9-11, the UPDATE_MACROS function updates the timebounds of the
corresponding macro in the mission plan. In Line 9, it gets the macro corresponding to
the group plan g using the GET_MACRO function. In Lines 10-11 it updates the edges of
the mission plan’s distance graph associated with the macro. The start timepoint of the
macro is found using the GET_START function and the end timepoint is found using the
GET_END function. Recall that the UPDATE_EDGE function only updates the edge if
the new value is less than the current value. If the UPDATE_MACROS function reaches
Line 13, then it returns true.

 Let’s continue with our simple two-layer example. The two layer plan shown in Figure
3-26 contains two group plans. For group plan1, the maximum SSSP distance is 10 for
the path ABC, and the minimum SDSP is -2 for the path CBA. The UPDATE_MACROS
function leaves the distance of the contingent edge AB in the mission plan at 10;
however, the distance of the contingent edge BA is updated to -2. For group plan2, the
maximum SSSP distance is 4, for the path ABC, and the minimum SDSP is 0, for the
path CBA. The UPDATE_MACROS function updates the distance of the mission plan’s
contingent edge CD to 4, and the contingent edge DC remains at -1. Both group plans
are temporally consistent; therefore, the UPDATE_MACROS function returns true. The
mission plan after calling UPDATE_MACROS is shown in Figure 3-27.

A
10

B

C

0

group act1

1

-2

D
4
-1

8
0

group act2
Figure 3-27 The UPDATE_MACRO function updates the
edges associated with the macros in the mission plan. AB is
updated to 9 and CD is updated to 4.

 Lines 4-7 of the HR algorithm computes the All-Pairs Shortest-Path graph (APSP-
graph) of the mission plan’s distance graph (returning false if the mission plan is
temporally inconsistent). Then the HR algorithm updates the timebounds of the group
plans if the edges associated with the macros are tightened by the APSP-graph. The
COMPUTE_APSP_GRAPH function in Line 4 computes the APSP-graph given the
mission plan’s distance graph. This APSP-graph is maintained separately from the
mission plan’s distance graph. The APSP computation is done by either Johnson’s
algorithm or Floyd-Warshall algorithm [CLR]. Johnson’s algorithm is used if the edges
the edges are stored in an adjacency list and The Floyd-Warshall algorithm is used if the
edges are stored in an adjacency matrix.

 John Stedl
See Brian’s comment here

 John Stedl
B Comment here

 John Stedl
Here too

 99

 The APSP-graph is computed for two purposes. First, it checks if the mission plan is
temporally consistent (if the mission plan is inconsistent then the algorithm returns false
in Line 6). Second, the APSP-graph is used to deduce any tightenings on the macros
induced by the constraints in the mission plans distance graph. If the edges in the APSP-
graph corresponding to the macro edges are tightened, then the HR algorithm updates the
corresponding group plan. The group plans are updated by calling the
UPDATE_GROUP_PLANS function in Line 7 of the HR algorithm.

 The pseudo code for the UPDATE GROUP_PLANS function is shown in Figure 1-24.
This function loops through each macro in the mission plan. In Lines 2-5, it finds the
corresponding distances in the APSP-graph for each macro. In Lines 6-7, it uses these
distances to update the corresponding edges in the mission plan’s distance graph. Then
in Lines 8-10, the UPDATE_GROUP_PLANS function finds the group plan, g,
associated with the macro and the start timepoint, s, and, end timepoint, e, of that group
plan. In Lines 11-16, it uses the lower bound (lb) and upper bound (ub) as computed in
Lines 6-7 to update the feasible duration of the group plan. If the ub is smaller than the
group plan’s maximum feasible duration, then the group plan’ edge from the start of the
group plan to the end of the group plan is updated. Similarly, if the lb is smaller than the

function UPDATE_GROUP_PLANS(M, G,)
Input: A mission plan M and set of group plans G
Effects: Uses the mission plan’s APSP-graph to update the macros in the mission plan
and timebounds of the group plans.
1 for each macro ∈ Macros[M]
2 s GET_START(macro)
3 e GET_END(macro)
4 ub apsp_graph[s,e]
5 lb -apsp_graph[e, s]
6 UPDATE_EDGE(M, (s,e), ub)
7 UPDATE_EDGE(M, (e,s), -lb)
8 g GET_GROUP(macro)
9 s GET_START(g)
10 e GET_END(g)
11 if ub < GET_UB(macro)
12 UPDATE_EDGE(g, s, e, ub)
13 end if
14 if lb < GET_LB(macro)
15 UPDATE_EDGE(g, e, s, -lb)
16 end if
17 end for
14 return TRUE

Figure 3-27 Pseudo Code for
UPDATE_ GROUP_PLANS

 John Stedl
Suggest say this earlier

 John Stedl
Why?

 100

group plan’s minimum feasible duration, then the group plan’s edge from the end
timepoint to the start timepoint is updated. After calling the UPDATE_GROUP_PLANS
function, the data in the macros and group plans are synchronized.

 Let’s continue with our simple two-layer plan. The mission plan’s APSP-graph is
shown in Figure 3-28(a). The APSP-graph edge AB is smaller than the edge AB in the
mission plan’s distance graph. This edge AB is associated with the upper bound on the
group act1. The edge AB is tightened from 10 to 9. The UPDATE_GROUP_PLANS
function updates the mission plan’s distance graph accordingly as shown in Figure
3-28(b). The UPDATE_GROUP _PLAN function then updates the group plans. The
updated group plans are shown in Figure 3-28(c-d). The UPDATE_GROUP_PLANS
function adds the edge AC = 9 to group plan1, corresponding to the edge AB = 9 in the
mission plan, and adds the edge CA = -1 to group plan2, corresponding to the edge DC =
-1 in the mission plan. Note that the edge DC = -1 was present in the original mission
plan, whereas the edge AB = 9 was derived by the APSP-graph.

A
9

B

C

0

group act1

1

-2

D4
-1

8

group act2

-1
7 3

5
-1

A
5

B

act1

-2 C5

0

Group Plans

A
3 B

act2

0 C
1

0

group plan1

group plan 2

APSP-graph

9
(a) (c)

(d)

A
9

B

C

0

group act1

1

-2

D4
-1

8
0

group act2

Mission Plan

(b)

Figure 3-28 (a) APSP-graph (b) Updated mission plan (c)
Updated Group Plan 1 (d) Updated group plan 2.

 After the group plan’s timebounds are updated, the HR algorithm calls the fast
dynamic controllability (FAST_DC) algorithm to reformulate each group plan into a
dispatchable group plan on Line 9. This FAST_DC algorithm is presented in Chapter 4.
If this reformulation succeeds, then the group plan is dynamically controllable and the
HR algorithm continues. However, if the FAST_DC algorithm fails (for any group plan)
then the HR algorithm terminates and returns FALSE.

 The complete description of the FAST_DC algorithm is presented in Chapter 4. For
now the reader only needs to understand that the FAST_DC algorithm is a reformulation
algorithm that either adds or tightens the constraints of the group plan. These additional
constraints may alter the range of feasible durations of the group plan. If the range of
feasible durations of a group plan is tightened (the lower bound is increased or the upper
bound is decreased), then the HR updates the edges of the corresponding macro by once
again calling UPDATE_MACROS. This is done in Line 14. There is no need to check
for temporal consistency of the group plans, because if the group plans are dynamically
controllable, then they are temporally consistent. Note that tightening the constraints of

 John Stedl
What does this mean? B’s comment

 101

the macros only serves to remove uncertainty from the mission plan. Thus, the update in
Line 14 only serves to make the decoupling algorithm more likely to succeed.

 In our simple two-layer plan example, both of the group plans are dynamically
controllable. Furthermore, feasible durations of the group plans are unchanged by the
FAST_DC algorithm; therefore, the UPDATE_MACROS call in Line 14 of the HR
algorithm does not change the mission plan.

 In Line 15, the HR algorithm calls the decoupling algorithm on the mission plan.
Recall that the decoupling algorithm operates on the mission plan in order to assign a
fixed schedule for the start of each group plan. If the decoupling algorithm succeeds,
then the HR algorithm returns true, otherwise the HR algorithm returns false.

 For our simple two-layer plan, the decoupling algorithm succeeds. Recall that the
decoupling algorithm uses a series of transformations build a constraint network that only
contains a set of executable timepoints. The decoupling algorithm is applied to the
updated mission plan as shown in Figure 3-28(b). The distance graph of the mission plan
is converted in the transformed STN as shown in Figure 3-29(a). The decoupling
algorithm first copies over the executable timepoints, A and C, then it transforms the
edges using the strong controllability transformation rules. The decoupling algorithm
copies over the requirement edges AC = 1 and CA = 0 from the mission plans distance
graph. The edge CB = 8 is transformed in to an edge CA = -1 which relaxes the edge CA
in the transformed STN. The edge BC = 0 is transformed into an edge AC = 2, which is
greater than the existing edge, so there is no change in the transformed STN. Finally, the
decoupling algorithm computes the earliest execution time for each timepoint using a
SDSP computation. The earliest execution time for A = 0 and B = 1; therefore, the start
timepoint associated with group plan1 is fixed at 0, and the start timepoint for group
plan2 is fixed at 1. The decoupled group plans are shown in Figure 3-29(b)-(c).

A

C

-1 1

A
5

B

act1

-2 C5
0

A
3

B

act2

0 C
1

0

group plan1

group plan 2

9(b)

(c)

-1

(a)
T = 0

T = 1

Figure 3-29 (a) The transformed STN (b) The start time of
group plan1 is fixed at T = 0 (c) The start time of group
plan2 is fixed at T = 1.

 The HR algorithm is a polynomial time algorithm. It gains efficiency by dividing the
reformulation problem into a set of smaller sub-problems. Let’s analyze the runtime
complexity of the HR algorithm. In this discussion we use the following notation.

 102

• G = number of group plans, also equal to the number of macros in the mission

plan.
• Nm = number of timepoints in the mission plan.
• Em = number of edges in the mission plan.
• Ng = maximum number of timepoints in any group plan.
• Eg = maximum number of edges in any group plan.

 In Line 1 HR calls the UPDATE_MACROS function. The UPDATE_MACROS
function loops through each group plan and the time of each loop is dominated by the
Bellman-Ford algorithm. Therefore, the UPDATE_MACROS runs in O(G*Ng*Eg). Lines
2-3 of the HR algorithm run in constant time. In Line 4 the HR algorithm calls
COMPUTE_APSP_GRAPH. The Floyd-Warshall algorithm is used, which runs in
Θ(Nm

3) . Lines 5-6 run in constant time. Line 7 calls the UPDATE_GROUP_PLANS
function. The UPDATE_GROUP_PLANS function loops through each macro and in
each loop is performed in constant time. Therefore, the UPDATE_GROUP_PLANS runs
in Θ(G) time. Lines 8-13 of the HR algorithm loop through each group plan and calls the
FAST_DC algorithm. The time complexity of the FAST_DC algorithm has yet to be
formally proven; however, experimental results has shown the running time to be O(
Ng

3). Therefore, the running time of Lines 8-13 is experimentally shown to be O(
G*Ng

3). Line 14 calls the UPDATE_MACROS function. Finally, in Line 15 the HR
algorithm calls DECOUPLE, which we showed is Section 3.5, to run in O(G*Ng) time.

 Adding the terms together we get an expression for the running time of the HR
algorithm as O(G*Ng*Eg) + O(Nm

3) + O(G) + O(G*Ng
3) + O(G*Ng) + O(1), which can

be simplified to O(G*Ng
3

 + Nm
3). As we shall see in Chapter 4, the Ng

3 term is derived by
an All-Pairs Shortest-Path (APSP) computation applied to the group plan used in the
FAST_DC algorithm and the Nm

3 term is due to the APSP computation on the mission
plan.

3.7 Summary
In this chapter we, 1) formally defined communication controllability, 2) formally
introduce the two-layer MTPNU, 3) introduce a novel Hierarchical Reformulation
algorithm that enables teams of agents to coordinate their activities without
communication while allowing the agent within each team to dynamically adapt to
uncertainty. In the next chapter we discuss our new Fast-Dynamic controllability
algorithm which is used to reformulate each group plan.

 103

4 Fast Dynamic Controllability Algorithm

4.1 Introduction
 This chapter finishes the explanation of the Hierarchical Reformulation Algorithm
introduced in Chapter 3, by describing how to reformulate each group plan into a
dispatchable group plan. Specifically, this chapter introduces a novel efficient,
centralized, dynamic controllability algorithm, called a fast dynamic controllability
algorithm that transforms a plan constrained by an STNU into a dispatchable form. This
chapter also describes a new edge filtering algorithm that transforms the dispatchable
group plan into an efficiently dispatchable plan, called a minimal dispatchable plan.
Together, the fast dynamic controllability algorithm and edge filtering algorithm perform
group plan reformulation.

 The goal of group plan reformulation is to enable the dispatcher to efficiently,
dynamically, and consistently execute the group plan. The reformulation algorithms
presented in this chapter are analogous to the reformulation algorithm, described in
Chapter 2. Recall that in Chapter 2 we considered plans constrained by a STN; however,
here we consider plans constrained by a STNU. We need to deal with uncertainty. Recall
that in Chapter 3 we dealt with this uncertainty of the activities in the mission plan by
decoupling the activities. This decoupling procedure enabled the activities in the mission
plan to be executed independently. However, in this chapter we seek to precompile the
temporal constraints of the group plan such that the agents can react to the uncertainty at
execution time, in order to exploit the fact that the agents can communicate within the
group plans. We seek to preserve some flexibility in the group plans so they can react to
their situation at execution time, rather than simply preparing for the worst.

 After the reformulation, the agents of the group must cooperate in order to execute the
group plan. In the simplest approach, each group plan is executed using a leader-follower
architecture. In this approach, a single leader is commissioned to make all scheduling
decisions. The leader manages the execution process by sending commands to and
receiving execution updates from the other agents in the group. All information passes
through the leader. In Chapter 5, we present an alternative approach that distributes the
execution process such that all the agents take part in the scheduling process. No matter
which approach (leader-follower or distributed) is used, the fast dynamic controllability
algorithm is still applicable.

 This chapter builds on the concepts presented in Chapter 2 and Chapter 3. Specifically,
the fast dynamic controllability algorithm expresses the temporal constraints of the group
plan as a distance graph, then uses a set of local shortest path computations to reformulate
the plan. The shortest path computations are a type of constraint propagation. Recall that
constraint propagation is the process of deriving the feasible assignments on one set of
variables given a set of constraints on different sets of variables. The fast dynamic
controllability algorithm generalizes the strong controllability rules used in Chapter 3.

 John Stedl
Dispatchable form contains some redundant info—how are the two DIFFERENT

 104

 This chapter introduces one fundamentally new concept, the idea of a conditional
constraint, which was originally introduced by [Morris 2001]. A conditional constraint
(or wait constraint) is a ternary constraint (i.e. relates three timepoints) that is satisfied
either by the passage of a minimum amount of time or through the notification of an
event, which ever is sooner. It is similar to a lower bound simple temporal constraint,
except that its enforcement is conditioned on the outcome of some other event. We use
these types of constraints in everyday life. For example, consider a scenario where you
plan on meeting a friend for lunch; however, you are running late. In such a scenario,
you may call your friend and tell him you are running late. You would like to eat
together, but, you do not want to be inconsiderate, so you ask your friend to wait for at
least 20 minutes before ordering. However, if you get there before 20 minutes, there is no
need to wait any longer. If your friend agrees, he has agreed on a conditional wait
constraint. Your friend will wait for at least 20 minutes or until you arrive, which ever is
sooner.

 In this chapter, we show how to use these types of conditional wait constraints to
preserve flexibility in partially controllable plans so that they can be dynamically
executed. Beyond being desirable, the completeness of the fast dynamic controllability
algorithm depends on using these conditional wait constraints.

 The conditional wait constraint is a fundamental departure from the constraints we
have been using, because they are ternary constraints (relate three timepoints), rather than
binary constraints (relate two timepoints). Fortunately, [Morris 2001] showed that these
conditional constraints can be propagated through the constraint network similar to
simple temporal constraints. Furthermore, the introduction of conditional constraints
only requires a small change to the STN dynamic dispatching algorithm, as presented in
Chapter 2.

 The dynamic controllability problem is solved by iteratively applying a set of local
constraint propagation rules. Our fast algorithm builds on the basic structure of the
dynamic controllability algorithm introduced by [Morris 2001]; however, it removes the
need to perform repeated calls to an O(N3) All-Pairs Shortest-Path (APSP) algorithm.

 The speed of the fast dynamic controllability algorithm is derived by two main
innovations. First, our new dynamic controllability algorithm filters redundant
constraints from the distance graph, up front, which reduces the number of propagations
required. Second, we show that after performing a single APSP computation, the
temporal constraints are placed in a pseudo-dispatchable form. Given this pseudo-
dispatchable form, each constraint only needs to be resolved with the constraints that
involve timepoints that occur earlier in the plan. Therefore, the constraints back-
propagate through the distance graph. Applying these back-propagation rules allows the
fast dynamic controllability algorithm to incrementally build up the reformulated distance
graph, starting from constraints that relate timepoints that occur at the end of the plan, to
constraints that relate timepoints that occur early in the plan.

 105

 The outline for this chapter is as follows. First we introduce some definitions and
concepts related to dynamic controllability. Next, we review the dynamic controllably
algorithm introduced by [Morris 2001]. Then we introduce our novel fast dynamic
controllability algorithm. Finally, we introduced the new edge trimming algorithm. The
empirical results for the new fast dynamic controllability algorithm are presented in
Chapter 6.

4.2 Overview

 This section reviews some key concepts and introduces several definitions regarding
dynamic execution of plans that contain uncertainty. These definitions will be useful in
subsequent sections.

 A plan is dynamically controllable if there is a viable, dynamic execution strategy to
schedule the timepoints in the plan. Recall that an execution strategy is viable if it
generates a consistent schedule in all situations, and an execution strategy is dynamic if
each scheduling decision is based only on the past.

 The goal of dynamic controllability algorithm presented in this chapter is to compile
the temporal constraints of the plan into a form such that a dispatcher can use to
dynamically execute the plan. This reformulation enables the dispatcher to adapt to the
plan’s uncertainty at execution time.

 Recall that dynamic execution is a scheduling process in which the timepoints of the
plan are scheduled in real-time (timepoints are executed and scheduled simultaneously).
In order to understand how to do this dynamic execution for plans that contain
uncertainty, let’s review the general job of the dispatcher and how to dynamically execute
plans that do not contain any uncertainty (i.e. plans constrain by STNs rather than
STNUs)

 The dispatcher, whether applied to plans that contain uncertainty or not, is constantly
making two related decisions: 1) what timepoint to execute next, and 2) when to schedule
each timepoint. The reformulation algorithm compiles the temporal constraints of the
plan in order to enable the dispatcher to make these decisions properly and quickly. This
compilation is composed of two tasks: 1) it computes a set of enablement conditions for
each timepoint, and 2) it exposes the set of implicit constraints inherent in the original
explicit temporal constraints.

 In Chapter 2 we presented two reformulation algorithms (a basic version and fast
version) along with a compatible dispatching algorithm for plans constrained by an STN
[Muscettola 1998a, Muscettola 1998b]. Recall that the basic reformulation algorithm
first computes the All-Pair Shortest-Path (APSP) graph of the plan’s distance graph,
which exposes the implicit constraints, then trims the redundant (dominated) edges. The
resulting graph is called the minimal dispatchable graph. Recall that in the fast version,
the APSP computation and edge trimming are interleaved. For plans constrained by an

 106

STN, the enablement condition is simply a list of timepoints that must be executed. For
each timepoint, after the set of enablement timepoints have been executed, then that
timepoint becomes enabled. The set of enablement timepoints for a timepoint X is
computed by compiling all timepoints that are related to X by outgoing non-positive
edges.

 During execution, the dispatcher is free to select any timepoint for execution that is
both enabled and alive. A timepoint is enabled if the all of the enablement timepoints
have been executed and a timepoint is alive if the current time falls between the
timepoints execution window. Every time the dispatcher executes a timepoint it performs
two updates. First, it sends a set of enablement messages to all timepoints waiting on that
timepoint’s execution, and second it uses the constraints in the reformulated distance
graph to update the execution windows of neighboring timepoints. [Muscettola 1998a]
showed that upper bound updates are propagated via outgoing positive edges and lower
bound updates are propagated via incoming non-positive edges.

 The reformulation and dispatching algorithms need to be modified to support plans
constrained by STNUs. The dispatcher only has partial control over the execution of the
timepoints. A plan is only dynamically controllable if the plan does not further constraint
the uncontrollable durations. Both the reformulation algorithm and the dispatcher must
respect the timebounds of the contingent links. Recall that a contingent link specifies a
lower and upper bound on an uncontrollable duration. If the temporal constraints of the
plan imply strictly tighter bounds on the uncontrollable duration, then the uncontrollable
duration is squeezed. Specifically, an uncontrollable duration is squeezed if its lower
bound is increased or its upper bound is decreased, as illustrated in Figure 4-1. If the
uncontrollable duration is squeezed, then there exists a situation where the outcome of the
uncontrollable duration falls outside of the specified timebounds; therefore, consistency
of the execution is dependent on the outcome of some uncertain event.

UB

uncontrollable duration

squeezed
bounds

LB

Figure 4-1 Each uncertain duration contains a lower and
upper bounds as specified by the associated contingent
link. The uncontrollable duration is squeezed if its lower
bound is increased or its upper bound of the decreased

 107

 [Morris 2001] introduced the concept of pseudo-controllability, which provides a
first check on the dynamic controllability of a plan. A plan in pseudo-controllable if it is
temporally consistent and none of its uncontrollable durations are squeezed. The pseudo-
controllability of a plan can be checked by computing the All-Pairs Shortest-Path graph
(APSP-graph) of the plan’s distance graph (ignoring the distinction between contingent
and requirement edges). If the APSP-graph does not contain any negative cycles, and
contingent edges remain unchanged in the APSP-graph, then the plan is pseudo-
controllable. Therefore, if a plan is pseudo-controllable, then the contingent edges in the
plan’s distance graph are the shortest paths.

Example 4-1:
 Consider the Distance Graph with Uncertainty (DGU) shown in Figure 4-2(a). The
contingent edges represent the time bounds of the uncontrollable duration AB. The
uncontrollable duration will last between [5,10] time units. The path ACB = 9 is shorter
than the direct path AB = 10; therefore, the other constraints imply a tighter value on the
upper bound of the uncontrollable duration. The APSP-graph shown in Figure 4-2(b)
exposes this tightening. The uncontrollable duration is squeezed; therefore, the plan is
not pseudo-controllable.

(a)
A

C

2

10

-5

-1
7

-5

B A

C

2

9

-5

-1
7

-5

B
(b)

Figure 4-2 (a) The DGU with a uncontrollable duration between
timepoints A and B (b) The APSP-graph exposes the temporal
constraints imply a tighter upper bound on the uncontrollable
duration; therefore, the uncontrollable duration is squeezed.

Example 4-2:
 Consider the DGU shown in Figure 4-3(a). The contingent edges remain unchanged
in the APSP-graph, shown in Figure 4-3(b). Furthermore, the plan is temporally
consistent; therefore, the plan is pseudo-controllable.

(a)
A

C

2

10

-5

-1
20

-5

B A

C

2

10

-5

-1
9

-5

B
(b)

Figure 4-3 (a) A DGU with uncontrollable duration AB. (b) The
APSP-graph does not further constraint the contingent edges.

 108

 Even if a plan is pseudo-controllable, the uncontrollable durations may be squeezed at
execution time. When the dispatcher executes a timepoint, it effectively imposes a rigid
constraint between the start of the plan and the timepoint being executed. If the
dispatcher were to resolve this new constraint with the other constraints (by computing
the APSP-graph) it may tighten a contingent edge, thus squeezing an uncontrollable
duration.

 Recall that the dispatcher does not need to recompute the APSP-graph every time it
executes a timepoint. It updates the execution windows of the timepoints via a set of
local propagations rather than updating the constraints of the plan. This is precisely the
reason that the dispatcher is able to schedule the network in real-time. Therefore, when
we talk about squeezing an uncontrollable duration during execution, it is more natural to
express it in terms of the execution windows, rather than in terms of the temporal
constraints of the plan.

 Given a distance graph with uncertainty (DGU) with a positive upper bound
contingent edge, AB, and corresponding contingent lower bound edge, BA, the execution
window of the contingent timepoint B is squeezed if the execution window [x, y],
resulting from propagation through edges AB and BA is tightened by any other
propagation. Specifically, if the propagation through an incoming positive edge CB,
where C ≠ A, results in an upper bound, y’, where y’ < y, then the contingent execution
window is upper bound squeezed. Similarly, if a propagation through some outgoing
negative edge BC, where C ≠ A, produces lower bound x’, where x’ > x, then the
contingent execution window is lower bound squeezed. If the contingent execution
window is squeezed during execution then the uncontrollable duration is also squeezed.

Example 4-3:
 Consider the DGU show in Figure 4-4(a). The DGU is pseudo-controllable; however,
it the dispatcher chooses execution time for B such that it squeezes the execution window
of the contingent timepoint C. Timepoint A is the start of the plan and is executed at time
= 0. After executing A, the dispatcher propagates the execution time through the plan.
The execution window for C is [1,7] and the execution time for B is [5,10]. The
dispatcher is free to choose any execution time for C between [1,7]. Figure 4-4(b) shows
a case when the dispatcher chooses an execution time of 5 for B. After executing C, the
dispatcher propagates the execution time of C through the edges CB and BC. These
propagations result in an execution window for the contingent timepoint B of [8,10].
This squeezes the execution window of B. If the uncertain duration takes any time
between 5 and 7 time units, then the execution is inconsistent. Note that if the dispatcher
executed B at time 1 or 2, then the contingent execution window would not have been
squeezed.

 109

Figure 4-4 (a) The execution windows for the plan are shown after
executing A at time = 0. (b) The execution window of the
contingent timepoint B is squeezed from [5,10] to [8,10] after
executing the timepoint C at time = 5.

 The goal of the dynamic controllability algorithm is to add additional constraints to the
plan in order to enable the dispatcher to consistently schedule the plan without squeezing
consistent timepoints at execution time.

4.3 The Dynamic Controllability Algorithm

 This section describes the dynamic controllability (DC) algorithm introduced by
[Morris 2001]. The dynamic controllability algorithm transforms an STNU into a
dispatchable graph. [Morris 2001] also showed that this algorithm is both sound and
complete. If algorithm successfully reformulates the STNU, then the STNU is
dynamically controllable; however, it the algorithm fails to reformulate the STNU, then
the STNU is not dynamically controllable. In this section, we first present the overall
structure of the DC algorithm, we will then describe the details of each step, and finally
present the pseudo-code for the DC algorithm along with a brief analysis of the time
complexity of the algorithm. In the next section, we present a new, faster, dynamic
controllability algorithm, which is used in the Hierarchical Reformulation algorithm.

 The dynamic controllability algorithm iteratively applies a set of reductions in order to
prevent the dispatcher from squeezing the plan at execution time. These reductions are a
set of rules that add (or tighten) the constraints to the plan. These reductions are similar to
the strong controllability transformation rules presented in Chapter 3. The dynamic
controllability algorithm uses a constraint processing loop that iterates between applying
the reductions, propagating the effects of the reductions to the other constraints in the
plan, and checking if the plan is pseudo-controllable. The DC algorithm loops until
either 1) it determines that the plan is not dynamically controllable, by detecting an
inconsistency or determining that the plan is not pseudo-controllable, or 2) it converges
on a dispatchable graph.

(a) A

C

9

10

-5

-3

7

-1

[1,7]

[5,10][0,0]

A

C

9

10

-5

-3

-7

-1

[5,5]

[8,10][0,0]
(b)B B

execute A at T = 0

The execution window
derived by propagating the
execution time of A thru the
contingent edges.

The dispatcher chooses
to execute B at T = 5

The dispatcher is free to
choose an execution time
for C between [1,7] time
units

The execution window of B
is squeezed as a result of
propagating the execution
time of C.

 110

3.) apply reductions

YES

4. wait constraint propagation

NO

1. requirement constraint
propagation

YES

6. converged?

return TRUE

2. Pseudo-
Controllable?

return FALSE NO

5. consistent?

Figure 4-5 Basic Steps of Dynamic Controllability Algorithm

 The constraint processing loop iterates between four basic steps: 1. requirement
constraint propagation, 2. checking pseudo-controllability, 3. local constraint deduction,
and, 4. wait constraint propagation, as shown in Figure 4-5. In Step 1, the algorithm
resolves the simple temporal constraints by computing the All-Pairs Shortest-Path graph.
Conceptually, after the first iteration, Step 1 propagates any change in the requirement
constraints throughout the graph. In Step 2, the algorithm checks if any plan is pseudo-
controllable. If the plan is inconsistent or any uncontrollable duration has been squeezed,
the algorithm returns false. In Step 3, the algorithm applies a set of reductions in order to
prevent an uncontrollable duration from being squeezed at execution time. The reductions
may either modify the simple temporal constraints of the plan or modify the wait
constraints of the plan. Finally, the algorithm propagates wait constraints through the
plan.3 If the algorithm determines any inconsistency during this wait constraint
propagation, it returns false.

3[Morris 2001] called the propagation of the wait constraints regression.

 111

 The algorithm loops through these four steps until either 1) the pseudo-controllability
checking step fails, 2) the propagation of the wait constraints results in an inconsistency,
or 3) the algorithm successfully goes through an iteration of the constraint processing
loop without adding (or modifying) the constraints of the plan.

4.3.1 Triangular Reductions

 This subsection describes a set of reductions, which add (or tighten) the temporal
constraints of the plan, in order to prevent the dispatcher from squeezing the contingent
execution windows at execution time. [Morris2001] derived the reductions in terms of a
triangular STNU; however, here we will derive the reductions using the associated
distance graph (DGU). It is more natural to use the distance graph because the dispatcher
uses a distance graph to execute the plan.

 The reductions are derived from a case analysis of a distance graph of a triangular
STNU. The triangular STNU is shown in Figure 4-6(a) and the associated triangular
DGU is shown in Figure 4-6(b). Later we show how the reductions derived for the
triangular DGU are applied to distance graphs of arbitrary size. The triangular STNU
consists of two executable timepoints, A, and C, and one contingent timepoint, B. It
contains one contingent link AB ∈ [x,y], corresponding to an uncontrollable duration,
and two requirement links, AC ∈ [p,q] and CB ∈ [u,v]. We assume the STNU is pseudo-
controllable and the distance graph is in an APSP form. Therefore, each edge in the
distance graph corresponds to a shortest path distance.

B

C

A

v
-u

y
-x

q
-p

B

C

A

[u,v]

[x,y]

[p,q]

(a) (b)

Figure 4-6 (a) The Triangular STNU (b) The associated triangular
DGU.

 The reductions are used to constrain the execution time of timepoint C, in order to
prevent the propagations through CB and BC from squeezing the contingent execution
window of B. Recall that the execution window of B can only be squeezed by incoming
positive edges and lower bound squeezed by outgoing negative edges. We need to
consider three cases. In the precede case, timepoint C must be executed before the
contingent timepoint B. In the follow case, timepoint B must be executed after the
contingent timepoint C, and in the unordered case, the execution order of B and C is
undetermined. Recall that each execution order of a timepoint is determined by
considering the negative edges in its DGU, as illustrated in Figure 4-7.

 112

-

(a) Precede

-x -

(b) Follow

-x
+ +

(c) Unordered

-x
BA

C

A
y y

B

C

A B
y

C
Figure 4-7 Temporal ordering relationships of a timepoint C with
respect to a contingent Timepoint B.

Given a DGU, G, in an APSP-form, the order of execution of a timepoint, C, with respect
to a contingent timepoint B, is as follows:

• A timepoint C must follow the contingent timepoint B, if there exists a
negative edge BC in G.

• A timepoint C must precede the contingent timepoint B, if there exists a
negative edge CB in G.

• The execution order of timepoint C is undetermined with respect to the
contingent timepoint, B, if both edges BC or CB are non-negative.

 Note that if both BC and CB are negative, then there exists a negative cycle and the
DGU is inconsistent. In the triangular DGU shown in Figure 4-6, the ordering of C with
respect to the contingent timepoint B is determined by the sign of u and v.

Follow Case: u ≥ 0
 If u ≥ 0, then there exists a negative edge BC. In the precede case, timepoint C must
be executed after the contingent timepoint B; therefore, the dispatcher is always privy to
the execution time of contingent timepoint B when it makes the scheduling decision of C.
Therefore, the dispatcher is able to adapt the schedule of C based on the execution time
of B. In the follow case, the dispatcher uses edges BC and CB to update the execution
window of timepoint C not B. Therefore, the execution of C will never squeeze the
execution window of contingent timepoint B. As long as the STNU is pseudo-
controllable, the dispatcher will be able to dynamically schedule B. The follow case
requires no additional tightening of the constraints.

Example 4-4
 Consider a scenario in which a student must meet with an advisor. The advisor’s
arrival time at the office is uncertain and will take between 5 to 10 minutes. Furthermore,
the advisor requires at least 5 minutes to check his email before the meeting; however;
the advisor is on a tight schedule so he does not want to wait in his office more than 10
minutes before the meeting. The advisor agrees to notify the student when he reaches his
office. The student is willing to wait for up to 20 minutes. The student’s plan is shown in
Figure 4-8(a). The APSP-graph is shown in Figure 4-8(b). The APSP-graph is both
consistent and the APSP-graph does not tighten the contingent edges; therefore, the plan

 113

is pseudo-controllable. Furthermore, the timepoint C must follow timepoint B; therefore,
the plan is dynamically controllable. Figure 4-8(c) shows the execution windows after
executing timepoint A at T = 0. Figure 4-8(d) shows a situation where it takes the
advisor 7 minutes to get to his office. This execution time is propagated to timepoint C.
The new execution window for C is [12, 17]. The student can successfully execute the
plan by getting to the office any time in this execution window.

B

C

A

10
-5

10
-5

20
-10

B

C

A

[5,10]

[5,10]

[0,20]

(a) (b)

advisor.goto(office)

student.goto(offi ce)

advisor.goto(office)

studen t.goto(office)

B

C

A

10
-5

10
-5

20
-10

(c)

advisor.goto(office)[0,0] [5,10]

[10,20]

B

C

A

10
-5

10
-5

20
-10

(d)

advisor.goto(office)

[0,0] [7,7]

[12,17]

student.go to(o ffice)

student.goto(office)

Figure 4-8 (a) In the student’s plan, timepoint C must follow the
contingent timepoint B. (b) The APSP-graph reveals that the plan is
pseudo-controllable. (c) Timepoint A is executed at T = 0 and the
execution windows are updated (d) Timepoint B is executed at T =
7, and the execution window for C is updated. In this situation, the
student must get to the office some time between 12 and 17
minutes.

Precede Case: v < 0
 If v < 0, then there exists a negative edge BC in the triangular distance graph;
therefore, B must always be executed before C. In the precede case, the dispatcher will
never know the execution of the contingent timepoint B when it needs to make the
schedule timepoint C. This is exactly the situation addressed by strong controllability.
The dispatcher is not able to adapt the schedule of C based on the execution time of the
contingent timepoint B. The edge CB and BC are used to update the execution window of
the contingent timepoint C. In order to be dynamically controllable, the algorithm must
restrict the execution time of B. Specifically, in order to prevent the contingent execution
window from being squeezed by propagations through CB and BC, we need to restrict
the execution time of timepoint C with respect to A, by applying the appropriate strong
controllability transformation rules. The reductions are simply the executable/contingent
and the contingent/executable strong controllability transformation rules as derived in
Section 3.5. However, instead of using the rules to compute a new transformed distance
graph, as we did in the strong controllability algorithm, here the rules are used to directly

 114

modify the distance graph. Specifically, the precede reductions tightens the edges AC
and CA.

(Precede Reduction) Given a triangular distance graph with uncertainty ABC (as shown
in Figure 4-6(b)), with v < 0, the edge AC is tightened to x-u, and the edge CA is
tightened to v-y.

 As in the strong controllability case, the precede reduction effectively decouples the
timepoint C from the contingent timepoint B. After applying the reduction, any
propagation from timepoint C to timepoint B is redundant; therefore, the edges CA and
AC can be removed from the distance graph. Any non-redundant information propagated
through the edge CB and BC would only serve to squeeze the execution window of the
contingent timepoint.

 Note that the precede reductions are easily remembered, by first negating and
transposing the contingent edges in the distance graph. Next, the shortest paths CBA and
ABC are computed.

Example 4-5
 Consider the STNU shown in Figure 4-9(a). The uncontrollable duration between
timepoints A and B will take between 5 to 10 time units, and timepoint C must precede
B by 1 to 8 time units. The APSP-graph is shown in Figure 4-9(b) is consistent and the
contingent edges are not tightened; therefore, the STNU is pseudo-controllable. The edge
BC is negative; therefore, C must precede B. In order to prevent the contingent execution
window from being squeezed; we need to apply the precede reduction. The precede
reduction tightens CA to -2 and AC to 4. Figure 4-9(c) shows the tightened distance
graph. The edges BC and CB are not dominated. Figure 4-9(d) shows the distance
graph after removing the dominated edges.

-1
-5

8

-2

4

A B

C

10

-1

-5

8

A
B

C

10

-2

4

-5
A B

C

10

(b)

(c) (d)

[1,8]

A B

C

[5,10]
(a)

9
3

Figure 4-9 (a) The STNU where timepoint C must precede the
contingent timepoint B. (b) The APSP-graph of the STNU. (c) The

 115

resulting distance graph after applying the precede reduction. d(CA)
+ d(AB) = d(CB) and both AB and BC are positive; therefore, CB is
dominated. Also, d(BA) + d(AC) = d(BC) and both BA and BC are
negative, so BC is dominated. (d) The distance graph after CB and
BC are removed.

Unordered Case: v ≥ 0 and u ≤ 0
 In the unordered case, the edges BC and CB are both positive; therefore, the order of
execution of B and C is not a priori determined. If C is executed first, then the edge CB
is used to update the upper bound of the contingent timepoint B. However, if B is
executed first, then the edge BC is used to update the upper bound of C. The simplest
way to deal with the unordered case is to unconditionally constrain the execution time of
B, in order to prevent the edge CB from squeezing C; this is accomplished by adding
edge CA of v-y, as we did in the precede case. However, unconditionally constraining C
may prevent the dispatcher from being able to react to the uncertain execution time of B,
when B is executed first. Instead, we apply a softer constraint, called a wait constraint,
which enables the dispatcher to adapt to the schedule of C when B is executed first, yet
restricts the execution time of C in order to prevent B from being squeezed.

 The wait constraint, written <B, t>, on edge AC specifies that the execution of C must
wait for at least t time units after A executes or until B executes, which ever is sooner
[Morris 2001]. In the previous example, B is called the conditional timepoint and t is the
wait duration. Here we introduce a slightly different form of the wait constraint, called a
conditional constraint or conditional edge, which encodes the same information as the
wait constraint, except that it puts in a form similar to the edges in the distance graph. A
conditional constraint is a directed edge that contains a distance expressing a temporal
constraint similar to a requirement edge and a conditional timepoint similar to a wait
constraint. The conditional constraint is the negative transpose of the wait constraint. A
wait constraint <B,t> on an edge AC, corresponds to a conditional constraint of CA of
<B,-t>. As in a requirement edge, the temporal distance of the conditional constraint
requires that T(C) –T(A) ≤ -t, which can be rewritten as T(A) – T(C) ≥ t. If t ≥ 0, then the
conditional constraint encodes a lower bound temporal requirement (i.e. a wait condition)
on C with respect to A. Similar to a wait constraint, this temporal requirement is only
enforced until the conditional timepoint B is executed. After the conditional timepoint B
executes, we say that the conditional constraint is relaxed. Thus, the conditional
constraint CA of <B,-t> specifies that C must wait for at least t time units after A
executes or until B executes, which ever is sooner.

 In the unordered case, we apply a conditional unordered reduction, as defined below,
which introduces a conditional constraint to the plan.

(Conditional Unordered Reduction) Given a triangular distance graph with
uncertainty (as shown in Figure 4-6(b)), where v ≥ 0 and u < 0, apply a conditional
constraint CA of <B, v-y>.

 116

 After applying the conditional unordered reduction, if B executes first (follow case),
then the conditional constraint is relaxed (i.e. the temporal requirement imposed by the
conditional constraint no longer needs to be satisfied) and the dispatcher can react to the
execution time of B. However, if C is executed first (precede case), then the temporal
requirement of the conditional constraint ensures that the propagation from C will not
squeeze the execution window of B.

Example 4-6
 Here we revisit the student-advisor meeting problem with a slightly different temporal
constraints. The advisor’s arrival time is still uncertain. It will take him between 5 and
15 minutes to get to his office, and the student is willing to wait for up to 20 minutes
before getting to the office. Both the student and the advisor will only wait a small
amount of time in the office. The student will not wait more than 5 minutes after getting
to the office, and the advisor, being more impatient, will wait no more than 1 minute.
Furthermore, the student and advisor agree to call one another when they reach the office.

 The student’s plan for this scenario is shown in Figure 4-10(a). The APSP-distance
graph is shown in Figure 4-10(a). The APSP-graph is consistent and the contingent edges
are not squeezed; therefore, the plan is pseudo-controllable.

 Consider the student’s execution strategy. If the student gets to the office anytime
before 10 minutes, he runs the risk that he will be waiting more than 5 minutes before the
advisor arrives. For example, if the student only waits for 6 minutes, the student will be
waiting for more than 5 minutes in a situation where the advisor arrives any time between
11 and 15 minutes. However, if the student unconditionally waits for 10 minutes, the
advisor may be waiting around for more than 1 minute after he arrives. For example, if
the student waits for 10 minutes and the advisor arrives in 7 minutes, then the advisor
will be waiting around for 3 minutes. There is no unconditional strategy for successfully
scheduling the arrival time of the student. Applying the conditional unordered reduction
encodes a conditional execution strategy. The conditional constraint CA <-10,B>
(dashed line), shown in Figure 4-10(c), specifies that the student must wait for at least 10
minutes or until the advisor arrives. This enables the student to successfully execute the
plan.

 117

B

C

A

1
5

15
-5

16
0

B

C

A

[-1,5]

[5,15]

[0,20]

(a) (b)

advisor.goto(office)

student.goto(offi ce)

advisor.goto(office)

studen t.goto(office)

B

C

A

1
5

15
-5

160

(c)

advisor.goto(office)

student.go to(o ffice)

<-10,B>

Figure 4-10 (a) The student’s plan where the execution order of B
and C is unordered (b) The APSP-graph of the student’s plan (c)
The distance graph after applying the conditional unordered
reduction

 In order to formally incorporate the conditional constraints with the Distance Graph
with Uncertainty (DGU), we introduce a Conditional Distance Graph with Uncertainty
(CDGU). The CDGU is a DGU that contains a set of conditional constraints. The
dispatcher uses the information contained in the CDGU while executing the plan. The
distance graph shown in Figure 4-10(c) is a CDGU.

Definition (CDGU): A CDGU is a 5-tuple <Nctg,Nexe,Ereq,Ectg,Econd> where Nctg is a set
of contingent timepoints, Nexe is a set of executable timepoints, Ereq is a set of requirement
edges, Ectg is a set contingent edges, and Econd is a set of conditional edges.

 There is one important case when a conditional constraint is actually unconditional. In
this case the conditional constraint is converted into a requirement edge. Specifically, a
conditional constraint is unconditional if the lower bound of the uncontrollable duration
associated with a conditional timepoint is greater than the wait duration specified by the
conditional constraint. In this case, the conditional timepoint will never be executed
before the wait period is completed; therefore, the dispatcher must always wait the full
duration, as specified by the conditional constraint. The unconditional unordered
reduction specifies when a conditional constraint is converted into a requirement edge.

(Unconditional Unordered Reduction) Given a CDGU with conditional constraint CA
of <B,-t>, and an uncontrollable duration AB ∈ [x,y] associated with the conditional
timepoint B, if x > t, then the conditional constraint CA is converted into a requirement
CA with distance –x.

 Note that the unconditional unordered reduction always applies when the temporal
distance of the conditional constraint is positive. Therefore, after applying the
unconditional unordered reduction, only negative conditional constraints remain.

 118

Example 4-7:
 Consider the CDGU shown in Figure 4-11(a). The conditional constraint CA of
<-4,B> derived by the conditional unordered reduction. The conditional
constraint specifies that the dispatcher must wait to execute C for at least 4 time
units after A is executed or until B is executed. However, the contingent edge CA
specifies that B will never execute before 5 time units. Therefore, by the
unconditional unordered reduction, the conditional constraint CA is converted
into a requirement edge CA of distance -4. Figure 4-11(b) shows the resulting
CDGU after applying this requirement constraint to the distance graph.

B

C

A

1
11

15
-5

160
<-4,B>

B

C

A

1
11

15
-5

16
-4

(a) (b)

Figure 4-11 (a) A CDGU with conditional constraint CA <-4,B>
where lower bound of the uncontrollable duration, 5, is greater than
the wait period, 4, of the conditional constraint (b) The
unconditional unordered reduction converts the conditional
constraint CA of <-4,B> in to a requirement constraint CA of -4.

 In this section we reviewed three reductions4 for triangular STNUs: the precede,
conditional unordered, and unconditional unordered reductions. These reductions
prevent the dispatcher from squeezing the execution window of the contingent timepoint,
while allowing dispatcher to react to the uncertain execution time of the contingent
timepoints. If the reductions do not violate the pseudo-controllability of the STNU, then
the triangular STNU is dynamically controllable [Morris 2001]. For STNUs of more than
three timepoints, the triangular reductions are applied for each triangle that appears in the
STNU.

 In the next subsection, we introduce a technique, called regression, which allow us to
determine if the introduction of a conditional constraint violates the pseudo-
controllability of the STNU. Regression also serves to enable us to handle conditional
constraints for STNUs of more than three timepoints.

4.3.2 Regression of Conditional Constraints

 [Morris 2001] showed that conditional constraints need to be propagated through the
distance graph. The propagation is a type of constraint propagation that resolves the
conditional constraint with the other constraints in the plan. The propagation of a
conditional constraint is called regression. This regression serves two purposes. First it
detects if the conditional constraint is inconsistent with the other constraints of the plan,

4 [Morris 2001] also introduced a general unordered reduction; however, it is unnecessary.

 119

and second, it ensures that the conditional constraint will not be violated at execution
time.

Example 4-8
 Consider the distance graph shown in Figure 4-12(a). The conditional constraint
CA of <-7,B> may be inconsistent if D propagates an upper bound to C that is
less than 7 time units. At execution time, if D is executed at a time before 5 time
units, then the propagation through DC requires C to be executed before 7 time
units; hence, violating the lower bound imposed by the conditional constraint CA.
However, if we impose a conditional constraint DA of <-5,B>, thereby restricting
the execution time of D as shown in Figure 4-12(b), the original conditional
constraint CA can not be violated. Note that the constraint DA that restricts the
execution time of D only needs to be conditional because, once B is executed, the
original conditional constraint CA is relaxed; thus it no longer needs to be
protected. Also note that the new conditional constraint DA is computed using a
similar method to that used for requirement constraints; the value of conditional
constraint is equal to the shortest path DCA.

A B10

3

2D

(a)
A B

3

2
D

(b)

<-7,B>

-5

-1 -1

-5
10

1 1

C

<-7,B>
7 <-5,B>

C

7

Figure 4-12 (a) The conditional constraint CA is potentially violated
by the incoming positive edge DC (b) Imposing a conditional
constraint of DA of <-5,B> prevents the original CA from being
violated at execution time.

 In general, a conditional constraint CA is potentially violated by incoming positive
edges in the timepoint C. For a Conditional Distance Graph with Uncertainty (CDGU),
there are two types of positive incoming edges: requirement and contingent edges. Note
that conditional edges are always negative (any positive conditional edge is converted
into a requirement edge by the unconditional unordered reduction). The regression
lemma below specifies the means to resolve the potential consistency violations for both
cases. For the requirement edge, the conditional edge is regressed using a type of
shortest path computation, as illustrated in the previous example. For a contingent edge,
the conditional edge is regressed using a slight variation of the precede reduction. For the
contingent case, the conditional edge must be regressed, in order to ensure that it will be
satisfied for all situations. The regression lemma stated below is a variation of the
regression lemma introduced by [Morris 2001].

(Regression): Given a conditional constraint CA of <B,-t>, where t is less than or equal
to the upper bound of AB. Then (in a schedule resulting from a dynamic strategy):
 i.) If there isa requirement edge DC with distance w, where w ≥ 0 and D ≠ B, we can
 deduce a conditional constraint DA of <w-t, B>.

 120

 ii.) If t >= 0 and if there is a pair of contingent edges DC, of distance y, and CD, of
 distance -x, where x, y ≥ 0 and B ≠ C, then we can deduce a conditional
 constraint DA of <x-t, B>.

 The first regression rule is applied when a conditional edge is threatened by an
incoming positive requirement edge. The conditional edge is regressed through the
incoming positive requirement edge, except when the requirement edge originates from
timepoint B (i.e. D = B)5. The regression ensures that the wait period encoded in the
conditional constraint CA of <B,-t> is never in conflict with an upper bound propagated
by the incoming positive edge. The conditional constraint does not need to be regressed
through an edge originating from B because, in order for the dispatcher to propagate an
upper bound from B, B must be executed. When B is executed, the conditional constraint
CA is relaxed (i.e. the temporal requirement is removed from the plan). The upper bound
propagated from B can not be inconsistent with a constraint that is no longer exists.

 If we were to regress a conditional edge CA of <B,-t> through an edge originating
from B, the regression produces a new conditional constraint BA of <B,-x>. This new
conditional constraint, BA, would require B to wait x amount of time after A executes or
until B executes. The constraint imposes a nonsensical constraint in which B is waiting
on itself to execute. One could argue that this constraint precludes B from executing until
the full wait period of x as come to pass or one could argue that simply executing B
satisfies the constraint; therefore, the conditional constraint is satisfied no matter when B
executes. Rather than engaging in a philosophical debate, we simply restrict the
regression such that this type of constraint never arises.

 The second regression rule is applied when a conditional constraint CA of <B,-t> is
threatened by an outcome of an uncontrollable duration. If an uncontrollable duration
DC ∈ [x,y] occurs early, such that the execution of C happens before the imposed wait
period of t expires, then the conditional constraint is violated. The regression imposes a
new conditional constraint on the start of the uncontrollable duration, timepoint D, in
order to ensure that the original conditional constraint CA will be satisfied for all
situations. The conditional edge is satisfied in all situations if it is satisfied in the worst
situation. The worst situation occurs when uncontrollable duration DC occurs at its
earliest possible time (i.e. at its lower bound of x). Imposing a conditional constraint of
DA <x-t, B> ensures that even when an uncontrollable duration occurs at its lower
bound, the conditional constraint CA will not be violated. The distance (x-t) of the new
conditional constraint DA is derived by treating the conditional edge as a requirement
edge and applying the precede reduction.

 Note the distance of the original conditional constraint CA is always less than zero (if
distance is positive, then the conditional constraint is converted into a requirement edge
per the unconditional reduction rule). Therefore, A must occur before C and the precede
reduction rule applies. Therefore, the new conditional constraint applied through
regression is only conditioned on the outcome of B. In other words, applying the

5 [Morris 2001] did not include this exception.

 121

unconditional reduction to positive conditional constraints prevents the regression from
introducing a conditional constraint that is conditioned on more than one timepoint.

 Regressions are applied recursively until no more regressions are possible. This
process is called full regression. Each conditional edge introduced by the conditional
unordered reduction needs to be regressed through all incoming positive edges. The
regression of a conditional constraint through an incoming positive edge leads to either a
new conditional constraint or a new requirement constraint (after applying the
unconditional unordered reduction). In general, if the regression introduces a new
conditional constraint, then that new conditional constraint needs to be regressed. A new
conditional constraint does not need to be regressed under three cases: 1) The new
conditional constraint is converted into a requirement edge by the unconditional
unordered reduction, 2) the new conditional constraint is self looping (the start and end
timepoint of the conditional edge are the same) or 3) there are no incoming positive edges
to necessitate further regression.

 One interesting case arises when the conditional constraint is converted into a positive
requirement edge by the unconditional unordered reduction. If the new requirement edge
is positive, then it potentially violates a conditional edge. In this case, any conditional
constraint threatened by this new positive requirement edge must be regressed through it.

 The regression may expose a temporal inconsistency. Specifically, if the regression
imposes a self-looping (conditional or requirement) edge with negative distance (i.e. a
negative cycle), then the plan constrained by the CDGU is not dynamically controllable.
Note that full regression is not in itself sufficient to determine the dynamic controllability
of the plan. The regression may introduce a new requirement edge that compromises the
pseudo-controllability of the plan; however, it is only detected by resolving the new
requirement edge with all the other constraints in the plan. Regression only resolves this
new requirement constraint with the conditional constraints of the plan. The mechanism
used by [Morris 2001] to detect the potential consistency violations is to recompute the
APSP-graph and to recheck if the plan is pseudo-controllable. In the next section, we
present a novel scheme to interleave the constraint propagation of requirement constraints
with conditional constraints. This new scheme does not depend on recomputing the
APSP-graph.

Example 4-9
 Consider distance graph shown in Figure 4-13(a). In order to prevent the execution
window of the contingent timepoint B from being squeezed at execution time, we apply
the conditional unordered reduction to the triangle ABC. This introduces a conditional
edge CA of <-7,B>, as shown in Figure 4-13(b). Note that other reductions are
applicable, including the conditional unordered reduction on triangle DCB; however,
these reductions are not applied for clarity.

 This conditional edge CA needs to be regressed through all incoming positive
requirement edges not originating from the conditional timepoint B, and any
uncontrollable durations terminating on C. In our example, the conditional edge CA is

 122

regressed through the requirement edge AC, and the uncontrollable duration DC. The
regression through AC with distance 9 results in a new self looping conditional edge AA
of <1,B>. The regression of the conditional edge CA through the uncontrollable duration
DC results in a new conditional edge DA of <-4,B>. The results of these regressions are
shown in Figure 4-13(c).

 This conditional edge AA is converted into a requirement edge by the unconditional
unordered reduction, because the distance of the conditional edge is positive. Fortunately,
this new requirement edge does not introduce a negative cycle into the CDGU. The
distance of the conditional edge DA is -4, which imposes a wait of 4 time units between
A and D, which is less than the lower bound of the uncontrollable duration AB of 5.
Therefore, the conditional constraint DA of <-4,B> it is converted into a requirement
edge DA with distance 4 by the unconditional unordered reduction. The results of these
reductions are shown in Figure 4-13(d). Note that there now exists a negative cycle
between AD; however, this is not detected during regression.

A B
10

4

4 CD

(a)
A B

4

4 CD

(b)

<-6,B>

-5

-2 -2

-5
10

Appling the conditional unordered
reduction to the triangle ABC
introduces a conditional constraint
CA of <-6,B>.

Regressing the conditional constraint
CA through requirement edge AC and
uncontrollable duration CD results in a
conditional edge AA of <1,B> and BA
of <-4,B>, respectively.

(d) A B

4

4 CD

<-6,B>-4

-2

10
-5

(c) A B

4

4
CD

<-6,B>
<-4,B>

-2

10

-5

Both conditional edge are converted
into a requirement edge via the
uncontrollable unordered reduction.

1 17 7

7

<1,B>

1

7

3 3

3

3

1
1

Figure 4-13 (a) A four timepoint DGU. (b) The CDGU after
appling the conditional unordered reduction to triangle ABC. (c)
The CDGU after regressing the conditional edge CA through AC
and DC. (d) The CDGU after converting the conditional constraints
to requirement edge via the unconditional unordered reduction

 Several important patterns arise during regression. First, all conditional edges
introduced by regressing a conditional edge CA of <B,-t> always points to C and the
regression rules prevent a conditional edge of BA; therefore, there is at most N-1
conditional edges conditioned on B. For a plan containing P uncontrollable durations,

 123

there can be at most P*(N-1) conditional constraints in the plan. Second, the only way
two conditional constraints can exist between the same timepoints is when the
uncontrollable durations start the same timepoint. Third, the regression always increases
the temporal distance of the conditional constraint (i.e. progressively imposes a less
restrictive constraint).

 In this subsection we presented a constraint propagation technique, called regression,
that enabled us to resolve the conditional constraint with other constraints in the plan.
Regression enabled the ternary conditional constraints to be propagated similar to simple
requirement edges. In the next subsection, we combine a pseudo-controllability checking
algorithm, with the triangular reductions and regression, to form the dynamic
controllability algorithm.

4.3.3 Pseudo-Code for the Dynamic Controllability Algorithm

 The following completes the description of the dynamic controllability (DC) algorithm
[Morris 2001] by presenting the pseudo-code. The pseudo-code for the DC algorithm is
shown in Figure 4-14. Dynamic controllability transforms the STNU into a dispatchable
CDGU, if this reformulation is successful, then the algorithm is dynamically controllable
and returns true, otherwise the DC algorithm returns false. Recall that the general
structure of the DC algorithm is described in the flow diagram shown in Figure 4-5.

 Line 1 computes the associated distance graph, G, of the STNU, Γ. The DC uses the
distance graph formulation of temporal constraints. In Line 3 the DC algorithm first
computes the All-Pair Shortest-Path graph (APSP-graph) of the distance graph G while
ignoring the distinction between contingent and requirement edges. Line 4 checks if the
plan is pseudo-controllable by calling the IS_PSEUDO_CONTROLLABLE function. If
any contingent edges are squeezed or if any negative distance graph contains a negative
cycle, then the IS_PSEUDO_CONTROLLABLE function returns false; otherwise, it
returns true. If the plan is not pseudo-controllable, the DC algorithm returns false. Recall
that if the plan is not pseudo-controllable, then the plan is not dynamically controllable.
Line 6 initializes the variable modified to false. This variable is used to determine if the
algorithm converges.

 Lines 7-14 loops through all possible triangles, ABC, that contain a contingent
timepoint B, and applies any tightening required by the precede reduction, and any
conditional constraint required by the conditional unordered reduction. If the reductions
tighten or add a new constraint to the distance graph, then the algorithm assigns the
variable modified to true and breaks out of the loop. If the algorithm loops through all
possible triangles and the constraints of the distance graph are not modified, the variable
modified remains false.

 In Line 15 The REGRESS_WAITS function applies all possible regressions of
conditional constraints, while converting the conditional constraints to requirement
constraints when the unconditional unordered reduction applies. If the regression
introduces a temporal inconsistency, then the REGRESS_WAITS function returns false;

 124

otherwise, it returns true. If the REGRESS_WAITS function returns false, then so does
the DC algorithm in Line 16.

Line 17 checks if the regression modified the constraints (conditional, requirement, or
contingent) of the distance graph by calling the function IS_MODIFIED. The variable
modified is true if the distance graph is modified, by either applications of the reductions
or regression.

 The algorithm loops through Lines 2-17, tightening the edges of the distance graph
until the algorithm converges on a dispatchable CDGU (the algorithm completes on a
successful loop when no edges are modified) or loops until the algorithm detects that the
plan is not dynamically controllable (either in Line 5 or Line 16).

Figure 4-14 Pseudo-Code for Dynamic Controllability (DC)
algorithm [Morris 2001]

function DC1(Γ)
input A STNU Γ
effects computes a dynamically controllable CDGU if the plan is dynamically controllable.
returns true if Γ dynamically controllable, otherwise false
1 G DISTANCE_GRAPH(Γ)
2 do
3 G ← COMPUTE_APSP_GRAPH(G)
4 if ¬IS_PSEUDO_CONTROLLABLE (G)
5 return FALSE
6 modified ← FALSE
7 for each contingent timepoint B ∈ N(G) associated with uncontrollable duration AB
8 for each incoming positive edge CB
9 modified ← apply tightenings required by the precede reduction to triangle ABC.
10 modified ← apply conditional constraints required by conditional unordered reduction
 to triangle ABC
11 if modified break
12 end for
13 if modified break
14 end for
15 if ¬REGRESS_WAITS(G)
16 return FALSE
17 modified ← IS_MODIFIED(G) or modified
16 end if
17 while modified=TRUE
18 return TRUE

 125

 The DC algorithm is sound because it only derives new constraints based on the
original constraints and the assumption of dynamic controllability [Morris 2001].
Furthermore, the completeness of this algorithm was shown in [Morris 2001].

The time complexity of the DC algorithm is shown to be polynomial [Morris 2001]. The
individual tightenings are clearly polynomial, and convergence is assured because the
domains of the constraints are strictly reduced by the tightenings. However, only a crude
estimate was provided for how long the convergence would take. Moreover, a crude
estimate is in terms of the maximum value of the edges and the fixed precision on the
edges. Each time the algorithm loops through Lines 2-17 it applies at least one
tightening. If all the distance on the edges are bounded by ± B, and there is a fixed level
of precision δ, and E edges. Then, after at most BE/δ loops, the algorithm will converge.
Each loop requires an O(N3) APSP computation and there are N3 edges in the APSP
graph; Therefore, the crude bound becomes N6*B/δ !

 The DC algorithm depends on repeated calls to an expensive O(N3) APSP
computation in Line 2 to perform requirement edge constraint propagation. Furthermore,
it uses an inefficient looping scheme that first resolves the requirement edges with one
another via the APSP algorithm, then resolves the requirement edge with the contingent
edge propagation via reductions, and, finally, resolves the conditional edges with the
requirement, and conditional edges with contingent edges via regression. In the next
section, we show how to improve on the performance of the dynamic controllability
algorithm by resolving all possible combinations of constraints all at once. This general
frame work enables our new fast dynamic controllability algorithm to remove the
repeated APSP computations.

4.4 Fast Dynamic Controllability Algorithm
 In this section, we describe our novel fast dynamic controllability algorithm (fast-DC
algorithm). This fast-DC algorithm has a significant performance improvement compared
to the dynamic controllability algorithm introduced by [Morris 2001]. This fast dynamic
controllability algorithm achieves its enhanced speed via several new improvements. The
speed of the fast-DC algorithm is verified empirically.

1. We show how to exploit the fact that a dispatchable plan can by incrementally
executed during the reformulation phase. We introduce a local incremental algorithm for
maintaining the dispatchability of a plan constrained by STNs. In this algorithm, when
an edge length changes in a dispatchable distance graph, only a subset of the constraints
need to be notified of this change. Specifically, the change only needs to be back-
propagated, similar to regression. Then we show how to apply this technique to plans
constrained by STNUs. In order to make this transition from STNs to STNUs, we
introduce a new property, called pseudo-dispatchability, and show that for any for
pseudo-dispatchable STNU only changes in requirement edges need to be back-
propagated. This removes the need to compute the APSP-graph, which updates all edges
in the distance graph, every time a requirement edge changes.

 126

2. The constraint propagations of requirement edges, contingent edges and conditional
edges required by dynamic controllability are combined into an efficient general
framework. This general framework enables the different types of constraint propagation
to be interleaved with one another rather than applying them sequentially. Interleaving
the different types of propagation enables the dynamic controllability algorithm to reduce
the number of propagations required. The idea is to apply the required tightening as soon
as we can deduce them, so that the next round of propagations has the most up-to-date
constraint set as possible.

3. We trim the distance graph of redundant constraints prior to performing the integrated
constraint propagation. This can drastically reduce the number of propagations required.

 First we introduce the incremental algorithm for maintaining the dispatchability of
STNs. Next we show how this incremental algorithm applies to STNUs by introducing
the idea of pseudo-dispatchability. This provides the basis for the new requirement edge
propagation technique, which removes the dependence of the dynamic controllability
algorithm on repeated APSP calls. Next, we describe the set of back-propagation rules
that make up the general constraint propagation framework and present the back-
propagation algorithm. Finally, we describe the new fast-DC algorithm pseudo-code,
which uses this new back-propagation algorithm. After presenting the algorithm, we
demonstrate the fast-DC algorithm on several examples and review how the fast-DC
algorithm fits in with the Hierarchical Reformulation algorithm, presented in Chapter 3.

4.4.1 Incremental Dispatchability Maintenance

 In order to understand how the new requirement constraint propagation technique
works, let’s revisit the problem of dynamically executing a STN. [Muscettola 1998a]
showed that any dispatchable STN can be executed incrementally using a dispatching
algorithm. If a STN is dispatchable, as long as each execution decision is consistent with
the past assignments, then we can guarantee that there is a consistent assignment for
future timepoint assignments. Recall that executing a timepoint is equivalent to adding a
set of rigid constraints between the start of the plan and the timepoint being executed.
During execution, the dispatcher ensures that the addition of these additional constraints
is consistent with the past, by propagating information at execution time. However, if a
random constraint is modified in a dispatchable graph, we need to make sure that the
change is consistent with the past using back-propagation. Back-propagation informs all
constraints that relate timepoints in the past. If the back-propagation does not introduce
an inconsistency, then the constraint change is consistent with all the constraints. This
leads to an efficient algorithm for incrementally updating a dispatchable STN distance
graph.

 In order to develop a back-propagation algorithm for a dispatchable STN, we use a
logic similar to that used when developing the reduction and regression rules.
Specifically, any positive edge AB that is either added or modified is only threatened by

 127

outgoing negative edges from B. In addition, any negative edge BA that is either added
or modified is only threatened by incoming positive edge to A. Therefore, we need to
back-propagate any change in a positive edge AB through all negative edges originating
from B. Similarly, we need to back-propagate any change in a negative edge BA through
all incoming positive edge into B.

 These back-propagations need to be applied recursively in order to ensure that the
change is consistent with the past. This back-propagation technique only requires us to
update a subset of the edges (i.e. constraint that may happen in the past), instead of all the
edges which would happen if we were to recompute the APSP every time an edge
changed. The future constraint will be notified of the change when they need to be
notified, which is at execution time. Thus we defer the future updates until execution
time. Furthermore, the back-propagation preserves the dispatchability of the distance
graph.

 First, we give an example, then we provide the formal back-propagation rules for
distance graphs associated with STNs. Finally, we show how this back-propagation is
extended to distance graphs associated with STNUs.

Example 4-10
 Consider the dispatchable distance graph shown in Figure 4-15. Figure 4-15(a) shows
the original dispatchable graph. Consider a scenario in which the edge DC is reduced
from -2 to -5 for some reason, as shown in Figure 4-15(b). During execution, the edge
DC is used to propagate a lower bound to timepoint D. We call timepoint D the
timepoint of interest. In order to maintain the dispatchability of the graph, the tightening
of DC needs to be propagated through the graph. However, the effects only need to be
propagated backward from the node of interest, because, as long as D is consistently
executed, the dispatcher is able to consistently execute E.

 The negative edge DC is threatened by the incoming positive edge CD and BD. We
resolve the new edge DC with the threats (CD and BD), by computing the local shortest
path through the threats. The shortest path BDC results in a tightening of edge BD from
8 to 5, and the shortest path CDC results in a new edge CC of 5. Figure 4-15(d) shows
the result of the first step of back-propagation. The tightening of the constraint BC is
then back-propagated where node C is the timepoint of interest. The edge positive BC is
threatened by all outgoing negative edges from C (CB and CA), as shown in Figure
4-15(e). BC is back-propagated through its threats. The shortest path BCB results in a
new edge BB of 0, and the shortest path BCA results in a tightening of BA from 0 to -1.
The results of the second stage of back-propagation are shown in Figure 4-15(f). Note
that BA needs to be back-propagated through AB, resulting in a new edge AA of 9.

 Back-propagation does not introduce any negative cycles; therefore, the change is
consistent. Furthermore, the tightenings introduced through the back-propagation
preserve the dispatchability of the distance graph.

 128

A
10

B
0

C
10

D
-2-5

8
E

10

-2

10

 CD is changed from -2 to -5
timepoint of
interest

A 10 B
0

C 10 D
-5

-5

10

E
10

-2

8

A
10

B
0

C
10

D
-5

-5

10

E
10

-2
8

Idea: locally back-propagate effects
of through all possible threats-6

-6

-6

A
10

B
0

C
10

D
-5

-5

10

E
10

-2
5

-6

A
10

B
0

C
10

D
-5

-5

10

E
10

-2
5

-6

Idea: recursively perform the
local back-propagation

A 10 B
-1

C 10 D
-5

-5

10

E
10

-2

5

-6

(a)

(b)

(c)

(d)

(e)

(f)

5

threats CD and BD

new edges BC and CC

threats CB and CA

5

50

new edge BB and BA
Figure 4-15 Back-Propagation Example

 Now we give the back-propagation lemma and incremental algorithm used to maintain
the dispatchability of a STN distance graph.

Lemma (Incremental Dispatchability) Given a STN and associated dispatchable
distance graph G,
i) any change or addition of an edge AB of distance x, where x >0, for all edges BC of
length y, where y <= 0, we can deduce a new constraint AC of length x+y.
ii) any change or addition of an edge BA of distance z, where p <= 0, for all edge CB of
length q, where q >= 0, we can deduce a new constraint CA of length p+q.
Furthermore, recursively applying rules i and ii maintains the dispatchability of the G.

 The algorithm for maintaining the dispatchability of the distance graph, recursively
applies the Incremental Dispatchability propagation rules until no more back-
propagations can be deduced. If back-propagation introduces a negative cycle then the
algorithm returns false, otherwise, the algorithm returns true

 The Incremental Dispatchability (ID) algorithm used to replace the APSP computation
in the slow dynamic controllability algorithm introduced by [Morris 2001]. In order to
apply the ID algorithm to distance graphs with uncertainty (DGUs) we introduce the idea
of pseudo-dispatchability. If we ignore the distinction between contingent and
requirement edges in the DGU (as we did when we computed pseudo-controllability),
then the DGU is effectively converted into STN distance graph. If this associated STN
distance graph is dispatchable, then we say the DGU pseudo-dispatchable. In order to
maintain the pseudo-controllability of DGU when a constraint is changed, we apply the
ID algorithm to the DGU. This resolves a change in a requirement constraint with all the
other requirement constraints.

 129

 We also introduce the term pseudo-minimal dispatchable graph (PMDG). A PMDG
is DGU in which the associated STN distance graph contains the fewest number of edges.
The edges of the DGU are trimmed using the same dominance relationships introduced
by [Muscettola 1998a].

4.4.2 Back-Propagation

 In this subsection we describe a set of local constraint propagation rules that determine
how one constraint change affects the values of other constraints, in order to maintain the
dispatchability of a dynamic controllability Conditional Distance Graph with Uncertainty
(CDGU). These rules all share one important property - they only affect constraints that
occur earlier in the plan; thus, we call them back-propagation rules for STNUs. This
idea is illustrated in Figure 4-16. These rules and the associated back-propagation
algorithm form the basis of the Fast-DC algorithm. The back-propagation rules integrate
the Incremental Dispatchability rules, the reduction rules and the regression rules. The
back-propagation rules put all these rules in to common framework.

I K

L
A

B

C

H

J
M

E

D G

F

Effected by Change Not Effected By
Chage

If this
changes

Figure 4-16 If either a requirement, or conditional edge changes, in
order to maintain the dispatchability of the CDGU, the effects only
need to be back-propagated

 Each back-propagation rule differs, depending on the types of edges involved, the
signs of the edge distances, and the relative direction of the edges. In a DGU, there exist
five types of edges: positive and negative requirement edges, positive and negative
contingent edges, and negative conditional edges.

Requirement Contingent Conditional

+ - + - -

 130

 We group our back-propagation rules into three groups: negative requirement edges,
positive requirement edges, and negative conditional edges because these are the only
three types of edges that may be added or modified during reformulation. Any positive
conditional edge is converted to a requirement edge by the unconditional unordered
reduction rule. The rules are used to determine what new constraints need to be enforced
to ensure consistency and dynamic controllability. The following table summarizes the
back-propagation rules used in the Fast-DC algorithm.

If This Changes Must Back-Propagated Through Derived From
Negative requirement edge BA 1. any positive requirement edge CB

2. any positive contingent edge CB
ID(i)
Precede Reduction

Positive requirement edge AB 1. any negative requirement edge BC
2. * any negative contingent edge BC
3. any negative conditional edge BC
of <-t,D> where D ≠A

ID(ii)
CUR
Regression(i)

Negative conditional edge BA 1. any positive requirement edge CB
of <-t,D> where D ≠A
2. any positive contingent edge CB

Regression(i)
Regression(ii)

* apply conditional constraint in both precede or unordered cases
ID: Incremental Dispatchability
CUR: conditional unordered reduction

Table 1 Back-Propagation Rules Summary

4.4.3 Back-Propagating when a Negative Requirement Edge Changes

 Recall that when a dispatcher executes a timepoint it propagates that execution times
through the distance graph in order to update the execution windows of the neighboring
nodes. The dispatcher uses the negative edges to update the lower bound of the
timepoint’s execution window. The only way a timepoint’s lower bound, derived from a
negative edge propagation, can be violated is if some other positive edge propagates an
upper bound that is smaller than this lower bound. The back propagation rules are used to
prevent this inconsistent condition from happening.

 Recall that there are two types of positive edges in the DGU: a positive requirement
edge (Case1) and a positive contingent edge (Case2). The back-propagation rule for
changing negative requirement edges handles both cases. In [Morris 2001], the first case
was handled by the APSP computation, and the second case was handled by the precede
reduction.

Case 1: Back-propagating a negative requirement edge through a positive
requirement edge.

 131

 This back propagation rule is called in case when there exists some change in or
creation of a negative requirement edge BA with weight a, such that there exist some
positive requirement edges CB with weight b. The back-propagation rule derives a new
constraint with CA with weight a+b. If this new edge CA provides a tighter constraint
then it update the DGU accordingly. Note that the arbitrary timepoint C may be the
timepoint B, in which case the derived constraint loops on the timepoint B. This example
is depicted in Figure 4-17 (Case1).

Case 2: Back-propagating a negative requirement through a contingent link.
This is exactly the same case as the precede case derived in the dynamic controllability
algorithm [Morris 2001]. This propagation is illustrated in Figure 4-17 (Case2). The
correctness of this propagation rule is shown in [Morris 2001], for the case where there
exists some negative requirement edge.

A
-z B

C

yy-z

Example

A -12 B

C

5

A -12 B

C

5-7

if the negative edge BA
changes

back-propagate
through any
incoming positive
edge CB

upon change

ensures that the lower bound of
B propagated by BA is not
violated by the upper bound
propagated by CB

A -z

C

y
x-z

 if negative edge BA
changes

B

Case 1. negative requirement edge
through an incoming positive
requirement edge

Case 2. negative requirement edge
through an incoming positive
contingent edge

new
requirement

edge

A -7

C

10

B A -7

C

B

-2

ensures that the lower bound
propagated by BA does not squeeze the
contingent execution window of B

-x back-propagate through
the uncontrollable
duration CB lasting [x,y]

-5 10-5

Example

back-
propagte

back-
propagate

new
rquirement

edge

upon change

Figure 4-17 Back-Propagation Rules for Negative Requirement
Edge

 132

4.4.4 Back-Propagation Rule when Positive Requirement Edge
Changes

If a positive requirement edge changes, there are three cases to consider. All three cases
are illustrated in Figure 4-18. The rationale for each rule is shown in Table 1.

A z

C

-x

Case 1: positive requirement edge
through an outgoing negative
requirement edge

A B

C

<-7,B>
B

B

Case 2: positive requirement edge
through an outgoing negative
contingent edge

A z

C

-x y

A z

C

<-x,D>

B

Case 3: positive requirement edge
through an outgoing negative
conditional edge

z-x

<z-y,B>

<z-x,D>

if positive edge
AB changes

back-propagate
through all outgoing
negative requirement
edges BC

new edge

if positive edge
AB changes

back-propagate through
any uncontrollable
duration BC lasting [x,y]new

conditional
edge

if positive edge
AB changes

back-propagate
through all outgoing
negative conditional
edges BC of <-x,D>
except when A = Dnew conditional

edge

Example

A 10

C

-5

B

upon change

back-
propagte

A 10

C

-5

B

5

ensures that upper bound
of B propagated by AB is
not violated by lower bound
propagated by BC

Example

A B

10

C

back-
propagte

3

-5

upon change

10 -5

3

ensures that upper bound
of B propagated by AB is
not squeeze the contingent
execution window of B

A 3

C

<-4,D>

B

<-1,D>

upon change

Example

A 3

C

<-4,D>

B

<-1,D>

ensures that conditional
constraint BC is not violated
by the upper bound
propagated by AB

back-
propagte

Figure 4-18 Back-Propagation Rule for Positive
Requirement Edges

 133

4.4.5 Back Propagating Conditional Edges

The back-propagation rule for the addition or change of a conditional constraint is exactly
the same as the regression rules. The back propagation rules are shown here for
completeness. They are illustrated in Figure 4-19.

A <-z,D> B

C

y<y-z,D>

Example

A <-12,D> B

C

5

A <-12,D> B

C

5<-7,D>

if the conditional edge
BA changes

back-propagate
through any
incoming positive
edge CB except
when D = C

upon change

ensures that the lower bound
imposed by the conditional
edge BA is not violated by the
upper bound propagated by CB

A <-z,D>

C

y
<x-z,D>

 if conditional edge BA
changes

B

Case 1. negative conditional edge
through an incoming positive
requirement edge

Case 2. negative conditional edge
through an incoming positive
contingent edge

new conditional
edge

A <-7,D>

C

10

B A <-7,D>

C

B

<-2,D>

ensures that the lower bound imposed
by conditional edge BA does not
squeeze the contingent execution
window of B at execution time

-x back-propagate through
any uncontrollable
duration CB lasting [x,y]

-5 10-5

Example

back-
propagte

back-
propagate

new
conditional

edge

upon change

Figure 4-19 Back-Propagation Rules for Conditional Edges

 134

5.1.1 Pseudo-Code for BACK-PROPAGATE
The pseudo-code for BACK-PROPAGTE is show in Figure 4-20. BACK-PROPAGATE is
a function that recursively applies the back propagation rules in the previous sections. It
accepts a CDGU G, a start timepoint u, and an end timepoint v. BACK-PROPAGATE
is initiated in order to prevent an positive requirement edge (u,v) from squeezing the
upper bound of the contingent timepoint v or in order to prevent a negative requirement
edge (u,v) from squeezing the lower bound of a contingent timepoint u. The algorithm
returns true if the edge (u,v) is successfully back-propagated through G. (i.e. no
inconsistencies were introduced) otherwise the algorithm returns false.

 Lines 1-2 detect two possible termination conditions. If the timepoint u = v, the
edge(u,v) is a loop. If this loop is positive, thus, does not introduce a temporal
inconsistency, then the algorithm returns true in Line 1. However, if the loop is negative
then the algorithm returns false in Line 2

Lines 3-15 applies the all applicable back-propagations associated with edge (u,v).
Specifically the algorithm back-propagates (u,v) through all appropriate edge (x,y)
resulting in a new edge (p,q). In line 5 it applies the unconditional unordered reduction
when appropriate, which converts a conditional edge (p,q) into a requirement edge (p,q).
This new edge (p,q) (conditional or requirement) is resolved with G. If G is modified it
does two things. It checks if the new edge (p,q) introduces any local negative cycles.
Specifically, it checks if the cycle p-q-p is negative. If there is a local negative cycle,
then the algorithm returns false, otherwise the algorithm recursively calls BACK-
PROPAGATE(G, p, q). If this BACK-PROPAGATE returns false, then the orginal
BACK-PROPAGATE function returns false. If the algorithm successfully applies all
possible back-propagations of (u,v) in line 3-13, then the algorithm returns true in Line
16.

In the next section we give a example of the BACK_PROPAGATE function in the
context of the Fast Dynamic Controllability algorithm.

 135

Figure 4-20 Pseudo-Code for BACK-PROPAGATE

4.5 Fast Dynamic Controllability Pseudo-Code

 The pseudo-code for the Fast-DC algorithm is shown Figure 4-22. The algorithm is
used to reformulate the group plans in the Hierarchical Reformulation Algorithm. The
Fast-DC algorithm operates on group plan’s associated STNU. If the STNU associated
with the group plan is dynamically controllable, then the algorithm returns a pseudo-
minimal dispatchable CDGU, which can be directly executed by the STNU dispatching
algorithm introduced by [Morris 2001], otherwise, the algorithm returns NIL. The
description of the Fast-DC pseudo-code is interleaved with a example. The TPNU used
in the example is shown in Figure 4-21. This group plan is part of the Mars rover
example originally introduced in Section 3.4.

Method BACK-PROPAGATE(G,u,v)
Input: CDGU G, start timepoint u, and end timepoint v
Effects: recursively called function that back-propagates the constraints through G
Returns: true if the no inconsistencies where introduces, otherwise false
1 if IS-POS-LOOP(u, v) return TRUE
2 if IS-NEG-LOOP(u, v) return FALSE
3 for each edge (x,y) where the back-propagation rules apply to edge (u,v)
4 back-propagate (u,v) through (x,y) to create new edge (p,q)
5 convert any conditional constraint (p,q) to a requirement edge (p,q) as required
 by the unconditional unordered reduction
6 resolve the edge (p,q) with G by tightening (or adding) corresponding edge (p,q) in G
7 if G is modified
8 if resolving (p,q) with G introduces a local negative cycle
9 return FALSE
10 end if
11 if ¬BACK-PROPAGATE(G,p,q) // recursive call
12 return FALSE
13 end if
14 end if
15 end for
16 return TRUE

 136

C

D [3,5]

[3,7]B
[0,5]

R3.spec_reading(rock1)

R4.take_pic(R1)
A

[0,10]

G [10,20]
R4.sample(rock1)

H

E

F

[0,1]

[0,1]

[0,1]

[13,34]
Figure 4-21 Sample Group Plan

Figure 4-22 Pseudo-Code of Fast Dynamic
Controllability Algorithm (Fast-DC)

 Line 1 converts the STNU into a CDGU. This conversion is trivial. It converts the
links of the STNU into a pair of directed edges. Note that initially, the CDGU does not
contain any conditional constraints; therefore, the original CDGU is similar to a Distance

function FAST-DC(Γ)
input: A Simple Temporal Network with Uncertainty Γ
returns minimal dispatchable CDGU if Γ is dynamically controllable, otherwise NIL
1 G ← STNU_TO_CDGU(Γ)
2 if ¬COMPUTE_MPDG(G)
3 return NIL
4 end if
5 if ¬ IS_PSEUDO_CONTROLLABLE (G)
6 return NIL
7 end if
8 S start timepoint of G
9 Bellman_Ford_SDSP(S, G)
10 Q ← ordered list of contingent timepoints according to the SSSP distances
11 while(¬Q.IS-EMPTY())
12 n Q.POP_FRONT()
13 if ¬ BACK_PROPAGATE_INIT(G, n)
14 return NIL
15 end if
16 end while
17 COMPUTE_MPDG(G)
18 return G

 137

Graph with Uncertainty (DGU). For example, Figure 4-23 shows the CDGU of the
sample group plan.

C

D 5

7B
5

A

[0,10]

G 20
H

E

F
1

1

1

34

0
-3

-3

0

0

0 -10

-13

Figure 4-23 CDGU of the Sample Group Plan

Recall that in order to apply the back-propagation rules, the CDGU must be pseudo-
dispatchable. In addition, in order to efficiently apply the back-propagation rules, the
CDGU should contain the fewest number of edges. Line 2 transforms the CDGU into a
Minimal Pseudo-Dispatchable Graph (MPDG) by calling the COMPUTE_MPDG
function. This function applies the basic STN Reformulation Algorithm [Muscettola
1998a] on the CDGU. The STN Reformulation algorithm is applied by ignoring the
distinction between contingent and requirement edges in the CDGU. This function
reformulates the constraints of the CDGU. If the CDGU is pseudo-dispatchable, then the
function COMPUTE_MPDG returns true, otherwise it return false. If the CDGU is not
pseudo-controllable, then the FAST-DC algorithm returns NIL. The minimal pseudo-
dispatchable graph for the sample group plan is shown in Figure 4-23.

 138

C

D 5

7B
5

A

0

G 20
H

E

F
1

1

10
-3

-3

0

0

0 -10
1 1-2

-2
35

sdsp(C) = -3

sdsp(H) = -12

Figure 4-24 MPDG of the Sample group plan

The CDGU is only dynamically controllable if it pseudo-controllable. Recall that if a
graph is pseudo-controllable then the constraints do not strictly imply a tighter constraints
on the contingent edges. Lines 5-7 of the FAST-DC algorithm checks if the contingent
edges are squeezed during the process of converting the CDGU into a minimal pseudo-
dispatchable graph. If the CDGU is not pseudo-controllable, then the FAST-DC
algorithm returns NIL. In our example, contingent edges BC, CB, GH, and HG all
remain unchanged; therefore, the CDGU is pseudo-controllable.

Recall that our goal is to reformulate the graph to ensure that the plan can be dynamically
executed. This reformulation is done by applying the a recursive BACK_PROPAGATE
function. The BACK-PROPAGATE function needs to be applied to any edge that may
squeeze the contingent timepoint at execution time. Each initial call of
BACK_PROPAGATE causes a series of other edge updates. However, they will only
update edges closer to the start of the plan. In order to reduce the amount of redundant
work, we initiate the back-propagation cycle near the end of the plan to the start of the
plan. This way we slowly build up a solution from the end of the plan to the start of the
plan. In order to organize the back-propagations, we need to create a list of contingent
timepoints ordered from timepoint that are executed near the end of the plan to the
timepoints that are executed near the beginning of the plan.

Lines 8-10 create this ordered list, Q, of the contingent timepoints. The contingent
timepoints are ordered based on their Single-Destination Shortest-Path (SDSP) distance,
sdsp(x). Specifically, the contingent timepoints are ordered from lowest to highest SDSP
distances. Note that all SDSP distances are less than or equal to zero. The SDSP
distances are computed in Line 9, and the contingent timepoints are ordered in Q in Line
10. The sample group plan contains two contingent timepoints C and H with sdsp(C) =
-3 and sdsp(H) = -12. Therefore, timepoint H comes before timepoint C.

Lines 11-16 of the FAST-DC algorithm apply the back-propagation rules. Line 12 pops
the first contingent timepoint, n, off of the list Q and calls the BACK-
PROPAGATE_INIT function, which starts one round of back-propagations. If that back-

 139

propagation round results in a inconsistency, then the FAST-DC algorithm returns NIL.
The pseudo-code for the BACK-PROPAGATE_INIT is shown in Figure 4-25. BACK-
PROPAGATE_INIT ensure the that contingent timepoint n is never squeezed during
execution.

Figure 4-25 Pseudo-Code for BACK-PROPAGATE-INIT

The BACK-PROPAGATE-INIT function initiates the back-propagation by applying the

back-propagation rules to ensure that the contingent timepoint v is never squeezed during
execution. Recall the contingent timepoint can only be squeezed by incoming positive
edges or outgoing negative edges. Lines 1-5 calls BACK_PROPAGATE for all incoming
positive edges into the contingent timepoint v and Lines 6-10 calls BACK_PROPAGATE
for all outgoing negative edges from v.

For example, consider the series of back-propagations shown in Figure XXX.
There does not contain any possible edges to violate contingent timepoint H so no back-
propagation is required. For timepoint C the edge EC is back-propagated through BC
resulting in a new conditional edge EB of <C,-6>. This edge then back-propagated DE
which modifies the requirement edge DE to -1. This requirement edge is then back-
propagated through edge BD resulting in the edge BB of distance 4. This thread of back-
propagation terminates here because of a positive self-loop.

The contingent timepoint C is also threatened by the outgoing negative edge CD of length
-2. This edge CD is back-propagated through BC which modifies BD = 1. This is then
back-propagated through DB resulting modifying the self looping edge BB to 0. No more

BACK-PROPAGATE-INIT(G, v)
Input: A CDGU G and contingent timepoint v
Returns: true if no inconsistencies were introduced during the back-
propagation cycle, otherwise false
1 for all incoming positive edges (u,v) into the contingent timepoint v
2 if ¬BACK_PROPAGATE(G,u,v)
3 return FALSE
4 end if
5 end for
6 for all outgoing negative edges (v,u) from the contingent timepoint v
7 if ¬BACK_PROPAGATE(G,v,u)
8 return FALSE
9 end if
10 end for
11 return TRUE

 140

propagations are necessary. The resulting dispatchable CDGU is shown in Figure 4-26.
The back-propagation did not introduce an inconsistency; therefore, the sample group
plan is dynamically controllable.

C

D 5

7B
5

A

0

G 20
H

E

F
1

1

10
-3

-3

0

0

0 -10
1 1

-2

-2
-11

0

<C,-6>

Figure 4-26 Dispatchable CDGU after back-

propagation

The last step of the Fast-DC algorithm is to trim the dominated (redundant) edges from
the CDGU. This is done by calling the basic STN reformulation algorithm. The resulting
graph is a minimal dispatchable CDGU which can be executed by the dispatching
algorithm introduced by [Morris 2001]. For example, the minimal dispatchable CDGU
for the sample group plan is shown Figure 4-27.

C

D 5

7B
5

A G 20
H

E

F
1

1

10
-3

-3

0

0

0 -10
1 1-11 <C,-6>

Figure 4-27 CDGU of sample group plan after trimming the

redundant edge

4.6 Summary
In this chapter we reviewed the dynamic controllability algorithm introduce by [Morris
2001]. Then we generalized the reduction rules introduced to [Morris 2001] in order to
develop an efficient dynamic controllability algorithm. This new Fast-DC algorithm is
used by the HR algorithm presented in Chapter 3 to reformulate the group plans. In the

 141

next chapter we present empirical data demonstrating the speed of this new Fast-DC
algorithm.

5 Results and Conclusion

5.1 Introduction
The outline for this chapter is as follows. First we discuss the implementation of the
Hierarchical Reformulation (HR) algorithm. Then we discuss the experimental results of
the fast dynamic controllability (Fast-DC) algorithm. We then discuss the limitations of
our approach and directions for future work. We conclude with a summary of the major
contributions of this thesis.

5.2 Implementation of the Hierarchical Reformulation algorithm
The Hierarchical Reformulation (HR) algorithm has been implemented in C++ and tested
with a variety of hand coded examples, including the cooperative Mars rover scenario
presented in Chapter 3.4. In order to generate the two-layer multi-agent plans, we
developed a MTPNU Graphical User Interface (GUI) implemented in Java.6 The GUI
enables the user to create and visualize the MTPNUs. The screenshot of the editor,
shown in Figure 5-1, shows the mission plan for the Mars rover scenario described in
Chapter 3.4. The editor allows the user to create, modify, and visualize the multi-agent
plans in a variety of different forms. All of the plans generated for the HR algorithm were
created using the MTPNU GUI.

6 The MTPNU GUI was developed by Andreas Wehowsky and myself.

 142

Figure 5-1 The MTPNU GUI allows the user to quickly
create, visualize and manipulate multi-agent temporal plan
with uncertainty.

Figure 5-2 Rover Test-Bed used to test STN reformulation algorithms

 The Hierarchical Reformulation algorithm was implemented in conjunction with the
STN reformulation and dispatching algorithms presented in Chapter 2. Implementing the
STN reformulation provided the basis for implementing the HR algorithm. Specifically,
the implementation of the basic STN reformulation algorithm [Muscettola 1998a] and the
“fast” STN reformulation algorithm [Tsarmardinos 1998], along with the associated STN
dispatching algorithm [Muscettola 1998a] were implemented in C++ prior to
implementing the HR algorithm. The HR algorithm implementation leveraged the data

 143

structures and many of the graph algorithms used in these STN algorithms. The STN
reformulation and dispatching algorithms were integrated with the KIRK temporal
planner [Kim 2001]. This entire planning and execution system has been tested on a set
of ATRV and ATRV Jr. robots in our rover test bed, as shown in Figure 5-2. Together
the KIRK temporal planner and STN executive have been successfully used to execute
hundreds of multi-rover plans in the rover test-bed.

 Recall, that our novel fast dynamic controllability algorithm uses the STN
reformulation algorithm as both a pre-processing and post-processing step. Currently,
only the basic STN reformulation algorithm has been integrated with our implementation
of the Fast-DC algorithm. Integrating the fast STN reformulation algorithm into the Fast-
DC is left for future work.

5.3 Run Time Complexity of the FAST-DC Algorithm
In this section we discuss the empirical results of the fast dynamic controllability (Fast-
DC) algorithm. In order to test the speed of Fast-DC algorithm, we developed a random
TPNU generator. The challenge is to generate a TPNU and associated STNU that is
sufficiently random, and provides a good chance of being dynamically controllable. We
are interested in knowing how long it takes the algorithm to detect that the STNU is not
dynamically controllable; however, we are more interested in knowing how long it takes
for the algorithm to complete.

 Simply randomly generating a mixture of contingent and requirement edges would
yield a very low likelihood of producing a dynamically controllable STNU. We
introduce RAND_TPNU algorithm in order to generate the TPNU and underlying STNU
that are biased towards being dynamically controllable. This is achieved by keeping the
requirement constraint flexible compared to the duration of the uncontrollable activities.

 The RAND_TPNU function accepts two parameters: num_acts, which is the number
of activities in the TPNU, and ctrl_pct, which determines the number of controllable
activities versus uncontrollable activities. Given these parameters it generates a TPNU.

 First the RAND_TPNU algorithm generates num_acts activities each of which have a
ctrl_pct chance of being controllable. The duration for each activity is chosen such that
upper bound, ub, is always greater than the lower bound, lb. Thus, each activity has a
nonzero duration and is locally consistent.. The upper bound, ub, is randomly chosen
between [1, max_duration] and the lower bound, lb, is randomly chosen between [0,ub].

 144

Each activity has a start timepoint, Si and end timepoint Ei and either a contingent or
requirement link connecting the Si to Ei.

 The RAND_TPNU uses a 2D plan space with dimensions plan_length by plan_height,
as shown in Figure 5-1. The left hand side occurs and Time = 0 and the right hand side
occurs at Time = plan_length. The plan space is similar to a simple scheduling timeline
where overlapping activities represent concurrent activities. The start timepoint, Si, of
each activity is randomly placed in the 2D plan space and the end timepoint, Ei , of each
activity is shifted to the right by a distance equal to its upper bound. For example, in
Figure 5-1 the plan space has dimensions 50 by 25. The start timepoint of act1, s1, is
randomly placed at (5,20). Act1 has an upper bound of 10; therefore, the end timepoint
of act1, e1, is placed at (15,20). By controlling the length and height of the plan space,
we can control the relative proximity of each activity in the plan space.

T = 0 5 10 15 20 25 30 35 40 50

5

10

15

20

25

s1 e1[5,10]

s3 e3[1,5]

act1

act3

s4 [9,10] s4

s2 [4,20] e2

act4

act2

Figure 5-3 Randomly placing activities within the 2D plan
space

 After placing each activity in the plan space, requirement links are introduced in order
to constrain the activity timepoints with respect to one another. For each timepoint, the
algorithm searches in its local “search region” for a neighboring timepoint for which
there does not already exist any link (requirement or contingent). If it finds such a
timepoint, it orders the timepoints based on their x distance. Whichever timepoint is
further to the left in the plan space, becomes the start of the requirement link and the
other timepoint becomes the end timepoint of the requirement link. This ensures that the
plan execution goes generally from left to right in the plan space.

 The algorithm then randomly generates locally consistent values for the lower and
upper bound of the requirement link. The algorithm uses the separation distance to
generate these values such that timepoints near one another tend to be more tightly
constrained than timepoints farther apart. This results in a good mixture of tight and loose

 145

temporal requirement; furthermore, the general structure of the plan can be determined by
visual inspection of the plan. However, in order to prevent extremely tight constraints
being placed in the plan, which tends to reduce the change of the plan being dynamically
controllable, the algorithm uses a different policy for generating the timebounds when the
two timepoints are close to one another. The process of adding a requirement link is
shown in Figure 5-4 The specific policy for generating the requirement links is given in
Figure 5-6. Note that the algorithm generates links with both positive and negative lower
bounds.

The pseudo-code for the full RAND_TPNU generator is given in Figure 5-6. It uses the
function RANDOM(x,y) which produces a random integer between x and y.

T = 0 5 10 15 20 25 30 35 40 50

5

10

15

20

25

s1 e1[5,10]

s3 e3[1,5]

act1

act3

s4 [9,10] s4

s2 [4,20]
e2

act4

act2
[0,10]

Search Region

Cutoff Region

Add requirement links
based on separation
distance

[-3,20]

Figure 5-4 Place requirement edges between neighboring timepoints

 146

Figure 5-5 Pseudo-Code for ADD_ REQURIEMNT_LINK

Figure 5-6 Pseudo-Code for RAND_STNU

function RAND_TPNU(num_acts, ctrl_pct)
Input: number of activities num_acts
 percent chance of being controllable
Output: randomly generated STNU G
1 G NIL
2. for i = 1 to num_acts
2. generate an activity with ctrl_pct change of being controllable
 with start timepoint S and end timepoint E.
3. ub rand(1, max_duration)
4. lb rand(0,ub)
5. create activity with bounds [lb,ub] and add to G
6. assign random (x,y) location for S within (plan_length, plan_width)
7 assign location of E of (x + ub, y)
8 end for
9 ADD_REQUIREMENT_LINKS(G)
10 return G

 ADD_REQUIREMENT_LINKS(G)
 Input: A TPNU G with a set of contingent and requirement activities
 Effects: adds a set of randomly generated requirement links to G
1 r1 radius of search region
2 r2 radius of cutoff region
3 for each timepoint A
4 B find neighboring timepoint s.t. distance < r1 and link AB = NIL and BA = NIL
5 if A.x < B.x
6 S A
7 E B
8 else
9 S B
10 E A
11 end if
12 dist abs(distance(S,E))
13 if dist < r2
14 dist max_duration
15 endif
16 ub random(dist/2, 2*dist)
17 lb random(-dist, dist/2)
18 add requirement link SE with bound [lb,ub] to G
19 end for

 147

In order to use the RAND_TPNU we need to set several more parameters. These
include:
 max_duration: the maximum duration of the activities
 plan_width: : x dimension of the plan space
 plan_height: : y dimension of plan space
 r1 : : radius of search region
 r2: : radius of cut region

For testing the DC algorithm we fixed values of each parameter except for the plan_
width parameter, which is a function of the num_acts.

 max_duration = 20
 plan_length = 10*num_acts
 plan_height = 30
 r1 = 30
 r2 = 10

A sample randomly generated plan is shown in Figure 5-7

 148

Figure 5-7 A randomly generated TPNU generated by the
RAND_TPNU algorithm

The TPNU has 10 activities with 50% chance of each activity being controllable.

 We used the RAND_TPNU generator in order to test the Fast-DC algorithm. We
generated random TPNUs from 5 activities to 70 activities in increments of 5, using a
ctrl_pct = 50%. At each activity level, we generated a random TPNU then ran the Fast-
DC algorithm on the associated STNU. This cycle was repeated until we found a TPNU
that was dynamically controllable. Figure 5-8 shows the run time of the Fast-DC
algorithm plotted against the number of activities. The tests were run on an IBM laptop
with a 500 MHz Pentium III processor. Figure 5-8 shows two sets of data. The data
labeled “total” represents the total run time of the Fast-DC algorithm and the data labeled
back-propagation represents the time the algorithm spent doing back-propagation.
Specifically, this is the amount of time the algorithm took to run Lines 8-13 in the Fast-
DC algorithm shown in Figure 4-21. A more detailed view of the time spent doing back-
propagation is provided in Figure 5-9. The maximum time the algorithm took to do back-
propagation was .41 seconds while running the trial of 50 activities.

 In general, the amount of time the algorithm spent doing back-propagation was two
orders of magnitude smaller than the time it took to do the other computations. Our test
show that our Fast-DC algorithm experimentally runs in O(N3). A cubic regression curve
was fit to the overall data and shown in Figure 5-8. These results are significant because
the current literature contains no experimental data on the run time complexity for any

 149

dynamic controllability algorithm. Recall that [Morris 2001] only provided a dynamic
controllability algorithm; however, they only provided a crude upper bound on the time
complexity of O(N6).

Recall the overall structure of the dynamic controllability algorithm along with the run-
time complexity is as follows:

1. Run basic STN Reformulation Algorithm Θ(N^3)
2. Check for Pseudo-Controllability O(E)
3. Run SSSP O(NE)
4. Back-Propagating ????
5. Run Basic STN Reformulation Algorithm Θ (N^3)

The only missing link required in order to compute the theoretical worst case time
complexity was the Back-Propagation Step. However, our results show that propagation
costs are small compared with the other computations. Note that the STN reformulation
runs in Θ(N^3). Given that the back-propagation cost is small, it follows that expected
run time is Θ(N^3). This is why the overall run time fits so well to a cubic curve.

In our Fast-DC algorithm we currently use the basic STN reformulation algorithm. We
have implemented the “fast” STN reformulation algorithm introduced by [Tsarmardinos
1998] which runs in O(NE + N2 lg N) time; however, its has yet to be integrated into our
Fast-DC algorithm. Substituting the fast STN reformulation algorithm for the basic one
will directly improve the run time of our Fast-DC algorithm, because the STN
reformulation algorithm is dominating the other computations. This simple step should
greatly improve the run time of our Fast-DC algorithm for sparse plans.

The most striking result is the relatively small amount of time the Fast-DC algorithm
spent doing back-propagation compared to the other computations. In Chapter 4 we
provided intuitions on why the back-propagation technique would yield a fast algorithm;
here we provide the empirical results to support our intuitions.

The small amount of time required to do the back-propagation also suggests an efficient
incremental DC algorithm. Specifically, in Chapter 4 we showed that after running the
DC algorithm once, if an edge changes in the plan, it is only necessary to call the back-
propagation step in the Fast-DC algorithm to maintain the dispatchability of the plan.

More experimental work still needs to be performed. First the Fast-DC algorithm needs
to be tested on more examples to more fully characterize the run-time complexity of the
back-propagation step. Second, we need to implement the dynamic controllability
introduced by [Morris 2001] in order to do a side by side comparison of our Fast-DC
algorithm and their algorithm.

 150

Run Time of FAST-DC Algorithm vs Number of Activities
(50% controllable)

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80
Number of activities

Ti
m

e
[s

ec
on

ds
]

total
back-propagation
Poly. (total)

Figure 5-8 Experimental Results of the Run-Time Complexity for the FAST-
DC algorithm. The graph shows the results of a cubic regression curve fit to
the overall run-time of the DC algorithm.

Run Time of back-propagation for FAST-DC Algorithm vs
number of Activities (50% controllable)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80

Number of Activities

Ti
m

e
[s

ec
on

ds
]

back-propagation

Figure 5-9 Experimental Results for Run-Time Complexity of Back-
Propagation for the FAST-DC algorithm

 151

5.4 Limitations and Future Work
In this section we will address some limitations to the current Hierarchical Reformulation
algorithm along with direction for future work.

5.4.1 Improvements in Group Macro Representation
 Currently we use a very simple model for representing the group plans in the mission
plan. Specifically we model the group plan using a macro. Recall that this macro consists
of an executable start timepoint, and a contingent end timepoint and a contingent link
between them. The timebounds used on the contingent link is determined by computing
the minimum and maximum feasible durations of the associated group plan. The
different groups are free to choose any execution strategy. This technique preserves
maximum flexibility within each group plan, but it sacrifices completeness of the
Hierarchical Reformulation (HR) algorithm. Recall that the HR algorithm consists of
three basic steps. First it reformulates each group plan in order to ensure that they can be
dynamically executed. Second it determines the range of feasible execution times for
each group plan and uses those time to generate an associated macro. Third it generates a
fixed start time for each group plan by considering the constraints placed between the
macro representations of the group plans. When the HR performs this last decoupling
step it must respect the timebounds placed on the macros. Specifically, it must ensure
that the fixed start times that is uses for each group plan will be consistent with the
constraints of the plan no matter when the group plans finish with their activities. If the
HR algorithm is unable to generate these fixed start times, the HR algorithm simple fails.

Our algorithm uses a very group centric approach. The decoupling algorithm is not able
to ask the group plans to modify their plans in order to enable the groups to coordinate at
the high level. In general, each group plan will tend to have some amount of flexibility it
could sacrifice and still be dynamically controllable; however, our decoupling algorithm
is not able to ask the group plans to give up some of this flexibility in order coordinate
the groups.

In our current approach, the groups are not “team players”. Consider a situation where the
boss asks each employee in his research group to compute an expected time for
completion of his/her individual software component and employ1 know he can complete
his task in 1 week but tells the advisor an extremely conservative estimate of 4 weeks.
However, upon review of the overall schedule, the boss determines that employee 1 must
complete no later than 3 weeks. In our current approach, the decoupling algorithm plays
the role of the boss. Currently our decoupling algorithm cannot perform this type of
negotiation. This is the most sever limitation of our HR algorithm.

In order to allow the decoupling algorithm to negotiate with the groups we need a better
macro representation that encodes the amount of flexibility each group is capable of
sacrificing. This will allow the decoupling algorithm to steal flexibility from the group
plans when it needs it.

 152

5.4.2 Improvements in the Decoupling Algorithm

Recall the STNU decoupling algorithm removes the dependence from one group plan.
Currently we generate a fixed schedule for the group plans in order to do this decoupling.
However, it is possible to enable each group plan to be executed independently while still
allowing the start time of each group activity to remain flexible. This flexibility will
allow each group to adapt to some level of unmodeled uncertainty, hence increasing the
robustness of execution. An overview of the improved STNU decoupling algorithm is
illustrated in Error! Reference source not found..

group activity 2
e2

e3

group activity 3

[lb,ub]

[lb,ub]

group activity1

e1

[lb,ub]

[lb,ub]

[lb,ub]

[lb,ub]

group activity 2
e2

e3

group activity 3

[lb,ub]

[lb,ub]

group activity1

e1

[lb,ub]

[lb,ub]

[lb,ub]

[lb,ub]

requirement links
connecting contingent
timepoints are
removed.

requirement
links between
executable
timepoints still
remain

start timepoint of
mission

(a) Original Mission Plan
specifying a set of group
activities

(b) Mission Plan after contingent
timepoints are decoupled by
strong controllability algorithm

group activity 2
e2

e3

group activity 3

[lb,ub]

[lb,ub]

group activity1

s1
e1

[lb,ub]

[lb,ub]

[lb,ub]

[lb,ub]

requirement links
between executable
start timepoints are
removed

The start of each
group activity
remains flexible with
respect to the start of
the mission.

(c) The mission plan after the
executable timepoints are decoupled by
the STN decoupling algorithm.

s2

s3

s1

s2

s3

z

z

s2z

s1

s3

Figure 5-10 (a) The group activities in the mission
plan are decoupled using two steps. (b) First the
contingent end timepoints are decoupled using the
strong controllability algorithm [Vidal 2000] (c),
Second, the activity start timepoints are decoupled
using the STN decoupling algorithm [Hunsberger
2002].

 This improved STNU decoupling algorithm combines a strong controllability
checking algorithm introduced by [Vidal 2000] with the STN decoupling algorithm
introduced by [Hunsberger 2002]. The improved STNU decoupling algorithm breaks the
problem of decoupling the group activities into two parts. First, the contingent
timepoints associated with the end of each group activity are decoupled from rest of the
timepoints by the using the strong controllability algorithm. This is similar to our current
STNU decoupling algorithm. After this first step, we only need to consider the constrains

 153

on the start timepoints of the group activities. Hence, we are now only working with an
STN. However, instead of generating a fixed schedule for the start of each group
activity, the improved STNU decoupling algorithm uses the STN decoupling introduced
by [Hunsberger 2002] to decouple the start of each of the group activities. The STN
decoupling algorithm makes the constraints connecting the start timepoints of each group
activity dominated (redundant) by modifying the constraints that pass through the start of
the mission. [Hunsberger 2002] showed that it is always possible to do this decoupling in
polynomial time if the STN is consistent. This improved STNU decoupling algorithm
keeps start of each group plan flexible with respect start of the mission, which in known
to be executed at Time = 0.

5.4.3 Variations on the Two-Layer Architecture

 There exists several variations of the two layer architecture described in the thesis.
Recall that our two layer approach uses a high level mission plan and a set of lower level
group plans. This two layer approach can be extended to multiple layers. Second, we
currently use a static execution strategy at the mission layer and a dynamic execution
strategy at the group layer. The static execution strategy is used so the different group
can execute their plan independently. The agents in the different groups never need to
communicate. It seems reasonable that the agents in different groups should not
communicate after every action; however, in some cases the different groups should and
can communicate with one another at the start and end of their group plans. For example,
consider large project in which the jobs are divided up between several groups of people.
A project manager does not need, nor does the manager want to know, about all the
detailed interactions between the group members. However, in order to manage the
project effectively, the manager needs to know when each group completes a particular
group plan. In this situation, group members dynamically adjust their schedules in order
to achieve coordination at the lower level and the project manager dynamically adjusts
the schedule of the groups to coordinate the groups at the high level. This suggests a two
layer approach which uses a dynamic controllability algorithm at both layers. This is
achieved by providing a minimal amount of communication between the groups. In
general, our two layer approach can be extended to a general hierarchy which use either a
static or dynamic execution strategy depending on the amount of communication that is
available.

5.4.4 Towards a Fully Distribution Architecture

 Recall that the grand vision of this work is to create a completely distributed
architecture in which all the agents participate in the planning, scheduling, and execution
using a message passing. Our thesis makes steps towards this goal. Specifically, we
showed how to enable different teams of agents to cooperate at execution time without
requiring communication. Thus, the execution of the reformulated plan is distributed
among the different teams. However, we would like both the computations of the
reformulation step and execution to be distributed among all the agents. A rough
technology development plan required in order to create a completely distributed
architecture is provided below.

 154

1. Develop a distributed version of the dispatching algorithm for STNs and STNUs
[Muscettola 1998a, Morris 2001]. This will enable all of the agents within group plans to
participate in the dynamic scheduling process. In order to distribute the dispatching
algorithm, the group plan needs to be partitioned such that each agent within the group
owns a portion of the group plan. Specifically, each agent should schedule its own
activities. During execution each agent in the group plan will run instances of the
centralized dispatching algorithm, and send execution update to other agents using a
message passing system.

2. Develop a distributed version of the basic centralized STN reformulation algorithm
[Muscettola 1998a]. Recall that this algorithm depends on 1) computing an APSP-graph
and 2) performing set of local edge trimming operations. The APSP-graph can be
computed in a distributed fashion by using by using N calls to a Distributed Bellman-
Ford SSSP algorithm [Lynch 1996]. Furthermore, the developing a distributed version of
the edge trimming phase should be straight forward, because each edge trimming
operations is a instance of the triangle rule, which is a local computation. Furthermore,
each application of the triangle rule can be done independently.

3. Develop a distributed version of the “fast” centralized STN reformulation algorithm
[Tsarmrdinos 1998]. The centralized algorithm depends on 1) a Strongly Connected
Components (SCC) algorithm, 2) Dijkstra’s SSSP algorithm, and 3) a set of other local
computations. The centralized SCC algorithm can be replaced by distributed Cidon's
DFS algorithm [Tel 1994] and the centralized Dijkstra’s algorithm can be replaced by the
distributed Bellman-Ford SSSP algorithm. The rest of the computations are local;
therefore, it should be straight forward to perform these computation is a distributed
fashion.

4. Develop a distributed version of our fast dynamic controllability algorithm. Recall that
this algorithm depends on the 1) STN reformulation algorithm 2) a SSSP computation
and 3) a set of local back-propagation rules. We already discussed distributing both the
STN reformulation algorithm and the SSSP computations above. Furthermore, the
structure of the back-propagation rules should allow a simple transition from centralized
to distributed version of the local back-propagation rules.

5. Develop a distributed version of the centralized HR algorithm. This depends on the
strong controllability and dynamic controllability algorithms. Again these are local
algorithms; therefore, creating the distributed versions should be possible without too
much effort.

5.4.5 Other opportunities for future work

First, in Chapter 3 we introduced a formal definition of communication controllability.
The time complexity for determining communication controllability is unsolved. Second,
we assumed that the programmer was able to perform the clustering in order to create a
two layer structure. Work needs to be done to do this clustering autonomously. Third,

 155

we provided experimental evidence that the run time complexity of the Fast-DC
algorithm is O(N^3). Further work is need to prove the worst case run-time complexity
of the DC algorithm.

5.5 Conclusion
 In this thesis we showed how to reformulate multi-agent plans in order to enable teams
of agents to loosely coordinate their inter-team activities without communication; while
enabling the agents to tightly coordinate their intra-team activities in the presents of
uncertainty. Our two-layer approach enables the executive to focus on preparing for
communication limitation at the high level and prepare for dynamically adapting to the
temporal uncertainty at the low level. Recall that our approach is motivated by the
observation that tight coordination under uncertainty requires communication, and
fortunately, whenever the agents require tight coordination, the agent typically can
communicate. On the contrary, when the agents have difficulty communication, they
typically only need to loosely coordinate their activities. In these cases, it is possible to
synchronize their activities by using a fixed execution strategy, therefore eliminating the
need to communicate. Therefore, our two-layer approach works with nature rather than
against it.

 This thesis provides three primary contributions. First, at the beginning Chapter 3 we
presented a formal treatment of dynamic controllability under communication limitation.
Our formal analysis resulted in new type of controllably, called communication
controllability. It is our hope this formal problem description will help stimulate research
focused on planning for both communication limitations and uncertainty. Second, in the
latter part of Chapter 3, we presented our novel Hierarchical Reformulation (HR)
algorithm eloquently combined a strong and dynamic controllability algorithms. The
HR algorithm allows different groups of agents to coordinate their activities without
being in direct contact with one another. Third, in Chapter 4 we presented our new Fast
Dynamic Controllability (FAST-DC) algorithm. This dynamic controllability algorithm
is used in the HR algorithm; however, its use transcends the HR algorithm. One of the
most significant result of thesis is that we showed that our new Fast-DC algorithm runs in
O(N3) time. This is an important result because many real-time planning and scheduling
problems requires the use of a dynamic controllability algorithm. We believe our Fast-
DC algorithm will enable a new planning and scheduling packages to be able to
efficiently cope with temporal uncertainty. Although one may argue that the applicability
of the HR algorithm is still a few years off; the fast dynamic controllability algorithm
introduced in this thesis is applicable to many real-world problems today!7

7 Please send me an e-mail at stedl@mit.edu if you have read my thesis. This will allow me to determine how many people read

this thesis and allow me to answer any questions.

 156

References

[Aldridge 2004] Aldridge, E. Jr. et. al, Report of the President’s Commission on
Implementation of United States Space Exploration Policy: A Journey to Inspire,
Innovate, and Discover Moon, Mars and Beyond …, June 2004.

[CLR 1990] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[Chien 2000] Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt, B.; Mutz,
D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett, T.; Stebbins, G.; and Tran, D. 2000. ASPEN
- Automated planning and scheduling for space mission operations. In 6th International
Symposium on Space missions Operations and Ground Data Systems (SpaceOps 2000)

[Brooks 1985] Brooks, R. A. "A Robust Layered Control System for a Mobile Robot",
IEEE Journal of Robotics and Automation, Vol. 2, No. 1, March 1986, pp. 14–23; also
MIT AI Memo 864, September 1985

[Dechter 1991] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.
Artificial Intelligence, 49:61-95, May 1991.

[Drummond 1994] Drummond, M., J. Bresina, and K. Swanson, "Just-In-Case
Scheduling," in Proc. 12th National Conf. on Artificial Intelligence, 1994.

[Eberhart 2001] R. Eberhart, Y. Shi, and J. Kennedy, “Swarm intelligence”, Morgan
Kaufmann, 2001.

[Hunsberger 2002] L. Hunsberger. Group decision making and temporal reasoning.
PhD Thesis, Harvard University, Cambridge, MA, June, 2002.

[Huntesberger 2003] Huntsberger, T.L., Pirjanian, P., Trebi-Ollennu, A., Nayar, H.D.,
Aghazarian, H., Ganino, A.J., Garrett, M.S., Joshi, S.S., and Schenker, P.S. 2003a.
CAMPOUT: A control architecture for tightly coupled coordination of multi-robot
systems for planetary surface exploration. IEEE Transactions on Systems, Man, &
Cybernetics: Special Issue on Collective Intelligence, 33:550–559.

[Huntsberger 2004] T. L. Huntsberger, A. Trebi-Ollennu, H. Aghazarian, P. S.
Schenker, P. Pirjanian, and H. D. Nayar, "Distributed Control of Multi-Robot Systems
Engaged in Tightly Coupled Tasks," Autonomous Robots, Vol. 17, pp. 79-92, 2004

[Jonnson 2000] Jonsson, A. K.; and Morris P. H.; Muscettola, N.; Rajan, K.; and Smith,
B. 2000.Planning in Interplanetary Space: Theory and Practice. In Proceedings of the
Fifth International Conference on Artificial Intelligence Planning and Scheduling (AIPS-
2000), 177-186

 157

[Kim 2001] P. Kim, B. Williams, and M. Abramson. Executing reactive, model-based
programs through graph-based temporal planning. In Proceedings of IJCAI-2001,
Seattle, WA, 2001.

[Long 2002] Long D. & Fox M. Fast Temporal Planning in a Graphplan Framework. In
Proceedings from the Sixth International Conference on Artificial Intelligence Planning
and Scheduling.2002

[Morris 1999] P. Morris and N. Muscettola. Managing temporal uncertainty through
waypoint controllability. In Proceedings of IJCAI-1999, 1999

[Morris 2000] P. Morris and N. Muscettola. Execution of temporal plans with
uncertainty. In Proc. Of Seventeenth Int. Joint Conf. on Artificial Intelligence (AAAI-
00), 2000.

[Morris 2001] P. Morris, N. Muscettola, and T, Vidal. Dynamic Control of plans with
temporal uncertainty. In: Proceedings of the 17th International Joint Conference on A.I.
(IJCAI-01). Seattle (WA, USA).

[Muscettola 1998a] N. Muscettola, P. Morris, and I. Tsamardinos. Reformulating
temporal plans for efficient execution. In Proc. Of Sixth Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR ’98), 1998.

[Muscettola 1998b] N. Muscettola, P.P. Nayak, B. Pell, and B.C. Williams. Remote
agent: to boldly go where no AI system has gone before. Artificial Intelligence, 103 (1-
2):5-48, August 1998.

[Parker 2000] L. E. Parker, "Current State of the Art in Distributed Autonomous Mobile
Robotics", in Distributed Autonomous Robotic Systems 4, L. E. Parker, G. Bekey, and J.
Barhen eds., Springer-Verlag Tokyo 2000, pp. 3-12.

[Schetter 2003] T. Schetter, M. Campbell, D. Surka. Multiple agent-based autonomy for
satellite constellations. Artificial Intelligence, 145 (1-2):147-180, April 2003

[Shu 2003] I. Shu. "Enabling Fast Flexible Planning through Incremental Temporal
Reasoning." M. Eng. Thesis, Massachusetts Institute of Technology, September, 2003.

[Tsarmrdinos 1998] I. Tsarmardinos, N. Muscettola, and P.Morris. Fast transformation
of temporal plans for efficient execution. American Association for Artificial
Intelligence (AAAI-98), 1998.

[Vidal 1996] T. Vidal and M. Ghallab. Dealing with uncertain durations in temporal
constraint networks dedicated to planning. In Proc. Of 12th European Conference on
Artificial Intelligence (ECAI-96), pages 48-52, 1996.

http://www.ai.mit.edu/people/williams/theses/ishuThesis.pdf
http://www.ai.mit.edu/people/williams/theses/ishuThesis.pdf

 158

[Vidal 1999] T. Vidal and H. Fargier. Handling contingency in temporal constraint
networks: from consistencies to controllabilities. Journal of Experimental & Theoretical
Artificial Intelligence, 11:23-45, 1999.

[Vidal 2000] T. Vidal. Controllability characterization and checking in contingent
temporal constraint networks. In Proc. Of Seventh Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’2000), 2000.

[Wehowsky 2003] A.F. Wehowsky. Safe distributed coordination of heterogeneous
robots through dynamic simple temporal networks. Masters Thesis, MIT, Cambridge,
MA, May, 2003.

[Williams 2001] Williams, B.C., P. Kim, M. Hofbaur, J. How, J. Kennell, J. Loy, R.
Ragno, J. Stedl and A. Walcott, “Model-based Reactive Programming of Cooperative
Vehicles for Mars Exploration.” Int. Symp. on Artificial Intelligence, Robotics and
Automation in Space, St-Hubert, Canada, June 2001

[Williams 2003] Brian C. Williams, Michel Ingham, Seung H. Chung, and Paul H.
Elliott. January 2003. “Model-based Programming of Intelligent Embedded Systems and
Robotic Space Explorers," invited paper in Proceedings of the IEEE: Special Issue on
Modeling and Design of Embedded Software, vol. 9, no. 1, pp. 212-237.

	1.1 Motivation
	1.2 Distributed Multi-Agent Scenario
	1.3 Research Challenges
	1.4 Basic Centralized Architecture
	1.5 Problem Statement
	1.6 Proposed Approach
	1.7 Key Technical Contributions
	1.8 Grand Vision
	1.9 Range of Applicability
	1.10 Roadmap for Thesis
	2.1 Introduction
	2.2 Temporal Constraint Satisfaction Problem
	2.3 Simple Temporal Network and Temporal Plan Networks
	2.4 Dynamic Execution of TPNs
	2.5 Simple Temporal Networks with Uncertainty
	2.6 Summary
	3.1 Introduction
	3.2 Communication Assumption
	3.3 Communication Controllability
	3.3.1 Primary Types of Controllability
	3.3.2 Formal Definition of Communication Controllability
	3.4 Two-Layer Multi-Agent Plans
	3.4.1 Group Programming Language (GPL)
	3.4.2 Converting Multiagent Plans to Two-Layer MTPNUs

	3.5 The Decoupling Algorithm
	3.5.1 Strong Controllability
	3.5.2 Strong Controllability Checking Algorithm
	3.5.3 The Decoupling Algorithm

	3.6 The Hierarchical Reformulation Algorithm
	3.6.1 HR Algorithm Pseudo-Code

	3.7 Summary
	4.1 Introduction
	4.2 Overview
	4.3 The Dynamic Controllability Algorithm
	4.3.1 Triangular Reductions
	4.3.2 Regression of Conditional Constraints
	4.3.3 Pseudo-Code for the Dynamic Controllability Algorithm

	4.4 Fast Dynamic Controllability Algorithm
	4.4.1 Incremental Dispatchability Maintenance
	4.4.2 Back-Propagation
	4.4.3 Back-Propagating when a Negative Requirement Edge Changes
	4.4.4 Back-Propagation Rule when Positive Requirement Edge Changes
	4.4.5 Back Propagating Conditional Edges
	5.1.1 Pseudo-Code for BACK-PROPAGATE

	4.5 Fast Dynamic Controllability Pseudo-Code
	4.6 Summary
	5.4.1 Improvements in Group Macro Representation
	5.4.2 Improvements in the Decoupling Algorithm
	5.4.3 Variations on the Two-Layer Architecture
	5.4.4 Towards a Fully Distribution Architecture
	5.4.5 Other opportunities for future work

