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 In the future, groups of autonomous robots will cooperate in large networks in order to 
achieve a common goal.  These multi-agent systems will need to be able to execute 
cooperative temporal plans in the presence of temporal uncertainty and communication 
limitations.  The duration of many planned activities will not be under direct control of 
the robots. In addition, robots will often not be able to communicate during plan 
execution. In order for the robots to robustly execute a cooperative plan, they will need to 
guarantee that a successful execution strategy exists, and provide a means to reactively 
compensate for the uncertainty in real-time. This thesis presents a multi-agent executive 
that enables groups of distributed autonomous robots to dynamically schedule temporally 
flexible plans that contain both temporal uncertainty under communication limitations.  
 

Previous work has presented controllability algorithms that compile the simple 
temporal networks with uncertainty, STNUs, into a form suitable for execution. This 
thesis extends the previous controllability algorithms to operate on two-layer plans that 
specify group level coordination at the highest level and agent level coordination at a 
lower level.  We introduce a Hierarchical Reformulation (HR) algorithm that 
reformulates the two-layer plan in order to enable agents to dynamically adapt to 
uncertainty within each group plan and use a static execution strategy between groups in 
order to compensate for communication limitations. Formally, the HR algorithm ensures 
that the two-layer plan is strongly controllable at the highest level and dynamically 
controllable at the lower level. Furthermore, we introduce a new fast dynamic 
controllability algorithm that has been empirically shown to run in O(N3) time.  
 
The Hierarchical Reformulation algorithm has been validated on a set of hand coded 
examples.  The speed of the new fast dynamic controllability algorithm has been tested 
using a set of randomly generated problems.  
 
 
 
Thesis Supervisor:  Brian C Williams 
Title:  Associate Professor of Aeronautics and Astronautics  
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1  Introduction 

1.1 Motivation 
 In the future, groups of distributed autonomous robots will need to cooperate in order 
to solve complex problems.  In the not too distant future, teams of autonomous robots 
will be exploring the surface of Mars and aiding humans in the exploration of the planet.  
NASA is currently exploring tight coordination between two autonomous rovers 
[Huntsberger 2004].  Furthermore, NASA’s Earth and Space Science Enterprises are 
planning the creation of sensor webs that will quickly and accurately characterize 
weather, fire, planetary eruptions, and other scientific events in real time.  These sensor 
webs will consist of heterogeneous robots that range from Earth orbiting satellites to 
autonomous Unmanned Aerial Vehicles (UAVs). Observations will require the 
coordinated activities of multiple spacecraft that will be organized in constellations, space 
interferometers, telecommunication clusters, or other organizations of Earth and Deep 
Space observing systems.  Proposed and planned NASA missions involving the 
coordination of multiple spacecraft include Earth Observing missions, such as COACH, 
Leonardo, Global Precipitation, ATOMS, and A-train and deep space missions, such as 
Terrestrial Planet Finder, Constellation–X, LISA and Starlight. NASA has identified both 
formation flying and autonomy as enabling technologies in its current vision of space 
exploration [Aldridge 2004].  On the terrestrial front, large groups of tiny wireless 
processors forming ad hoc networks will soon pervade the landscape, performing traffic, 
weather, or building monitoring. 
 
 In general, these autonomous multi-agent systems will be composed of a set of self-
reliant agents that plan, sense, act, and communicate in an uncertain world, in order to 
achieve a common goal.  Moreover, the agents will require cooperative plans that encode 
temporal synchronization, in order to achieve mission critical goals.  Distributing the 
intelligence across several agents will make these systems more robust, efficient and 
adaptive.  Spacecraft autonomy has successfully been demonstrated for single agent 
space systems such as Remote Agent [Muscettola 1999]; however, distributed space 
autonomy has yet to be realized.  One of the major components required for realization of 
these complex distributed multi-agent systems is a distributed robust executive that 
enables a set of agents to collectively schedule coordinated tasks, while dynamically 
reacting to uncertainty under limited communication. 
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Figure 1-1 Examples of Future Multi-Agent 
Systems 

(left) A group of autonomous rovers that will explore Mars, (right) a 
constellation of three satellites for NASA’s proposed Terrestrial 
Planet Finder mission. 

1.2 Distributed Multi-Agent Scenario 
 Consider a simple sensor web scenario that involves a cluster of low Earth orbiting 
satellites and a fleet of UAVs, in which the satellite observations guide the more detailed 
observations of the UAV fleet.  The UAVs know the general location of the science 
targets; however, they require the imagery data from the satellites in order to identify 
specific science targets. In order to complete the mission, the satellite cluster and UAV 
fleet will need to loosely coordinate their activities.  Specifically, in order for the UAVs 
to use the satellite imagery, the satellites must complete their imaging before the UAVs 
start their observations.  In addition, the UAVs in the fleet and the satellites in the cluster 
will require tight coordination with one another.  Some of the low level group behavior, 
such as station keeping or flying in formation, will be achieved by a purely reactive feed-
back loop; however, other group behavior, such as coordinated observation, or 
reconfiguration, will require the agents to synchronize their actions through temporal 
planning.  For example, the satellite cluster requires tight coordination in order to use 
interferometry, as shown in Figure 1-2.  Interferometry is a technique which allows a 
cluster of satellites flying in a more or less uniform pattern to produce high resolution 
image using multiple apertures.  Radar interferometry requires each satellite to illuminate 
the same area, “the footprint,” simultaneously.  An echo is received by each satellite and 
each portion of the image is constructed by pairwise interference of signals.  The full 
image is then constructed by processing the data collected from all the satellites.  This 

communicating

planning

sensing
acting

waypoint2waypoint1
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entire process requires tight temporal coordination between the satellites.  The satellites 
will also need to tightly coordinate their activities when the cluster reconfigures.  
 
 
 

 
Figure 1-2  The proposed TechSat21 was a proposed mission that uses a cluster 
of small distributed satellites to perform space based sensing using interferometry.  
The satellites need to tightly coordinate their activities when imaging or 
reconfiguring the cluster.  

 
 The UAVs will also need to tightly coordinate their activities.  For example, consider 
a scenario in which the UAVs start from a base station, fly to a science target, disperse to 
make individual observations, then rendezvous before returning to a base station as a 
group.  In this scenario, the UAVs will need to synchronize their activities at a set of 
distinct timepoints. 
 
 In the above scenario, portions of the full cooperative plan will require tight 
coordination, for example inter-cluster or inter-fleet coordination, whereas, other portions 
of the plan will only require loose coordination.  The term tight coordination refers to a 
portion of the plan where the activities are both heavily coupled (the execution time of 
one activity affects the feasible execution times of many other activities) and relativity 
inflexible, meaning the constraints between the activities are tight.  At the extreme, tight 
coordination corresponds to bunches of activities being rigidly constrained.  Loose 
coordination is the opposite of tight coordination; the activities are relatively decoupled 
and the temporal constraints that do exist between the activities are flexible. 
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1.3 Research Challenges 
  One major challenge is to enable the agents to robustly synchronize their activities in 
the face of uncertainty and limited communication.  In order for multiple agents to 
synchronize their activities, they require a cooperative temporal plan, some means to 
determine the feasibility of the plan, and some means to execute that plan.  [Dechter 
1991] introduced a formalism, called Simple Temporal Networks (STNs), in order to 
model the temporal constraints between activities along with a centralized means to 
detect if the plan is temporally consistent. Given a consistent plan, the simplest approach 
to execute the plan is to generate a fixed schedule offline, then dispatch the tasks at the 
pre-scheduled time. However, this approach does not allow the executive to adapt the 
schedule in response to uncertain events at execution time. A fixed schedule is inflexible 
to uncertainty. 
 
 An alternative approach defers the scheduling to execution time.  [Muscettola 1998a] 
showed how to efficiently perform this type of online execution in order to adapt to some 
amount of unmodeled uncertainty for single agent systems.  In this approach, the plan 
retains temporal flexibility and the executive exploits this flexibility by scheduling the 
activities based on previous scheduling decisions. The temporal constraints of the plan 
are compiled (reformulated) offline in order to enable the executive to consistently and 
efficiently perform this online scheduling.  However, this approach makes no guarantee 
about the ability to respond to uncertain events.    
 
 In order to ensure some level of robustness to uncertainty, the executive needs a model 
of uncertainty so that it can reason about its ability to respond to events of uncertain 
duration.  For example, one of the most basic tasks for a mobile robot is to move from 
one location to another. The duration of this activity is uncertain.  The robot is unable to 
predict the exact time it reaches its intended location because of wheel slippage.  
However, the plan may contain other activities that are constrained with respect to this 
uncertain outcome.  These plans are called partially controllable because the agent only 
has control over the execution time of a subset of the events.  In general, these uncertain 
events are either controlled by nature (as in the case of wheel slippage) or are under the 
control of some other agent.  In order to be robust to this temporal uncertainty, the robot 
should determine (prior to execution) whether it can appropriately adjust the schedule of 
the plan in all possible situations.  In some cases, where there is a large amount of 
flexibility in the plan, it is possible to statically schedule the controllable events; 
however, if tight coordination is required, the agent must dynamically adapt to the 
uncertainty. 
  
 [Vidal 1996] introduced a formalism, called Simple Temporal Networks with 
Uncertainty (STNU), which introduced a means to model temporal uncertainty within 
STNs. [Vidal 2000] introduced a strong controllability algorithm to determine if the plan 
contained enough temporal flexibility in order to fix the schedule without knowing the 
uncontrollable outcomes.  In the cases where the plans are not strongly controllable, 
[Morris 2001] introduced a dynamic controllability algorithm, which enables the 
executive to determine if there is enough flexibility in the plan to compensate (at 
execution time) for the temporal uncertainty in the plan. This dynamic controllability 
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algorithm reformulates the plan into a dispatchable form, in order to enable the executive 
to efficiently react to the uncertainty, by using a type of execution monitoring. [Morris 
2001] also introduced a means to dynamically execute these partially controllable plans 
by using local updates at execution time. However, these techniques are centralized 
algorithms developed for single agent systems. 
 
  
     The simplest approach to extend these techniques to multi-agent systems is to use a 
 leader-follower architecture in which one agent (the leader) performs all of the offline 
reasoning and online scheduling decisions.  The leader schedules each task, then 
dispatches the tasks to the followers. The followers simply receive commands, executes 
them, and then sends updates to the leader when the activities are complete.  This leader-
follower architecture is illustrated in Figure 1-3 (a). There are several disadvantages to 
using this architecture.  First, there is a communication bottleneck through the leader, 
which prevents this architecture from scaling to a large number of agents. Second, the 
leader introduces a single point of failure in to the system.  Third, if one of the followers 
moves out of communication range, the follower loses its ability to receive commands 
and to send updates to the leader.  Thus, the leader can not properly perform the online 
execution required to compensate for the uncertainty in the plan.  In order to dynamically 
execute the plan under communication limitations, the plan needs to be distributed among 
several agents, such that each agent can participate in making the online execution 
decisions. The distributed architecture is shown in Figure 1-3 (b). 
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follower1

follower2
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agent1

agent2

agent4

agent5

(a)
(b)

 
Figure 1-3 (a) In the leader-follower architecture the leader makes 
all of the scheduling decisions. If communication is unavailable 
during part of the mission, the leader is unable to dynamically 
schedule tasks to the follower.  (b) In a distributed architecture, the 
scheduling decisions are made by multiple agents; therefore, the 
system is robust to communication limitations. For example, if the 
communication link between agent2 and agent4 is unavailable, as 
long as agent3 and agent4 do not need to synchronize their 
activities with the other agents, they will be able to successfully 
execute their local plan. 
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    There exist several basic categories of distributed architectures. [Schetter 2003] 
discusses several basic types of distributed agent hierarchies for autonomous control of 
satellite clusters. The architectures differ based on how the intelligence (decision making, 
planning, scheduling, and execution) is distributed among the agents, and how they 
interact. The four basic general type of organization (as shown in Figure 1-4 ) are: 
 

• Top-down coordination  
• Centralized coordination 
• Hierarchicalyl distributed coordination 
• Fully distributed coordination 
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Figure 1-4 Different Types of coordination 
architectures for multi-agent systems 

In the top-down architecture, there is one intelligent leader that does all of the decision 
making, planning and scheduling.  The followers simply receive and execute commands.   
  
 In the centralized architecture there still is a single leader that coordinates the clusters 
as a whole; however, the follower agents have increased intelligence and can interact 
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with the leader to aid in the planning and scheduling. For example, the leader may send a 
task to the follower to move to a position; however, it is left up to the follower to 
generate the low level command sequence to achieve the task.  Furthermore, the follower 
agents may perform local computations and may send information back to the leader, in 
order to enable the leader to determine the state of the whole system or aid it in doing the 
high level planning.  Consider a case when the leader sends out a set of possible plans to 
a follower.  The follower must then determine the best plan, and then inform the leader of 
its choice so that the leader can schedule the system as a whole.   
 
 In the hierarchical distributed coordination architecture, the cluster’s high-level 
intelligence, including decision making, planning, and scheduling, is distributed among 
several co-leaders. Each co-leader uses a set of distributed planning and scheduling 
algorithms in order to coordinate the clusters.  Each co-leader coordinates the decisions, 
planning and execution with a set of follower agents, organized similar to the centralized 
architecture.  The distributed architecture reduces the communication bottleneck and 
makes better utilization of the computation resources of the cluster.   
  
 In a fully distributed architecture, each agent in the system has equal intelligence.  All 
agents participate in decision making, planning, and scheduling for the cluster as a whole. 
[Schetter 2003] described these agents as having “full group intelligence”.  This system 
has the benefit of being highly adaptable, reliable and scalable; however, the architecture 
must handle increased communication cost.  
 
 In summary, in order to be robust to temporal uncertainty, the executive needs to 
dynamically schedule activities based on the outcome of uncertain durations.  Dynamic 
execution requires the agents to communicate. However, communication between the 
agents may be limited during certain portions of the mission.  In order to be robust to 
communication limitations, the plan needs to be distributed among the agents so that each 
agent can participate in making the online execution decisions. This leads us to the focus 
of this thesis, which is to create a distributed executive that can react efficiently and 
robustly to the temporal uncertainty, under limited communication. 

1.4 Basic Centralized Architecture 
 The goal of this thesis is to extend the centralized autonomous planning and execution 
architecture, shown in Figure 1-5, to distributed Multi-Agent Systems (MAS).  
Specifically, this thesis focuses on developing an executive that enables a set of 
distributed agents to cooperatively schedule a partially controllable temporal plan in the 
presence of communication limitations. 
 
 The centralized architecture consists of several different functional layers, which 
collectively translate a set of mission goals into hardware commands.  The different 
functional layers each play a part in converting abstraction to reality.  At the top, either a 
human programmer or generative planner converts the mission goals into a temporal 
plan.  The temporal plan consists of a set of strategies for achieving the mission goals. 
This plan contains a set of activities along with a set of temporal and symbolic 
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constraints, constraining the activities in the plan.  The temporal plan is specified with a 
set of functionally redundant means to achieve the mission goals.  The temporal planner’s 
job is to select one means to achieve the goals based on viability or optimality [Williams 
2001, Kim 2000].   It defers the scheduling of the plan to the executive. When the 
executive receives the plan it still contains some temporal flexibility.   
 
 The goal of the executive is to dynamically schedule each task of the plan.  The 
executive is composed of two main components: a reformulator and a dispatcher.  The 
reformulator compiles the temporal constraints of the plan offline in order to enable the 
dispatcher to efficiently schedule the tasks at execution time.  The reformulator provides 
a guarantee that the dispatcher can consistently and dynamically execute the plan.  The 
dispatcher uses a dynamic execution strategy, which schedules and executes the tasks 
simultaneously. The dispatcher uses a type of online execution monitoring in order to 
adapt the schedule of each task based on the outcome of uncertain events at execution 
time. The dispatcher sends the tasks to a reactive controller, which determines the current 
state of the agent and determines the low level means to achieve each task.  The reactive 
controller directly interacts with the hardware by sending commands and receiving 
observations from the sensors. The executive schedules mid-level tasks such as “place 
manipulator at position x”, whereas, the reactive controller is in charge generating the 
low-level commands to the actuators in order to achieve this task. 

Human or Generative Planner

Temporal Planner

 plan

mid-level tasks execution status

execution status

plan status

Executive

partially ordered
temporal plan

low-level commands

Reactive Controller

Hardware

observations

Executive

Reformulator

Dispatcher

dispatchable plan

mid-level tasks
execution status

partially ordered
temporal plan

execution status

execution status

 
Figure 1-5 Centralized Planning/Execution Architecture       An 
executive is a scheduler that converts a partially ordered temporal 
plan into a sequence of hardware commands. The executive 
consists of a reformulator, which prepares the plan for execution, 
and a dispatcher, which schedules tasks in real-time in order to 
adapt the schedule to the uncertain events. 

 The above planning/execution architecture achieves robustness by combining both 
reactive and deliberative components (a hybrid system). The reactive controller provides 
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the ability to adapt tasks to the current state of the agent and the dispatcher provides the 
ability to adapt to temporal uncertainty. In this thesis we are particularly interested in the 
reformulator, which reasons about the temporal uncertainty in the plan prior to execution.  
The reformulator guarantees that the execution will be successful barring some hardware 
failure, while allowing the agent to adapt the schedule to run-time uncertainty. 
 
 The architecture described above is in contrast to purely reactive systems, popularized 
by [Brooks 1986], which continue to gain popularity in the Multi-Agent Systems 
community through swarm intelligence [Eberhart 2001, et. al].  [Parker 2001] gives a 
good reference for current work in distributed robotics with emphasis on current behavior 
based approaches. Furthermore, NASA is investigating a distributed behavior based 
architecture called CAMPOUT [Huntsberger 2003].  Behavior based approaches generate 
actions through interaction – there is no explicit plan.  These are able to adapt to novel 
situations and works well to control low level coordination when the agents are able to 
maintain constant communication. However, the architecture lacks the ability to do any 
complex temporal planning. Furthermore, it lacks the ability to coordinate the agents’ 
tasks when they cannot communicate.  For this reason, these systems cannot guarantee 
that their execution strategy will succeed. Theses systems rely on a set of emergent 
behaviors to achieve their mission goals, making them difficult to analyze.  For this 
reason, there has been a strong reluctance to allow these purely reactive autonomous 
systems to manage mission critical tasks, particularly within the risk averse space 
exploration community.  
 
  At the other end of the spectrum, there are complete deliberative systems that offer 
the programmer a stronger level of control over the systems behavior, by explicitly 
generating a consistent temporal plan prior to execution, such as Kirk, ASPEN, Europa, 
and LPGP. [Kim 2001, Chien 2000, Johnson 2000, Long 2002].  These systems allow the 
programmer to generate plans for tight temporal coordination and provide a level of 
assurance that the plan will succeed.  Furthermore, they provide some limited ability to 
react to temporal uncertainty at execution time by using a dynamic execution strategy. 
However, without using an explicit model of uncertainty, these systems cannot guarantee 
that plans that require tight coordination will succeed.  Uncertainty makes these plans 
susceptible to execution failure.  In order to deal with plan failure at execution time, the 
system must re-plan.  In order to efficiently re-plan, the system must either pre-compute a 
set of contingent plans that it chooses from upon failure or must provide a fast means to 
re-plan.   For example, [Drummond 1994] proposed a method to compute contingencies 
for the most likely failure mode; however, it requires exponential space in the worst case.  
Furthermore, recent methods of incremental temporal consistency checking [Shu 2003] 
have mitigated the cost of temporal reasoning during replanning; however, replanning 
still carries the burden of requiring exponential time in the worst case. 
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1.5 Problem Statement 
 The problem addressed in this thesis is to efficiently reformulate cooperative multi-
agent temporal plans that contain an explicit model of uncertainty, in order to enable a set 
of distributed agents to robustly and efficiently execute these plans when communication 
is limited between the agents at execution time. 

1.6 Proposed Approach 
 In this thesis we introduce a two layer approach that clusters the tightly coordinating 
portions of the cooperative multi-agent plan into a set of group plans such that each group 
plan loosely coordinates with one another. The group plan clustering is done such that the 
agents that participate in each tightly coordinating group plan are able to reliably 
communicate with each other at execution time; however, they may not be able to 
communicate with agents outside their group. This isolates the problem of dealing with 
communication limitations to inter-group communication limitations. Given this two-
layer plan structure, we introduce a hierarchical reformulation (HR) algorithm that 
compiles the temporal constraints of the plan such that each group plan are scheduled 
statically with respect to one another, while still enabling the activities within each group 
plan to be scheduled dynamically.  Statically scheduling the group plans with respect to 
one another removes the need for the agents to communicate outside their group and 
dynamically scheduling the tightly coordinating group plans enables the agents to 
robustly adapt to temporal uncertainty at execution time.  The basic approach is 
represented in Figure 1-6.   
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Figure 1-6 In order to adapt to runtime uncertainty within 
each tightly coordinating group plan, the agents use a 
dynamic execution strategy, and in order to cope with limited 
communication between the groups, the agents use a static 
execution strategy. 
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 The proposed approach exploits the observation that communication availability tends 
to be conjunct with tight coordination and tight coordination is necessary when you need 
to communicate.  In a distributed multi-agent system, when a set of agents need to tightly 
coordinate their activities and some of their activities have uncertain durations, they need 
to send one another updates (either explicitly or implicitly) so the rest of the agents can 
dynamically adjust their schedules.  Note that it is the relative flexibility of the temporal 
constraints between the activities compared to the uncertainty of the activities themselves 
that determine whether communication is required.  For example, even though a dance 
troupe requires tight synchronization between the dancers, they can achieve this tight 
synchronization without communicating with one another by practicing.  Practicing 
removes the uncertainty of their actions to a point in where they can synchronize their 
actions using a fixed schedule (i.e. triggered by the beat). The uncertainty is small 
compared to the synchronization requirements. However, when the uncertainty is large 
compared to temporal requirements imposed between the activities, the agents need to 
communicate.  In other cases communication is required in order to be efficient.  For 
example, consider a scenario when two UAVs plan to rendezvous, then fly off together to 
another common location. In this case, the UAVs should leave as soon as both UAVs 
have arrived at the rendezvous point, rather than waiting around (and wasting fuel) for 
some pre-specified departure time.   
 
 In general, tight coordination requires communication; however, communication may 
be limited.  Fortunately, the agents require tight coordination only when the agents are in 
close proximity with one another and this is when they can communicate. Therefore, 
when communication is needed, it is available. Conversely, when the agents are far apart, 
communication may be impossible or expensive. However, in these cases we expect the 
agents only to require loose coordination, and this loose coordination enables the agents 
to synchronize their actions by fixing their activities with respect to one another. 
Therefore, when communication is unavailable, it is not needed.  
  
 Consider the sensor web scenario.  The satellite cluster requires tight coordination and 
hence communication, in order to perform its interferometry task; the satellites’ close 
proximity enables them to maintain reliable and relatively inexpensive communication.  
Therefore, the satellites are able to send execution updates to one another in order to 
dynamically adjust their schedules.  In contrast, the satellite cluster may not always be 
able to communicate with the UAV fleet.  However, the satellites’ tasks and the UAVs’ 
tasks are fairly decoupled.  In this case, the UAV fleet can synchronize their activities 
with the satellite cluster by statically scheduling the start of their group plans with respect 
to one another. 
 
 The two layer approach proposed in this thesis is similar to the type of schedule that 
people use to manage a large project, such as designing a spacecraft, building a home, or 
managing a sports organization.  The total number of people and activities required in 
order to complete the entire job is enormous.  Furthermore, there typically contains many 
concurrent activities with complex temporal constraints between the activities. However, 
the project manager is able to manage the project as a whole without getting into the 
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details of each activity.  For example, a spacecraft project manager can fix the schedule 
of the design, build, test, and launch phases without considering the interactions of every 
engineer.  Similarly, the baseball schedule is fixed at the beginning of the season without 
getting into the detailed time constraints of each player.  The project manager is able to 
generate this schedule by considering the expected duration for each high level activity, 
then scheduling them to satisfy the inherent temporal constraints. The detailed scheduling 
of each low level activity is left up to the individuals within the group.  Each group is 
able to dynamically adjust their schedules on a day-by-day, hour-by-hour, or minute-by-
minute basis, as needed.  By statically scheduling at the high level, each team is able to 
work independently.  However, the project can get into trouble if the project manager 
does not adequately assess the uncertainty of the system or does not appropriately 
consider the temporal constraints between each activity.   
 
 In this thesis we provide a set of algorithms that analyze temporal uncertainty of the 
activities and the constraints between these activities, in order to enable the executive to 
schedule the high level activities prior to execution and the low level activities at 
execution time.  In general, a large project may contain several layers of management.  
Each level of management may consider the project at a different level of detail. 
However, in this thesis we limit our approach to two layers.  
 In this thesis we introduce a two layer plan in order to simplify the executive’s task of 
reasoning about both temporal and communication constraints.  The two-layer plan 
consists of a top level mission plan, and a set of lower level group plans.  The mission 
plan specifies the temporal constraints between each group plan and each group plan 
specifies a set of temporal constraints between the agent activities.  The set of agents that 
participate in each group plan are simply referred to as a group. We assume that agents 
within a group are able to maintain reliable communication with one another; however, 
this is not necessarily true for agents in different groups.  The details of each group plan 
are hidden from the mission plan.  This is done by using a simple abstraction for each 
group plan, called a macro, in the mission plan.  The macro is an executive summary of 
the group plan that represents the feasible duration of the group plan.  Replacing the 
group plan with the macro enables the executive to reason about the group plan 
interaction at a high level without getting in to the details of each group plan.   
 
 
 
Example 2-1: 

 In order to ground our discussion, consider the real life scheduling problem called the 
master’s student’s birthday party problem.  The two layer plan is shown in Figure 1-7 and 
is representative of the types of plans our executive intends to solve.  This rather simple 
scheduling problem successfully exposes several interesting aspects of multi-agent 
scheduling.  If the reader is unfamiliar with STNs or STNUs, the reader should read the 
appropriate sections in Chapter 2 before proceeding with this example.  
 
 The plan is carried out by three “agents”: Mother, Brother, and Student.  All three of 
them must coordinate their activities in order to have a successful birthday party. 
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However, it is undesirable to have everybody updating one another after completing 
every action.  The two-layer plan structures the plan such that the agents only need to 
update members of their own group.  The high-level plan structure is represented by the 
mission plan shown in Figure 1-7(a).   In this plan the brother and student go to the 
movies (Watch-Movie group plan) while the mother bakes the birthday cake (Bake-Cake 
group plan).  This is followed by all three of them getting together for the birthday party 
(Birthday-Party group plan).  The mission plan specifies a set of loose temporal 
constraints between each high-level activity. Specifically, the mission plan specifies that 
that the brother and student must be done watching the movie between [10, 90] minutes 
before the party starts. Similarly, the mother must finish baking the cake between [10, 60] 
before the party starts.  Furthermore, the entire mission must not take longer than 360 
minutes.  Note that the mission plan places no constraints on the duration of the group 
activities, hence the [0, INF] bound is initially placed on each group activity.  
Furthermore, there does not exist any explicit constraints restricting when the brothers 
need to start the Watch-Movie group plan nor when the mother needs to start Bake-Cake 
group plan.  These constraints need to be deduced. 
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Figure 1-7 The Masters Student's Birthday Party Problem (a) The 
mission plan shows the interaction between the three group plans: 
Watch-Movie, Bake-Cake, and Birthday-Party.  (b) The Watch-
Movie group plan involves the Student and Brother going to see a 
movie.  (c). The Bake-Cake group plan involves the mother baking a 
cake. (d) The Birthday-Party group plan involves everyone 
participating in a traditional the birthday cake eating ritual.  

 
 The three group plans are shown in Figure 1-7(b,c,d).  Each group plan specifies a set 
of tightly coordinated activities, performed by one or more agents, that are needed in 
order accomplish each high level activity.  Note that each “agent” participates in multiple 
group plans but never participates in the same group plan at the same time. Furthermore, 
each group plan shares a special timepoint Z (zero timepoint) with the mission plan.  This 
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timepoint is executed before all others. Specifically, this timepoint is always executed at 
time = 0.  By sharing this common timepoint, the group plans have the same temporal 
reference frame. It is a reference point from which to express constraints in absolute time.  
For example, in the Watch-Movie group plan there is a constraint ZG that specifies the 
movie start exactly 30 minutes after the start of the plan.  Assuming the mission starts at 
4:00 PM, this constraint specifies that the movie starts at 4:30 PM.  Without this fixed 
point Z, the group plan would not be able to represent these types of constraints.  Note 
that our approach is to fix the start of each group plan; however, this start time is not 
known a priori. 
 
 In order to schedule each group plan, the agents need to resolve several different types 
of scheduling issues.  First, the executive needs to be able to dynamically respond to 
uncertain events. This includes responding to the uncertainty of one another’s activities, 
as well as responding to the uncertainty of “natural” events.  For example, in the Bake-
Cake group plan, the mother needs to respond to the uncertainty in baking time of the 
cake. The cake will take between 30 and 40 minutes to bake; and the plan specifies that 
she needs to remove the cake from the oven no more than 5 minutes after it is baked 
through. In order to satisfy this constraint she must monitor the cake and adjust her 
schedule accordingly.  Second, the executive needs to reason about uncertainty prior to 
execution, placing additional constraints on the plan where necessary, in order to ensure 
that the explicit constraints in the plan are satisfied at execution time. For example, in the 
Watch-Movie group plan, the executive needs to reason about the uncertainty in both the 
brother’s and student’s drive times and must restrict their start times with respect to one 
another, in order to ensure that neither one is waiting at the theater for more than 5 
minutes alone. Third, the executive needs to reason about the relationship between the 
constraints within each group plan and the constraints of the mission plan, in order to 
ensure that the execution times selected for start of each are consistent.  
 
 This plan is typical of multi-agent plans, in that the plan as a whole consists of a set of 
concurrent and serial activities with a set of complex temporal and communication 
constraints relating these activities.  However, the reasoning required in order to schedule 
the plan is simplified by breaking the plan down into a set of smaller sub-plans and by 
coordinating the sub-plans by using a set of fixed synchronization points.   
 
 In order to prepare the plan for execution, we introduce a novel hierarchical 
reformulation (HR) algorithm, illustrated in Figure 1-8.  The HR algorithm first structures 
the plan into a two layer plan as previously described.  The HR algorithm applies a 
decoupling algorithm based on the strong controllability algorithm introduced by [Vidal 
2000] in order to generate a fixed schedule for each high level activity.  This removes the 
need for communication between each group plan at execution time.  Then we apply a 
new dynamic controllability algorithm in order to ensure that each group plan can be 
scheduled dynamically, in order to respond to uncertainty at execution time. We also 
apply an edge trimming algorithm to the resulting group plan, in order to efficiently 
execute each group plan.  
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Figure 1-8 Overview of Hierarchical Reformulation Algorithm 

 
 
 The overall block diagram of our approach is shown in Figure 1-9. The two layer plan 
is created either by compiling a plan that is specified in an augmented version of the 
Reactive Model-Based Programming Language (RMPL), called the Group Planning 
Language (GPL), or by clustering the tightly coordinated portions of a fully elaborated 
plan.  The temporal constraints of the two-layer plan are compiled using a centralized 
reformulator.  The heart of the reformulator is the Hierarchical Reformulation (HR) 
algorithm, which uses a combination of a dynamic controllability algorithm and a 
decoupling algorithm in order to prepare the plan for execution.  After reformulation, 
each group plan is distributed to a leader of each group. The leader of each group is in 
charge of dispatching commands to each agent in the group.  
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Figure 1-9 Distributed Executive Block Diagram 

 
 
 There are several benefits to organizing the plan in a two layer structure.  First it 
provides an efficient way to deal with communication limitations between agents.  
Second, the two layer structure enables a divide-and-conquer approach in which the 
dynamic controllability algorithm, the most expensive operation, is only applied to plans 
of limited size. Third, although we focus on addressing communication requirements 
associated with dynamic scheduling, this two-layer structure also ensures that any 
communication required by the reactive controller, such as state updates, is available 
between agents within the group.    
 
 The algorithms presented in this thesis are presented in the context of execution; 
however, this work also falls into the realm of temporal planning. Specifically, the task of 
the hierarchical reformulation algorithm is to reformulate the plan for execution; 
however, this reformulation is not guaranteed to succeed.  The techniques presented in 
this thesis can be applied during planning, in order to detect if a candidate plan is 
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feasible. Furthermore, the approach taken in this thesis should not be seen as a 
replacement for the behavior based multi-agent approaches, but rather as a complement 
to them.  In the future, autonomous robots will need to use both deliberative planning and 
scheduling techniques, as well as more purely reactive behaviors in order to be robust and 
adaptive 

1.7 Key Technical Contributions 
 This thesis makes three technical contributions.  First, we introduce the Hierarchical 
Reformulation (HR) algorithm, which exploits strong and dynamic controllability in 
order to enable a group of agents to dynamically schedule their activities under 
communication limitations. Second, we present a formal treatment of the dynamic 
controllability of systems that contain communication limitations, termed communication 
controllability. Third, we provide a novel, fast dynamic controllability (FAST-DC) 
algorithm.  This algorithm is applicable to both multi-agent and single agent systems.  
 

1.8 Grand Vision 
The approach introduced by this thesis makes steps toward a completely distributed 
planning and execution architecture.  In the grand vision, each agent in the system 
operates autonomously using a set of distributed algorithms in order to plan and execute 
their cooperative plans. In the future work section, we provide initial work on how both 
the reformulation and dispatching algorithms can be mapped to a distributed algorithm.   
 

1.9 Range of Applicability 
Although most of the examples focus on robotics, particularly Mars exploration, the ideas 
presented in this thesis are applicable to a wide variety of real-world scheduling 
problems, including but not limited to the following: 
 

• Groups of rovers exploring Mars, 
• Cluster of satellites for interferometry missions, 
• Coordinated activities within a single spacecraft, where each component is treated 

as a separate agent, and 
• Execution of commands on a set of distributed tiny processors.  

 

1.10 Roadmap for Thesis 
 Chapter 2 presents background on Simple Temporal Networks (STNs) and Simple 
Temporal Networks with Uncertainty (STNUs).  Specifically, we show how to 
reformulate and dispatch STNs in the centralized case.  Chapter 3 starts by presenting the 
formal definition of communication controllability.  Next, it formally defines the two-
layer MTPNUs and shows how to construct these two-layer plans. Then it presents the 
decoupling algorithm and the Hierarchical Reformulation (HR) algorithm. Chapter 4 
presents the fast dynamic controllability (Fast-DC) algorithm. Chapter 5 discusses the 
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implementation of the Hierarchical Reformulation algorithm, along with empirical results 
for Fast-DC algorithm.  It also discusses directions for future work.  
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2 Background 

2.1 Introduction 
 This chapter provides the necessary technical background needed to understand 
dynamic execution of temporally flexible plans. As such, the reader may need to refer 
back to this chapter many times, while reading the subsequent technical chapters.  The 
reader should focus on gaining a good working knowledge of the high level ideas by 
studying the canonical examples given in this chapter.  
 
 The outline of the chapter is as follows. First, we review the theory of Simple 
Temporal Networks (STNs) and the Temporal Plan Networks (TPNs) which encode 
temporally flexible plans.  Then we review the reformulation and execution algorithms 
introduced by [Tsarmardinos 1998] and [Muscettola 1998a].  Executing a temporally 
flexible plan is a two step process that consists of 1) the offline reformulation phase that 
compiles the temporal constraints of the plan, and 2) an efficient online dynamic 
dispatching phase, which dynamically schedules the timepoints in the reformulated plan.  
The reformulation phase enables the dispatcher to efficiently and consistently schedule 
the plan during execution.  Then we review Simple Temporal Networks with Uncertainty 
(STNUs) [Vidal 1996] and the associated Temporal Plan Networks with Uncertainty 
(TPNU), which introduce an explicit model of uncertainty into the temporal plan.  A 
TPNU enables the plan to represent activities whose durations are not controlled by the 
executive, but rather by nature. Hence, these plans are referred to as partially controllable 
plans. 
 
 By the end of this chapter, the reader should have a good working knowledge of 
STNs. Specifically, the reader should 1) understand how to reformulate STNs into a 
dispatchable network, 2) understand how the dispatcher dynamically executes these 
reformulated networks, and 3) understand how to represent an explicit model of 
uncertainty within temporal plans. 

2.2 Temporal Constraint Satisfaction Problem 
 In this thesis we are concerned with temporally flexible plans.  These temporal plans 
are a set of partially ordered activities along with a set of temporal constraints, which 
model the duration of each activity and constrain the execution time of each activity with 
respect to one another. Each activity in the plan is associated with two instantaneous 
events, called timepoints.  Specifically, the start of each event is associated with a start 
timepoint and the end of each activity is associated with an end timepoint.  The start and 
end timepoints are separated by a non-negative duration.  The temporal constraints of the 
plan are represented by a set of inequalities, which constrain the timepoints of the 
activities with respect to one another.  The actual time occurrence of a timepoint A is 
written T(A), or TA.  
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 For example consider how the following statement is converted into temporal constraints 
involving inequalities.  
 

• “Study for the exam for at least 1 hour and at most 3 hours”  
      1 hour   ≤   T(end_study) – T(start_study) ≤  3 hours      
 

In general, the set of constraints form an instance of a Temporal Constraint Satisfaction 
Problem (TCSP) [Dechter 1991].  
 
A TCSP:  

• A set of timepoints Xi at which the events occur 
• A set of disjunctive unary constraints:  (ao ≤  Xi ≤  bo) or (a1 ≤  Xi ≤  b1) … 
• A set of disjunctive binary constraints: (ao ≤  Xj - Xi ≤  bo) or (a1 ≤  Xj– Xi ≤  b).. 

 
A solution to the TCSP is a schedule, T, which is an assignment to each timepoint Xi 
such that all of the temporal constraints are satisfied.  In general, solving the TCSP is NP 
hard [Dechter 91], because the algorithm that generates the schedule, T, must consider 
every possible combination of disjunctive constraints.  In the next section, we review 
simple temporal networks that only use non-disjunctive binary constraints. 
 

2.3 Simple Temporal Network and Temporal Plan Networks 
 
 In this section we review Simple Temporal Networks (STNs) and Temporal Plan 
Networks (TPNs).  An STN only contains simple binary temporal constraints between 
timepoints. The STN is simple, because it does not allow disjunctive temporal 
constraints. Specifically, it only allows one interval between each pair of timepoints.  
STNs have been widely used in planning and scheduling, because they enable fast 
temporal consistency checking and can be scheduled dynamically, yet they are expressive 
enough to represent many real-world problems.  The temporal consistency of an STN can 
be checked in polynomial time using a Single-Source Shortest-Path (SSSP) algorithm 
such as Bellman-Ford SSSP [CLR 1990, Dechter 1991].  Furthermore, other well known 
graph algorithms, such as Floyd-Warshall All-Pairs Shortest-Path (APSP) [CLR 1990] 
algorithm can be used to derive a set of implied constraints encoded by the explicit 
constraints.  
 
 An STN is visualized as a directed graph G = <N,E>, where the timepoints of the 
graph represent the timepoints, and the directed edges represent the simple temporal 
constraints.  Each edge, AB, between timepoints A and B, contains a lower and upper 
bound [lb,ub] such that, lb ≤ TB - TA ≤ ub.  For example, consider the STN shown in 
Figure 2-1(a).   The STN contains four timepoints and four directed edges constraining 
the execution time of the timepoints. Consider the edge AB, the interval [0,8] imposes 
one upper bound constraint,  TB – TA  ≤ 8, and one lower bound constraint,  TB – TA  ≥ 0. 
 

Paul Robertson
Did you mean vertices?
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Figure 2-1 (a) Simple Temporal Network (STN) (b) The 
associated distance graph of the STN 

 
 
 
The formal definition of a STN is given below:  
 
Definition 2-1 (STN [Dechter 1991]): A STN is a 4-tuple <N, E, l, u> where, N is a set 
of timepoints, E is a set of directed edges.  Each edge E, between timepoints A and B 
contains a lower and upper bound temporal constraint, where, l : E  ℜ ∪ {-∞} and u : 
E  ℜ ∪ {+∞} are functions mapping edges to the extend Real Number such that l(AB)≤  
T(B) –T(A) ≤  u(AB).  
 
 
 A Temporal Plan Network (TPN) generalizes the STN to include activities. A TPN is 
a set of activities to be performed, each of which includes a start and end time, together 
with a set of temporal constraints that specify the valid start and end times for each 
activity.  The temporal constraints are specified as simple temporal constraints.  Hence, a 
TPN is a generalization of a STN consisting of a set of activities A, and a mappings, T+: 
A  N, and T-:A N, mapping the start and end times to the timepoints in the STN.  We 
say a TPN is constrained by a STN.    
 
 Consider the simple TPN shown in The TPN specifies a plan where the two rovers 
explore two different regions.  The rovers are free to start exploring any time between 
[0,10] minutes.  Each rover is free to explore for [30,60] minutes before returning to 
some rendezvous location. Once at the rendezvous location, the plan specifies that the 
rovers should not wait more than 5 minutes. Furthermore, the rovers must complete their 
exploring at least 10 minutes before the sunsets, which occurs 60 minutes after the start 
of the plan.  Note that the +INF bound on the link EF corresponds to places no 
constraints on the plan.  Also, note that the TPN also contains a special timepoint Z 

Paul Robertson
Since the locations are different the sunsets could occur at different times and so your sentence is strictly correct however since you mention that the sunsets occur 60 minutes after the start of the plan they actually occur at the same time.  That being so the sentence is easier to read if you say “10 minutes before sunset” rather than “10 minutes before the sunsets”.
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which is not associated with any activity.   The plan is flexible, and only partially 
ordered.  
 

Z

C

[0,10]

B

D

[30,60]

[30,60]

rover1.explore(region1)

rover2.explore(region2)

A

[0,10]
E

[0,5]

[0,5]

[0,0]

F
[60,60]

G

sunset

[10,INF]

rover1.wait

rover2.wait

 
Figure 2-Error! Not a valid bookmark self-reference.2-2  The TPN specifies a 
plan where two rovers explore separate regions then wait for the other to arrive. 
Their activities are constrained with respect to one another as well as with respect 
to the sunset, which occurs 60 minutes after the start of the plan.  

 
 Every STN has an equivalent representation, called the distance graph [Dechter 1991]. 
The distance graph is a simple, but extremely useful representation of the temporal 
constraints.  In the distance graph, every edge only contains one constraint.  Specifically, 
each edge AB in the distance graph has a distance, b(A,B), which specifies the constraint: 
TB – TA ≤  b(A,B).  
 
 A distance graph edge represents an upper bound on B with respect to A if the b(A,B) 
≥ 0, and, the edge represents a lower bound on B with respect to A if b(A,B) < 0. The 
reason a negative edge represents a lower bound is easily seen by performing some 
simple algebra. Consider a situation where the time of B must occur at least 5 minutes 
after A.  This is represented by the inequality: TB – TA  ≥ 5. However, this does not fit the 
form of the distance graph edge.  Simply multiplying the inequality by -1, results in a 
new inequality: TA – TB  ≤ -5, which is in the proper form.  This corresponds to an 
distance graph edge BA with distance b(B,A) = -5.   
 
 In order to avoid confusion, the constraints in the STN are referred to as links, 
whereas, the constraints in the distance graph are referred to as edges. An STN can be 
converted into a distance graph by replacing each link in the STN with a pair of directed 
edges, such that each link AB ∈ [lb,ub] in the STN is replaced by one upper bound edge 
AB with b(A,B) = ub, and one lower bound edge BA with b(B,A) = –lb.  Note that the 

Paul Robertson
In some places you write “a STN” and on other you write “an STN” you should pick one and stick to it.
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lower bound value is negated.  For example, Figure 2-1(a) shows a STN and Figure 
2-1(b) shows the associated distance graph.  In particular, consider the STN link CD of 
[2,3], in Error! Reference source not found.(a).  This STN link is converted into one 
upper bound edge CD with b(C,D) = 3, and one lower bound edge DC with b(D,C) = -2, 
in Figure 2-1(b). 
 
The formal definition of a distance graph is given below. 
 
Definition 2-2 (Distance Graph [Dechter 1991]) A distance graph, D = < N, E, b >, is 
a weighted directed graph, where N is the set of timepoints, E is the set of directed edges 
and b: E  ℜ ∪ {+∞,}∪ {-∞,} maps the edges, E, to the extended Real Numbers.  A 
distance b(AB) imposes an constraint that T(B) – T(A) ≤ b(A,B). 
 
 The links of the STN fall into different categories depending on the values of the 
lower and upper bound.  Consider a STN link AB ∈ [x,y].  Figure 2-3 shows the 5 
different types of STN links along with the associated distance graph.  If x,y ≥ 0, and y > 
x, then STN link represent a true upper and lower bound on B with respect to A, as 
shown in Figure 2-3 (a). In this case timepoint A must always precede timepoint B.  If x 
= y, then the B is rigidly constrained with respect to A (i.e. there is no flexibility in the 
execution time), as shown in Figure 2-3 (b).  In the special case when x = y = 0, then the 
timepoints A and B are zero-related by a zero-zero constraint, as shown in Figure 2-3 
(c). If x < 0 and y > 0, then the edge represent two upper bounds.  In this case the 
execution order between A and B is undetermined, as shown in Figure 2-3 (d).  If x > y 
then the constraint is inconsistent, as shown in Figure 2-3 (e). In this case the lower 
bound is greater than the upper bound, which is a direct inconsistency. Specifically, B 
must wait at least 5 time units after A, but no more that 3 time units.  Finally, if x ≥ 0 and 
y < 0, then this corresponds to two lower bound edges, which is an extreme example of 
temporal inconsistency, as shown in Figure 2-3 (f).  In this case, A must execute before 
B, and B must execute before A.  
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Figure 2-3 Different types of STN links 

 
 
 The distance graph provides a means to derive the implicit constraints.  The implicit 
constraints are simply derived by computing shortest paths in the distance graph.  The 
implicit constraints are derived by simply combining inequalities imposed by the edges.  
For example, consider the distance graph in Figure 2-4(a).  The implied constraint AC is 
derived by combining the constraint on edge AB and edge BC as follows.  
   
             TB - TA ≤  8   : edge AB 
        TC – TB              ≤  1  : edge BC 
       -------------------------------------- 
     TC         - TA  ≤  9   : derived edge AC 
 
 In this simple example, there is only one possible path from A to C; however, in a 
general distance graph there exist many possible paths.  In order to compute the tightest 
(most restricted) implied constraint we must consider all possible paths.  Fortunately, 
finding shortest paths in directed graphs is a well studied problem.  Specifically, the 
tightest constraints between every pair of timepoints can by computed by either the well 
known Floyd-Warshall All-Pair Shortest-Path (APSP) algorithm which runs in Θ(N3) 
time or computed using Johnson’s algorithm, which runs in O(NE lg N ) time when 
implemented using a binary-heap [CLR 1990].  
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Figure 2-4  (a) The distance graph containing only the 
original constraints (b) The edges AC and CA are deduced by 
computing the shortest path ABC and CBA, respectively.  

 
 
 The consistency of the STN is also determined by computing the shortest paths in the 
distance graph. [Dechter 1991] showed that a STN is temporally consistent iff the 
associated distance graph contains no negative cycles. By definition, an STN is consistent 
if there is an assignment to the timepoints that is consistent with every temporal 
constraint.  Consider the distance graph shown in Error! Reference source not found. 
The negative cycle ABDCA implies an edge AA of -1.  This means T(A) – T(A) ≤ -1, 
which is inconsistent because T(A) – T(A) is always 0.   
 
 Negative cycles can be checked by computing the APSP graph then checking for 
negative distances on the diagonals [CLR 1990]. There also exist other well known 
algorithms, such as Bellman-Ford Single-Source Shortest-Path, which detects negative 
cycles without constructing the APSP graph, which requires N2 space [CLR 1990].  
Furthermore, the Bellman-Ford SSSP algorithm runs in O(NE) time [CLR 1990].  
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Figure 2-5 The distance graph is inconsistent because there is a negative cycle 
ABDCA. 
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Two good resources that formally cover other properties of STN include [Dechter 1991] 
and [Hunsberger 2002].  

2.4 Dynamic Execution of TPNs 
 In this section we describe the process of dynamically scheduling a TPN.  A TPN 
contains temporal flexibility and in order to exploit this flexibility, the timepoints are 
scheduled online.  Executing a TPN can be broken down into two phases, an offline 
reformulation phase, followed by an online dispatching phase as shown in Figure 2-6.   
The offline reformulation phase compiles the temporal constraints in to a minimal 
dispatchable network.  This enables the dispatcher to efficiently execute the plan using a 
small number of local propagations during execution. 
 

Consistent TPN

Minimal Dispachable Network
Reformulation

Planner

Dispatcher

Minimal Dispachable Network

HardwareCommands

Executive Offline

Online

 
Figure 2-6 Plan Runner Block Diagram 

 
 
 The goal of the dispatcher is to dynamically generate a consistent schedule for 
timepoints in the plan.   The dispatcher uses a least commitment execution strategy, 
where the timepoints are scheduled and tasks associated with the time point are executed, 
simultaneously.  Specifically, the dispatcher starts any activity whose start time is 
associated with the timepoint being executed or stops any activity whose end time is 
associated with the time point being executed. The dispatcher determines the schedule for 
future timepoints by using the execution times of the past.  In doing so, it makes 
scheduling decisions only after as much uncertainty about the past has been resolved. 
 
 The dispatcher dynamically schedules the timepoints by switching between executing 
timepoints and locally propagating the execution time to future timepoints.  These 
propagations are used to update the execution window for unexecuted timepoints.  
[Dechter 1991] showed that the initial execution window can be computed by using two 
SSSP computations.  An execution window consists of lower and upper bounds, which 
represents the range of feasible execution times for each timepoint. The dispatcher is free 
to choose any time within the timepoint’s execution window as long as the timepoint is 
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both alive and enabled. The next example will help us to define what we mean by alive 
and enabled and the STN_DISPATCHING algorithm shown in Figure 2-7. 
 
 

 
Figure 2-7 Pseudo-Code for the 
STN_DISPACHING Algorithm 

 
 

Example 2-1:  
  
 Figure 2-8 shows a sample execution of a simple STN.  The initial feasible execution 
windows for each timepoint are computed by considering the edges in the distance graph. 
A is the start of the plan and is assumed to be executed at T = 0.  This gives us fix 
reference point. We can then compute the maximum feasible execution time for each 

function STN_DISPATCHING(G) 
Input: a dispatchable distance graph G 
Effects: dynamically schedules each timepoint in G 
1.  Let 
  A= {start_time_point} 
  current_time = 0 
  S= {} 
 
2. Arbitrarily pick a time point TP in A such that current_time 
belongs to TP’s time bound;  
 
3. Set TP’s execution time to current_time and add TP to S; 
 
4. Propagate the time of execution to its IMMEDIATE NEIGHBORS 
in the distance graph; 
 
5. Put in all time points TPx such that all negative edges starting from 
TPx have a destination that is already in S; 
 
6. Wait until current_time has advanced to some time between  
  min{lower_bound (TP)  : TP in A} and 
  min{upper_bound} (TP)  : TP in A}; 
 
7. Go to 2 until every time point is in S. 
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timepoint by computing the shortest paths from A to all other timepoints. Similarly, the 
smallest feasible lower bound is computed by computing the SDSP from all timepoints to 
A.  
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Figure 2-8 The network is properly executed by using local 
propagation 

 Timepoint A is executed at T = 0, as shown in Figure 2-8 (a).  This execution time 
needs to be  propagated to all neighboring timepoints through the constraints. The upper 
bounds of the execution windows are updated by forward propagation and lower bounds 
are updated by backward propagation.  Consider the forward edge AB. It imposes an 
upper bound constraint on B with respect to A.  Specifically, TB – TA  ≤ 10.  Therefore, 
once we know that TA = 0, we can deduce TB ≤ 10.  This is an example of forward 
propagation.  Similarly, the edge BA imposes the constraint that TA – TB ≤ -1.  Therefore, 
when we know that TA = 0, we can derived the constraint TB ≥ 1.  This is an example of 
backward propagation along a negative edge.  However, this propagation provides no 
new information because we already knew that TA = 0 when we computed the initial 
execution windows. In general, propagation does not always impose more restrictive 
bounds on the execution windows. 
 
 In general, say we execute timepoint A and there exists a forward (outgoing) edge AB.  
This edge imposes a constraint TB – TA ≤ b(A,B). Once we know, TA, we can deduce an 
upper bound on B of TB ≤ TA + b(A,B).  Similarly, a backward (incoming) edge BA, 
imposes a constraint TA – TB ≤ b(B,A). Once, TA is known, we can derive a new lower 
bound on B of TB ≥ TA – b(B,A).  
 
 The dispatcher now has the freedom to choose any execution time for B that falls 
between its execution window of [1,10].  However, recall that the dispatcher executes and 
schedules at the same time.  Therefore, it must wait until the current time falls within the 
execution window.  We say the timepoint is alive if the current time is between the 
timepoints execution window.   
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 Suppose the dispatcher waits until T = 7 until it executes B, as shown in Figure 2-8 
(b).  Once it executes B, the dispatcher must propagate this execution time to its 
neighbors. It does not need to backward propagate the time through the positive edge AB 
nor forward propagate the execution time through the negative edge BA because it 
already used those constraints to select the time for B.   However, it does need to 
propagate its execution time to C.  Specifically, it needs to propagate through edges BC 
and CB in order to update the execution window of C. Specifically, C’s new upper bound 
is TB + b(B,C) or 7 + 10 = 17, and C’s new lower bound is TB – b(C,B) or 7 + 5 = 12.   
The dispatcher is now free to choose any execution time between [12,17]. Figure 2-8 (c) 
shows the case where the dispatcher waits until T = 15 to execute C. � 
 
 
 
 
 
 
Example 2-2: 
 
 In the previous example, we executed B before C. However, if we executed C before 
B, this would cause a problem.  For example, consider the execution sequence shown in 
Error! Reference source not found.  Timepoint A is executed at T = 0 as before.  
However, the dispatcher waits until T = 8. At which point both B and C are alive.  The 
dispatcher mistakenly chooses timepoint C for execution. This propagates a new upper 
bound to B, via the edge CB, and a new lower bound to B, via BC.  The new execution 
window for B is now [2,3].  Choosing any time between [2,3] is consistent; however, it is 
in the past!  In order to prevent the dispatcher from making this mistake we impose an 
enablement condition on each timepoint. The enablement conditions are derived by 
considering the negative edges in the distance graph.  Consider the edge BA. This impose 
a constraint that TA – TB ≤ -1 or TB – TA ≤ 1.  Hence B must always be executed at least 1 
time unit after A.   
 
 In general, a timepoint B is enabled only if all timepoints that must precede B have 
been executed.  The set of enablement timepoints are all timepoints A for which there 
exist an outgoing negative edge BA.  A timepoint can only be executed if it is both alive 
and enabled.  
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Figure 2-9 This network is improperly executed because the dispatcher did not 
respect the enablement conditions.  

 
 
 
Example 2-3: 
 
The dispatcher may still run into problems, even when the dispatcher only executes 
enabled and alive timepoints.  The temporal constraints in the distance graph explicitly 
express the pair wise ordering constraints.  However, there may exist implicit ordering 
constraints that need to be exposed before the dispatcher can properly execute the 
network. Consider the following STN and associated distance graph shown in Figure 2-
10.  After executing A at T = 0, both timepoint B and timepoint C are alive and enabled.  
However, timepoint C must be executed before B. Specifically, C must be executed 
exactly 2 time units before D and B must be executed exactly 1 time unit before D, 
therefore, C must be executed 1 time unit before B.  If the dispatcher chooses to execute 
B before C, then the dispatcher will fail. Note that these implicit ordering constraints 
exist for networks even it they do not contain rigid constraints.  
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Figure 2-10  There is an implicit temporal ordering between B and C.  
Specifically, B must be???  C must be executed exactly 1 time unit before B.  
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 [Muscettola 1998a] showed that any consistent STN it can be transformed into an 
equivalent dispatchable graph.  If the graph is dispatchable, it can always generate a 
consistent schedule by using local propagation to future timepoints.  [Muscettola 1998a] 
showed that an STN can be converted into a equivalent dispatchable graph by first 
computing the associated distance graph then computing the All-Pair Shortest-Path graph 
(APSP-graph) of this distance graph. Note that APSP-graph is called a d-graph by 
[Dechter 1991].  Furthermore, given a dispatchable graph, upper bounds only need to be 
forward propagated along outgoing non-negative edges and lower bound only need to be 
backward propagated along incoming negative edges. Computing the All-Pairs Shortest 
Path (APSP) graph performs two tasks: 1) it compiles the temporal constraints, such that 
all implicit constraints are exposed, and 2) is exposes the enablement conditions of the 
distance graph. 
 
  The APSP graph is dispatchable; however, the dispatcher must perform N 
propagation every time it executes a timepoint.  For large graphs this can be 
computationally expensive and may prohibit real-time execution. In order to reduce the 
propagation cost at execution time, the APSP is trimmed of all redundant edges.  An edge 
is redundant if in all possible executions, there exists another edge that always propagates 
a tighter bound. The two cases are shown in Figure 2-11.   [Muscettola 1998a] showed 
that the dominated (redundant) edges can be removed without adversely affecting the 
ability of the dispatcher to dynamically execute the network. 
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dominated by another negative edge BC
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than the lower bound propagated to A
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Figure 2-11 Definitions of upper dominance and lower-dominance 

 
 
[Muscettola 1998a] showed that an edge is only dominated edge satisfies the triangle 
rule.  We use notation |AB| is the shortest path distance as constructed by the APSP-
graph.  
 
Triangle Rule [Muscettola 1998a] Consider a consistent STN where the associated 
distance graph??? 
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 (1) A non-negative edge AC is upper-dominated by another non-negative edge BC if and 
only if |AB| + |BC| = |AC| 
(2) A negative edge AC is lower-dominated by another negative edge AB if and only if   
|AB| + |BC| = |AC| 
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Figure 2-12 (top) An example of upper-dominated edge AC 
(bottom) An example of a lower-dominated edge AC.  

 
 
The APSP-graph can be converted into a minimal dispatchable graph by applying the 
filtering algorithm introduced by [Muscettola 1998b].  A minimal dispatchable graph is a 
dispatchable graph that contains the fewest number of edges.  The minimal dispatchable 
graph enables the dispatcher to perform efficient execution. The pseudo-code for the 
filtering algorithm is given in Figure 2-14.   Note that one edge can dominate one another 
as shown in Figure 2-13.  This case only occurs when the intersecting edges are related 
by a rigid set of edges.  
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Figure 2-13 Mutual Dominance Example 
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Figure 2-14 Pseudo-Code for Filtering Algorithm 
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function FILTERING_ALGORITHM ( G ) 
Input: A dispatchable APSP-graph G 
Output: A minimal dispatchable graph  
1 for each pair of intersecting edges in G 
2  if both dominate each other 
3   if neither is marked 
4    arbitrarily mark one for elimination 
5   end if 
6  else if one dominates the other 
7   mark dominated edge for elimination 
8  end if 
9 end for 
10 remove all marked edges from graph  
11 return G 
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Figure 2-15 Basic Steps to STN Reformulation 

 
The pseudo-code for the basic reformulation algorithm, which converts an arbitrary STN 
into a minimal dispatchable graph, is given in Figure 2-16 [Muscettola 1998a].  The steps 
of the reformulation algorithm are illustrated in Figure 2-15.   First the STN is converted 
into the distance graph.  Then APSP-graph is computed from the distance graph.  Recall, 
the APSP-graph is dispatchable; however, typically contains many redundant edges.  
These redundant edges are removed by applying the filtering algorithm.  Recall that the 
filtering algorithm is based on the triangle rule. 
 

 
Figure 2-16 Pseudo-Code for Basic STN 
Reformulation Algorithm  

 
 
 
 The problem with the basic reformulation algorithm is that it causes an intermediate 
graph explosion. Specifically, the APSP graph requires O(N2) space.  Furthermore, the 
basic STN reformulation algorithm requires Θ(N3) time to run the filtering algorithm 
[Tsarmardinos 1998] presented a more sophisticated ``fast'' reformulation algorithm that 
alleviates both these problems. The fast algorithm interleaves the APSP computation with 
the edge trimming elimination, such that the full APSP never needs to be built. 
Furthermore, it only requires linear space and has a time complexity comparable to 
Johnson's algorithm. This is referred to as the fast reformulation algorithm.  The six main 
steps of the fast algorithm are shown in Figure 2-17. See [Tsarmardinos 1998] for details 
on the fast STN reformulation algorithm. 
 
 

function BASIC_STN_REFORMULATION(G)  
Input: A STN G 
Output: A minimal dispatchable distance graph M 
1. Convert the STN, G in to a distance graph D 
2. Compute the of APSP-graph, A, from D via Floyd-Warshall 
3. Apply Filtering Algorithm to A, compute minimal dispatchable 
graph M.  
4. return M 
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Figure 2-17 Example of the Fast STN 
Reformulation Algorithm 

 
 

2.5 Simple Temporal Networks with Uncertainty 
 
A STNU is a temporal constraint graph similar to a STN that contains an explicit model 
of uncertainty [Vidal 1996].  The edges of the STNU fall into one of two categories: the 
first are those representing temporal constraints that specify the allowable time that 
events are permitted to occur, and are called requirement links.  These are exactly the 
same as STN constraints.  The second category of edges represents uncontrollable 
activity durations, and are called contingent links. The timepoints that terminate 
contingent activities are controlled by nature and are called contingent timepoints; all 
other nodes are considered executable timepoints.  The key point is that only a subset of 
nodes can be controlled by the executive and we call this network partially controllable.  
 
 The formal definition is of an STNU is provided below.  
 
Definition 2-3 (STNU): A STNU is a 5-tuple < N, E, l, u, C >, similar to an STN, where 
N is a set of timepoints, E is a set of edges and l : E  ℜ ∪ {-∞} and u : E  ℜ ∪ {+∞} 
are functions mapping the edges to lower and upper bound temporal constraints. The 
STNU also contains C, which is a subset of the edges that specify the contingent links, the 
others being requirement links. We assume 0 < l(e) < u(e)  for each contingent link.  
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A Temporal Plan Network with Uncertainty (TPNU) is a plan similar to a TPN except the 
activities are constrained by an STNU. For example consider the TPNU shown in Figure 
2-18.  Rover2 is able to control when it stops charging its battery; however, rover1 cannot 
control the exact duration of its drive-to(rock1) activity.   
  
 

D
rover1.drive-to(rock1)

[5,10]C

A

[0,10]

[3,10]

executable
timepoint

requirement link

contingent
timepoint

rover2.charge-battery[3,10]

controllable
activity

Executable Timepoint

Contingent Timepoint

Requirement Link

Contingent Link

B

contingent link

uncontrollable
activity [1,10]

 
Figure 2-18 Anatomy of a TPNU 

 
    
 
 Every STNU has an associated Distance Graph with Uncertainty (DGU).  The 
conversion of a STNU into a DGU is similar to the process of converting a STN into a 
distance graph.  The DGU is formed by replacing each requirement link with two 
requirement edges and each contingent link is replaced by two contingent edges. 
 

2.6 Summary 
In this chapter we showed how to reformulate plans constrained by an STN for dynamic 
execution and introduced STNUs.  In the next chapter, we introduce our Hierarchical 
Reformulation algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Paul Robertson
This summary is rather brief.
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3 Hierarchical Reformulation Algorithm 

3.1 Introduction 
 This chapter is the first of two technical chapters that serve to describe a coordinated, 
distributed executive.  This distributed executive is novel in its ability to dynamically 
schedule tasks for multi-agent plans that contain both temporal uncertainty and 
communication constraints.  Recall that an executive is composed of two components: a 
centralized reformulator and a distributed dispatcher. This chapter describes the 
reformulator, which prepares the multi-agent plan for execution by the dispatcher. The 
reformulator partitions a multi-agent plan into a set of decoupled group plans such that 
the agents that participate in each group plan can properly synchronize their activities, 
without communication outside their group. Within each group, the agents are allowed to 
communicate in order to adapt to runtime execution uncertainty. 
 
 In general, a distributed dispatcher requires communication to dynamically execute a 
plan.  Recall that a dispatcher is an online dynamic scheduling algorithm that exploits the 
temporal flexibility of the plan, by waiting to schedule events until the last possible 
moment. In this least commitment execution strategy, the dispatcher schedules and 
dispatches the tasks simultaneously, rather than scheduling the tasks prior to execution. 
This dynamic execution strategy allows the agents to adapt to runtime uncertainty at the 
cost of some online computation. In the centralized case, the dispatcher must propagate 
the execution times of each event towards future events, every time an event is executed.  
This propagation enables the dispatcher to select consistent execution times for these 
future events.  In the distributed case, this propagation translates into communication. If 
the agents are unable to keep in constant communication with one another, the agents 
may fail to properly execute the plan.   
 
 The simplest, although most restrictive, way to deal with communication limitation is 
to completely fix the schedule prior to execution. Pre-scheduling the activities removes 
the need for propagation, and hence removes the need for communication.  However, in 
order to be robust to the uncertainty of uncontrollable events, the agent may need to be 
overly conservative about scheduling the time of execution of the activities, thus 
degrading the performance of the overall system. In other words, fixing the schedule 
prior to execution may require the agents to wait around when they could be doing 
something useful instead.  Even beyond the issue of performance, there exists the 
question of viability.  If a plan requires tight synchronization with respect to uncertain 
outcomes, then fixing the schedule will not work.  In this case, a dynamic execution 
strategy is required in order to enable the agents to adapt to the uncertain outcomes.   For 
example, consider a scenario where you plan on getting on a bus.  This plan consists of 
two activities, going to the bus stop and boarding the bus.  It may be possible to pre-
schedule the time when you starting going to the bus stop; however, in order to 
successfully board the bus, you need to adapt the uncertainty of the bus’ arrival time.  
Simply walking forward to board the bus at some pre-scheduled time is not a wise 
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execution strategy. In order use a dynamic execution strategy, the plan needs to retain 
some temporal flexibility. 
 
 This chapter presents a novel hierarchical reformulation algorithm that mitigates the 
need for communication, while retaining much of the temporal flexibility inherent in the 
plan, in order to dynamically adapt to uncertainty. It preserves the flexibility in places 
where tight coordination is required and fixes the schedule in places where the agents 
only require loose coordination. 
 
 In order to resolve which events should be scheduled dynamically and which events 
should be scheduled statically, we need to consider two factors: (1) when is a dynamic 
execution strategy required and (2) when is it possible. In general, a dynamic execution 
strategy is required when the agents have tight timing constraints between coordinated 
activities and a dynamic execution strategy is typically possible when agents can 
communicate.  Fortunately, a dynamic execution strategy is possible when it is needed.  
We make the observation that communication availability tends to be synergistic with 
need. For example, robots tend to require tight coordination when they are close together 
and communication tends to be available when the robots are in close proximity.  
 
 In this thesis, we divide the full multi-agent plan into a set of tightly coordinated 
clusters. We assume that the agents that participate in these plan clusters are free to 
communicate with one another. We refer to these clusters as communication clusters. 
Note that we make no assumptions on the ability of the agents to communicate outside of 
their communication cluster.  Given a clustering we organize the multi-agent plan into 
two layers, as shown in Figure 3-1.  This two-layer plan consists of a mission plan and a 
set of group plans. The group plans specify tight coordination between a set of agents 
(one corresponding to each communication cluster) and the mission plan specifies loose 
coordination between the group plans.  The mission plan uses a simplified abstraction for 
each group plan that hides the details of the group plan   This encapsulation enables the 
reformulator to reason about the overall mission without getting into the details of the 
group plans.  
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Figure 3-1 A two-layer multi-agent plan consists of a mission plan 
and set of group plans.  The mission plan specifies loose 
coordination between a set of tightly coordinating group plans.  

 We call the set of agents that participate in each group plan simply a group. Each 
agent can only participate in one group at a time, but an agent may participate in multiple 
groups (group plans) over the lifetime of the mission. For example, in a Mars exploration 
scenario, a robot specializing in moving heavy objects may participate in some science 
gathering activity by turning over rocks early in the mission and then be used to clear a 
path in some exploration activity later in the mission.  
 
 The goal of the reformulator is to transform the two-layer plan into a form such that 
each group plan can be dynamically scheduled, without requiring the agents to 
communicate outside their group. This enables the groups to dynamically execute their 
plans in cases where inter-group communication is unavailable, unreliable or costly.  
 
 For example, consider the autonomous Mars exploration scenario illustrated in Figure 
3-2.  The robots are organized into two groups, a science group, and an exploration 
group. The science group consists of a set of science rovers specializing in data 
acquisition, along with a tethered blimp, which provides aerial reconnaissance for the 
science rovers.  The science group’s job is to take samples at the science site. The 
exploration group consists of a set of agile rovers used to explore future science sites. The 
groups will need to coordinate their intra-group activities more tightly than their inter-
group activities.  The two groups may need to periodically rendezvous to share data; 
however, we can expect the plan to be fairly flexible about when this occurs. 
Furthermore, it is reasonable to expect reliable communication within each group, 
because of the group member’s proximity; however, communication between the groups 



 52

may be costly or unavailable, as the science team explores regions far from the current 
science site. 
 
 
 
 

Tethered Blimp: Tracks
the rover posit ions and
builds a local map.

Scout Rover: A fast agile
rover, used to identify science
targets and to find traversable
paths for larger rovers.

Science Rover: Large, slow
moving rover that contains an
onboard science laboratory

Science Group

Exploration Group

 

The science group and exploration group must cooperate to 
complete the mission.  The goal of the reformulator is to enable 
each group to work independently in order to be robust to inter-
group communication limitations. 

 The high level overview of the reformulator is shown in Figure 3-3. First it transforms 
the multi-agent plan into a two layer multi-agent plan (Figure 1-3a).  Then the 
reformulator applies the Hierarchical Reformulation (HR) algorithm, which converts the 
two-layer plan into a set of decoupled dispatchable group plans. The HR algorithm 
operates on both layers of the multi-agent plan in this reformulation.  The HR algorithm 
decouples each group plan by applying a variant of the strong controllability algorithm 
[Vidal 2000] to the mission plan (Figure 3-3b) and applies the fast dynamic 
controllability algorithm to each group plan (Figure 3-3c).  The dynamic controllability 
algorithm prepares the group plans for the dispatcher.  Finally, the reformulator applies 
an edge trimming algorithm to the dispatchable group plans (Figure 3-3d).  The edge 
trimming algorithm removes the redundant constraints from the dispatchable plan in 
order to improve dynamic scheduling.  The final form of each group plan is called a 
minimal dispatchable group plan. 

Figure 3-2 Heterogeneous Robotic Group Scenario 
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Figure 3-3 Overview of the Hierarchical Reformulation Algorithm 

 
  
 The outline for this chapter is as follows.  Section 3.2 discusses the communication 
assumptions used in this thesis.  Section 3.3 reviews the existing controllability theory 
and discusses the general problem of finding a viable dynamic multi-agent execution 
strategy for plans that contain both uncertainty and communication constraints.  This new 
problem is called communication controllability.  In Section 1.4 we formally introduce 
the two-layer Multi-agent Temporal Plan Networks with Uncertainty (two-layer 
MTPNU) and show how to specify these plans using a variant of the Reactive Model-
Based Programming Language (RMPL). In Section 1.5 we review the strong 
controllability algorithm presented by [Vidal 2000] and present the decoupling algorithm 
based on this strong controllability algorithm. Finally, in Section 1.6 we present our novel 
Hierarchical Reformulation (HR) algorithm.  Some of the details of the HR algorithm are 
deferred to Chapter 4.  Specifically, Chapter 4 presents a new fast dynamic controllability 
and the edge trimming algorithm.  
 
  By the end of the chapter the reader should: 1) understand the definition of 
communication controllability, 2) know how to model multi-agent plans that involve 
temporal uncertainty and communication limitation as a two-layer MTPNU, and 3) know 
how to reformulate a two-layer MTPNU into a set of decoupled, minimally dispatchable 
plans using the HR algorithm. 

3.2 Communication Assumption 
 In general, agents require communication if they participate in cooperative activities. 
If communication is always both available and reliable, programming these distributed 
systems would be a lot less complex; however, most real distributed systems must cope 
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with communication limitations.   Specifically, real distributed systems must deal with 
hardware failures, and lost or dropped messages.  Furthermore, mobile robots that use 
radio communication must cope with a limited communication range and physical 
obstacles that occlude communication pathways. Most of us have experienced these 
limitations first hand, when using cell phones.  In this chapter, we address the problem of 
dynamically scheduling tasks in the presence of communication limitations.  
  
 This chapter makes the important assumption; when communication is available, it is 
reliable.  We assume that the agents can achieve reliable communication by using some 
existing communication protocol, such as TCP/IP.  Our focus is on multi-agent systems 
where communication is limited, yet predictable. For example, consider two rovers 
exploring Mars. In this domain, the rovers will be able to reliably communicate when in 
close proximity; however, when the rovers are separated by far distances or by some 
obstruction, the rovers will lose this reliable communication.  Thus, depending on the 
relative position of each rover, it is possible to determine if communication is available. 

3.3 Communication Controllability 
 This section formally defines the problem of verifying if there exists a successful 
multi-agent execution strategy for plans that contain both an explicit model of uncertainty 
and communication limitations.  In doing so, this section develops several supporting 
definitions used throughout this thesis.   
 
 Previous work [Vidal 2000] has defined a set of controllability properties for STNUs.  
This controllability work has been concerned with the ability to generate an execution 
strategy for plans that contain uncertainty. Of particular interests is the ability to 
dynamically schedule these uncertain plans [Morris 2001].  In this section, we extend the 
notion of dynamic controllability to include the ability to cope with communication 
limitations as well as uncertainty.  Plans for which it is possible to dynamically schedule 
by a set of agents that contain communication limitations between one another are called 
communicationally controllable. 
  
 First we will quickly review the four types of controllability that were previously 
introduced by [Vidal 2000 and Morris 2001].  This will help place the derivation of 
communication controllability in the context of previous work.  
 

3.3.1 Primary Types of Controllability 

 Recall that a partially controllable plan is constrained by a Simple Temporal Network 
with Uncertainty (STNU).   A STNU is a temporal constraint network that contains a set 
of timepoints and a set of temporal constraints, specifying the valid execution times of 
the timepoints. The timepoints of an STNU fall into two types: executable timepoints and 
contingent timepoints.1 Executable timepoints are scheduled by the agent, while the times 
                                                 
1 For a more thorough discussion of STNUs, refer to Chapter 2. 
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of the contingent timepoints are controlled externally rather than by the agent.  Thus the 
execution times of the contingent timepoints are observed, rather than scheduled.  The 
links2 that connect the timepoints of the STNU also fall into two categories: contingent 
links and requirement links.  A contingent link models the uncontrollable duration 
associated with an uncertain activity, and a requirement link represents a constraint on the 
duration between two timepoints.  
 
Example 3-1:  
 Consider the contingent link associated with the drive_to activity on the left of Figure 
3-4.  The contingent link specifies that the duration of the drive_to activity is uncertain 
and will last between 5 and 10 time units. Thus, the contingent timepoint, e1, will be 
executed between 5 and 10 time units after the agent executes the executable timepoints, 
s1.  A requirement link imposes a temporal constraint on the duration between two 
timepoints.  Consider the requirement link associated with the spectrometer_reading 
activity at the right of Figure 3-4.  The rover must perform the spectrometer_reading 
activity between 10 and 20 minutes.   
 
 
 

e1

drive-to(rock1)

[5,10]s1 e2[2,4]s2[0,3]

spectrometer-reading()position-arm(loc1)

[10,20]s3[0,1] e3

Executable Timepoint

Contingent Timepoint

Requirement Link

Contingent Link
 

Figure 3-4 The duration of drive_to(rock1) and 
position_arm(loc1) activities are uncertain; however, the 
duration of spectrometer_reading() is determined by the 
agent. 

 
 Overall, Figure 3-4 denotes a partially controllable plan that contains three activities.   
The duration of both the drive-to and position-arm activities is uncertain; however, the 
duration of the spectrometer-reading activity is determined by the rover.  The rover’s job 
is to execute each timepoint in the plan in a fashion that is consistent with the temporal 
constraints of the STNU.  The rover has two choices.  It may either schedule the 
timepoints offline, hence fixing the schedule prior to execution, or it may dynamically 
schedule the plan. We are interested in the latter.   
 
 Informally, an execution strategy is a policy for scheduling the timepoints in the plan.  
In the case of an STNU, an execution strategy only specifies a policy for scheduling the 
executable timepoints.  Recall that the contingent timepoints are not under the control of 
the agent. Furthermore, an execution strategy is called viable if the schedule it produces 
is temporally consistent for all possible situations.  Here we use the term situation to 

                                                 
2 Links contain both a lower and upper bounds, whereas, edges only contain a single upper bound constraint. 
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mean some outcome of uncertain events. Furthermore, we call an execution strategy 
dynamic if the execution and scheduling of the timepoints occurs simultaneously.  In this 
section we are interested in viable dynamic execution strategies. From now on we will 
use the term dynamic execution strategy for a viable dynamic execution strategy, unless 
otherwise stated.   
 
 Designing a dynamic execution strategy for the plan in Figure 3-4 is straight forward.  
One possible viable dynamic execution strategy is as follows:  
 

1. Execute the start of drive_to(rock1) activity at Time = 0.  2. After 
observing that the rover reached rock1, immediately start positioning the 
arm. This satisfies the constraint that the position arm activity must start 
between 0 and 3 time units after getting to the rock.  3. Immediately after 
observing that arm is positioned at loc1, start taking the spectrometer 
reading. This satisfies the constraint that the spectrometer reading must 
occur between 0 and 1 time units after positioning the arm.  4. Stop the 
spectrometer reading activity after 15 time units have passed. This 
satisfies the constraint that the spectrometer_reading activity lasts between 
10 and 20 time units. 

 
 For plans constrained by more complex STNU topologies, designing a viable dynamic 
execution strategy becomes much more complex.  In these cases we need a principled 
method to generate an execution strategy.  This is why controllability algorithms have 
been developed.   In our discussion of controllability the STNU is the important part of 
the plan, as such, we refer to the controllability of the STNU to be short for the 
controllability of the plan.  
 
 Informally, a STNU is controllable if there is a viable execution strategy for 
scheduling the executable timepoints. Controllability refers to an agent’s ability to 
“control” the consistency of the schedule, despite the uncertainty in the plan. In general, 
the more temporal flexibility a plan contains, the more likely that the plan is controllable. 
Controllability is a battle between flexibility against uncertainty.  However, the flexibility 
must be in a place where an execution strategy can use it.   
 
 
 Abstractly, there are three fundamental problems related to executing plans with 
uncertainty, however, in practice they are all related.  First there is a problem of 
determining if there exists a viable execution strategy (controllability verification).  After 
verifying the controllability of a plan, there still remains the problem of actually 
generating an execution strategy.  Generating an execution strategy boils down to 
compiling the temporal constraints (reformulation) into a form that a dispatcher can 
readily use.  If this reformulation succeeds, the plan is said to be dispatchable.  The last 
problem is to execute the plan using a dispatcher (dispatching). Verification, 
reformulation, and dispatching are all interrelated.  Verification is done by reformulating 
the plan, meaning that if the reformulation succeeds, then the plan is controllable and 
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dispatchable.  Furthermore, the reformulation algorithm is done with a specific 
dispatching algorithm in mind.  
 
 Controllability was first introduced by [Vidal et. al. 1996].  There are three levels of 
controllability: strong, dynamic, and weak.  Algorithms for checking weak and strong 
controllability were developed soon there after.  A dynamic controllability checking 
algorithm took a few more years.  [Morris 1999] first introduced a new controllability 
property, called waypoint controllability, which generalizes strong and weak 
controllability, as a first attempt to make a dynamic controllability checking algorithm.  
Then [Morris 2000] presented a algorithm to verify, reformulate and dynamically execute 
an STNU.  
 
 The three primary levels of controllability differ in that they make different 
assumptions on when the uncertain durations in the plan are observed.  For strong 
controllability we assume no uncertain durations are known when the scheduling 
decisions are made.  In dynamic controllability, we assume that the agent knows the 
outcomes of uncertain durations as they are completed. Therefore, agents can only use 
uncertain durations that happened in the past to make its scheduling decisions.  In weak 
controllability we assume that all uncertain durations are known at the time of 
scheduling.   
 
 The amount of information known to the agent increases from strong to dynamic to 
weak control.  Therefore it should come as no surprise that the three primary forms of 
controllability follow an implication rule.  Specifically, [Morris and Vidal] have formally 
shown that, if a network is strongly controllable, then it is dynamically controllable, and 
if a network is dynamically controllable, then it is weakly controllable. Also note that 
both strong and dynamic controllability of a STNU can be checked in polynomial time; 
however, weak controllability is a co-NP-complete problem [Vidal, 1999].   
 
 Waypoint controllability, introduced by [Morris, 1999], combines the properties of 
strong and weak controllability.  Waypoint controllability applies to plans for which a 
subset of the timepoints are designated as waypoints.  Waypoint controllability refers to 
an execution strategy that schedules the waypoints using a strong control strategy and the 
remaining timepoints in a weakly controllable fashion.  In other words, a waypoint 
controllable execution strategy schedules the waypoints prior to knowing the uncertain 
outcomes, then once all of the uncertainty is resolved, the remaining timepoints are 
scheduled. Waypoint controllability is of limited utility because it makes no guarantees 
on the ability to dynamically execute that plan.  Furthermore, the waypoint controllability 
checking algorithm runs in exponential time [Morris 2000]. 
  
 Waypoint controllability is discussed because there is an interesting relation between 
the property that we seek in our two-layered approach and waypoint controllability. 
While waypoint controllability combines strong and weak controllability, the two layered 
approach presented in this thesis combines strong and dynamic controllability.   
Specifically, we show that a portion of the plan can be scheduled offline without knowing 
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the uncertain durations, while the remaining portion is scheduled dynamically.  Recall, 
that we schedule a portion offline in order to compensate for lack of communication.  
 

3.3.2 Formal Definition of Communication Controllability 

 In this section, we extend the definition of dynamic controllability to plans executed 
by a set of distributed agents that may not always be in constant communication.  Here 
we are interested in the ability or inability of the agents to communicate the dynamically 
scheduled execution times, as required by a dynamic execution strategy, between one 
another. If a plan is dynamically executed on a set of distributed agents, inter-agent 
communication limitations may preclude the agents from propagating execution times.  
For example, consider a Mars exploration scenario where two rovers need to cooperate, 
yet one rover moves out of communication range from another rover, during the 
execution of the plan.  In such a scenario, we are interested in knowing whether there 
exists a successful dynamic execution strategy to enable the rovers to cooperatively 
execute the plan.  In this case, if we can devise a multi-agent execution strategy that is 
guaranteed to succeed, then we say that the cooperative multi-agent plan is 
communication controllable.  
 
 If the plan is strongly controllable, then the agents can cope with this information 
deficiency by fixing the schedule prior to execution; hence, eliminating the need for any 
communication at execution time.  However, we are interested in the more general case 
in which the plans are not strongly controllable, and the agents must use a dynamic 
execution strategy.  In this case, a plan is communication controllable only if the agents 
can make scheduling decisions with partial knowledge of the execution history. 
 
 In order to formally define communication controllability, we first describe how the 
plan is distributed among the agents.  Distributed dynamic scheduling is a process in 
which multiple agents collaborate in order to dynamically schedule the timepoints of a 
multi-agent plan.  Each agent takes ownership of a portion of the timepoints.  An agent 
must schedule each timepoint it owns.  The ownership of timepoints is defined by a 
distribution. 
 
Definition 3-1 (Distribution): Given a STNU, Γ =<N,E,l,u,C>, and a set of agents, A;  a 
distribution, D,  is a  mapping, D: N → A, such that each timepoint x ∈ N is uniquely 
assigned to an agent a∈ A.   D(x), also written Dx, is the agent that owns timepoint x. 
Furthermore, the set of timepoints assigned to an agent, a, in distribution, D, is written 
Na

.   
 

 Figure 3-5 shows a distribution of a STNU over two rovers.  For simplicity, the time 
bounds are not shown on the links of the STNU.  The gray timepoints are mapped to 
rover1, and the white timepoints are mapped to rover2.  
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Figure 3-5  Distribution of a STNU. The timepoints of the 
STNU are uniquely assigned to an agent. 

 
 
 Next, for a distributed STNU, we need to know when the agents can communicate 
with one another. We introduce a communication availability graph (CAG) in order to 
model the communication availability between the agents.  The communication 
availability graph combines a finite state automaton with a set of communication 
constraints.  The CAG is composed of a set of agent states, a set of directed edges 
representing the criteria for state transition, and a set of undirected, communication 
availability edges.  If a communication availability edge connects two states, then reliable 
communication is available between those states.  For simplicity, the state of an agent is 
determined solely determined by monitoring the execution status of the timepoints in the 
associated STNU.  Communication between two timepoints is then available, if a 
communication availability edge exists between the locations of the activities of the two 
timepoints.   
 
 For example, consider the communication availability graph shown in Figure 3-6, 
which is associated with the STNU given in Figure 3-5.  The CAG contains two states for 
each rover.  In this case, the states of the rovers represent their location.  Rover1 (gray 
states) is either in the at-base state or at-rock1 state.  Similarly, rover2 (white states) is 
either in the at-base state or at-rock2 state.  A rover is always able to communicate with 
itself; therefore, there is a communication availability edge between states.  Furthermore, 
we assume that the rovers are free to communicate with each other when they are both at 
base as indicated by the communication availability edge AC. However, when rover1 
reaches rock1 it is no longer able to communicate with rover2( i.e. no communication 
availability edge BC nor BD)  Similarly, rover2 is unable to communicate with rover1 
when it reaches rock2 ( i.e. no communication availability edge DA nor DB ).  Rover1 
transitions from state A to state B when it executes timepoint e2 (in the TPNU), and 
transitions back to state A when it executes timepoint e7.  Similarly, rover 2 transitions 
from state C to D when it executes timepoint e3, and transitions back to C when it 
executes timepoint e8. 
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Figure 3-6 Communication Availability Graph The 
directed edges represent state transition criteria, and the 
undirected edges represent communication availability. 

 
 
Definition 3-2 (Communication Availability Graph): Given an STNU, Γ = <N,E,l,e, 
C>, and a set of agents Q,  a communication availability graph, Π = <S,T,U> of Γ and 
Q, is a graph where S is a set of states where each state is mapped to an agent A.  
Furthermore, T is a set of directed edges representing state transitions and U is a set of 
undirected communication availability edges. We say that reliable communication exists 
between states Si and Sj if there exists an edge Uij∈ U. 
 
 The purpose of introducing a communication availability graph is not to cover all the 
details of modeling communication between a set of distributed agent but rather just to 
put forth a rational model of communication.  
 
 Controllability is a property of a STNU that states whether there exists a policy for 
consistently scheduling the executable timepoints in any situation. Communication 
controllability is a property of a STNU that specifies whether there exists a multi-agent 
execution strategy for STNU that is constrained by a communication availability graph.  
In order to develop this concept, we first define the standard concept of a schedule. 
 
Definition 3-3 (Schedule [Morris 2000] ): A schedule, T, for a set of timepoints, N, is a 
mapping T: N→ ℜ, which maps each timepoint x ∈ N to a scheduled time, where T(x), 
also written Tx, is the scheduled time of timepoint x. 
 
 The dispatcher’s job is to consistently schedule all of the timepoints contained in a 
STN.  We call a schedule feasible if the assignments do not violate the simple temporal 
constraints in the STN.  
 
Definition 3-4 (Feasible Schedule of a STN): Given an STN, Γ =<N,E,l,u>, a schedule 
of Γ ,T(Γ), is a schedule for all of the timepoints n∈ N. This schedule is feasible if l(XY)≤ 
T(x)-T(y) ≤ u(XY) holds for each pair of timepoints x,y∈ N, and for each link XY ∈ E. 
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 Recall that for STNUs, only a subset of the timepoints are scheduled by the dispatcher.  
Specifically, the agent only schedules the executable timepoints Ne, whereas, the agent 
observes the outcomes of the contingent timepoints, Nc.  In order to explicitly define the 
uncertain outcomes we introduce a set of variables corresponding to the uncontrollable 
durations.  These uncontrollable durations are constrained by the contingent links in the 
STNU.  Here we make a distinction between the contingent link, which specifies the 
constraint on the uncontrollable duration and the variable that is assigned a value upon 
observing the uncontrollable duration.   For example, see Figure 3-7.  
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A B
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Figure 3-7 (a) The STNU contains a contingent link AB with 
bounds [5,10] constraining the uncontrollable duration ωAB (b) 
The associated distance graph also contains the uncontrollable 
duration even though there is no contingent link.  

 
Definition 3-5 (Uncontrollable Duration [Vidal 2000]): Given an STNU, Γ 
=<N,E,l,u,C>,  for each contingent link AB in Γ there exists an  uncontrollable duration 
ωAB∈ [l(AB),u(AB)] which is a variable representing the duration between the timepoints 
A and B, whose outcome is uncertain. 
 
In order to talk about the possible outcomes of the uncontrollable durations, we define a 
situation.  A partial situation is an assignment to the subset of the uncontrollable 
durations and a complete situation, also called a situation, is an assignment to all the 
uncontrollable durations.  The assignments to the uncontrollable durations are done such 
that they respect the constraints imposed by the contingent links.  
 
 
Definition 3-6 (Complete/Partial Situation [Vidal 2000]):  A situation is an assignment 
to the uncontrollable durations, i.e. ωXY = d ∈ [ l(XY), u(XY)].  A partial situation is a 
partial assignment to the uncontrollable durations, and a complete situation, also called 
a situation,  is a full assignment to the uncontrollable durations. 
 
 
In order to define a feasible schedule for STNUs, we use the concept of a projection, 
introduced by [Vidal 2000].   A projection is another way to represent a complete 



 62

situation.  Given a complete situation, a projection transforms a STNU into a STN by 
transforming the contingent links into a set of rigid STN links whose lower and upper 
bound equals the value of the corresponding duration in the situation.   Note that each 
uncontrollable duration, ω, may take on any value between the lower and upper bound 
specified by the corresponding contingent link.   Therefore, a STNU defines a set of 
projections.  
 
Definition 3-7 (Projection [Vidal 2000] ): Given an STNU, Γ  = <N,E,,l,u,C>, a 
projection, Γ’ = <N,E,l,u>’,  of  Γ, is a Simple Temporal Network (STN), where each 
requirement link is replaced by an identical STN link, and each contingent link e∈ E is 
replaced by a rigid STN link, where the lower and upper bound is [ω,ω],  for some ω 
such that l(e) ≤ ω ≤ u(e). The projection of Γ is written P(Γ).  
 
 For example, consider the projection shown in Figure 3-8(b) of the STNU given in 
Figure 3-8(a).  This projection is just one of many possible projections of the STNU.   
The projection shown in Figure 3-8(b) corresponds to a situation where the 
uncontrollable duration, ω1, corresponding to the rover1.drive-to(rock1) activity is 7 time 
units, and the uncontrollable duration, ω2, corresponding to the rover2.drive-to(rock2) 
activity  is 10 time units. 
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Figure 3-8 Example of a Projection of a STNU 

 
 
 The concept of projection is useful because it transforms the idea of a set of 
uncontrollable outcomes into data structure we are familiar with working with, i.e. an 
STN.  The feasible schedule of an STNU is defined in terms of its possible projections.  
Specifically, a schedule of an STNU is feasible if the schedule corresponds to some 
feasible STN schedule of one of its projections. 
 
Definition 3-8 (Feasible Schedule of an STNU): Given an STNU, Γ  = <N,E,,l,u,C>, a  
STNU schedule T of Γ , is a schedule for all of the timepoints n∈ N.  A feasible STNU 
schedule of Γ  is a feasible STN schedule of one of Γ’s projections, written T(P(Γ)). 
 
Note that the schedule includes both the executable and contingent timepoints.  
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Now we turn our attention to the process of generating a schedule of an STNU. An 
execution strategy specifies a policy for scheduling the controllable timepoints of the 
STNU for all possible projections (or situations). Furthermore, we call the execution 
strategy viable if the execution strategy generates a feasible schedule for all possible 
projections. By definition, a viable execution strategy will succeed, given it knows the 
projection prior to generating the schedule; therefore, the existence of a viable execution 
strategy is equivalent to saying that the STNU is weakly controllable [Morris 2000]. 
 
Definition 3-9 (Execution Strategy [Morris 2000]): Given an STNU, Γ, an execution 
strategy S: P→T of Γ, is a mapping of projections, P, to schedules, T, for the timepoints 
of Γ.  An execution strategy, S, is viable if the schedule, S(p), is consistent with Γ, for 
every projection p∈ P. 
 
 Communication controllability is inherently a multi-agent concept; hence, we will 
generalize our notion of schedules and histories to multi-agent systems.  For a distributed 
multi-agent system, each agent is in charge of its portion of the plan. Specifically, each 
agent must schedule the timepoints that it owns, as specified by a distribution D.  
Therefore, we define agent schedule as the set of timepoint assignments made by that 
individual agent. 
 
Definition 3-10 (Agent Schedule): Given an STNU, Γ  = <N,E,l,u,C>, a set of agents A,  
and distribution D;  an agent schedule, Ta, is a  schedule for all timepoints owned by 
agent a.  Furthermore, Ta(x), also written Ta

x, is the scheduled time of individual 
timepoint x, owned by the agent a in a schedule Ta..  Given an agent schedule for each 
agent a∈ A, the schedule of Γ,  T(Γ),  is the union of each agent schedule Ta, for all 
agents a∈ A.   
 
 Now we extend the concept of feasibility to agent schedules. The definition of a 
feasible agent schedule is analogous to the corresponding centralized concept.. An agent 
schedule is feasible if the agent’s schedule is consistent with the temporal constraints of 
the full STNU. 
 
Definition 3-11 (Feasible Agent Schedule): Given an STNU, Γ  = <N,E,l,u,C>, a set of 
agents A, a distribution D, and an agent schedule, Ta; For each a∈ A the  schedule Ta is 
feasible if and only if each timepoint n ∈ Na is consistent with the full set of temporal 
constraints in Γ.  Furthermore, if the union of all agent schedules are feasible, then T(Γ) 
is feasible.  
 
 To define a communication limited, multi-agent strategy, we first extend the notions 
of execution strategies to a distributed multi-agent system.  For a distributed multi-agent 
system, the schedule for the entire plan is generated by using a set of agent execution 
strategies, where each agent schedules the timepoints assigned to it by some distribution.  
 
Definition 3-12 (Agent Execution Strategy and Multi-Agent Execution Strategy): 
Given an STNU, Γ, a set of agents, A, and a distribution, D, an agent execution strategy, 
Sa: P→Ta, for agent a∈ A maps the projections, P, to an agent schedule Ta. An agent 
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execution strategy, Sa, is viable if the resulting agent schedule is feasible for all 
projections p∈ P.  A multi-agent execution strategy uses a set of agent execution 
strategies, M, for all agents a∈ A to map projections, P, to schedules, T = ( )

a

a

S M

S p
∈
U . 

Furthermore, a multi-agent strategy, M,  is viable if each agent strategy, ( )
a

a

S M

S p
∈
U is 

viable. 
 
 Note that a complete schedule, T, of the STNU, is the union of all agent schedules, Ta, 
generated by the corresponding agent execution strategy, Sa. 
 
 Generalizing from dynamic controllability, communication controllability pertains to a 
dynamic scheduling process in which each agent makes scheduling decision solely based 
on past outcomes.  In general, each agent may use outcomes it directly observes or 
outcomes observed from other agents to make scheduling decisions.  In the centralized 
case, a plan is dynamically controllable if an agent can create an execution strategy that 
schedules each timepoint x, knowing only the uncertain outcomes that happened prior to 
x.  However, as we will see in Chapter 4, a viable dynamic execution strategy depends on 
the ability to propagate both scheduling decisions and uncertain outcomes to unscheduled 
timepoints.  It is useful to define the portion of the full schedule that each agent can 
observe when it makes each scheduling decision and to separate this set into controllable 
and uncontrollable timepoints.    
 
 In the centralized case, when the agent dynamically schedules a timepoint x, the agent 
only has access to the uncertain durations that happened prior to scheduling the timepoint 
x. and scheduling decisions made prior to scheduling x.  Collectively,  this information is 
called the scheduling history of timepoint x, referred to as simply the history at timepoint 
x. This history is composed of both a contingent history, which is the set of contingent 
timepoint assignments made prior to x, and a scheduled history, which is the set of 
executable timepoint assignments made prior to x.  To summarize, the history of x is just 
the portion of the schedule fixed prior to scheduling timepoint x.  
 
Definition 3-13 (History): Given an STNU, Γ  = <N,E,l,u,C> and a schedule T for Γ,  
 (a) The history at timepoint x, H(T,x), is the assignment in T to timepoints n∈ N, 
scheduled prior to timepoint  x ∈ N. 
 (b) The contingent history at timepoint x, Hc(T,x), is the assignment in T to contingent 
timepoints n∈ Nc, scheduled prior to x ∈ N. 
 (c) The scheduled history at timepoint x, Hs(T,x), is the assignment in T to executable 
timepoints n∈ Ne, scheduled prior to timepoint x∈ N. 
 
 Communication controllability deals with agents that that contain communication 
limitations.  The agents must in addition cope with the communication limitations 
imposed by the communication availability graph, Π.  Due to communication limitations, 
one agent may not communicate its schedule to another agent at execution time.  Hence, 
at any given time, each agent may only be able to know part of the history.  Note that 
each agent’s knowledge of the full schedule is dependent on both the schedule and on the 
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communication availability graph.  Depending on when an agent schedules a timepoint, 
the value of the assignment may change, as well as its ability to communicate this 
scheduling decision to other agents.  We introduce a concept of an agent’s knowable 
history at one of its owned timepoints x, as the portion of the schedule that is knowable to 
the agent at the time of scheduling x. This is called the agent’s knowable history at x. We 
break the knowable history into a knowable contingent history and a knowable scheduled 
history.  
 
Definition 3-14 (Agent’s Knowable History): Given an STNU, Γ  = <N,E,l,u,C>, a 
CAG, Π, a schedule T(Γ ), a set of agents A, and distribution, D, 
 (a) The agent a’s knowable history at timepoint x, written Ha(T,Π,x), is the schedule 
of all timepoints n∈ N, scheduled prior to timepoint  x ∈ Na that could have been 
communicated given the communication availability Π. 
 (b) The agent a’s knowable contingent history at timepoint x, written Hc

a(T, Π,x), is 
the schedule of the contingent timepoints of c∈ H(T,Π,x). 
 (c) The agent a’s knowable scheduled history at timepoint x, written Hs

a
 (T,Π,x), is 

the schedule of  executable timepoints n∈ H(T,Π,x).  
 
 We are finally ready to formally define the communication controllability property, 
that specifies whether or not there exists a viable, dynamic, multi-agent execution 
strategy, for a distributed, partially controllable STNU, in the presence of communication 
availability imposed by a communication availability graph, Π. Recall that the complete 
multi-agent execution strategy is the union of each agent execution strategy.  For this 
communication controllable there exists a viable dynamic multi-agent execution strategy, 
such that the schedule it generates is independent of future or unobservable events, where 
the implication in the definition below captures this independence. 
 
Definition 3-15 (communication controllability): Consider an STNU, Γ  = 
<N,E,l,u,C>,  distributed over a set of agents A, according to a distribution D, and 
constrained by a communication availability graph, Π.  Then Γ is communication 
controllable, if there is a viable, dynamic, multi-agent execution strategy, given the 
communication availability specified by Π.  That is there exists a viable agent execution 
strategy, Sa , where S(p) is defined as the union Sa(p) over all agents,   for each timepoint 
x∈ N, such that:  
  
 Ha( S(p1),Π ,x ) = Ha( S(p2),Π ,x )  ⇒  [Sa(p1)]x = [Sa(p2)]x, 
 
for each agent a∈A, and for each pair of projections, p1 and  p2, of Γ.  
 
 In other words, a STNU is communication controllable if there exists a viable, 
dynamic, multi-agent execution strategy for scheduling each executable timepoint in the 
presence of limited communication availability. This viable dynamic multi-agent 
execution strategy is composed of a set of viable, dynamic, agent execution strategies, 
where each agent’s execution strategy only depends on a subset of the past to make a 
scheduling decision for each timepoint x.  Recall that this subset of the past is called the 
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agent’s observable history at timepoint x (as defined in Definition 3-14).  The equation in 
Definition 3-15 states that if the agent’s knowable history at timepoint x is the same in 
two separate projections (outcomes of uncertain durations), then there exists a viable 
agent execution strategy to generate the same schedule for timepoint x.  Hence, the 
agent’s execution strategy for timepoint x is only dependent on the agent’s observable 
history at timepoint x.   
 
 One major problem is that for an arbitrary communication availability graph, there is 
no easy way to compute the agent’s observable history for each timepoint.  This is left for 
future work.  In this thesis we simplify the problem by restricting the form of the 
communication availability graph.  Specifically, we only consider plans that are 
partitioned into a set fully communicating clusters, where each cluster has a fully 
connected communication availability graph.  Thus the knowable history for each agent 
is a total history of the communication cluster.   
 
 The problem is reduced to two simpler problems: 1) finding the schedule for the start 
of the group plan, only knowing the time of the start of the mission, and 2) generating a 
schedule for the timepoints in each group for which each agent knows the group plan’s 
full history and the start time of the mission.  These problems are still coupled, hence we 
further simplify the problem by imposing a two layer structure on the plan and solve the 
two problems with only very limited coupling between them.  In the next section, we will 
precisely describe these two layer multi-agent plans, which enable us to simplify the 
communication controllability problem. 

3.4 Two-Layer Multi-Agent Plans 
 This section precisely describes the two-layer, partially controllable, multi-agent plans 
that contain communication constraints.  For simplicity, these plans are referred to as 
two-layer plans.  This section also describes how to construct these two-layer plans. The 
two-layer plans are generated by either 1) clustering a fully elaborated plan, or 2) 
specifying the two layer plan using a variant of the Reactive Model-Based Programming 
Language (RMPL) [Williams 2003], [Kim 2001], called the Group Planning Language 
(GPL). 
 
 The two-layer plan consists of a mission plan and a set of group plans.  The mission 
plan describes the high level structure of the mission. It specifies a set of constraints on a 
set of abstract group activities. The group activities are abstract, meaning the group 
activities are not executable primitives, but rather represent a place holder for a detailed 
group plan.  Each group plan is executed by a set of agents, called a group.  The 
constraints in the mission plan include both temporal and communication constraints.  
The temporal constraints serve two purposes, first they model the uncertain duration of 
each group activity and second, they constrain the valid execution times of the start and 
end of each group activity. The communication constraints specify when the groups can 
communicate with each other.  The group plans specify the details of each group activity.  
Specifically, each group plan contains a set of activities to be executed by a set of agents.  
Each group plan also contains a set of internal temporal and communication constraints.  
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The temporal constraints of a group plan are used to model uncertain duration and place 
temporal constraints to restrict the feasible execution times of the group’s agent activities.  
The communication constraints specify when the agents can communicate with other 
members within the group. 
  
 The two-layer plan encapsulates each group plan within a simple abstraction, called a 
group plan macro, or macro for short.  A macro consists of an abstract group activity, an 
executable start timepoint, a contingent end timepoint, and a contingent link connecting 
the start and end timepoint, which specifies a range of possible durations of the group 
activity.  The contingent link in the macro models the possible duration of the group 
activity.  For each macro in the mission plan there is an associated group plan and vice 
versa.  Given a macro, the corresponding group plan is returned by calling a 
GET_GROUP_PLAN function and similarly, given a group plan, the corresponding 
macro in the mission plan is returned by calling a GET_MACRO function. 
 
 The macro assumes that each group plan is executed in a distributed fashion.  This 
means that the agents that participate in each group plan are in charge of executing their 
own activities, as compared to some centralized dispatcher, which makes execution 
decisions. Therefore, with respect to the mission plan, the duration of all group activities 
are uncertain (i.e. controlled by the groups).  This is true even in the case where all the 
activities in a group plan are controllable. The macros enable terse representation of the 
mission, an executive summary of sorts, in which the details of the group activities are 
hidden.  This allows the executive to reason about scheduling the group activities without 
dealing with the specifics of how each activity in the group is accomplished.  The macros 
achieve this simplicity at the cost of loss of information.  The macros simply model the 
feasible duration of each group plan as an uncertain duration.  This is the simplest way to 
model the group plans at the mission level.  In Chapter 5, we discuss an alternative macro 
representation that preserves more information about the group plan.  
 
 The two layer, partially controllable, multi-agent plans with communication 
constraints are formalized as a two-layer Multi-Agent Temporal Plan Network with 
Uncertainty (MTPNU).  Recall that a TPN is a set of activities to be performed, each of 
which includes a start and end time, together with a set of temporal constraints that 
specify the valid activity start and end times for each activity, specified as a simple 
temporal constraint.  Hence a TPN is a generalization of a STN consisting of a set of 
activities A, and a mappings, T+: A  N, and T-:A N, mapping  the start and end times 
to the timepoints in the STN.  A TPN under uncertainty (TPNU) is analogous, where the 
temporal constraints are expressed as a STNU. A multi-agent TPNU (MTPNU) extends 
the TPNU in two fundamental ways. First it introduces a set of agents, Q, and a 
distribution, D: N Q, mapping the timepoints, N, to an agent, Q. Thus, each timepoint is 
owned by a specific agent.  Second, the MTPNU introduces a set of communication 
constraints, formalized as a communication availability graph (CAG), which specifies 
when the agents are able to communicate with one another. 
 
 A two-layer MTPNU extends the definition of the MTPNU.  The two-layer MPTNU 
is the tuple <M,G,B>, where M is a mission layer MTPNU (mission plan) and G is a set 



 68

of group layer MTPNUs (group plans), and B is a function mapping the macros in the 
mission plan to the group plans. The mission plan, macro, group plans are formally 
described below. 
 
The mission plan, M = <Γ, A, T, Q, D, Π, Ψ >, where: 

• Γ:  is the STNU = <N, E, l, u, C> that specifies the temporal constraints of the 
plan.  

• A: is a set of abstract group activities.  These group activities are an abstraction of 
the group plans.  Each group activity is associated with a group plan. 

• T: consists of two functions T+: A  N, and T-:A  N, which map the start time 
and end time respectively of each group activity to a timepoint. 

• Q: is a set of groups which consists of a set of agents. There is one special group 
which contains no agents, called the mission group. This mission group is 
associated with all timepoints that are not explicitly part of a macro. 

• D:  is a group distribution function, D: N  Q, mapping each timepoint in the 
mission plan to a group. 

• Π: is a communication availability graph that specifies when the groups can 
communicate with one another. 

• Ψ is a set of macros associated with each group in Q. 
 
 
A macro Ψ = <γ,a,t> of the mission plan M, where: 

• γ is a two timepoint STNU = <N,E,l,u,C> containing one executable start 
timepoint, s, and a contingent end timepoint, e, and a contingent link between 
s and e where γ ⊆ Γ[M]. 

• a is group activity where a ∈ A[M] 
• t ⊆ T[M] is a function mapping the start time of a to s and the end time of a to 

e.  
 
A group plan g ∈ G is a tuple < Γ, A, T, Q, D, Π >, where: 

• Γ is a STNU = <N,E,l,u,C> that specifies the temporal constraints of the group 
plan. 

• A is a set of activities executed by the agents in the group.  
• T is a mapping T+: A  N, and T-:A  N, which map the start time and end time 

of each activity to a timepoint in Γ. 
• Q is a set of agents. 
• D is a distribution which is a mapping D: N  Q that maps each timepoint in the 

group plan to an agent in Q. 
• Π is a communication availability graph (CAG) specifying when each agent can 

communicate with one another. 
  
 In this thesis, we only consider group plans that have fully connected communication 
availability graphs.  The communication availability graph in the group plan is fully 
connected.  This means that the group members of each group plan are allowed to 
communicate throughout the group plan.   In the mission plan, we only assume that the 
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communication availability graph is specified such that each group is able to 
communicate with the agent that executes the start of the plan.  Thus, during execution, 
each group knows when the mission starts. 
  
 Consider the two-layer MTPNU shown in Figure 3-9.  This two-layer plan encodes a 
mission where four rovers, R1, R2, R3, and R4, participate in three group activities: 
search, sample, and send-data, to achieve the mission.  In the mission plan the search and 
sample activities occur concurrently, and are followed by the send-data activity.  In the 
search group activity, R1 and R2 search for new science targets.  In the sample group 
activity, R3 and R4 sample a rock at the current science site.  In send data group activity, 
R1 and R2 send R3 what they discovered exploring, while R4 sends R3 the science data 
it collected.  Then R4 relays this data back to Earth. 
 
 The mission plan, shown in Figure 3-9 contains three group activities: search, sample 
and transmit_receive.  Each group activity is contained in group macro. Recall that a 
macro consists of an executable start timepoint, a contingent end timepoint, the group 
activity, and the contingent link connecting the start and end timepoint.  Each timepoint 
in the mission plan is mapped to a group. The start and end timepoints of each macro are 
associated with their corresponding group plan.  In particular, timepoints A and B are 
associated with the search group (light gray), timepoints C and D are associated with the 
sample group (dark gray), and timepoints F and G, are associated with the 
transmit_receive group (black).  The mission plan also contains two special mission 
timepoints (white), namely, timepoint Z, which is the start of the mission, and timepoint 
E which serves as a connector timepoint. Furthermore, the mission plan contains a set of 
requirement links constraining the possible execution times of each timepoint in the 
mission plan.    
 
 The group plans are also shown in Figure 3-9.  Each timepoint of a group plan is 
mapped to an agent.  The white timepoints are associated with R1, light gray timepoints 
are associated with R2, dark gray timepoints are associated with R3, and black timepoints 
are associated with R4. 
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Figure 3-9 Two-Layer Multi-Agent Temporal Plan Network with 
Uncertainty  

 In the next three sections we discuss two methods used for constructing the two-layer 
plans. First, we describe how to use a variant of the Reactive Model-Based Programming 
Language (RMPL) in order to specify a two-layer plan.  Second, we describe how a fully 
elaborated plan is converted into a two-layer plan, by clustering the plan into a set of 
tightly coordinating sub-plans 
 

3.4.1 Group Programming Language (GPL) 

 The group programming language (GPL) is a programming language that enables a 
programmer to specify the two-layer MTPNUs.  The GPL is a variant of the RMPL 
language [Williams 2003, Kim 2001].  Similar to RMPL, GPL explicitly allows for:  
concurrency, serialization, temporal constraints.  However, GPL does not include many 
advanced features of the RMPL.  The GPL language is a high level, object orientated 
programming language similar to C++.  It uses a set of classes and a set of methods to 
define the plan.  GPL provides a means to distinguish between requirement constraints 
and contingent constraints in the plan.  It also introduces a special wait command that 
encodes a temporal constraint without imposing an activity. In order to specify two-layer 
plans, GPL, uses two special classes called the mission class and the group class.  Using 
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these classes explicitly defines the distinction between the set of constraints that are a part 
of the mission plan and set of constraint that are a part of each group plan.  GPL assumes 
that each agent can communicate within other agents in the same group; however, the 
groups may not be able to communicate with one another. Adding explicit 
communication constraints to GPL is left for future work. 

 
The following describes the primitives of GPL and its mapping to a MTPNU. 
 
Controllable Activity: agent.activity (params) [lb, ub];  
A controllable activity contains an agent assignment, activity name, and a set of 
parameters for the activity. It also contains lower and upper time bounds on the duration 
of the activity.  The controllable activity is converted into one executable start timepoint 
and one executable end timepoint, with a contingent link connecting the start and end 
timepoints.  Both start and end timepoints are associated with an agent specified in the 
activity. The lower and upper bounds are used to create a requirement link between the 
start and end timepoints. The start and end of the activity is associated with the start and 
end timepoint.  Figure 3-10 illustrates the mapping between the GPL and MPTNU for a 
controllable activity. 
 

agent.activity
[lb,ub]s

R1.explore(region1)
s

R1.explore(region1) [10,20];agent.activity(parameters) [lb,ub];

e
e[10,20]

(a) (b)  
Figure 3-10  (a) This shows the GPL to MTPNU mapping 
for a controllable activity in general  (b) This is specific 
example of a controllable activity mapping. 

 
 
Wait:  wait [lb, ub]; 
There is one special controllable activity called a wait, which encodes a purely temporal 
constraint.  The wait does not contain an agent association.  When the Wait is converted 
into a MTPNU it looses its activity status.  It is used to place a temporal requirement in 
the plan without an activity. For example, consider the mapping between the GPL wait 
and the resulting MTPN is shown in Figure 3-11.  
 

[lb,ub]s s

wait [10,20];wait [lb,ub];

e
e[10,20]

(a) (b)  
Figure 3-11  (a) general wait mapping (b) specific 

example of wait mapping 
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Uncontrollable Activity:   agent.activity (params) <lb, ub>; 
The GPL specification for defining an uncontrollable activity is similar to that of a 
controllable activity except that timebounds are used to create a contingent link between 
the start and end timepoints. Note that the brackets of the timebounds are different. The 
GPL to MTPNU mapping for an uncontrollable activity is shown in Figure 3-12. 
 

agent.activity
[lb,ub]s

R1.drive_to(region1)
s

R1.explore(region1) <10,20>;agent.activity(parameters) <lb,ub>;

e
e[10,20]

(a) (b)  
Figure 3-12 (a) General mapping between a GPL uncontrollable 
activity and MTPNU. (b)  A specific example. 

 
GPL contains two combinators: sequence and parallel, which encode serialization and 
concurrency, respectively. The combinators are applied to either primitives or a 
combination of primitives.  The sequence and parallel combinators are defined as: 
 
Sequential Structure:   sequence {statement1; statement2,…} [lb, ub]; 
The sequential structure specifies that the two or more statements in the expression must 
be applied in sequence.  The lower and upper bound place a requirement constraint 
between the start and end timepoint of the whole sequence.  The sequence combinator 
inserts dummy timepoints into the plan, in order to connect the statements that are not 
associated with any specific agent. Figure 3-11 shows the mapping between sequence 
GPL combinator and an equivalent MTPNU. 
 
Parallel Structure:  parallel {statment1, stament2,…} [lb, ub]; 
The parallel combinator specifies that the two or more statements in the expression must 
be performed concurrently. Furthermore, the statements must start and end at the same 
time. The lower and upper bound specify a temporal requirement between the start and 
end of the parallel structure.  Similar to the sequential combinator, the parallel 
combinator applies inserts dummy timepoints into the plan that are not associated with 
any specific agent. For example see Figure 3-9. 
 
 
The rover MTPNU, shown in Figure 3-9, is specified in GPL in Figures 3-14 and 3-15.  
The GPL mission plan is shown in Figure 3-14 and the three group plans are shown in 
Figure 3-15. 
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Class mission 
{ 
 rover_mission() { 
 sequence { 
  parallel { 
   sequence { wait() [0,10]; search(); wait() [0,60] }; 
   sequence { wait() [0,10]; sample(); wait() [0,60] }; 
  } 
  wait() [0,10]; 
  send_data(); 
 } [0,120] 
} 

Figure 3-13 Mission Plan in GPL 
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3.4.2 Converting Multiagent Plans to Two-Layer MTPNUs 

 In this subsection we describe the process of converting a MTPNU into a two-layer 
MTPNU.  This conversion is done by clustering the tightly coordinated group plans 
within the original plan into a set of clusters.  Next, each cluster is extracted from the 
original plan to become a group plan. Then we compute the feasible timebounds for the 
group plan. These feasible timebounds are used to model the duration of each group plan 
in the mission plan.   Finally, we replace the cluster with a macro in order to form the 
mission plan.  

Class group 
{ 
 Rovers R1, R2, R3, R4;    // define rover objects 
  
 sample() {    
  sequence { 
   parallel { 
    sequence { wait() [0,1]; R3.spec_reading(rock1) <0,10>; wait() [0,5] } 
    sequence { wait() [0,1]; R4.take_image(rock1) <0,15>; wait() [0,5] } 
   } 
  wait() [0,1]; 
  R4.sample_rock(rock1) <10,20 > 
  } [0,35] 
 } 
 
 send_data() { 
  sequence { 
   parallel { 
    sequence { wait() [0,5]; R1.send_data(R3) <1,10>; wait() [0,10] } 
    sequence { wait() [0,5]; R2.send_data(R3) <1,10>; wait() [0,10] } 
    sequence { wait() [0,5]; R3.recieve_data() <1,10>; wait() [0,10] } 
    sequence { wait() [0,5]; R4.send_data(R3) <1,10>; wait() [0,10] } 
   } 
   wait() [0,20]; 
   R4.send_data(Earth) <20,40 >; 
  } [0,51] 
 } 
 
 search() 
 sequence { 
  parallel {  
   sequence{ wait() [0,5]; R1.drive_to(locA) <3,6>; wait()[0,5] }; 
   sequence{ wait() [0,5]; R2.drive_to(locA) <7,10>; wait()[0,5] }; 
  } 
  wait() [0,1]; 
  parallel { 
   sequence{ wait() [0,1]; R1.explore(region1) <10,20>; wait()[0,5] }; 
   sequence{ wait() [0,1]; R2.explroe(region2) <10,20>; wait()[0,5] }; 
  } 
  wait()[0,1]; 
  parallel { 
   sequence{ wait() [0,1]; R1.drive_to(base) <5,10>; wait()[0,5] }; 
   sequence{ wait() [0,1]; R2.drive_to(base) <5,10>; wait()[0,5] }; 
  }  
 }[0,70]; 
} 
 

Figure 3-14 The Three Group Plans in GPL 
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 Recall that a macro is a simple abstraction of the group plan, where the macro consists 
of an executable start timepoint, a contingent end timepoint, and a contingent link, 
connecting the start and end timepoint with a lower an upper bound.  This simple 
abstraction hides the details of each group plan within the mission plan.  
 
 Also, recall that the duration of the macro is modeled as an uncontrollable duration, 
because the mission plan has no control over how each group decides to execute their 
plan - each group plan is executed independently. Using this simple representation makes 
it easy to compute the macro and preserves the maximum flexibility in each group plan.  
 
 We assume that the planner (human or automated) can identify the portions of the plan 
that require tight coordination. These portions are called clusters of tight coordination. 
Automatically determining how to cluster an arbitrary plan is left for future work.  
Furthermore, we assume that within each cluster of tight coordination, the agents are able 
to communicate with one another. In other words, we assume that tight coordination is 
conjunct with communication.  The following describes a communication cluster which 
corresponds to a cluster of tight coordination.   
 
Definition 3-16 (Communication Cluster):  Given an STNU G = <N,E,l,u, 
C> a communication cluster is a set of timepoints, B ⊆ N, where each agent, a ∈ A, that 
owns a timepoint in B, maintains communication with all other agents A, during the 
entire execution duration of all  timepoints n∈ N. 
 
Furthermore, we say that a plan is completely clustered if all timepoints associated with 
activities are a member of a cluster, and the start and end of each activity is in the same 
cluster.  This ensures the each activity will be a member of a group plan, when the plan is 
converted into a two layer plan. 
 
 We assume that there exists one timepoint that precedes all others and one timepoint 
that finishes after all others.  If these timepoint do not exist, then they can be added to the 
cluster. These are referred to as the start and end cluster points, respectively.  
Furthermore, we assume that all edges connecting timepoints within the cluster to 
timepoints outside the cluster are connected through the start and end timepoints.  If this 
condition is not satisfied, then the complete clustering is invalid. Consider the complete 
clustering shown in Figure 3-15. Cluster 1 and 3 are valid; however, cluster 2 contains a 
timepoint G, which is neither a start or end timepoint of the cluster, yet it contains an 
edge GI, connecting it to another cluster.   
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Figure 3-15 Clustering Example   

 
 
 
 After completely clustering the plan, the next step is to determine the range of feasible 
execution times for each cluster.  These feasible execution times are specified as the 
lower and upper bound on the macro’s contingent link.  [Dechter et. al. 1990] showed 
that the feasible durations of each timepoint in a distance graph can be computed using 
two Single-Source Shortest-Path (SSSP) computations. 
 
 The macro’s upper bound is set to the shortest distance from the clusters start 
timepoint to the clusters end timepoint.  Similarly, the macros lower bound is set to the 
negation of the shortest path from the clusters end timepoint to the clusters start 
timepoint.  These two shortest paths are computed via the Bellman-Ford SSSP algorithm 
[CLR 1990].  
 
After computing the feasible duration for each cluster, the next steps involve separating 
the clusters from the multi-agent plan, forming group plans from these clusters, and 
substituting each cluster with its group plan macro activity with the macro.  The pseudo-
code for the entire conversion from multi-agent plan to MTPNU is given in Figure 3-16.   
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Figure 3-16 Pseudo Code for CONSTRUCT_TWO_LAYER_PLAN 

 

3.5 The Decoupling Algorithm 
 In this section we describe the mission plan decoupling algorithm, which decouples 
each group macro in the mission plan.  The decoupling of the macros in the mission plan 
allows each group plan to be scheduled independently.  The simplest method to perform 
this decoupling is to use a slight variation of the strong controllability algorithm 
introduced by [Vidal 2000].   Figure 3-17 shows the decoupling procedure.  First, the 
strong controllability algorithm decouples the executable timepoint from the contingent 
timepoints, by making all requirement edges that connect contingent timepoints 
dominated (redundant).  Then the decoupling algorithm selects a consistent assignment to 
the executable timepoints in the mission plan.  
 
 

CONSTUCT_TWO_LAYER_PLAN (F, C) 
Input: MTPNU F and valid set of clusters C which completely cluster F 
Output: Two-Layer MPTN, T, with a mission plan M and a set of group plans G 
1   for each cluster c ∈ C 
2  s  start timepoint of cluster c 
3  e  end timepoint of cluster c 
4  g  CREATE_GROUP_PLAN(F,c) 
5  add g to G 
6  if ¬BELLMAN_FORD_SSSP(g, s )  return NIL 
7   ub  d[e] 
8  BELLMAN-FORD_SSSP ( g, e ) 
9   lb  d[s]  
10  macro  CREATE_MACRO(s,e,lb,ub, g) 
11  substitute macro for cluster c in the MTPNU F 
12 end for 
13 M[T]  G 
14 G[T]  F 
15 return T 
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Figure 3-17 (a) The original mission plan containing requirement edges 
connecting contingent timepoints (b) The mission plan after the contingent 
timepoints are decoupled by the strong controllability algorithm. Note, all 
requirement edge connecting contingent timepoints are removed. (c)  The 
decoupling algorithm fixes the start time for each executable timepoints.  
This eliminates the need to propagate scheduling times during execution. 

 
 In the future work section of Chapter 5, we explore an improved decoupling algorithm 
that combines the STN decoupling algorithm, introduced by [Berger 2003], with the 
strong controllability algorithm to enable the start time of each group plan to retain some 
flexibility, with respect to the start time of the mission. 
 First we explore strong controllability with some simple examples.  Then we present 
the strong controllability checking algorithm introduced by [Vidal 2000].  Finally, we 
present the decoupling algorithm. 
 

3.5.1 Strong Controllability  

 First let’s clarify the definition of strong controllability. Recall that a plan is strongly 
controllable, if there exists a viable execution strategy that does not depend on knowing 
the outcomes of the uncontrollable durations. Therefore, the schedule of the executable 
timepoints of a strongly controllable plan can be generated offline.  Recall, that the 
viability of an execution strategy simply means that the schedule for the executable 
timepoints generated by the execution strategy is consistent for all situations.  However, 
often there are many schedules of the executable timepoints that are consistent in all 
situations.  In these cases, rather than committing to a schedule prior to execution, it is 
possible to dynamically generate the schedule. This process is exactly the same as 
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dynamically scheduling an STN.  Strong controllability does not mean that the plan must 
be executed statically, it just means it can. 
 
 In this subsection, we explore some simple examples in order to demonstrate strong 
controllability.  These examples also help set the stage for the strong controllability and 
decoupling algorithms to follow. 
 
Example 3-2 
 Consider a scenario in which a rover must drive to a location on limited battery power. 
Assume that we can reliably determine that the battery will last between 5 and 10 
minutes. Consider the following two cases.  In the first case, the rover must drive to 
location A, which will take the rover between 1 to 2 minutes, and in the second case, the 
rover must drive to location B, which will take between 1 to 8 minutes.  The duration of 
these drive-to activities is uncertain. In both cases, let’s assume that the rover may start 
driving at anytime; however, the rover must reach the location before the battery dies.  
The plan for driving to location A is shown in Figure 3-18(a) and the plan for driving to 
location B is shown in Figure 3-18(b). 
 
 
 

 
Figure 3-18 (a) A strongly controllable plan. (b) An 
example of a plan that is not strongly controllable.    

                                                                          

 Let’s consider whether the plans shown in Figure 3-18 are strongly controllable. For 
simplicity, let’s assume that the start time of each plan, timepoint s1, is a priori fixed at 
zero, thus, T(s1) = 0..  In order for the plan to be strongly controllable, we need to be able 
to schedule the start of the drive-to activity, timepoint s2, such that the assignment T(s2) is 
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consistent in all situations. Recall, that a situation is defined as one valid assignment of 
the uncertain durations.  In this example, a situation, ω, consists of an assignment to both 
the duration of the lifetime of the battery, ω1, and the duration of the drive-to activity ω2. 
The only non-trivial temporal constraint plan is a lower bound constraint between 
timepoints e2 and e1, which specifies that the drive-to activity must occur before the 
battery dies. 
 
 The plan for driving to location A, shown in Figure 3-18(a), is strongly controllable. If 
the rover starts driving immediately (scheduling T(s2) = 0) the latest time that the rover 
could arrive at location A is at T = 2, corresponding to  a situation where ω2 = 2.  This 
corresponds to an arrival time, T(e2) = 2.  This arrival time is before the earliest possible 
time the battery could die at T(e2) = 5, which occurs in a situation where, ω1 = 5. 
  
 The plan for driving to location B, shown in Figure 3-18(b), is not strongly 
controllable. Even if we start the drive-to(B) activity immediately, hence, scheduling 
T(s1) = 0.  Then there exists a situation, namely {ω1 = 5,  ω2 = 8 }, when the rover arrives 
at location B, after the battery dies.  In this case, T(e1) = 5 and T(e2) = 8 and the 
constraint between e2 and e1 is violated.  
 
 
 
  
Example 3-3: 
 Now consider a scenario in which a rover must performing Entry, Descent, and 
Landing (EDL) on to the Martian surface, and then communicate its status back to Earth.  
Suppose we know that the EDL activity will take between 10 and 20 minutes and 
communicating to Earth will take between 10 and 20 minutes. Again, let’s consider two 
cases.  In the first case, the scientists are in charge of scheduling the rover activities, and 
require that the rovers must start communicating with Earth between 0 to 5 minutes after 
EDL.  In the second case, the engineers are in charge and require that the rover starts 
reporting back some time between 10 and 30 minutes after landing. The plan for each 
case is shown in Figure 3-19.  In order for the plan to be strongly controllable, we need to 
be able to schedule the start of the communicate activity, s2, offline. Again, we assume 
that the start of the mission is at T = 0. 
 
 

EDL
e1[10,20]s1

communicate
e2[10,20]s2[0,5]

EDL
e1

[10,20]s1

communicate
e2

[10,20]s2[0,30]

(a)

(b)

ω1

ω1

ω2

ω2  
Figure 3-19 (a) This plan in not strongly 
controllable.  (b) This plan is not strongly 
controllable.  
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 Let’s first consider the plan in Figure 3-19(a).  In order to determine if the plan is 
strongly controllable, let’s consider the valid execution time for timepoint s2 in various 
situations. Specifically, let’s consider how the valid execution time of s2 is affected by the 
duration of the EDL activity.  In the earliest possible situation, ω1= 10, and s2 must occur 
between [10, 15] minutes.  In the latest possible situation, ω1= 20, and s2 must occur 
between [20, 25] minutes. There is no overlap in the execution windows for s2 in these 
two situations; therefore, it is impossible to schedule s2 such that it satisfies the 
constraints both situations.  Hence, the plan is not strongly controllable. 
 
 Now let’s consider the plan in Figure 3-19(b). In the earliest situation ω1= 10 and s2 
must occur between [30, 50] minutes.  In the latest situation ω1= 20, and s2 must occur 
between [30, 50] minutes.  In this case there is an overlap between the valid execution 
windows of s2.  This intersection is precisely the execution times for s2 that are consistent 
for all possible situations.  Specifically, if s2 is scheduled anytime between [30, 40] 
minutes, it will be consistent for all situations. Therefore, the plan is strongly 
controllable. 
 
 In the EDL scenario, the flexibility between the end of the EDL activity and the start 
of the communicate activity as compared to the uncertainty in the EDL activity, 
determined whether or not the plan was strongly controllable.  Also, note that we only 
needed to consider the extreme values of the EDL uncertainty in order to determine the 
valued execution times for s2.    
 
 In the previous examples we used a type of worst situation analysis to determine if the 
plans were strongly controllable. [Vidal 2000] generalized this type of worst situation in a 
strong controllability checking algorithm.  This algorithm is presented in the next 
subsection, which is followed by the decoupling algorithm. 
 

3.5.2 Strong Controllability Checking Algorithm 

 The strong controllability algorithm introduced by [Vidal 2000] uses a type of worst 
situation analysis to reduce the problem of checking strong controllability into a problem 
of checking temporal consistency. The algorithm is composed of two steps: a 
transformation step, followed by a consistent checking step.  In this section we operate on 
the associated distance graph (DGU) of an STNU.  In the transformation step, the 
algorithm decouples the executable timepoints from the contingent timepoints, meaning 
that the allowed execution times for the executable timepoints are no longer a function of 
the times of the contingent timepoints.  The algorithm achieves this type of decoupling by 
transforming the requirement edges of the DGU that relate contingent timepoints into 
requirement edges that only relate executable timepoints. For example, the transformation 
uses a type of worst situation analysis to ensure that the transformed constraint entails the 
original temporal constraints in all possible situations.  The transformed edges are placed 
in a new distance graph called the transformed graph.  For example, the transformed 
graph does not contain any contingent timepoints; therefore, the schedule of the 
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transformed graph is not dependent on the uncontrollable durations.  In the temporal 
consistency checking step, the algorithm checks if the transformed graph is temporally 
consistent.  If the transformed graph is temporally consistent then the original graph is 
strongly controllable. The temporal consistency checking step is done by checking for 
negative cycles in the transformed graph.  This check is done using the Bellman-Ford 
SSSP [CLR], although any negative cycle checking algorithm works.  
 
 In the transformation step, we need to consider four possible types of requirement 
edges. Specifically, a requirement edge may start on either an executable or a contingent 
timepoint, and similarly, it may end on either an executable or a contingent timepoint. 
 
 The distance graph in Figure 3-20 shows the four types of requirement edges we need 
to consider. It contains an (executable/executable) edge CA, a (contingent/executable) 
edge BC, an (executable/contingent) requirement edge CB, and a (contingent/contingent) 
requirement edge DB.  Each edge has a distance of a, b, c and d, respectively. 
 
 The distance graph in Figure 3-20 contains two uncontrollable durations: ω1 ∈ [l1,u1] 
and ω2 ∈ [l2,u2].  These uncontrollable durations are associated with the contingent 
timepoints B and D, respectively. The first uncontrollable duration, ω1, starts at the 
executable timepoint A, and finishes on the contingent timepoint B.  The second 
uncontrollable duration, ω2, starts on timepoint C, and finishes on timepoint D.  Recall 
that upper and lower bounds of the uncontrollable durations is precisely the same 
information contained in the contingent edges.  In the derivation of the transformation 
rules we will use the uncontrollable durations for convenience.  
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Figure 3-20 The requirement edges fall one of 
four types depending on the type of start timepoint 
and type of end timepoint. They timepoints are 
either executable or contingent. 

 
  
 The strong controllability transformation rule for each type of requirement edge is 
now presented.  The transformation rules describe how to convert the requirement edges 
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of a DGU into a new requirement edge that only relates executable timepoints. For each 
transformation rule we present both an algebraic and a graphical derivation of the rule, 
except for rule 1 which is trivial. The transformation rules reference the DGU shown in 
Figure 3-20. 
 
 
Case 1 (executable/executable) 
 Requirement edges that start and finish on an executable timepoint are precisely in the 
format that we seek; therefore, these constraints remain unchanged in the transformation.  
For example, the edge CA in Figure 3-20 remains unchanged in the transformation.  Note 
however, that this edge may be tightened as a result of some other transformation. 
 
(Executable/Executable) Transformation Rule: Any requirement edge CA, 
constraining two executable timepoints is unchanged in the strong controllability 
transformation step. 
 
Case 2 executable/contingent   
 Consider requirement edge CB with d(CB) = b, as shown in Figure 3-20.  This edge 
constrains the execution time of the contingent timepoint B w.r.t the executable timepoint 
C.  Our goal is to derive a new constraint CA such that, no matter how long the 
uncontrollable duration, ωAB ∈ [lAB,uAB], takes, the original requirement constraint, CB, 
is satisfied. In other words, we seek a new constraint CA, which makes the edge CB 
dominated in all situations.  The algebraic derivation of this new constraint CA is given 
below.  
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  (1) TB – TC ≤ b               : original constraint BC 
  (2) TB = TA + ωAB         : execution of B in terms of the uncontrollable duration 
  (3) TA - TC ≤ b - ωAB     : sub (2) into (1) and rearrange 
  (4) TA - TC ≤ b – uAB       :  tightest constraint for all possible situations 
  
 The original constraint imposed by CB is expressed in (1).  Equation (2) represents the 
execution time of B in terms of the execution time of A and the uncontrollable duration 
ωAB ∈[lAB,uAB].  Substituting (2) into (1) and rearranging results in equation (3), which 
relates execution times of C and A, and explicitly contains the uncontrollable duration 
ωAB.  Notice that Equation (3) no longer contains the execution time of contingent 
timepoint B.  Equation (3) corresponds to an edge CA in the DGU.  In order for this 
constraint to be satisfied in all situations it is sufficient to consider the worst situations. 
Equation (3) imposes the most restrictive constraint when ωAB = uAB.  We call this the 
worst situation because it imposes the tightest constraint on the timepoints of the distance 
graph. Applying the constraint in equation (4) ensures that the original constraint BC is 
satisfied (i.e. dominated) in all situations.  This constraint corresponds to an edge CA 
with distance b - uAB. After applying this new constraint CA to the distance graph, the 
original constraint CB can be removed from the graph. The strong controllability 
transformation rule for a contingent/executable requirement edge is given below. 
        
(Executable/Contingent) Transformation Rule Given an uncertain duration ωAB 

∈[lAB,uAB], any requirement edge CB with d(CB) = b between an executable timepoint C 
and contingent timepoint B is transformed into a new requirement edge CA with d(CA) =  
b – uAB  in the strong controllability transformation step. 
 
 The graphical derivation of this transformation rule is illustrated in Figure 3-21. The 
derivation relies on a shortest path argument in the projection of the DGU.  The DGU 
shown in Figure 3-21(a) contains the executable/contingent edge CB.  The arbitrary 
projection of this DGU is shown in Figure 3-21(b).  The new constraint CA is derived 
by computing the shortest path CBA in this arbitrary projection.  The worst possible 
situation (which imposes the tightest constraint) occurs when ωAB = uAB.  This tightest 
constraint is shown in Figure 3-21(c).  After applying this new constraint CA, the path 
CAB is always shorter than the direct path CB; therefore, the edge CB is dominated in all 
situations and can be removed.  
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Figure 3-21 (a) The DGU containing an executable/contingent requirement edge CB. (b) 
A new constraint CA is derived by computing shortest path CBA through the arbitrary 
projection of the DGU. (c) This edge CA is tightest when wAB = uAB and dominates the 

edge CB in all situations. 
 
 
 
Case 3: contingent/executable 
 Consider the contingent/executable requirement edge BC with d(BC) = c, as shown in 
Figure 3-20.   For this edge we seek a new constraint AC, which dominates BC for all 
situations.  The algebraic derivation of this new constraint AC is given below.  
  
  (5) TC – TB ≤ c       : original constraint BC 
  (6) TB = TA + ωAB     : execution time of B in terms of uncontrollable duration 
  (7) TC – TA ≤ ωAB + c   : sub (6) into (3) and rearrange 
  (8) TC – TA ≤ lAB + c    : tightest in all possible situations 
 
 The original requirement BC is given in (5). The execution time of B in terms of the 
uncontrollable duration ωAB ∈ [lAB, uAB] is given in (6).  Combining (5) and (6), results in 
a new equation that relates execution times of A and C in terms of the uncontrollable 
duration ωAB.   The worst situation (which imposes the tightest constraint) occurs when 
ωAB = lAB.  Equation (8), gives this tightest constraint, which corresponds to an edge CA 
with d(CA) = lAB + c.  After applying this new constraint CA, the original constraint BC 
is dominated for all possible situations, and therefore, removed from the distance graph. 
 
(Contingent/Executable) Transformation Rule: Given an uncontrollable duration ωAB 
∈ [lAB, uAB], any requirement edge BC with d(BC) = c, starting on an contingent 
timepoint B and ending on an executable timepoint C, is transformed into a new 
requirement edge AC  with d(AC) = lAB+ c in the strong controllability transformation 
step. 
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 The graphical derivation of this transformation rule is illustrated in Figure 3-22.  The 
DGU containing the contingent/executable edge BC is shown in Figure 3-22(a).  The 
arbitrary projection of the DGU is shown in Figure 3-22(b). A new edge AC can be 
derived by computing the shortest path ABC in this arbitrary projection. This constraint is 
the same as the constraint in equation (7). The worst situation (which results in the 
tightest edge AC) occurs when ωAB = lAB.  The tightest constraint AC is shown in Figure 
3-22(c).  After applying this tightest constraint AC, the path BAC is always shorter than 
the direct path of BC; therefore, BC is dominated and can be removed from the graph. 

 
 

Figure 3-22: (a) The DGU containing the 
contingent/executable edge BC.  (b) A new edge 
AC is derived by computing the shortest path BAC 
in the projection of the DGU. (c) The tightest 
constraint AC occurs in the situation when ωAB = 
lAB and dominates the edge BC in all situations. 
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Case 4 (contingent/contingent) 
 
 Consider the contingent/contingent requirement edge DB with d(DB) = d, as shown in 
Figure 3-20.  In this case we seek a requirement edge DA to dominate DB for all 
situations.  This edge is derived by using sequential applications of the 
executable/contingent transformation rule and contingent/executable transformation rule.  
If we ignore the fact that D is a contingent timepoint, we can apply the 
executable/contingent transformation rule to derive a new edge DA.  This new edge DA 
has distance of d + uAB.  The edge DB then is transformed by the contingent/executable 
transformation rule into a new edge CA with a distance of d + lCD – uAB.   The 
contingent/contingent transformation rule is given below.  
 
(Contingent/Contingent Transformation Rule 4)  Given the uncontrollable durations 
ωAB ∈ [lAB, uAB], and ωCD ∈ [lCD, uCD],  any requirement edge DB with d(DB) = d, 
starting on a contingent timepoint D and ending on a contingent timepoint B, is 
transformed into a new edge CA with d(CA) =  lCD + d + uAB in the strong controllability 
transformation step.  
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 The graphical derivation of the contingent/contingent transformation rule is similar to 
the previous two graphical derivations and is illustrated in Figure 3-22.  The DGU 
containing the contingent/contingent edge DB is shown in Figure 3-22(a). A new 
constraint CA is derived by considering the shortest path CDBA in the arbitrary 
projection of the DGU, as shown in Figure 3-22(b). The worst case situation occurs when 
ωAB = uAB, and ωCD = lAB.  The resulting constraint is shown in Figure 3-22(c).  After 
applying this constraint, the path DCAB is always less than or equal to the path DB; 
therefore, the edge DB is dominated in all situations and can be removed from the 
distance graph. 
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Definition 3-17 (a) The DGU contains a 
contingent/contingent edge DB. (b) A new edge CA is 
computed by considering the shortest path CDBA in the 
projection of the DGU. (c) This tightest constraint CA occurs 
the situation when ωAB = uAB, and ωCD = lAB and dominates 
DB for all situations.  

 
 
 The strong controllability checking algorithm [Vidal 2000] simply applies 
transformation rules defined above to create a transformed distance graph, then checks if 
this transformed graph is temporally consistent. 
 
 The pseudo code for the strong controllability checking algorithm is given in Figure 1-
19. In Line 1, the executable timepoints of the input distance graph, G, are copied to a 
new transformed distance graph, T.  After this, every executable timepoint in G has a 
corresponding executable timepoint in T. In Line 2, all of the edges of T are initialized to 
NIL. Lines 3-6 compute the transformed distance graph T by looping through each 
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requirement edge in the input distance graph G.   Line 4 applies the strong controllability 
transformation rule to each requirement edge (u,v) in G and generates a transformed edge 
(u’,v’) with d(u’,v’) = x.  In Line 5, the corresponding edge (u’,v’) in T is updated by 
calling the UPDATE_EDGE function.  The pseudo-code for the UPDATE_EDGE 
function is shown in Figure 3-22. If the edge (u’,v’) does not exists in T, then the function 
adds a new edge (u’,v’) to T with distance x; otherwise, it updates the distance of the 
edge (u’,v’) to x, if the new value is smaller than the existing distance.   
 
 After the algorithm completes the transformation process, the transformed distance 
graph, T, contains a set of executable timepoints corresponding to the set of executable 
timepoints in G, and a set of requirement edges constraining these executable timepoints.  
The question of strong controllability is resolved in Lines 7-8.  The algorithm calls the 
Bellman-Ford Single-Source Shortest-Path (SSSP) algorithm [CLR] to check if the 
transformed distance graph, T, contains any negative cycles.  Note that any negative-
cycle detecting graph-algorithm could be used in place of the Bellman-Ford SSSP 
algorithm.  If the transformed distance graph, T, does not contain any negative cycles, 
then T is temporally consistent, and the strong controllability algorithm returns true. If 
the transformed graph is temporally inconsistent, then the algorithm returns false. 
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Example 3-4: 
 Consider the distance graph shown Figure 3-23(a).  The strong controllability 
algorithm first copies the timepoints A, B and D to the transformed graph, T, and 
initializes the edges of T. The executable/executable edges AB, BA, AD and DA are 
simply copied over to T.  The contingent/executable edge CA with d(CA) = 5 is 
converted into a new edge BA with d(BA) = -5.  The contingent/contingent edge EC with 
d(EC) = 12 is converted into an edge DB with d(DB) = 5. The executable/contingent 
edge AE with d(AE) = 15 is converted into an edge AD with d(AD) = 2.  The resulting 
transformed distance graph is shown in Figure 3-23(b).  The algorithm then runs the 
Bellman-Ford SSSP from the source timepoint A on the transformed distance graph T.  

function UPDATE_EDGE(T, u ,v, x ) 
Input: a distance graph T, start timepoint u, end timepoint v, and distance x 
Effects: updates the distance d(u,v) if it exists, otherwise adds a new edge (u,v) with d(u,v) = x 
1 if  T.Get_Edge(u,v) = NIL 
2  T.Add_Edge(u,v) 
3  T.d(u,v)  x 
4 else   
5  T.d(u,v)  MIN( T.d(u,v), x ) 
6 end if 

Figure 3-22 Pseudo Code for UPDATE_EDGE 

IS_STRONGLY_CONTROLLABLE (G) 
Input:  a distance graph with uncertainty G 
Returns:  TRUE if G is strongly controllable, otherwise FALSE 
1  copy all executable timepoints of G  to T 
2  initialized all edges of T to NIL 
3 for each requirement edge (u,v) ∈ E[G] 
4  transform the edge (u,v) using SC transformation rules to an edge (u’,v’) with d(u’,v’) = x 
5  UPDATE_EDGE( T, u’, v’, x ) 
6 end for 
7   s  start timepoint in T 
8 consistent  BELLMAN_FORD_SSSP( T, s )  
9 return consistent 

Figure3-22 Pseudo-Code for IS_STRONGLY_CONTROLLABLE 
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The transformed distance graph T contains no negative cycles; therefore, the algorithm 
returns true, indicating that the original distance graph is strongly controllable.  
 
 

B
10

C

D

10

act1

0

-5

E10
-3

12

act2

A
15

-10

10
0

B

D

10
-5

A

2
0

5

a) b)

 
Figure 3-23 (a) The original DGU, G.   (b) The transformed 
distance graph T used in the strong controllability algorithm. 

 
 The strong controllability checking algorithm runs in polynomial time.  Copying the 
executable timepoints runs in O(N) time. Each transformation runs in constant time; 
therefore, the transformation of the requirement constraints runs in O(E) time. The 
running time of the Bellman-Ford algorithm runs in O(NE) time [CLR].  The running 
time of the strong controllability checking algorithm is dominated by this computation; 
therefore, the strong controllability algorithm runs in O(NE) time. 
 

3.5.3 The Decoupling Algorithm 

 In this section we present a decoupling algorithm that is used to decouple the group 
plan. This decoupling algorithm operates on the mission plan in order to generate a fixed 
schedule for the start timepoint of each macro.  These fixed start times are then passed to 
their respective group plans. The resulting group plans can be scheduled independently. 
The decoupling builds upon the strong controllability checking algorithm presented in the 
last subsection.  The decoupling algorithm transforms the distance graph of the mission 
plan using the strong controllability transformation rules.  If this transformed graph is 
consistent, the decoupling algorithm generates a schedule for the timepoints of the 
transformed graph. Note that any consistent schedule would work; however, we elect to  
schedule the group activities as early as possible.  This schedule is used to fix the time of 
the corresponding group plans.  
 
 The pseudo-code for the decoupling algorithm is shown in Figure 3-24.  The 
algorithm takes in a two-layer plan, consisting of a mission plan, M and a set of group 
plans, G. In Line 1 the decoupling algorithm gets the distance graph of the mission plan, 
Gm. Lines 2-12 are similar to the strong controllability checking algorithm.  These lines 
compute the transformed graph T from the mission plan’s distance graph and returns 
false if the transformed graph is inconsistent.  The only difference between the 
decoupling algorithm and the strong controllability algorithm up to this point is that the 
decoupling algorithm runs a Single-Destination Shortest-Path (SDSP) algorithm instead 
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of the Single-Source Shortest-Path (SSSP) algorithm on the transformed distance graph, 
in order to detect negative cycles.   Both the SSSP and SDSP algorithms detect negative 
cycles; however, the SDSP algorithm computes the earliest feasible time for each 
timepoint instead of the latest feasible time.   
  
 In Lines 13-22 the decoupling algorithm sets the schedule of the group plans. It loops 
through each executable timepoint n in the transformed graph T.  In Line 15, it gets the 
macro associated with the timepoint by calling GET_MACRO function.  If the timepoint 
is not part of a macro, then the GET_MACRO function returns NIL.  If the timepoint is 
part of a macro, then the algorithm finds the corresponding group plan g ∈ G by calling 
the GET_GROUP_PLAN function in Line 17.  In Line 18 the decoupling algorithm fixes 
the start time of the group plan associated with timepoint n.  The start time of each group 
is set to the negation of the SDSP distance of n as computed in Line 7.  Finally, in Line 
22, the decoupling algorithm returns true.  

 
Figure 3-24 Pseudo Code for Decoupling Algorithm 

 
 
Example 3-5 

Decouple ( M, G ) 
Input: A mission plan M and a set of group plans G 
Effects: Decouples the group plans by generating a fixed schedule for the start of each group plan 
Returns: TRUE if decoupling algorithm succeeds, otherwise FALSE 
1   Gm  get distance graph of mission plan. 
2    copy all executable timepoints of Gm  to T 
3  initialized all edges of T to NIL 
5  for each requirement edge (u,v) ∈ E[Gm] 
6  transform the edge (u,v) using SC transformation rules to an edge (u’,v’)  with d(u’,v’) = x 
7  UPDATE_EDGE( T, u’, v’, x )  
8 end for 
9   s  start timepoint of T 
10 consistent  BELLMAN-FORD-SDSP( T, s )  
11 if  ¬ consistent    
12  return FALSE 
13 else 
14  for each timepoint n ∈ N[T] 
15   macro  GET_MACRO(n) 
16   if  macro ¬ NIL 
17    g  GET_GROUP_PLAN(macro)  
18     fix the start time of g to –d[n] computed by BELLMAN-FORD-SDSP algorithm 
19   end if 
20  end for 
21 end if   
22 return TRUE 
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 This example extends Example 3-4.  Consider the mission plan and set of group plans 
shown in Figure 3-25(a-b). This mission plan’s distance graph is exactly the same as the 
distance graph used in Example 3-4.  In Lines 1-8 the decoupling algorithm computes the 
transformed distance graph, T, of the mission plan.  The transformed graph T shown in 
Figure 3-25c. In Line 10 the decoupling algorithm computes the Single-Destination 
Shortest-Path (SDSP) distances (as shown in Figure 3-25c.) from timepoint A to all 
timepoints in the plan  These distances are used in Line 18 to fix the start time of the 
group plans,  as shown in Figure 3-25d.  The start time of group plan1 is fixed at T = 5 
and the start time of the group plan2 is fixed T = 0.  Finally, in Line 22 the decoupling 
algorithm returns true, indicating that the decoupling algorithm succeeded.  
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Figure 3-25 (a) The input mission plan (b) The input group 
plans (c) The transformed graph with SDSP distances (d) The 
group plans with fixed start times. 

 
 
 The decoupling algorithm runs in polynomial time. Lines 1-13 run in the same time as 
the strong controllability algorithm (i.e. O(NE) ).  In Lines 14-20 the decoupling 
algorithm loops through each timepoint and fixes the start time of each group plan.  
Using a simple lookup the GET_MACRO and GET_GROUP_PLAN run in linear time in 
the number of group plans.  Therefore, Lines 14-20 run in O(NG), where G is the number 
of group plans.   The number of group plans G is less than the number of edges in the 
distance graph; therefore, the decoupling algorithm is dominated by the Bellman-Ford 
SDSP computation.  The running time of the decoupling algorithm is O(NE).   
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3.6 The Hierarchical Reformulation Algorithm 
 In this section, we present our novel Hierarchical Reformulation (HR) algorithm.  The 
HR algorithm is a centralized reformulation algorithm that transforms a two-layer plan 
into a set of decoupled, minimally dispatchable group plans.  The HR algorithm 
combines the decoupling algorithm, presented in the Section 1.5, with our novel fast 
dynamic controllability algorithm, presented in Chapter 4. The HR algorithm is used to 
enable the each group plan to be dynamically executed independently. 

3.6.1 HR Algorithm Pseudo-Code 

 The HR algorithm operates on both layers of the two-layer plan.  The fast dynamic 
controllability algorithm operates on the group plans, whereas, the decoupling algorithm 
primarily operates on the mission plan.  Recall that the information contained in the 
group plans and mission plan are related.  Specifically, the timebounds of the macros 
(contained in the mission plan) represent the feasible duration of the group plans. The HR 
algorithm must keep the information of the macros and group plans in sync. When the 
timebounds on the macros change, the HR algorithm updates the corresponding group 
plans via the UPDATE_GROUP_PLANS function.  Similarly, when the feasible 
durations of the group plans are modified, the HR algorithm updates the timebounds of 
the corresponding macros using the UPDATE_MACROS function. 
 
 The pseudo-code for the HR algorithm is shown in Figure 2-23.  The algorithm takes 
in a two-layer MTPNU, P = <M,G>, consisting of a mission plan, M, and a set of group 
plans, G, and generates a set of decoupled dispatchable MTPNUs with fixed start times.  
The algorithm returns true if the reformulation succeeds; otherwise, it returns false.   
 
 The HR algorithm may fail for several reasons. The HR algorithm fails if either the 
mission plan or group plans are temporally inconsistent. Furthermore, the HR algorithm 
fails if the group plans are not dynamically controllable or if the mission plan is not 
strongly controllable.  The HR interleaves these failure checks throughout the algorithm. 
 
 Recall that a two-layer plan can be created in one of two ways: 1) it can be specified 
using a Group Plan Language (GPL) file, or 2) it can be created by calling 
CONSTRUCT_TWO_LAYER_PLAN function, given a fully elaborated plan, and 
associated clustering.   
 
 The HR algorithm is described using the two-layer plan, illustrated in Figure 3-26.  
This is referred to as the simple two-layer plan hence forth. The mission plan (shown in 
Figure 3-26a) contains two group activities: group act1 and group act2.  The 
corresponding group plans, called group plan1 and group plan2,  are shown in Figure 
3-26b,c.  Both of the group plans consist of three timepoints, with one contingent activity. 
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Figure 3-26 (a) The simple two-layer mission plan, (b) group 
plan1 (c) group plan2.  

 
 
 Lines 1-3 of the HR algorithm, Figure 3-28, calls the UPDATE_MACROS function 
and returns false if the update detects a temporal inconsistency in the group plans. The 
UPDATE_MACROS function first computes the feasible duration of each group plan. 
Then it updates the timebounds of the corresponding macros in the mission plan.  This 
function is called at the beginning of the HR algorithm, in order to sync the macros 
within the mission plan with the constraints of the group plans.  The pseudo code for the 
UPDATE_MACROS is shown in Figure 3-26.   
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Figure 3-28  Pseudo Code for HR algorithm 

 
 
 

function Hierachical_Reformulation (P)  
Input: A two-layer MTPNU P = <M,G> consisting of a mission plan M and set of 
group plans G 
Effects:  A set of decoupled dispatchable group plans G 
Returns: TRUE if the reformulation succeeds, otherwise FALSE 
1  consistent  UPDATE_MACROS( G, M ) 
2 if (¬ consistent ) 
3  return  FALSE 
4  consistent  COMPUTE_APSP_GRAPH( M ) 
5   if (¬ consistent )  
6  return FALSE 
7 UPDATE_GROUP_PLANS( G, M ) 
8 for each g ∈ G 
9     controllable  FAST_DC( g) 
10  if(¬ controllable ) 
11   return FALSE 
12  end if  
13 end for 
14 UPDATE_MACROS( G, M ) 
15 success  DECOUPLE( M, G ) 
16 return success  
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The UPDATE_MACROS function loops through each group plan (Lines 1-12).  For each 
loop, the algorithm performs two shortest path computations on the group plan’s distance 
graph.  These shortest path computations compute the lower and upper bound on the 
feasible duration of each group plan.  After computing the range of feasible durations, the 
algorithm updates the timebounds of the corresponding macro contained in the mission 
plan.    
 
 In Lines 2-6, the UPDATE_MACROS function computes the largest feasible duration 
of the group plan.  This is done by computing the largest single source shortest path 
(SSSP) from the start timepoint to all other timepoints.  This computation is done using 
the Bellman-Ford SSSP algorithm.  If the Bellman-Ford algorithm detects any negative 
cycles (i.e. detects any temporal inconsistency) then the UPDATE_MACROS function 
returns false in Line 5.  The Bellman-Ford SSSP algorithm places the shortest path 
distances for each timepoint into an array d.  The largest feasible duration of the group 
plan is equal to the maximum SSSP distance as computed in Line 6. 
 
 In Lines 7-8, the UPDATE_MACROS function computes the smallest feasible 
duration of the group plan. This is done by computing the smallest single destination 
shortest path (SDSP) from all the timepoints in the plan to the start timepoint of the group 
plan using the Bellman-Ford Single-Destination Shortest-Path (SDSP) algorithm.  The 
SDSP distances are placed in the array d.  Note that SDSP distances are all less than or 
equal to zero, reflecting the fact that all the timepoints must occur at or after the start 

function UPDATE_MACROS( M, G ) 
Input:  A mission plan M and set of group plans G 
Effects: Computes the feasible duration of each group plan and updates the 
corresponding timebounds of the macros in the mission plan. 
Returns: True if the Group 
1 for each group plan g ∈ G 
2  s  get start timepoint of g 
3  consistent  BELLMAN_FORD_SSSP( g, s )   
4  if ¬consistent 
5   return FALSE 
6  ub  max( d[n]  for each n ∈ N[g] ) 
7  BELLMAN_FORD_SDSP( g ,s) 
8   lb  -min( d[n]  for each n ∈ N[g] ) 
9  macro  GET_MACRO(g) 
10  UPDATE_EDGE( M, GET_START(macro), GET_END(macro), ub ) 
11  UPDATE_EDGE( M, GET_END(macro), GET_START(macro), -lb ) 
12 end for 
13 return TRUE 

Figure 3-26 Pseudo-code for  UPDATE_MACRO 



 98

timepoint of the plan.  The smallest feasible duration of the group plan is equal to the 
negation of the minimum SDSP distance contained in the array d.   
 
 In Lines 9-11, the UPDATE_MACROS function updates the timebounds of the 
corresponding macro in the mission plan. In Line 9, it gets the macro corresponding to 
the group plan g using the GET_MACRO function. In Lines 10-11 it updates the edges of 
the mission plan’s distance graph associated with the macro.  The start timepoint of the 
macro is found using the GET_START function and the end timepoint is found using the 
GET_END function. Recall that the UPDATE_EDGE function only updates the edge if 
the new value is less than the current value. If the UPDATE_MACROS function reaches 
Line 13, then it returns true. 
 
 Let’s continue with our simple two-layer example. The two layer plan shown in Figure 
3-26 contains two group plans. For group plan1, the maximum SSSP distance is 10 for 
the path ABC, and the minimum SDSP is -2 for the path CBA. The UPDATE_MACROS 
function leaves the distance of the contingent edge AB in the mission plan at 10; 
however, the distance of the contingent edge BA is updated to -2.  For group plan2, the 
maximum SSSP distance is 4, for the path ABC, and the minimum SDSP is 0, for the 
path CBA.  The UPDATE_MACROS function updates the distance of the mission plan’s 
contingent edge CD to 4, and the contingent edge DC remains at -1.  Both group plans 
are temporally consistent; therefore, the UPDATE_MACROS function returns true. The 
mission plan after calling UPDATE_MACROS is shown in Figure 3-27.  
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Figure 3-27 The UPDATE_MACRO function updates the 
edges associated with the macros in the mission plan.  AB is 
updated to 9 and CD is updated to 4. 

 
 Lines 4-7 of the HR algorithm computes the All-Pairs Shortest-Path graph (APSP-
graph) of the mission plan’s distance graph (returning false if the mission plan is 
temporally inconsistent).  Then the HR algorithm updates the timebounds of the group 
plans if the edges associated with the macros are tightened by the APSP-graph.  The 
COMPUTE_APSP_GRAPH function in Line 4 computes the APSP-graph given the 
mission plan’s distance graph.  This APSP-graph is maintained separately from the 
mission plan’s distance graph. The APSP computation is done by either Johnson’s 
algorithm or Floyd-Warshall algorithm [CLR].  Johnson’s algorithm is used if the edges 
the edges are stored in an adjacency list and The Floyd-Warshall algorithm is used if the 
edges are stored in an adjacency matrix. 
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 The APSP-graph is computed for two purposes.  First, it checks if the mission plan is 
temporally consistent (if the mission plan is inconsistent then the algorithm returns false 
in Line 6).  Second, the APSP-graph is used to deduce any tightenings on the macros 
induced by the constraints in the mission plans distance graph.  If the edges in the APSP-
graph corresponding to the macro edges are tightened, then the HR algorithm updates the 
corresponding group plan. The group plans are updated by calling the 
UPDATE_GROUP_PLANS function in Line 7 of the HR algorithm. 
 
 

 
 
 The pseudo code for the UPDATE GROUP_PLANS function is shown in Figure 1-24. 
This function loops through each macro in the mission plan.  In Lines 2-5, it finds the 
corresponding distances in the APSP-graph for each macro.  In Lines 6-7, it uses these 
distances to update the corresponding edges in the mission plan’s distance graph.  Then 
in Lines 8-10, the UPDATE_GROUP_PLANS function finds the group plan, g, 
associated with the macro and the start timepoint, s, and, end timepoint, e, of that group 
plan.  In Lines 11-16, it uses the lower bound (lb) and upper bound (ub) as computed in 
Lines 6-7 to update the feasible duration of the group plan.  If the ub is smaller than the 
group plan’s maximum feasible duration, then the group plan’ edge from the start of the 
group plan to the end of the group plan is updated.  Similarly, if the lb is smaller than the 

function UPDATE_GROUP_PLANS( M, G,) 
Input:  A mission plan M and set of group plans G 
Effects: Uses the mission plan’s APSP-graph to update the macros in the mission plan 
and  timebounds of the group plans. 
1 for each macro ∈ Macros[M] 
2  s  GET_START(macro) 
3  e  GET_END(macro) 
4  ub  apsp_graph[s,e ] 
5  lb  -apsp_graph[e, s ] 
6  UPDATE_EDGE( M, (s,e), ub ) 
7  UPDATE_EDGE( M, (e,s), -lb ) 
8  g  GET_GROUP(macro)  
9  s  GET_START(g) 
10  e  GET_END(g) 
11  if  ub < GET_UB( macro ) 
12   UPDATE_EDGE( g, s, e, ub ) 
13  end if 
14  if  lb < GET_LB( macro ) 
15   UPDATE_EDGE( g, e, s, -lb ) 
16  end if 
17 end for 
14 return TRUE 

Figure 3-27 Pseudo Code for 
UPDATE_ GROUP_PLANS 

 John Stedl
Suggest say this earlier

 John Stedl
Why?



 100

group plan’s minimum feasible duration, then the group plan’s edge from the end 
timepoint to the start timepoint is updated.  After calling the UPDATE_GROUP_PLANS 
function, the data in the macros and group plans are synchronized. 
 
 Let’s continue with our simple two-layer plan.  The mission plan’s APSP-graph is 
shown in Figure 3-28(a).  The APSP-graph edge AB is smaller than the edge AB in the 
mission plan’s distance graph. This edge AB is associated with the upper bound on the 
group act1.  The edge AB is tightened from 10 to 9.   The UPDATE_GROUP_PLANS 
function updates the mission plan’s distance graph accordingly as shown in Figure 
3-28(b).  The UPDATE_GROUP _PLAN function then updates the group plans. The 
updated group plans are shown in Figure 3-28(c-d).  The UPDATE_GROUP_PLANS 
function adds the edge AC = 9 to group plan1, corresponding to the edge AB = 9 in the 
mission plan, and adds the edge CA = -1 to group plan2, corresponding to the edge DC = 
-1 in the mission plan.  Note that the edge DC = -1 was present in the original mission 
plan, whereas the edge AB = 9 was derived by the APSP-graph.   
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Figure 3-28 (a) APSP-graph (b) Updated mission plan (c) 
Updated Group Plan 1 (d) Updated group plan 2. 

 
 
 After the group plan’s timebounds are updated, the HR algorithm calls the fast 
dynamic controllability (FAST_DC) algorithm to reformulate each group plan into a 
dispatchable group plan on Line 9.  This FAST_DC algorithm is presented in Chapter 4.  
If this reformulation succeeds, then the group plan is dynamically controllable and the 
HR algorithm continues.  However, if the FAST_DC algorithm fails (for any group plan) 
then the HR algorithm terminates and returns FALSE. 
 
 The complete description of the FAST_DC algorithm is presented in Chapter 4. For 
now the reader only needs to understand that the FAST_DC algorithm is a reformulation 
algorithm that either adds or tightens the constraints of the group plan.  These additional 
constraints may alter the range of feasible durations of the group plan. If the range of 
feasible durations of a group plan is tightened (the lower bound is increased or the upper 
bound is decreased), then the HR updates the edges of the corresponding macro by once 
again calling UPDATE_MACROS. This is done in Line 14.  There is no need to check 
for temporal consistency of the group plans, because if the group plans are dynamically 
controllable, then they are temporally consistent. Note that tightening the constraints of 

 John Stedl
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the macros only serves to remove uncertainty from the mission plan.  Thus, the update in 
Line 14 only serves to make the decoupling algorithm more likely to succeed.     
 
 In our simple two-layer plan example, both of the group plans are dynamically 
controllable. Furthermore, feasible durations of the group plans are unchanged by the 
FAST_DC algorithm; therefore, the UPDATE_MACROS call in Line 14 of the HR 
algorithm does not change the mission plan. 
 
 In Line 15, the HR algorithm calls the decoupling algorithm on the mission plan.  
Recall that the decoupling algorithm operates on the mission plan in order to assign a 
fixed schedule for the start of each group plan.  If the decoupling algorithm succeeds, 
then the HR algorithm returns true, otherwise the HR algorithm returns false. 
 
 For our simple two-layer plan, the decoupling algorithm succeeds. Recall that the 
decoupling algorithm uses a series of transformations build a constraint network that only 
contains a set of executable timepoints.  The decoupling algorithm is applied to the 
updated mission plan as shown in Figure 3-28(b). The distance graph of the mission plan 
is converted in the transformed STN as shown in Figure 3-29(a). The decoupling 
algorithm first copies over the executable timepoints, A and C, then it transforms the 
edges using the strong controllability transformation rules.  The decoupling algorithm 
copies over the requirement edges AC = 1 and CA = 0 from the mission plans distance 
graph.  The edge CB = 8 is transformed in to an edge CA = -1 which relaxes the edge CA 
in the transformed STN.   The edge BC = 0 is transformed into an edge AC = 2, which is  
greater than the existing edge, so there is no change in the transformed STN.  Finally, the 
decoupling algorithm computes the earliest execution time for each timepoint using a  
SDSP computation. The earliest execution time for A = 0 and B = 1; therefore, the start 
timepoint associated with group plan1 is fixed at 0, and the start timepoint for group 
plan2 is fixed at 1.  The decoupled group plans are shown in Figure 3-29(b)-(c).  
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Figure 3-29 (a) The transformed STN (b) The start time of 
group plan1 is fixed at T = 0 (c) The start time of group 
plan2 is fixed at T = 1.  

 
 The HR algorithm is a polynomial time algorithm.  It gains efficiency by dividing the 
reformulation problem into a set of smaller sub-problems.  Let’s analyze the runtime 
complexity of the HR algorithm.  In this discussion we use the following notation.  
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• G = number of group plans, also equal to the number of macros in the mission 

plan. 
• Nm = number of timepoints in the mission plan. 
• Em = number of edges in the mission plan.  
• Ng = maximum number of timepoints in any group plan. 
• Eg  = maximum number of edges in any group plan. 

 
 In Line 1 HR calls the UPDATE_MACROS function. The UPDATE_MACROS 
function loops through each group plan and the time of each loop is dominated by the 
Bellman-Ford algorithm. Therefore, the UPDATE_MACROS runs in O(G*Ng*Eg). Lines 
2-3 of the HR algorithm run in constant time.  In Line 4 the HR algorithm calls 
COMPUTE_APSP_GRAPH.  The Floyd-Warshall algorithm is used, which runs in 
Θ(Nm

3)  . Lines 5-6 run in constant time. Line 7 calls the UPDATE_GROUP_PLANS 
function.  The UPDATE_GROUP_PLANS function loops through each macro and in 
each loop is performed in constant time. Therefore, the UPDATE_GROUP_PLANS runs 
in Θ(G) time.  Lines 8-13 of the HR algorithm loop through each group plan and calls the 
FAST_DC algorithm. The time complexity of the FAST_DC algorithm has yet to be 
formally proven; however, experimental results has shown the running time to be O( 
Ng

3).  Therefore, the running time of Lines 8-13 is experimentally shown to be O( 
G*Ng

3).  Line 14 calls the UPDATE_MACROS function.  Finally, in Line 15 the HR 
algorithm calls DECOUPLE, which we showed is Section 3.5, to run in O( G*Ng) time.  
 
 Adding the terms together we get an expression for the running time of the HR 
algorithm as O(G*Ng*Eg) + O(Nm

3) + O(G) + O(G*Ng
3) + O( G*Ng) + O(1), which can 

be simplified to O(G*Ng
3

 + Nm
3). As we shall see in Chapter 4, the Ng

3 term is derived by 
an All-Pairs Shortest-Path (APSP) computation applied to the group plan used in the 
FAST_DC algorithm and the Nm

3 term is due to the APSP computation on the mission 
plan. 
 
 

3.7 Summary 
In this chapter we, 1) formally defined communication controllability, 2) formally 
introduce the two-layer MTPNU, 3) introduce a novel Hierarchical Reformulation 
algorithm that enables teams of agents to coordinate their activities without 
communication while allowing the agent within each team to dynamically adapt to 
uncertainty.  In the next chapter we discuss our new Fast-Dynamic controllability 
algorithm which is used to reformulate each group plan.  
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4 Fast Dynamic Controllability Algorithm 

4.1 Introduction 
 This chapter finishes the explanation of the Hierarchical Reformulation Algorithm 
introduced in Chapter 3, by describing how to reformulate each group plan into a 
dispatchable group plan.  Specifically, this chapter introduces a novel efficient, 
centralized, dynamic controllability algorithm, called a fast dynamic controllability 
algorithm that transforms a plan constrained by an STNU into a dispatchable form.  This 
chapter also describes a new edge filtering algorithm that transforms the dispatchable 
group plan into an efficiently dispatchable plan, called a minimal dispatchable plan.  
Together, the fast dynamic controllability algorithm and edge filtering algorithm perform 
group plan reformulation. 
 
 The goal of group plan reformulation is to enable the dispatcher to efficiently, 
dynamically, and consistently execute the group plan.  The reformulation algorithms 
presented in this chapter are analogous to the reformulation algorithm, described in 
Chapter 2.  Recall that in Chapter 2 we considered plans constrained by a STN; however, 
here we consider plans constrained by a STNU. We need to deal with uncertainty.  Recall 
that in Chapter 3 we dealt with this uncertainty of the activities in the mission plan by 
decoupling the activities. This decoupling procedure enabled the activities in the mission 
plan to be executed independently.  However, in this chapter we seek to precompile the 
temporal constraints of the group plan such that the agents can react to the uncertainty at 
execution time, in order to exploit the fact that the agents can communicate within the 
group plans.  We seek to preserve some flexibility in the group plans so they can react to 
their situation at execution time, rather than simply preparing for the worst. 
 
 After the reformulation, the agents of the group must cooperate in order to execute the 
group plan. In the simplest approach, each group plan is executed using a leader-follower 
architecture. In this approach, a single leader is commissioned to make all scheduling 
decisions.  The leader manages the execution process by sending commands to and 
receiving execution updates from the other agents in the group. All information passes 
through the leader.  In Chapter 5, we present an alternative approach that distributes the 
execution process such that all the agents take part in the scheduling process.  No matter 
which approach (leader-follower or distributed) is used, the fast dynamic controllability 
algorithm is still applicable. 
 
 This chapter builds on the concepts presented in Chapter 2 and Chapter 3. Specifically, 
the fast dynamic controllability algorithm expresses the temporal constraints of the group 
plan as a distance graph, then uses a set of local shortest path computations to reformulate 
the plan.  The shortest path computations are a type of constraint propagation.  Recall that 
constraint propagation is the process of deriving the feasible assignments on one set of 
variables given a set of constraints on different sets of variables. The fast dynamic 
controllability algorithm generalizes the strong controllability rules used in Chapter 3. 
 

 John Stedl
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 This chapter introduces one fundamentally new concept, the idea of a conditional 
constraint, which was originally introduced by [Morris 2001]. A conditional constraint 
(or wait constraint) is a ternary constraint (i.e. relates three timepoints) that is satisfied 
either by the passage of a minimum amount of time or through the notification of an 
event, which ever is sooner.   It is similar to a lower bound simple temporal constraint, 
except that its enforcement is conditioned on the outcome of some other event.  We use 
these types of constraints in everyday life.  For example, consider a scenario where you 
plan on meeting a friend for lunch; however, you are running late.  In such a scenario, 
you may call your friend and tell him you are running late.  You would like to eat 
together, but, you do not want to be inconsiderate, so you ask your friend to wait for at 
least 20 minutes before ordering. However, if you get there before 20 minutes, there is no 
need to wait any longer. If your friend agrees, he has agreed on a conditional wait 
constraint.   Your friend will wait for at least 20 minutes or until you arrive, which ever is 
sooner.   
 
 In this chapter, we show how to use these types of conditional wait constraints to 
preserve flexibility in partially controllable plans so that they can be dynamically 
executed.  Beyond being desirable, the completeness of the fast dynamic controllability 
algorithm depends on using these conditional wait constraints.  
 
 The conditional wait constraint is a fundamental departure from the constraints we 
have been using, because they are ternary constraints (relate three timepoints), rather than 
binary constraints (relate two timepoints).  Fortunately, [Morris 2001] showed that these 
conditional constraints can be propagated through the constraint network similar to 
simple temporal constraints.  Furthermore, the introduction of conditional constraints 
only requires a small change to the STN dynamic dispatching algorithm, as presented in 
Chapter 2. 
 
 The dynamic controllability problem is solved by iteratively applying a set of local 
constraint propagation rules. Our fast algorithm builds on the basic structure of the 
dynamic controllability algorithm introduced by [Morris 2001]; however, it removes the 
need to perform repeated calls to an O(N3) All-Pairs Shortest-Path (APSP) algorithm. 
 
 The speed of the fast dynamic controllability algorithm is derived by two main 
innovations.  First, our new dynamic controllability algorithm filters redundant 
constraints from the distance graph, up front, which reduces the number of propagations 
required.  Second, we show that after performing a single APSP computation, the 
temporal constraints are placed in a pseudo-dispatchable form.  Given this pseudo-
dispatchable form, each constraint only needs to be resolved with the constraints that 
involve timepoints that occur earlier in the plan.  Therefore, the constraints back-
propagate through the distance graph. Applying these back-propagation rules allows the 
fast dynamic controllability algorithm to incrementally build up the reformulated distance 
graph, starting from constraints that relate timepoints that occur at the end of the plan, to 
constraints that relate timepoints that occur early in the plan. 
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 The outline for this chapter is as follows. First we introduce some definitions and 
concepts related to dynamic controllability.  Next, we review the dynamic controllably 
algorithm introduced by [Morris 2001]. Then we introduce our novel fast dynamic 
controllability algorithm.  Finally, we introduced the new edge trimming algorithm.   The 
empirical results for the new fast dynamic controllability algorithm are presented in 
Chapter 6. 

4.2 Overview 
 
 This section reviews some key concepts and introduces several definitions regarding 
dynamic execution of plans that contain uncertainty. These definitions will be useful in 
subsequent sections. 
 
 A plan is dynamically controllable if there is a viable, dynamic execution strategy to 
schedule the timepoints in the plan.  Recall that an execution strategy is viable if it 
generates a consistent schedule in all situations, and an execution strategy is dynamic if 
each scheduling decision is based only on the past.  
  
 The goal of dynamic controllability algorithm presented in this chapter is to compile 
the temporal constraints of the plan into a form such that a dispatcher can use to 
dynamically execute the plan.  This reformulation enables the dispatcher to adapt to the 
plan’s uncertainty at execution time. 
  
 Recall that dynamic execution is a scheduling process in which the timepoints of the 
plan are scheduled in real-time (timepoints are executed and scheduled simultaneously). 
In order to understand how to do this dynamic execution for plans that contain 
uncertainty, let’s review the general job of the dispatcher and how to dynamically execute 
plans that do not contain any uncertainty (i.e. plans constrain by STNs rather than 
STNUs) 
 
 The dispatcher, whether applied to plans that contain uncertainty or not, is constantly 
making two related decisions: 1) what timepoint to execute next, and 2) when to schedule 
each timepoint.  The reformulation algorithm compiles the temporal constraints of the 
plan in order to enable the dispatcher to make these decisions properly and quickly. This 
compilation is composed of two tasks: 1) it computes a set of enablement conditions for 
each timepoint, and 2) it exposes the set of implicit constraints inherent in the original 
explicit temporal constraints. 
 
 In Chapter 2 we presented two reformulation algorithms (a basic version and fast 
version) along with a compatible dispatching algorithm for plans constrained by an STN 
[Muscettola 1998a, Muscettola 1998b].  Recall that the basic reformulation algorithm 
first computes the All-Pair Shortest-Path (APSP) graph of the plan’s distance graph, 
which exposes the implicit constraints, then trims the redundant (dominated) edges. The 
resulting graph is called the minimal dispatchable graph.  Recall that in the fast version, 
the APSP computation and edge trimming are interleaved. For plans constrained by an 
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STN, the enablement condition is simply a list of timepoints that must be executed. For 
each timepoint, after the set of enablement timepoints have been executed, then that 
timepoint becomes enabled.  The set of enablement timepoints for a timepoint X is 
computed by compiling all timepoints that are related to X by outgoing non-positive 
edges. 
 
 During execution, the dispatcher is free to select any timepoint for execution that is 
both enabled and alive.  A timepoint is enabled if the all of the enablement timepoints 
have been executed and a timepoint is alive if the current time falls between the 
timepoints execution window.  Every time the dispatcher executes a timepoint it performs 
two updates.  First, it sends a set of enablement messages to all timepoints waiting on that 
timepoint’s execution, and second it uses the constraints in the reformulated distance 
graph to update the execution windows of neighboring timepoints. [Muscettola 1998a] 
showed that upper bound updates are propagated via outgoing positive edges and lower 
bound updates are propagated via incoming non-positive edges. 
 
 The reformulation and dispatching algorithms need to be modified to support plans 
constrained by STNUs. The dispatcher only has partial control over the execution of the 
timepoints. A plan is only dynamically controllable if the plan does not further constraint 
the uncontrollable durations.  Both the reformulation algorithm and the dispatcher must 
respect the timebounds of the contingent links. Recall that a contingent link specifies a 
lower and upper bound on an uncontrollable duration.  If the temporal constraints of the 
plan imply strictly tighter bounds on the uncontrollable duration, then the uncontrollable 
duration is squeezed.  Specifically, an uncontrollable duration is squeezed if its lower 
bound is increased or its upper bound is decreased, as illustrated in Figure 4-1.  If the 
uncontrollable duration is squeezed, then there exists a situation where the outcome of the 
uncontrollable duration falls outside of the specified timebounds; therefore, consistency 
of the execution is dependent on the outcome of some uncertain event. 
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Figure 4-1 Each uncertain duration contains a lower and 
upper bounds as specified by the associated contingent 
link. The uncontrollable duration is squeezed if its lower 
bound is increased or its upper bound of the decreased  
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 [Morris 2001] introduced the concept of pseudo-controllability, which provides a 
first check on the dynamic controllability of a plan.  A plan in pseudo-controllable if it is 
temporally consistent and none of its uncontrollable durations are squeezed.  The pseudo-
controllability of a plan can be checked by computing the All-Pairs Shortest-Path graph 
(APSP-graph) of the plan’s distance graph (ignoring the distinction between contingent 
and requirement edges).  If the APSP-graph does not contain any negative cycles, and 
contingent edges remain unchanged in the APSP-graph, then the plan is pseudo-
controllable.  Therefore, if a plan is pseudo-controllable, then the contingent edges in the 
plan’s distance graph are the shortest paths. 
 
 
Example 4-1: 
 Consider the Distance Graph with Uncertainty (DGU) shown in Figure 4-2(a). The 
contingent edges represent the time bounds of the uncontrollable duration AB.  The 
uncontrollable duration will last between [5,10] time units.  The path ACB = 9 is shorter 
than the direct path AB = 10; therefore, the other constraints imply a tighter value on the 
upper bound of the uncontrollable duration. The APSP-graph shown in Figure 4-2(b) 
exposes this tightening.  The uncontrollable duration is squeezed; therefore, the plan is 
not pseudo-controllable. 
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Figure 4-2 (a) The DGU with a uncontrollable duration between 
timepoints A and B (b) The APSP-graph exposes the temporal 
constraints imply a tighter upper bound on the uncontrollable 
duration; therefore, the uncontrollable duration is squeezed. 

 
Example 4-2: 
 Consider the DGU shown in Figure 4-3(a).  The contingent edges remain unchanged 
in the APSP-graph, shown in Figure 4-3(b).  Furthermore, the plan is temporally 
consistent; therefore, the plan is pseudo-controllable.  
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Figure 4-3 (a) A DGU with uncontrollable duration AB.  (b) The 
APSP-graph does not further constraint the contingent edges. 
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 Even if a plan is pseudo-controllable, the uncontrollable durations may be squeezed at 
execution time.  When the dispatcher executes a timepoint, it effectively imposes a rigid 
constraint between the start of the plan and the timepoint being executed. If the 
dispatcher were to resolve this new constraint with the other constraints (by computing 
the APSP-graph) it may tighten a contingent edge, thus squeezing an uncontrollable 
duration. 
 
 Recall that the dispatcher does not need to recompute the APSP-graph every time it 
executes a timepoint.  It updates the execution windows of the timepoints via a set of 
local propagations rather than updating the constraints of the plan. This is precisely the 
reason that the dispatcher is able to schedule the network in real-time.  Therefore, when 
we talk about squeezing an uncontrollable duration during execution, it is more natural to 
express it in terms of the execution windows, rather than in terms of the temporal 
constraints of the plan. 
 
 Given a distance graph with uncertainty (DGU) with a positive upper bound 
contingent edge, AB, and corresponding contingent lower bound edge, BA, the execution 
window of the contingent timepoint B is squeezed if the execution window [x, y], 
resulting from propagation through edges AB and BA is tightened by any other 
propagation. Specifically, if the propagation through an incoming positive edge CB, 
where C ≠ A, results in an upper bound, y’, where y’ < y, then the contingent execution 
window is upper bound squeezed. Similarly, if a propagation through some outgoing 
negative edge BC, where C ≠ A, produces lower bound x’, where x’ > x, then the 
contingent execution window is lower bound squeezed. If the contingent execution 
window is squeezed during execution then the uncontrollable duration is also squeezed. 
 
Example 4-3: 
 Consider the DGU show in Figure 4-4(a). The DGU is pseudo-controllable; however, 
it the dispatcher chooses execution time for B such that it squeezes the execution window 
of the contingent timepoint C.  Timepoint A is the start of the plan and is executed at time 
= 0. After executing A, the dispatcher propagates the execution time through the plan. 
The execution window for C is [1,7] and the execution time for B is [5,10].  The 
dispatcher is free to choose any execution time for C between [1,7].   Figure 4-4(b) shows 
a case when the dispatcher chooses an execution time of 5 for B.  After executing C, the 
dispatcher propagates the execution time of C through the edges CB and BC. These 
propagations result in an execution window for the contingent timepoint B of [8,10].  
This squeezes the execution window of B.  If the uncertain duration takes any time 
between 5 and 7 time units, then the execution is inconsistent.  Note that if the dispatcher 
executed B at time 1 or 2, then the contingent execution window would not have been 
squeezed.  
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Figure 4-4  (a) The execution windows for the plan are shown after 
executing A at time = 0. (b) The execution window of the 
contingent timepoint B is squeezed from [5,10] to [8,10] after 
executing the timepoint C at time = 5.  

 The goal of the dynamic controllability algorithm is to add additional constraints to the 
plan in order to enable the dispatcher to consistently schedule the plan without squeezing 
consistent timepoints at execution time. 

4.3 The Dynamic Controllability Algorithm 
  
 This section describes the dynamic controllability (DC) algorithm introduced by 
[Morris 2001]. The dynamic controllability algorithm transforms an STNU into a 
dispatchable graph.  [Morris 2001] also showed that this algorithm is both sound and 
complete.  If algorithm successfully reformulates the STNU, then the STNU is 
dynamically controllable; however, it the algorithm fails to reformulate the STNU, then 
the STNU is not dynamically controllable. In this section, we first present the overall 
structure of the DC algorithm, we will then describe the details of each step, and finally 
present the pseudo-code for the DC algorithm along with a brief analysis of the time 
complexity of the algorithm.  In the next section, we present a new, faster, dynamic 
controllability algorithm, which is used in the Hierarchical Reformulation algorithm. 
 
 The dynamic controllability algorithm iteratively applies a set of reductions in order to 
prevent the dispatcher from squeezing the plan at execution time. These reductions are a 
set of rules that add (or tighten) the constraints to the plan. These reductions are similar to 
the strong controllability transformation rules presented in Chapter 3. The dynamic 
controllability algorithm uses a constraint processing loop that iterates between applying 
the reductions, propagating the effects of the reductions to the other constraints in the 
plan, and checking if the plan is pseudo-controllable.  The DC algorithm loops until 
either 1) it determines that the plan is not dynamically controllable, by detecting an 
inconsistency or determining that the plan is not pseudo-controllable, or 2) it converges 
on a dispatchable graph. 
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3.) apply reductions

YES

4. wait constraint propagation

NO

1. requirement constraint
propagation

YES

6. converged?

return TRUE

2. Pseudo-
Controllable?

return FALSE NO

5. consistent?

 
Figure 4-5 Basic Steps of Dynamic Controllability Algorithm 

 
 The constraint processing loop iterates between four basic steps: 1. requirement 
constraint propagation, 2. checking pseudo-controllability, 3. local constraint deduction, 
and, 4. wait constraint propagation, as shown in Figure 4-5.  In Step 1, the algorithm 
resolves the simple temporal constraints by computing the All-Pairs Shortest-Path graph.  
Conceptually, after the first iteration, Step 1 propagates any change in the requirement 
constraints throughout the graph.  In Step 2, the algorithm checks if any plan is pseudo-
controllable. If the plan is inconsistent or any uncontrollable duration has been squeezed, 
the algorithm returns false.  In Step 3, the algorithm applies a set of reductions in order to 
prevent an uncontrollable duration from being squeezed at execution time. The reductions 
may either modify the simple temporal constraints of the plan or modify the wait 
constraints of the plan. Finally, the algorithm propagates wait constraints through the 
plan.3 If the algorithm determines any inconsistency during this wait constraint 
propagation, it returns false. 
 

                                                 
3[ Morris 2001] called the propagation of the wait constraints regression. 
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 The algorithm loops through these four steps until either 1) the pseudo-controllability 
checking step fails, 2) the propagation of the wait constraints results in an inconsistency, 
or 3) the algorithm successfully goes through an iteration of the constraint processing 
loop without adding (or modifying) the constraints of the plan. 

4.3.1 Triangular Reductions  

 This subsection describes a set of reductions, which add (or tighten) the temporal 
constraints of the plan, in order to prevent the dispatcher from squeezing the contingent 
execution windows at execution time.  [Morris2001] derived the reductions in terms of a 
triangular STNU; however, here we will derive the reductions using the associated 
distance graph (DGU).  It is more natural to use the distance graph because the dispatcher 
uses a distance graph to execute the plan. 
  
 The reductions are derived from a case analysis of a distance graph of a triangular 
STNU.  The triangular STNU is shown in Figure 4-6(a) and the associated triangular 
DGU is shown in  Figure 4-6(b).  Later we show how the reductions derived for the 
triangular DGU are applied to distance graphs of arbitrary size. The triangular STNU 
consists of two executable timepoints, A, and C, and one contingent timepoint, B.  It 
contains one contingent link AB ∈ [x,y], corresponding to an uncontrollable duration, 
and two requirement links, AC ∈ [p,q] and CB ∈ [u,v]. We assume the STNU is pseudo-
controllable and the distance graph is in an APSP form.  Therefore, each edge in the 
distance graph corresponds to a shortest path distance. 
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Figure 4-6 (a) The Triangular STNU (b) The associated triangular 
DGU. 

 The reductions are used to constrain the execution time of timepoint C, in order to 
prevent the propagations through CB and BC from squeezing the contingent execution 
window of B.  Recall that the execution window of B can only be squeezed by incoming 
positive edges and lower bound squeezed by outgoing negative edges. We need to 
consider three cases.  In the precede case, timepoint C must be executed before the 
contingent timepoint B.  In the follow case, timepoint B must be executed after the 
contingent timepoint C, and in the unordered case, the execution order of B and C is 
undetermined.  Recall that each execution order of a timepoint is determined by 
considering the negative edges in its DGU, as illustrated in Figure 4-7.  
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Figure 4-7 Temporal ordering relationships of a timepoint C with 
respect to a contingent Timepoint B. 

Given a DGU, G, in an APSP-form, the order of execution of a timepoint, C, with respect 
to a contingent timepoint B, is as follows: 
 

• A timepoint C must follow the contingent timepoint B, if there exists a 
negative edge BC in G.   

• A timepoint C must precede the contingent timepoint B, if there exists a 
negative edge CB in G. 

• The execution order of timepoint C is undetermined with respect to the 
contingent timepoint, B, if both edges BC or CB are non-negative. 

 
 Note that if both BC and CB are negative, then there exists a negative cycle and the 
DGU is inconsistent.  In the triangular DGU shown in Figure 4-6, the ordering of C with 
respect to the contingent timepoint B is determined by the sign of u and v. 
 
 
Follow Case: u ≥  0 
 If u ≥  0, then there exists a negative edge BC. In the precede case, timepoint C must 
be executed after the contingent timepoint B; therefore, the dispatcher is always privy to 
the execution time of contingent timepoint B when it makes the scheduling decision of C. 
Therefore, the dispatcher is able to adapt the schedule of C based on the execution time 
of B.  In the follow case, the dispatcher uses edges BC and CB to update the execution 
window of timepoint C not B. Therefore, the execution of C will never squeeze the 
execution window of contingent timepoint B. As long as the STNU is pseudo-
controllable, the dispatcher will be able to dynamically schedule B.  The follow case 
requires no additional tightening of the constraints.  
 
 
Example 4-4 
 Consider a scenario in which a student must meet with an advisor. The advisor’s 
arrival time at the office is uncertain and will take between 5 to 10 minutes.  Furthermore, 
the advisor requires at least 5 minutes to check his email before the meeting; however; 
the advisor is on a tight schedule so he does not want to wait in his office more than 10 
minutes before the meeting. The advisor agrees to notify the student when he reaches his 
office. The student is willing to wait for up to 20 minutes. The student’s plan is shown in 
Figure 4-8(a).  The APSP-graph is shown in Figure 4-8(b).  The APSP-graph is both 
consistent and the APSP-graph does not tighten the contingent edges; therefore, the plan 
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is pseudo-controllable.  Furthermore, the timepoint C must follow timepoint B; therefore, 
the plan is dynamically controllable. Figure 4-8(c) shows the execution windows after 
executing timepoint A at T = 0.   Figure 4-8(d) shows a situation where it takes the 
advisor 7 minutes to get to his office.  This execution time is propagated to timepoint C.  
The new execution window for C is [12, 17].  The student can successfully execute the 
plan by getting to the office any time in this execution window.  
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Figure 4-8 (a) In the student’s plan, timepoint C must follow the 
contingent timepoint B. (b) The APSP-graph reveals that the plan is 
pseudo-controllable. (c) Timepoint A is executed at T = 0 and the 
execution windows are updated (d) Timepoint B is executed at T = 
7, and the execution window for C is updated. In this situation, the 
student must get to the office some time between 12 and 17 
minutes. 

 
Precede Case: v < 0  
 If v < 0, then there exists a negative edge BC in the triangular distance graph; 
therefore, B must always be executed before C.  In the precede case, the dispatcher will 
never know the execution of the contingent timepoint B when it needs to make the 
schedule timepoint C. This is exactly the situation addressed by strong controllability. 
The dispatcher is not able to adapt the schedule of C based on the execution time of the 
contingent timepoint B. The edge CB and BC are used to update the execution window of 
the contingent timepoint C. In order to be dynamically controllable, the algorithm must 
restrict the execution time of B.  Specifically, in order to prevent the contingent execution 
window from being squeezed by propagations through CB and BC, we need to restrict 
the execution time of timepoint C with respect to A, by applying the appropriate strong 
controllability transformation rules. The reductions are simply the executable/contingent 
and the contingent/executable strong controllability transformation rules as derived in 
Section 3.5.  However, instead of using the rules to compute a new transformed distance 
graph, as we did in the strong controllability algorithm, here the rules are used to directly 
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modify the distance graph.  Specifically, the precede reductions tightens the edges AC 
and CA. 
 
(Precede Reduction) Given a triangular distance graph with uncertainty ABC (as shown 
in Figure 4-6(b)), with v < 0, the edge AC is tightened to x-u, and the edge CA is 
tightened to v-y. 
 
 As in the strong controllability case, the precede reduction effectively decouples the 
timepoint C from the contingent timepoint B. After applying the reduction, any 
propagation from timepoint C to timepoint B is redundant; therefore, the edges CA and 
AC can be removed from the distance graph.  Any non-redundant information propagated 
through the edge CB and BC would only serve to squeeze the execution window of the 
contingent timepoint.  
 
 Note that the precede reductions are easily remembered, by first negating and 
transposing the contingent edges in the distance graph.  Next, the shortest paths CBA and 
ABC are computed.  
 
Example 4-5 
 Consider the STNU shown in Figure 4-9(a). The uncontrollable duration between 
timepoints A and B will take between 5 to 10 time units, and timepoint C must  precede 
B by 1 to 8 time units.  The APSP-graph is shown in Figure 4-9(b) is consistent and the 
contingent edges are not tightened; therefore, the STNU is pseudo-controllable.  The edge 
BC is negative; therefore, C must precede B. In order to prevent the contingent execution 
window from being squeezed; we need to apply the precede reduction. The precede 
reduction tightens CA to -2 and AC to 4. Figure 4-9(c) shows the tightened distance 
graph.  The edges BC and CB are not dominated.  Figure 4-9(d) shows the distance 
graph after removing the dominated edges.  
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Figure 4-9 (a) The STNU where timepoint C must precede the 
contingent timepoint B. (b) The APSP-graph of the STNU. (c) The 
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resulting distance graph after applying the precede reduction. d(CA) 
+ d(AB) = d(CB) and both AB and BC are positive; therefore, CB is 
dominated.  Also, d(BA) + d(AC) = d(BC) and both BA and BC are 
negative, so BC is dominated. (d) The distance graph after CB and 
BC are removed. 

 
Unordered Case: v ≥ 0 and u ≤ 0 
 In the unordered case, the edges BC and CB are both positive; therefore, the order of 
execution of B and C is not a priori determined.  If C is executed first, then the edge CB 
is used to update the upper bound of the contingent timepoint B.  However, if B is 
executed first, then the edge BC is used to update the upper bound of C.   The simplest 
way to deal with the unordered case is to unconditionally constrain the execution time of 
B, in order to prevent the edge CB from squeezing C; this is accomplished by adding 
edge CA of v-y, as we did in the precede case. However, unconditionally constraining C 
may prevent the dispatcher from being able to react to the uncertain execution time of B, 
when B is executed first.  Instead, we apply a softer constraint, called a wait constraint, 
which enables the dispatcher to adapt to the schedule of C when B is executed first, yet 
restricts the execution time of C in order to prevent B from being squeezed.  
 
 The wait constraint, written <B, t>, on edge AC specifies that the execution of C must 
wait for at least t time units after A executes or until B executes, which ever is sooner 
[Morris 2001]. In the previous example, B is called the conditional timepoint and t is the 
wait duration.  Here we introduce a slightly different form of the wait constraint, called a 
conditional constraint or conditional edge, which encodes the same information as the 
wait constraint, except that it puts in a form similar to the edges in the distance graph. A 
conditional constraint is a directed edge that contains a distance expressing a temporal 
constraint similar to a requirement edge and a conditional timepoint similar to a wait 
constraint. The conditional constraint is the negative transpose of the wait constraint.  A 
wait constraint <B,t> on an edge AC, corresponds to a conditional constraint of CA of 
<B,-t>.  As in a requirement edge, the temporal distance of the conditional constraint 
requires that T(C) –T(A) ≤ -t, which can be rewritten as T(A) – T(C) ≥ t.  If t ≥ 0, then the 
conditional constraint encodes a lower bound temporal requirement (i.e. a wait condition) 
on C with respect to A.  Similar to a wait constraint, this temporal requirement is only 
enforced until the conditional timepoint B is executed.  After the conditional timepoint B 
executes, we say that the conditional constraint is relaxed. Thus, the conditional 
constraint CA of <B,-t> specifies that C must wait for at least t time units after A 
executes or until B executes, which ever is sooner.   
 
 In the unordered case, we apply a conditional unordered reduction, as defined below, 
which introduces a conditional constraint to the plan.  
 
(Conditional Unordered Reduction) Given a triangular distance graph with 
uncertainty (as shown in Figure 4-6(b) ), where v ≥ 0 and u < 0, apply a conditional 
constraint CA of <B, v-y>. 
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 After applying the conditional unordered reduction, if B executes first (follow case), 
then the conditional constraint is relaxed (i.e. the temporal requirement imposed by the 
conditional constraint no longer needs to be satisfied) and the dispatcher can react to the 
execution time of B.  However, if C is executed first (precede case), then the temporal 
requirement of the conditional constraint ensures that the propagation from C will not 
squeeze the execution window of B. 
 
Example 4-6 
 Here we revisit the student-advisor meeting problem with a slightly different temporal 
constraints.  The advisor’s arrival time is still uncertain.  It will take him between 5 and 
15 minutes to get to his office, and the student is willing to wait for up to 20 minutes 
before getting to the office.  Both the student and the advisor will only wait a small 
amount of time in the office. The student will not wait more than 5 minutes after getting 
to the office, and the advisor, being more impatient, will wait no more than 1 minute.  
Furthermore, the student and advisor agree to call one another when they reach the office.  
 
 The student’s plan for this scenario is shown in Figure 4-10(a).  The APSP-distance 
graph is shown in Figure 4-10(a). The APSP-graph is consistent and the contingent edges 
are not squeezed; therefore, the plan is pseudo-controllable.  
 
 Consider the student’s execution strategy.  If the student gets to the office anytime 
before 10 minutes, he runs the risk that he will be waiting more than 5 minutes before the 
advisor arrives.  For example, if the student only waits for 6 minutes, the student will be 
waiting for more than 5 minutes in a situation where the advisor arrives any time between 
11 and 15 minutes.  However, if the student unconditionally waits for 10 minutes, the 
advisor may be waiting around for more than 1 minute after he arrives. For example, if 
the student waits for 10 minutes and the advisor arrives in 7 minutes, then the advisor 
will be waiting around for 3 minutes. There is no unconditional strategy for successfully 
scheduling the arrival time of the student.  Applying the conditional unordered reduction 
encodes a conditional execution strategy.  The conditional constraint CA <-10,B> 
(dashed line), shown in Figure 4-10(c), specifies that the student must wait for at least 10 
minutes or until  the advisor arrives.  This enables the student to successfully execute the 
plan. 
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Figure 4-10 (a) The student’s plan where the execution order of B 
and C is unordered (b) The APSP-graph of the student’s plan (c) 
The distance graph after applying the conditional unordered 
reduction 

 In order to formally incorporate the conditional constraints with the Distance Graph 
with Uncertainty (DGU), we introduce a Conditional Distance Graph with Uncertainty 
(CDGU).  The CDGU is a DGU that contains a set of conditional constraints.  The 
dispatcher uses the information contained in the CDGU while executing the plan.  The 
distance graph shown in Figure 4-10(c) is a CDGU.  
 
Definition (CDGU): A CDGU is a 5-tuple <Nctg,Nexe,Ereq,Ectg,Econd> where Nctg is a set 
of contingent timepoints, Nexe is a set of executable timepoints, Ereq is a set of requirement 
edges, Ectg is a set contingent edges, and Econd is a set of conditional edges. 
 
 There is one important case when a conditional constraint is actually unconditional. In 
this case the conditional constraint is converted into a requirement edge.  Specifically, a 
conditional constraint is unconditional if the lower bound of the uncontrollable duration 
associated with a conditional timepoint is greater than the wait duration specified by the 
conditional constraint.  In this case, the conditional timepoint will never be executed 
before the wait period is completed; therefore, the dispatcher must always wait the full 
duration, as specified by the conditional constraint. The unconditional unordered 
reduction specifies when a conditional constraint is converted into a requirement edge.  
 
(Unconditional Unordered Reduction) Given a CDGU with conditional constraint CA 
of <B,-t>, and an uncontrollable duration AB ∈ [x,y] associated with the conditional 
timepoint B, if x > t, then the conditional constraint CA is converted into a requirement 
CA with distance –x.   
 
 Note that the unconditional unordered reduction always applies when the temporal 
distance of the conditional constraint is positive.  Therefore, after applying the 
unconditional unordered reduction, only negative conditional constraints remain.  
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Example 4-7: 
 Consider the CDGU shown in Figure 4-11(a).   The conditional constraint CA of  
<-4,B> derived by the conditional unordered reduction.  The conditional 
constraint specifies that the dispatcher must wait to execute C for at least 4 time 
units after A is executed or until B is executed.  However, the contingent edge CA 
specifies that B will never execute before 5 time units. Therefore, by the 
unconditional unordered reduction, the conditional constraint CA is converted 
into a requirement edge CA of distance -4.  Figure 4-11(b) shows the resulting 
CDGU after applying this requirement constraint to the distance graph.    
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Figure 4-11 (a) A CDGU with conditional constraint CA <-4,B> 
where lower bound of the uncontrollable duration, 5,  is greater than 
the wait period, 4, of the conditional constraint (b) The 
unconditional unordered reduction converts the conditional 
constraint CA of <-4,B> in to a requirement constraint CA of -4. 

 In this section we reviewed three reductions4 for triangular STNUs: the precede, 
conditional unordered, and unconditional unordered reductions.  These reductions 
prevent the dispatcher from squeezing the execution window of the contingent timepoint, 
while allowing dispatcher to react to the uncertain execution time of the contingent 
timepoints.   If the reductions do not violate the pseudo-controllability of the STNU, then 
the triangular STNU is dynamically controllable [Morris 2001].  For STNUs of more than 
three timepoints, the triangular reductions are applied for each triangle that appears in the 
STNU.  
 
 In the next subsection, we introduce a technique, called regression, which allow us to 
determine if the introduction of a conditional constraint violates the pseudo-
controllability of the STNU. Regression also serves to enable us to handle conditional 
constraints for STNUs of more than three timepoints. 

4.3.2 Regression of Conditional Constraints 

 [Morris 2001] showed that conditional constraints need to be propagated through the 
distance graph.  The propagation is a type of constraint propagation that resolves the 
conditional constraint with the other constraints in the plan.  The propagation of a 
conditional constraint is called regression. This regression serves two purposes.  First it 
detects if the conditional constraint is inconsistent with the other constraints of the plan, 

                                                 
4 [Morris 2001] also introduced a general unordered reduction; however, it is unnecessary.  
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and second, it ensures that the conditional constraint will not be violated at execution 
time.  
 

Example 4-8 
 Consider the distance graph shown in Figure 4-12(a).  The conditional constraint 
CA of <-7,B> may be inconsistent if D propagates an upper bound to C that is 
less than 7 time units. At execution time, if D is executed at a time before 5 time 
units, then the propagation through DC requires C to be executed before 7 time 
units; hence, violating the lower bound imposed by the conditional constraint CA. 
However, if we impose a conditional constraint DA of <-5,B>, thereby restricting 
the execution time of D as shown in Figure 4-12(b), the original conditional 
constraint CA can not be violated.  Note that the constraint DA that restricts the 
execution time of D only needs to be conditional because, once B is executed, the 
original conditional constraint CA is relaxed; thus it no longer needs to be 
protected. Also note that the new conditional constraint DA is computed using a  
similar method to that used for requirement constraints; the value of conditional 
constraint is equal to the shortest path DCA.   
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Figure 4-12 (a) The conditional constraint CA is potentially violated 
by the incoming positive edge DC (b) Imposing a conditional 
constraint of DA of <-5,B> prevents the original CA from being 
violated at execution time. 

 In general, a conditional constraint CA is potentially violated by incoming positive 
edges in the timepoint C.  For a Conditional Distance Graph with Uncertainty (CDGU), 
there are two types of positive incoming edges: requirement and contingent edges. Note 
that conditional edges are always negative (any positive conditional edge is converted 
into a requirement edge by the unconditional unordered reduction).  The regression 
lemma below specifies the means to resolve the potential consistency violations for both 
cases.  For the requirement edge, the conditional edge is regressed using a type of 
shortest path computation, as illustrated in the previous example.  For a contingent edge, 
the conditional edge is regressed using a slight variation of the precede reduction.  For the 
contingent case, the conditional edge must be regressed, in order to ensure that it will be 
satisfied for all situations.  The regression lemma stated below is a variation of the 
regression lemma introduced by [Morris 2001]. 
 
(Regression ): Given a conditional constraint CA of <B,-t>, where t is less than or equal 
to the upper bound of AB.  Then (in a schedule resulting from a dynamic strategy): 
 i.) If there isa  requirement edge DC with distance w, where w ≥ 0 and D ≠ B, we can  
    deduce a  conditional constraint DA of <w-t, B>. 
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 ii.) If t >= 0 and if there is a pair of contingent edges DC, of distance y, and CD, of  
        distance -x, where x, y ≥  0 and B ≠ C, then we can deduce a conditional      
            constraint DA of <x-t, B>.  
 
 The first regression rule is applied when a conditional edge is threatened by an 
incoming positive requirement edge. The conditional edge is regressed through the 
incoming positive requirement edge, except when the requirement edge originates from 
timepoint B (i.e. D = B)5.  The regression ensures that the wait period encoded in the 
conditional constraint CA of <B,-t> is never in conflict with an upper bound propagated 
by the incoming positive edge.  The conditional constraint does not need to be regressed 
through an edge originating from B because, in order for the dispatcher to propagate an 
upper bound from B, B must be executed. When B is executed, the conditional constraint 
CA is relaxed (i.e. the temporal requirement is removed from the plan). The upper bound 
propagated from B can not be inconsistent with a constraint that is no longer exists. 
 
 If we were to regress a conditional edge CA of <B,-t> through an edge originating 
from B, the regression produces a new conditional constraint BA of <B,-x>.  This new 
conditional constraint, BA, would require B to wait x amount of time after A executes or 
until B executes.  The constraint imposes a nonsensical constraint in which B is waiting 
on itself to execute.  One could argue that this constraint precludes B from executing until 
the full wait period of x as come to pass or one could argue that simply executing B 
satisfies the constraint; therefore, the conditional constraint is satisfied no matter when B 
executes. Rather than engaging in a philosophical debate, we simply restrict the 
regression such that this type of constraint never arises.  
 
  The second regression rule is applied when a conditional constraint CA of <B,-t> is 
threatened by an outcome of an uncontrollable duration.  If an uncontrollable duration 
DC ∈ [x,y] occurs early, such that the execution of C happens before the imposed wait 
period of t expires,  then the conditional constraint is violated. The regression imposes a 
new conditional constraint on the start of the uncontrollable duration, timepoint D, in 
order to ensure that the original conditional constraint CA will be satisfied for all 
situations. The conditional edge is satisfied in all situations if it is satisfied in the worst 
situation.  The worst situation occurs when uncontrollable duration DC occurs at its 
earliest possible time (i.e. at its lower bound of x).  Imposing a conditional constraint of 
DA <x-t, B> ensures that even when an uncontrollable duration occurs at its lower 
bound, the conditional constraint CA will not be violated.  The distance (x-t) of the new 
conditional constraint DA is derived by treating the conditional edge as a requirement 
edge and applying the precede reduction. 
 
 Note the distance of the original conditional constraint CA is always less than zero (if 
distance is positive, then the conditional constraint is converted into a requirement edge 
per the unconditional reduction rule). Therefore, A must occur before C and the precede 
reduction rule applies. Therefore, the new conditional constraint applied through 
regression is only conditioned on the outcome of B. In other words, applying the 

                                                 
5 [Morris 2001] did not include this exception. 
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unconditional reduction to positive conditional constraints prevents the regression from 
introducing a conditional constraint that is conditioned on more than one timepoint. 
 
 Regressions are applied recursively until no more regressions are possible. This 
process is called full regression.  Each conditional edge introduced by the conditional 
unordered reduction needs to be regressed through all incoming positive edges. The 
regression of a conditional constraint through an incoming positive edge leads to either a 
new conditional constraint or a new requirement constraint (after applying the 
unconditional unordered reduction). In general, if the regression introduces a new 
conditional constraint, then that new conditional constraint needs to be regressed. A new 
conditional constraint does not need to be regressed under three cases: 1) The new 
conditional constraint is converted into a requirement edge by the unconditional 
unordered reduction, 2) the new conditional constraint is self looping (the start and end 
timepoint of the conditional edge are the same) or 3) there are no incoming positive edges 
to necessitate further regression.  
 
 One interesting case arises when the conditional constraint is converted into a positive 
requirement edge by the unconditional unordered reduction. If the new requirement edge 
is positive, then it potentially violates a conditional edge.  In this case, any conditional 
constraint threatened by this new positive requirement edge must be regressed through it.   
 
 The regression may expose a temporal inconsistency.  Specifically, if the regression 
imposes a self-looping (conditional or requirement) edge with negative distance (i.e. a 
negative cycle), then the plan constrained by the CDGU is not dynamically controllable.  
Note that full regression is not in itself sufficient to determine the dynamic controllability 
of the plan.  The regression may introduce a new requirement edge that compromises the 
pseudo-controllability of the plan; however, it is only detected by resolving the new 
requirement edge with all the other constraints in the plan. Regression only resolves this 
new requirement constraint with the conditional constraints of the plan.  The mechanism 
used by [Morris 2001] to detect the potential consistency violations is to recompute the 
APSP-graph and to recheck if the plan is pseudo-controllable.  In the next section, we 
present a novel scheme to interleave the constraint propagation of requirement constraints 
with conditional constraints.  This new scheme does not depend on recomputing the 
APSP-graph. 
 
Example 4-9 
 Consider distance graph shown in Figure 4-13(a).  In order to prevent the execution 
window of the contingent timepoint B from being squeezed at execution time, we apply 
the conditional unordered reduction to the triangle ABC.  This introduces a conditional 
edge CA of <-7,B>, as shown in Figure 4-13(b).  Note that other reductions are 
applicable, including the conditional unordered reduction on triangle DCB; however, 
these reductions are not applied for clarity.  
 
 This conditional edge CA needs to be regressed through all incoming positive 
requirement edges not originating from the conditional timepoint B, and any 
uncontrollable durations terminating on C.  In our example, the conditional edge CA is 
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regressed through the requirement edge AC, and the uncontrollable duration DC.  The 
regression through AC with distance 9 results in a new self looping conditional edge AA 
of <1,B>.  The regression of the conditional edge CA through the uncontrollable duration 
DC results in a new conditional edge DA of <-4,B>.  The results of these regressions are 
shown in Figure 4-13(c). 
 
 This conditional edge AA is converted into a requirement edge by the unconditional 
unordered reduction, because the distance of the conditional edge is positive. Fortunately, 
this new requirement edge does not introduce a negative cycle into the CDGU.  The 
distance of the conditional edge DA is -4, which imposes a wait of 4 time units between 
A and D, which is less than the lower bound of the uncontrollable duration AB of 5. 
Therefore, the conditional constraint DA of <-4,B> it is converted into a requirement 
edge DA with distance 4 by the unconditional unordered reduction. The results of these 
reductions are shown in Figure 4-13(d).  Note that there now exists a negative cycle 
between AD; however, this is not detected during regression.  
 

A B
10

4

4 CD

(a)
A B

4

4 CD

(b)

<-6,B>

-5

-2 -2

-5
10

Appling the conditional unordered
reduction to the triangle ABC
introduces a conditional constraint
CA of <-6,B>.

Regressing the conditional constraint
CA through requirement edge AC and
uncontrollable duration CD results in a
conditional edge AA of <1,B> and BA
of <-4,B>, respectively.

(d) A B

4

4 CD

<-6,B>-4

-2

10
-5

(c) A B

4

4
CD

<-6,B>
<-4,B>

-2

10

-5

Both conditional edge are converted
into a requirement edge via the
uncontrollable unordered reduction.

1 17 7

7

<1,B>

1

7

3 3

3

3

1
1

 
Figure 4-13 (a) A four timepoint DGU. (b) The CDGU after 
appling the conditional unordered reduction to triangle ABC. (c) 
The CDGU after regressing the conditional edge CA through AC 
and DC. (d) The CDGU after converting the conditional constraints 
to requirement edge via the unconditional unordered reduction 

 Several important patterns arise during regression. First, all conditional edges 
introduced by regressing a conditional edge CA of <B,-t> always points to C and the 
regression rules prevent a conditional edge of BA; therefore, there is at most N-1 
conditional edges conditioned on B.  For a plan containing P uncontrollable durations, 
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there can be at most P*(N-1) conditional constraints in the plan.  Second, the only way 
two conditional constraints can exist between the same timepoints is when the 
uncontrollable durations start the same timepoint. Third, the regression always increases 
the temporal distance of the conditional constraint (i.e. progressively imposes a less 
restrictive constraint).   
 
 In this subsection we presented a constraint propagation technique, called regression, 
that enabled us to resolve the conditional constraint with other constraints in the plan.  
Regression enabled the ternary conditional constraints to be propagated similar to simple 
requirement edges. In the next subsection, we combine a pseudo-controllability checking 
algorithm, with the triangular reductions and regression, to form the dynamic 
controllability algorithm.  

4.3.3 Pseudo-Code for the Dynamic Controllability Algorithm 

 The following completes the description of the dynamic controllability (DC) algorithm 
[Morris 2001] by presenting the pseudo-code.  The pseudo-code for the DC algorithm is 
shown in Figure 4-14.  Dynamic controllability transforms the STNU into a dispatchable 
CDGU, if this reformulation is successful, then the algorithm is dynamically controllable 
and returns true, otherwise the DC algorithm returns false. Recall that the general 
structure of the DC algorithm is described in the flow diagram shown in Figure 4-5.  
 
 Line 1 computes the associated distance graph, G, of the STNU,  Γ.  The DC uses the 
distance graph formulation of temporal constraints.  In Line 3 the DC algorithm first 
computes the All-Pair Shortest-Path graph (APSP-graph) of the distance graph G while 
ignoring the distinction between contingent and requirement edges. Line 4 checks if the 
plan is pseudo-controllable by calling the IS_PSEUDO_CONTROLLABLE function. If 
any contingent edges are squeezed or if any negative distance graph contains a negative 
cycle, then the IS_PSEUDO_CONTROLLABLE function returns false; otherwise, it 
returns true.  If the plan is not pseudo-controllable, the DC algorithm returns false. Recall 
that if the plan is not pseudo-controllable, then the plan is not dynamically controllable.  
Line 6 initializes the variable modified to false. This variable is used to determine if the 
algorithm converges. 
  
 Lines 7-14 loops through all possible triangles, ABC, that contain a contingent 
timepoint B, and applies any tightening required by the precede reduction, and any 
conditional constraint required by the conditional unordered reduction.  If the reductions 
tighten or add a new constraint to the distance graph, then the algorithm assigns the 
variable modified to true and breaks out of the loop. If the algorithm loops through all 
possible triangles and the constraints of the distance graph are not modified, the variable 
modified remains false. 
 
 In Line 15 The REGRESS_WAITS function applies all possible regressions of 
conditional constraints, while converting the conditional constraints to requirement 
constraints when the unconditional unordered reduction applies.  If the regression 
introduces a temporal inconsistency, then the REGRESS_WAITS function returns false; 
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otherwise, it returns true.  If the REGRESS_WAITS function returns false, then so does 
the DC algorithm in Line 16.  
 
Line 17 checks if the regression modified the constraints (conditional, requirement, or 
contingent) of the distance graph by calling the function IS_MODIFIED.  The variable 
modified is true if the distance graph is modified, by either applications of the reductions 
or regression. 
  
 The algorithm loops through Lines 2-17, tightening the edges of the distance graph 
until the algorithm converges on a dispatchable CDGU (the algorithm completes on a 
successful loop when no edges are modified) or loops until the algorithm detects that the 
plan is not dynamically controllable (either in Line 5 or Line 16).  
 

 
Figure 4-14 Pseudo-Code for Dynamic Controllability (DC) 
algorithm [Morris 2001] 

function DC1(Γ) 
input A STNU Γ 
effects computes a dynamically controllable CDGU if the plan is dynamically controllable. 
returns true if Γ dynamically controllable, otherwise false 
1 G  DISTANCE_GRAPH(Γ) 
2 do 
3  G ← COMPUTE_APSP_GRAPH(G)  
4  if ¬IS_PSEUDO_CONTROLLABLE (G)  
5   return FALSE 
6  modified ← FALSE 
7  for each contingent timepoint B ∈ N(G) associated with uncontrollable duration AB 
8   for each incoming positive edge CB 
9    modified ← apply tightenings required by the precede reduction to triangle ABC. 
10        modified  ← apply conditional constraints required by conditional unordered reduction  
              to triangle ABC 
11    if  modified break 
12   end for 
13   if modified break 
14  end for 
15  if ¬REGRESS_WAITS(G) 
16    return FALSE 
17  modified ← IS_MODIFIED(G) or modified 
16  end if 
17 while modified=TRUE 
18 return TRUE 
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 The DC algorithm is sound because it only derives new constraints based on the 
original constraints and the assumption of dynamic controllability [Morris 2001]. 
Furthermore, the completeness of this algorithm was shown in [Morris 2001].   
 
The time complexity of the DC algorithm is shown to be polynomial [Morris 2001].  The 
individual tightenings are clearly polynomial, and convergence is assured because the 
domains of the constraints are strictly reduced by the tightenings.  However, only a crude 
estimate was provided for how long the convergence would take.  Moreover, a crude 
estimate is in terms of the maximum value of the edges and the fixed precision on the 
edges.  Each time the algorithm loops through Lines 2-17 it applies at least one 
tightening. If all the distance on the edges are bounded by ± B, and there is a fixed level 
of precision δ, and E edges. Then, after at most BE/δ loops, the algorithm will converge. 
Each loop requires an O(N3) APSP computation and there are N3 edges in the APSP 
graph; Therefore, the crude bound becomes N6*B/δ ! 
 
 The DC algorithm depends on repeated calls to an expensive O(N3) APSP 
computation in Line 2 to perform requirement edge constraint propagation. Furthermore, 
it uses an inefficient looping scheme that first resolves the requirement edges with one 
another via the APSP algorithm, then resolves the requirement edge with the contingent 
edge propagation via reductions, and, finally, resolves the conditional edges with the 
requirement, and conditional edges with contingent edges via regression. In the next 
section, we show how to improve on the performance of the dynamic controllability 
algorithm by resolving all possible combinations of constraints all at once. This general 
frame work enables our new fast dynamic controllability algorithm to remove the 
repeated APSP computations. 

4.4 Fast Dynamic Controllability Algorithm 
 In this section, we describe our novel fast dynamic controllability algorithm (fast-DC 
algorithm). This fast-DC algorithm has a significant performance improvement compared 
to the dynamic controllability algorithm introduced by [Morris 2001]. This fast dynamic 
controllability algorithm achieves its enhanced speed via several new improvements.  The 
speed of the fast-DC algorithm is verified empirically. 
 
1. We show how to exploit the fact that a dispatchable plan can by incrementally 
executed during the reformulation phase. We introduce a local incremental algorithm for 
maintaining the dispatchability of a plan constrained by STNs.  In this algorithm, when 
an edge length changes in a dispatchable distance graph, only a subset of the constraints 
need to be notified of this change.  Specifically, the change only needs to be back-
propagated, similar to regression.  Then we show how to apply this technique to plans 
constrained by STNUs.  In order to make this transition from STNs to STNUs, we 
introduce a new property, called pseudo-dispatchability, and show that for any for 
pseudo-dispatchable STNU only changes in requirement edges need to be back-
propagated. This removes the need to compute the APSP-graph, which updates all edges 
in the distance graph, every time a requirement edge changes.  
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2. The constraint propagations of requirement edges, contingent edges and conditional 
edges required by dynamic controllability are combined into an efficient general 
framework. This general framework enables the different types of constraint propagation 
to be interleaved with one another rather than applying them sequentially.  Interleaving 
the different types of propagation enables the dynamic controllability algorithm to reduce 
the number of propagations required.  The idea is to apply the required tightening as soon 
as we can deduce them, so that the next round of propagations has the most up-to-date 
constraint set as possible. 
 
3. We trim the distance graph of redundant constraints prior to performing the integrated 
constraint propagation.  This can drastically reduce the number of propagations required. 
 
 First we introduce the incremental algorithm for maintaining the dispatchability of 
STNs.  Next we show how this incremental algorithm applies to STNUs by introducing 
the idea of pseudo-dispatchability.  This provides the basis for the new requirement edge 
propagation technique, which removes the dependence of the dynamic controllability 
algorithm on repeated APSP calls. Next, we describe the set of back-propagation rules 
that make up the general constraint propagation framework and present the back-
propagation algorithm. Finally, we describe the new fast-DC algorithm pseudo-code, 
which uses this new back-propagation algorithm. After presenting the algorithm, we 
demonstrate the fast-DC algorithm on several examples and review how the fast-DC 
algorithm fits in with the Hierarchical Reformulation algorithm, presented in Chapter 3.  
 

4.4.1 Incremental Dispatchability Maintenance   

  
 In order to understand how the new requirement constraint propagation technique 
works, let’s revisit the problem of dynamically executing a STN. [Muscettola 1998a] 
showed that any dispatchable STN can be executed incrementally using a dispatching 
algorithm.  If a STN is dispatchable, as long as each execution decision is consistent with 
the past assignments, then we can guarantee that there is a consistent assignment for 
future timepoint assignments.  Recall that executing a timepoint is equivalent to adding a 
set of rigid constraints between the start of the plan and the timepoint being executed.   
During execution, the dispatcher ensures that the addition of these additional constraints 
is consistent with the past, by propagating information at execution time. However, if a 
random constraint is modified in a dispatchable graph, we need to make sure that the 
change is consistent with the past using back-propagation.  Back-propagation informs all 
constraints that relate timepoints in the past.  If the back-propagation does not introduce 
an inconsistency, then the constraint change is consistent with all the constraints.  This 
leads to an efficient algorithm for incrementally updating a dispatchable STN distance 
graph.   
 
 In order to develop a back-propagation algorithm for a dispatchable STN, we use a 
logic similar to that used when developing the reduction and regression rules.  
Specifically, any positive edge AB that is either added or modified is only threatened by  
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outgoing negative edges from B.  In addition, any negative edge BA that is either added 
or modified is only threatened by incoming positive edge to A.   Therefore, we need to 
back-propagate any change in a positive edge AB through all negative edges originating 
from B.  Similarly, we need to back-propagate any change in a negative edge BA through 
all incoming positive edge into B. 
 
 These back-propagations need to be applied recursively in order to ensure that the 
change is consistent with the past.  This back-propagation technique only requires us to 
update a subset of the edges (i.e. constraint that may happen in the past), instead of all the 
edges which would happen if we were to recompute the APSP every time an edge 
changed.  The future constraint will be notified of the change when they need to be 
notified, which is at execution time.  Thus we defer the future updates until execution 
time.  Furthermore, the back-propagation preserves the dispatchability of the distance 
graph.   
  
 First, we give an example, then we provide the formal back-propagation rules for 
distance graphs associated with STNs. Finally, we show how this back-propagation is 
extended to distance graphs associated with STNUs. 
 
Example 4-10 
 Consider the dispatchable distance graph shown in Figure 4-15.  Figure 4-15(a) shows 
the original dispatchable graph.  Consider a scenario in which the edge DC is reduced 
from -2 to -5 for some reason, as shown in Figure 4-15(b).  During execution, the edge 
DC is used to propagate a lower bound to timepoint D.  We call timepoint D the 
timepoint of interest. In order to maintain the dispatchability of the graph, the tightening 
of DC needs to be propagated through the graph.  However, the effects only need to be 
propagated backward from the node of interest, because, as long as D is consistently 
executed, the dispatcher is able to consistently execute E.  
 
 The negative edge DC is threatened by the incoming positive edge CD and BD.  We 
resolve the new edge DC with the threats (CD and BD), by computing the local shortest 
path through the threats.  The shortest path BDC results in a tightening of edge BD from 
8 to 5, and the shortest path CDC results in a new edge CC of 5.   Figure 4-15(d) shows 
the result of the first step of back-propagation.  The tightening of the constraint BC is 
then back-propagated where node C is the timepoint of interest. The edge positive BC is 
threatened by all outgoing negative edges from C (CB and CA), as shown in Figure 
4-15(e).  BC is back-propagated through its threats.  The shortest path BCB results in a 
new edge BB of 0, and the shortest path BCA results in a tightening of BA from 0 to -1.  
The results of the second stage of back-propagation are shown in Figure 4-15(f).  Note 
that BA needs to be back-propagated through AB, resulting in a new edge AA of 9.   
 
 Back-propagation does not introduce any negative cycles; therefore, the change is 
consistent. Furthermore, the tightenings introduced through the back-propagation 
preserve the dispatchability of the distance graph.  
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Figure 4-15 Back-Propagation Example 

 
 Now we give the back-propagation lemma and incremental algorithm used to maintain 
the dispatchability of a STN distance graph.  
 
Lemma (Incremental Dispatchability) Given a STN and associated dispatchable 
distance graph G,  
i) any change or addition of an edge AB of distance x, where x >0, for all edges BC of 
length y, where y <= 0,  we can deduce a new constraint AC of length x+y.  
ii) any change or addition of an edge BA of distance z, where p <= 0, for all edge CB of 
length q, where q >= 0, we can deduce a new constraint CA of length p+q. 
Furthermore, recursively applying rules i and ii maintains the dispatchability of the G. 
 
 The algorithm for maintaining the dispatchability of the distance graph, recursively 
applies the Incremental Dispatchability propagation rules until no more back-
propagations can be deduced.  If back-propagation introduces a negative cycle then the 
algorithm returns false, otherwise, the algorithm returns true 
  
 The Incremental Dispatchability (ID) algorithm used to replace the APSP computation 
in the slow dynamic controllability algorithm introduced by [Morris 2001].  In order to 
apply the ID algorithm to distance graphs with uncertainty (DGUs) we introduce the idea 
of pseudo-dispatchability. If we ignore the distinction between contingent and 
requirement edges in the DGU (as we did when we computed pseudo-controllability), 
then the DGU is effectively converted into STN distance graph.  If this associated STN 
distance graph is dispatchable, then we say the DGU pseudo-dispatchable. In order to 
maintain the pseudo-controllability of DGU when a constraint is changed, we apply the 
ID algorithm to the DGU.  This resolves a change in a requirement constraint with all the 
other requirement constraints. 
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  We also introduce the term pseudo-minimal dispatchable graph (PMDG).  A PMDG 
is DGU in which the associated STN distance graph contains the fewest number of edges.  
The edges of the DGU are trimmed using the same dominance relationships introduced 
by [Muscettola 1998a].  
 
 

4.4.2 Back-Propagation 

 In this subsection we describe a set of local constraint propagation rules that determine 
how one constraint change affects the values of other constraints, in order to maintain the 
dispatchability of a dynamic controllability Conditional Distance Graph with Uncertainty 
(CDGU). These rules all share one important property - they only affect constraints that 
occur earlier in the plan; thus, we call them back-propagation rules for STNUs.  This 
idea is illustrated in Figure 4-16.  These rules and the associated back-propagation 
algorithm form the basis of the Fast-DC algorithm. The back-propagation rules integrate 
the Incremental Dispatchability rules, the reduction rules and the regression rules.  The 
back-propagation rules put all these rules in to common framework.  
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Figure 4-16 If either a requirement, or conditional edge changes, in 
order to maintain the dispatchability of the CDGU, the effects only 
need to be back-propagated  

 
 Each back-propagation rule differs, depending on the types of edges involved, the 
signs of the edge distances, and the relative direction of the edges. In a DGU, there exist 
five types of edges: positive and negative requirement edges, positive and negative 
contingent edges, and negative conditional edges.  

 
Requirement     Contingent     Conditional 

+  -                  +   -                   - 
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 We group our back-propagation rules into three groups: negative requirement edges, 
positive requirement edges, and negative conditional edges because these are the only 
three types of edges that may be added or modified during reformulation.  Any positive 
conditional edge is converted to a requirement edge by the unconditional unordered 
reduction rule.  The rules are used to determine what new constraints need to be enforced 
to ensure consistency and dynamic controllability.   The following table summarizes the 
back-propagation rules used in the Fast-DC algorithm. 
 
 
If This Changes  Must Back-Propagated Through Derived From       
Negative requirement edge BA 1. any positive requirement edge CB 

2. any positive contingent edge CB 
ID(i) 
Precede Reduction 

Positive requirement edge AB 1. any negative requirement edge BC 
2. * any negative contingent edge  BC 
3.  any negative conditional edge BC 
of <-t,D> where D ≠A 

ID(ii) 
CUR 
Regression(i) 
 

Negative conditional edge BA 1. any positive requirement edge CB 
of <-t,D> where D ≠A 
2. any positive contingent edge CB 

Regression(i) 
Regression(ii) 

* apply conditional constraint in both precede or unordered cases 
ID: Incremental Dispatchability 
CUR: conditional unordered reduction 

Table 1  Back-Propagation Rules Summary 

 
 

4.4.3 Back-Propagating when a Negative Requirement Edge Changes 

 Recall that when a dispatcher executes a timepoint it propagates that execution times 
through the distance graph in order to update the execution windows of the neighboring 
nodes.  The dispatcher uses the negative edges to update the lower bound of the 
timepoint’s execution window. The only way a timepoint’s lower bound, derived from a 
negative edge propagation, can be violated is if some other positive edge propagates an 
upper bound that is smaller than this lower bound. The back propagation rules are used to 
prevent this inconsistent condition from happening.  
 
 Recall that there are two types of positive edges in the DGU: a positive requirement 
edge (Case1) and a positive contingent edge (Case2). The back-propagation rule for 
changing negative requirement edges handles both cases.  In [Morris 2001], the first case 
was handled by the APSP computation, and the second case was handled by the precede 
reduction. 
 
Case 1: Back-propagating a negative requirement edge through a positive 
requirement edge.  
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 This back propagation rule is called in case when there exists some change in or 
creation of a negative requirement edge BA with weight a, such that there exist some 
positive requirement edges CB with weight b.  The back-propagation rule derives a new 
constraint with CA with weight a+b. If this new edge CA provides a tighter constraint 
then it update the DGU accordingly.  Note that the arbitrary timepoint C may be the 
timepoint B, in which case the derived constraint loops on the timepoint B. This example 
is depicted in Figure 4-17 (Case1). 
 
Case 2: Back-propagating a negative requirement through a contingent link.  
This is exactly the same case as the precede case derived in the dynamic controllability 
algorithm [Morris 2001].  This propagation is illustrated in Figure 4-17 (Case2). The 
correctness of this propagation rule is shown in [Morris 2001], for the case where there 
exists some negative requirement edge.    
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4.4.4 Back-Propagation Rule when Positive Requirement Edge 
Changes 

If a positive requirement edge changes, there are three cases to consider.  All three cases 
are illustrated in Figure 4-18.  The rationale for each rule is shown in Table 1.  
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4.4.5 Back Propagating Conditional Edges 

The back-propagation rule for the addition or change of a conditional constraint is exactly 
the same as the regression rules.  The back propagation rules are shown here for 
completeness.  They are illustrated in Figure 4-19.  
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Figure 4-19  Back-Propagation Rules for Conditional Edges 
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5.1.1 Pseudo-Code for BACK-PROPAGATE 
The pseudo-code for BACK-PROPAGTE is show in Figure 4-20.  BACK-PROPAGATE is 
a function that recursively applies the back propagation rules in the previous sections. It 
accepts a CDGU G, a start timepoint u, and an end timepoint v.  BACK-PROPAGATE  
is initiated in order to prevent an positive requirement edge (u,v) from squeezing the 
upper bound of the contingent timepoint v or in order to prevent a negative requirement 
edge (u,v) from squeezing the lower bound of a contingent timepoint u.  The algorithm 
returns true if the edge (u,v) is successfully back-propagated through G. (i.e. no 
inconsistencies were introduced) otherwise the algorithm returns false.  
 
 Lines 1-2 detect two possible termination conditions.  If the timepoint u = v, the 
edge(u,v) is a loop.  If this loop is positive, thus, does not introduce a temporal 
inconsistency, then the algorithm returns true in Line 1.  However, if the loop is negative 
then the algorithm returns false in Line 2 
 
Lines 3-15 applies the all applicable back-propagations associated with edge (u,v). 
Specifically the algorithm back-propagates (u,v) through all appropriate edge (x,y) 
resulting in a new edge (p,q). In line 5 it applies the unconditional unordered reduction 
when appropriate, which converts a conditional edge (p,q) into a requirement edge (p,q).  
This new edge (p,q)  (conditional or requirement) is resolved with G.  If G is modified it 
does two things. It checks if the new edge (p,q) introduces any local negative cycles. 
Specifically, it checks if the cycle p-q-p is negative.  If there is a local negative cycle, 
then the algorithm returns false, otherwise the algorithm recursively calls BACK-
PROPAGATE( G, p, q).  If this BACK-PROPAGATE returns false, then the orginal 
BACK-PROPAGATE function returns false.  If the algorithm successfully applies all 
possible back-propagations of (u,v) in line 3-13, then the algorithm returns true in Line 
16.  
 
In the next section we give a example of the BACK_PROPAGATE function in the 
context of the Fast Dynamic Controllability algorithm.  
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Figure 4-20 Pseudo-Code for BACK-PROPAGATE 

 

4.5 Fast Dynamic Controllability Pseudo-Code 
 
 The pseudo-code for the Fast-DC algorithm is shown Figure 4-22.  The algorithm is 
used to reformulate the group plans in the Hierarchical Reformulation Algorithm.  The 
Fast-DC algorithm operates on group plan’s associated  STNU.  If the STNU associated 
with the group plan is dynamically controllable, then the algorithm returns a pseudo-
minimal dispatchable CDGU, which can be directly executed by the STNU dispatching 
algorithm introduced by [Morris 2001], otherwise, the algorithm returns NIL.   The 
description of the Fast-DC pseudo-code is interleaved with a example.  The TPNU used 
in the example is shown in Figure 4-21.  This group plan is part of the Mars rover 
example originally introduced in Section 3.4.  
 

Method BACK-PROPAGATE(G,u,v) 
Input: CDGU G, start timepoint u, and end timepoint v 
Effects: recursively called function that back-propagates the constraints through G 
Returns: true if the no inconsistencies where introduces, otherwise false 
1  if IS-POS-LOOP( u, v )  return TRUE 
2  if IS-NEG-LOOP( u, v ) return FALSE 
3  for each edge (x,y) where the back-propagation rules apply to edge (u,v)  
4   back-propagate (u,v) through (x,y) to create new edge (p,q)  
5   convert any conditional constraint (p,q) to a requirement edge (p,q) as required  
     by the unconditional unordered reduction 
6   resolve the edge (p,q) with G  by tightening (or adding) corresponding edge (p,q) in G 
7   if G is modified  
8  if resolving (p,q) with G  introduces a local negative cycle 
9     return FALSE 
10    end if 
11    if ¬BACK-PROPAGATE(G,p,q)  // recursive call 
12     return FALSE 
13    end if 
14   end if 
15   end for 
16  return TRUE 
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Figure 4-21 Sample Group Plan 

 
Figure 4-22 Pseudo-Code of Fast Dynamic 
Controllability Algorithm (Fast-DC) 

 Line 1 converts the STNU into a CDGU. This conversion is trivial.  It converts the 
links of the STNU into a pair of directed edges.  Note that initially,  the CDGU does not 
contain any conditional constraints; therefore, the original CDGU is similar to a Distance 

function FAST-DC(Γ ) 
input: A Simple Temporal Network with Uncertainty Γ 
returns minimal dispatchable CDGU if Γ is dynamically controllable, otherwise NIL 
1  G ← STNU_TO_CDGU(Γ ) 
2 if ¬COMPUTE_MPDG(G)  
3  return NIL 
4 end if   
5 if ¬ IS_PSEUDO_CONTROLLABLE (G) 
6  return NIL 
7 end if 
8 S  start timepoint of G 
9  Bellman_Ford_SDSP( S, G ) 
10 Q ← ordered list of contingent timepoints according to the SSSP distances 
11 while( ¬Q.IS-EMPTY() ) 
12  n  Q.POP_FRONT() 
13  if ¬ BACK_PROPAGATE_INIT( G, n )   
14   return NIL 
15  end if 
16 end while 
17 COMPUTE_MPDG(G) 
18 return G 
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Graph with Uncertainty (DGU).  For example, Figure 4-23 shows the CDGU of the 
sample group plan. 
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Figure 4-23 CDGU of the Sample Group Plan 

 
 

Recall that in order to apply the back-propagation rules, the CDGU must be pseudo-
dispatchable.  In addition, in order to efficiently apply the back-propagation rules, the 
CDGU should contain the fewest number of edges.   Line 2 transforms the CDGU into a 
Minimal Pseudo-Dispatchable Graph (MPDG) by calling the COMPUTE_MPDG 
function.  This function applies the basic STN Reformulation Algorithm [Muscettola 
1998a] on the CDGU.  The STN Reformulation algorithm is applied by ignoring the 
distinction between contingent and requirement edges in the CDGU.  This function 
reformulates  the constraints of the CDGU.  If the CDGU is pseudo-dispatchable, then the 
function COMPUTE_MPDG returns true, otherwise it return false. If the CDGU is not 
pseudo-controllable, then the FAST-DC algorithm returns NIL.  The minimal pseudo-
dispatchable graph for the sample group plan is shown in Figure 4-23. 
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Figure 4-24 MPDG of the Sample group plan 

 
The CDGU is only dynamically controllable if it pseudo-controllable. Recall that if a 
graph is pseudo-controllable then the constraints do not strictly imply a tighter constraints 
on the contingent edges.  Lines 5-7 of the FAST-DC algorithm checks if the contingent 
edges are squeezed during the process of converting the CDGU into a minimal pseudo-
dispatchable graph.  If the CDGU is not pseudo-controllable, then the FAST-DC 
algorithm returns NIL.  In our example, contingent edges BC, CB, GH, and HG all 
remain unchanged; therefore, the CDGU is pseudo-controllable. 
 
 
Recall that our goal is to reformulate the graph to ensure that the plan can be dynamically 
executed.  This reformulation is done by applying the a recursive BACK_PROPAGATE 
function.  The BACK-PROPAGATE function needs to be applied to any edge that may 
squeeze the contingent timepoint at execution time. Each initial call of 
BACK_PROPAGATE causes a series of other edge updates. However, they will only 
update edges closer to the start of the plan.  In order to reduce the amount of redundant 
work, we initiate the back-propagation cycle near the end of the plan to the start of the 
plan.  This way we slowly build up a solution from the end of the plan to the start of the 
plan.  In order to organize the back-propagations, we need to create a list of contingent 
timepoints ordered from timepoint that are executed near the end of the plan to the 
timepoints that are executed near the beginning of the plan.  
 
Lines 8-10 create this ordered list, Q, of the contingent timepoints.  The contingent 
timepoints are ordered based on their Single-Destination Shortest-Path (SDSP) distance, 
sdsp(x).  Specifically, the contingent timepoints are ordered from lowest to highest SDSP 
distances.  Note that all SDSP distances are less than or equal to zero.  The SDSP 
distances are computed in Line 9, and the contingent timepoints are ordered in Q in Line 
10.  The sample group plan contains two contingent timepoints C and H with sdsp( C ) = 
-3 and sdsp( H ) = -12.  Therefore, timepoint H comes before timepoint C.   
 
 
Lines 11-16 of the FAST-DC algorithm apply the back-propagation rules. Line 12 pops 
the first contingent timepoint, n, off of the list Q and calls the BACK-
PROPAGATE_INIT function, which starts one round of back-propagations. If that back-
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propagation round results in a inconsistency, then the FAST-DC algorithm returns NIL.  
The pseudo-code for the BACK-PROPAGATE_INIT is shown in Figure 4-25.  BACK-
PROPAGATE_INIT ensure the that contingent timepoint n is never squeezed during 
execution. 
 

 
Figure 4-25 Pseudo-Code for BACK-PROPAGATE-INIT 

 
The BACK-PROPAGATE-INIT function initiates the back-propagation by applying the 

back-propagation rules to ensure that the contingent timepoint v is never squeezed during 
execution.  Recall the contingent timepoint can only be squeezed by incoming positive 
edges or outgoing negative edges. Lines 1-5 calls BACK_PROPAGATE for all incoming 
positive edges into the contingent timepoint v and Lines 6-10 calls BACK_PROPAGATE 
for all outgoing negative edges from v.  
 
For example, consider the series of back-propagations shown in Figure XXX.  
There does not contain any possible edges to violate contingent timepoint H so no back-
propagation is required.  For timepoint C the edge EC is back-propagated through BC 
resulting in a new conditional edge EB of <C,-6>.  This edge then back-propagated DE 
which modifies the requirement edge DE to -1.  This requirement edge is then back-
propagated through edge BD resulting in the edge BB of distance 4.  This thread of back-
propagation terminates here because of a positive self-loop. 
 
The contingent timepoint C is also threatened by the outgoing negative edge CD of length 
-2.   This edge CD is back-propagated through BC which modifies BD = 1.  This is then 
back-propagated through DB resulting modifying the self looping edge BB to 0. No more 

BACK-PROPAGATE-INIT( G, v )  
Input: A CDGU G and contingent timepoint v 
Returns: true if no inconsistencies were introduced during the back-
propagation cycle, otherwise false 
1 for all incoming positive edges (u,v ) into the contingent timepoint v  
2  if ¬BACK_PROPAGATE(G,u,v)  
3   return FALSE 
4  end if 
5 end for 
6 for all outgoing negative edges (v,u) from the contingent timepoint v 
7  if ¬BACK_PROPAGATE(G,v,u) 
8   return  FALSE 
9  end if 
10 end for 
11 return TRUE 
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propagations are necessary.  The resulting dispatchable CDGU is shown in Figure 4-26.  
The back-propagation did not introduce an inconsistency; therefore, the sample group 
plan is dynamically controllable. 
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Figure 4-26 Dispatchable CDGU after back-

propagation 

 
 
The last step of the Fast-DC algorithm is to trim the dominated (redundant) edges from 
the CDGU. This is done by calling the basic STN reformulation algorithm.  The resulting 
graph is a minimal dispatchable CDGU which can be executed by the dispatching 
algorithm introduced by [Morris 2001].  For example, the minimal dispatchable CDGU 
for the sample group plan is shown Figure 4-27.  
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Figure 4-27 CDGU of sample group plan after trimming the 

redundant edge 

4.6 Summary 
In this chapter we reviewed the dynamic controllability algorithm introduce by [Morris 
2001].  Then we generalized the reduction rules introduced to [Morris 2001] in order to 
develop an efficient dynamic controllability algorithm.  This new Fast-DC algorithm is 
used by the HR algorithm presented in Chapter 3 to reformulate the group plans. In the 
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next chapter we present empirical data demonstrating the speed of this new Fast-DC 
algorithm. 

5 Results and Conclusion 
 
 

5.1 Introduction 
The outline for this chapter is as follows.  First we discuss the implementation of the 
Hierarchical Reformulation (HR) algorithm. Then we discuss the experimental results of 
the fast dynamic controllability (Fast-DC) algorithm.  We then discuss the limitations of 
our approach and directions for future work.  We conclude with a summary of the major 
contributions of this thesis.  
 

5.2 Implementation of the Hierarchical Reformulation algorithm 
The Hierarchical Reformulation (HR) algorithm has been implemented in C++ and tested 
with a variety of hand coded examples, including the cooperative Mars rover scenario 
presented in Chapter 3.4.  In order to generate the two-layer multi-agent plans, we 
developed a MTPNU Graphical User Interface (GUI) implemented in Java.6  The GUI 
enables the user to create and visualize the MTPNUs.  The screenshot of the editor, 
shown in Figure 5-1, shows the mission plan for the Mars rover scenario described in 
Chapter 3.4.  The editor allows the user to create, modify, and visualize the multi-agent 
plans in a variety of different forms. All of the plans generated for the HR algorithm were 
created using the MTPNU GUI.  
 

                                                 
6 The MTPNU GUI was developed by Andreas Wehowsky and myself. 
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Figure 5-1  The MTPNU GUI allows the user to quickly 
create, visualize and manipulate multi-agent temporal plan 
with uncertainty.  

 

 
 

Figure 5-2 Rover Test-Bed used to test STN reformulation algorithms 
 
 
 The Hierarchical Reformulation algorithm was implemented in conjunction with the 
STN reformulation and dispatching algorithms presented in Chapter 2.  Implementing the 
STN reformulation provided the basis for implementing the HR algorithm.  Specifically, 
the implementation of the basic STN reformulation algorithm [Muscettola 1998a] and the 
“fast” STN reformulation algorithm [Tsarmardinos 1998], along with the associated STN 
dispatching algorithm [Muscettola 1998a] were implemented in C++ prior to 
implementing the HR algorithm.  The HR algorithm implementation leveraged the data 
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structures and many of the graph algorithms used in these STN algorithms.  The STN 
reformulation and dispatching algorithms were integrated with the KIRK temporal 
planner [Kim 2001].  This entire planning and execution system has been tested on a set 
of ATRV and ATRV Jr. robots in our rover test bed, as shown in Figure 5-2.  Together 
the KIRK temporal planner and STN executive have been successfully used to execute 
hundreds of multi-rover plans in the rover test-bed. 
 
 Recall, that our novel fast dynamic controllability algorithm uses the STN 
reformulation algorithm as both a pre-processing and post-processing step. Currently, 
only the basic STN reformulation algorithm has been integrated with our implementation 
of the Fast-DC algorithm.  Integrating the fast STN reformulation algorithm into the Fast-
DC is left for future work.  

 

 
 
 
 
 
 

5.3 Run Time Complexity of the FAST-DC Algorithm 
In this section we discuss the empirical results of the fast dynamic controllability (Fast-
DC) algorithm. In order to test the speed of Fast-DC algorithm, we developed a random 
TPNU generator.  The challenge is to generate a TPNU and associated STNU that is 
sufficiently random, and provides a good chance of being dynamically controllable.  We 
are interested in knowing how long it takes the algorithm to detect that the STNU is not 
dynamically controllable; however, we are more interested in knowing how long it takes 
for the algorithm to complete. 
 
 Simply randomly generating a mixture of contingent and requirement edges would 
yield a very low likelihood of producing a dynamically controllable STNU.  We 
introduce RAND_TPNU algorithm in order to generate the TPNU and underlying STNU 
that are biased towards being dynamically controllable.  This is achieved by keeping the 
requirement constraint flexible compared to the duration of the uncontrollable activities. 
 
 The RAND_TPNU function accepts two parameters: num_acts, which is the number 
of activities in the TPNU, and ctrl_pct, which determines the number of controllable 
activities versus uncontrollable activities. Given these parameters it generates a TPNU. 
 
 First the RAND_TPNU algorithm generates num_acts activities each of which have a 
ctrl_pct chance of being controllable. The duration for each activity is chosen such that 
upper bound, ub, is always greater than the lower bound, lb.  Thus, each activity has a 
nonzero duration and is locally consistent..  The upper bound, ub, is randomly chosen 
between [1, max_duration] and the lower bound, lb, is randomly chosen between [0,ub].  



 144

Each activity has a start timepoint, Si and end timepoint Ei and either a contingent or 
requirement link connecting the Si to Ei.  
 
 The RAND_TPNU uses a 2D plan space with dimensions plan_length by plan_height, 
as shown in Figure 5-1.  The left hand side occurs and Time = 0 and the right hand side 
occurs at Time =  plan_length.  The plan space is similar to a simple scheduling timeline 
where overlapping activities represent concurrent activities. The start timepoint, Si, of 
each activity is randomly placed in the 2D plan space and the end timepoint, Ei , of each 
activity is shifted to the right by a distance equal to its upper bound.  For example, in 
Figure 5-1 the plan space has dimensions 50 by 25.  The start timepoint of act1, s1, is 
randomly placed at (5,20).  Act1 has an upper bound of 10; therefore, the end timepoint 
of act1, e1, is placed at (15,20).  By controlling the length and height of the plan space, 
we can control the relative proximity of each activity in the plan space. 
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Figure 5-3 Randomly placing activities within the 2D plan 
space 

 
 
 
 After placing each activity in the plan space, requirement links are introduced in order 
to constrain the activity timepoints with respect to one another. For each timepoint, the 
algorithm searches in its local “search region” for a neighboring timepoint for which 
there does not already exist any link (requirement or contingent).  If it finds such a 
timepoint, it orders the timepoints based on their x distance.  Whichever timepoint is 
further to the left in the plan space, becomes the start of the requirement link and the 
other timepoint becomes the end timepoint of the requirement link.  This ensures that the 
plan execution goes generally from left to right in the plan space.  
 
 The algorithm then randomly generates locally consistent values for the lower and 
upper bound of the requirement link.  The algorithm uses the separation distance to 
generate these values such that timepoints near one another tend to be more tightly 
constrained than timepoints farther apart. This results in a good mixture of tight and loose 
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temporal requirement; furthermore, the general structure of the plan can be determined by 
visual inspection of the plan.   However, in order to prevent extremely tight constraints 
being placed in the plan, which tends to reduce the change of the plan being dynamically 
controllable, the algorithm uses a different policy for generating the timebounds when the 
two timepoints are close to one another.  The process of adding a requirement link is 
shown in Figure 5-4 The specific policy for generating the requirement links is given in 
Figure 5-6.  Note that the algorithm generates links with both positive and negative lower 
bounds. 
 
The pseudo-code for the full RAND_TPNU generator is given in Figure 5-6. It uses the 
function RANDOM(x,y) which produces a random integer between x and y.   
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Figure 5-4 Place requirement edges between neighboring timepoints 
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Figure 5-5 Pseudo-Code for ADD_ REQURIEMNT_LINK 

  

 
 

Figure 5-6 Pseudo-Code for RAND_STNU 

function RAND_TPNU( num_acts, ctrl_pct) 
Input: number of activities num_acts  
 percent chance of being controllable 
Output: randomly generated STNU G 
1   G  NIL 
2.  for i = 1 to num_acts 
2.  generate an activity with ctrl_pct change of being controllable 
      with start timepoint S and end timepoint E.  
3.   ub  rand( 1, max_duration) 
4.  lb  rand( 0,ub ) 
5.   create activity with bounds [lb,ub] and add to G 
6.   assign random (x,y) location for S within (plan_length, plan_width) 
7  assign location  of E of (x + ub, y ) 
8 end for 
9 ADD_REQUIREMENT_LINKS(G) 
10 return G 

 ADD_REQUIREMENT_LINKS(G)  
 Input: A TPNU G with a set of contingent and requirement activities 
 Effects: adds a set of randomly generated requirement links to G  
1 r1  radius of search region 
2 r2  radius of cutoff region 
3 for each timepoint A 
4  B  find neighboring timepoint s.t. distance < r1 and link AB = NIL and BA = NIL 
5  if A.x < B.x  
6   S  A 
7   E B 
8  else 
9   S  B 
10   E  A 
11  end if 
12  dist  abs( distance(S,E) ) 
13   if dist < r2 
14   dist  max_duration 
15  endif 
16  ub  random( dist/2, 2*dist) 
17  lb    random( -dist, dist/2 ) 
18  add requirement link SE with bound [lb,ub] to G 
19 end for 
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In order to use the RAND_TPNU we need to set several more parameters.  These 
include: 
 max_duration: the maximum duration of the activities 
 plan_width:    : x dimension of the plan space 
 plan_height:    : y dimension of plan space 
  r1 :      : radius of search region 
 r2:      : radius of cut region 
 
 
For testing the DC algorithm we fixed values of each parameter except for the plan_ 
width parameter, which is a function of the num_acts.  
 
 max_duration  = 20 
 plan_length     = 10*num_acts 
 plan_height     =  30  
  r1                    = 30 
  r2      = 10 
 
A sample randomly generated plan is shown in Figure 5-7 
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Figure 5-7  A randomly generated TPNU generated by the 
RAND_TPNU algorithm 

The TPNU has 10 activities with 50% chance of each activity being controllable. 
 
 
 We used the RAND_TPNU generator in order to test the Fast-DC algorithm.  We 
generated random TPNUs from 5 activities to 70 activities in increments of 5, using a 
ctrl_pct = 50%.  At each activity level, we generated a random TPNU then ran the Fast-
DC algorithm on the associated STNU.  This cycle was repeated until we found a TPNU 
that was dynamically controllable.  Figure 5-8 shows the run time of the Fast-DC 
algorithm plotted against the number of activities.  The tests were run on an IBM laptop 
with a 500 MHz Pentium III processor.  Figure 5-8 shows two sets of data. The data 
labeled “total” represents the total run time of the Fast-DC algorithm and the data labeled 
back-propagation represents the time the algorithm spent doing back-propagation.  
Specifically, this is the amount of time the algorithm took to run Lines 8-13 in the Fast-
DC algorithm shown in Figure 4-21.  A more detailed view of the time spent doing back-
propagation is provided in Figure 5-9.  The maximum time the algorithm took to do back-
propagation was .41 seconds while running the trial of 50 activities.  
 
 In general, the amount of time the algorithm spent doing back-propagation was two 
orders of magnitude smaller than the time it took to do the other computations.  Our test 
show that our Fast-DC algorithm experimentally runs in O(N3).  A cubic regression curve 
was fit to the overall data and shown in Figure 5-8.  These results are significant because 
the current literature contains no experimental data on the run time complexity for any 
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dynamic controllability algorithm. Recall that [Morris 2001] only provided a dynamic 
controllability algorithm; however, they only provided a crude upper bound on the time 
complexity of O(N6).   
 
Recall the overall structure of the dynamic controllability algorithm along with the run-
time complexity is as follows: 
 
1. Run basic STN Reformulation Algorithm  Θ(N^3) 
2. Check for Pseudo-Controllability    O(E) 
3. Run SSSP         O(NE) 
4. Back-Propagating       ???? 
5. Run Basic STN Reformulation Algorithm  Θ (N^3) 
 
The only missing link required in order to compute the theoretical worst case time 
complexity was the Back-Propagation Step.  However, our results show that propagation 
costs are small compared with the other computations.  Note that the STN reformulation 
runs in Θ(N^3). Given that the back-propagation cost is small, it follows that expected 
run time is Θ(N^3).  This is why the overall run time fits so well to a cubic curve. 
 
In our Fast-DC algorithm we currently use the basic STN reformulation algorithm.  We 
have implemented the “fast” STN reformulation algorithm introduced by [Tsarmardinos 
1998] which runs in O( NE + N2 lg N) time; however, its has yet to be integrated  into our 
Fast-DC algorithm.  Substituting the fast STN reformulation algorithm for the basic one 
will directly improve the run time of our Fast-DC algorithm, because the STN 
reformulation algorithm is dominating the other computations. This simple step should 
greatly improve the run time of our Fast-DC algorithm for sparse plans.  
 
The most striking result is the relatively small amount of time the Fast-DC algorithm 
spent doing back-propagation compared to the other computations.  In Chapter 4 we 
provided intuitions on why the back-propagation technique would yield a fast algorithm; 
here we provide the empirical results to support our intuitions.  
 
The small amount of time required to do the back-propagation also suggests an efficient 
incremental DC algorithm.  Specifically, in Chapter 4 we showed that after running the 
DC algorithm once, if an edge changes in the plan, it is only necessary to call the back-
propagation step in the Fast-DC algorithm to maintain the dispatchability of the plan.  
 
More experimental work still needs to be performed.  First the Fast-DC algorithm needs 
to be tested on more examples to more fully characterize the run-time complexity of the 
back-propagation step.  Second, we need to implement the dynamic controllability 
introduced by [Morris 2001] in order to do a side by side comparison of our Fast-DC 
algorithm and their algorithm.  
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Figure 5-8 Experimental Results of the Run-Time Complexity for the FAST-
DC algorithm.  The graph shows the results of a cubic regression curve fit to 
the overall run-time of the DC algorithm. 
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Figure 5-9  Experimental Results for Run-Time Complexity of Back-
Propagation for the FAST-DC algorithm  
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5.4 Limitations and Future Work 
In this section we will address some limitations to the current Hierarchical Reformulation 
algorithm along with direction for future work. 
 

5.4.1 Improvements in Group Macro Representation 
 Currently we use a very simple model for representing the group plans in the mission 
plan. Specifically we model the group plan using a macro.  Recall that this macro consists 
of an executable start timepoint, and a contingent end timepoint and a contingent link 
between them.  The timebounds used on the contingent link is determined by computing 
the minimum and maximum feasible durations of the associated group plan.  The 
different groups are free to choose any execution strategy.  This technique preserves 
maximum flexibility within each group plan, but it sacrifices completeness of the 
Hierarchical Reformulation (HR) algorithm.  Recall that the HR algorithm consists of 
three basic steps.  First it reformulates each group plan in order to ensure that they can be 
dynamically executed.  Second it determines the range of feasible execution times for 
each group plan and uses those time to generate an associated macro.  Third it generates a 
fixed start time for each group plan by considering the constraints placed between the 
macro representations of the group plans.  When the HR performs this last decoupling 
step it must respect the timebounds placed on the macros.  Specifically, it must ensure 
that the fixed start times that is uses for each group plan will be consistent with the 
constraints of the plan no matter when the group plans finish with their activities.  If the 
HR algorithm is unable to generate these fixed start times, the HR algorithm simple fails.   
 
Our algorithm uses a very group centric approach. The decoupling algorithm is not able 
to ask the group plans to modify their plans in order to enable the groups to coordinate at 
the high level.  In general, each group plan will tend to have some amount of flexibility it 
could sacrifice and still be dynamically controllable; however, our decoupling algorithm 
is not able to ask the group plans to give up some of this flexibility in order coordinate 
the groups.   
 
In our current approach, the groups are not “team players”. Consider a situation where the 
boss asks each employee in his research group to compute an expected time for 
completion of his/her individual software component and employ1 know he can complete 
his task in 1 week but tells the advisor an extremely conservative estimate of 4 weeks.  
However, upon review of the overall schedule, the boss determines that employee 1 must 
complete no later than 3 weeks.  In our current approach, the decoupling algorithm plays 
the role of the boss.  Currently our decoupling algorithm cannot perform this type of 
negotiation.  This is the most sever limitation of our HR algorithm. 
 
In order to allow the decoupling algorithm to negotiate with the groups we need a better 
macro representation that encodes the amount of flexibility each group is capable of 
sacrificing.  This will allow the decoupling algorithm to steal flexibility from the group 
plans when it needs it.  
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5.4.2 Improvements in the Decoupling Algorithm 

Recall the STNU decoupling algorithm removes the dependence from one group plan.  
Currently we generate a fixed schedule for the group plans in order to do this decoupling. 
However, it is possible to enable each group plan to be executed independently while still 
allowing the start time of each group activity to remain flexible.  This flexibility will 
allow each group to adapt to some level of unmodeled uncertainty, hence increasing the 
robustness of execution.  An overview of the improved STNU decoupling algorithm is 
illustrated in Error! Reference source not found..  
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Figure 5-10 (a) The group activities in the mission 
plan are decoupled using two steps. (b) First the 
contingent end timepoints are decoupled using the 
strong controllability algorithm [Vidal 2000] (c), 
Second, the activity start timepoints are decoupled 
using the STN decoupling algorithm [Hunsberger 
2002]. 

 
 This improved STNU decoupling algorithm combines a strong controllability 
checking algorithm introduced by [Vidal 2000] with the STN decoupling algorithm 
introduced by [Hunsberger 2002].  The improved STNU decoupling algorithm breaks the 
problem of decoupling the group activities into two parts.  First, the contingent 
timepoints associated with the end of each group activity are decoupled from rest of the 
timepoints by the using the strong controllability algorithm.  This is similar to our current 
STNU decoupling algorithm. After this first step, we only need to consider the constrains 
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on the start timepoints of the group activities. Hence, we are now only working with an 
STN.  However, instead of generating a fixed schedule for the start of each group 
activity, the improved STNU decoupling algorithm uses the STN decoupling introduced 
by [Hunsberger 2002] to decouple the start of each of the group activities. The STN 
decoupling algorithm makes the constraints connecting the start timepoints of each group 
activity dominated (redundant) by modifying the constraints that pass through the start of 
the mission. [Hunsberger 2002] showed that it is always possible to do this decoupling in 
polynomial time if the STN is consistent.  This improved STNU decoupling algorithm 
keeps start of each group plan flexible with respect start of the mission, which in known 
to be executed at Time = 0.  

5.4.3 Variations on the Two-Layer Architecture 

 There exists several variations of the two layer architecture described in the thesis.  
Recall that our two layer approach uses a high level mission plan and a set of lower level 
group plans.  This two layer approach can be extended to multiple layers.  Second, we 
currently use a static execution strategy at the mission layer and a dynamic execution 
strategy at the group layer.  The static execution strategy is used so the different group 
can execute their plan independently.  The agents in the different groups never need to 
communicate.  It seems reasonable that the agents in different groups should not 
communicate after every action; however, in some cases the different groups should and 
can communicate with one another at the start and end of their group plans.  For example, 
consider large project in which the jobs are divided up between several groups of people. 
A project manager does not need, nor does the manager want to know, about all the 
detailed interactions between the group members. However, in order to manage the 
project effectively, the manager needs to know when each group completes a particular 
group plan. In this situation, group members dynamically adjust their schedules in order 
to achieve coordination at the lower level and the project manager dynamically adjusts 
the schedule of the groups to coordinate the groups at the high level.  This suggests a two 
layer approach which uses a dynamic controllability algorithm at both layers.  This is 
achieved by providing a minimal amount of communication between the groups.  In 
general, our two layer approach can be extended to a general hierarchy which use either a 
static or dynamic execution strategy depending on the amount of communication that is 
available. 
 

5.4.4 Towards a Fully Distribution Architecture 

 Recall that the grand vision of this work is to create a completely distributed 
architecture in which all the agents participate in the planning, scheduling, and execution 
using a message passing.  Our thesis makes steps towards this goal.  Specifically, we 
showed how to enable different teams of agents to cooperate at execution time without 
requiring communication.  Thus, the execution of the reformulated plan is distributed 
among the different teams. However, we would like both the computations of the 
reformulation step and execution to be distributed among all the agents. A rough 
technology development plan required in order to create a completely distributed 
architecture is provided below.  
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1. Develop a distributed version of the dispatching algorithm for STNs and STNUs 
[Muscettola 1998a, Morris 2001]. This will enable all of the agents within group plans to 
participate in the dynamic scheduling process.  In order to distribute the dispatching 
algorithm, the group plan needs to be partitioned such that each agent within the group 
owns a portion of the group plan. Specifically, each agent should schedule its own 
activities.  During execution each agent in the group plan will run instances of the 
centralized dispatching algorithm, and send execution update to other agents using a 
message passing system.   
 
2. Develop a distributed version of the basic centralized STN reformulation algorithm 
[Muscettola 1998a]. Recall that this algorithm depends on 1) computing an APSP-graph 
and 2) performing set of local edge trimming operations.  The APSP-graph can be 
computed in a distributed fashion by using by using N calls to a Distributed Bellman-
Ford SSSP algorithm [Lynch 1996].  Furthermore, the developing a distributed version of 
the edge trimming phase should be straight forward, because each edge trimming 
operations is a instance of the triangle rule, which is a local computation.  Furthermore, 
each application of the triangle rule can be done independently.  
 
3. Develop a distributed version of the “fast” centralized STN reformulation algorithm 
[Tsarmrdinos 1998].   The centralized algorithm depends on 1) a Strongly Connected 
Components (SCC) algorithm, 2) Dijkstra’s SSSP algorithm, and 3) a set of other local 
computations.  The centralized SCC algorithm can be replaced by distributed Cidon's 
DFS algorithm [Tel 1994] and the centralized Dijkstra’s algorithm can be replaced by the 
distributed Bellman-Ford SSSP algorithm. The rest of the computations are local; 
therefore, it should be straight forward to perform these computation is a distributed 
fashion. 
 
4. Develop a distributed version of our fast dynamic controllability algorithm. Recall that 
this algorithm depends on the 1) STN reformulation algorithm 2) a SSSP computation 
and 3) a set of local back-propagation rules. We already discussed distributing both the 
STN reformulation algorithm and the SSSP computations above.  Furthermore, the 
structure of the back-propagation rules should allow a simple transition from centralized 
to distributed version of the local back-propagation rules.  
 
5. Develop a distributed version of the centralized HR algorithm. This depends on the 
strong controllability and dynamic controllability algorithms. Again these are local 
algorithms; therefore, creating the distributed versions should be possible without too 
much effort. 
 

5.4.5 Other opportunities for future work  

First, in Chapter 3 we introduced a formal definition of communication controllability.  
The time complexity for determining communication controllability is unsolved. Second, 
we assumed that the programmer was able to perform the clustering in order to create a 
two layer structure.  Work needs to be done to do this clustering autonomously.  Third, 
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we provided experimental evidence that the run time complexity of the Fast-DC 
algorithm is O(N^3).  Further work is need to prove the worst case run-time complexity 
of the DC algorithm.  
 

5.5 Conclusion 
 In this thesis we showed how to reformulate multi-agent plans in order to enable teams 
of agents to loosely coordinate their inter-team activities without communication; while 
enabling the agents to tightly coordinate their intra-team activities in the presents of 
uncertainty.  Our two-layer approach enables the executive to focus on preparing for 
communication limitation at the high level and prepare for dynamically adapting to the 
temporal uncertainty at the low level. Recall that our approach is motivated by the 
observation that tight coordination under uncertainty requires communication, and 
fortunately, whenever the agents require tight coordination, the agent typically can 
communicate.  On the contrary, when the agents have difficulty communication, they 
typically only need to loosely coordinate their activities. In these cases, it is possible to 
synchronize their activities by using a fixed execution strategy, therefore eliminating the 
need to communicate. Therefore, our two-layer approach works with nature rather than 
against it.  
 
 This thesis provides three primary contributions.  First, at the beginning Chapter 3 we 
presented a formal treatment of dynamic controllability under communication limitation.  
Our formal analysis resulted in new type of controllably, called communication 
controllability.  It is our hope this formal problem description will help stimulate research 
focused on planning for both communication limitations and uncertainty.   Second, in the 
latter part of Chapter 3, we presented our novel Hierarchical Reformulation (HR) 
algorithm eloquently combined a strong and dynamic controllability algorithms.   The 
HR algorithm allows different groups of agents to coordinate their activities without 
being in direct contact with one another.  Third, in Chapter 4 we presented our new Fast 
Dynamic Controllability (FAST-DC) algorithm.  This dynamic controllability algorithm 
is used in the HR algorithm; however, its use transcends the HR algorithm.  One of the 
most significant result of thesis is that we showed that our new Fast-DC algorithm runs in 
O(N3) time.  This is an important result because many real-time planning and scheduling 
problems requires the use of a dynamic controllability algorithm. We believe our Fast-
DC algorithm will enable a new planning and scheduling packages to be able to 
efficiently cope with temporal uncertainty. Although one may argue that the applicability 
of the HR algorithm is still a few years off; the fast dynamic controllability algorithm 
introduced in this thesis is applicable to many real-world problems today!7 
 
 
 
 
 

                                                 
7 Please send me an e-mail at stedl@mit.edu if you have read my thesis.  This will allow me to determine how many people read 

this thesis and allow me to answer any questions.   



 156

 

References 
 

[Aldridge 2004]  Aldridge, E. Jr. et. al, Report of the President’s Commission on 
Implementation of United States Space Exploration Policy: A Journey to Inspire, 
Innovate, and Discover Moon, Mars and Beyond …, June 2004. 
 
[CLR 1990]  T.H. Cormen, C.E. Leiserson and R.L. Rivest.  Introduction to Algorithms.  
MIT Press, Cambridge, MA, 1990. 
 
[Chien 2000] Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engelhardt, B.; Mutz, 
D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett, T.; Stebbins, G.; and Tran, D. 2000. ASPEN 
- Automated planning and scheduling for space mission operations. In 6th International 
Symposium on Space missions Operations and Ground Data Systems (SpaceOps 2000) 
 
[Brooks 1985] Brooks, R. A. "A Robust Layered Control System for a Mobile Robot", 
IEEE Journal of Robotics and Automation, Vol. 2, No. 1, March 1986, pp. 14–23; also 
MIT AI Memo 864, September 1985 
 
[Dechter 1991]  R. Dechter, I. Meiri, and J. Pearl.  Temporal constraint networks.  
Artificial Intelligence, 49:61-95, May 1991. 
 
[Drummond 1994] Drummond, M., J. Bresina, and K. Swanson, "Just-In-Case 
Scheduling," in Proc. 12th National Conf. on Artificial Intelligence, 1994. 
 
[Eberhart 2001] R. Eberhart, Y. Shi, and J. Kennedy, “Swarm intelligence”, Morgan 
Kaufmann, 2001. 
 
[Hunsberger 2002]  L. Hunsberger.  Group decision making and temporal reasoning.  
PhD Thesis, Harvard University, Cambridge, MA, June, 2002.   
 
[Huntesberger 2003] Huntsberger, T.L., Pirjanian, P., Trebi-Ollennu, A., Nayar, H.D., 
Aghazarian, H., Ganino, A.J., Garrett, M.S., Joshi, S.S., and Schenker, P.S. 2003a. 
CAMPOUT: A control architecture for tightly coupled coordination of multi-robot 
systems for planetary surface exploration. IEEE Transactions on Systems, Man, & 
Cybernetics: Special Issue on Collective Intelligence, 33:550–559. 
 
[Huntsberger 2004] T. L. Huntsberger, A. Trebi-Ollennu, H. Aghazarian, P. S. 
Schenker, P. Pirjanian, and H. D. Nayar, "Distributed Control of Multi-Robot Systems 
Engaged in Tightly Coupled Tasks," Autonomous Robots, Vol. 17, pp. 79-92, 2004 
 
[Jonnson 2000] Jonsson, A. K.; and Morris P. H.; Muscettola, N.; Rajan, K.; and Smith, 
B. 2000.Planning in Interplanetary Space: Theory and Practice.  In Proceedings of the 
Fifth International Conference on Artificial Intelligence Planning and Scheduling (AIPS-
2000), 177-186 
 



 157

[Kim 2001]  P. Kim, B. Williams, and M. Abramson.  Executing reactive, model-based 
programs through graph-based temporal planning.  In Proceedings of IJCAI-2001, 
Seattle, WA, 2001. 
 
[Long 2002]  Long D. & Fox M. Fast Temporal Planning in a Graphplan Framework. In 
Proceedings from the Sixth International Conference on Artificial Intelligence Planning 
and Scheduling.2002 
 
[Morris 1999]  P. Morris and N. Muscettola.  Managing temporal uncertainty through 
waypoint controllability.  In Proceedings of IJCAI-1999, 1999 
 
[Morris 2000]  P. Morris and N. Muscettola.  Execution of temporal plans with 
uncertainty.  In Proc. Of Seventeenth Int. Joint Conf. on Artificial Intelligence (AAAI-
00), 2000. 
 
[Morris 2001]  P. Morris, N. Muscettola, and T, Vidal.  Dynamic Control of plans with 
temporal uncertainty.  In: Proceedings of the 17th International Joint Conference on A.I. 
(IJCAI-01). Seattle (WA, USA).    
 
[Muscettola 1998a]  N. Muscettola, P. Morris, and I. Tsamardinos.  Reformulating 
temporal plans for efficient execution.  In Proc. Of Sixth Int. Conf. on Principles of 
Knowledge Representation and Reasoning (KR ’98), 1998. 
 
[Muscettola 1998b]  N. Muscettola, P.P. Nayak, B. Pell, and B.C. Williams.  Remote 
agent:  to boldly go where no AI system has gone before.  Artificial Intelligence, 103 (1-
2):5-48, August 1998. 
 
[Parker 2000] L. E. Parker, "Current State of the Art in Distributed Autonomous Mobile 
Robotics", in Distributed Autonomous Robotic Systems 4, L. E. Parker, G. Bekey, and J. 
Barhen eds., Springer-Verlag Tokyo 2000, pp. 3-12. 
 
[Schetter 2003] T. Schetter, M. Campbell, D. Surka. Multiple agent-based autonomy for 
satellite constellations.  Artificial Intelligence, 145 (1-2):147-180, April 2003 
 
[Shu 2003]  I. Shu. "Enabling Fast Flexible Planning through Incremental Temporal 
Reasoning." M. Eng. Thesis, Massachusetts Institute of Technology, September, 2003. 
 
[Tsarmrdinos 1998]  I. Tsarmardinos, N. Muscettola, and P.Morris.  Fast transformation 
of temporal plans for efficient execution.  American Association for Artificial 
Intelligence (AAAI-98), 1998. 
 
[Vidal 1996]  T. Vidal and M. Ghallab.  Dealing with uncertain durations in temporal 
constraint networks dedicated to planning.  In Proc. Of 12th European Conference on 
Artificial Intelligence (ECAI-96), pages 48-52, 1996. 
 

http://www.ai.mit.edu/people/williams/theses/ishuThesis.pdf
http://www.ai.mit.edu/people/williams/theses/ishuThesis.pdf


 158

[Vidal 1999]  T. Vidal and H. Fargier.  Handling contingency in temporal constraint 
networks:  from consistencies to controllabilities.  Journal of Experimental & Theoretical 
Artificial Intelligence, 11:23-45, 1999. 
 
[Vidal 2000]  T. Vidal.  Controllability characterization and checking in contingent 
temporal constraint networks.  In Proc. Of Seventh Int. Conf. on Principles of Knowledge 
Representation and Reasoning (KR’2000), 2000. 
 
[Wehowsky 2003]  A.F. Wehowsky.  Safe distributed coordination of heterogeneous 
robots through dynamic simple temporal networks.  Masters Thesis, MIT, Cambridge, 
MA, May, 2003. 
  
[Williams 2001] Williams, B.C., P. Kim, M. Hofbaur, J. How, J. Kennell, J. Loy, R. 
Ragno, J. Stedl and A. Walcott, “Model-based Reactive Programming of Cooperative 
Vehicles for Mars Exploration.” Int. Symp. on Artificial Intelligence, Robotics and 
Automation in Space, St-Hubert, Canada, June 2001 
 
[Williams 2003]  Brian C. Williams, Michel Ingham, Seung H. Chung, and Paul H. 
Elliott. January 2003. “Model-based Programming of Intelligent Embedded Systems and 
Robotic Space Explorers," invited paper in Proceedings of the IEEE: Special Issue on 
Modeling and Design of Embedded Software, vol. 9, no. 1, pp. 212-237. 
 

 


	1.1 Motivation 
	1.2 Distributed Multi-Agent Scenario 
	1.3 Research Challenges 
	1.4 Basic Centralized Architecture 
	1.5 Problem Statement 
	1.6 Proposed Approach 
	1.7 Key Technical Contributions 
	1.8 Grand Vision 
	1.9 Range of Applicability 
	1.10 Roadmap for Thesis 
	2.1 Introduction 
	2.2 Temporal Constraint Satisfaction Problem 
	2.3 Simple Temporal Network and Temporal Plan Networks 
	2.4 Dynamic Execution of TPNs 
	2.5 Simple Temporal Networks with Uncertainty 
	2.6 Summary 
	3.1 Introduction 
	3.2 Communication Assumption 
	3.3 Communication Controllability 
	3.3.1 Primary Types of Controllability 
	3.3.2 Formal Definition of Communication Controllability 
	3.4 Two-Layer Multi-Agent Plans 
	3.4.1 Group Programming Language (GPL) 
	3.4.2 Converting Multiagent Plans to Two-Layer MTPNUs 

	3.5 The Decoupling Algorithm 
	3.5.1 Strong Controllability  
	3.5.2 Strong Controllability Checking Algorithm 
	3.5.3 The Decoupling Algorithm 

	3.6 The Hierarchical Reformulation Algorithm 
	3.6.1 HR Algorithm Pseudo-Code 

	3.7 Summary 
	4.1 Introduction 
	4.2 Overview 
	4.3 The Dynamic Controllability Algorithm 
	4.3.1 Triangular Reductions  
	4.3.2 Regression of Conditional Constraints 
	4.3.3 Pseudo-Code for the Dynamic Controllability Algorithm 

	4.4 Fast Dynamic Controllability Algorithm 
	4.4.1 Incremental Dispatchability Maintenance   
	4.4.2 Back-Propagation 
	4.4.3 Back-Propagating when a Negative Requirement Edge Changes 
	4.4.4 Back-Propagation Rule when Positive Requirement Edge Changes 
	4.4.5 Back Propagating Conditional Edges 
	5.1.1 Pseudo-Code for BACK-PROPAGATE 

	4.5 Fast Dynamic Controllability Pseudo-Code 
	4.6 Summary 
	5.4.1 Improvements in Group Macro Representation 
	5.4.2 Improvements in the Decoupling Algorithm 
	5.4.3 Variations on the Two-Layer Architecture 
	5.4.4 Towards a Fully Distribution Architecture 
	5.4.5 Other opportunities for future work  



