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Preface

Modern technology is increasingly leading to complex artifacts with high de-
mands on performance and availability. As a consequence, advanced automa-
tion and control methods play an important role in achieving these require-
ments. Key for automation and control is to know the operational state of an
artifact in order to take the appropriate corrective measures. Often, however,
it is not possible or desirable to measure all physical entities that determine
the state of the system. So that the missing information has to be inferred
from noisy measurements and a mathematical model of the physical system.
The Kalman filter [1] is surely the most prominent example for this task of
filtering and estimation. A Kalman filter utilizes a stochastic model of the
system under investigation and estimates, in some optimal sense, the physi-
cal entities that determine the state of a system. When applied to real-world
systems, however, one has to deal with changing operational conditions and a
possible set of operational modes with significantly different dynamic behav-
ior. A standard Kalman filter, however, can only cope with a single operational
mode where its stochastic model matches the exhibited dynamic behavior of
the system. A standard approach to deal with mode changes and abruptly
varying dynamics is to utilize multiple filters, one for each operational mode,
and apply some sort of hypothesis selection/merging to deduce the appro-
priate estimate of the system’s state according to the individual estimates
of the multiple filters. This multiple model approach executes filters for all
possible modes concurrently so that any realistic real-time implementation
limits the number of operational modes to a moderately large set of modes.
This limitation, to capture a system by few operational modes only, is ap-
propriate for many applications, however, todays complex artifacts, such as
autonomous robots, space-probes, or production plants, impose new demands
that go beyond the scope of standard multiple model estimation. Those sys-
tems are composed of many individual components and achieve their complex
and high performance behavior by applying advanced control and automa-
tion schemes that utilize complex interactions among the components. This
leads to overall systems with an overwhelming number of possible operational
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modes1. As a consequence, it becomes increasingly difficult to build estima-
tion/monitoring systems that deal with the overwhelmingly large number of
possible modes of modern complex artifacts.

Besides providing an estimate for the physical entities of a system, which
are modeled as continuous variables, it is important to estimate the oper-
ational mode of the individual components as well. This is becoming in-
creasingly important as more and more systems are built that operate au-
tonomously, with little or almost no human interaction over long periods of
time. So that some sort of automated self monitoring and diagnosis becomes
vital for the reliable operation of these systems. This operation, however,
ought not be done by breaking down the estimation problem into separate
estimation tasks for the individual components of the system to be solved
by individual estimators. Modern multivariate control schemes, such as non-
linear model predictive control, orchestrate the components of a system in
a sophisticated interleaved way that utilizes complex interaction among the
components of the system to achieve a desired operation. This system-wide
interaction, however, would be missed by an estimation scheme that focuses
on the system’s components individually. Another consequence of this tight
coupling among the system’s components is that a fault in one component can
manifest itself in another component. This makes it difficult, if not impossible,
for a human operator to trace the operation in order to diagnose the system
whenever a malfunction is experienced. Therefore, an automated monitoring
and estimation capability, that can cope with the complexity of the system
and capture the system-wide interactions, will be enormously helpful.

As already indicated above, the number of operational modes for a mod-
ern artifact can be overwhelmingly large. However, as we intend to track and
monitor the operation of the system, it is worthwhile to consider additional
fault modes in the course of estimation. A failure mode effect analysis (FMEA)
is usually applied to identify possible faults/failures in the system and to an-
ticipate their system-wide effects. Given today’s complex systems, however,
it might be reasonable to assume that it is difficult, if not impossible, to an-
ticipate all possible fault modes and determine their system-wide effects. An
exhaustive FMEA would reveal an unreasonably large number of fault modes,
that would outnumber the already large number of operational modes, in par-
ticular, when taking multiple faults into account. As a consequence, even a
highly focused estimation scheme would be overwhelmed by the large number
of possible mode candidates that it has to consider in the course of estimation.
This would impose an unrealistically large computational burden on a typ-
ical real-time computing environment. Furthermore, unanticipated faults do
occur, in particular, whenever a system operates in a poorly specified environ-
ment (e.g. planetary rovers). Of course, it is good practice to define particular

1 For instance, consider a moderately complex system that is composed of 10 com-
ponents, where each component can exhibit one out of 5 operational modes. This
leads to an overall system with 510 ≈ 10,000,000 modes.
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fault modes that might occur, so that an estimation/monitoring system can
detect and identify those pre-specified operational situations. However, it is
also desirable to include the capability to cope with unanticipated operational
situations. In this way, an estimation/monitoring system can maintain opera-
tional whenever parts of the system ehibit at an unknown mode of operation.

Today’s complex artifacts are often built for long and durable operation.
As a consequence, parts of it might get replaced or updated and it becomes
increasingly difficult to maintain and update the estimation/monitoring sys-
tem for the artifact. For instance, replacing a servo-valve in a production
plant with one that exhibits a slightly different behavior should not trigger
the necessity for an off-line system-wide redesign of a high fidelity estimator
that takes system-wide interactions into account. However, it is reasonable to
replace the model-fragment of the system’s overall model that deals with the
particular device and leave it to the estimation/monitoring system do deal
with the changed situation.

Contributions

This outlines the scope of this work: we describe a novel model-based approach
for on-line estimation that can deal with the complexity of modern automation
systems, whilst being able to deal with (partially) unspecified operational
situations. More specifically, we present:

Component-based modeling formalism: In order to deal with complex multi-
component systems that exhibit hybrid discrete/continuous behaviors of
their physical entities, we choose hybrid automata as general modeling
paradigm. These automata describe physical systems in terms of a set of
operational and fault modes, mode transitions, and a dynamic model for
the physical entities for each specified mode. The novelty of our approach
is that we combine a probabilistic mode transition model with stochas-
tic discrete-time difference equations to capture real-world effects such
as disturbances, sensor noise, and other non-deterministic effects. This
leads to what we call a probabilistic hybrid automaton (PHA) that serves
as the basic building block for our modeling paradigm. In terms of the
overall model for a complex physical artifact, we take a component-based
approach that models individual components of the physical artifact in
terms of probabilistic hybrid automata and defines the interplay among
them in terms of their concurrent composition. This leads to what we call
a concurrent probabilistic hybrid automaton, or cPHA for short.

Focused hybrid estimation: Estimation for hybrid systems is generally diffi-
cult. This is due to the fact that an estimator has to consider all possible
mode sequences with their associated continuous evolutions. This fact
has particularly severe implications whenever the number of operational
modes of the underlying system is very large so that standard methods
from the field of multiple-model estimation cannot be applied anymore.
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Our proposed hybrid estimation method deals with this class of complex
systems. It carefully explores possible estimation hypotheses and focuses
onto the likely estimates only. For this purpose we carefully re-formulate
the hybrid estimation problem as a best-first search problem and utilize
advanced search techniques from the toolkit of Artificial Intelligence to
solve this problem. This leads to an any-time/any-space hybrid estima-
tion algorithm that is suitable for on-line execution within the context of
an automation system.

Automated on-line filter design: Our hybrid estimation system utilizes a set
of (extended) Kalman filters, one for each mode under consideration, to
anticipate the continuous evolution of the system. Instead of using a pre-
compiled set of (hand-crafted) filters, we provide a sophisticated model-
based mechanism that deduces these filters on-line. This capability has
two important implications. Firstly, there is no need to pre-compile a
possibly prohibitively large number of filters. The limited computational
resources of real-time systems, that execute the automation system, won’t
allow us to store and utilize them anyhow. Secondly, since the deduction
process grounds upon the hybrid model for the physical artifact, we can
easily update or modify the estimator to incorporate any modification
of the physical artifact or components of thereof. We simply update the
underlying component model. Hybrid estimation with the underlying au-
tomated filter design capability incorporates this change automatically.

Robustness: It is difficult, if not impossible, to anticipate all possible faults
that can occur within a complex physical artifact. Un-anticipated situ-
ations do occur, and a wrong classification of thereof can cause severe
implications such as the loss of control over a potentially dangerous auto-
mated system (chemical plant, power plant, airplane, automobile...). Our
proposed hybrid estimation scheme takes this into account and provides
a generic unknown mode that captures all un-anticipated modes of be-
havior. In this way, we obtain an estimation capability that can detect
un-anticipated modes of operation, identify the impaired components or
subsystem, and continue hybrid estimation in a degraded, but fail-safe
manner.

Perspective: Autonomous Automation

This monograph deals almost exclusively with monitoring and estimation
within the context of automation for complex systems. Its implication, how-
ever, should be seen within the wider perspective of advanced automation that
deals with un-anticipated situations and an overwhelmingly large number of
possible control strategies. Within the estimation task, we solve the problem
in the sense that we apply advanced search techniques from the toolkit of
modern AI to identify the most probable estimation hypothesis, given the
observation and the underlying model. The dual problem would be to search
for a suitable control strategy, given an abstract control goal and the hybrid
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model of the physical artifact under control. The algorithms that we devel-
oped to cope with the enormous amount of estimation hypotheses open a
direction for future research for the dual control problem as well. Surely, they
represent the starting point and will require additional enhancements with
techniques from the toolkits of modern Control Theory, Automation, and Ar-
tificial Intelligence. However, on the long run, we expect to obtain an overall
automation system that can reconfigure itself to adapt to changing environ-
ments and faults or even failures. The basis for such an advanced model-based
automation paradigm, we could call it autonomous automation, is to robustly
know the state of the physical artifact – the topic of this monograph.

Outline

The next Section (1) introduces our hybrid estimation paradigm on a concise
basis that omits most of the low level detail. This should give a first glimpse
of our proposed concept, motivate the overall design and the paradigms that
we used within this work, and indicate problematic issues that require high-
fidelity tools out of the toolbox of modern AI. It also indicates possible lines
of future research and applications and reviews related and complimentary
research. Section 2 and Sect. 3 provide a detailed treatment of our concept
for hybrid estimation. Section 2 presents the basis for our hybrid estima-
tion scheme, our hybrid modeling framework. Section 3 deals with the over-
all hybrid estimation task. Itreviews the underlying theory and the existing
approaches, and provides our key contributions – the focused hybrid estima-
tion scheme, and the incorporation of the unknown mode (Sects. 3.5 and 3.6,
respectively). Some examples are given in Sect. 4 to illustrate our proposed
hybrid estimation scheme. The examples range from a relatively simple multi-
component system, that allows us to compare our hybrid estimation scheme
with traditional multiple model estimation algorithms, to the simulation study
of an advanced life support system for a Martian space mission, as example
for a process automation system.
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1

Hybrid Estimation at a Glance

One of our test applications is a simulation study of the BIO-Plex Test Com-
plex at NASA Johnson Space Center, a five chamber facility for evaluating
biological and physiochemical Martian life support technologies. It is an ar-
tificial, biosphere-type, closed environment, which must robustly provide all
the air, water, and most of the food for a crew of four without interruption.

Plants are grown in two plant growth chambers where they provide the
food for the crew and convert the exhaled CO2 into O2. In order to maintain
the closed-loop system, it is essential to control the resource exchange between
the plant growth chambers and the other chambers without endangering the
crew. For the scope of this book, we restrict our evaluation to CO2 and O2

control in one plant growth chamber (PGC) as shown in Fig. 1.1. This sub-
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Fig. 1.1. BIO-Plex plant growth chamber.

system is composed of several components, such as redundant flow regulators
that provide continuous CO2 supply, redundant pulse injection valves that
provide a means for increasing the CO2 concentration rapidly, a lighting sys-
tem, redundant O2 concentrators and the plant growth chamber (PGC) itself.
The control system maintains a plant growth optimal CO2 concentration of
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1200 ppm and an ambient oxygen level of 21 vol.% during the day phase of
the system (20 hours/day). The relatively high CO2 level is unsuitable for
humans, hence the gas concentration is lowered to 500 ppm whenever crew
members request to enter the chamber for harvesting, re-planting, or other
service activities. Safety regulations require that the system inhibits the high-
volume gas injection via the pulse-injection path while crew members are in
the plant growth chamber. Sensors are available to record the entry and exit
of crew members. However, sensors are known to fail and a capable monitor-
ing/estimation system has to robustly estimate the current operational mode
and health state of the system. This involves determining the mode of each
component (for example, flow regulators, sensors, valves, concentrators), and
detecting the operational situation for the overall system (for example, plant
growth mode, service mode with or without presence of crew members in the
chamber, etc.) based on noisy measurements of various physical entities (for
example, CO2 flow rate, CO2 and O2 gas concentration, chamber pressure,
etc.). Figure 1.2 shows a typical trace of the CO2 gas concentration during
operation (one time-step represents the duration of one minute). The crew
requests to enter the plant growth chamber at the time-point t = 600. After
lowering the concentration to the safe level of 500 ppm, the system unlocks
the door and the crew enters at t = 850. Their entry can be seen from the
slight disturbance of the CO2 gas concentration that is due to the additional
exhaled CO2. The control mechanism adapts the gas injection to a new value
so that the overall concentration is maintained at the 500 ppm level after a
short adaption phase. A lighting fault happens at t = 1000. The reduced illu-
mination of the chamber leads to a lower photosynthesis activity of the plants,
so that less CO2 is consumed. This causes the imbalance that again is cor-
rected by the chamber control system. The crew repairs the fault at t = 1100
and exits the chamber at t = 1300. A monitoring/estimation system is key
to tracking the operation of the system, as well as detecting subtle faults and
performing diagnoses. For instance, the partial lighting failure leads to a be-
havior that is similar to crew members entering the plant growth chamber.
The monitor/estimation system should correctly discriminate among different
operational and fault modes of each system component, based on the overall
system operation.

For the scope of this overview we will focus on an individual component of
the plant growth chamber, one of the redundant flow regulators that injects
CO2 gas into the chamber on a continuous basis. This is in contrast to what we
argued previously that a capable monitoring/estimation system should take a
system-wide view and should not focus on individual sub-components. How-
ever, it will allow us to keep the presentation concise, without the requirement
to add too much detail that could mask the overall story. The generalization
to estimation that takes a system-wide view is obtained automatically when
moving from the single component to concurrently operating components. We
shall see later that the overall estimation scheme decomposes the system into
component clusters, whenever possible. However, it also maintains estima-
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tion hypotheses where large grain component-clusters, or even the system as
a whole, are taken into account. This enables our hybrid estimation scheme
to obtain additional information based on the system-wide interaction of the
components. For example, whenever the flow sensor of a flow regulator fails,
we can still estimate the in-flow due to its interaction within the plant growth
chamber. For the following sections, however, we restrict the description to a
single component and indicate the difficulties that arise with multi-component
systems.

1.1 Hybrid Model

The flow regulator represents a low level component cluster that consists of
a continuously actuated valve, a flow meter, and a low-level controller that
adapts the valve’s opening in order to provide a continuous gas-flow at the
requested level. For the purpose of supervisory control, we can view these
low-level components to comprise one generic flow regulator that utilizes a
control mechanism which operates on a significantly faster time-scale than
the supervisory control system. Figure 1.3a shows the response of the actu-
ated gas flow rate based on the input signal. Whenever one is interested in
determining the low-level health state of the flow regulator, one would choose
a high sampling rate, so that the transition process can be judged, for ex-
ample, to determine whether wear and tear lead to a degraded device with
slower response and off-set errors. Contrariwise, from the perspective of su-
pervisory control, one might view the transition phase as instantaneous and
only judge the overall operation of the flow regulator. For instance, whether
a commanded flow change was actuated correctly up to the time-point when
the supervisory system takes the next measurement sample. This sampling
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strategy is illustrated in Fig. 1.3a, where the sampling period Ts is set to the
supervisory control system’s sampling period of Ts = 1 [min]. The appropri-
ate level of detail depends on the specific monitoring and diagnostic task. In
the following we choose the high level view of a supervisory control system.

0 1 2 3

0

0.2

0.4

0.6

0.8

1

time [min]

C
O

2
 g

a
s
 f

lo
w

 r
a

te
 [

g
/m

in
]

requested flow rate
actuated flow rate
sampled flow rate

(a) sampled continuous time
trajectory

0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

C
O

2
 g

a
s
 f

lo
w

 r
a

te
 [

g
/m

in
]

partly open fully open closedclosed

(b) discrete-time trajectory

Fig. 1.3. Trajectories for the flow regulator.

We distinguish three operational modes to take the non-linear effect of
cutoff and saturation into account, as indicated in Fig. 1.3b. Instead of using
one non-linear model to describe the complex dynamic behavior, we will use
specific dynamic models for the operational conditions. A hybrid model com-
bines the continuous dynamic models with a discrete automaton-like model
that captures the transitions among the operational modes.

The three distinct operational modes of our flow regulator are closed,
partly-open, and fully-open. The modes constitute different constraints
(equations) among the continuous input uc, the actuated flow xc and the
noisy measurement yc. We use stochastic difference equations to capture the
model of the dynamic processes as follows:

closed : xc,k = 0
yc,k = xc,k + vc,k

partly-open : xc,k = uc,k−1

yc,k = xc,k + vc,k

fully-open : xc,k = xc,max

yc,k = xc,k + vc,k

(1.1)

All difference equations operate with a sampling period Ts and the sample-
point k represents the time-point t = kTs + t0, where t0 denotes the initial
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time-point. For the following we assume that the initial time-point is set to
zero (t0 = 0) so that xc,k = xc(kTs). The models capture the facts that
there is no output flow in a closed valve, and an outflow with the maximal
flow rate at a fully open valve1. For the case of a partly open valve, the flow
regulator actuates the requested flow uc,k at the next time sample k + 1. As
in reality, we assume that measurements are subject to noise and we model
the measurement process in terms of additive noise vc in all modes.

The overall operation of the flow regulator is captured by defining the
conditional transitions among the modes. They are described best visually in
a transition graph as shown in Fig. 1.4. Each node in the graph represents
an operational mode of the system and the arcs represent possible transitions
among the modes. The arcs are labeled with conditions that enable the asso-
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Fig. 1.4. (Nominal) transition graph of flow regulator.

ciated transitions. For example, whenever the system is in the mode closed
at time-point k and it experiences a continuous input value uc,k > 0, then
it will execute the transition closed → partly-open and proceeds at the
mode partly-open up to the next time-point k + 1. The transition and the
consecutive continuous evolution ensures that the flow regulator actuates the
requested flow rate at the time-point k + 1, as defined by (1.1). Thus, the
adaption of the flow takes place in between the two sampling-points k and
k + 1.
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Fig. 1.5. Probabilistic transition graph of flow regulator.

1 For simplicity, we assume a constant pressure difference between the PGC and
the CO2 tank that feeds the flow regulator.
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It is our intend to model the system stochastically. This involves the con-
tinuous dynamics as indicated above, but also the automaton part of the
model. For example, one might want to express the possibility of a stuck-
closed valve, so that an actuation of the flow regulator leads to a partly open
valve in most cases, but there also is a less likely chance that the valve re-
mains closed. We obtain such a specification by using a stochastic automaton
model that defines transitions probabilistically as shown in Fig. 1.5. When-
ever the system is in mode closed at the time-point k and it experiences a
continuous input value uc,k > 0, then it will execute the nominal transition
closed→ partly-open with probability 0.9 or remains closed with probabil-
ity 0.1. The latter transition thread captures the stuck-closed condition. This
illustrates our probabilistic transition model that specifies conditional tran-
sitions that thread over possible transition goal modes. A similar transition
model, but without guards, can be found in Hidden Markov Models (HMM)
[4, 5]. We utilize this model as the automaton basis, extend the transition
scheme with guarded transitions, and incorporate stochastic discrete-time dy-
namic models. This leads to a stochastic hybrid model that we call probabilistic
hybrid automaton [6] or PHA for short.

The model given above does not introduce specific fault modes that cap-
ture dedicated fault situations, such as stuck closed or stuck open valves.
Mostly, because the continuous behavior of the mode closed (or fully-open)
is identical with the behavior that is experienced in the case of the stuck
closed (or stuck open) situation. In general, however, it is possible to include
dedicated fault modes as we shall see later. Furthermore, we also will intro-
duce another specific fault mode, the unknown mode. This mode captures
all unmodeled situations, such as a drift fault, offset fault, stuck at partially
open position etc.. For the moment, however, we restrict our description of
the flow regulator to a hybrid model that incorporates the 3 modes (closed,
partly-open, fully-open) only.

1.2 Hybrid Estimation

It is important that a monitoring and diagnosis system is able to accurately
estimate the hybrid state of a system in order to track the system’s operation
and to detect the onset of subtle failures. The hybrid state xk is comprised of
the continuous state xc,k and the mode xd,k of the system at a specific time-
point k. A hybrid estimator utilizes the noisy measurements and provides
both, an estimate for the continuous state xc,k, as well as an estimate for
the mode xd,k. An optimal hybrid estimation algorithm has to consider every
possible evolution of the system. This leads to the full hypothesis estimator for
hybrid systems. In the following we will introduce the full hypothesis estima-
tion algorithm, demonstrate that it is computationally infeasible, and show
various mechanisms for sub-optimal hybrid estimation, such as our proposed
hybrid estimation scheme [6].
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1.2.1 Full Hypothesis Hybrid Estimation

Let us assume that the flow regulator is closed initially (k = 0, t = t0). In terms
of the model we specify this by the mode xd,0 = closed and the continuous
state xc,0 = 0. At the same time-point, we actuate the flow regulator with the
continuous input signal uc,0 = 0.5. This input signal triggers a transition with
the likely outcome partly-open and the less likely outcome closed. We take
the hybrid systems view and assume that this transition takes place instantly
at t = t0 and requires an infinitesimally short period of time [t0 t0 + ε]. Since
we do not observe the transition directly, we have to consider both transition
hypotheses and the consecutive evolution of the flow rate up to the next sample
k = 1, which represents the time-point t = 1Ts. The hybrid estimator traces
these possible evolutions. The transition probabilities PT for the two possible
transitions provide a prior rating for the two hypotheses. The probabilistic
transition model of the flow regulator (Fig. 1.5), and the fact uc,0 > 0 provides
the probability 0.9 for the hypothesis with the mode partly-open and 0.1 for
the hypothesis with the mode closed. Figure 1.6 records this fact in terms of
a hypothesis tree. The hybrid estimator also uses the initial state information

closed

closed closed

partly 

 open

partly 

 open

t0 t  +ε0 t  +T0 S

mode transition continuous evolution -

      extrapolation

time

P=0.9

P=0.1

T
P =0.9

T
P =0.1

Fig. 1.6. One-step hypotheses tree based on prior information.

for the continuous state and the actuated continuous input to provide a prior
estimate for the continuous state, one estimate for the mode partly-open and
one estimate for the mode closed. It calculates the one-step ahead prediction
for both hypotheses according to the appropriate stochastic model (1.1) and
obtains a continuous estimate in the form of a distribution (probability density
function) among the continuous state space.

Once time proceeded up to t1 = t0 + 1Ts, we can utilize the new measure-
ment yc,1 and compare this value with the two predictions that can be drawn
from the continuous estimates of both hypotheses. This comparison provides
two things: firstly, we obtain a measure of likelihood 0 ≤ PO ≤ 1 that expresses
how well an estimate agrees with the observation, and secondly, we can use
the estimate to refine the prediction in the sense of the prediction/correction
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scheme, such as it is done in a Kalman Filter. For our example we assume that
the measurement at t1 provides the value PO = 0.8 for the estimate at mode
partly-open, and PO = 0.1 for the estimate at mode closed. This leads to
the posterior estimates x̂

(1)
c,1 and x̂

(2)
c,1 for the continuous states and an updated

posterior probabilities P
(1)
1 and P

(2)
1 for each hypothesis at time-step 1. This

is indicated in Fig. 1.7.
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P=                         = 0.986 =: P   

0.1 0.1

0.9 0.8 + 0.1 0.1
P=                         = 0.014 =: P   

1

(1)

1

(2)

Fig. 1.7. One-step hypotheses tree based on posterior information.

The hybrid estimator can selectively repeat this process as time proceeds.
For every estimate at the time-point t = (k − 1)Ts, it considers the possible
transitions and estimates the resulting trajectory up to the consecutive time-
point t = kTs. This process can be seen as building a full hypothesis tree for
time-step k. The full hypothesis tree encodes the overall hybrid estimate for
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Fig. 1.8. Three-step hybrid estimation.

the system up to the final time-step k based on the prior information (initial
state xc,0 = 0, xd,0 = closed), the input sequence {uc,0, uc,1, . . . , uc,k−1, uc,k}
and the measurements {yc,1, yc,2, . . . , yc,k−1, yc,k}. Figure 1.8 visualizes the hy-
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pothesis tree for the flow regulator at k = 3. Hypothesis 1 represents the most
likely trajectory hypothesis for the flow regulator. It captures a trajectory
with the mode sequence

closed→ partly-open→ partly-open→ partly-open

and the fringe estimate

x̂
(1)
3 = 〈partly-open, x̂(1)

c,3〉

that quantifies the hybrid state of the particular trajectory at time-step k = 3.
In this section we use the notation x̂

(i)
c,κ to denote the continuous state estimate

of hypothesis i at time-step κ. This is a slight abuse in notation since stochastic
estimators provide a multivariate probability density function p

(i)
c,κ with the

mean x̂
(i)
c,κ. However, for the sake of clarity in this overview section we do

not make this distinction and simply use the mean’s symbol to denote the
continuous estimate.

The estimation algorithm not only provides estimates for the possible hy-
brid state trajectories, it also provides their likelihood. For example, 0.98701
for the hypothesis 1 with the fringe state estimate x̂

(1)
3 . These conditional

probabilities specify the weighting of the particular hypothesis for the over-
all hybrid estimate. For example, one would obtain the overall continuous
estimate x̂c,k at k = 3 by merging the 4 fringe estimates according to their
likelihood

x̂c,k = 0.98701x̂
(1)
c,k + 0.01279x̂

(2)
c,k + 0.00018x̂

(3)
c,k + 0.00002x̂

(3)
c,k.

The hypotheses as a whole also define the likelihoods for the individual modes
at the time-step k = 3. These probability values sum-up the probabilities of
the individual modes as shown in the Table 1.1. The continuous estimate at

mode hypotheses probability

partly-open {1, 2, 3} 0.99998
closed 4 0.00002
fully-open - 0.00000

Table 1.1. Posterior mode probabilities at time-step 3.

the most likely mode partly-open

x̂c,3|xd,3=partly-open =
1

0.99998
(0.98701x̂

(1)
c,k + 0.01279x̂

(2)
c,k + 0.00018x̂

(3)
c,k)

represents the mode-conditioned state estimate for the time-step k = 3 with
the likelihood 0.98701+0.01279+0.00018=0.99998.
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Depending on whether we are interested in the most likely trajectory or in
the hybrid estimate at a specific time-step, we have to interpret the full hy-
pothesis tree accordingly. Focusing on the most likely hypothesis only might
lead to an incomplete or even incorrect overall estimation result. For example,
consider a different set of estimates shown in the Table 1.2. Taking only the

hypothesis mode probability

1 partly-open 0.40
2 closed 0.30
3 closed 0.15
4 fully-open 0.05
...

...
...

Table 1.2. Example posterior mode probabilities at time-step k.

most likely hypothesis into account, one would come to the wrong conclusion
that the most likely mode is partly-open (with likelihood 0.4). The hypothe-
ses 2 and 3 describe estimates for mode closed. Together, these hypotheses
provide a larger portion in the probability space (45 %), than hypothesis 1 for
the mode partly-open. Considering the first 4 hypotheses only, one would
conclude that the most likely mode is closed (likelihood 0.45), followed by
the mode partly-open (likelihood 0.40), and fully-open (likelihood 0.05).
However, the four hypotheses only specify 90 % of the probability space and
the remaining omitted hypotheses can still change the mode estimation re-
sult. This is due to the fact that their probabilities sum up to 0.10, which
is larger than the difference of 0.05 between the likelihoods for the leading
modes closed and partly-open. This hypothetical example should demon-
strate that we cannot omit easily the trajectory hypotheses with low likeli-
hood. One should either calculate the full hypothesis tree or carefully omit
hypotheses with low likelihood in order to obtain a correct estimation result.

Full hypothesis estimation, however, involves a number of trajectory hy-
potheses that is (worst case) exponential in the number of time-steps con-
sidered. Thus, tracking all possible trajectories of a system is almost always
intractable because the number of trajectory hypotheses becomes too large
after only a few time-steps. As a consequence, it is inevitable to use approx-
imate hybrid estimation schemes that merge trajectory hypotheses, and/or
prune unlikely hypotheses, so that the number of hypotheses under consider-
ation stays within a certain limit.

1.2.2 Multiple-Model Estimation

A simple approach to cope with the exponential explosion of trajectory hy-
potheses is to combine them and consider different mode sequences only for the
last n estimation-steps. This is the essence of the generalized pseudo-Bayesian
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(GPBn) approaches [7] of a family of so-called multiple-model estimation al-
gorithms. The first-order version GPB1, for instance, merges all hypotheses
after building the one-step hypothesis tree and uses this overall hybrid esti-
mate as initial state estimate for the next time-step. In general, an nth-order
version GBPn considers all possible mode sequences in the last n estimation-
steps and merges them into one single hybrid state estimate. However, these
algorithms come with the price that they require ln concurrent filters.

A good trade-off between computational cost and estimation quality is
achieved by the interacting multiple-model (IMM) algorithm [8]. IMM pro-
vides an estimate with quality of the GPB2 algorithm, but requires at most
l concurrent filters (one filter per mode of the hybrid model). Each filter uses
a different combination (mixing) of the mode-conditioned estimates as the
initial value for the estimation at the next time-step k + 1.

Multiple-model estimation algorithms maintain a certain (fixed or adap-
tive) number of filter results, and merge their results according to the mixing-
scheme of the particular multiple-model algorithm. The methods work fine
whenever the number of modes stays within some reasonable bound so that a
concurrent operation of the filters is conform with the time and space require-
ments of real-time operation. However, they do not scale well with the number
of modes and cannot be applied whenever the number of modes becomes very
large (in the order of thousands or more). Our intended applications, however,
fall into this category of complex systems with a vast number of modes, as a
consequence, we apply a different sub-optimal estimation scheme that care-
fully explores the full hypothesis tree and that focuses onto the most likely
hypotheses.

1.2.3 Focused Estimation

Given the flow regulator example above, it is evident that few hypotheses
take up the major portion of the probability space. For example, after the
first step, hypothesis 1, which describes the flow regulator at its partly open
position, has the likelihood 0.986, thus it takes the major portion of 98.6 %
of the probability space. A similar observation can be made for systems with
a significantly larger number of modes. In those systems a small fraction of
possible hypotheses typically covers 99% of the possible outcomes [9]. Discrete
estimation methods, such as the General Diagnostic Engine (GDE) [10] or
the Livingstone and Titan systems [9, 11], that build upon the model-based
reasoning paradigm exploit this fact successfully. Livingstone, for instance,
was successfully demonstrated on-board of the DS-1 space probe, a system
with approximately 1048 modes of operation. Key to the capability of handling
such a large number of modes is to carefully enumerate possible hypotheses
so that the estimation focuses onto the major set of possible hypotheses, only.



12 1 Hybrid Estimation at a Glance

Hybrid Estimation as Search

The key for an efficient enumeration scheme is to formulate hybrid estima-
tion as search problem that consecutively returns hypotheses, starting with
the leading one. Let us reconsider the hypothesis tree for the flow regulator
shown in Fig. 1.8. Every arc in the tree is associated with either a transition
probability PT or the value of the observation function PO. The resulting
likelihood of a hypothesis is obtained by taking the product of these numbers
along the path from the root node (initial state x0) to one of the leaf nodes
(hybrid estimate x̂

(i)
k ) divided by a common scaling factor c > 0. Since the

scaling factor is the same for all leaf nodes, it is possible to reformulate the
hybrid estimation problem as a shortest path problem, where each arc in the
tree is associated with a path length, or cost, according to its transition proba-
bility PT i, or the observation functions POi, respectively. Search seeks for the
shortest path, that is, the path with the lowest cost. This path specifies the
leading trajectory hypothesis for hybrid estimation. In shortest path problems
the cost of arcs along the path are combined using addition. Our probabilistic
framework, however, uses multiplication and we seek for the largest condi-
tional probability. Therefore, we use the the standard approach of taking the
negative logarithm of Pi as the cost for the individual arcs in the tree:

costi := − ln(Pi),

where Pi denotes either a transition probability PT i or an observation function
POi, depending on the type of the arc. Figure 1.9 shows the 3-step hypothesis
tree of Fig. 1.8 with cost labeling and a numbering scheme for the nodes in
the tree.
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Fig. 1.9. Full hypothesis tree with cost labeling.

A wide verity of algorithms exist for shortest path problems. Dynamic
programming [12, 13] is probably the best known solution method. Dynamic
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Programming (DP) is a good choice whenever one solves a problem that is
expressed in terms of a graph, with redundant paths to nodes within the graph.
DP applies Bellman’s principle of optimality and keeps only the best path to
a node, whilst exploring the graph. Hybrid estimation, however, maps to a
hypothesis tree that has, per definition, only a unique path to each node within
the tree. As a consequence, applying DP to our problem does not provide any
advantage over performing the full hypothesis estimation directly. Therefore,
we apply an alternative search methodology that falls into the class of best-first
search algorithms.

The search algorithm starts at the root node n1, which represents the
initial state, and carefully expands the tree toward the leaf nodes. For this
purpose, best-first search incrementally expands search tree nodes that seem
most promising. The ’promise’ of a node ni is measured by utility f(ni), which
combines the cost g(ni) from the root node to the node ni with the (conser-
vative) estimate h(ni) of the cost to go. Unexpanded nodes are kept in an
ordered list (search agenda) so that the node with the best utility is expanded
first. This motivates the name best-first search. The property of the search
algorithm highly depends on the evaluation function f(·) that determines the
utility of a node, and as a consequence the path that the search algorithm
explores first. We apply a variant of best-first search that is known as A∗ in
literature. This algorithm utilizes an evaluation function

f(ni) = g(ni) + h(ni),

with an admissible heuristic h(ni) that never overestimates the cost to go. This
ensures that the search procedure not only focuses onto the leading trajectory
hypotheses, but it also provides the trajectory estimates consecutively in the
order of decreasing likelihood [14].

Consecutively generating the estimates for trajectory hypotheses in the
order of decreasing likelihood enables us to terminate the search procedure
any-time, whenever we run short of computational resources. Any continu-
ation would only add additional less likely estimates. This property is very
helpful for the application within a real-time environment and is known as
any-time/any-space in literature since we can terminate hybrid estimation
whenever we run out of computation time (any-time) or whenever we exceed
memory-space constraints (any-space). In this way, we achieve a good trade-
off between the limited computational resources of a real-time system and the
estimation accuracy.

Let us demonstrate the A∗ strategy with the hypothesis tree of Fig. 1.9.
The search algorithm expands the root node n1 that encodes the initial state
of the hybrid estimation problem in the first step. The path from the initial
state to node n2 is determined by the transition from closed→ partly-open
and has an assigned probability of 0.9, thus the cost to go for the first arc is
g(n2) = − ln(0.9) = 0.11. The ’transition’ closed→ closed is less likely (0.1)
and induces a higher cost of g(n3) = − ln(0.1) = 2.30 for the corresponding
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Fig. 1.10. Best-first search, step 1 to 6.

arc. It is important that the evaluation of the heuristic is computationally ef-
ficient. The computationally intensive operations of hybrid estimation are the
filtering step and the evaluation of transition guards. Both operations are to
be avoided for estimating the cost to go. Therefore, we assume the best possi-
ble filtering result that provides a perfect match of estimate and observation
(POi = 1) and evaluate possible transitions based on the transition threads
only. Of course, this will lead to a conservative estimation, however, in taking
this assumption, we obtain an computationally efficient method that retains
the admissibility of the heuristic. The values for the heuristic can be deduced
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as follows: The conservative estimate for the observation functions PO of the
following arcs along the path to the leaf node is PO = 1, as indicated above.
This assigns an estimated cost of 0 to all arcs that represent the estimation-
steps. With respect to possible transitions from the mode partly-open, we
consider the sequence of transitions with highest probability, given the tran-
sition guards are satisfied. Since the mode partly-open has a self loop with
probability PT = 1 it is easy to see that the sequence of transitions with high-
est probability is simply to stay at mode partly-open, thus the heuristic for
node n2 is h(n2) = 0 inducing a utility f(n2) = 0.11 that is simply the cost to
the node. The heuristic value for node n3 can be deduced similarly. Again we
take the default cost of 0 for observation arcs. The best continuation in terms
of possible transitions from mode closed onward, is to take the transition
closed → partly-open with cost 0.11, and then to remain at partly-open
with cost 0. This implies a value for the heuristic function of h(n3) = 0.11
and leads to the utility of node n3:

f(n3) = 2.30 + 0.11 = 2.41.

Given the utility of the nodes n2 and n3, A∗ continues with the expansion
of n2. This expansion leads to a new node n4 with utility 0.33 (Fig. 1.10b)
that is then expanded further, because its utility is smaller than the utility
of the node n3. The recursive process proceeds (Figs. 1.10a to 1.10d ) until it
finds the least-cost path from node n1 to node n8. This path in the hypothesis
tree represents the most likely trajectory estimate for k = 3 (hypothesis 1 in
Fig. 1.8). Whenever time or memory space is short already, we could terminate
here and provide the most likely estimate as estimation result, otherwise,
we can continue to search for the next best path by continuing the search
process starting at the partially expanded hypothesis tree of Fig. 1.10d. The
continuation up to the next solution is shown in Fig. 1.11. This provides the
estimation hypothesis 2 in the form of a path with cost 5.29.

In a real-time environment we do not have the resources to calculate the
full hypothesis tree, in general. Therefore, we need some criteria to decide,
whether the hypotheses found so far represent a sufficiently good approxima-
tion for the current hybrid state. The path costs are directly related to the
unnormalized likelihoods P̄ of the hypotheses

P̄ (hypothesis) = e−path cost(hypothesis).

Furthermore, we can assess the maximum number of possible hypotheses at
time-step k, based on the model’s possible transitions. As in the case of the
heuristic it is important that we determine this number efficiently, thus we do
not evaluate the transition guards, but determine a conservative upper bound
of the number of possible hypotheses given the transition threads only. In our
case, this would mean that the upper bound on hypothesis for a hypothesis



16 1 Hybrid Estimation at a Glance

0.22

0.11

2.30 2.30

0.11

0.0

solution 1

cost: 0.95 

0.51

0.0

utility: 4.71

n1

n2

n3

n4

n5 n6

n7 n8

n9

(a) step-7

0.22

0.11

2.30 2.30

0.11

2.30

0.11

0.0

hypothesis 1

cost: 0.95 

0.51

0.0

utility: 4.71

utility: 7.01

n1

n2

n3

n4

n5 n6

n7 n8

n9

n10

n11

(b) step-8

0.22

0.11

2.30 2.30

0.36

0.11

2.30

0.11

0.0

solution 1

cost: 0.95 

solution 2

cost: 5.29

0.51

0.0

0.22

0.0

utility: 7.01

n1

n2

n3

n4

n5 n6

n7 n8

n9

n10

n11

n12

n13 n14

(c) step-11

Fig. 1.11. Best-first search, step 7 to 11.

tree that starts at the mode closed is 2 × 3 × 3 = 18 hypotheses2. The
unnormalized likelihoods of the first two hypotheses are given by
2 Mode closed has at most two successors, whereas an arbitrary mode has at most

3 successors. Therefore, the mode closed has at most two successors after the
first step, each of which can have at most 3 successors in the second step etc..
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P̄1 = 0.387, P̄2 = 0.005.

For the remaining hypotheses, we know that their unnormalized likelihoods
are smaller or at most equal to P̄2 = 0.005. Again, taking this upper bound
as conservative guess, we obtain the upper bound for the normalization factor
of

cmax = P̄1 + P̄2 + (18− 2)P̄2 = 0.472.

With this value, we can estimate a lower bound for the likelihood of hypothesis
1

P1 ≥ P̄1

cmax
=

0.387
0.472

= 0.820.

The first two hypotheses take up at least

P̄1 + P̄2

cmax
100 = 83.1%

of the overall probability space. This number can serve as an indicator about
how well the set of hypotheses that were calculated so far approximate the
overall hybrid estimate for the time-step under consideration.

The first two hypotheses define estimates at mode partly-open. It is now
interesting to see, whether we can guarantee that the most likely mode at
k = 3 is in fact partly-open, based on the two leading hypotheses only. Both
estimates together provide an unnormalized likelihood of 0.387 + 0.005 =
0.392 for the mode partly-open. Based on our conservative estimate for the
number of possible hypothesis at k = 3, we can determine that the remaining
hypotheses add up to a value of at most

(18− 2)P̄2 = 0.08.

Thus, even if all other hypotheses are at a different mode than partly-open,
they can never revert the decision on the most likely mode anymore. Thus,
in calculating a portion of the hypothesis tree only, we still guarantee that
the mode estimate is correct. We will later use this criteria do decide on the
number of hypotheses that we need in order to guarantee correctness of our
estimation result.

A∗ search together with a termination criteria as given above allows us to
perform sub-optimal hybrid estimation where only few hypotheses are used
to represent the hybrid estimate at a given time-step. The benefits of this
approach might not be that obvious, given the simple flow regulator compo-
nent. It would still be possible and also reasonable to utilize an alternative
multiple-model estimation algorithm for it. However, the number of modes in
more complex systems easily overwhelms the computational requirements for
multiple-model estimation so that one has to focus on a small set of likely
hypotheses only. A∗ search highly focuses onto few hypotheses, compared to
the overall number of modes. However, it will still cause the hypotheses tree
to steadily grow, as the estimation time proceeds. Even if the growth is much
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smaller than the growth of the full hypothesis tree, it is still impractical for a
real-time implementation that executes over a long period of time.

We solve this problem by growing the tree for N time-steps only. Whenever
the time-index k exceeds this value, we will restart the search from the leading
set of κ hypotheses at the time-step k − N . Of course, we will reuse the
previously grown tree as much as possible and discard only those parts of the
tree that are neglected. Figure 1.12 illustrates this strategy for N = 1. At
each time-step k − 1, we take the κ leading hypotheses and perform the A∗
search to deduce the leading set of successor hypotheses at the time-step k.
Although the A∗ search technique is guaranteed to provide the leading set of
hypotheses, we obtain an approximative hybrid estimation scheme, since we
start the search from a limited number of hypotheses and neglect the less likely
ones. One can interpret the overall strategy as a two level search problem that
utilizes A∗ as its low-level strategy to perform the enumeration of successor
hypotheses, and a high level beam search strategy that restricts the number
of hypotheses to the set of κ most likely ones. The level of approximation
can be tailored to the complexity of the estimation problem, as well as the
computational resources by adapting the beam-size κ and the tree-depth N .
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Fig. 1.12. Beam-search tree for hybrid estimation.

1.2.4 Unknown Mode

The mode estimation scheme as defined above, as well as the standard
multiple-model estimation algorithms, assume that the system exhibits a
mode of operation within the set of modes that is captured by the model.
The models, however, represent approximations of the real world and many
recent efforts in estimation and fault detection and isolation (FDI) were de-
voted to building robust estimation/diagnosis algorithms that can cope with
unavoidable inaccuracy and incompleteness of the model [15, 16]. Neverthe-
less, unanticipated failures do occur in real world systems and robust estima-
tion and diagnosis methods either fail to detect such an unusual operational
condition (their robustness leads to a wrong classification) or perform in an
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unexpected way. As a consequence, it is desirable to extend the estimation
and diagnosis capability so that it can cope with and identify an unknown
mode of operation.

Another benefit of including an unknown mode is to capture a verity of
failure modes that are difficult to model. For example, consider the flow reg-
ulator again. Potential fault modes are behaviors that exhibit a constant or
a slowly varying offset or drift of the actuated flow rate. The magnitudes of
possible offset-levels or drift-rates, as well as their directions, are difficult to
predict a priori. As a consequence, it is hard to define dedicated models that
capture these faults sufficiently well.

The concept of the unknown mode is central to discrete model-based diag-
nosis [17]. Its underlying concept of constraint suspension [18] allows diagnosis
of systems where no assumption is made about the behavior of one or several
components of the system. In this way, model-based diagnosis schemes, such
as the General Diagnostic Engine (GDE) [10] or Sherlock [19], capture un-
specified and unforeseen behaviors of the system by considering an unknown
mode that does not impose any constraint on the system’s variables. The un-
derlying idea is summarized in the following quote of Conan Doyle in the
paper of De Kleer and Williams [19] that introduces the Sherlock diagnosis
system:

Sherlock Holmes - The Sign of the Four: ”When you have eliminated
the impossible, whatever remains, however improbable, must be the
truth”.

In our context, this would mean that the unknown mode, whatever priori
improbable, becomes more probable than the others, since its no-prediction
is more compatible with observations than the more precise prediction from
other modes. We first demonstrated this principle for our hybrid estimation
scheme in [20], where we introduced the hybrid system’s pendant of the un-
known mode, together with a decomposition scheme that offers the capability
to detect unforeseen situations in complex multi-component systems and that
enables hybrid estimation to continue in a degraded, but fail-safe, manner.

The benefits of the unknown mode capability are mostly relevant for multi-
component systems. Nevertheless, we will demonstrate the underlying princi-
ples in terms of the flow regulator.

We extend the model of the flow regulator with an additional unknown
mode that does not specify any difference or algebraic equation among the con-
tinuous variables uc, xc, and yc. We integrate this mode in terms of additional
transitions from nominal modes to the unknown mode. Figure 1.13 shows the
extended transition graph that incorporates transitions that traverse the sys-
tem to the mode unknown3. At each default transition of the nominal modes,
3 For simplicity, we show only transitions to the unknown mode but omit the re-

verse transitions that allow the system to recover from an unknown operational
condition.
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we incorporate a transition thread with low likelihood to the unknown mode.
These transition threads model the fact that the system can fail unexpect-
edly, regardless of the current mode of operation4. The mode unknown does
not specify any algebraic or difference equation that constrain the contin-
uous variables, thus, we cannot perform any continuous filtering/estimation
operation. Nevertheless, we can incorporate this mode into our hybrid estima-
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Fig. 1.13. Probabilistic transition graph of flow regulator with unknown mode.

tion scheme by taking the assumption that the omitted continuous estimation
would lead to a perfect match, which implies the value of PO = 1.0 for the
observation function. This specification allows us to perform the search within
the hypothesis tree as usual and enables us to directly compare an unknown
mode hypothesis with hypotheses at nominal modes. The estimation algo-
rithm favors the unknown mode hypothesis over any hypothesis at a nominal
mode whenever the product PT PO of the most likely nominal hypothesis is
smaller than the transition probability PT unknown of the unlikely transition to
the mode unknown:

max
i

PT iPOi < PT unknown.

Based on the transition model for the flow regulator (Fig. 1.13) this would
mean that hybrid estimation prefers the unknown mode hypothesis whenever

max
i

PT iPOi < 0.001.

Since we are dealing with an operational condition that does not define
any constraint among the continuous variables, we cannot provide a grounded
estimate for the continuous state. Nevertheless, we want to capture cases,
where the system recovers from an unknown operational condition. Therefore,
we do maintain a continuous estimate x̂c for the unknown mode hypothesis
4 Of course, depending on the operational mode we can vary the likelihoods of

an unanticipated failure by varying the probabilities of the associated transition
threads.
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with a mean value at its last known value and spread the associated probability
density function (PDF) to reflect the continuously decreasing confidence in the
continuous estimate (for example, in a Gaussian framework, we hold the mean
at he last known estimate x̂c and continuously increase its variance σ2 while
at mode unknown). This allows us to restart the estimation whenever the the
system recovers from the unknown operational condition.

1.2.5 Focused real-time Estimation of complex Systems

The real advantage of our search-based estimation scheme over traditional
multiple-model estimation becomes evident whenever one has to monitor com-
plex real-world artifacts, such as production plants, space probes or modern
automotive systems. Those systems are composed of many interconnected
components and operate by system-wide complex interaction among those
components.

This complex interaction, as well as the overwhelming number of possible
failure and operational modes makes it difficult, if not impossible, to apply
the traditional multiple-model estimation techniques. Our focused estimation
scheme that builds on careful exploration of the large set of possible estimation
hypotheses, however, scales much better to systems of high complexity.

In order to efficiently extend the focused search technique that was intro-
duced above to multi-component systems, we have to take the assumption
that mode transitions of the system’s components at a specific time point
are mutually independent. This realistic assumption allows us to view mode
transitions of the components individually, so that we can provide an efficient
enumeration scheme for possible mode transitions that directly builds upon
an extension of the A∗ search based estimation technique. Figure 1.14 illus-
trates this fact for a multi-component system with ζ components. Instead of
having one highly spreading transition expansion and the consecutive filtering
operation per estimation step, we do have ζ transition expansions, followed
by a single filtering operation for the overall system.
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Fig. 1.14. Best-first search for a multi-component system.
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The unknown mode capability is highly valuable for the hybrid estimation
of multi-component systems. Individual components at the unknown mode
should not prevent us from estimating un-effected parts of the system that
are still fully determined in terms of known sensor and actuator signals. For
this purpose, we apply a decomposition scheme that clusters the components
into subsystems that can be evaluated independently. This limits the level of
degradation of the hybrid estimation whenever parts of the system operate
at an unknown mode. Estimation can still be done for the components in
the fully specified clusters of the system. Our decomposition scheme builds
upon the principle of causal analysis [21, 22] and structural analysis [23] of
the multi-component system for the mode of a specific estimation hypothesis.

Decomposition contributes the real-time execution of our hybrid estima-
tion algorithm as well. The large number of modes of the system prevents us
from pre-designing all filters that are required in the course of hybrid esti-
mation. Therefore, our hybrid estimation system deduces extended Kalman
filter on-line and, for efficiency, caches the most recent ones for re-use. The
advantages of performing this operation for a decomposed system are twofold:
Firstly, the cached filters of the component clusters can be used as “building
blocks” for the clustered overall filter. This strategy reduces the number of
filter deductions significantly and increases the utilization of the cached filters.
Secondly, the execution of individual filters for component clusters and the
combination of their estimation results is computationally more efficient than
executing one large filter for the overall system. This is due to the fact that
the computational requirements for a Kalman filter that estimates n state
variables are approximately proportional to n3 so that several filters for few
state variables outperform a single filter for the overall system.

1.3 Hybrid Estimation in Automation

Process monitoring and diagnosis are essential ingredients of modern automa-
tion and control systems. Modern control schemes orchestrate the compo-
nents of a physical artifact in a complex interleaved way to achieve a desired
high-performance operation. The resulting system-wide interaction makes it
difficult for a human operator to trace and interpret the operation correctly.
Moreover, modern automation and control increasingly handles potentially
dangerous physical artifacts such as chemical plants, power plants, airplanes
or modern automobiles. The loss of control over these artifacts can lead to
severe situations with the potential to harm the environment or endanger hu-
man lives. It is, therefore, essential that a monitoring and diagnosis system is
capable of tracing the operation of an artifact in terms of its physical entities
and modes of operation and to robustly cope with atypical situations, such as
un-anticipated faults.

Our proposed scheme for hybrid estimation provides some important
milestones for such a monitoring and diagnosis system: firstly, a capable
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component-based modeling paradigm, secondly, a focused estimation algo-
rithm that copes with the complexity of the resulting estimation task and
that can operate on-line within a real-time system, and thirdly, explicit incor-
poration of unknown operational modes that enables us to continue estimation
at a possibly degraded, but fail-safe manner.

1.4 Related Research
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Fig. 1.15. Foundational concepts for hybrid estimation.

1.4.1 Stochastic Systems and Kalman Filtering

Real world systems are almost always subject to disturbances, noise, and non-
deterministic changes. Therefore, any successful modeling paradigm should
not neglect these effects. Stochastic systems theory [24, 25] takes this into
account and provides dynamic models, such as sets of ordinary differential or
difference equations that are subject to random disturbances. These stochastic
models can be used to anticipate the evolution of physical entities of an artifact
under investigation from noisy measurements. The Kalman filter [1, 26, 27, 28]
for linear stochastic models and the extended Kalman filter [29, 26] for non-
linear stochastic models are the two most prominent members of estima-
tion/filtering algorithms for stochastic systems. An interesting new extension
of the Kalman filter to nonlinear systems is the unscented Kalman filter [30].

1.4.2 Hybrid Systems

Hybrid systems research is devoted to modeling, design and validation of
systems which can exhibit continuous and discrete modes of behavior. A com-
puter controlled system, where a physical system (plant) is controlled by a
computer program involving discrete-time control laws and discrete-event con-
trol, is an example for a hybrid system. Hybrid Systems Theory attempts to
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offer a logical, mathematical, and computational framework for understand-
ing and designing complex heterogeneous systems based on complimentary
methodologies that were developed in the fields of Control Theory and Com-
puter Science. As these research communities speak largely different languages
and employ largely different methods, hybrid systems research led to a vari-
ety of frameworks for modeling, analysis and synthesis of hybrid systems. The
paper collections of the Hybrid Systems Computation and Control (HSCC)
workshop series ([31, 32, 33, 34, 35, 36, 37, 38, 39, 40]) provide a good overview
of the developments in this burgeoning research area.

There are many approaches to the task of hybrid systems modeling that
mostly depend on the type of analysis or synthesis that one ought to pursue,
for example, simulation, controller design, stability analysis, or safety analysis.
The approaches differ with respect to the emphasis on the level of complex-
ity that they put onto the continuous and discrete dynamics of the model.
Control oriented approaches, for instance, put their emphasis onto complex
continuous dynamics (for example, hybrid models for supervisory control [41]
or the unified framework for hybrid control of Branicky [42, 43]). Computer
science oriented paradigms, on the other hand, emphasize the discrete dy-
namics, that is, the automaton part of the hybrid model, and utilize simpler
continuous dynamics (for example, Alur’s timed automata [44]) or emphasize
automaton issues such as composition, receptiveness and liveness etc. (for ex-
ample, see [45]). Most current work, however, can be seen as spanning the
spectrum and combines aspects of linear and nonlinear dynamic systems, su-
pervisory control, discrete-event systems, finite automata and Petri nets.

Most hybrid modeling frameworks utilize deterministic models for the con-
tinuous dynamics of a system. Only few paradigms, such as [46, 47, 48], deal
with stochastic models, as we do in our framework, to capture the distur-
bances and the noise of real-world systems. Similarly, mode transitions are
often modeled either purely deterministically, or non-deterministically but
without a probabilistic quantification. Our hybrid model remedies this situa-
tion by merging a hidden Markov Model (HMM) [49, 4, 5] with a stochastic
discrete-time model for the continuously valued state variables of the system.
In terms of composition of an overall hybrid model for a multi-component
system, our modeling framework is in spirit of the reactive module framework
of Alur and Henzinger [50, 51] and the hybrid I/O automata framework of
Lynch [52, 45].

Several other approaches have been recently presented for hybrid systems
estimation and diagnosis. Many of them provide alternative bridges between
the fields of model-based diagnosis, multi-model filtering and hybrid systems.
Most of these approaches (for example, [53, 54, 55]) utilize a heterogeneous
set of techniques taken from the distinct research communities. [55], for exam-
ple, utilizes Bayesian mode estimation together with a timed Petri net model
for diagnosis. [54] combines hybrid behavior tracking, mode estimation and
qualitative-quantitative reasoning techniques for fault diagnosis of continuous
systems with supervisory control. The hybrid framework for simulation, di-
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agnosis and system tracking that is described in [56] builds upon the same
foundation as our work, the Livingstone system [9]. It utilizes interval de-
scriptions to express uncertainties at the continuous level, probabilities for
discrete mode estimation and a continuous/discrete interface to synchronize
both types of estimation. In contrast, our work provides a homogeneous frame-
work that makes extensive use of probabilities for both, the continuous state
and the discrete mode estimation. Other estimation methods that should be
noted here build onto less traditional methods such as Bayesian networks [57]
or particle filters [58, 59, 60, 61, 62, 63, 64].

1.4.3 Multiple-Model Filtering

Applications in aeronautics and aerospace, in particular target tracking, dealt
with the very similar estimation problem of systems that can be in one out
of several modes of operation. This lead to a set of estimation algorithms
that can be classified as multiple-model estimation schemes. Estimation is
done by concurrently executing a set of filters (typically, one for each model)
and combining the model-conditioned estimates, according to an algorithm-
specific weighting scheme. This strategy represents a sub-optimal solution
of the hybrid estimation problem as they avoid tracking a set of trajectory
hypothesis that is (worst case) exponential in the number of time-steps. Ex-
amples of approximate multiple-model estimation schemes are the generalized
pseudo-Bayesian (GPB) [7], the detection-estimation [65], the residual corre-
lation Kalman filter bank [66], and the interacting multiple-model algorithm
(IMM) [8, 67]. These methods track multiple hybrid estimates over time, but
require at least l filters to perform this task, where l is the number of possible
models (modes) for the system under investigation.

It was shown in [68] that maintaining an exhaustive set of modes does
not only impose an enormous computational burden, but also decreases the
prediction quality of the filter as too many, highly unlikely, modes are consid-
ered. Adaptive multiple-model estimation was proposed as a possible solution
for this dilemma. This estimation scheme adapts the mode-set to a subset
of modes that are most likely at a given time-point. Most adaptive multiple-
model estimation methods [68, 69, 70] differ in the way in which they obtain
an appropriate mode-set. An example for a typical mode-set adaption scheme
is to use the transition graph to obtain the set of modes that are immediately
reachable, given the previous estimate.

In many complex multi-component systems, however, it is the case that the
number possible modes, at a particular time-step, is unrealistically large for an
on-line estimation that utilizes standard multiple-model estimation algorithms
like IMM or GPBn. Therefore, we apply a different sub-optimal estimation
scheme that explores this large number of modes carefully by focusing on the
set of most likely modes only.
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1.4.4 Dynamic Programming and Best-First Search

One of our contributions is a careful reformulation of the hybrid estimation
task in the form of a shortest-path problem. This enables us to apply a wide
spectrum of optimization algorithms that are tailored to solving this par-
ticular optimization problem. Probably the most prominent algorithm for a
shortest-path problem is Dynamic Programming [12, 13]. However, the specific
structure of our search problem (hybrid estimation leads to an overwhelmingly
large number of possible estimation hypotheses and Dynamic Programming
would consider all of them) suggests to utilize other search methods that focus
onto the set of most likely solutions. The class of best-first search methods,
out of the toolbox of modern Artificial Intelligence provides a set of algo-
rithms that are highly suitable for our task. In particular, we utilize the A∗
search [14, 71] and the beam search [72, 73] algorithms to solve the reformu-
lated hybrid estimation problem.

1.4.5 Qualitative Reasoning and Model-based Diagnosis

Qualitative Reasoning [74, 75, 76] has been a successful research branch of
Artificial Intelligence since the early 1980’s. Qualitative reasoning methods
intend to replicate, in the computer, parts of human reasoning for the tasks of
modeling, simulation, and causal explanation of uncertain dynamic systems,
that is, systems where it is difficult to provide precise and complete mathe-
matical models (the paper collections cited above provide material for each
of these subjects). The ability of qualitative reasoning methods to predict
and explain the behavior of uncertain dynamic systems makes them a natu-
ral choice for monitoring and diagnosis [10, 77]. Research in this particular
direction is known as Model-based Diagnosis [17]. Its underlying concept of
constraint suspension [18] allows diagnosis of systems where no assumption is
made about the behavior of one or several components of the system. We uti-
lize this concept, together with efficient methods for causal analysis [21, 22],
to incorporate the principle of the unknown mode in our hybrid estimation
scheme. This significantly extends our basic hybrid estimation algorithm that
has its roots in the Livingstone [9] model-based diagnosis and reactive control
system.

Interesting applications of discrete model-based diagnosis are, for instance,
monitoring and diagnosis of gas turbines [78], automotive systems [79], indus-
trial applications [80, 81], and a space-probe (Livingstone) [82].

1.4.6 Fault Detection and Isolation (FDI)

A traditional approach to fault detection is based on hardware redundancy
methods, which use multiple lanes of sensors and actuators with a voting
scheme to decide, whether and when a fault has occurred. In contrast to this
cost intensive approach used in safety-critical applications, it is possible to
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utilize information provided by single sensors and the mathematical model
of the underlying system which provides functional relationships between the
measured variables of the monitored system. Such a redundancy concept that
relies on information of dissimilar measured variables and on the mathematical
model of the system is called analytical (functional) redundancy and a fault
detection and isolation (FDI) scheme based on this methodology is called
a model-based FDI scheme. The methods utilize the analytic redundancy in
that they compare measurements with an estimation that is based on the
mathematical model. The resulting difference specifies a residual signal that
is zero if the checked component of the system is operating normally, and non-
zero in the event of a fault. Fault detection and isolation utilizes the residuals,
detects fault situations whenever they exceed a certain threshold, and isolates
the fault using some sort of decision logic.

The idea of model-based FDI, that is, replacing hardware redundancy
by analytical redundancy, goes back to Beard [83], who formulated this ap-
proach at the MIT in the early 1970s. Refinements done by Jones led to the
Beard-Jones Fault Detection Filter [84]. In parallel with this development,
methods based on statistical approaches were developed in the early 1970s.
These model-based FDI concepts with their emphasis on stochastic systems
and jump detection are summarized in the survey papers [85, 86]. Clark et
al. first applied Luenberger observers for fault detection [87] and developed
various sensor fault isolation schemes. Developments in observer-based meth-
ods for model-based FDI are summarized in a survey paper [88]. Another
important FDI approach proposed in the late 1970s is to apply parameter
estimation methods. Research results of this FDI approach are described in
a comprehensive survey paper [89]. Methods based on consistency checking
of system input and output data over a time window are reported as parity
equation approaches in literature [90].

All model-based FDI schemes described rely on a mathematical model of
the monitored dynamic system. However, mathematical models will almost
always represent approximations of the real world so that an exact agreement
between the model and the monitored dynamic system cannot be achieved.
This modeling uncertainty, together with the disturbances and noise experi-
enced in real-world applications, emphasizes the necessity for robust model-
based FDI methodologies which can cope with modeling uncertainty and dis-
turbances/noise. This issue received much attention in recent FDI research
and led to robust extensions of the methodologies given above (for example,
see [16] for a recent monograph on this topic).
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Probabilistic Hybrid Automata

The previous chapter introduced our hybrid modeling formalism informally.
We shall now proceed with a detailed definition of the underlying hybrid model
that builds the basis for the remaining parts of this monograph. Our aim is
to model artifacts that are composed of many individual components, each of
them with several modes of operation and failure. The overall behavior of the
artifacts is a result of complex interaction among those components and shows
a mixture of continuous evolution and discrete changes. This leads naturally
to a component-based modeling paradigm, where individual components are
modeled as hybrid automata. More precisely, probabilistic hybrid automata,
since our aim is to estimate the complex behavior of an artifact that is sub-
ject to external disturbances (noise), unforeseen failures, and un-anticipated
environmental interactions.

To model the individual components of an artifact, we start by using a
Hidden Markov Model (HMM) [49, 4, 5] to describe discrete stochastic changes
in the system. We will then fold in the continuous dynamics, by associating a
set of dynamic and algebraic equations with each HMM mode1. This will lead
to a model that we call probabilistic hybrid automaton, or PHA for short [91, 6].
Component models will be then strung together according to the artifacts
blueprints and lead to the concurrent probabilistic hybrid automaton (cPHA)
that describes the overall system in terms of the component models, their
composition and the interconnection to the outside world.

2.1 Hidden Markov Models

Let us start with a simple generic component with three possible modes
{standby, on, fault}. The mode is hidden and cannot be observed directly.

1 To avoid confusion in terminology, we refer to the HMM state as the mode and
reserve the term state to refer to the state of the overall probabilistic hybrid
automaton.
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An observation of the component only reveals whether the component works
(modes standby and on) or whether it experiences a fault. These two ob-
servations are indicated in terms of the discrete values {ok, faulty}. The
behavior of the component can be modeled as a stochastic automaton model
with mode variable xd and observation variable yd. The model captures ob-
servations and mode transitions probabilistically in terms of the probabilistic
transition function PT and the probabilistic observation function PO that
specify the conditional probabilities

PT (xd,k, xd,k−1) := P (xd,k|xd,k−1)
PO(yd,k, xd,k) := P (yd,k|xd,k),

(2.1)

where xd,k ∈ {standby, on, fault} and yd,k ∈ {ok, faulty} denote the
valuations of xd and yd at time-step k, respectively. The mode transitions
satisfy the Markov property as PT describes a probability that is only con-
ditioned on the previous mode xd,k−1. This fact, together with the hiding
property of the observation process, justifies the name Hidden Markov Model
for the stochastic automaton.

Figure 2.1a visualizes the modes (nodes) and transitions (arcs) for the
HMM in graphical notation. The possible transitions are labeled with their
associated transition probability. For instance, whenever the HMM is at the
mode on, it remains at this mode with probability 0.8, or transitions to mode
standby with probability 0.15, or to mode fault with probability 0.05.
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Fig. 2.1. Visualization of Hidden Markov Models (HMM) as graphs.

Up to now, we view transitions as purely autonomous. They only depend
on the mode of the stochastic automaton. This autonomous HMM is the usual
form of the Hidden Markov Model as it can be found in literature (e.g. [4, 5]).
Many applications, however, require additional inputs to capture commanded
transitions. For instance, in our example we could think of a command in-
put variable ud that can take on a discrete value from the set {turn-on,
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turn-off, reset, no-command} to command mode changes2. Since we in-
tend to model a real-world system it is desirable to specify the outcome of
a command probabilistically. For example, whenever the system is in mode
standby and experiences the turn-on command it will change to the mode
on with high probability, whereas there is a small chance that the command
shows no effect and the system remains at the mode standby. This situa-
tion is visualized in Fig. 2.1b, where a command ud,k = turn-on guards the
transition that leads to the mode xd,k+1 = on with probability 0.85 and to
the mode standby with probability 0.15. The unlabeled transition captures
all other cases ud,k ∈ {turn-off, reset, no-command}. It specifies that the
system remains in the mode standby with probability 0.98, or transitions to
the mode fault with probability 0.02.

HMMs with inputs are sometimes called input/output Hidden Markov
Models (IOHMM) in literature [49]. We do not want to make this distinc-
tion here and will refer to both types of stochastic automata as HMMs. The
following definition of an HMM will be the basis for our stochastic hybrid
model that we develop and use throughout this thesis.

Definition 2.1. A Hidden Markov Model (HMM) can be described by a tuple

〈xd, ud, yd,Xd,Ud,Yd, PΘ, PT , PO〉.

The variables xd, ud and yd with discrete domains Xd = {m1, . . . , ml}, Ud =
{u1, . . . , uν} and Yd = {y1, . . . , yψ} denote the mode, command input and
observation, respectively. Their valuations at time-step k shall be denoted by
xd,k, ud,k and yd,k. The initial mode function PΘ specifies a probability mass
function pd(xd,0) among the modes mi ∈ Xd. The mode transition function PT
describes the conditional probability P (mi|uς ,mj) of transitioning from mode
xd,k−1 = mj to xd,k = mi, given the discrete command input ud,k−1 = uς . The
observation function PO describes the conditional probability P (yi|uς ,mj)
that one observes the discrete value yd,k = yi, given the discrete command
input ud,k = uς and the mode xd,k = mj .

The definition (2.1) specifies mode transitions in terms of a multivari-
ate conditional probability mass function that characterizes PT . One could
interpret the transitions as being guarded by propositional formulas such
as ud = turn-on for the transition standby → {standby, on} or (ud =
turn-off) ∨ (ud = reset) ∨ (ud = no-command) for the unlabeled transi-
tion standby → {standby, fault}. This leads to an alternative transition
description in terms of a set valued function T (xd). This function provides
for each mode mi ∈ Xd a set of transition tuples 〈pτi, ci〉 =: τi. ci denotes
the guard and the probability mass function pτi specifies the probabilities of
the transition threads, given that the guard is satisfied. Figure 2.2 visual-
2 For symmetry, we treat the non-transition xd,k = mj → xd,k+1 = mj as a

transition.
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Fig. 2.2. Guarded probabilistic mode transitions.

izes this concept for the mode standby. T (standby) specifies the transition
set {〈pτ1, c1〉, 〈pτ2, c2〉}. The transition τ2 = 〈pτ2, c2〉 denotes a transition
from the mode standby to itself with probability P3 = pτ2(standby), or to
the mode on with probability P4 = pτ2(on), whenever its associated guard
c2 := (ud = turn-on) is satisfied.

In the following specification of our stochastic hybrid automaton model we
will favor the latter transition definition to encode a probabilistic transition
function PT .

2.2 Probabilistic Hybrid Automata

The Hidden Markov Model abstracts physical entities into discretely valued
variables. However, we intend to capture the behavior of a physical artifact
in terms of discretely valued variables for the modes of operation and con-
tinuously valued variables that capture the continuous evolution of physical
entities. Therefore, we use an HMM model as the automaton basis for our
hybrid model and supplement it with additional continuous variables and a
mode-dependent specification of the continuously valued dynamics.

The major application of our stochastic automaton model is mode and
state estimation, in the context of process monitoring and diagnosis. This task
will almost exclusively execute on a supervisory control system in discrete-
time. Therefore, we restrict the class of dynamic models to discrete-time
models and describe the dynamic evolution of the continuously valued state
and I/O variables in terms of difference equations and algebraic equations. Of
course, this implies a certain level of abstraction, where interconnected con-
tinuous time processes of the artifact are individually abstracted in terms of
discrete-time equations that capture sufficient detail for the monitoring and
diagnosis task.

In general, this abstraction could be relaxed and it is possible to uti-
lize both, continuous time and discrete-time models (possibly with different
sampling-times) for the individual components within one hybrid model. How-
ever, this would involve a hybrid estimation framework that is unnecessarily
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detailed and complex. As a consequence, we decided to restrict the following
presentation to discrete-time systems with one common sampling rate.

As a preliminary step toward defining our stochastic hybrid model for a
complex artifact, we first define the probabilistic hybrid automaton (PHA)
model for individual system components. PHA models of the system compo-
nents will serve as the building blocks for our overall modeling paradigm, the
concurrent probabilistic hybrid automata (cPHA). More specifically, we define
the component automaton model as:

Definition 2.2. A discrete-time probabilistic hybrid automaton (PHA) A can
be described as a tuple 〈x,w, F, T, X0,Xd,Ud, Ts〉:
• x denotes the hybrid state variables of the automaton3, composed of x =

xd∪xc. The discretely valued state variables xd = {xd1, . . . , xdnm
} denote

the mode of the automaton and have finite domain Xd = {m1, . . . ,ml}.
The continuously valued state variables xc = {xc1, . . . , xcnx} capture the
dynamic evolution of the automaton with domain IRnx .

• The set of I/O variables w = ud ∪ uc ∪ vc ∪ yc of the automaton is
composed of disjoint sets of discrete input variables ud = {ud1, . . . , udnc

}
(also called command variables), continuous input variables uc = {uc1, . . . ,
ucnu}, continuous disturbances vc = {vc1, . . . , vcnv} and continuous output
variables yc = {yc1, . . . , ycny}. We use the notation wc := uc ∪ vc ∪ yc

to denote the set of continuously valued I/O variables. The I/O variables
have the domains Ud, IRnu , IRnv , and IRny , respectively.

• The set-valued function4 F : Xd → 2FDE × 2FAE specifies the continuous
evolution of the automaton in terms of sets of discrete-time difference
equations FDE ⊆ FDE and algebraic equations FAE ⊆ FAE for each mode
mj ∈ Xd. Ts denotes the sampling-period of the discrete-time difference
equations.

• The set-valued function T : Xd → 2T specifies the probabilistic discrete
evolution of the automaton in terms of a finite set of transition triples
τi := 〈pτi, ci, ri〉 ∈ T . Each transition specification τi has an associated
Boolean guard ci : IRnx × IRnu × Ud → {true, false} and specifies the
probability mass function pτi : Xd → [0 1] over transition target modes
mj ∈ Xd. The third component, ri, handles the valuation of the continuous
states across the transition. A transition can either inherit the continuous
state or cause a reset to a new value. The function ri : Xd × pdf → pdf
specifies inheritance or a change of the continuous state valuation from
xc,k to a new value x′c,k, immediately after the transition.

• The initial state of the automaton is specified in terms of the tuple X0 :=
〈pd0, Pc0〉. The function pd0 : Xd → [0 1] specifies the initial probability

3 When clear from context, we use lowercase bold symbols, such as v, to denote a
set of variables {v1, . . . , vl}, as well as a vector [v1, . . . , vl]

T with components vi.
4 We use the notation 2S to denote the power set of a set S, that is, the collection

of all subsets: 2S = {X|X ⊆ S}.
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mass among the modes, and Pc0 : Xd → pdf specifies for every mode mj ∈
Xd a multivariate probability distribution function pc0 for the continuous
state xc,0.

Table 2.1 summarizes the naming conventions for the I/O variables of a
PHA and visualizes their separation into disjoint sets.

w

wd wc

u v y

ud uc vc yc

independent dependent
I/O variables I/O variables

Table 2.1. Classification of the I/O variables.

The transition specifications τi express probabilistic transitions that are
guarded on the continuous state xc, the discrete input ud, and possibly the
continuous input5 uc. The guards ci(xc,uc,ud) are of the form

(
b−x ≤ qxc(xc) < bx

+
) ∧ (

b−u ≤ quc(uc) < bu
+
) ∧ cud(ud), (2.2)

where cud(·) is a propositional logic formula and qxc(·), quc(·) specify nonlinear
functions. The bounds b−x , b+

x ,b−u , and b+
u denote constant boundary values

that can take on values of the extended real number line, IR∗, which includes
the endpoints −∞ and ∞, for example:

(−∞ ≤ 1 + xc 1 + x3
c 1 − xc 2 < 0) ∧ (0 ≤ uc 1 < 1) ∧ (ud 1 = turn-on). (2.3)

The specification of the continuous evolution in terms of the function F (·)
that specifies sets of difference and algebraic equations will be particularly
useful in the context of multi-component automata (cPHA). The system-wide
context will specify which variable wc ∈ wc serves as input and which one
serves as output to the component automaton. Nevertheless, let us provide
more details on the component F of the PHA here as well. Consider a PHA

A = 〈{xd1, xc1, xc2}, {ud1, wc1, wc2, vc1, vc2}, F, T, {m1,m2,m3}...〉, (2.4)

with the following set of equations for the mode m1:

FDE(m1) = {xc 1,k+1 = 0.6 xc 1,k + wc 1,k + vc 1,k,

xc 2,k+1 = 0.1 xc 1,k + 0.8 xc 2,k + vc 2,k}, (2.5)
FAE(m1) = {wc 2 = 1.0 xc 2 + wc 1,k}. (2.6)

5 Our PHA specification does not specify a priori, whether a variable wc i ∈ wc

acts as an input or output. Using an I/O variable wc i for a transition guard,
however, implies that this variable acts as an input, i.e. wc ∈ uc, for the PHA at
the particular mode for which the transition is specified.
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If we assume that wc 1,k is an input variable and wc 2,k is an output variable
(uc = [wc 1] and yc = [wc 2]) we obtain the following mathematical model for
the A:

xc,k+1 =
[

0.6 0
0.1 0.8

]
xc,k +

[
1
0

]
uc,k + vc,k (2.7)

yc,k =
[
0 1

]
xc,k + uc,k, (2.8)

The vector xc = [xc 1, xc 2]T denotes the continuous state and the vector vc =
[vc 1, vc 2]T denotes continuous disturbances that act upon the state variables
of the PHA.

The PHA definition does not predefine the separation of the continuous
I/O variables wc into the disjoint sets of inputs (uc), outputs (yc), and dis-
turbances (vc). The separation for a particular mode is subject to the in-
terconnection of the PHA component with the outside world and the set
of equations F (mj). Both specifications imply a particular, mode dependent,
causality among the continuous variables that separates the I/O variables into
disjoint sets of independent (input), noise, and dependent (output) variables.
This increases the expressiveness of our modeling framework in that we enable
the model to capture changes in the causal structure of the overall system.
Reconsider the PHA (2.4) at mode m1. The associated set of equations does
not enforce the particular causality where wc1 is the independent variable and
wc2 is the dependent I/O variable. If we connect the PHA component to an en-
vironment that determines wc 2, we would obtain a mathematical model with
uc = [wc 2] and yc = [wc 1], more specifically we would obtain an alternative
mathematical model:

xc,k+1 =
[

0.6 −1
0.1 0.8

]
xc,k +

[
1
0

]
uc,k + vc,k

yc,k =
[
0 −1

]
xc,k + uc,k.

(2.9)

The potential to reverse the input/output directionality for the model F (m1)
(2.5)-(2.6) is due to the dependency of wc 2 on the continuous state variable
xc 2 and the I/O variable wc 1 in the algebraic equation (2.6). This dependency
leads to a discrete-time model with a direct transmission term in the output
equation (2.8), and as a consequence, implies the non-unique causality of the
system. Whenever the set of equations for a particular mode lacks this direct
transmission property, we obtain a unique causality, i.e. the equations of the
PHA specify which I/O variable serves as an input to the PHA and which
one serves as an output. For example, consider the mode m2 that implies the
following set of equations:

FDE(m2) = {xc 1,k+1 = 0.4 xc 1,k + wc 1,k + vc 1,k,

xc 2,k+1 = 0.2 xc 1,k + 0.5 xc 2,k + vc 2,k}, (2.10)
FAE(m2) = {wc 2 = 0.5 xc 2}. (2.11)
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The algebraic equation (2.11) lacks the direct dependency among the I/O
variables wc 1 and wc 2. As a consequence, we obtain the particular causality
wc 1 → . . . → wc 2. Thus, the equations for the mode m2 imply that wc 1 is
the input variable and wc 2 is the output variable of the cPHA.

PHA composition

We now introduce the composition operation for probabilistic hybrid au-
tomata. This operation enables us to describe a complex system as composite
automaton, where individual components are represented by PHA automata.
Several formalisms for the composition of hybrid automata were proposed re-
cently, e.g. [92, 93, 50, 51, 52, 45]. Our composition operation is in spirit of the
reactive module framework of Alur and Henzinger [50, 51] and establishes the
interconnection of component automata via shared continuous I/O variables
wc γ ∈ wc. More precisely, a variable wc γ connects an automaton Ai with the
automaton Aj if wc γ ∈ wc i and wc γ ∈ wc j . The sets wc i and wc j denote the
I/O variables of automaton Ai and Aj , respectively. In terms of set operations
we can concisely express this property as wc γ ∈ wc i ∩wc j .

Of course, we can only apply composition to two automata A1 and A2 if
they are compatible. Compatibility in this context involves three properties:
Firstly, we do not allow automata to share state variables xc ∈ xc i, secondly,
we require that the automata have distinct disturbance variables vc ∈ vc i,
and thirdly, we demand that both automata operate at the same sampling
period Ts.

In the following we denote the components of a PHA specification Aj by
using the same subscript, that is, xj = xd j ∪xc j , wj = ud j ∪uc j ∪vc j ∪yc j ,
Fj , Tj , X0j , Xdj , Udj , Tsj . With this notation we can define PHA compatibility
and PHA composition as follows:

Definition 2.3 (PHA compatibility). Let zc j = xc j ∪ uc j ∪ yc j ∪ vc j

denote the set of all continuous variables of an automaton Aj . Then, we
call two probabilistic hybrid automata A1 and A2 compatible, if xc i ∩ zc j =
vc i ∩ zc j = ∅ for i 6= j, and Ts 1 = Ts 2.

Definition 2.4 (PHA composition). The (concurrent) composition A1 ‖
A2 of two compatible probabilistic hybrid automata A1 and A2 is defined in
terms of the tuple

〈x,w, F, T, X0,Xd,Ud, Ts〉,
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where: x = xd ∪ xc, with xd := xd 1 ∪ xd 2, xc := xc 1 ∪ xc 2,
w := w1 ∪w2,
F : F (xd) := F1(xd 1) ∪ F2(xd 2),
T : T (xd) := T1(xd 1)× T2(xd 2),

X0 = 〈pd0, Pc0〉, with pd0(xd) := pd0 1(xd 1) · pd0 2(xd 2),
and Pc0(xd) := Pc0 1(xd 1)× Pc0 2(xd 2),

Xd := Xd1 ×Xd2,
Ud := Ud1 × Ud2,
Ts := Ts 1.

The composition operation ensures that the composition A1 ‖ A2 of two
PHAs, again is a PHA A. To emphasize that an automaton A denotes the
composition A1 ‖ A2, we will also call A a composite automaton. A conse-
quence from this property of composition is that we can obtain the composi-
tion A = A1 ‖ A2 ‖ · · · ‖ Aζ of ζ compatible automata recursively:

A = (. . . ((A1 ‖ A2) ‖ A3) ‖ · · · ‖ Aζ).

Let us demonstrate the composition operation of two PHAs A1 and A2

with the following example:

A1 = 〈{xd1, xc1}, {ud1, wc1, wc2, wc3, vc1}, F1, T1, {m11,m12,m13}...〉
A2 = 〈{xd2, xc2, xc2}, {ud1, ud2, wc2, wc3, wc4, vc2, vc3, vc4}, F2, T2, {m21,m22}...〉

(2.12)
The automata are compatible since their continuous state and noise variables
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Fig. 2.3. PHA composition example.

are distinct (we assume equality of their sampling rates Ts 1 and Ts 2). The
composition A1 ‖ A2 leads to a composite PHA A with the mode variables
xd = {xd 1, xd 2} and the continuous state variables xc = {xc 1,xc 2,xc 3}. The
interconnection between the automata is achieved by linking the shared I/O
variables ud1, wc2, wc3, as shown in Fig. 2.3. Note that the composition does
not imply a particular directionality of the interconnections. The directionality
is subject to the causality in the system and depends on the equations for a
particular mode assignment and the interconnection to the outside world. For
example, consider a PHA mode xd k+1 = [m11,m21]T , which indicates that
A1 is at the mode m11, and A2 is at the mode m21. This mode assignment
leads to the set of equations F (xd k+1) = F1(m11) ∪ F2(m21), where F1 and
F2 are given as follows:
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F1(m11) = {xc 1,k+1 = 0.4 xc 1,k + wc 1,k + wc 2,k + vc 1,k,

wc 3 = 0.3 xc 1}
F2(m21) = {xc 2,k+1 = xc 2,k + wc 2,k + vc 2,k,

xc 3,k+1 = 0.5 xc 3,k + wc 2,k + vc 3,k,

wc 3 = 0.2 xc 2 + wc 2, wc 4 = xc 2 + xc 3 + vc 4}.

(2.13)

Although we still have to solve the set of equations symbolically to obtain a
mathematical model of the usual form

xc,k+1 = f(xc,k,wc,k,vc,k)
wc,k = g(xc,k,wc,k,vc,k),

(2.14)

we interpret the set of equations (2.13) as the raw model for the system at
the mode xd k+1 = [m11,m21]T . Our implementation of the hybrid estimation
framework applies a symbolic solver that is based on causal analysis [21, 22]
and Gröbner Bases [94], and perform the algebraic manipulations on-line in
the course of estimation6. The solver transforms the raw model (2.13) into
the following set of difference and algebraic equations:

xc 1,k+1 = 0.7 xc 1,k − 0.2 xc 2,k + wc 1,k + vc 1,k

xc 2,k+1 = 0.3 xc 1,k + 0.8 xc 2,k + vc 2,k

xc 3,k+1 = 0.3 xc 1,k − 0.2 xc 2,k + 0.5 xc 3,k + vc 3,k

wc 1,k = exogenous
wc 2,k = 0.3 xc 1,k − 0.2 xc 2,k

wc 3,k = 0.3 xc 1,k

wc 4,k = xc 2,k + xc 3,k + vc 4,k

(2.15)

The causal analysis identifies the I/O variable wc 1 as exogenous or independent
variable of the PHA composition A1 ‖ A2 and wc 2 serves as an output for
A2 and as an input for A1. This causal specification cannot be seen from the
raw equations F2(m21) for the automaton component A2. Looking at F2(m21)
directly, one would expect that wc 2 serves as an input of A2 and wc 3, wc 4

are the output variables of A2. However, the dynamics in the automaton
component A1 enforce that wc 3 is a dependent variable of A1. This is due
to the fact that wc 3 only depends on the state variable xc 1 of A1. Thus,
wc 3 serves as continuous output for A1. This implies that wc 2 and wc 4 are
dependent variables for A2 and leads to the transformation of the equations
F2(m21) to reflect this causal relationship.

The ability to change causality in a composite system requires additional
analysis and symbolic manipulation. However, it improves expressiveness of
our hybrid modeling formalism as well as it enables us to deal with operational
6 Our current implementation restricts the type of algebraic equations and nonlin-

ear functions to expressions that enable symbolic solutions in explicit form.



2.3 Concurrent Probabilistic Hybrid Automata 39

conditions that impose changed causality in the system. The latter fact rep-
resents a significant advantage over other modeling paradigms for monitoring
and diagnosis and justifies the extra computational requirements.

2.3 Concurrent Probabilistic Hybrid Automata

The composition of PHAs A1 ‖ . . . ‖ Aζ specifies the component models and
their interconnection via shared variables. It does not specify the intercon-
nection to the outside world. This is the task of the concurrent Probabilistic
Hybrid Automaton (cPHA) specification. A cPHA takes a composite PHA
and specifies the I/O variables that connect the system to the outside world,
as well as it quantifies the disturbances in terms of their probability distribu-
tions. More precisely:

Definition 2.5. A concurrent probabilistic hybrid automaton (cPHA) CA can
be described as a tuple 〈A,u,yc,vc, N〉:
• A = A1 ‖ A2 ‖ . . . ‖ Aζ denotes the composite PHA, comprised of the

PHA models Ai for the individual components.
• The input variables u = ud ∪ uc of the automaton consists of the set of

discrete input variables ud = ud 1 ∪ . . . ∪ ud ζ (command variables) and
the set of continuous input variables uc ⊆ wc = wc 1 ∪ . . . ∪ wc ζ that
is determined by the outside world. Alternatively, we will also call the
continuous input variables uc the independent variables of A.

• The output variables yc ⊆ wc specify the subset of observed continuous
I/O variables of A.

• The noise variables vc ⊆ wc specify the the subset of continuous I/O
variables that model the disturbances that act upon the system. The cPHA
specification quantifies the disturbances in terms of the mode dependent7

function N : Xd → pdf that specifies a multivariate probability density
function pv for the noise variables vc.

The figure 2.4 visualizes the cPHA specification

CA = 〈A1 ‖ A2, {ud 1, ud 2, wc 1}, {wc 4}, {vc 1, vc 2, vc 3, vc 4}, N〉 (2.16)

that utilizes the PHA composition of the two-component model that we intro-
duced above in equation (2.12). The I/O variables {wc 2, wc 3} = wc − (uc ∪
yc ∪ vc) are only used to interconnect the automata. We call these I/O vari-
ables the internal I/O variables of the cPHA. Symbolically solving the set of
equations will eliminate these variables from the difference equations so that
the difference equations are expressed exclusively in terms of the state vari-
ables xc and input variables uc of the cPHA. As a consequence, the hybrid
model captures the state, at a given time-step k, entirely in terms of the mode
xd,k and the set of continuous state variables xc,k, more precisely:
7 For example, sensors can experience different magnitudes of disturbances at dif-

ferent modes.
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Fig. 2.4. cPHA example with two component automata.

Definition 2.6 (Hybrid state). The hybrid state xk at time-step k spec-
ifies the mode valuation xd,k of the mode variables xd = xd 1∪, . . . ,∪xd ζ

and the continuous state valuation of the continuous state variables xc =
xc 1∪, . . . ,∪xc ζ for a cPHA with component automata A1, . . . ,Aζ .

The separation of I/O variables into input, noise, observed, and internal
variables allows us to provide the set of dynamic equations in the usual state-
space format, where internal I/O variables are eliminated and the evolution,
as well as the observation, is entirely described in terms of the input, state,
noise and output variables:

xc,k+1 = f(xc,k,xd,k+1,uc,k,vc,k)
yc,k = g(xc,k,xd,k,uc,k,vc,k).

(2.17)

Although our cPHA/PHA definitions do not constrain the set of equations per
se, we do assume that the models of real-world systems lead to ’well formed
equations’ that permit a symbolic solver to arrive at the state space model
form (2.17). Current ongoing research deals with this issue and will provide an
extended definition for PHA compatibility that enables a compiler to check
whether every possible mode of the composite automaton provides a well
formed set of equations. Our current implementation of the hybrid estimation
framework uses the extended Kalman filter as the underlying continuous fil-
tering principle. Therefore, we will restrict the model even further, and assume
that the disturbance variables vc,k = vc x,k ∪ vc y,k describe white, zero-mean
Gaussian noise that acts additive upon the state (state disturbance vc x,k) and
output variables (measurement noise vc y,k). More precisely, we will assume
the following state space model:

xc,k+1 = f(xc,k,xd,k+1,uc,k) + vc x,k

yc,k = g(xc,k,xd,k,uc,k) + vc y,k.
(2.18)

For example, Eqs. (2.15) for the mode

xd,k+1 =
[

m11

m21

]
(2.19)
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lead to the model:

xc,k+1 =




0.7 −0.2 0
0.3 0.8 0
0.3 −0.2 0.5


xc,k +




1
0
0


uc,k +




1 0 0 0
0 1 0 0
0 0 1 0


vc,k

yc,k =
[
0 1 1

]
xc,k +

[
0 0 0 1

]
vc,k.

(2.20)

The model separates the noise variables vc,k = {vc 1,k, vc 2,k, vc 3,k, vc 4,k}T of
the cPHA into the disjoint sets of state disturbances vc x,k = {vc 1,k, vc 2,k, vc 3,k}
and measurement noise vc y,k = {vc 4,k}.

2.4 PHA and cPHA execution

The execution or trajectory of a cPHA describes a possible sequence of hybrid
states that captures the discrete-time dynamic behavior of the automaton that
is interleaved with discrete mode transitions. We adopt the usual hybrid sys-
tems view, where the evolution of the system takes place at two distinct time
rates: (a) discrete mode changes take place immediately, or at least within ε
time, while, (b) the continuous evolution over time takes place at the sampling
period Ts.
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Fig. 2.5. cPHA execution model.

Figure 2.5 visualizes this concept of discrete-time execution for one sampling-
period. A hybrid state xk = {xd,k,xc,k}, and the input values ud,k and uc,k, at
the time point tk = kTs+t0 trigger a mode transition xd,k = mi → mj = x′d,k

according to the transition specification T of the cPHA. This mode transi-
tion leads to a new hybrid state x′k = {x′d,k,x′c,k} with the changed mode
x′d,k = mj and the continuous state x′c,k. Time proceeds only infinitesimally
(ε), therefore, we can assume that the continuous state remains at its previous
value x′c,k = xc,k or experiences a transition specific reset xc,k

ri→ x′c,k. The
mode remains constant for the following time period (Ts − ε seconds) and
allows the system to evolve according to the discrete-time dynamics F (mj).
This leads to the execution (or hybrid trajectory) of the cPHA



42 2 Probabilistic Hybrid Automata

xk
τk−→ x′k

Fk−→ xk+1
τk+1−→ x′k+1 . . .

that specifies a sequence, or ordered set, of hybrid states and transitions

{x0, τ0,x′0,x1, τ1,x′1, . . . ,xk, τk,x′k,xk+1, τk+1,x′k+1, . . .}. (2.21)

The execution of a cPHA is subject to observation via the continuous
output variables yc. Observation takes place at the sample time-points tk =
kTs + t0. The transitions and the intermediate states x′k are not directly
observed since they denote actions within the interval (tk tk + ε] and states
at the time-point tk + ε.

xk
τk−→ x′k

Fk−→ xk+1
τk+1−→ x′k+1 . . .yO

yO
yc,k yc,k+1

Thus, autonomous and commanded mode changes at the time-point k are
observed in terms of their effects onto the continuous state earliest at the
following time-step k + 1. We call the sequence of observations

{yc,1,yc,2, . . . ,yc,k−1,yc,k} =: Yc,k (2.22)

of the cPHA execution (2.21) the discrete-time trace and use the somewhat
more complicated notation

Yc,r:k := {yc,r,yc,r+1, . . . ,yc,k−1,yc,k} (2.23)

whenever the observation starts at a later sample time-point tr = rTs + t0.
Analogously, we use the notation

{x0,x1,x2, . . . ,xk−1,xk} =: Xk (2.24)

to denote the discrete-time hybrid trajectory (or sampled execution) of the
cPHA that starts at the sample time t0, or

{xr,xr+1,xr+2, . . . ,xk−1,xk} =: Xr:k (2.25)

whenever the sequence starts at tr = rTs + t0. The hybrid trajectory only
takes the hybrid states at the sampling-points into account, thus it masks the
intermediate states x′k after the transition and hides the mode changes up to
the next sampling point. This has an important implication for estimation. A
mode change in one component at time-step k can trigger a consecutive mode
change in another component with a delay of at least one sample. Thus, mode
transitions of components at a time-step k are mutually independent, a fact
that will help us to formulate an efficient estimation scheme later on.

Hybrid estimation will require us to refer to possible discrete evolutions of
the cPHA. We express this in terms of the modes xd,k and the executed tran-
sitions τk. We need both specifications, because our transition model does not
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limit the number of transitions from a mode mi to a mode mj to one. Several
redundant transitions can exist that can specify different reset conditions ri

for the continuous state (see Fig. 2.2). As a consequence, we cannot uniquely
determine the discrete evolution based on the mode sequence only and require
the additional knowledge about the transitions that were taken in the course
of the execution. We abstract a hybrid execution (hybrid trajectory)

{x0, τ0,x′0,x1, τ1,x′1, . . . ,xk+1, τk−1,x′k+1,xk}

into the discrete execution (discrete trajectory)

{xd,0, τ0,xd,1, τ1,xd,2, . . . ,xd,k−1, τk−1,xd,k} =: Md,k. (2.26)

For clarity and in order to keep statements concise, we will also refer to Md,k

as the mode sequence. The number of possible mode sequences increases ex-
ponentially with the time-steps considered. Nevertheless, due to the finite
number of modes and transitions of a cPHA, we can be sure that the number
of mode traces is finite for any finite time-point k. This is in contrast to the
discrete-time hybrid trajectories, where the real valued state variables imply
an infinite number of possible trajectories.





3

Hybrid Estimation

Whenever we automate a complex physical artifact it is essential to know its
operational state at each time. However, it is not always possible or desirable
to measure all physical entities that determine the state of the system. As a
consequence, we have to estimate the state, given some (noisy) measurements
and the model of the system under investigation. More precisely:

Hybrid Estimation Problem: Given a cPHA model CA of the
system under investigation, the sequences (or discrete-time traces)
of observations Yc,k = {yc,1, . . .yc,k} and the control inputs Uk =
{u0,u1, . . .uk}, estimate the hybrid state xk at time-step k, that is
comprised of the mode xd,k and the continuous state xc,k.

Because we model the disturbances and the non-deterministic mode changes
probabilistically, we won’t obtain an estimate that consists of a particular
mode and a crisp valuation for the continuous state. We will obtain an esti-
mate in the form of distributions among the possible modes Xd and among
the continuous state space IRnx . We shall see in the next section that hybrid
estimation leads to a set of discrete-time trajectory hypotheses with varying
likelihood. This set of hypotheses, as a whole, defines the overall distributions
for the mode and the continuous state. We will develop hybrid estimation
incrementally, starting with reviewing traditional estimation, then presenting
hybrid estimation for systems that do not exhibit mode changes, and finally,
introducing hybrid estimation for systems that can evolve both continuously
and discretely through commanded or autonomous mode changes.

3.1 Traditional Estimation

Let us recall traditional estimation, in particular Kalman and extended
Kalman filtering prior delving into the theory of hybrid estimation. A Kalman
filter [1, 26, 27, 95] utilizes a stochastic linear model of the system under in-
vestigation and estimates, in some optimal sense, the physical entities that de-
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termine the state of a system. More specifically, let us assume that the system
under investigation can be modeled as a discrete-time linear time-invariant
(LTI) model of the form:1

xc,k+1 = Axc,k + Buc,k + vc x,k

yc,k = Cxc,k + Duc,k + vc y,k.
(3.1)

The continuous state xc and the measurement yc are subject to state distur-
bances vc x and measurement noise vc y, respectively. The control input uc,
however, is known without error. The initial state of the system is described
in terms of a Gaussian distribution pc,0 with the mean x̂c,0 and the covariance
matrix P0

E{xc,0} = x̂c,0, E{(xc,0 − x̂c,0)(xc,0 − x̂c,0)T } = P0. (3.2)

The state disturbance vc x and the measurement noise vc y are assumed to be
white, zero-mean Gaussian random sequences with the properties

E{vc x,k} = 0, E{vc x,kvc x,k
T } =: Q, E{vc x,kvc x,j

T } = 0, (j 6= k)

E{vc y,k} = 0, E{vc y,kvc y,k
T } =: R, E{vc y,kvc y,j

T } = 0, (j 6= k)

E{vc y,kvc x,j
T } = 0, ∀j, k.

(3.3)
Neither the state disturbance, nor the measurement noise, is correlated with
past continuous states

E{xc,kvc x,κ
T } = 0, k ≤ κ

E{xc,kvc y,κ
T } = 0, k ≤ κ.

(3.4)

The Kalman filter estimates the continuous state xc,k, based on the con-
tinuous inputs uc,0, . . . ,uc,k, the observations yc,1, . . . ,yc,k, and the initial
state distribution pc,0. The estimate represents a multi-variate Gaussian dis-
tribution pc,k that is expressed in terms of the mean x̂c,k and the covariance
matrix Pk

E{xc,k} = x̂c,k, E{(xc,k − x̂c,k)(xc,k − x̂c,k)T } = Pk. (3.5)

Kalman filtering is performed recursively and minimizes the expected value
of the squared sum of estimation errors
1 For the purpose of Kalman filter presentation we deal exclusively with a single

continuous model. This would not require us to distinguish between hybrid (x,u),
continuous (xc,uc,yc) and discrete (xd,ud) variables, thus we could omit the
subscript c for the variables. However, for compatibility reasons, we do stick to one
coherent notation throughout the monograph, although it might seem redundant
for this particular section.
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Fig. 3.1. Estimation architecture for standard stochastic filtering.

ek := xc,k − x̂c,k. (3.6)

This is done by propagating the conditional PDF for the continuous state from
one sampling instant to the next, taking into account the system dynamics
(A,B,C,D), the input (uc), the measurement (yc), and the noise character-
istics (Q,R). The recursive deduction of mean x̂c,k and covariance matrix Pk

is done in two steps:

1. State extrapolation

x̂c,k|k−1 = Ax̂c,k−1 + Buc,k−1

Pk|k−1 = APk−1AT + Q.
(3.7)

We use the subscript k|k − 1 to indicate that the mean x̂c,k|k−1 and the
covariance matrix Pk|k−1 represent the prior estimate that is based on the
past estimate x̂c,k−1, the inputs uc,0, . . . ,uc,k−1, and the measurements
yc,1, . . . ,yc,k−1 up to the time-step k− 1. This one-step ahead prediction
leads to a prediction residual, or innovation rk

rk := yc,k −
(
Cx̂c,k|k−1 + Duc,k

)
(3.8)

with the associated covariance matrix Sk

Sk := E{rkrT
k }

= E{(yc,k −Cx̂c,k|k−1 −Duc,k

) (
yc,k −Cx̂c,k|k−1 −Duc,k

)T }.

If we define the prior estimation error in analogy to (3.6) as

ek|k−1 := xc,k − x̂c,k|k−1,

we can write the prior covariance matrix Pk|k−1 as

Pk|k−1 = E{(xc,k − x̂c,k|k−1)(xc,k − x̂c,k|k−1)T }
= E{ek|k−1eT

k|k−1}. (3.9)
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The covariance matrix of the innovation can then be written as

Sk = E{(Cxc,k + Duc,k + vc y,k −Cx̂c,k|k−1 −Duc,k

)
(· · · )T }

= E{(C(ek|k−1 + x̂c,k|k−1) + Duc,k + vc y,k −Cx̂c,k|k−1 −Duc,k

)
(· · · )T }

= E{(Cek|k−1 + vc y,k

) (
Cek|k−1 + vc y,k

)T }
= CE{ek|k−1eT

k|k−1}CT + E{vc y,kvT
c y,k}

= CPk|k−1CT + R. (3.10)

2. Estimation correction

x̂c,k = x̂c,k|k−1 + Kkrk (3.11)

Pk = Pk|k−1 −KkSkKT
k (3.12)

provides the posterior state estimate with the mean x̂c,k and the covari-
ance matrix Pk. It is based on the prior estimate and the innovation rk

with its covariance matrix Sk. The vector Kk denotes the time-variant
Kalman filter gain:

Kk = Pk|k−1CT
(
CPk|k−1CT + R

)−1

= Pk|k−1CT S−1
k . (3.13)

Many estimation problems deal with systems that are nonlinear. This pre-
vents one from directly applying the Kalman filter in its original form (3.7)-
(3.13). Nevertheless, the success of the Kalman filter, or linear control theory
in general, grounds upon the fact that many real world systems can be cap-
tured by nonlinear models that can be well approximated by linear models
for small perturbations of the state variables. The extended Kalman filter
[29, 26] utilizes this fact and linearizes the nonlinear model as a (first-order)
Taylor series along the expected trajectory. More precisely, let us assume the
discrete-time non-linear model

xc,k+1 = f(xc,k,uc,k) + vc x,k (3.14)
yc,k = g(xc,k,uc,k) + vc y,k, (3.15)

where f and g denote non-linear vector functions of the continuous state and
the continuous input. The state disturbance vc x,k and the measurement noise
vc y,k are, as in the linear case, assumed to be white, zero-mean Gaussian
random sequences with the properties given in (3.3)-(3.4).

The non-linear system equations (3.14)-(3.15) imply a non-Gaussian distri-
bution for the state estimate pc,k. Nevertheless, given the assumption that the
system equations can be adequately approximated by a linear system for small
perturbations, it is reasonable to assume that a single multi-variate Gaussian
distribution with the mean x̂c and the covariance matrix P represents a proper
approximation. The extended Kalman filter performs the approximative filter
operation in the following two steps:
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1. State extrapolation

x̂c,k|k−1 = f(x̂c,k−1,uc,k−1) (3.16)

Ak−1 =
∂f
∂x

∣∣∣∣
x̂c,k−1,uc,k−1

(3.17)

Pk|k−1 = Ak−1Pk−1AT
k−1 + Q. (3.18)

This one-step ahead prediction leads to an innovation rk with covariance
matrix Sk

rk = yc,k − g(x̂c,k|k−1,uc,k) (3.19)

Ck =
∂g
∂x

∣∣∣∣
x̂c,k|k−1,uc,k

(3.20)

Sk = CkPk|k−1CT
k + R. (3.21)

2. Estimation correction

Kk = Pk|k−1CT
k S−1

k (3.22)
x̂c,k = x̂c,k|k−1 + Kkrk (3.23)

Pk = Pk|k−1 −KkSkKT
k . (3.24)

Whenever the approximation of the non-linear system in terms of a first-
order Taylor series is insufficient, one could utilize higher-order Taylor-series
expansions that lead to higher-order extended Kalman filter [67] or use other
filtering techniques that were developed for non-linear systems with non-
Gaussian distributions, e.g. the versatile particle filter [59, 96].

3.2 Hybrid Estimation (non-switching case)

Kalman and extended Kalman filtering, presented so far, utilize a single dy-
namic model of the system under investigation and provide a multi-variate
distribution pc as an estimate for the continuous state (Fig. 3.1).

Our aim, however, is different. We intend to estimate the state of a system
that can exhibit one out of several modes of operation. As a consequence, we
do have a hybrid model, where the system is described in terms of the modes
mj ∈ {m1, . . . ,ml} with an associated discrete-time dynamic model

xc,k+1 = f(xc,k,mj ,uc,k) + vc x,k (3.25)
yc,k = g(xc,k,mj ,uc,k) + vc y,k. (3.26)

Generally, we cannot observe the mode of operation directly, so that we
have to extend the estimation task to provide both, the estimate for the con-
tinuous state, and an estimate for the mode of operation. For the moment,
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let us assume that the system constantly operates at a particular mode, thus,
it cannot switch between the modes during operation (we will relax this as-
sumption later). As an example, one could think of a model where system
parameters can take on particular values, but their specific valuation during
operation is unknown. We could instantiate a bank of filters, one for each
mode hypothesis, and operate them concurrently. The filter with the ’best’
state estimate identifies the mode of operation, and as a consequence, the
specific system parameters that were sought for. This is the principle of non-
switching or static multiple-model estimation [28, 67]. Figure 3.2 illustrates
the corresponding hybrid estimation architecture.

.....
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Fig. 3.2. Hybrid estimation architecture for a non-switching hybrid system.

The hybrid estimator is composed of two components. The first compo-
nent, a (extended Kalman) filter bank, maintains the continuous estimates,
one for each mode. The second component, the mode estimator, calculates
a conditional probability for each mode, and selects and/or merges the esti-
mation hypotheses to obtain the mode and the overall continuous estimate
for the system under investigation. This provides a probability distribution
among the modes, as well as the usual continuous estimate.

The mode estimator works as follows. Let Yc,k denote the sequence of
continuous measurements Yc,k = {yc,1, . . .yc,k}. For clarity of the following
derivation, and without loss of generality, let us assume that we do not impose
any input signal, thus, uc,i = 0 for all i = 0, . . . , k. The mode estimator
determines, at each time-step k, the conditional probability P (mj |Yc,k) that a
mode mj is the correct mode of operation, given the continuous measurements
Yc,k. It does so for all modes mj ∈ Xd and provides a probability (mass)
distribution bk over the set of l possible mode hypotheses

bk(mj) := P (mj |Yc,k). (3.27)
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The mode estimator calculates the conditional probabilities recursively, as fol-
lows. Let us separate the measurement sequence Yc,k into the leading (fringe)
measurement yc,k and the remaining sequence Yc,k−1

bk(mj) = P (mj |Yc,k)
= P (mj |yc,k, Yc,k−1).

We then apply Bayes’ Rule and calculate bk(mj) as

bk(mj) =
1
c

p(yc,k|mj , Yc,k−1) P (mj |Yc,k−1)

=
p(yc,k|mj , Yc,k−1) bk−1(mj)∑l
i=1 p(yc,k|mi, Yc,k−1) bk−1(mi)

, j = 1, . . . , l. (3.29)

The underlying deviation can be outlined as follows. Bayes’ Rule for a condi-
tional probability P (A|Y, C), where A and C are events for discrete random
variables and Y is a continuous random variable, can be written as follows:

P (A|Y = y, C) ≈ P (A|y ≤ Y ≤ y + δ, C)

=
P (y ≤ Y ≤ y + δ|A,C) P (A|C)

P (y ≤ Y ≤ y + δ|C)

≈ p(y|A,C) δ P (A|C)
p(y|C) δ

.

If we take the limit δ → 0 and apply the total probability theorem, we obtain
the variant of the Bayes’ Rule that was used above:

P (Aj |y, C) =
p(y|Aj , C) P (Aj |C)∑
i p(y|Ai, C) P (Ai|C)

.

Equation (3.29) establishes the recursive procedure for the mode probabil-
ity update, what remains to be found is the conditional PDF p(yc,k|mj , Yc,k−1).
Given that the system is at the mode mj and the measurements are known
up to time-step k− 1 (Yc,k−1 = {yc,1, . . . ,yc,k−1}), an associated filter would
provide the prior estimate p

(j)
c,k|k−1 with mean x̂(j)

c,k|k−1 and covariance matrix

P(j)
k|k−1 (the superscript index j in parentheses denotes the mode hypothesis

index, for which the estimate was deduced). As a consequence, we can replace
the conditional PDF p(yc,k|mj , Yc,k−1) with p(yc,k|x̂(j)

c,k|k−1). The estimate

x̂(j)
c,k|k−1 for the continuous state would lead to an prior estimate of the out-

put with mean
ŷ(j)

c,k|k−1 = g
(
x̂(j)

c,k|k−1,mj

)
(3.30)

and covariance matrix

E

{(
yc,k − ŷ(j)

c,k|k−1

)(
yc,k − ŷ(j)

c,k|k−1

)T
}

= E
{
rkrT

k

}
= Sk, (3.31)
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where the innovation rk of the filter for the mode hypothesis mj is given by

rk = yc,k − ŷ(j)
c,k|k−1. (3.32)

Therefore, we can obtain the value of the PDF p(yc,k|mj , Yc,k−1) from the
associated multi-variate Gaussian distribution of the innovation rk for hy-
pothesis mj :

p(yc,k|x̂(j)
c,k−1) =

1
|2πSk|1/2

e−0.5rT
k S−1

k rk . (3.33)

This value can be easily determined in the course of filtering and provides
the measure of likelihood that is key for the calculation of the conditional
probabilities bk(mj).

The distribution bk can be used to identify the most likely mode mν

(bk(mν) ≥ bk(mj), for all j = 1, . . . , l) with its associated continuous (mode-
conditioned) estimate p

(ν)
c,k that is expressed in terms of the mean and covari-

ance matrix
x̂(ν)

c,k , P(ν)
k . (3.34)

The combination of the mode-conditioned estimates according to bk provides
the overall continuous estimate with mean

x̂c,k =
l∑

i=1

bk(mi) x̂(i)
c,k (3.35)

and covariance matrix

Pk =
l∑

i=1

bk(mi)
[
P(i)

k + (x̂(i)
c,k − x̂c,k)(x̂(i)

c,k − x̂c,k)T
]
. (3.36)

3.3 Full Hypothesis Hybrid Estimation

We now extend the estimation problem and allow switching among the modes
according to our cPHA modeling framework. This complicates the hybrid
estimation task significantly. Instead of considering the set of possible mode
hypotheses, we now have to track the possible discrete trajectories or mode
sequences

Md,k = {xd,0, τ0,xd,1, τ1,xd,2, . . . ,xd,k−1, τk−1,xd,k}

and obtain their associated discrete-time trajectory estimates

X̂k = {x̂0, x̂1, . . . , x̂k−1, x̂k}. (3.37)

Since we are dealing with a set of trajectory hypotheses, we will use a super-
script index in parentheses, e.g. M

(j)
d,k, to refer to the j’th trajectory hypothesis
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M
(j)
d,k = {x(γ)

d, 0, τ
(δ)
0 ,x(δ)

d, 1 . . . ,x(i)
d, k−1, τ

(j)
k−1,x

(j)
d, k}.

Hybrid estimation maintains a hybrid discrete-time trajectory estimate

X̂
(j)
k = {x̂(γ)

0 , x̂(δ)
1 , . . . , x̂(i)

k−1, x̂
(j)
k }

for every hypothesis M
(j)
d,k. The estimate tracks the hypothesis up to the time-

step k and defines the hybrid state estimate x̂(j)
k at its fringe. This fringe

estimate quantifies the mode x̂(j)
d,k = x(j)

d, k, and the continuous state estimate

in terms of a PDF p
(j)
c,k with the mean x̂(j)

c,k as the tuple

x̂(j)
k := 〈x̂(j)

d,k, p
(j)
c,k〉. (3.38)

Hybrid estimation tracks the finite set of trajectory hypotheses M
(j)
d,k in-

crementally in terms of their associated estimates X̂
(j)
k . Estimation starts

with a set of initial estimates {X̂(1)
0 , . . . , X̂

(λ0)
0 } that are drawn from the ini-

tial state information X0 of the cPHA model. Hybrid estimation determines
for all trajectory estimates X̂

(i)
k−1 = {x̂(γ)

0 , . . . , x̂(i)
k−1} all possible transitions

x̂(i)
d,k−1

τ
(j)
k−1−→ x̂(j)

d,k and forms the associated hybrid state estimate x̂(j)
k . Thus,

it extends a trajectory estimate X̂
(i)
k−1 with the possible successors x̂(j)

k and

obtains several new trajectory estimates X̂
(j)
k = {x̂(γ)

0 , . . . , x̂(i)
k−1, x̂

(j)
k } for the

consecutive time-step. This operation can be interpreted as building a full-
hypothesis tree that encodes the estimates for the possible trajectories (mode
sequences) that the system can take. Figure 3.3 illustrates this process with a
full hypothesis tree at k = 2, with a single estimate x̂(1)

0 at the initial time-step
k = 0.

The estimates X̂
(j)
k , j = 1, . . . , λk of the possible trajectory hypotheses

M
(j)
d,k are ranked according to the conditional probability P (M (j)

d,k|Yc,k, Uk) of
the hypotheses (Uk denotes the combined sequence of continuous inputs Uc,k =
{uc,0, . . . ,uc,k} and discrete (command) inputs Ud,k = {ud,0, . . . ,ud,k}). This
specifies a probability distribution bk

bk(M (j)
d,k) := P (M (j)

d,k|Yc,k, Uk), j = 1, . . . , λk, (3.39)

among the set of hypotheses that defines, together with the associated trajec-
tory fringe estimates

{x̂(1)
k , . . . , x̂(λk)

k },
the hybrid state distribution at the time-step k. In the following we will use
the short notation b

(j)
k for bk(M (j)

d,k).
Trajectory-based estimation, with additional probabilistic ranking accord-

ing to b
(j)
k , utilizes a hybrid estimation architecture (Fig. 3.4) that is similar to
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the non-switching hybrid estimation architecture that was introduced above.
Again, the full hypothesis hybrid estimator consists of two components, a filter
bank that maintains one filter per trajectory hypothesis, and a generalization
of the mode estimator that (a) calculates the ranking among the hypothe-
ses and (b) initiates new filters according to the trajectory hypotheses under
consideration. Thus, it controls the filter bank that contains a monotonically
growing number of dynamic filters. Tracking all possible trajectories that a
system can take is almost always intractable, because the number of trajec-
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tory hypotheses becomes too large after only a few time steps. Nevertheless,
we shall ignore this practicability issue for the moment and deduce the full
hypothesis hybrid estimator first. This will contribute to our understanding
of the optimal hybrid estimator and its complexity. Once the underlying the-
ory is laid down, we can proceed with suitable sub-optimal hybrid estimation
schemes.

Let us evaluate the hybrid estimation task for a hypothesis M
(i)
d,k−1 =

{. . . ,x(i)
d, k−1} with the associated estimate

X̂
(i)
k−1 = {. . . , x̂(i)

k−1}.

The first step deduces possible mode transitions x̂(i)
d,k−1

τ
(j)
k−1−→ x̂(j)

d,k and extends

trajectory hypothesis with τ
(j)
k−1 and x(j)

d, k = x̂(j)
d,k

M
(j)
d,k = {. . . ,x(i)

d, k−1, τ
(j)
k−1,x

(j)
d, k}. (3.40)

The associated hybrid fringe estimate x̂(j)
k = 〈x̂(j)

d,k, p
(j)
c,k〉, which extends the

trajectory estimate X̂
(i)
k−1 to

X̂
(j)
k = {. . . , x̂(i)

k−1, x̂
(j)
k }, (3.41)

is deduced as follows: The transition τ
(j)
k−1 determines the mode x̂(j)

d,k of the

hybrid estimate x̂(j)
k , as well as the continuous state estimate p

′(j)
c,k−1 immedi-

ately after the transition. The mean x̂
′(j)
c,k−1 and the covariance matrix P

′(j)
k−1 of

this estimate serves as the initial value for second estimation step. This step
performs the extended Kalman filtering task

p
′(j)
c,k−1 → p

(j)
c,k|k−1 → p

(j)
c,k

according to the model

xc,k+1 = f(xc,k,xd,k+1,uc,k) + vc x,k

yc,k = g(xc,k,xd,k,uc,k) + vc y,k
(3.42)

for the mode xd,k = x̂(j)
d,k. This completes the fringe estimate

x̂(j)
k := 〈x̂(j)

d,k, p
(j)
c,k〉 (3.43)

for the estimate X̂
(j)
k of the hypothesis M

(j)
d,k.

The estimate itself is only half of the story. Hybrid estimation also calcu-
lates the conditional probability
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b
(j)
k = P (M (j)

d,k|Yc,k, Uk) (3.44)

for every trajectory hypothesis M
(j)
d,k, j = 1, . . . , λk. In the following, we de-

rive the recursive relationship for the conditional probability (3.44). This will
demonstrate the interleaved nature of the hybrid state estimation and the
calculation of the associated conditional probability.

We start off similarly as in the non-switching case and separate the mea-
surement sequence Yc,k into the leading measurement yc,k and the remaining
sequence Yc,k−1. This enables us to apply Bayes’ Rule and we can calculate
b
(j)
k as follows:

b
(j)
k = P (M (j)

d,k|yc,k, Yc,k−1, Uk)

=
1
c

p(yc,k|M (j)
d,k, Yc,k−1, Uk) P (M (j)

d,k|Yc,k−1, Uk), (3.45)

where c denotes the normalization term

c =
λk∑
ι=1

p(yc,k|M (ι)
d,k, Yc,k−1, Uk) P (M (ι)

d,k|Yc,k−1, Uk). (3.46)

This establishes the recursive update law for b
(i)
k−1 → b

(j)
k . In order to see this,

we have to simplify the two right hand side expressions

p(yc,k|M (j)
d,k, Yc,k−1, Uk), (3.47)

P (M (j)
d,k|Yc,k−1, Uk) (3.48)

of the equation (3.45) further. Let us start with the conditional PDF (3.47).
We use Zk to denote the combined set of measurement and input sequences

Zk := {Yc,k, Uk}.

This enables us to rewrite the PDF as

p(yc,k|M (j)
d,k, Yc,k−1, Uk) = p(yc,k|M (j)

d,k, Yc,k−1, Uk−1,uc,k,ud,k)

= p(yc,k|M (j)
d,k, Zk−1,uc,k,ud,k). (3.49)

Our cPHA model ensures that the continuous measurement yc,k at the time-
step k is independent of the command input at the same time-step. Thus, we
can omit ud,k in (3.49) and obtain

p(yc,k|M (j)
d,k, Zk−1,uc,k). (3.50)

In order to evaluate the value of this PDF, we have to revisit the filter oper-
ation. The first extended Kalman filter step deduces the prior estimate
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x̂(j)
k|k−1 := 〈x̂(j)

d,k, p
(j)
c,k|k−1〉,

given the mode sequence M
(j)
d,k up to the time-step k, and the inputs as well

as the measurements up to the time-step k−1. The latter is denoted by Zk−1.
This estimate is conditioned on M

(j)
d,k and Zk−1 and enables us to replace M

(j)
d,k

and Zk−1 in (3.50) with the prior estimate x̂(j)
k|k−1, and we obtain what we

call the hybrid observation function

PO(yc,k, x̂(j)
k|k−1,uc,k) := p(yc,k|x̂(j)

k|k−1,uc,k). (3.51)

In the following we will mainly use the short notation

P
(j)
O,k := PO(yc,k, x̂(j)

k|k−1,uc,k). (3.52)

Analogously to the non-switching case ((3.30)-(3.33)) we can draw the value of
the hybrid observation function from the multi-variate Gaussian distribution

P
(j)
O,k =

1
|2πSk|1/2

e−0.5rT
k S−1

k rk . (3.53)

Again, rk, with its associated covariance matrix Sk, denotes the innovation of
the j’th hypothesis

rk = yc,k − g
(
x̂(j)

c,k|k−1, x̂
(j)
d,k,uc,k

)
. (3.54)

Let us now simplify the second right-hand term P (M (j)
d,k|Yc,k−1, Uk) of

(3.45). We separate the trajectory hypothesis

M
(j)
d,k = {. . . ,x(i)

d, k−1, τ
(j)
k−1,x

(j)
d, k}

into the fringe items τ
(j)
k−1, x

(j)
d, k and the trajectory prefix M

(i)
d,k−1 = {. . . ,x(i)

d, k−1},
and utilize the probability law

P (A, B|C) = P (A|B, C) P (B|C) (3.55)

as follows:

P (M (j)
d,k|Yc,k−1, Uk) = P (τ (j)

k−1,x
(j)
d, k,M

(i)
d,k−1|Yc,k−1, Uk)

= P (τ (j)
k−1,x

(j)
d, k|M (i)

d,k−1, Yc,k−1, Uk) P (M (i)
d,k−1|Yc,k−1, Uk), (3.56)

and use the abbreviations PI and PII

PI := P (τ (j)
k−1,x

(j)
d, k|M (i)

d,k−1, Yc,k−1, Uk) (3.57)

PII := P (M (i)
d,k−1|Yc,k−1, Uk). (3.58)
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Let us first consider PI and re-write it as

PI = P (τ (j)
k−1,x

(j)
d, k|M (i)

d,k−1, Yc,k−1, Uk−1,uc,k,ud,k)

= P (τ (j)
k−1,x

(j)
d, k|M (i)

d,k−1, Zk−1,uk) (3.59)

Again, we replace the mode sequence M
(i)
d,k−1 and the combined measure-

ment/input sequence Zk−1 with the optimal estimate x̂(i)
k−1, given M

(i)
d,k−1 and

Zk−1. Furthermore, we re-apply the probability law (3.55) and obtain:

PI = P (τ (j)
k−1,x

(j)
d, k|x̂(i)

k−1,uk)

= P (x(j)
d, k|τ (j)

k−1, x̂
(i)
k−1,uk) P (τ (j)

k−1|x̂(i)
k−1,uk). (3.60)

These conditional probabilities capture the mode evolution according to the
transition

τ
(j)
k−1 = 〈pτj , cj , rj〉.

The first conditional probability of (3.60) describes the probability of the
transition thread to the mode x(j)

d, k. This thread probability is conditionally

independent of the continuous state x̂(i)
k−1 and the input uk, given that the

transition τ
(j)
k−1 is enabled. This allows us to rewrite the first conditional prob-

ability of (3.60) as:

P (x(j)
d, k|τ (j)

k−1, x̂
(i)
k−1,uk) = P (x(j)

d, k|τ (j)
k−1)

= pτj(x
(j)
d, k), (3.61)

where pτj(x
(j)
d, k) denotes the value of the transition’s probability mass function

pτj(·) for the transition-target mode x(j)
d, k.

The second conditional probability P (τ (j)
k−1|x̂(i)

k−1,uk) represents the condi-

tional probability of the transition, given the hybrid state x̂(i)
k−1 and the input

uk. We can evaluate this conditional probability in terms of the conditional
probability of the transition’s guard cj

P (τ (j)
k−1|x̂(i)

k−1,uk) = P (cj |x̂(i)
k−1,uk). (3.62)

Summing up, guard and thread probability specify PI as follows

PI = P (x(j)
d, k|τ (j)

k−1) P (τ (j)
k−1|x̂(i)

k−1,uk). (3.63)

This defines what we call the probabilistic transition function

PT (x(j)
d, k, τ

(j)
k−1, x̂

(i)
k−1,uk) = P (x(j)

d, k|τ (j)
k−1) P (τ (j)

k−1|x̂(i)
k−1,uk) (3.64)

with its short notation
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P
(j)
T ,k := PT (x(j)

d, k, τ
(j)
k−1, x̂

(i)
k−1,uk). (3.65)

What remains now, is to simplify the term PII = P (M (i)
d,k−1|Yc,k−1, Uk)

of (3.56). Again, our cPHA model captures a causal system, where the mode
at the time-step k − 1 is independent of the input at the time-step k. As a
consequence, we can replace Uk with Uk−1 in (3.58) and obtain the following
expression for PII :

PII = P (M (i)
d,k−1|Yc,k−1, Uk)

= P (M (i)
d,k−1|Yc,k−1, Uk−1)

= b
(i)
k−1 (3.66)

This relationship establishes the recursive nature of the conditional probability
update of full hypothesis hybrid estimation. Hybrid estimation performs the
following operation for all trajectory hypotheses M

(j)
d,k, j = 1, . . . , λk with the

associated trajectory estimates X̂
(j)
k = {. . . , x̂(i)

k−1, x̂
(j)
k }

b
(j)
k = P (M (j)

d,k|Yc,k, Uk)

=
P

(j)
O,k P

(j)
T ,k b

(i)
k−1∑λk

ν=1 P
(ν)
O,k P

(ν)
T ,k b

(i)
k−1

, j = 1, . . . , λk. (3.67)

This recursive calculation of hybrid estimation is very similar to the stan-
dard belief state update for Hidden Markov Models. Belief state update for
HMM is a two-step process that calculates the probability distribution bk

among the (finite) number of l modes (m1, . . . , ml) of the HMM at the time-
step k. In the first step (prediction), we calculate for every mode mj the prior
probability bk|k−1(mj) of being at this mode, given the transition model of the
HMM and the previous belief state bk−1:

bk|k−1(mj) =
l∑

i=1

PT (mj , ud,k,mi) bk−1(mi), j = 1, . . . , l. (3.68)

In the second step (refinement), we take the current observation yd,k into
account and obtain the posterior probabilities bk(mj) that define the belief
state bk as:

bk(mj) =
1
c

PO(yd,k, ud,k,mj) bk|k−1(mj), j = 1, . . . , l. (3.69)

The constant c denotes the normalization factor

c =
l∑

i=1

PO(yd,k|ud,k,mi) bk|k−1(mi), (3.70)
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so that bk is a probability mass function (
∑l

i=1 bk(mi) = 1).

We can write hybrid estimation, as it is given in (3.67), similarly as a
recursive two-step process:

Full-Hypothesis Hybrid Estimation:
• The first estimation step extends the trajectory estimates X̂

(i)
k−1 =

{. . . , x̂(i)
k−1} of all trajectory hypotheses M

(i)
d,k, i = 1, . . . , λk−1,

according to the possible transitions x̂(i)
d,k−1

τ
(j)
k−1−→ x̂(j)

d,k. This deter-

mines the modes x̂(j)
d,k for the estimates

X̂
(j)
k = {. . . , x̂(i)

k−1, x̂
(j)
k }

of the extended trajectory hypotheses M
(j)
d,k, j = 1, . . . , λk, and

evaluates the transition-specific change for the continuous esti-
mates

p
(i)
c,k−1 → p

′(j)
c,k−1.

It then calculates for every hypothesis M
(j)
d,k the conditional prior

probability b
(j)
k|k−1, given the previous posterior probability b

(i)
k−1 and

the conditional mode transition probability P
(j)
T ,k of the associated

transition τ
(j)
k−1

b
(j)
k|k−1 = P

(j)
T ,k b

(i)
k−1, j = 1, . . . , λk. (3.71)

• The second estimation step takes the current measurement yc,k

into account. It performs the extended Kalman filtering that de-
duces the continuous estimate

p
′(j)
c,k−1 → p

(j)
c,k|k−1 → p

(j)
c,k

according to the model for the mode x̂(j)
d,k. Filtering also provides

the probabilistic observation function P
(j)
O,k for every trajectory es-

timate M
(j)
d,k. This value is used to obtain the conditional posterior

probabilities b
(j)
k

b
(j)
k =

1
c

P
(j)
O,k b

(j)
k|k−1, j = 1, . . . , λk, (3.72)

where the constant c denotes the normalization factor

c =
λk∑

ν=1

P
(ν)
O,k b

(ν)
k|k−1. (3.73)
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The major difference between belief state update for Hidden Markov Models
and the full hypothesis hybrid estimation is that belief state update merges
trajectories that end up in the same mode (summation in (3.68)), whereas
hybrid estimation tracks a set of trajectory hypotheses that is exponential in
the number of time-steps considered (3.71).

Nevertheless, the conditional probabilities {b(1)
k , . . . , b

(λk)
k }, together with

the hybrid state estimates {x̂(1)
k , . . . , x̂(λk)

k } at the fringe of the trajectory
estimates {X̂(1)

k , . . . , X̂
(λk)
k }, encode the hybrid belief state bk(·) as follows:

• The belief of being in mode mj at time-step k is given by the sum of the
conditional probabilities of trajectory hypotheses with a fringe state at the
mode mj :

bk(mj) =
∑

ν | x̂
(ν)
d,k=mj

b
(ν)
k . (3.74)

• The belief of being at the mode mj at time-step k, with a continuous state
within a region Xc ⊂ IRnx , is given by:

bk(mj ,xc,k ∈ Xc) =
∑

ν | x̂
(ν)
d,k=mj


b

(ν)
k

∫

x∈Xc

p
(ν)
c,k(x) dx


 . (3.75)

Furthermore, we can use the conditional probabilities b
(j)
k and the fringe

state estimates p
(j)
c,k, with their associated mean x̂(j)

c,k and covariance matrices

P(j)
k , to calculate the overall continuous estimate. This is done by mixing the

associated PDFs according to their conditional probabilities:

pc,k =
λk∑

ν=1

b
(ν)
k p

(ν)
c,k . (3.76)

This leads to an overall continuous estimate with the mean

x̂c,k =
λk∑

ν=1

b
(ν)
k x̂(ν)

c,k (3.77)

and the covariance matrix

Pk =
λk∑

ν=1

b
(ν)
k

[
P(ν)

k + (x̂(ν)
c,k − x̂c,k)(x̂(ν)

c,k − x̂c,k)T
]
. (3.78)

The continuous estimate, given the mode mj , can be obtained by mixing the
PDFs of the hypotheses with a fringe state x̂(ν)

k at mode x̂(ν)
d,k = mj , more

precisely:
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pc,k|xd,k=mj
=

1
bk(mj)

∑

ν | x̂
(ν)
d,k=mj

b
(ν)
k p

(ν)
c,k . (3.79)

Hybrid estimation as presented above utilizes a probabilistic transition
function PT , a probabilistic observation function PO, and an underlying con-
tinuous estimation / filtering mechanism. Filtering and the deduction of the
observation function PO, based on the innovation of the filter’s prediction
step, was introduced above. What remains now, is to introduce the deduction
of the probabilistic transition function PT .

Hybrid transition function

A mode transition mi → mj involves individual transitions τη := 〈pτη, cη, rη〉,
τη ∈ Tν for every component Aν of the cPHA2. Given that the automaton
component Aν is in mode xd ν,k−1 = mi, the conditional probability that
it will take a transition to x′d ν,k−1 = mj is the conditional probability that
its guard cη is satisfied, given the continuous state xc,k−1 and the inputs
uc,k−1,ud,k−1, times pτη(mj), the probability of the transition thread that
takes the component to the mode mj , given that the guard cη is satisfied
(i.e. the transition τη is enabled). We assumed independence of component
transitions in our cPHA model, therefore, we obtain the overall PT by taking
the product of the transition probabilities of the individual components.

For a PHAAν , a guard cη is a constraint over the continuous state variables
xc, the continuous input uc, and the discrete command input ud. A guard cη

is typically of the form (2.2)

cη(xc,uc,ud) = cxc(xc) ∧ cuc(uc) ∧ cud(ud), (3.80)

where cxc(·) and cuc(·) are inequality constraints on the continuous state xc

and the continuous input uc, respectively, and cud(·) is a constraint on the
discrete (command) input ud in the form of a propositional logic formula. The
constraints are conditionally independent, given the continuous state xc,k−1,
and the inputs uc,k−1,ud,k−1, so that we can write

P (cη|xc,k−1,uc,k−1,ud,k−1) = P (cxc|xc,k−1)P (cuc|uc,k−1)P (cud|ud,k−1)

and determine the conditional probabilities of the individual constraints sep-
arately.

The valuations uc,k−1 and ud,k−1 of the continuous and discrete inputs uc

and ud, represent crisp values. This implies that the conditional probabilities
P (cuc|uc,k−1) and P (cud|ud,k−1) have probability 1.0 or 0.0, according to the
truth value of the associated guard. The evaluation of P (cxc|xc,k−1), however,
is less trivial since we do not know the exact value for the state, but only its
2 For symmetry, we also treat the ’non-transition’ mj → mj of a PHA Aν as a

transition.
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estimate. This estimate is given in the form of a multi-variate PDF pc,k−1 for
the state variables. As a consequence, we have to utilize

P (cxc|pc,k−1)

instead, and calculate the conditional probability by evaluating the volume
integral

P (cxc|pc,k−1) =
∫

x∈Q
pc,k−1(x) dx, (3.81)

whereQ ⊂ IRnx denotes the domain for which the guard inequality is satisfied.
For example, consider a continuous guard for a single continuous state

variable xc

2.0 ≤ xc < ∞. (3.82)

The estimate xc at the time-step k−1 specifies a Gaussian distribution pc,k−1

with the mean x̂c,k−1 = 1.0 and the variance σ2 = 1.0. The probability
calculation corresponds to determining the shaded/ blue area in Fig. 3.5a and
leads to a conditional probability

P (cxc|pc,k−1) =

∞∫

2

1√
2πσ

e−(x−x̂c,k−1)
2/2σ2

dx = 0.1587. (3.83)

Numerically, this can be done by utilizing the normalized Gaussian cumulative
distribution function (CDF) Φ(·)

P (cxc|pc,k−1) = 1− Φ

(
2− x̂c,k−1

σ

)
= 1− Φ(1) = 0.1587.

The evaluation of the volume integral (3.81) for a general multi-variate
constraint cxc, such as

−∞ ≤ 1 + xc 1 + x3
c 1 − xc 2 < 0, (3.84)

is non-trivial. As a consequence, we utilize a Monte-Carlo based sampling ap-
proach that checks the guard against a sufficiently large set of state samples.
These samples are randomly generated according to the multi-variate dis-
tribution pc,k−1 of the continuous state estimate. Figure 3.5b visualizes this
evaluation for an estimate that is characterized by a Gaussian distribution
with the following mean x̂c,k−1 and covariance matrix P:

x̂c,k−1 =
[

1
0

]
, P =

[
1 0
0 1

]
.

Out of the 10,000 samples that were taken, 819 satisfy the guard (dark/blue
samples, to the left of the guard boundary 1 + xc 1 + x3

c 1 − xc 2 = 0). This
leads to the conditional guard probability



64 3 Hybrid Estimation

-4 -3 -2 -1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

x

guard = TRUEguard = FALSE

P(guard) = 0.1587

(a) scalar guard evaluation

-4 -3 -2 - 1 0 1 2 3 4 5 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

x

guard = TRUE guard = FALSE

1

2

(b) Monte-Carlo evaluation of
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Fig. 3.5. Guard probability evaluation.

P (cxc|pc,k−1) =
819

10000
= 0.0819.

An open research issue is to utilize other approaches to compute P (cxc|pc,k−1)
more efficiently (see, for example, [97]). For example, through a combination
of restricting and approximating the function qxc(xc) of the guard cxc.

Once the transition probabilities

P
(j)
T ν,k = P (x(j)

d ν,k, τη|x̂(i)
k−1,uk−1)

= pτη(x(j)
d ν,k) P (cη|x̂(i)

k−1,uc,k−1,ud,k−1) (3.85)

for the transition τη = 〈pτη, cη, rη〉, τη ∈ Tν of all components Aν , ν = 1, . . . , ζ
are determined, we can calculate the overall probabilistic transition function
P

(j)
T ,k for a particular trajectory estimate X̂

(j)
k by taking the product of the

(independent) component transitions

P
(j)
T ,k =

ζ∏
ν=1

P
(j)
T ν,k. (3.86)

Full hypothesis estimation – epilogue

Hybrid estimation, as introduced above, considers all possible mode transitions
that can occur during the dynamic evolution of the system. This motivates
the name full hypothesis tree for the fully grown hypothesis tree that considers
estimates up to time-step k. It builds the tree incrementally, starting from an
initial set of λ0 ≤ l state estimates (l denotes the number of possible modes of
the cPHA). Expanding the full tree, which is equivalent to tracking all possible
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trajectories of a system, is almost always intractable because the number of
trajectories becomes too large after only a few time steps. Reconsider the
10 component cPHA example that was mentioned above. The components
have in average 5 modes and each mode has in average 3 successor states.
This cPHA represents an automaton with 510 ≈ 10,000,000 modes! Hybrid
estimation, as formulated above, and a single initial estimate x̂(1)

0 leads to a,
worst-case exponentially, increasing number of λk = (310)k trajectories that
are to be tracked at a time-step k. Figure 3.6 visualizes this blowup for a
second hybrid estimation step.

0
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1
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1
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2
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..
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..
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.

(1)

Fig. 3.6. Two-step full hypothesis tree for a (moderately) complex system.

An approach to coping with this exponential explosion is presented in [98],
where the individual mode sequences under consideration are averaged. This
leads to an optimal prediction of the continuous state alone. Whenever one
is interested in on-line estimation of the full hybrid state, that is, contin-
uous state and mode, it is inevitable to use approximate hybrid estimation
schemes. These algorithms merge trajectory hypotheses and/or prune unlikely
hypotheses, so that the number of hypotheses under consideration stays within
a certain limit.

The problem of exponential growth has been addressed by a variety of
approximate hybrid estimation schemes, mostly referred to as multiple-model
(MM) estimation algorithms, in literature. The next section reviews these
algorithms and introduces the most prominent one, the interacting multiple-
model algorithm (IMM) [8]. This algorithm will later serve as a base-line
to our novel hybrid estimation scheme, which we will present afterwards in
Section 3.5.
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3.4 Multiple-Model Estimation

The multiple-model (MM) estimation algorithms are powerful sub-optimal es-
timation algorithms for the hybrid estimation problem. Their applications
are to be mainly found in fields of aeronautics and aerospace, for example for
target tracking. Examples for this class of estimation algorithms are the gener-
alized pseudo-Bayesian (GPB) [7], the detection-estimation [65], the residual
correlation Kalman filter bank [66], and the interacting multiple-model algo-
rithm (IMM) [8, 67].

The generalized pseudo-Bayesian (GPBn) Algorithm

A simple approach to cope with the exponential explosion of the number of tra-
jectory hypotheses is to combine them and consider different mode sequences
only for the last n estimation steps. This is the essence of the generalized
pseudo-Bayesian (GPBn) approaches [7]. The first-order version GBP1, for
instance, considers all possible mode sequences within one estimation-step,
calculates the estimates for all hypotheses and merges them into one hybrid
estimate. More precisely, at the time-step k − 1, there is a single, aggregated
hybrid estimate x̂k−1. Starting with this estimate, the algorithm performs
a single hybrid estimation step according to (3.71) - (3.73) and obtains the
mode-conditioned estimates

{x̂(1)
k , x̂(2)

k , . . . , x̂(l)
k }, (3.87)

where x̂(j)
k = 〈mj , p

(j)
c,k〉 denotes the hybrid state estimate with the mode mj

and the continuous estimate p
(j)
c,k. l denotes the number of modes, which the

hybrid model can take on. The algorithm merges the estimates according to
their conditional probabilities b

(j)
k . This leads to, what we previously called,

the overall continuous estimate (3.76)-(3.78). This overall estimate can be
expressed in terms of its lumped PDF

pc,k =
l∑

ν=1

b
(ν)
k p

(ν)
c,k ,

or its mean value x̂c,k and the covariance matrix Pk, as given above in (3.77)-
(3.78). In terms of the mode, one can take the maximum a posterior (MAP)
approach and select the most likely mode x̂d,k = mξ, according to the con-
ditional probabilities bk of the mode-conditioned estimates (3.87), that is,
b
(ξ)
k ≥ b

(ν)
k for all ν = 1, . . . , l.

In its generalized form, a GPBn algorithm calculates all trajectory hy-
potheses for n-steps and merges them into a single hybrid estimate. One can
view this operation as building, at each time-step k, an n-step full hypotheses
tree that originates at an aggregated hybrid estimate x̂k−n. As a consequence,
the algorithm requires at most ln concurrent filtering operations per estima-
tion step.
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The Interacting Multiple-Model (IMM) Algorithm

A good trade-off between computational cost and estimation quality is achieved
by the interacting multiple-model algorithm [8]. IMM provides an estimate
with quality similar to GPB2, but only requires l concurrent filters per esti-
mation step (one filter per mode mj ∈ Xd of the hybrid model). Each filter
uses a different combination (mixing) of the previous mode-conditioned esti-
mates

{x̂(1)
k−1, x̂

(2)
k−1, . . . , x̂

(l)
k−1} (3.88)

as initial value for the estimation at time-step k. Again, the set (3.88) contains
one estimate for each mode mj ∈ Xd of the cPHA model and we assume that
the superscript index j of the estimate x̂(j)

k−1 directly refers to the mode mj

of the estimate (x̂(j)
d,k−1 = mj).

The algorithm can be interpreted as a two-step hidden Markov model
(HMM) style belief-state update that determines the conditional probability
distribution for the set of modes b

(j)
k = bk(mj), j = 1, . . . , l, together with an

associated continuous filtering operation. The first step calculates the prior
probability for being at a mode mj as

b
(j)
k|k−1 =

l∑

i=1

P (mj |x̂(i)
k−1,uk−1) b

(i)
k−1, j = 1, . . . , l. (3.89)

P (mj |x̂(i)
k−1,uk−1) denotes the conditional transition probability from the

mode mi to the mode mj , since the hybrid estimate x̂(i)
k−1 denotes an estimate

with the mode mi. This step also provides the l2 IMM mixing probabilities

µij =
P (mj |x̂(i)

k−1,uk−1) b
(i)
k−1

b
(j)
k|k−1

, (3.90)

which specify the “level of interaction” among the modes. The following mix-
ing operation determines the initial condition for the mode-conditioned filters

p̄
(j)
c,k−1 =

l∑

i=1

p
(i)
c,k−1µij , j = 1, . . . , l. (3.91)

Of course, an (extended) Kalman filter uses a mean and a covariance matrix
to express a PDF estimate. Thus, one utilizes the following mixed mean x̄(j)

c,k−1

and covariance matrices P̄(j)
k−1 as initial condition for the mode-conditioned

filters:

x̄(j)
c,k−1 =

l∑

i=1

x̂(i)
c,k−1µij , (3.92)

P̄(j)
k−1 =

l∑

i=1

[
P(i)

k−1 − (x̂(i)
c,k−1 − x̄(i)

c,k−1)(x̂
(i)
c,k−1 − x̄(i)

c,k−1)
T
]
µij . (3.93)
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The second step of the IMM algorithm applies one extended Kalman
filter per mode mj . The filters use the mixed mode conditioned estimates
{x̄(j)

c,k−1, P̄
(j)
k−1} as initial condition and provide the updated set of mode-

conditioned estimates
{x̂(1)

k , x̂(2)
k , . . . , x̂(l)

k }, (3.94)

together with the associated hybrid observation functions PO
(j)
k , j = 1, . . . , l,

as described above in (3.51)-(3.54). These hybrid observation functions are
used to calculate the posterior probabilities for the mode-conditioned esti-
mates at time-step k as

b
(j)
k =

PO
(j)
k b

(j)
k|k−1∑l

ν=1 PO
(ν)
k b

(ν)
k|k−1

. (3.95)

Finally, the IMM algorithm combines the mode-conditioned estimates and
provides the overall continuous estimate

pc,k =
l∑

i=1

p
(i)
c,kb

(i)
k (3.96)

as estimation output. The most likely mode mξ according to b
(ξ)
k ≥ b

(ν)
k , ν =

1, . . . , l can be used to specify the mode for the overall hybrid estimate

x̂k = 〈mν , pc,k〉. (3.97)

Adaptive Multiple-Model Estimation

The IMM algorithm is an example for a sub-optimal hybrid estimation scheme
that achieves tractability by limiting the number of hypotheses that are
checked in the course of estimation. It requires as many filters as there are
modes in the hybrid model. In a real-world example, where many components
can have several modes of operation and can fail and deteriorate in many ways,
this number of modes can still be very large. Recall the example given above
– 10 components with 5 modes each. Only a small portion of the mode-space
(10,000,000 modes) will be relevant at each time-step k. As a consequence,
the evaluation of all mode hypotheses will lead to unnecessarily high com-
putational cost and deteriorate the estimation result as too many irrelevant
filters compete against the small portion of relevant filters [68].

Adaptive MM-estimation was proposed as a possible solution for this
dilemma [68, 69, 70]. This estimation scheme, that is also called variable-
structure MM-estimation in literature [68], adapts the mode-set to a sub-
set of modes, that are most likely at a given time-point. The various adap-
tive MM-estimation methods cited above differ by their selection scheme
that determines the appropriate subset of modes M(k) ⊂ Xd. The digraph
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Fig. 3.7. Mode transition graph for a simple flow regulator model.

switching algorithm presented in [68], for instance, adapts the mode-set ac-
cording to the transition graph of the model and switches among groups of
closely related modes. The mode transition graph for the simple flow regulator
model with three nominal modes in Fig. 3.7, for example, would imply three
mode-sets: {closed, partly-open }, {closed, partly-open, fully-open}
and {partly-open, fully-open}.

Adaptive MM-estimation works in two phases. The first mode-set adap-
tion phase uses a statistical test to choose a suitable mode-set M(k). In the
second phase, estimation proceeds by evaluating all modes mi within the set
M(k). This clear separation of mode-set adaption and estimation has the ad-
vantage that various mode-set adaption schemes can be used together with
a standard MM-estimation algorithm. A major drawback, however, is that
the algorithm does not make use of posterior information that is gathered in
the course of estimation. Furthermore, the individual model sets can still be
very large for models that capture real-world applications. Reconsider the ten
component example above and assume that each mode of a component has
in average 2 successor modes (one nominal and one fault mode). An adaptive
MM-estimation method considers the current mode, and its two successors
for each component. This leads to 310 ≈ 60,000 modes – still unrealistically
large for on-line estimation.

3.5 Focused Hybrid Estimation

Some monitoring and diagnosis systems that build upon the discrete model-
based reasoning paradigm, for example the Livingstone and Titan systems [11],
utilize the concept of Hidden Markov Model (HMM) style belief-state up-
date. They reformulate a discrete, constraint-based estimation problem as
a multi-attribute utility problem in the style of HMM belief-state update,
and employ advanced search techniques from the toolkit of model-based rea-
soning ([14, 99]) to focus estimation onto the most likely estimates. Such
an approach is successful because a small subset of the possible hypotheses,
that is, the set of the most likely ones, is typically sufficient to cover most
of the probability space. For hybrid estimation, we utilize the similarities of
full-hypothesis hybrid estimation (3.71)-(3.72) and the HMM style belief-state
update (3.68)-(3.69) and re-frame the estimation task as search. One can inter-
pret this operation as carefully exploring the full hypothesis tree to focus onto
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the leading set of trajectory hypotheses. We first demonstrated this principle
in [6], where we introduced one specific variant of the class of search-based
hybrid estimation algorithms that we present below.

Let us start with reconsidering the full hypothesis estimation problem
visualized as a full hypothesis tree of Fig. 3.8a. It is reasonable to assume
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Fig. 3.8. Full hypothesis tree.

that only a small subset of the 3,600,000,000 hypotheses at time-step 2 is
relevant to describe the hybrid state of the system at this time-step. We could
also say that a small subset of the set of possible hypotheses covers most
of the probability space in terms of bk. The majority of unlikely hypotheses
have little impact onto the overall estimation result due to their negligible
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likelihood b
(j)
k . However, calculating these hypotheses imposes most of the

computational burden that is encountered in the course of hybrid estimation.
It is therefore apparent to avoid their deduction as much as possible, and to
search the hypothesis tree for the set of most likely hypotheses only.

Key for real-time operation is to provide a search-based hybrid estimation
algorithm that incrementally returns estimation hypotheses, starting with the
most likely one. Once the most likely hypothesis is found, we can continue
the process to provide a steadily growing set of estimation hypotheses that
is ordered with respect to the likelihood bk. The process can be terminated
whenever the computation time or the memory space exceeds a certain limit.
This so-called any-time / any-space formulation of the estimation algorithm
guarantees that the set of hypotheses found so far represents the leading
set of estimates for the specific time-step under consideration. The following
sections demonstrate our novel approach to hybrid estimation in that they
reformulate the estimation task as a search problem and provide efficient and
focused solutions for it.

3.5.1 Hybrid Estimation as Shortest Path Problem

In order to reformulate hybrid estimation as search, we first take a closer look
at the operations that take place whenever hybrid estimation deduces possible
successors of a hybrid estimate x̂(i)

k−1 with the likelihood b
(i)
k−1. Figure 3.8b

visualizes the 2-step hybrid estimation process (3.71) and (3.72). The first step
calculates the possible immediate successors x̂′k−1, according to the transition
specification of the underlying cPHA model

x̂(i)
k−1 −→ {x̂′(1)k−1, . . . , x̂

′(λ)
k−1} (3.98)

and the prior probability distribution bk|k−1, according to (3.71). The inter-

mediate hybrid states x̂
′(j)
k−1 represent the starting point for the estimate of

the trajectory suffix for the sampling period k. The second step (estimation)
considers all possible evolutions and deduces the corresponding estimates

x̂
′(1)
k−1 −→ x̂(1)

k
...

x̂
′(λ)
k−1 −→ x̂(λ)

k

(3.99)

as well as the conditional probability distribution bk according to (3.72). This
involves the execution of λ extended Kalman filters.

Consider, for example, the trajectory hypothesis with the fringe estimate
x̂(j)

k that corresponds to a fringe node nj in the estimation tree, as shown
in Fig. 3.9. One obtains the conditional probability b

(j)
k for the trajectory

estimate that leads to x̂(j)
k by multiplying the conditional probabilities along

the path and a consecutive normalization
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b
(j)
k =

1
c
P

(j)
O P

(j)
T b

(i)
k−1. (3.100)

Instead of calculating all transitions and all filters to deduce the set of
hypotheses {x̂(1)

k , . . . , x̂(λk)
k }, we intend to perform this operation selectively to

focus on the leading set. The conditional probabilities along the possible paths
in the tree indicate whether a branch in the tree leads toward a promising
estimation candidate, or not. One can view this as a shortest path problem,
where the conditional probabilities along the arcs of the tree correspond to
path lengths, or more generally the path costs, and one seeks for the shortest
path, that is, the path with the lowest cost. Framing the estimation problem in
this context has the advantage that one can utilize advanced search algorithms
that were developed for this problem, such as Dynamic Programming [12, 13]
or A* [14, 71], for example.

In shortest path problems the cost of arcs along the path are combined
using addition. Our probabilistic framework, however, uses multiplication
(3.100) and we seek for the largest conditional probability b

(ν)
k . Therefore,

we use the the standard approach of taking the negative logarithm to frame
the problem in the context of minimizing an additive path cost. The negative
logarithm retains the ordering

b
(ν)
k > b

(j)
k ⇐⇒ − ln(b(ν)

k ) < − ln(b(j)
k ), (3.101)

as well as it transforms the multiplications to additions

ln(b(j)
k ) = − ln

(
1
cP

(j)
O P

(j)
T b

(i)
k−1

)

=
[
− ln(P (j)

O )
]

+
[
− ln(P (j)

T )
]

+
[
− ln(b(i)

k−1)
]

+ ln(c).
(3.102)

The normalization factor

c =
λk∑

j=1

P
(j)
O P

(j)
T b

(i)
k−1

is the same for all trajectory hypotheses, thus it only adds a constant offset in
(3.102) and can be omitted. Furthermore, it makes sense to ensure that the
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cost of arcs within the tree is non-negative. This ensures an monotonically
increasing path cost along a possible path and simplifies the search operation.
Arcs that represent transition expansions obey this property as P

(j)
T of an

admissible transition represents a (conditional) probability so that

P
(j)
T ∈ (0 1] ⇐⇒ − ln(P (j)

T ) ∈ [0 ∞). (3.103)

This motivates the following cost definition for transition arcs:

g(transition-arcj) := − ln(P (j)
T ). (3.104)

A positive path cost, however, cannot be guaranteed for arcs that represent
the filtering step of hybrid estimation whenever we simply take the negative
logarithm of PO. Equation (3.53) defines the probabilistic observation function
PO as the value of a multi-variate Gaussian PDF

P
(j)
O,k =

1
|2πSk|1/2

e
−0.5

h
yc,k−g(j)

�
x̂

(j)
c,k|k−1,uc,k

�iT
S−1

k

h
yc,k−g(j)

�
x̂

(j)
c,k|k−1,uc,k

�i
.

(3.105)
This implies that PO is not limited to positive values smaller than 1. As a
consequence, we would obtain a negative path cost whenever PO > 1. Inde-
pendently of this difficulty, Maybeck and Stevens [100] reported in the context
of MM-estimation that the normalization term in (3.105) represents an artifi-
cial bias that can lead to incorrect mode estimates. They suggest to omit the
normalization and utilize a modified observation function

P̄
(j)
O,k := e

−0.5
h
yc,k−g(j)

�
x̂

(j)
c,k|k−1,uc,k

�iT
S−1

k

h
yc,k−g(j)

�
x̂

(j)
c,k|k−1,uc,k

�i
(3.106)

instead. This solution is legitimate since the second step of hybrid estimation
(3.72) ensures the normalization of bk, anyhow. The replacement of PO with
P̄O solves our cost issue as well, because the value of modified observation
function P̄

(j)
O is within the interval [0 1]. This leads to the following cost-

definition for arcs that represent the filtering step within the full hypothesis
tree3:

g(estimation-arcj) := − ln(P̄ (j)
T ). (3.107)

Up to now, we made the assumption that estimation starts from a single
initial estimate x̂0 (e.g. Fig. 3.8a). Our cPHA model, however, provides a
more general initial state definition X0 that encodes several initial estimates
x̂(1)

0 , . . . , x̂(λ0)
0 , with varying likelihood b

(1)
0 , . . . , b

(λ0)
0 . As a consequence, hybrid

estimation has to consider λ0 ≥ 1 hypothesis trees concurrently, each one
originating from one initial estimate x̂(ν)

0 ∈ {x̂(1)
0 , . . . , x̂(λ0)

0 } (Fig. 3.10a). We
can interpret this situation as having one hypotheses tree that originates from

3 The modified observation function P̄
(j)
O can be provided by the underlying filtering

algorithm in the same way as the original one that was given in (3.53).
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Fig. 3.10. Full hypothesis tree for several initial states x̂
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0 , . . . , x̂

(l0)
0 .

a common (virtual) node n0, as shown in Fig. 3.10b. An initial path segment
from n0 to a node nν that encodes an initial estimate x̂(ν)

0 is then characterized
by the likelihood b

(ν)
0 of the initial state. Equivalently, we can say that a node

nν , which abstracts the initial state x̂(ν)
0 , is characterized by the initial cost

g(nν) := − ln (b(ν)
0 ). (3.108)

This specification for the initial states, together with the arc costs that were
introduced above, enable us to define the overall path cost from the root node
n0 to a node nj recursively as

g(nj) := − ln(P̄ (j)
O )− ln(P (j)

T ) + g(ni), (3.109)

where P
(j)
T denotes the probability of the transition along the trajectory suf-

fix under consideration and P̄
(j)
O denotes the modified observation function

(3.106) for the resulting estimation hypothesis j. In the following, we will also
use the notation

gi,j := g(ai,j) = g(nj)− g(ni) = − ln(P̄ (j)
O )− ln(P (j)

T ) (3.110)

to denote the cost of the arc ai,j : ni
ai,j−→ nj that connects the adjacent nodes

ni and nj . The number of arcs from the root node n0 to a particular node ni
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specifies the tree-depth d(ni). The tree-depth directly relates to the time-step
k of a hybrid estimate x̂(i)

k that is encoded by a node ni, namely d = k+1 (see
Fig. 3.10b). We express the correspondence between a hybrid state estimate
x̂(i)

k and an associated node ni in terms of the functions

ni = node(x̂(i)
k )

x̂(i)
k = hybrid-state(ni)

k = time-point(ni).

(3.111)

However, whenever it is clear from the context, we sometimes use the estimate
x̂(i)

k to refer to the corresponding node ni within the hypothesis tree directly,
without explicitly emphasizing the underlying mapping. Figure 3.11 illustrates

0.90

0.10

n
0

n
1

n
2

n
3

0.26

0.32

0.22

n
4

n
5

n
6

n
7

n
8

n
9

n
10

n
11

n
12

n
13

n
14

n
15

n
16

n
17

n
18

n
19

n
20

n
21

0.32

0.02

0.40

0.01

0.34

0.20

0.18

0.44

0.35

0.44

0.10

0.10

0.05

0.02

0.76

0.01

0.00520

0.17686

0.10403

0.09363

0.01430

0.01138

0.16905

0.20807

0.14305

0.06040

0.01373

0.00018

0.00009

0.00004

(a) tree with probability la-
beling

0.11

2.30

n0

n1

n2

n3

1.35

1.14

1.51

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14

n15

n16

n17

n18

n19

n20

n21

1.14

3.91

0.92

4.61
1.08

1.61

1.71

0.82

1.05

0.82

2.30

2.30

3.00

3.91

0.27

4.61

 5.86   (11)

 2.33   (2)

 2.86   (5)

 2.96   (6)

 4.84   (8)

 5.07   (10)

 2.38   (3)

 2.17   (1)

 2.54   (4)

 3.39   (7)

 4.87   (9)

 9.21   (12)

 9.91   (13)

10.82   (14)

(b) tree with cost labeling and
ranking

Fig. 3.11. Simple two-step full hypothesis tree with two initial states
({x̂(1)

0 , x̂
(2)
0 }=̂{n1, n2}) and estimates for k = 1 ({x̂(1)

1 , . . . , x̂
(5)
1 }=̂{n3, . . . , n7}) and

k = 2 ({x̂(1)
2 , . . . , x̂

(14)
2 }=̂{n8, . . . , n21}).

the relationship between the conditional probabilities of hybrid estimation
(Fig. 3.11a) and the cost of the paths (Fig. 3.11b) for a full hypothesis tree.

The recursive application of the hybrid estimation (3.71)-(3.72) can be seen
as performing a breadth-first search on the full hypothesis tree. This search
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algorithm exhaustively considers all nodes at tree-depth j of the hypothesis
tree, before going to the next level (j + 1).

A Dynamic Programming View of Hybrid Estimation

Probably the best known algorithmic approach for solving shortest path (or
minimum cost) problems is Dynamic Programming [12, 13]. Dynamic Pro-
gramming (DP) relies upon Bellmans principle of optimality that states:

Principle of Optimality: Let {n0, n
∗
1, n

∗
2, . . . , n

∗
k} be the optimal

(minimum cost) path from the root node n0 to a goal node n∗k. Then,
the truncated policy {n∗i , n∗i+1, . . . , n

∗
k} is optimal for the subproblem

that starts at n∗i .

This rather apparent fact suggests to construct the optimal path, starting
with the tail problem that considers 1-step paths to goal nodes, and then
extending the paths incrementally for two, three, four, etc., steps until the
path reaches the root node n0. In terms of our application this would mean
that the algorithm proceeds backward in time, which is impractical for on-line
estimation. However, it is evident that the shortest path from the root node
n0 to a goal node n∗k is also optimal for the reversed shortest path problem,
which starts at the node n∗k, traverses the arcs in the opposite direction, and
that terminates at the node n0. Interpreting a search problem in the reversed
direction leads to the forward DP algorithm.

Forward DP starts at the root node n0 and considers all one-step paths
first (Fig. 3.12a). This operation is equivalent to ranking the initial states
x̂(1)

0 , . . . , x̂(λ0)
0 . It then incrementally extends the paths for two, three, etc.,

steps until it reaches nodes ni that abstract hybrid estimates x̂(i)
k for the

time-step k under consideration (Fig. 3.12c for k = 2).
The advantage of DP over a breadth-first search technique is due to the

DP’s principle of optimality. Whenever several paths within a graph lead to a
node ni, DP only extends the path with the lowest cost and discards redundant
paths of higher cost. The full hypothesis tree of hybrid estimation, however,
does not share nodes among the branches, because each hybrid estimate x̂(i)

j

belongs to one trajectory hypothesis only. This property directly follows from
the fact that the state of a hybrid model can take on infinitely many valuations
due to the real valued continuous state variable. As a consequence, there is
only one path through each node ni and we do not gain any advantage of
using DP instead of performing breadth-first search, or directly applying the
recursive hybrid estimation equations (3.71)-(3.72).

This is in contrast to discrete estimation with hidden Markov Models
(HMM). Whenever one is interested in estimating the possible mode sequence
for the HMM model with a finite number of l possible states (modes), one
can collapse the hypothesis tree into a Trellis diagram. A trellis diagram is
an acyclic graph that has at each layer at most l nodes, one for each mode
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Fig. 3.12. Expansion of full hypothesis tree with forward Dynamic Programming.

of the model. The connecting arcs of two layers are determined by the tran-
sition topology of the model. The arcs are labeled with the product of condi-
tional transition and the conditional observation probability, given the mode
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and the imperfect (discretely valued) observation at the time-point under
investigation. Figure 3.13 illustrates the mapping of the hypothesis tree to
the corresponding trellis diagram for a simple HMM model with 4 possible
modes. For example, the nodes {n8, n13, n16, n18, n21} of the full hypothesis
tree (Fig. 3.13a) that describe fringe states for trajectory estimates with mode
m1 at k = 2 are mapped to a single node n6 of the associated trellis diagram
(Fig. 3.13b).
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Fig. 3.13. 2-step full hypothesis tree for HMM and associated trellis diagram.

The advantage of the trellis diagram is that it does not grow beyond the
bound of l nodes per layer (or estimation step). Furthermore, one can take
advantage of the principle of optimality and only consider the most likely path
from the source n0 to a node ni within the tree. This forward DP approach for
identifying the most likely mode sequence is known as the Viterbi algorithm in
literature [13]. Even though it is tempting to apply this approach for hybrid
estimation as well, for example, to identify the most likely mode sequence
only, it is easy to see that this cannot be done. The hybrid model captures
mode transitions and observations that are dependent of the continuous state.
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Thus, PO and PT and the corresponding cost g(a) of the associated arc within
the tree, depend on xc. Even though two paths of the full hypothesis tree lead
to two estimates x̂(i)

ν and x̂(j)
ν with the same mode mι, they will almost

always have different continuous estimates x̂(i)
c,ν 6= x̂(j)

c,ν . Now let us assume
that these distinct hybrid states are abstracted as a single node nι in a trellis
diagram because of the same mode. Their different continuous state estimates
imply different costs for the continuation nι → . . . → ngoal. This violates the
principle of optimality, because optimality of the trajectory suffix depends on
the trajectory prefix4. The IMM algorithm can be seen as a sub-optimal hybrid
estimation algorithm that maps the full hypothesis tree into a trellis diagram.
This limits the tree growth over time. The argument above, however, shows
that we cannot apply the Viterbi algorithm to efficiently search the trellis
diagram. Instead, we have to perform the full set of IMM calculations ((3.89)-
(3.95)) step by step. This is equivalent to exploring the Trellis diagram with
breath-first search.

Another consequence of the argument above is that we cannot perform
the mode estimation and the continuous state estimation independently. For
example, one could think of using a traditional HMM estimation scheme for
mode estimation, and (extended) Kalman filtering for the continuous state es-
timation. We have to consider both tasks in their interleaved form. Therefore,
we stick to the full hypothesis tree and seek for mechanisms that selectively
extend the tree toward the most likely estimates.

Focused Hybrid Estimation with Best-First Search

Instead of expanding the hypothesis tree step by step, we intend to expand
those nodes within the tree that seem most promising to lead toward a low-
cost goal node. This is in spirit of best-first search5. This search paradigm
maintains unexpanded nodes ni of the search problem in a search agenda,
sorts them according to their ’promise’, or utility measure f(ni), and expands
the best node of the agenda first. Suitable utility measures for this strategy
are, for example, the cost of the path so far (g(ni)), the expected cost to go
(denoted by h(ni)), or the combined measure (g(ni) + h(ni)).

Let us start to explore the class of best-first search algorithms with an
algorithm that utilizes the cost f(ni) := g(ni) of the path so far to select the
node that is expanded in the next search step. The algorithm can be seen as a
variant of the single-source shortest path algorithm of Dijkstra [102, 103] and
is also referred to as uniform-cost search [73] in literature.
4 This is directly related to the fact that the consideration of the mode only repre-

sents a coarse quantization of the hybrid state that implies the loss of the Markov
property [101].

5 Some literature sources use the term best-first search to denote a specific algorithm
that utilizes the expected cost to go as utility (e.g. [72]). We adopt the notation
of [73] and denote a class of algorithms that utilize a variety of definitions for the
utility of a node.
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Fig. 3.14. Expansion of full hypothesis tree with uniform-cost search until the first
solution is found.

Again, we use the simple two-step full hypothesis tree of Fig. 3.11 as
the example to illustrate the search algorithm. The initialization of the best-
first search problem puts the root node n0 onto the search agenda. The first
search step removes n0 from the agenda and deduces all possible successors.
These successors are then put back onto the agenda, sorted by their utility
value. This operation is equivalent to deducing all possible initial states x̂(i)

0

and sorting them according to their belief b
(i)
0 . In our example this leads to
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(Fig. 3.14a)
step 1: agenda = {n1, n2}.

The second step, takes the leading unexpanded node n1 from the agenda and
applies the goal test, in other words, it evaluates whether n1 represents an
estimate at the time-step under consideration (e.g. k = 2). The goal test
fails, and search proceeds by determining the successor nodes of n1. This
expansion returns {n3, n4, n5} (Fig. 3.14b). Search inserts these nodes in the
agenda according to their utility values and returns

step 2: agenda = {n5, n3, n2, n4}.

The next step takes n5, applies the goal test, and expands n5 to {n14, n15, n16}
(Fig. 3.14c). This provides the updated agenda

step 3: agenda = {n3, n15, n2, n14, n16, n4},

and
step 4: agenda = {n15, n2, n9, n14, n16, n10, n11, n4, n8}

for the consecutive search step (Fig. 3.14d). The fifth step takes n15 and
recognizes the node as a goal node. The successful goal test indicates that the
first solution is found since all other nodes on the agenda have a higher utility
value.

The advantage over breath-first search is apparent. While breath-first
search expands 7 nodes to obtain all 21 nodes of the full hypothesis tree
for k = 2, uniform-cost search only expands 4 nodes and identifies the leading
goal node based on a partial hypothesis tree with 12 nodes. Thus, it identi-
fies the leading goal-node (or hybrid estimate) by only considering half of the
hypothesis tree.

One reason for the rapid growth of the full hypothesis tree is the large
number of possible successor states for hybrid estimates (Fig. 3.8 illustrates
this issue for a system 60,000 possible successor modes). Uniform-cost search,
as outlined above, however, fully expands nodes and considers all succes-
sors for nodes within the tree. It is easy to see that one ought to avoid this
full expansion whenever possible, and incrementally expand the nodes in the
course of the best-first search operation. For this purpose, we utilize a pro-
gressive implementation of best-first search that deduces successor nodes on
demand. This search variant is in spirit of the best-first search engine in the
Livingstone system [9]. The underlying idea is simple. The best-first search
operation considers nodes with lower utility value first. Thus, it will always
consider successor nodes consecutively, starting with the successor that has
the lowest utility value. Take, for example, the expansion n1 → {n3, n4, n5}
that is shown in Fig. 3.14b. The leading successor node n5 (utility 1.03) will
always be considered prior the other successors n3 and n4 (utility 1.25 and
4.02, respectively). As a consequence, we can delay the deduction of n3 un-
til the node n5 is selected for further expansion. Whenever this happens, we
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perform a follow-up expansion of the predecessor node n1, together with the
first expansion of n5. This operation provides n3 and n15 and puts them onto
the agenda. The operation of this progressive best-first search algorithm is
illustrated in Fig. 3.15.

The first step expands the root node n0. This provides the leading successor
n1

step 1: agenda = {n1}.
Since n1 is the only node on the agenda it is selected for further expansion,
triggering a follow-up expansion of n0. This yields the successor nodes n5 and
n2, respectively.

step 2: agenda = {n5, n2}.
The third step expands n5. Search obtains n15 for the expansion and n3 for
the follow-up expansion of n1.

step 3: agenda = {n3, n15, n2}
Although n15 is a goal node (even the leading one as we will see later), we
need the follow up expansion of n1 in order to guarantee that no other path
can lead to a different goal node with lower utility. The node n3 with utility
1.25 < g(n15) indicates that there might exist a path with a possibly lower
cost from this node onward. Therefore, step 4 expands n3, and again, performs
the follow-up on n1. This provides n9 and n4 and the agenda

step 4: agenda = {n15, n2, n9, n4}.
Step 5 takes the leading node n15 and identifies it as a goal node. This provides
the first solution. No other path from the partially expanded nodes {n3, n4, n5}
onward can lead to an alternative goal node with lower utility. The selection
of n15 also triggers the follow-up expansion of n5. This follow-up expansion is
needed in order to restart the search operation for the consecutive solutions.

The progressive best-first search approach deduces at most two successor
nodes per expansion, whilst guaranteeing that no solution is overseen (com-
pleteness). It is evident that the deduction of few successors keeps the number
of nodes on the search agenda small. One of the tasks of best-first search that
consumes most of the computation time is to insert new successor nodes into
the agenda, that is, basically sorting the agenda. Few successor nodes, as well
as a short agenda, contribute to an efficient execution. Table 3.1 provides the
pseudo-code description of our progressive implementation of best-first search
that will be used as the base-algorithm for hybrid estimation.

The basis for this implementation of best-first search is the incremental
node expansion function

get-next-best-successor(ni, search-problem).

This function provides the node expansion of Fig. 3.8b consecutively, in that
it returns the leading successor at its first call, and the next best successors
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Fig. 3.15. Expansion of hypothesis tree with progressive uniform-cost search until
the first solution is found.



84 3 Hybrid Estimation

function progressive-best-first-search(problem)
returns the next best solution and updated search problem or signals failure
solution ← { }
agenda ← agenda[problem]
f(·) ← utility-function[problem]
while solution = { }

if agenda = { }
return { { }, problem}

else
node ← remove-best-node(agenda)
follow-up-node ← get-next-best-successor(predecessor(node), problem)
agenda ← insert-node(follow-up-node, agenda, f(·))
if goal-test(node) = True

solution ← node
else

successor-node ← get-next-best-successor(node, problem)
agenda ← insert-node(successor-node, agenda, f(·))

solutions[problem] ← append(solutions[problem], solution)
agenda[problem] ← agenda
return {solution, problem}

Table 3.1. Pseudo-code for progressive best-first search.

at consecutive calls. Node expansion performs the two main hybrid estima-
tion tasks: firstly, it considers all possible transitions, given a hybrid estimate
x̂(i)

k−1 that is associated with a node ni (transition expansion), and secondly, it
performs the continuous estimation for the time period k−1 → k (continuous
state filtering). Branching occurs at the transition expansion step. The poten-
tially large set of possible transitions is due to the combinatorial combination
of few transitions for each component (e.g. 10 components with 3 possible
transition each leads to 310 ≈ 60,000 possible successors, as cited above). In
our cPHA modeling framework, we assume that the mode transitions of the
system’s components are independent of each other. This assumption allows
us to consider possible mode transitions component-wise and condition them
on the hybrid estimate x̂(i)

k−1 and the actuated input uk−1. Component-based
approaches for identifying mode transitions was introduced within the Liv-
ingstone [9] system, based on algorithms developed within the GDE [10] and
Sherlock [19] systems for multiple fault diagnosis. We pursue a similar ap-
proach for hybrid estimation/diagnosis and formulate the enumeration of the
possible successors as an underlying search problem Fig. 3.16 illustrates this
operation for a cPHA with ζ components.

Starting with the hybrid estimate x̂(i)
k−1, and the actuated input uk−1,

we determine the set of possible transitions and their associated transition
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Fig. 3.16. Best-first search tree for component-wise node expansion (with proba-
bility labeling).

probabilities PT i, for every component Ai of the cPHA independently. These
transitions define the first ζ layers of the associated search tree (Fig. 3.16).
Node expansions at the last layer (ζ + 1) of the tree performs the continu-
ous estimation and provides the updated hybrid estimates x̂(j)

k . Let us illus-
trate this operation with a simple cPHA. The cPHA shall be comprised of
3 components A1,A2,A3, where each component can be in one out of two
modes. So any hybrid estimate x̂(i)

k−1 can have at most 23 = 8 successors

x̂(j)
k . We assume that the estimate x̂(i)

k−1 denotes a hybrid state with mode

x̂(i)
d,k−1 = [m11,m21,m31]T and consider the following transitions

A1 : m11 → m11 : PT 11 = 0.70
m11 → m12 : PT 12 = 0.30

A2 : m21 → m21 : PT 21 = 0.55
m21 → m22 : PT 22 = 0.45

A3 : m31 → m31 : PT 31 = 0.60
m31 → m32 : PT 32 = 0.40.

(3.112)

These transitions and the consecutive filtering step spans a tree as shown
in Fig. 3.17 (with hypothesized P̄O values for the filtering steps). Again, we do
apply best-first search to enumerate the possible successors x̂(j)

k of x̂(i)
k−1, or the

associated search nodes of the main search problem, respectively. The function
get-next-best-successor(·) of the main search problem implements the
progressive successor enumeration. The function initiates the underlying best-
first search problem and searches for the first solution, upon its first call. It
returns this solution, which represents the least-cost successor of ni, and stores
the search agenda for consecutive successor generations. Each subsequent call
to the node expansion function restarts the search and provides the next best
successor.

Table 3.2 summarizes the pseudo-code descriptions for the progressive
node expansion function and the initialization of the underlying best-first
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function get-next-best-successor(node of Class HE-Node, main-search-problem)
returns the next best successor node
if first-expansion?(node) = True

BFSG-problem ← initiate-BFSG-problem(node, main-search-problem)
else

BFSG-problem ← BFSG-data[node]
{successor, BFSG-data[node]} ← progressive-best-first-search(BFSG-problem)
return new-HE-Node(successor)

function initiate-BFSG-problem(node of Class HE-Node, main-search-problem)
returns initiated best-first successor generation search problem
k ← time-point[node]
hybrid-estimation-data ← application-data[main-search-problem]
CA ← automaton[hybrid-estimation-data]

x̂
(i)
k−1 ← hybrid-state[node]

U ← input-value[hybrid-estimation-data]
Yc ← observation[hybrid-estimation-data]

BFSG-problem ← make-new-BFSG-problem(CA, x̂
(i)
k−1, Uk−1:k, Yc,k−1:k)

transitions[BFSG-problem] ← deduce-component-transitions(x̂
(i)
k−1, Uk−1:k−1, CA)

agenda[BFSG-problem] ← {new-BFSG-Node(root)}
return BFSG-problem

Table 3.2. Pseudo-code for progressive node expansion of hybrid estimation.
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search problem (best-first successor generation - BFSG). The initialization
function

initiate-BFSG-problem(ni,BFSG-search-problem)

performs the first main task of hybrid estimation. It calculates the transi-
tion probabilities for the ζ components of the automaton, as indicated in Sec-
tion 3.3, and sets up the search problem accordingly. This underlying best-first
search problem utilizes an instance of the progressive node expansion func-
tion get-next-best-successor(·) for nodes of class BFSG-Node. It builds
a search tree that is based on the component transitions up to a tree-depth
of ζ. The node expansion at the layer ζ performs the underlying continuous
estimation/filtering. This involves the deduction of a suitable filter, according
to the mode hypothesis and the cPHA model (or its retrieval from a data-
base), as well as the filter execution that provides the new estimate x̂(j)

k . A
slightly different treatment is necessary whenever we expand the root node of
the tree. This expansion performs a best-first search problem that utilizes the
initial state information X0 ν of the individual automaton components Aν and
combines them to deduce a node that represents the next best initial state
x̂(j)

0 .
Up to now we performed uniform-cost search in that we utilize the cost

from the root of the tree to a node (g(nν)) as the utility function for best-first
search. Completeness of uniform-cost search grounds onto the fact that a valid
solution of the search problem has superior utility, compared to all other nodes
on the agenda, regardless of their positions within the search tree. Since the
utility increases monotonically along a search path, it is easy to see that nodes
in the vicinity of the root node tend to have low utility, thus delay the solution
labeling for terminal nodes of the tree. Take, for example, the node expan-
sion introduced above. The leading successor with mode [m11,m21,m31]T is
deduced after 9 steps, however, it takes additional 5 steps to ensure that this
successor is the first solution (Fig. 3.18).

We can focus the search even more whenever we can estimate the cost for
the best path from an intermediate node nν to a goal node. Of course, this
should be done heuristically, without performing the costly filtering operation.
Given the transition probabilities for the individual components (3.112), it
is relatively easy to deduce the best possible transition for each of them.
Whenever we are interested in the expected cost to go, we can utilize the best
transitions for the remaining components to obtain a conservative estimate for
the transition expansions. We cannot predict the outcome of the filtering step
without performing the filtering operation. Therefore, we assume the upper
conservative bound P̄O = 1 for the estimation step. This value, however, does
not provide any useful information as ln(P̄Omax) = − ln(1) = 0. Therefore, we
draw the value of the expected cost to go from the transition steps only.

Consider the 3-PHA example with the possible transitions listed in (3.112).
Given the partial mode assignment [m12, ?, ?]T of the node n2, the best pos-
sible completion is to select the transitions m21 → m21 and m31 → m31 for
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Fig. 3.18. Partial successor tree expansion until first solution is found.

the remaining PHA components A2 and A3, respectively. This leads to an
expected cost to go of

h(n2) = − ln(PT 21)− ln(PT 31) = 1.11. (3.113)

More generally, we can formulate the heuristic h(·) for the expected cost
to go from a node n to a goal node as

h(n) :=
ζ∑

i=ι+1

− ln(max
η

PT iη), (3.114)

where ι = d(n) denotes the number of components with assigned mode, and ζ
denotes the number of components of the cPHA model. The heuristic (3.114)
is an admissible heuristic, that is, it never overestimates the cost to reach the
goal node, since it considers the best possible transitions that imply the lowest
cost for each transition expansion, and a zero cost estimate for the filtering
step. Best-first search that utilizes a utility

f(ni) = g(ni) + h(ni), (3.115)

that is composed of the cost so far g(ni) and an admissible heuristic h(ni), is
referred to as A∗ search in literature6 [14, 71, 73]. Admissibility of the heuris-
tic h(·) ensures completeness, meaning that A∗ does not miss solutions and

6 To be precise, A∗ denotes a best-first search algorithm that utilizes the utility
(3.115), as well as it applies the dynamic programming principle, to eliminate
redundant paths with higher cost. The latter does not provide any advantages for
our hybrid estimation application and, therefore, is not considered here.
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provides the correct enumeration of goal nodes. Furthermore, the application
of the heuristic focuses the search operation onto the leading solutions, thus
improves the efficiency of the best-first search algorithm7. Figure 3.19 illus-
trates the operation of A∗. Compared to uniform-cost search (Fig. 3.18b), A∗
deduces the first solution (successor node for the high-level hybrid estimation
search problem) by considering fewer nodes.
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Fig. 3.19. Partial successor tree expansion with A∗ until first solution is found.

The admissible heuristic (3.114) allows us to utilize A∗ instead of uniform-
cost search for the underlying search problem (best-first successor generation).
Similarly, we also would like to use A∗ for the main search problem that im-
plements focused hybrid estimation. For this purpose, we have to obtain an
admissible heuristic for the main hybrid estimation problem. Transition de-
duction, in particular guard probability calculation, and the continuous esti-
mation (filter deduction and execution) are the two tasks of hybrid estimation
that consume most of the computation time. Therefore, it is evident that a
suitable admissible heuristic should avoid these operations in the course of
obtaining a lower upper-bound for expected the transition probabilities and
values for the observation function. As for (3.114) we have to take the default
value P̄O = 1 for the observation function. For the transition probabilities,
however, it is possible to obtain lower bounds on them without evaluating the
guards. For this purpose, we have to reconsider the transition specifications
of our PHA models (Def. 2.2). A transition for a cPHA component is defined
in terms of the set-valued function T : Xd → 2T that assigns a set of possible
transitions for each mode mi ∈ Xd. These transitions are specified in terms
of transition triples τi := 〈pτi, ci, ri〉 ∈ T . Its probability mass function pτi

defines the threads of the transition τi that is guarded with the conditional
guard ci. The threads define the goal modes, as well as the conditional tran-
sition probabilities, given ci is satisfied. Let us reconsider the visualization of
this transition concept in Fig. 3.20 (previously given in Fig. 2.2). The function
7 In fact, one can show that A∗ is complete, optimal and optimally efficient for any

given admissible heuristic function. See, for example, [73] for an intuitive proof
for these properties.
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Fig. 3.20. Guarded probabilistic mode transitions of a PHA.

T specifies the two transitions T (m1) = {τ1, τ2} for mode m1. Transition τ1,
for example, has the associated guard c1 and a probability mass function pτ1,
that encodes the conditional probabilities P1 and P2 of Fig. 3.20. Without
knowing the truth values (or conditional probabilities) for the two guards, we
can conclude that any transition probability PT i for transitions out of mode
m1 is limited by

PT i ≤ max{P1, P2, P3, P4} =: PTmax(mi). (3.116)

In words, the thread with the largest conditional probability specifies a bound
for the actual transition probabilities. Let us assume that we consider a node
ni of the full hypothesis tree that represents a hybrid estimate x̂(i)

k−j for the

time-step k− j. Based on the mode x̂(i)
d,k−j of the estimate x̂(i)

k−j , we can infer
an upper bound for the transition probability of

PTmax(x̂
(i)
d,k−j) =

ζ∏
ν=1

PTmax(x̂
(i)
d ν,k−j), (3.117)

where x̂(i)
d ν,k−j denotes the mode estimate for the cPHA automaton component

Aν at k − j.
No mode estimate is available for the transitions beyond the time-step

k − j. Therefore, we can only base the estimate on all possible transitions
of each component. The value of the most likely thread of a component Aν

specifies the lower upper bound PTmax(Aν) for the component’s transitions
and provides the value

PTmax(CA) =
l∏

ν=1

PTmax(Aν) (3.118)

for the cPHA automaton.
Given a node ni with its associated hybrid estimate x̂(i)

k−j that specifies the

mode x̂(i)
d,k−j , we define the following admissible heuristic for the continuation

up to a time-step k:



3.5 Focused Hybrid Estimation 91

h(ni) := − ln(PTmax(x̂
(i)
d,k−j))− (j − 1) ln(PTmax(CA)). (3.119)

The leading threads for the PHA components, as well as for the PHA com-
ponents at a particular mode, can be determined at compile-time of the cPHA
model. As a consequence, the evaluation of (3.119) is computationally efficient.
This enables us to utilize A∗ for the main search problem as well. Overall, we
obtain a search procedure which highly focuses onto the portion of the full
hypothesis tree that contains the leading trajectory estimates. The following
table (3.3) summarizes this approach for hybrid estimation in pseudo-code.
The core function hybrid-estimation(·) executes best-first search until it

function initiate-HE-problem(CA)
returns initiated main search problem for hybrid estimation
HE-problem ← new-best-first-search-problem()
time-step[application-data[HE-problem]] ← 0
automaton[application-data[HE-problem]] ← CA
utility-function[HE-problem] ← HE-utility-function(CA)
agenda[HE-problem] ← {new-HE-Node(root)}
return HE-problem

function hybrid-estimation(uk, yc,k, ηk,max, HE-problem)
returns the leading set of estimates for time-step k
time-step[application-data[HE-problem]] ← +1
input-value[application-data[HE-problem]] ← add-value(uk)
observation[application-data[HE-problem]] ← add-value(yc,k)
agenda[HE-problem] ←

append(solutions[HE-problem], agenda[HE-problem])
solutions[HE-problem] ← { }
do progressive-best-first-search(HE-problem)

until (resources-used-up?() or
count(solutions[HE-problem]) = ηk,max)

return {hybrid-estimate(solutions[HE-problem]), HE-problem}

Table 3.3. Pseudo-code for focused hybrid estimation.

used up the computational resources for hybrid estimation, or the number of
solutions reaches a user defined upper bound (ηk,max). The search operation
returns an ordered set of ηk ≤ ηk,max search nodes

Nk = {ni, . . . , nj} (3.120)

that represent the fringe estimates

Xk := {x̂(1)
k , . . . , x̂(ηk)

k } = hybrid-state(Nk) (3.121)
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of the trajectory estimates {X̂(1)
k , . . . , X̂

(ηk)
k } for the leading trajectory hy-

potheses
{M (1)

d,k , . . . , M
(ηk)
d,k }. (3.122)

For simplicity, let us assume that the superscript index j of the hybrid estimate
x̂(j)

k also denotes the rank of this estimate8:

x̂(j)
k = hybrid-state(n-th(Nk, j)).

In order to interpret the hybrid estimation result correctly, we also need the
conditional probabilities b

(j)
k for the leading trajectory hypotheses

{M (1)
d,k , . . . , M

(ηk)
d,k .

Best-first search provides the path-cost g(ni) for nodes ni ∈ Nk. This path
cost directly relates to the un-normalized likelihoods

b̄
(i)
k := P̄

(i)
O P

(i)
T b̄

(j)
k−1, b̄

(i)
0 = b

(i)
0 , (3.123)

according to the logarithmic transformation

g(node(x̂(i)
k )) = − ln(b̄(i)

k ). (3.124)

Hybrid estimation that is based on best-first search considers the ηk leading
estimates out of the λk trajectory hypotheses of full-hypothesis hybrid esti-
mation. As a consequence, we perform normalization upon the truncated set
of estimates and obtain

b
(i)
k =

b̄
(i)
k∑ηk

j=1 b̄
(j)
k

. (3.125)

These conditional probabilities, together with the fringe estimates, define an
approximation for the hybrid belief state bk(·). This involves the weighted com-
bination of the fringe estimates Xk according to (3.74)-(3.79). For example,
to obtain the most likely mode, or the most likely continuous estimate, given
the most likely mode, or the overall continuous estimate for the time-step k.

3.5.2 Suboptimal Search Methods for Hybrid Estimation

We intend to apply hybrid estimation as the monitoring and diagnosis tool
within a process automation system and operate over a considerably long pe-
riod of time. A∗ does a good job in focusing the search operation onto the
most likely branches of the full hypothesis tree. However, the tree fraction
under consideration still grows monotonically as the time proceeds. This is
impractical for on-line estimation that operates over a long period of time.
Therefore, we modify our hybrid estimation algorithm and take a sliding win-
dow approach that only grows a (focused) hypothesis tree over a fixed period
of time.
8 The function n-th(list, j) simply retrieves the j’th element of the ordered list.
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N-Step Hybrid Estimation
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Fig. 3.21. Focused hypothesis tree for the first 3 hypotheses at k = 2.

Let us assume a fixed window-size of N steps, meaning that we grow a
hypothesis tree up to a tree-depth of at most N + 1. N-step hybrid estimation
grows this tree starting from a truncated set of κ leading estimates at time-
step k − N . Discarding the less likely hypotheses at k − N ensures that the
tree does not grow beyond bounds, however, it also imposes sub-optimality as
we abandon hypotheses and will not reconsider them anymore. The overall
operation of N-step hybrid estimation is explained best in terms of a simple
example. For this purpose, we recall the estimation example with the full
hypothesis tree of Fig. 3.11, and perform N-step estimation with a window-
size of N = 2. Let us further assume that we start the hybrid estimation
for the time-step k from the κ = 2 leading hybrid state estimates at k − N .
Figure 3.21 shows the partially grown hypothesis tree for the prediction of
the η2 = 3 leading estimates at the time-step k = 2 (previously given in
Fig. 3.11). Let us assume that stringent computational constraints stopped
the estimation for the time-step k = 2 after the first three estimates were
found and hybrid estimation moves on to estimate the trajectory hypothesis
for k = 3. N-step hybrid estimation restarts by manipulating the hypothesis
tree of the previous time-step k = 2 (Fig. 3.21). It uses the tree to determine
the leading set of κ hybrid state estimates at the time-step k − N = 1. The
associated nodes

{n5, n3} =: N̄1,

of the leading estimates
{x̂(1)

1 , x̂(2)
1 }

serve as the ’initial nodes’ for the hypothesis tree that is used to determine
the hybrid state estimates at the time-step k = 3. Of course, we re-use tree
fractions as much as possible and keep all tree branches that originate from
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the nodes ni ∈ N̄1. All other branches are discarded and N-step hybrid es-
timation will not reconsider their associated trajectory hypotheses anymore
(Fig. 3.22a indicates those tree branches in gray). In the same way as we com-
bined multiple concurrent full hypothesis trees for estimation problems with
multiple initial estimates x̂(i)

0 , we insert a new root node to combine the κ
tree fractions into a single truncated hypothesis tree (Fig. 3.22b). Since we
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(a) tree fragments that originate
from the leading 2 estimates at
k = 1
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(b) sub-optimal search tree initial-
ization for the next estimation step
(k = 4)

Fig. 3.22. N-Step hybrid estimation.

truncate less likely estimates at the time-step k−N and re-initiate the search
with the κ leading estimates {x̂(1)

k−N , . . . , x̂(κ)
k−N} only, we have to re-normalize
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their conditional probabilities b
(j)
k−N , j = 1, . . . , κ as follows

b
(i)
k =

b̄
(i)
k∑κ

j=1 b̄
(j)
k

. (3.126)

b̄
(i)
k denotes the un-normalized likelihood as given in (3.123). For example, the

Fig. 3.22 specifies the following values for the unnormalized likelihoods b̄
(i)
1 of

x̂(1)
1 and x̂(2)

1

b̄
(1)
1 = e−g(n5) = 0.360, b̄

(2)
1 = e−g(n3) = 0.288.

Applying (3.126), we obtain

b
(1)
1 =

0.360
0.288 + 0.360

= 0.556, b
(2)
1 =

0.288
0.288 + 0.360

= 0.444.

These re-normalized conditional probabilities specify the costs for the arcs
from the new root node n0 to the nodes n5 and n3 (Fig. 3.22b):

g(n5) = − ln(0.556) = 0.59, g(n3) = − ln(0.444) = 0.81.

The purpose of having a window-size N > 1 is to allow a low probability
trajectory estimate to increase in weight, as time proceeds. Blindly truncating
the tree, as outlined above, can prune fractions of the tree that represent
leading trajectory estimates X̂

(i)
k−1 for the time-step k−1 whenever they trace

back to estimates x̂(j)
k−N that are not within the set of the κ leading estimates

at the time-step k − N . Figure 3.23 visualizes such a situation for N-step
hybrid estimation with a window-size of N = 3 and κ = 2 (the figure utilizes
a slightly different representation for the partial tree that arranges the nodes
for hypotheses x̂(i)

k vertically, in the order of their (decreasing) conditional
probability b

(i)
k ). The estimate X̂

(2)
k−1 of the second likely trajectory hypothesis

at k − 1 denotes the sequence of hybrid estimates

X̂
(2)
k−1 = {. . . , x̂(5)

k−3, x̂
(5)
k−2, x̂

(2)
k−1}.

Its estimate x̂(5)
k−3 for the time-step k − 3 is not a member of the κ = 2 best

estimates at this time-step. Discarding all branches that do not pass through
nodes ni ∈ N̄k−3 would prevent hybrid estimation from considering an exten-
sion to the trajectory estimate X̂

(2)
k−1. In order to avoid such an undesirable

pruning of the hypothesis tree, we adopt a slightly different strategy for se-
lecting the initial estimates for N-step hybrid estimation. Instead of treating
κ as the fixed upper bound on the number of initial estimates, we interpret κ
as the upper lower bound and restart N-step hybrid estimation from at least
κ estimates at the time-step k −N . For this purpose, we analyze the leading
set of trajectory estimates {X̂(1)

k−1, . . . , X̂
(η)
k−1} at the time-step k− 1 to obtain
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Fig. 3.23. Problematic tree truncation for N-step hybrid estimation (N = 3, κ =
2) that excludes the continuation of the estimate for the second likely trajectory

hypothesis X
(2)
k−1.

their hybrid state estimates for the time-step k−N . Let us use the following
notation

X̂
(ν)
k\k−N = x̂(ι)

k−N (3.127)

to refer to the hybrid state estimate at a particular time-step k − N of a
trajectory estimate

X̂
(ν)
k = {. . . , x̂(ι)

k−N , . . . , x̂(ν)
k }. (3.128)

Then, we can express the set of hybrid state estimates at the time-step k−N .
This set is defined by the leading set of trajectory estimates {X̂(1)

k−1, . . . , X̂
(ηk−1)
k−1 },

as
{X̂(1)

k−1\k−N ∪ . . . ∪ X̂
(ηk−1)
k−1\k−N} =: X̄k−N . (3.129)

Some of the trajectory estimates trace back to common estimates at time-step
k−N . This implies that the resulting set X̄k−N (3.129) can contain up to ηk−1

estimates. We use this set to extract the rank ξ of the estimate x̂(ξ)
k−N ∈ X̄k−N

with the lowest likelihood b
(ξ)
k−N :

ξ = arg min
i : x̂

(i)
k−N∈X̄k−N

b
(i)
k−N . (3.130)

This rank indicates, whether we have to extend the set N̄k−N to include
additional nodes (ξ > κ), or not (ξ ≤ κ). More generally, the function

truncate-search-tree-and-re-initiate(·),
which truncates the tree for N-step hybrid estimation (see Table 3.4), uses the
following adaptive set N̄k−N :



3.5 Focused Hybrid Estimation 97

N̄k−N = nodes({x̂(1)
k−N , . . . , x̂(κmax)

k−N }), with κmax = max(ξ, κ). (3.131)

Figure 3.24 visualizes this concept (N = 3, κ = 2). The η = 3 most
likely trajectory estimates at time-step k − 1 are {X̂(1)

k−1, X̂
(2)
k−1, X̂

(3)
k−1}. These

trajectory estimates trace back to

X̂
(1)
k−1\k−3 = x̂(2)

k−3, X̂
(2)
k−1\k−3 = x̂(2)

k−3, X̂
(3)
k−1\k−3 = x̂(5)

k−3

so that we obtain the set

X̄k−3 = {x̂(2)
k−3, x̂

(5)
k−3}.

The estimate x̂(5)
k−3 represents the estimate with the lowest conditional proba-

bility of X̄k−3 and specifies ξ = 5. As a consequence, we obtain κmax = 5 and
utilize the extended set

N̄k−3 = nodes({x̂(1)
k−3, . . . , x̂

(5)
k−3})

to restart N-step hybrid estimation for the time-step k.
Typically, real-world systems lead to hybrid models with a large number of

modes. This leads to a heavily branching hypothesis tree. As a consequence, it
is sometimes even computationally infeasible to apply N-step hybrid estima-
tion with a moderately large window-size for real-time estimation so that we
are forced to use N-step hybrid estimation with the smallest possible window-
size of N = 1. The following section deals with this specific entity of N-step
hybrid estimation in more detail.

function initiate-N-step-HE-problem(CA, N , κ)
returns initiated and main search problem
HE-problem ← initiate-HE-problem(CA)
window-size[application-data[HE-problem]] ← N
kappa[application-data[HE-problem]] ← κ
return HE-problem

function N-step-hybrid-estimation(uk, yc,k, ηk,max, HE-problem)
returns the leading set of sub-optimal estimates for time-step k
{Xk, HE-problem} ← hybrid-estimation(uk, yc,k, ηk,max, HE-problem)
HE-problem ← truncate-search-tree-and-re-initiate(HE-problem)
return {Xk, HE-problem}

Table 3.4. Pseudo-code for N-step hybrid estimation.
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Fig. 3.24. Revised concept for the tree truncation of N-step hybrid estimation.

1-Step Hybrid Estimation - Beam Search

N-step hybrid estimation with the window-size N = 1 represents a special
case where the high-level search problem degenerates to beam search. At a
time-step k, we take the leading set (the beam) of fringe estimates

{x̂(1)
k−1, . . . , x̂

(ηk−1)
k−1 }

for the previous time-step k − 1 and deduce their leading successors

{x̂(1)
k , . . . , x̂(ηk)

k }

in order to estimate the current hybrid state. Figure 3.25 visualizes this op-
eration for a fixed beam-size of η = 4 nodes. Of course, the beam-size can
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Fig. 3.25. Beam search (1-step hybrid estimation).
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be either fixed at a particular value, or adaptive in order to take resource
constraints into account. The latter case, where hybrid estimation calculates
as many estimates as possible for each time-step, leads to the specific any-
time/any-space algorithm for hybrid estimation that initially presented in [6].

A beam search approach imposes sub-optimality, since it focuses onto the
set of most likely hypotheses only. The deduction of the leading set of hy-
potheses at a particular time-step k, given a focused set of ηk−1 estimates at
the time-step k − 1, however, is complete. We still apply A∗ for the succes-
sor deduction, so that we can rely upon the result. Nevertheless, the selec-
tion of the beam-size ηk has impact onto the prediction quality. Whenever
the beam-size is too small, we would obtain an estimation scheme that fails
to examine less likely trajectory hypotheses (e.g. trajectory hypotheses that
consider unlikely fault modes). Contrarily, a large beam-size might impose an
unnecessarily high computational burden and can deteriorate the estimation
quality as too many, highly unlikely, hypotheses are considered, besides few
relevant ones. The latter problem is analogous to the reduction in prediction
quality of multiple-model estimation algorithms, whenever too many models
are taken into consideration [68]. As a consequence, it is advisable to neither
use too few estimates, nor to blindly deduce estimates until the computational
resources are used up. Nevertheless, the ’optimal’ beam-size depends upon the
complexity of the model and the operational condition and is difficult to judge
a priori.

The remaining part of this section is devoted to developing a suitable cri-
teria for beam-size control. For this purpose, we first reconsider and interpret
the estimation result. Let ηk denote the the number of estimates for trajectory
hypotheses at the time-point k that will be used as the beam for the following
estimation step. The leading set of trajectory hypotheses at time-step k has
the associated trajectory estimates

{X̂(1)
k , X̂

(2)
k , . . . , X̂

(ηk)
k }.

This set of trajectory estimates defines the set of hybrid state estimates

Xk = {x̂(1)
k , x̂(2)

k , . . . , x̂(ηk)
k } (3.132)

at their fringe.
One way to interpret this result is to take the hybrid state of the leading

hypothesis (x̂(1)
k ) and utilize it as the the approximation of the hybrid esti-

mate at the time-step k. This is in spirit of the maximum a posterior (MAP)
approach of some multiple-model estimation schemes. However, such an ap-
proach can be misleading as we can see in the Table 3.5. The table lists a
hypothesis 1 at the mode m1. Its likelihood of 0.4 suggests that the mode m1

is the most likely mode at the time-step k. The hypotheses 2 and 3 describe
estimates with the mode m2. Together, they represent a larger portion of the
probability space (46 %), than hypothesis 1 (40 %). Based on the 4 hypothe-
ses only, one would conclude that the most likely mode at the time-step k is
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m2 (likelihood 0.46), followed by mode m1 (likelihood 0.40) and mode m3

(likelihood 0.14). A∗ search, as the underlying deduction mechanism for the

hypothesis mode (x̂
(i)
d,k) b̄

(i)
k probability (b

(i)
k )

1 m1 0.20 0.40
2 m2 0.15 0.30
3 m2 0.08 0.16
4 m3 0.07 0.14

Table 3.5. Posterior mode probabilities at time-step k.

estimates {x̂(1)
k , . . . , x̂(ηk)

k } = Xk, guarantees that the set of estimates Xk is
complete, given the previous estimates {x̂(1)

k−1, . . . , x̂
(ηk−1)
k−1 } = Xk−1. Any con-

tinuation of the search adds less likely estimates, but cannot change the the
ordering among the estimates of Xk. As a consequence, we can be sure that
X̂

(1)
k , with the fringe estimate x̂(1)

k , represents the leading trajectory estimate.
However, the fringe estimates Xk = {x̂(1)

k , . . . , x̂(ηk)
k } as a whole encode the

hybrid state estimate at the time-step k. Thus, in order to obtain the overall
hybrid state estimate, we have to combine the fringe estimates Xk according
to (3.74)-(3.79) to obtain the most likely mode, the continuous estimate given
the most likely mode, or the overall continuous estimate. Now, Xk represents
the truncated set of fringe estimates. This raises the question whether the
set is representative enough. For example, with respect to the mode predic-
tion: is it possible to guarantee that additional estimates do not change the
prediction of the most likely mode anymore? Recall the example above (Ta-
ble 3.5). Mode m2 is selected as the most likely mode and the mode m1 is
second. However, the difference in their likelihood is only 0.06 and it is possi-
ble that neglected hypotheses with mode m1 could reverse this ranking. This
can be seen from the values of the unnormalized likelihoods b̄

(i)
k . Our search

mechanism guarantees that

b̄
(i)
k ≤ b̄

(ηk)
k , whenever i > ηk.

As a consequence, it is possible that there exists a fifth hypothesis X̂
(5)
k with

a fringe state at mode m1 and an unnormalized likelihood b̄
(5)
k < 0.07, for

example, b̄
(5)
k = 0.05. It is easy to see that this estimate has significant im-

pact upon the mode predication and revises the estimate for the most likely
mode, because b̄

(5)
k > (b̄(2)

k + b̄
(3)
k )− b̄

(1)
k = 0.03. This indicates that we cannot

guarantee a correct mode prediction given the first 4 hypotheses only! It is
not just that single hypotheses can revert mode predictions, it is also possible
that several hypotheses with marginal b̄k add up to a level that changes the
overall mode prediction.

A correct mode prediction is surely a desirable property for hybrid estima-
tion. Therefore, we will use correctness of mode prediction, given the previous
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estimates Xk−1, as the criteria that controls the beam-size of 1-step hybrid
estimation. In the following we use the notation m(j) to denote modes of the
leading hybrid state estimates Xk = {x̂(1)

k , . . . , x̂(ηk)
k }, with

x̂(i)
d,k ∈ {m(1),m(2), . . . ,m(ρ)}, i = 1, . . . , ηk.

The superscript j of m(j) also denotes the rank of the mode, given the set of
hybrid state estimates Xk, which represents the leading successors of Xk−1.
This rank is based on the mode’s associated unnormalized likelihood b̄k(m(j))
that aggregates the values of b̄

(i)
k of all hypotheses x̂(i)

k at mode m(j), more
precisely:

b̄k(m(j)) :=
∑

i : x̂
(i)
d,k=m(j)

b̄
(i)
k .

In order to determine whether a mode m(j) can become more likely then the
leading mode m(1), we need a bound for the maximal number of possible hy-
potheses with mode m(j) at time-step k. We can obtain this information from
the transition topology, in particular the transition threads, of the underlying
cPHA model. The topology of the transition threads determines whether an
estimate x̂(i)

k−1 ∈ Xk−1 can lead to one, or to several hypotheses x̂(ι)
k with

the mode m(j). For an example, recall Fig. 3.20. The transition threads for
the transitions out of mode m1 specify that an estimate x̂(i)

k−1 with mode

x̂(i)
d,k−1 = m1 can lead to at most two hypotheses with mode m1, to one hy-

pothesis with mode m2, and to one hypothesis with mode m3. These upper
bounds for hypotheses are key to decide, whether a mode m(j) (2 ≥ j ≥ ρ)
can become more likely than the leading mode m(1). First, we determine the
upper bound γj for hypotheses at the mode m(j) by evaluating the transition
treads out of the mode x̂(i)

d,k−1 of the estimates x̂(i)
k−1 ∈ Xk−1. Second, we de-

termine the number νj ≥ 1 of estimates with mode m(j) that were deduced so
far. The difference γj − νj provides an upper bound for the number of uncon-
sidered hypotheses with the mode m(j). Every unconsidered hypothesis can
have an associated unnormalized likelihood less, or at most equal to, b̄k of the
least likely hypothesis of Xk. As a consequence, the unconsidered hypotheses
at mode m(j) can lead to an unnormalized likelihood for mode m(j) of at most

b̄max(m(j)) = b̄k(m(j)) + (γj − νj)b̄
(ηk)
k . (3.133)

Whenever the condition

b̄k(m(1)) ≥ b̄max(m(j)) for all j = 2, . . . , ρ (3.134)

holds, we can be sure that the mode m(1) represents the most likely mode.
We can simplify this criteria dramatically whenever we ensure that the

underlying cPHA defines at most one transition mi → mj for all modes
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mi,mj ∈ Xd. This modeling assumption implies that ηk−1 estimates at time-
step k − 1 can lead to at most γ = ηk−1 hypotheses with a particular mode
m(j) at time-step k (each hypothesis x̂(i)

k−1 has at most one successor with
mode m(j)). This upper bound is independent of the particular mode m(j)

under consideration. As a consequence, we only need to consider the leading
two modes m(1) and m(2), and check

b̄k(m(1)) ≥ b̄k(m(2)) + (ηk−1 − 1)b̄(ηk)
k . (3.135)

According to the cPHA model under investigation, we apply either (3.135)
or (3.133)-(3.134) to adapt the fringe size ηk. However, we still terminate es-
timation for a particular time-step whenever we run out of the computational
resources for hybrid estimation9. This maintains the desirable any-time/any-
space property, even at the risk that we might sometimes fail to formally
guarantee a correct mode prediction. The criteria (3.133)-(3.134) or (3.135)
represent sufficient conditions that might be too strong anyhow. So that from
a practical point of view, their infrequent violation has minor impact, com-
pared to not being able to perform hybrid estimation in real-time. The pseudo-
code in Table 3.6 summarizes this particular instance of our class of focused
hybrid estimation algorithms and completes our presentation on these core
algorithms for our hybrid estimation paradigm.

3.6 Unknown Mode and Filter Decomposition

The mode estimation scheme as defined above, as well as the standard multi-
ple model estimation algorithms, assume that the system exhibits a mode of
operation within the set of modes that is captured by the model. Mathemat-
ical models, however, always represent approximations of the real world and
many recent efforts in estimation and fault detection and isolation (FDI) were
devoted to building robust estimation/diagnosis algorithms that can cope with
unavoidable inaccuracy and incompleteness of the model [15, 16]. However,
unanticipated failures do occur in real world systems and robust estimation
and diagnosis methods might fail to detect such an unusual operational con-
dition or can perform in an unexpected way. As a consequence, it is desirable
to extend the estimation and diagnosis capability so that it can cope with and
identify an unknown mode of operation.

The concept of the unknown mode is central to discrete model-based di-
agnosis [17]. Its underlying concept of constraint suspension [18] allows the
diagnosis of systems where no assumption is made about the behavior of
one or several components of the system. In this way, model-based diagnosis
schemes, such as the General Diagnostic Engine (GDE) [10] or Sherlock [19],

9 The pseudo-code also provides means to specify application-specific minimal and
maximal numbers for the fringe size, ηk,min and ηk,max, respectively.
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function initiate-beam-search-HE-problem(CA)
returns initiated and main search problem
HE-problem ← initiate-HE-problem(CA)
return HE-problem

function beam-search-hybrid-estimation(uk, yc,k, ηk,max, ηk,min, HE-problem)
returns the leading set of sub-optimal estimates for time-step k
time-step[application-data[HE-problem]] ← +1
input-value[application-data[HE-problem]] ← add-value(uk)
observation[application-data[HE-problem]] ← add-value(yc,k)
agenda[HE-problem] ← solutions[HE-problem]
solutions[HE-problem] ← { }
do progressive-best-first-search(HE-problem)

until ((guaranteed-mode-prediction(HE-problem) and
count(solutions[HE-problem]) ≥ ηk,min) or

resources-used-up?() or count(solutions[HE-problem]) = ηk,max)
return {hybrid-estimate(solutions[HE-problem]), HE-problem}

Table 3.6. Pseudo-code for 1-step hybrid estimation (beam search).

capture unspecified and unforeseen behaviors of the system by considering an
unknown mode that does not impose any constraints on the system’s variables.

We first demonstrated this principle for our hybrid estimation scheme in
[20], where we introduced the hybrid systems pendant of the unknown mode,
together with a novel on-line filter deduction and decomposition capability.
These novel extensions enable hybrid estimation to continue its operation in
the presence of unknown behavioral modes, as well as it improves filtering
performance in terms of the filtering quality, on-line filter deduction, and the
filter execution time.

3.6.1 Unknown Mode

The principle of an unknown mode for hybrid systems is analogous to the
one for discrete model-based diagnosis. We extend the cPHA model with a
dedicated mode that does not impose any constraint upon the continuous
variables of the automaton. In other words, the automaton model provides an
empty set of equations

F (m?) = {}
for the unknown mode m?. Our cPHA compiler appends an unknown mode
to each PHA Ai of the cPHA and embeds the unknown mode in terms of un-
likely transitions from each nominal mode to the unknown mode. Figure 3.26
illustrates this for a single PHA component with 3 nominal modes. Each self-
loop for the nominal modes m1, . . . , m3 contains a low probability thread
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to the unknown mode m?. This models the low probability chance that the
system enters an unanticipated mode of operation, regardless of the current
operational mode. Not shown are the reverse transitions from the unknown
mode back to the nominal modes. The unknown mode has one unguarded
transition with equally likely threads to itself and all nominal modes. This
transition ensures that hybrid estimation can recover from an unknown mode
detection. It also provides a suitable reset functionality that restarts hybrid
estimation from an equally distributed set of modes as soon as the truncated
set of possible hypotheses does not explain the observations anymore.
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Fig. 3.26. Transition graph for a PHA with 3 nominal modes m1, . . . , m3 and an
unknown mode m?.

In terms of hybrid estimation, we can utilize the transition probabilities
to calculate the prior probability for a trajectory hypothesis with a fringe
estimate at the unknown mode. However, we cannot perform any filtering
operation since we do not provide a mathematical model for the unknown
mode. We use a generic no-prediction instead and assume that any observation
yc,k is conform with it10. We express this fact by taking the upper bound
P̄O = 1.0 for the observation function. This assumption enables us to calculate
the posterior probability for the ’estimate’ of an unknown mode hypothesis.
Thus, even if we are unable to provide an update for the continuous estimate,
we can still rate the associated trajectory hypothesis against other hypotheses
with fringe estimates at nominal modes.

The unknown mode m? = [m1?, . . . ,mζ?]T specifies an unknown behav-
ioral situation for all ζ components {A1, . . . ,Aζ} of the cPHA. This mode is
surely very helpful to achieve a fail-safe operation of the hybrid estimation
procedure. However, it does not identify those parts of the multi-component
system that are responsible for this unspecified operation. Hybrid estimation
is doing a good job in discriminating the modes of operation for the individual
components. It is desirable to have the same capability for the unknown mode.
This would enable us to isolate (diagnose) those components that operate at

10 The unknown mode captures all possible unmodeled situations, therefore, we have
to assume that its no-prediction is more compatible with the observation, than
any of the more precise predictions of the nominal modes.
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an unanticipated mode of operation, and maintains the hybrid estimation
functionality for the remaining components. The following section presents a
filter decomposition scheme that will serve as the basis for the unknown mode
diagnosis capability and the (degraded) hybrid estimation functionality in the
presence of unknown behavioral modes of individual components.

3.6.2 Filter Decomposition

Hybrid estimation deduces the trajectory hypotheses by repeatedly generating
possible modes x̂(j)

d,k with consecutive filtering. The unknown mode modifica-
tion of the cPHA can lead to mode hypotheses, where one or several compo-
nents are at mν?. Such a mode hypothesis, however, leads to an incomplete
set of equations F (x̂(j)

d,k) since components with mode mν? do not impose any
constraint upon their continuous state and I/O variables. As a consequence,
we cannot deduce the mathematical model of form

F (x̂(i)
d,k) =⇒ xc,k+1 = f(xc,k,uc,k) + vc x,k

yc,k = g(xc,k,uc,k) + vc y,k

(3.136)

for the overall system and fail to derive the extended Kalman filter for the
estimation step.
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Fig. 3.27. Example cPHA composed of three PHAs.

Let us consider a 3-component example as shown in Fig. 3.27 with the
cPHA

CA = 〈A1 ‖ A2 ‖ A3, {uc1, ud1, ud2}, {yc1, yc2},
{vc1, vc2, vc3, vc4, vc5}, N〉, (3.137)

which is composed of the following component automata

A1 = 〈{xd1}, {ud1, uc1, wc1}, F1, T1, X01, {m11,m12}...〉
A2 = 〈{xd2, xc1}, {ud2, wc1, wc2, yc1, vc1, vc2}, F2, T2,

X02, {m21,m22,m23}...〉
A3 = 〈{xd3, xc2, xc3}, {ud2, uc1, wc2, wc3, yc2, vc3, vc4, vc5},

F3, T3, X03, {m31,m32,m33}...〉.

(3.138)
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As an example, we assume that the set-valued functions F1, F2 and F3 provide
the following sets of equations for the mode x̂(i)

d,k = [m11,m21,m31]T

F1(m11) = {uc1 = 2.0 wc1}
F2(m21) = {xc1,k+1 = 0.95 xc1,k + wc1,k + vc1,k,

wc2 = 2.0 xc1,

yc1 = wc2 + vc2}
F3(m31) = {xc2,k+1 = xc3,k + 0.2 wc2,k + vc3,k,

xc3,k+1 = −0.63 xc2,k + 1.6 xc3,k + 0.1 uc1,k + vc4,k,

wc3 = 0.5 xc2 + 0.1 xc3

yc2 = wc3 + vc5}.

(3.139)

Symbolic manipulation of this raw model for the mode [m11,m21,m31]T de-
rives the discrete-time model:

xc1,k+1 = 0.95 xc1,k + 0.5 uc1,k + vc1,k

xc2,k+1 = 0.4 xc1,k + xc3,k + vc3,k

xc3,k+1 = −0.63 xc2,k + 1.6 xc3,k + 0.1 uc1,k + vc4,k

yc1,k = 2.0 xc1,k + vc2,k

yc2,k = 0.5 xc2,k + 0.1 xc3,k + vc5,k.

(3.140)

This model, together with the quantification of the noise inputs vc, is the
basis for the extended Kalman filter that we use to provide the continuous
state estimate for the hybrid estimate x̂(i)

k , as well as the associated value for
the modified hybrid observation function P̄

(i)
O,k for the hybrid estimator.
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Fig. 3.28. Extended Kalman filter for the cPHA example.

Let us now assume that the system is at the mode x̂(j)
d,k = [m?,m21,m31]T ,

that is, component A1 is in the unknown mode (x̂(j)
d 1,k = m?). The set of

equations F (x̂(j)
d,k) omits any constraint between the input uc1 and the I/O

variable wc1. As a consequence, we cannot deduce the overall mathematical
model of the form (3.136) and fail to provide the appropriate extended Kalman
filter.

However, a close look on the PHA interconnection (Fig. 3.29), and the
fact that yc1 represents the measurement of wc2, reveals that we can still
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estimate component A3 by its observed output yc2 and the observation yc1 as
a substitute for its input wc2.
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Fig. 3.29. Example cPHA extended with explicit sensor noise influence and causal-
ity (directionality) for the automata interconnections.

This intuitive approach for the estimation of A3 utilizes a decomposition
of the cPHA into two subsystems as shown in Fig. 3.30. The decomposition

1

v
c1

2

3

v
c4

y
c2

y
c1

v
c2

v
c5

v
c2y

c1

u
c1

A A

A

v
c3

u
c1

Fig. 3.30. Decomposed cPHA.

allows us to treat the parts of the system independently. We deduce a filter
cluster (Fig. 3.31) that consists of 2 concurrent filters. The incomplete set of
equations prevents us from calculating the first filter for the components A1

and A2, but it provides enough information to derive the second filter, which
estimates the variables of A3. However, filter deduction has to account for the
fact that we use the measurement yc1 of the input to A3 in replacement for
its true value. This can be interpreted as having virtual additive noise at the
component’s input, as indicated in Fig. 3.30. For (extended) Kalman filters,
this involves the following modification of the covariance matrix Q3 for the
disturbances vc3, and vc4 that act upon the continuous state variables of the
automaton A3:

Q̃f2 = b3r1bT
3 + Q3, (3.141)
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where r1 denotes the variance of disturbance vc2 and b3 = [0, 1]T denotes the
input vector of A3 with respect to wc2. Generally, when we replace a variable
wc ∈ wc with its observation yc ∈ yc (assuming additive sensor noise), we
obtain the associated input vector bj by linearization. More specifically:

bj,(k) =
∂fj
∂wc

∣∣∣∣
x̂j,k−1,uc j,k−1

, (3.142)

where fj denotes the right-hand side of the difference equation for component
Aj , as well as x̂j,k−1 and uc j,k−1 represent the hybrid state estimate and the
continuous input for component Aj at the previous time-step, respectively.

The system decomposition is essential for incorporating the unknown
mode. The decomposition leads to a factorization of the probabilistic obser-
vation function

P̄O =
∏

j

P̄Oj , (3.143)

where P̄Oj denotes the probabilistic observation function of the j’th filter in
the filter cluster. This factorization of P̄O allows us to calculate an upper
bound for P̄O whenever components of the system are in the unknown mode.
We simply take the product of the values of the observation functions P̄Oν

over the remaining filters in the filter cluster. This is equivalent to considering
the upper bounds of the inequalities P̄Oj ≤ 1 for every unknown filter j. In
our example with the unknown mode for the component A1 this would mean:

P̄O ≤ P̄O2,

where P̄O2 denotes the observation function for the filter that estimates the
continuous state of the component A3.

The following subsection provides a graph-based approach for filter cluster
deduction, grounding the decomposition approach that was informally intro-
duced above.

3.6.3 Graph-based Decomposition and Filter Cluster Calculation

Starting point for the decomposition of the system for a cPHA at the mode
x̂d is the set of equations
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F (x̂d,k) = F1(x̂d 1,k) ∪ . . . ∪ Fζ(x̂d ζ,k). (3.144)

This set specifies the raw model for the cPHA at the mode x̂d,k under investiga-
tion. This raw model is the basis for the following graph-based decomposition
that decomposes the model according to a structural analysis of thereof. This
analysis builds upon methods for causal analysis [21, 22], structural observ-
ability analysis [23, 104, 105] and graph decomposition [103].

A cPHA does not impose a fixed causal structure that specifies the direc-
tionality of the automaton interconnections. The specification of the (exoge-
nous) input variables uc ∈ wc of the cPHA and the set of equations defines the
causality implicitly. This increases the expressiveness of the modeling frame-
work. Nevertheless, knowledge about the causal dependencies among the con-
tinuous variables of the model is very valuable for system analysis and filter
synthesis tasks. We apply the bipartite-matching based algorithm of [21] for
this purpose and obtain a causal graph that records the causal dependencies
for a concurrent probabilistic automaton CA at a particular mode xd. We de-
note the causal graph by CG(CA,xd) and sometimes omit the arguments when
no confusion seems likely. Figure 3.32 shows the graph for the the illustrative 3
PHA example at the mode xd,k = [m11,m21,m31]T . Each vertex of the causal
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Fig. 3.32. Causal graph for the cPHA example.

graph represents one equation ei ∈ F (x̂d,k) or an exogenous variable specifi-
cation (e.g. uc1) and is labeled by its dependent variable, which also specifies
the outgoing edge. In the following, we will use the variable name to refer
to the corresponding vertex in the causal graph. Vertices without incoming
edges specify the exogenous (or independent I/O) variables.

The goal of our analysis is to obtain a set of non-overlapping subsystems
that utilize observed variables as virtual inputs. For this purpose, we identify
those variables that are directly observed through the measurements. We do
this by traversing the causal graph from vertices of the observed variables
yci ∈ yc backwards to identify those vertices with dependent variables that
can be fully specified in terms of the observation and the input variables uc∪vc

of the cPHA. Those vertices with additional out-going edges (other than the
edge that leads to the measurement), are selected as points, where we can
slice the graph and remap it to a virtual input. This operation provides for
our example (Fig. 3.32) that the variables wc2 and wc3 are directly observable
via yc1 and yc2, respectively. Only the vertex with dependent variable wc2 has
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an additional outgoing edge, thus we slice the graph at the edge wc2 → xc2

and remap this edge to a vertex w′c2 that denotes a copy of the measurement
equation (in reversed causal direction). Finally we insert the edge to the virtual
input y′c1 and the noise input vc2. Figure 3.33 demonstrates this remapping
operation.
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Fig. 3.33. Remapped causal graph for the cPHA example.

A dynamic filter, such as the extended Kalman filter, can only estimate the
observable part of the model. Therefore, it is essential to perform an observ-
ability analysis prior to calculating the filter cluster so that non-observable
parts of the model are excluded. We perform this analysis on a structural ba-
sis11 and evaluate for every variable z ∈ xc ∪wc whether there exists at least
one causally dependent output variable yc ∈ yc that can be used to estimate
the value of z. More specifically:

Definition 3.1. We call a variable z ∈ xc ∪wc of a cPHA CA at mode xd,k

structurally observable (SO) whenever it is directly observed, that is, z ∈ yc,
or there exists at least one path in the causal graph CG(CA,xd,k) that connects
the variable z to an output variable yc ∈ yc of the CA.

A filter estimates the continuous state variables xc (and, as a consequence,
the other variables wc) based on observations yc and the inputs uc that
act upon the state variables xc. Thus, estimation involves the knowledge
about the actuated inputs uc,k. This indicates that a structural observabil-
ity analysis is not yet enough to determine the sub-model for estimation.
We have to ensure that no variable with unknown value influences the state
variables. To illustrate this, consider again the 3 PHA example with mode
xd = [m?,m21,m31]T . Component 1 is in the unknown mode, and omits the
equation that relates the variable uc1 with wc1. This leads to a causal graph
11 We assume that a loss of observability is caused by a structural defect of the

model (e.g. a stuck-at fault of a sensor that disconnects, in the causal graph, the
measurement from the rest of the model). Otherwise, it would be necessary to
perform an additional numerical observability test [106] as structural observability
only provides a necessary condition for observability.
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C̃G (Fig. 3.34) that labels wc1 as exogenous. Thus, wc1 acts as an unknown
exogenous input that influences the state variable xc1 and, as a consequence,
prevents us from estimating it. Again, we identify variables that causally de-
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Fig. 3.34. Remapped causal graph for the cPHA example with unknown component
A1.

pend upon unknown exogenous variables in terms of a structural analysis of
the causal graph, more specifically:

Definition 3.2. We call a variable z ∈ xc ∪ wc of a cPHA CA at mode
xd,k structurally determined (SD) whenever it is an input variable of the au-
tomaton, that is, z ∈ uc, or there does not exist a path in the causal graph
CG(CA,xd,k) that connects an unknown exogenous variable ue /∈ uc with z.

From an algorithmic point of view, it is helpful to eliminate loops in the
causal graph prior to checking variables against both structural criteria. For
this purpose, we calculate the strongly connected components [103] of the
causal graph:

Definition 3.3. A strongly connected component (SCC) of the causal graph
CG is a maximal set SCC of variables in which there is a path from any one
variable in the set to another variable in the set.

Figure 3.35 shows the remapped causal graph for the 3 PHA example after
grouping variables into strongly connected components. The strong intercon-
nection among variables in a strongly connected component implies that: (a)
structural observability of variables in a strongly connected component follows
directly from structural observability of at least one variable in the strongly
connected component, and (b) a variable in a strongly connected component
is structurally determined, if and only if all variables in the strongly connected
component are structurally determined. As a consequence, we can apply our
structural analysis directly to strongly connected components and operate
on the acyclic strongly connected component graph, that is, a causal graph
without loops.

Our structural analysis algorithm determines structural observability and
determination of a variable by traversing the strongly connected component
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Fig. 3.35. Causal SCC graph for cPHA example.

graph backwards from the observed variables toward the inputs. Table 3.7
outlines the analysis of a strongly connected component with respect to struc-
tural observability and structural determination (SOD) in pseudo-code. In the
course of this analysis we label non-exogenous strongly connected components
with a tag that records their influence upon observed variables. This indexing
scheme allows us to cluster the variables into non-overlapping subsets (Ta-
ble 3.8). The direct relation between a variable, its determining equation, and
the cPHA component that specified this equation leads to the component
clusters sought for.

Each component cluster defines the observable and determined raw model
for a subsystem of the cPHA. This raw model can be solved symbolically
and provides the nonlinear system of difference equations, which is similar to
(3.136) but has additional virtual inputs. This nonlinear system is the basis
for the corresponding filter in the filter cluster. In this way we exclude the un-
observable and/or undetermined parts of the overall system from estimation.
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Table 3.7. Pseudo-code for structural observability and determination evaluation.

function determine-SOD-of-SCC(SCC,uc,vc, k)
when SOD-undetermined?(SCC)

if exogenous?(SCC)
zi ← independent-var(SCC)
if zi ∈ uc ∪ vc

SD(SCC) ← True
else

SD(SCC) ← False
else
V ← uplink-SCCs(SCC)
loop for SCCi in V

do determine-SOD-of-SCC(SCCi,uc,vc, k)
SO(SCC) ← True
SD(SCC) ← all-uplink-SCCs-are-SD?(V)
cluster-index(SCC) ← k ∪ cluster-indices(V)

SOD-determined(SCC) ← True
return Nil

Table 3.8. Pseudo-code for component clustering.

function component-clustering(CA,xd)
returns a set of cPHA component clusters
yc ← observed-vars(CA)

C̃G ← remap-causal-graph(CG(CA,xd),yc)

uc ← virtual-inputs(C̃G) ∪ input-vars(CA)
vc ← disturbance-inputs(CA)

CGSCC ← strongly-connected-component-graph(C̃G)
k ← 0
loop for SCCi in output-SCCs(CGSCC ,yc)

do determine-SOD-of-SCC(SCCi,uc, k)
k ← k + 1

graph-clusters ← get-SOD-SSC-clusters(CGSCC)
return automaton-clusters(CA, graph-clusters)

3.6.4 Filter cluster deduction within our hybrid estimation
framework

A filter cluster with several concurrent extended Kalman filters and the overall
extended Kalman filter are interchangeable, as they provide the same expected
value for the continuous state (E(x̂c,k)) for nominal modes of the cPHA. How-
ever, the execution of several “small” filters outperforms the execution of a
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Fig. 3.36. Labeled and partitioned causal SCC graph for the 3 cPHA example.

single “large” filter for the whole system because the computational require-
ments for a Kalman Filter with nx state variables are approximately propor-
tional to n3

x [95]. Therefore, we do not limit decomposition to hypotheses with
unknown modes, but use filter clusters also for nominal modes mj ∈ Xd of
the cPHA.

The number of modes of hybrid models for a complex physical artifact
can be very large. This prevents us from designing all filters a priori. How-
ever, deducing the same filter clusters over and over again would impose an
unnecessarily large computational burden. Therefore, we cache a limited num-
ber of filters for re-use. This strategy represents a good compromise between
the run-time cost of on-line deduction and the memory requirement of de-
signing all filters a priori. Decomposition helps here as well. It significantly
reduces the number of filter deductions since we can re-use the cached filters
as building blocks for filter clusters. For example, the 3-PHA system (3.138)
has 2×3×3 = 18 possible modes. The deduction of the 18 possible filter clus-
ters (Fig. 3.31), however, requires only 9 filter deductions, 2×3 = 6 variations
for filter 1 (components A1 and A2), and 3 variations for filter 2 (component
A3).

We integrate the filter cluster deduction scheme in our hybrid estima-
tion framework as follows. Continuous filtering represents the final part of the
best-fist successor generation search (BFSG) problem. The first ζ steps of this
underlying search problem deduce a suitable mode candidate x̂(j)

d,k, according
to the transition probabilities as shown in Fig. 3.16. A consecutive expansion
of the associated node executes the continuous estimation. This step takes
the hybrid estimate immediately after the transition x̂

′(j)
k−1 = 〈x̂(j)

d,k, p
′(j)
c,k−1〉,

the inputs uc,k−1,uc,k, and the observation yc,k and deduces a new estimate
x̂(j)

k . This involves the following operations: (a) retrieval of the raw model
F (x̂(j)

d,k), (b) the decomposition thereof, (c) filter cache retrieval or the appli-
cation of an algebraic solver to deduce the subsets of difference and algebraic
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equations for each component cluster with consecutive filter deduction, and
finally, (d) execution of the filter cluster that leads to the new estimate x̂(j)

k .
With respect to filter execution, we handle the unknown mode as follows.
Whenever a state variable xcj is unobservable and/or undetermined, we hold
its mean at the last known estimate x̂cj and increase its variance σ2

j = pjj

by a constant factor. This reflects a decreasing confidence in the estimate x̂cj

and allows us to restart estimation whenever the variable becomes observable
and determined again12. This operation ensures a defined behavior whenever
some components of the system exhibit unanticipated behavior. Loss of the
continuous estimation capability is limited to the impaired components and
hybrid estimation continues for the fully specified components of the system.

Finally, we want to motivate our decision to perform the decomposition of
the hybrid estimation problem on-line and at the continuous estimation level.
For example, one could also decide to assume a fixed decomposition that
divides the hybrid estimation problem into several sub-problems of smaller
complexity. Nevertheless, taking the system-wide view makes sense as we will
see below.

Let us extend the 3-PHA example with explicit sensor components. Com-
ponent A2 only provides the internal I/O variable wc2 and A3 only provides
wc3. The observation of these variables, in terms of the output variables yc1

and yc2, is subject to the dedicated sensor components A4 and A5, as shown
in Fig. 3.37. The sensor components A4 and A5 model the observation of the
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Fig. 3.37. Example cPHA composed of five PHAs, whereas two of them are dedi-
cated sensor components.

internal variables, together with the impact of the sensor noise vc2 and vc5.
A simple model describes them in terms of two modes, operational and un-
known. The operational modes m41 and m51 for the components A4 and A5,
respectively, specify
12 Whenever a state variable xcj is directly observed we also can utilize an alternative

approach suggested in [107] that restarts the estimator with the observed value,
thus improving the observer convergence time.
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A4 : F4(m41) = {yc1 = wc2 + vc2}
A5 : F5(m51) = {yc2 = wc3 + vc5},

(3.145)

whereas the unlikely modes m4? and m5? are integrated as usual and capture
all possible sensor faults.

The nominal mode hypothesis x̂′d,k−1 = [m11,m21, m31, m41, m51]T leads
to a decomposition into two subsystems, similarly as above (Fig. 3.38).
Contrarily, let us consider the mode x̂′d,k−1 = [m11,m21,m31,m4?,m51]T that
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Fig. 3.38. Decomposed cPHA.

describes a sensor fault in component A4. This mode hypothesis implies that
we cannot utilize the observation yc1 for estimation. As a consequence, we fail
to decompose the system into two subsystems and hybrid estimation has to
infer the state of the remaining components based on the observation yc2. This
mode dependency of the decomposition justifies our decision to assume that
the model has no fixed decomposition topology. A fixed decomposition, for ex-
ample, an estimator for the components {A1,A2,A4} and an estimator for the
components {A3,A4,A5} could never properly consider the case, where A4 is
at the unknown mode. Thus we cannot expect that a decomposed estimator
captures the whole spectrum of possible behaviors that a system can exhibit.
Our hybrid estimation scheme, however, uses a system-wide view to decide
upon which mode hypotheses are of interest, and decomposes the continuous
estimation task whenever a mode hypothesis admits a factorization.
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Case Studies

This section demonstrates our hybrid estimation scheme on the basis of the il-
lustrative 3-component cPHA and the BIO-Plex process automation example
that were introduced above. We will put the emphasis on (a) comparing the
variants of our focused hybrid estimation scheme (N-step hybrid estimation
and 1-step hybrid estimation) and compare them to the interacting multiple
model (IMM) algorithm, a prominent member of the class of multiple-model
algorithms. The BIO-Plex process automation example allows us to demon-
strate our proposed hybrid estimation scheme with a moderately complex
multi-component system (8 components, 451,584 modes) and shows how the
algorithm discriminates between various operational modes, fault modes, and
unknown modes of operation of individual components.

4.1 Three Component Example

We consider the three-component cPHA that we introduced above (3.137)-
(3.139) as the first example to compare the variants of our hybrid estimation
scheme to multiple model estimation algorithms, in particular, an IMM- and
a variable-structure IMM based hybrid estimator. As a baseline, we use an
artificial “optimal” estimator that utilizes the correct mode information and
performs the estimation with the appropriate filter.

The mathematical model for the modes m11, m21 and m31 of the three
components were given in (3.139). What remains, is to specify the variations
in the equation-sets for the other modes of the cPHA components:

F1(m12) = {uc1 = −2.0 wc1}
F2(m22) = {xc1,k+1 = 0.60 xc1,k + wc1,k + vc1,k, . . .}
F2(m23) = {xc1,k+1 = 1.01 xc1,k + wc1,k + vc1,k, . . .}
F3(m32) = { . . . , xc3,k+1 = −0.80 xc2,k + 1.6 xc3,k + 0.1 uc1,k + vc4,k, . . .}
F3(m33) = { . . . , xc3,k+1 = −0.30 xc2,k + 1.1 xc3,k + 0.1 uc1,k + vc4,k, . . .}.

(4.1)
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The transition graphs in Fig. 4.1 specify T1, T2 and T3 of the cPHA com-
ponents. We use a transition scheme that is independent of the continuous
state variables and the command inputs. The transition probabilities label
the arcs in the digraphs. The disturbances vc1, . . . , vc5 are assumed to be
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Fig. 4.1. Transition graphs for the three PHA example.

white, zero-mean Gaussian random sequences. Separating the disturbances
into the state disturbances vc x := [vc1, vc3, vc4]T and the measurement noise
vc y := [vc2, vc5]T , allows us to specify them by the covariance matrices

E{vc x,kvc x,k
T } =




0.4 0 0
0 0.5 0
0 0 0.3


 ,

E{vc y,kvc y,k
T } =

[
0.1 0
0 0.3

]
,

(4.2)

where in terms of Kalman filter nomenclature (3.3) E{vc x,kvc x,k
T } denotes

the covariance matrix Q for state disturbances and E{vc y,kvc y,k
T } denotes

the covariance matrix R of the measurement noise.
The following simulation results are based on a randomly generated sim-

ulation with kmax = 5,000 time-samples (Fig. 4.2 shows the mode sequence
and measurements for the first 500 samples). We use the average relative esti-
mation error of the algorithms to compare continuous filtering quality of the
various algorithms. Mode estimation is evaluated by the number of wrongly
classified modes (single, double and triple mode estimation errors, relative to
the overall number of estimations (kmax) in %).

Table 4.1 summarizes the estimation results for the IMM, variable-structure
IMM (vs-IMM) and our 1-step hybrid estimation algorithm with various but
fixed fringe sizes η. We analyze both the basic algorithm (hMEη) and the
extended algorithm that utilizes component clustering, as described above (c-
hMEη). hME tests m > η hypotheses in order to obtain the leading set of
η estimates (i.e. it deduces and executes m extended Kalman filters). The
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Fig. 4.2. Time-plots of the 3-PHA experiment.

columns average and maximal number of tested hypotheses provide this in-
formation. In terms of the estimator output for these particular experiments
we take a maximum a posterior approach (MAP) and utilize the estimate x̂(1)

k

of the most likely trajectory hypothesis M
(1)
d,k as estimate for both, mode and

continuous state at time-step k.
We also included a runtime comparison based on relative runtimes for

each algorithm under investigation (relative to the standard IMM algorithm).
This is legitimate as we implemented IMM and variable-structure IMM as
a subset of the overall cPHA estimation engine that is written in Common
LISP. All estimation algorithms (IMM, vs-IMM, hME and c-hME) utilize the
same concurrent filter bank data structures and calling mechanisms, thus we
can also meaningfully compare the runtime performances.

All algorithms perform well in terms of continuous estimation quality.
Variable-structure IMM provides the same continuous estimation quality for
half of the runtime cost of the standard IMM. However, mode estimation is
significantly worse than IMM. Hybrid estimation (hME and c-hME) show
slightly degraded continuous estimation quality, when compared to IMM.
However, hybrid estimation (hME and c-hME) is significantly better than
IMM in terms of runtime costs. This advantage will be even more dramatic in
systems with a larger number of modes. It is evident that the estimation qual-
ity of hME and c-hME increases with the number of trajectory hypotheses
that are considered during estimation (fringe size). Hybrid estimation with
clustering, when compared to its non-clustering variant, performs better over
all criteria – continuous estimation, mode estimation, and runtime costs.

The previous experiments used the most likely (MAP) estimate x̂(1)
k =

〈x̂(1)
d,k, p

(1)
c,k〉 of the fringe Xk = {x̂(1)

k , . . . , x̂(η)
k } as approximation for the over-



120 4 Case Studies

Table 4.1. Algorithm comparison.

Algorithm rel. error mode errors [%] fringe tested hypotheses rel.
e single double triple size average max runtime

optimal 0.1100 - - - 1 1 1 -

IMM 0.1130 12.6 1.5 0.3 18 18 18 1.00

vs-IMM 0.1130 39.4 24.7 0.8 - 10.4 18 0.47

hME2 0.1367 37.2 14.7 1.7 2 3.9 36 0.10

hME5 0.1173 20.5 7.0 0.4 5 10.3 70 0.24

hME10 0.1170 17.5 5.6 0.6 10 20.8 140 0.47

hME20 0.1172 18.3 5.6 0.6 20 42.0 280 0.98

c-hME2 0.1190 24.0 9.6 0.7 2 4.0 36 0.08

c-hME5 0.1169 17.1 4.4 0.2 5 10.4 70 0.19

c-hME10 0.1167 16.7 4.5 0.2 10 20.7 140 0.37

c-hME20 0.1167 13.9 3.2 0.5 20 42.0 280 0.77

all hybrid state estimate. This represents the simplest (and fastest) inter-
pretation of the estimation result. In contrast, we can utilize all estimates
Xk = {x̂(1)

k , . . . , x̂(η)
k } and evaluate the most likely mode (MLM) m(1), given

all η estimates of the fringe. This leads to a hybrid estimate for the hybrid
state x̂k ≈ 〈m(1), pc,k〉, where the continuous estimate merges the fringe esti-
mates at the leading modes (3.79)

pc,k =
1

bk(m(1))

∑

ν | x̂
(ν)
d,k=m(1)

b
(ν)
k p

(ν)
c,k . (4.3)

Table 4.2 records the analysis of the simulation results for our 1-step hybrid
estimation algorithm (with clustering). MAP labels the experiments, where
the most likely estimate is taken as the hybrid state approximation. MLM
denotes the experiments that determine the most likely mode, given all η
fringe estimates, as the mode estimate and that merge the associated contin-
uous estimates. With FFE we denote the full fringe estimate that merges the
continuous estimates of all fringe estimates to provide the overall continuous
estimate

x̂c,k =
ηk∑

ν=1

b
(ν)
k x̂(ν)

c,k . (4.4)

There is no significant difference between the possible output strategies,
both in terms of the continuous estimate and the mode estimate. Merging
trajectories according to the most likely mode or the overall fringe slightly
increases the runtime (approximately in the range of 1 to 2 % of the overall
runtime).

In a third comparison we now rate variants of our N -step hybrid estima-
tion scheme against each other. We vary the window size of N -step hybrid
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Table 4.2. Focused hybrid estimation algorithm comparison - output estimates for
c-hME.

output fringe rel. error correct mode mode errors [%]
estimate size e [%] single double triple

MAP 5 0.116886 78.26 17.10 4.40 0.24

MLM 5 0.116980 78.30 16.92 4.50 0.28

FFE 5 0.116547 - - - -

MAP 10 0.116684 78.52 16.70 4.54 0.24

MLM 10 0.116541 78.54 16.50 4.60 0.36

FFE 10 0.116399 - - - -

MAP 20 0.116699 82.38 13.94 3.22 0.46

MLM 20 0.116778 82.28 13.92 3.38 0.42

FFE 20 0.116399 - - - -

estimation (again, with clustering). Table 4.3 summarizes the results for win-
dow sizes N = 1, . . . , 20, an initial fringe size (at k − N) of κ = 5, and the
fixed fringe size (at k) of η = 10.

Table 4.3. Focused hybrid estimation algorithm comparison.

window rel. error mode errors [%] fringe tested hypotheses rel.
size N e single double triple size average max runtime

1 0.116684 16.70 4.54 0.24 10 20.7 140 1.00

2 0.117270 19.12 6.78 0.60 10 54.5 610 1.90

5 0.117487 27.86 10.88 0.72 10 73.9 3256 3.18

10 0.117410 31.44 15.42 0.50 10 109.1 5364 5.21

20 0.119524 39.26 22.44 0.88 10 140.7 19052 9.21

One would expect that an increased window size improves the estimation
result. However, the experiment shows a contrary result. An increased window
size has marginal effects on the continuous estimation. In terms of the mode
estimation, however, we can observe a clear trend, where an increased window
size leads to a decreased mode prediction capability. An increased window-size
puts more and more emphasis on past observations and, as a result, delays
the detection of mode changes. This leads to the increased number of wrongly
classified modes as we increase the window size of N -step hybrid estimation.

We can summarize the outcome of the experiments above as follows:

• We observe similar prediction quality of our proposed hybrid estimation
scheme and standard multiple-model estimation algorithms.

• Our approach is computationally faster and has the prospect to scale better
to systems of higher complexity (as we will see in the next example).
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• We obtain better estimation quality as we increase the fringe size η, but
small fringe sizes already provide reasonable quality so that we can operate
even under stringent computational resource constraints.

• Taking all estimates of the fringe into account only leads to a marginal
improvement in estimation quality compared to simply taking the leading
estimate.

• An increased window size degrades the mode estimation quality.

Overall, we can conclude that 1-step hybrid estimation with MAP output,
which represents the simplest algorithm out of our proposed class of focused
hybrid estimation algorithms, provides a reasonably good approximation of
the hybrid estimate.

4.2 Advanced Life Support System - BIO-Plex

As an example from the process automation domain, we want to demonstrate
our proposed hybrid estimation capability with the BIO-Plex advanced life
support system example that was introduced in Section 1. For the scope of
this case study, we restrict our evaluation to the sub-system that deals with
CO2 and O2 control in one plant growth chamber (PGC), as shown in Fig. 4.3.
This sub-system represents a moderately complex automation system that
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Fig. 4.3. BIO-Plex plant growth chamber.

maintains an O2 concentration at 21 vol.% (±1 vol.%) and that keeps the
CO2 level at a plant-growth optimal concentration of 1200 ppm during the
day phase of the system (20 hours/day). This CO2 level is unsuitable for
humans, hence the gas concentration is lowered to 500 ppm whenever crew
members request to enter the chamber for harvesting, re-planting, or other
service activities.

Hybrid estimation schemes are key to tracking system operational modes,
as well as detecting subtle failures and performing diagnoses. For example,
we simulate the operational sequence, where the crew requests an entry into
the chamber. The system lowers the CO2 level and unlocks the chamber once
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the gas concentration reaches a level of approximately 500 ppm. Safety regu-
lations require that the control system inhibits high-volume CO2 gas injection
as long as humans are in the PGC. There are dedicated sensors at the door
of the PGC that record entry and exit of crew members for this purpose.
However, sensors are known to fail and it is the task of the hybrid monitor-
ing/estimation system to compensate for such a failure and detect the presence
of crew members from the slight disturbance of the CO2 gas concentration
that results from the exhaled CO2. For this purpose it is important that
the hybrid monitoring/estimation system not only filters continuous measure-
ments and estimates other physical entities of interest, but also discriminates
among the operational and the fault modes of the system. This involves the
ability to also identify subtle failures of the system that were not anticipated
during the design phase.

In the following we describe the outcome of simulated experiments for
operational and fault scenarios. The simulated data is gathered from the ex-
ecution of a refined and extended subset of NASA JSC’s CONFIG model for
the BIO-Plex system [108, 109]. Hybrid estimation utilizes a cPHA model that
describes the system in terms of 8 components: two redundant flow regulators
(FR1, FR2) that provide continuous CO2 supply, two redundant pulse injec-
tion valves (PIV1, PIV2) that provide a means for increasing the CO2 concen-
tration rapidly, a lighting system (LS), the plant growth chamber (PGC), and
two redundant O2 concentrators (OC1, OC2) that remove oxygen from the
chamber’s atmosphere. Figure 4.4 illustrates the interconnection scheme of
the PHA components within the cPHA model for the BIO-Plex plant growth
chamber system.
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Fig. 4.4. BIO-Plex cPHA model.
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The cPHA model captures the behavior of the plant growth chamber in
terms of approximately 450,000 modes. Each mode describes the dynamic
evolution of the chamber system by a fifth order system of difference equations.
For example, the nominal operational condition for plant growth could be
characterized by the mode xd,k = [mr2,mr2,mv1,mv1,ml2,mp2, mo1, mo1],
where mr2 characterizes a partially open flow regulator, mv1 a closed pulse
injection valve, ml2 all lights on, mp2 a plant growth mode at 1200 ppm,
and mo1 inactive O2 concentrators, respectively. This mode specifies the raw
model:

F1(mr2) = {xc1,k+1 = 0.5 uc1,k + vc1,k, wc4 = xc1, yc1 = wc4 + vc6}
F2(mr2) = {xc2,k+1 = 0.5 uc1,k + vc2,k, wc5 = xc2, yc2 = wc5 + vc7}
F3(mv1) = {wc2 = 0.0}
F4(mv1) = {wc3 = 0.0}
F5(ml2) = {wc1 = 9028.5}
F6(mp2) = {xc3,k = xc3,k−1 + wc8,k−1 + wc9,k−1 + vc3,k,

xc4,k = xc4,k−1 +
106

xc3,k−1
[wc8,k−1 − f1(xc4,k−1, wc1,k−1)] + vc4,k,

xc5,k = xc5,k−1 +
100

xc3,k−1
[wc9,k−1 + f1(xc4,k−1, wc1,k−1)] + vc5,k,

wc8 =
1
44

(wc2 + wc3 + wc4 + wc5), wc9 =
1
32

(wc6 + wc7),

yc3 = xc4 + vc8,k, yc4 = xc5 + vc9,k, yc5 = 18.178 xc3 + vc10,k}
F7(mo1) = {wc6 = 0.0}
F8(mo1) = {wc7 = 0.0},

(4.5)
where f1 denotes

f1(xc4, wc1) := 2.3230 10−7 wc1

[
72.0− 78.89 e−xc4/400.0

]
. (4.6)

xc1,k and xc2,k denote the gas flow (g/min) of flow regulator 1 and 2, respec-
tively. xc3,k captures the total number of gram-moles of gas in the chamber.
xc4,k denotes the CO2 concentration (ppm), and xc5,k denotes the O2 concen-
tration (vol.%) in the plant growth chamber. wc1,k denotes a multiplicative
constant that captures the dependency between plant growth and the photo-
synthetic photon flux of the lights above the plant trays. wc2,k and wc3,k

denote the CO2 gas flow (g/min) of the pulse injection valves, and wc6,k and
wc7,k denote the O2 gas flow (g/min) to the oxygen concentrators. The non-
linear equation (4.6) approximates the gas production/consumption rate due
to photo-synthesis in the plants [108]. This raw model defines a fifth order
system of discrete-time difference equations with sampling-period Ts = 1 min:
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xc1,k+1 = 0.5 uc1,k + vc1,k

xc2,k+1 = 0.5 uc1,k + vc2,k

xc3,k+1 = xc3,k +
1
44

(xc1,k + xc2,k) + vc3,k

xc4,k+1 = xc4,k +
106

xc3,k

[
1
44

(xc1,k + xc2,k)− f1(xc4,k, 9028.5)
]

+ vc4,k

xc5,k+1 = xc5,k +
100
xc3,k

f1(xc4,k, 9028.5) + vc5,k

yc1,k = xc1,k + vc6,k

yc2,k = xc2,k + vc7,k

yc3,k = xc4,k + vc8,k

yc4,k = xc5,k + vc9,k

yc5,k = 18.178 xc3,k + vc10,k.

(4.7)

The first simulated experiment demonstrates the mode tracking ability
of hybrid estimation. We simulate the operational mode sequence that the
automation system executes after crew members request an entry into the
PGC, as shown in Fig. 4.5. The crew requests the entry at time-step k = 600.
Immediately after this request, the chamber control system lowers the CO2

concentration to the new set-point of 500 ppm and unlocks the door. The crew
opens the door at k = 745 and enters the chamber at k = 750. They remain
inside for 1.5 hours and leave the chamber at k = 840. Their entry causes a
slight disturbance of the CO2 concentration at k = 750 (see Fig. 4.5a) and
the chamber control system reduces the CO2 gas injection to compensate this
additional source of CO2. The chamber control system also deals with O2

control concurrently. It maintains an oxygen concentration of 21 ±1 vol.%.
Therefore, it activates the oxygen concentrators to withdraw O2, once the gas
level reaches 22 vol.% at k = 713. This causes the oxygen concentration to
drop until it reaches the lower level of 20 vol.%. This operation also has direct
implications onto the pressure in the chamber, as it can be seen in Fig. 4.5b.

We applied 1-step hybrid estimation with a fixed fringe size of 10 estimates
and used the estimate x̂(1)

k of the leading hypothesis as the output of the hybrid
estimator (MAP). Figure 4.6 shows the mode estimate for the plant growth
chamber, as it moves through the operational sequence. We start off with a
plant growth chamber (PGC) at the plant-growth mode (mp2) and hybrid
estimation tracks the transition to the service mode (mp6) via the transition
mode mp3, CO2 control at 500 ppm in an unlocked chamber with a closed
door (mp4), and the mode mp5 that denotes a situation with an open door
but without crew members in the chamber. The presence of crew members
in the chamber is captured in terms of the mode mp6. Hybrid estimation
prefers this hypothesis from k = 753 onward – three minutes after the crew
entered the chamber. We perform estimation based on the control inputs to
the actuators, the observations of the CO2 and O2 gas concentration, the
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Fig. 4.5. Operational sequence in terms of measurements for the CO2 and O2 gas
concentration and chamber pressure.

pressure, and a discrete door signal that records whether the door is open
or closed. Therefore, the detection of the crew entry is done entirely based
on the noisy measurements of the gas concentrations and the pressure. This
also explains the non-optimal estimate that leads to few miss-classifications
between mp5 and mp6. Nevertheless, we identify a clear trend that can be used
as a backup mechanism for a dedicated sensor that records the entry and exit
of crew members. The mode sequence continues with mp5 at k = 743 (again,
3 minutes late), and the transition mode mp7 that moves the chamber back
to the plant growth mode mp2. Figure 4.7 shows the mode estimates for all
components. Estimation details, both for the continuous CO2 concentration

550 600 650 700 750 800 850 900 950
0

1

2

3

4

5

6

7

8

time [minutes]

m
o
d
e
 n

u
m

b
e
r

Fig. 4.6. Mode estimation of the plant growth chamber.

and the mode of the chamber, are given in Fig. 4.8.
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Fig. 4.7. Mode estimation for the cPHA components.
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Fig. 4.8. Hybrid estimation detail.
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In a second experiment, we repeat the operational sequence but also inject
a light fault at k = 800. The plant growth chamber has a plant growing area
that is arranged in ten shelves that are stacked in three columns – a large
center stack with an growing area of 56.7 m2, and two small side stacks with a
growing area of 11.5 m2 each. We simulate a situation, where the illumination
of one side stack fails. The light fault impairs the illumination for about 14
% of the plant growing area and reduces the photo synthesis activity. This
causes a slight reduction of the CO2 consumption and the O2 production of
the plants. We observe this event in terms of a bump in the CO2 concentration,
starting at k = 800 (Fig. 4.9a). The crew repairs the fault at k = 936 and
exits the chamber 4 minutes later at k = 840. The lighting failure in one side
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Fig. 4.9. Hybrid estimation detail for operational sequence with light fault.

stack only leads to a slightly modified dynamic behavior since it only harms a
small fraction (14 %) of the chamber’s plant growth area. As a consequence, it
is difficult to discriminate between the plant growth mode at full illumination
and the predefined fault mode with reduced illumination. This leads to some
mis-classifications, as it can be seen in Fig. 4.9b.

The third experiment simulates an unknown operational condition. One
of the two redundant flow regulators becomes off-line and drifts slowly to-
wards its closed position. This fault situation is difficult to capture by an
explicit fault model as we do not know in advance, whether the regulator
drifts towards the fully open or the closed position, nor do we know the mag-
nitude of the drift. A fault of this type, which develops slowly and whose
symptom is hidden among the noise in the system, is a typical candidate for
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our unknown-mode detection capability. Additionally to this unknown oper-
ational condition, we again inject the lighting fault, in order to demonstrate
the multiple-fault detection capability of our approach.

Figure 4.10 shows the causal graph of the raw model (4.5). For clarity, we
use a slightly simplified graph that omits the noise variables, since they do
not change the decomposition. The decomposition of the graph groups the
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Fig. 4.10. Causal graph of the BIO-Plex cPHA raw model (4.5).

components into a cluster with the first flow regulator ({A1}), one with the
second flow regulator ({A2}), and one cluster for the remaining components,
that is, the pulse injection valves, the lighting system, the chamber, and the
oxygen concentrators ({A3, . . . ,A8}). This enables us to estimate the mode
and continuous state of the flow regulators independent of the remaining sys-
tem. For example, an unknown mode in a flow regulator does not impose any
constrain on the estimate for the remaining system.

Figure 4.11a shows the continuous input (control signal) uc1 and the ob-
served flow rates for flow regulator 1 and 2 and the CO2 concentration for
the experiment. Both flow regulators provide half of the requested gas injec-
tion rate up to k = 700. At this time-point, the second flow regulator starts
to slowly drift toward its closed position, which it reaches at k = 854. The
chamber control system reacts immediately and increases the control signal
in order to keep the CO2 concentration at 1200 ppm. This transient behavior
causes an adaption in the CO2 concentration, as shown in Fig. 4.11b. The
outcome of the mode estimation is shown in Fig. 4.12 for the flow regulator
and the lighting system. Our hybrid mode estimation system detects this un-
modeled fault at k = 706 and declares flow regulator 2 to be in the unknown
mode (we indicate the unknown mode by the mode number 0 in Fig. 4.12).
The flow regulator mode stuck-closed (mr4) becomes more and more likely
as the regulator drifts toward its closed position. Hybrid mode estimation
prefers this mode as symptom explanation from k = 841 onward, although
flow regulator saturates a little bit later at k = 854.
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Fig. 4.11. Observed data and continuous estimation of the CO2 concentration in
plant growth chamber.

The light fault at k = 900 is detected almost instantly at k = 903 (ml4).
Again, the similar dynamics of the plant growth mode with and without the
lighting failure, leads to some wrong classifications, but we can observe a clear
trend indicating that there is a lighting problem in one side stack from k =
903 onward. The good discrimination among the pre-specified modes (failure
and nominal) is further demonstrated at the termination points of the faults.
Repair of the flow regulator 2 and the lighting system are detected almost
immediately at k = 1102 and k = 1302, respectively. Taking all components
into account, we obtain the correct mode estimation at 91% of all time samples
of this experiment.
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This simplified real world automation problem also effectively demon-
strates the benefit of our focused hybrid estimation scheme. We performed
an experiment that is in spirit of the second event sequence but tracks the
PGC for a longer period of 1,000 time samples (the CO2 concentration of
this experiment was shown in Fig. 1.2 of Chap. 1). The Table 4.4 summarizes
the estimation result for various fringe sizes of 1-step hybrid estimation with
MAP output.

Table 4.4. Estimation results for 1-step MAP hybrid estimation and various fringe
sizes.

fringe size rel. error correct mode mode errors (%)
type min / av. / max e prediction (%) single double triple

fixed 2 8.3991 10−5 85.60 13.10 0.80 0.50

fixed 5 8.0628 10−5 87.60 11.30 0.60 0.50

fixed 10 8.1291 10−5 86.40 12.60 0.50 0.50

fixed 20 8.1075 10−5 86.30 12.70 0.50 0.50

auto 2 / 2.92 / 20 9.3768 10−5 83.30 15.40 0.80 0.50

auto 3 / 5.07 / 100 8.7115 10−5 83.10 15.60 0.80 0.50

We obtain comparable good results for all fringe sizes. Mode estimation
results suggest that we use a fringe size in the range of 5 to 10 estimates.
We performed also two experiments with automatic fringe size control, based
on the method that was presented in Section 3.5.2. For both experiments we
varied the minimal/maximal numbers for the fringe size (2/20, and 3/100,
respectively). Compared to the estimation with a fixed fringe size, we ob-
served slightly degraded estimation quality, both in terms of the continuous
estimate and the mode prediction. Furthermore, automatic fringe size con-
trol can lead to a less desirable on-line behavior, where the runtimes of the
individual estimation steps vary much more, as it is the case for the fixed
fringe size experiments. This can be seen in Table 4.5 below, which lists the
average and maximal number of estimation hypotheses that are evaluated in
the course of the experiment. These numbers directly relate to the computa-
tional requirements at each time-step. This evaluation also demonstrates how
well our hybrid estimation scheme focuses onto the leading set of trajectories.
Take, for example, the estimator that maintains a fixed fringe size of the 10
best estimates. In order to obtain this leading set, it tests in average 243.62,
and in the worst case 4,908 hypotheses. Compared to the 451,584 modes of the
cPHA, this is less than 0.05% or 1.09% of the possible mode hypotheses for
the average and worst case, respectively! The table also records the benefits of
the filter decomposition and caching strategy. Estimation with a fringe size of
10 performed 700,104 filter executions in the course of the 1,000 time samples
(243.62 × 1,000 = 243,620 filter cluster executions). In order to provide the
appropriate filters, our estimator only deduced 1,167 extended Kalman filters.
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Table 4.5. Runtime statistics for 1-step MAP hybrid estimation and various fringe
sizes (Pentium P4 1.6GHz, 650MB RAM, Win2000, Allegro Common LISP 6.2).

fringe tested hypotheses Filter average CPU time
type size average max max/av. executions deductions [seconds] per est. step

fixed 2 48.90 1,244 25.4 139,933 1,111 0.468

fixed 5 120.42 2,340 19.4 345,872 1,126 1.080

fixed 10 243.62 4,908 20.2 700,104 1,167 2.471

fixed 20 487.16 9,911 20.3 1,398,774 1,197 6.441

auto 2.92 189.66 6,784 35.8 532,844 1,167 1.444

auto 5.07 296.01 28,800 97.3 824,983 1,197 1.901

For the majority of cases (98%), it was possible to retrieve the appropriate fil-
ter from the cache, thus avoiding many repeated filter deductions. This saves
valuable computation time, as well as memory space as we stored at most
0.85% of the 451,584 possible filters for the overall system.



5

Conclusion

5.1 Monograph Revisited

Classical hybrid estimation schemes, such as the family of multiple-model
estimation algorithms, do not scale up to the demanding estimation and diag-
nosis problems that arise in automation systems for modern complex artifacts.
This monograph presented a hybrid estimation framework that can remedy
this situation. Our proposed framework provides a model-based toolkit for hy-
brid modeling, on-line model analysis and estimator synthesis, and, of course,
hybrid estimation itself.

The core of our framework is a probabilistic, component-based, hybrid
modeling paradigm that captures a complex artifact mathematically. The con-
current probabilistic hybrid automaton model (cPHA), as we call it, compactly
encodes the vast amount of possible behaviors, both discrete and continuous,
of the physical system under investigation. In terms of hybrid estimation, we
take ideas from the field of discrete Model-based Reasoning, a sub-field of
Artificial Intelligence, and reformulate estimation as a search problem. This
enables us to utilize a combination of best-first and beam search techniques
that focus the estimation onto highly probably estimation hypotheses, without
considering a prohibitively large number of unlikely hypotheses. This reformu-
lation does not only tame the complex hybrid estimation problem, it also leads
to an estimation algorithm that is particularly well suited for on-line execu-
tion. The search operation provides the estimation hypotheses consecutively,
starting with the most likely one. This corresponds to an any-time/any-space
formulation and allows us to terminate the computation of an estimate when-
ever we run short of computation time or memory space. The search-based
estimation technique is not the only model-based reasoning tool that we adopt
for hybrid systems. Discrete model-based diagnosis provides means for dealing
with unmodeled situations, something traditional continuous and hybrid esti-
mation techniques cannot do. This monograph provides a novel approach to
incorporate the concept of unknown mode into our hybrid estimation scheme.
This approach is based on an on-line model decomposition method that works
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around the unknown modes of individual components, by constructing a set
of concurrent estimators for subsets of the system in which component modes
have specified behaviors. The system analysis and filter synthesis are done on-
line during the course of hybrid estimation and utilizes efficient algorithms for
causal analysis, decomposition, and automated filter deduction. This formula-
tion, together with the search based estimation algorithm provides the means
for an overall hybrid estimation engine that is not only capable of dealing with
complex systems on-line, it also automates many tasks that are normally done
off-line by an experienced control engineer (for example, the Kalman filter de-
sign). This is in spirit of a model-based programming paradigm. The design
of a hybrid estimator for a particular physical system under investigation only
requires one to specify the cPHA model of the system. Plugging this model
into our hybrid estimation engine provides the capable estimator sought for.
This provides a high level of flexibility, since a modification of the underly-
ing physical artifact only requires an update of the hybrid model or model
fragment. The estimation engine automatically deals with the necessary mod-
ifications of the underlying filters and captures the system-wide effects of
the modification. This flexibility of the estimator, concerning changes in the
system’s specification and/or topology, opens new perspectives for advanced
automation of complex systems. For example, it enables a supervisory control
system to dynamically reconfigure the artifact under control in order to adapt
to changing environmental conditions and faults. It can do so without having
to consider the estimation/monitoring sub-system since the estimator adapts
automatically to a changed configuration as well.

5.2 Future Work

The hybrid estimation paradigm, as described in this monograph, deals with
some, but surely not all possible issues that arise in the context of hybrid
estimation. Possible topics for further research could be:

Modeling: Our modeling paradigm currently limits component models in the
form of discrete time difference equations that operate all at the same
sampling period Ts. A desirable extension would be to allow systems to
be composed of component models that operate with various sampling
rates, or even continuously.

cPHA specification and verification: The PHA/cPHA specification as it is
used in this work does not constrain the set of equations so that we can
ensure that they are ’well formed’ and lead to a state space model of the
form (2.18). It would be interesting to formulate additional constraints
onto the automaton definitions, the compatibility specification, and the
automata composition operation so that we can verify: (1) the composition
of PHAs into a cPHA does not cause any conflicts regarding the causality
in the system, and (2) we obtain a state-space model of the desired form.
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Focused search: Currently, we use a combination of standard A∗ and beam
search to solve the estimation task. One direction for future research is to
utilize the continuous variant of conflicts, in order to further focus the un-
derlying search operation. A conflict is a (partial) mode assignment that
makes a hypothesis very unlikely. This requires a more general treatment
of unknown modes compared to the filter decomposition task introduced
above. The decompositional model-based learning system Moriarty [110]
introduced continuous variants of conflicts, called dissents. We are cur-
rently reformulating these dissents for hybrid systems and investigating
their incorporation into the underlying search operation. This will lead to
an overall framework that unifies our previous work on Livingstone and
Titan, Moriarty and hybrid estimation.

Filtering: We apply extended Kalman filtering as the underlying continuous
filtering technique. This requires us to restrict the disturbances that act
upon the system to additive, white Gaussian noise. This is overly re-
strictive for many practical applications. However, our hybrid estimation
algorithm per se is independent of the particular noise model, it would be
interesting to extend our framework to other filtering mechanisms, such
as Particle filtering or unscented Kalman filtering. This involves the ex-
tension of the automated filter design algorithms to deal with a new class
of filters, as well as adapting the probabilistic observation and transition
functions accordingly.

Compilation: Currently, our experimental implementation of the hybrid es-
timation framework performs the systems analysis, decomposition, and
filter deduction on-line. Some tasks however, could be done equally well
at the compilation phase. For example, one could pre-specify the inputs
and outputs of a PHA, whenever the set of equations and the intercon-
nection to the outside world (input specification of the cPHA) enforces
unique causal relationships among the variables. Linked to this causality
pre-compilation is the possibility to decompose the overall hybrid estima-
tion task not only at the filtering level, but also on the main estimation
level, e.g. separating the overall hybrid estimation task into several concur-
rent estimation tasks of smaller complexity. Shifting some computational
tasks into the system’s compilation phase can contribute to a faster on-line
operation. Nevertheless, it can limit the flexibility in terms of allowing a
dynamic reconfiguration of the system and the capability to reason about
system-wide interactions. As a consequence, one ought to carefully balance
off-line compilation and on-line deduction.

Implementation: We use an experimental implementation of the hybrid esti-
mation engine that is written in Common LISP. It would be worthwhile
to re-implement the system within an industrial real-time environment,
so that it can operate in conjunction with a process monitoring and su-
pervisory control system.

Autonomous Automation: As indicated above, we see this work as one step
towards a novel automation paradigm that robustly controls a complex
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artifact within a changing or even ill-defined operational environment.
This involves dealing with un-anticipated situations and an overwhelm-
ingly large number of possible control strategies. We expect that some of
the tools that were developed for hybrid estimation will provide valuable
starting points for the dual control problem. On the long run, this would
lead to an overall automation system that can dynamically reconfigure
itself in order to provide the artifacts functional goal.
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