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ABSTRACT

Many applications of autonomous robots depend on the robot being able to navigate in
real world environments. In order to navigate or path plan, the robot often needs to
consult a map of its surroundings. A truly autonomous robot must, therefore, be able to
drive about its environment and use its sensors to build a map before performing any
tasks that require this map. Algorithms that control a robot’s motion for the purpose of
building a map of an environment are called autonomous exploration algorithms.
Because resources such as time and energy are highly constrained in many mobile robot
missions, a key requirement of autonomous exploration algorithms is that they cause the
robot to explore efficiently. Planning paths to candidate observation points that will lead
to efficient exploration is challenging, however, because the set of candidates, and,
therefore, the robot’s plan, change frequently as the robot adds information to the map.
The main claim of this thesis is that, in situations in which the robot discerns the large
scale structure of the environment early on during its exploration, the robot can produce
paths that cause it to explore efficiently by planning observations to make over a finite
horizon. Planning over a finite horizon entails finding a path that visits candidates with
the maximum possible total utility, subject to the constraint that the path cost is less than
a given threshold value. Finding such a path corresponds to solving the Selective
Traveling Salesman Problem (S-TSP) over the set of candidates. In this thesis, we
evaluate our claim by implementing full horizon, finite horizon, and greedy approaches to
planning observations, and comparing the efficiency of these approaches in both real and
simulated environments. In addition, we develop a new approach for solving the S-TSP
by framing it as an Optimal Constraint Satisfaction Problem (OCSP).
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1 Introduction

There are a vast number of potential applications for autonomous robots that can
move about and act on the physical world. Some of the most important uses of these
robots are situations in which it is too dangerous, costly, or technologically difficult to
send humans to perform a task. These situations are challenging because they require the
robot to operate in the noisy and unpredictable real world, as opposed to carefully
controlled factory floors. Recent advances, however, have put robots for many of these
applications within reach. Specifically, researchers have worked on rovers for exploring
Mars [25], autonomous underwater vehicles (AUVs) for detecting ocean mines [46] and
conducting oceanographic surveys [3], unmanned air vehicles (UAVs) for surveillance
[27], and urban robots for performing building search and rescue [11] or assisting the
growing elderly population [39].

A fundamental problem for all autonomous mobile robots is being able to
navigate and reason about the surrounding environment. In many cases, the only way for
a robot to solve this problem is to consult an internal model (map) of its environment.
For example, a very simple navigation task for an AUV could be to travel forward 50
meters, make a 90 degree turn, and then travel straight for 25 more meters. The AUV
could try to traverse paths like this one using dead-reckoning, yet eventually it would find
itself unacceptably far off course. The problem is that in all methods of dead-reckoning,
including inertial guidance systems and odometry for wheeled robots, the navigation
error accumulates over time. Furthermore, in space, underwater, and indoors, GPS is not
available to help a robot to navigate. Therefore, the robot must use its sensors to
recognize landmarks and localize itself within a map of the environment, in order to
bound its navigation error. More sophisticated spatial reasoning, such as planning a path
between two points that avoids obstacles, also requires a mobile robot to have a map of
the surroundings.

The main problem with a robot relying on maps is that, for many environments,
such maps do not exist. Fortunately, researchers have developed algorithms that allow a

robot to use its sensors to build a map of its environment and at the same time localize
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itself within this map. In other words, these algorithms allow a robot to perform
simultaneous localization and mapping (SLAM) [12] [34] [32]. SLAM algorithms
passively process sensor and dead-reckoning data in order to build the best map possible
of the part of the environment that the robot has seen. However, these algorithms do not
actively move the robot in order to add information to the map. Often, a robot cannot
construct an adequate map as it performs its mission; therefore, it must drive about its
environment and build a map before it performs actions requiring this map. Algorithms
for actively controlling a robot’s actions for the purpose of adding information to the
robot’s map are called autonomous exploration algorithms.

Unfortunately, resources such as time or energy are highly constrained in many
autonomous robotics missions [4]. For a robot to spend a lot of time or energy driving
around and building a map before it even begins performing its intended mission is
highly undesirable. As a result, a key requirement for methods of autonomous
exploration is that they cause the robot to build the best map possible, while using
resources as efficiently as possible. The larger the environment is, the bigger the
potential exists for a robot to waste significant resources mapping that environment, and
hence the more important it is for the robot’s exploration strategy to be efficient.

Although a number of methods of autonomous exploration have been developed,
little work has been done on optimizing the efficiency of these methods. Therefore, this
thesis develops and evaluates general methods of planning observations during
exploration in order to improve efficiency. A major contribution of this thesis is the
development of a family of methods for planning observations over a finite horizon
called finite horizon methods. In order to facilitate evaluation, we implemented and
tested a variety of observation planning methods on a real and simulated robot.

In the next section we explain in more detail how SLAM algorithms and
autonomous exploration algorithms work. Then, building on this explanation, we explain
what it means to plan observations for autonomous exploration. We then provide a
precise problem statement for the thesis, and explain the technical challenges that this
problem statement presents. We next outline the architecture of the autonomous
exploration system that we implemented and tested. Finally, we enumerate the claims of

this thesis.
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1.1 SLAM and Autonomous Exploration

SLAM algorithms take data from a robot’s sensors and dead-reckoning system,
and produce a map of the environment and an estimate of the robot’s position within this
map. These algorithms usually use state estimation techniques to keep track of the
robot’s estimate of the position of objects in the environment, as well as its uncertainty in
these positions. There are a number of different map representations that SLAM
algorithms use, including occupancy grid maps [13], scan-matched maps [18] [49] [21],
and feature maps [44]. The autonomous exploration implementation that we test in this
thesis uses line feature maps. Line feature-based SLAM only adds objects to its map that
can be reasonably represented as a line. Selectively adding objects to the map avoids the
computational burden of estimating the position of every point that the robot’s sensors
have ever seen. Figure 1.1 shows a typical line feature map. The thin line winding

through the map is the robot’s estimated path through the environment.

Figure 1.1 Example of a Line Feature Map
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Because SLAM algorithms keep track of both the estimated positions of objects in
the environment and the uncertainty in these position estimates, there are two categories
of approaches to autonomous exploration. Exploration algorithms in the first category
aim to decrease the map’s uncertainty about the positions of objects, by having the robot
re-observe these objects. Exploration algorithms in the second category aim to increase
the map’s coverage by having the robot observe areas it has never seen before. Less
work has been done on improving the efficiency of exploration algorithms in the second
category; therefore, this thesis focuses on exploration for increasing map coverage.

Most methods of exploration for increasing map coverage guide a robot’s motion
by placing candidate observation points on the border that separates regions of the
environment that the robot has and has not sensed. These exploration methods also
assign each candidate a utility that estimates how much new area the robot should see by
visiting that candidate. We call approaches to placing candidates and assigning utilities
to them candidate identification and scoring methods. In order to explore its
environment, a robot plans a path to visit some subset of these candidate observation
points. As the robot traverses this path, it continuously recalculates where to place the
candidates and what utility to assign to them, in order to reflect updates to the map.

These methods of exploration for increasing map coverage, therefore, consist of
two components: candidate identification and scoring, and planning a path to visit a
subset of the candidates. We call planning a path to visit a subset of the candidates
observation planning. If the robot constantly recalculates this path, in order to keep up to
date with the changes to the continuously recalculated set of candidates, then we say that
the robot is performing continuous observation planning. A number of different
approaches to candidate identification and scoring exist, largely in order to handle
different map representations [18] [53] [37]. However, given that most of these
candidate identification and scoring methods try to place candidates on the border
between explored and unexplored areas and assign a utility to each candidate estimating
the amount of information the robot will gain by visiting the candidate, it is possible that
one approach to observation planning will work well for all methods of candidate
identification and scoring. This thesis looks for such an approach to observation

planning.
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In order to evaluate how various approaches to observation planning improve the
efficiency of exploration, we implemented and tested these approaches for one particular
candidate identification and scoring method. Specifically, we used the Newman, Bosse,
and Leonard candidate identification and scoring method, because it is the only method
that can handle line feature maps. This candidate identification and scoring method
places candidates at either end of a line feature, in order to encourage the robot to
discover the full extent of the line. The method then estimates how much new area a
robot will see from each candidate, by measuring the density of features around the
candidate and seeing how closely the robot has passed by the candidate in the past. If
there are many line features in the map around the candidate, then the robot must have
seen the area around that candidate before. In addition, if the robot’s path ever passed
within sensor range of the area around the candidate, then it is also likely that the robot
has seen that area before. The Newman, Bosse, and Leonard method summarize these
measures of how much unexplored area a robot will see from a candidate into a utility
and assigns this utility to the candidate. Figure 1.2 illustrates how the method places and
scores candidates for a partially completed map. The triangle in the figure represents the
robot’s estimated position and heading. The line coming out of the back of the robot is
the robot’s estimated path through the environment. The circles represent candidates, and
each candidate is labeled with its utility. The straight lines in the figure are the line

features of the map.

Three line features nearby, robot has

/’ been within sensor range = low utility

0.3@ é) 0.2 O 05 O 0.7
0.4
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Figure 1.2 Candidate Identification and Scoring with Newman, Bosse, and Leonard Method
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1.2 Approaches to Observation Planning

In order to evaluate how efficiently approaches to observation planning cause a
robot to explore its environment, we must have some measure of the efficiency of the
path that the robot executes during exploration. For now, we can measure the efficiency
of a robot’s exploration by taking the sum of the utilities of the candidates that the robot
visits before the robot’s path exceeds a given maximum cost. The cost of a path may be
the length of a path, the amount of time that it takes the robot to traverse the path, the
amount of energy that the robot expends along the path, and so on. Because the utility of
a candidate estimates how much new area the robot will see from that candidate, this
measure quantifies the tradeoff between the desire to maximize the amount of new area
that the robot maps, with the desire to minimize the cost of the robot’s path.

Currently, all methods of exploring in order to increase map coverage take the
greedy approach to observation planning. The greedy approach selects one candidate for
the robot to visit, and outputs the least cost path to this candidate. The candidate that the
greedy approach selects is the candidate that minimizes some function f{c;), where ¢; is a
candidate'. One possible function is to return the cost of the least cost path to c;, in which
case the greedy approach selects the candidate that the robot has the lowest least cost path
to. Another possible function is to return the negative of the utility of c;, in which case
the greedy approach selects the candidate that has the highest utility. Some
implementations combine the previous two functions by using a function that increases as
the least cost path to c; increases and decreases as the utility of c; increases.

The problem with the greedy approach is that it only plans paths to be locally
efficient. A series of locally efficient paths, however, is not guaranteed to be globally
efficient. An obvious alternative to the greedy method, then, is to plan a globally optimal

path. A globally optimal path is a path that takes the robot to every candidate in the map

" In the way it is described here, the greedy approach would more appropriately be named the myopic
approach. Myopic decision making methods produce a one-step plan in which the agent takes the action
that would be optimal if the agent’s life were to end immediately afterwards. Greedy methods use the same
criteria to choose actions to take as myopic methods, but greedy methods produce multiple step plans.
Note, however, that a robot performing continuous observation planning with a myopic method would
execute the exact same path as a robot performing continuous observation planning with a greedy method.
In this thesis, therefore, we do not distinguish between these two methods. Instead, we use the term
“greedy method” to refer both to methods that produce paths to only one candidate and to methods that
produce paths to every candidate in the map greedily.
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such that no other path taking the robot to every candidate has a lower total path cost.
We call the observation planning method that outputs a globally optimal path for the set
of candidates the full horizon method. We refer to paths planned by the full horizon
approach as full horizon paths. Finding a globally optimal path for a given set of
candidates maps to solving the Traveling Salesman Problem (TSP) over the set of
candidates.”

If the robot is able to execute a full horizon path to completion without the set of
candidates changing at all, then the full horizon approach to observation planning is
guaranteed to cause the robot to explore its environment at least as efficiently as any
other observation planning method (as long as the maximum path cost, over which we
measure efficiency, is not less than the cost of the full horizon path). Unfortunately, the
set of candidates almost always changes as the robot explores its environment.
Candidates appear, disappear, move, and change utility as the robot finds out more about
the environment, largely because most exploration methods place candidates on the
border between the explored and unexplored parts of the map. As the robot increases the
coverage of its map, this border moves outward, along with all of the candidates on the
border. A robot performing continuous observation planning with the full horizon
approach will recalculate the full horizon path to adjust for the set of candidates
changing. However, if the robot does not get to execute its full horizon paths to
completion, then there is no guarantee that the parts of the full horizon paths that it does
execute will be efficient at all.

In order to develop methods of planning efficient exploration paths when the set
of candidates changes, we need to characterize the way in which the set of candidates
changes. Unfortunately, there are currently no methods of predicting precisely how or
when the set of candidates will change during exploration. However, we do know that
the farther the robot travels, the more likely that the robot is to map previously unseen
areas, and the more likely it is that the set of candidates will change. We, therefore, can

model the times that the candidates change as an arrival-type stochastic process. Recall

* Burgard et al [10] first pointed out that planning a globally optimal path to explore an environment maps
to solving the Traveling Salesman Problem. As far as we know, however, no one has ever implemented or
evaluated a method of exploration for increasing map coverage that plans its paths by solving the TSP. The
implementation and evaluation of the TSP approach for a particular candidate identification and scoring
method is therefore one of the contributions of this thesis.
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that we can think of a stochastic process X[t] as a sequence of random variables, such
that for any value of t = t;, X[t;] is a random variable. In an arrival-type stochastic
process, each random variable X[ti] has two possible values: X[t;] =1 (an arrival) or X][t]
=0 (no arrival). For our purposes, the variable t corresponds to the distance that the
robot has traveled, and an arrival corresponds to an instant when the set of candidates
changes. We do not attempt to model how the set of candidates changes when it changes,
since how the set of candidates changes depends strongly on the particular candidate
identification and scoring method.

We can, therefore, think of an exploration mission as a series of intervals over
which the candidates do not change. Each interval is separated from the interval before
and after it by instants when the candidates change in an unpredictable way. With this
model of how the candidates change, the best that an observation planning method can do
is to plan paths that are optimally efficient over some distance in which the candidates are
not likely to change. This distance could be any distance shorter than the longest interval
over which the candidates do not change. A logical choice is the expected value of the
distance between arrivals. To be precise, then, we would like the robot to plan a path that
is not longer than a given distance (the horizon length) and that visits a subset of the
candidates with the maximum possible total utility. We refer to this method of
observation planning as the finite horizon method. Finding such a path corresponds to
solving the Selective Traveling Salesman Problem (S-TSP) over the set of candidates.
The development and characterization of the finite horizon approach to observation
planning is one of the main contributions of this thesis.

There are two reasonable choices for how to perform continuous observation
planning using the finite horizon approach. First, every time we recalculate the finite
horizon path, we can plan over the same horizon length, L. We call this method the
receding horizon method. Alternatively, each time the robot recalculates the finite
horizon path, the robot can subtract from the horizon length, L, the distance it has
traveled since the initial path computation and recalculate the path over this adjusted
horizon. When L minus the distance traveled falls to zero, the robot resets its distance
traveled to zero and starts planning a path over a distance of L again. We refer to this

method of re-computation as the fixed horizon method.
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Neither finite horizon continuous observation planning method is clearly better
than the other. A robot using the fixed horizon method is more likely to execute the paths
it plans to completion without the set of candidates changing than a robot using the
receding horizon method, for the length of the robot’s plan constantly grows longer in the
receding horizon method. Only when the robot executes its plan to completion without
the set of candidates changing, can we guarantee that the robot will execute an efficient
path. In other words, it is possible that the robot will constantly put off doing something
efficient when using the receding horizon method, and eventually the set of candidates
will change so that the robot will never get to do the efficient thing it was planning on.
Even though this situation is possible, however, it may not be likely. In addition, the
fixed horizon method has the weakness that the planning horizon constantly gets shorter
and shorter, thereby making the method more and more like the greedy approach. The
receding horizon method, therefore, has the potential to plan much more efficient paths
than the fixed horizon method.

Note that neither finite horizon continuous observation planning method plans
globally optimal paths. Therefore, it is possible for a robot using the greedy or full
horizon approach to execute a path that is more efficient than the path that a robot would
execute using the finite horizon approach in the same situation. However, because the
finite horizon approach plans a path that is optimally efficient over the expected distance
that the robot will travel before the candidates change, we expect that the finite horizon
approach will cause the robot to execute the most efficient paths on average. When the
greedy or full horizon approaches cause the robot to explore more efficiently than the
finite horizon approach, they must do so by getting lucky.

One legitimate concern about the finite horizon approach is that the robot might
never be able to visit more than one candidate in its path before the set of candidates
changes. In this case, there should not be any advantage on average to planning a path to
multiple candidates, and the best the robot can do is use the greedy approach. This
concern is legitimate because candidate identification and scoring methods intentionally
place candidates in locations from which the robot is likely to map a lot of new area.

And when the robot maps a new area, the set of candidates usually changes. Therefore, if
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the candidate identification and scoring method is doing its job well, the set of candidates
should change every time the robot makes an observation at a candidate.

This concern may mean that the finite horizon approach is not always the best
approach to observation planning, yet there are situations in which the finite horizon
approach should still perform better than the greedy (or full horizon) approach. For
example, the first candidate in the robot’s finite horizon path may usually not be much
worse in terms of the greedy function than the greedily best candidate, depending on the
environment. In these cases, if the robot is able to execute even just one of its finite
horizon paths to completion, the robot still might explore its environment more
efficiently using the finite horizon approach than the greedy approach. In addition, we
can shorten the length of the robot’s horizon in order to make it more likely that the robot
will be able to execute its finite horizon paths completely.

More importantly, there are situations in which the changes to the set of
candidates do not usually affect the overall efficiency of a finite horizon path. These
situations occur when the robot starts off knowing the large scale structure of the
environment and is mapping in order to fill in the details. If the robot knows where most
of the large groups of obstacles and interesting areas to map are, then the robot can plan
an efficient large scale path between these interesting areas. When the robot arrives at
these areas, the robot will map new objects and the set of candidates will change, but
these changes will usually only be local. The changes to the set of candidates will,
therefore, not significantly affect the large scale shape and efficiency of the robot’s
planned path.

Figure 1.3 shows a simple example of such a situation. Figure 1.3a shows what
the robot’s environment actually looks like. The environment is a fictional Mars terrain,
and the squares represent rocks. The rocks are grouped into clusters, and the arrangement
of these clusters is what we call the large scale structure of the environment. Figure 1.3b
shows the robot’s initial map. This map captures the overall structure of the
environment, in that we can discern the approximate location of each of the rock clusters.
Figure 1.3c shows a path that the robot might plan using the finite horizon approach with
a long horizon. Note that even though the robot will discover new rocks and new

candidates will appear that will change the robot’s path at each cluster, the overall
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structure of the robot’s path will remain the same. Figure 1.3d shows the approximate
path a robot might take to explore this environment using the greedy approach. Note that

the finite horizon path fills in the map in a much shorter distance than the greedy path.
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Figure 1.3 Example of Knowing Large Scale Structure Beforehand

There are a number of ways in which the robot could start off knowing the overall
structure of the environment. In some situations, it is easy for us to build large scale
maps of an environment using low resolution sensors. We can then provide the robot
with such a map a priori. For example, overhead satellite images can produce large scale

maps of an environment in the case of Mars exploration. Such large scale maps do not
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contain enough detail for the robot to use for navigation or path planning, however;
therefore, the robot must explore in order to flesh out its map.

Another situation in which the robot starts off knowing some of the overall
structure of the environment occurs when the environment is open. An open environment
is an environment in which the density of obstacles is low enough that, from most
positions, the robot can see most of its surroundings, out to the radius of its sensors.
Although the robot will not start off knowing the structure of the entire environment, for
open environments, the robot will know the structure of the environment out to the radius
of its sensors. Then, if the robot plans its finite horizon paths over a horizon that is on the
order of the length of this sensor radius, the robot should end up filling in the details of its
map in parts of the environment for which it knows the basic structure. Therefore, we
expect that changes to the set of candidates will not hurt the efficiency of a robot’s finite
horizon path in open environments.

Ultimately, however, in order to determine for certain in which situations the
finite horizon approach outperforms the greedy and full horizon approaches, we must
implement and test these approaches with particular candidate identification and scoring
methods. Therefore, this thesis presents the results of testing these approaches with the

Newman, Bosse, and Leonard candidate identification and scoring method.

1.3 Problem Statement

The problem that this thesis addresses is to design the greedy, full horizon, and
finite horizon approaches to continuous observation planning, and evaluate their
efficiency with respect to how efficiently a robot explores typical environments. Our
approach to solving this problem breaks down into solving three sub-problems. First, we
must implement these three approaches to continuous observation planning for a
particular candidate identification and scoring method, and test this implementation on
typical environments. In order to solve this sub-problem, we also must address the
problem of finding an efficient method of solving the S-TSP. Second, we must identify
objective and quantifiable measures of how well a robot explores its environment. And

third, we must evaluate how well these three approaches work for all candidate
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identification and scoring methods, based on the features that candidate identification and

scoring methods have in common.

1.4 Technical Challenges

Solving the sub-problem of implementing and testing the three approaches to
continuous observation planning for a particular candidate identification and scoring
method presents a number of technical challenges. First, performing continuous
observation planning using the full horizon or finite horizon approach is computationally
difficult. In order to perform continuous observation planning with either of these two
approaches, the robot must constantly find the least cost path that avoids obstacles
between each pair of candidates, and then solve the TSP or S-TSP over the set of
candidates using these least cost paths. Because the autonomous exploration
implementation must control a robot in real time, the duration of the path planning and
TSP or S-TSP solving stages must be on the order of seconds at most.

The fact that our implementation uses line feature maps as the map representation
presents another challenge. As far as we know, there are no existing methods of planning
least cost paths that avoid obstacles using a line feature map. Therefore, we must
develop a principled, effective, and efficient method of path planning for line feature
maps. Another challenge in implementing these observation planning methods is that the
S-TSP is an NP-hard problem [30]. Therefore, finding a fast method of solving the
instances of the S-TSP we are likely to encounter has the potential to be very difficult.

One final challenge that we face is that few if any researchers have attempted to
measure quantitatively how well a robot explores its environment in order to increase the
coverage of its map. Therefore, must develop reasonable and objective methods to

quantify the quality of a robot’s exploration.

1.5 Technical Approach

Recall that, in order to evaluate the performance of the greedy, full horizon, and
finite horizon approaches to observation planning, we implemented these three
approaches for the Newman, Bosse, and Leonard candidate identification and scoring

method described in Section 1.1. We then used the implementation of these observation
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planning approaches to control a robot’s exploration of indoor and outdoor environments
in simulation and in the real world. This implementation and the experiments we
performed with it are important contributions of this thesis.

Specifically, we put together an experimental system that continuously takes as
input, real or simulated sensor data, builds a line feature map from this data, and outputs
commands to a real or simulated robot that causes the robot to explore its environment
using a specific observation planning method. The continuous observation planning
methods we implemented were a greedy method, the full horizon method, the receding
horizon method, and the fixed horizon method. Our implemented greedy method selects
to visit the candidate to which the robot has the lowest least-cost path.

Figure 1.4 shows the architecture of the experimental system. The system is
structured so that the only module that changes when we switch to using a different
observation planning method is the module labeled “solver.” The solver module takes as
input a graph with one vertex for each candidate, one vertex for the robot, and edges with
weights equal to the cost of the least cost path through the robot’s map between the
endpoints of the edge. We refer to such a graph as a candidate graph. The solver module
outputs a sequence of candidates for the robot to visit. The system then turns this
sequence into a path for the robot to execute. We first describe all of the modules except
the solver module. We then explain how we constructed the full horizon and finite

horizon versions of the solver module.
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Figure 1.4 Architecture of Experimental System

1.5.1 Overall Architecture of Implementation

We examine the modules of the architecture depicted in Figure 1.4 from input to
output. The feature-based SLAM module continuously takes data from the robot’s
odometer and rangefinder. The module uses this data to update a line feature map of the
environment and to estimate the robot’s position in the map. Figure 1.1 shows a typical
line feature map. The SLAM module continuously passes the most recently updated map
to the candidate identification and scoring module.

The candidate identification and scoring module uses the Newman, Bosse, and
Leonard method described in Section 1.1 to generate a set of candidate observation points
from a line feature map. These candidates are placed and scored to encourage a robot to
expand its map. The module passes the set of candidates to the part of the system that
performs path planning.

The part of the system that performs path planning finds a least cost path that
avoids obstacles between each pair of candidates, in order to build the candidate graph.
To find these least cost paths, the system builds a visibility graph over the current map

and the set of candidates [51]. The module labeled “visibility graph constructor” in
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Figure 1.4 builds the visibility graph from a set of polygonal obstacles and a set of
waypoints. The corners of the obstacles and the waypoints make up the vertices of the
visibility graph. The visibility graph constructor places edges between every pair of
vertices such that the edge does not pass through an obstacle. The cost of the edge is the
straight line distance between the two vertices. Therefore, any path formed by traversing
edges in the graph from one vertex to another is guaranteed to avoid all known obstacles.
In order to find the least cost path through the map between any two candidates, the
system searches the visibility graph for the least cost path between the corresponding
vertices.

The system uses the information in the line feature map to provide the visibility
graph constructor with a set of polygonal obstacles. This thesis presents a novel method
of extracting a set of obstacles from a line feature map, by turning each line in the map
into a rectangle. The module labeled “obstacle extraction” in Figure 1.4 builds these
rectangles from the feature map.

The system uses the D* algorithm [45] in order to search the visibility graph for
the least cost path between every pair of candidates. As we note in Section 1.4, it is
computationally challenging to constantly search the visibility graph for these shortest
paths. D* addresses this challenge by incrementally searching graphs. In other words,
D* saves its last calculated set of least cost paths. Then, when the map updates and a
new visibility graph is built, the system tells D* what edges changed in the visibility
graph. D* then searches the visibility graph only as much as it needs, in order to update
its saved set of least cost paths, to accurately reflect the least cost paths through the
visibility graph between every pair of candidates. The module labeled “D* search” in
Figure 1.4 performs this incremental search and creates the candidate graph. The D*
search module then passes the candidate graph to the solver module. The solver module
returns an ordered subset of candidates to visit. The D* search module uses its stored set
of least cost paths to fill in the path between these candidates. The D* search module
then passes this path to the module labeled “controller” in Figure 1.4.

The controller module takes a path as input and outputs commands that cause the
robot to follow this path. The controller module also performs low level obstacle

avoidance to make sure the robot does not run into any obstacles that are not in the map.
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In order to perform this obstacle avoidance, the controller module continuously reads the

rangefinder sensor data.

1.5.2 The Solver Module

The solver module takes a candidate graph as input and outputs an ordered subset
of candidates to visit. There are four versions of the solver module: the greedy version,
the full horizon version, the receding horizon version, and the fixed horizon version. The
greedy version simply searches through all of the edges leading out of the vertex
representing the robot for the edge with the lowest weight and returns the candidate at the
other end of this edge. The full horizon version solves the TSP on the candidate graph
and returns the resulting sequence of candidates. The receding horizon version solves the
S-TSP on the candidate graph for the constant horizon length L and returns the resulting
ordered subset of candidates. The fixed horizon version solves the S-TSP on the
candidate graph for a horizon length of L-d, where L is a constant and d is the distance
the robot has traveled since the last horizon, and returns the resulting ordered subset of
candidates.

We use the Concorde TSP code [54] directly to solve the TSP. Concorde
implements an efficient branch-and-cut algorithm [1] for solving the TSP on undirected
graphs. Instead of using existing algorithms to solve the S-TSP, however, we developed
and implemented a new approach. In order to solve the S-TSP, we formulate the problem
as an Optimal Constraint Satisfaction Problem (OCSP) [50]. An OCSP consists of a set
of variables with finite domains, a set of constraints which map each assignment to the
variables to true or false, and a utility function that maps each assignment to the variables
to a real number. A solution to an OCSP is an assignment to the variables that maximizes
the utility function such that the constraints are satisfied. A major reason that we
developed an approach to solving the S-TSP by formulating it as an OCSP is that this
formulation has not been previously explained. Powerful methods of solving OCSP’s
have recently emerged [50]; therefore, it is worthwhile to see how well these methods
work for the instances of the S-TSP we are interested in.

In order to formulate the S-TSP as an OCSP, we create one variable for each

candidate. Each variable can take the value of either 1 or 0. The candidate
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corresponding to a variable that is assigned to 1 is included in the ordered subset of
candidates that is the solution to the S-TSP, while the candidate corresponding to a
variable assigned to 0 is not included. Each variable also has its own utility function,
which we call an attribute utility function. This function maps a variable assigned to 1 to
the utility of the corresponding candidate and a variable assigned to 0 to zero. The utility
of an assignment to the entire set of variables is equal to the sum of the values of the
attribute utility functions of the individual variables. In order to describe the constraint,
let us consider the sub-graph formed by removing every vertex corresponding to a
candidate whose variable is assigned to 0 (and every edge including such a vertex) from
the candidate graph. The constraint over the OCSP variables is that the solution to the
TSP on this sub-graph must have a length that is less than or equal to the horizon length
L.

We solve the S-TSP formulated as an OCSP with the constraint-based A*
algorithm [50]. Constraint-based A* is an efficient method based on A* search of
enumerating the possible assignments to the variables from highest to lowest value of the
utility function. Note that in order to maximize the utility function for a partial
assignment to the variables, it is sufficient to assign each of the unassigned variables to a
value that maximizes its attribute utility function. Constraint-based A* takes advantage
of this fact in order to efficiently find the next best full assignment to the variables, and in
order to efficiently calculate an admissible heuristic during the search.

In order to solve the S-TSP, constraint-based A* enumerates full assignments to
the variables one at a time and checks the constraint for each assignment. Our approach
checks the constraint on an assignment by running the Concorde TSP solver on the sub-
graph corresponding to the assignment. The first full assignment that constraint-based
A* finds is consistent must correspond to the subset of candidates in the solution to the S-
TSP, since these assignments are generated in best first order. In order to turn this subset
of candidates into an ordered subset, our approach orders the candidates in the subset in

the same order that the TSP solver outputted.
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1.6 Thesis Claims

1. When a robot knows the large scale structure of its environment early on
during exploration for increasing map coverage, the finite horizon approach to
observation planning will cause the robot to explore this environment more efficiently on
average than either the greedy or the full horizon approach.

2. Itis possible to solve the S-TSP as an OCSP using the constraint-based A*

algorithm.

1.7 Thesis Layout

The rest of this thesis is laid out as follows. Chapter 2 characterizes the problem
of autonomous exploration and provides background on map representations, existing
approaches to exploration for decreasing map uncertainty, and existing approaches to
exploration for increasing map coverage. In particular, the chapter describes in detail the
Newman, Bosse, and Leonard candidate identification and scoring method that the
implementation we tested uses. Next, Chapter 3 characterizes the general features of
observation planning and motivates and defines the finite horizon approach. Chapter 3
also speculates about how well the greedy, full horizon, and finite horizon approaches
should perform for all candidate identification and scoring methods in general by looking
at the features that all candidate identification and scoring methods share. Chapter 4
describes in detail our approach to solving the S-TSP as an OCSP with constraint-based
A*. Then, Chapter 5 explains the architecture of the system that we implemented to test
the greedy, full horizon, and finite horizon approaches to observation planning. Chapter
6 presents and analyzes the results of testing the system we implemented in real and
simulated environments. Finally, Chapter 7 discusses ideas for future work in areas

touched upon by this thesis.
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2 Autonomous Exploration

In this chapter we formulate the problem of autonomous exploration and give an
overview of some of the methods for solving the problem that researchers have pursued.
Finally, we describe in detail the method of exploration that the system we tested in our
experiments is based on.

Specifically, in Section 2.1 we define the problem of exploration and introduce
the two major variations of the problem: exploration for increasing map coverage and
exploration for decreasing map uncertainty. In Section 2.1.2 we describe the general
structure of an exploration algorithm that virtually all algorithms use. In Section 2.2 we
review a number of the common approaches to building maps that exploration algorithms
use, including the feature-based SLAM approach that the exploration algorithm we tested
uses. Then, in Section 2.3, we characterize the problem of exploring in order to increase
map coverage and describe a few important approaches to this type of exploration out of
the many that exist. In Section 2.3.4 we describe the feature-based exploration strategy
that we based the system that we tested on. Finally, in Section 2.4, we characterize
exploration for decreasing map uncertainty and go over a few approaches to this type of

exploration.

2.1 The Problem of Exploration

Being able to autonomously explore an environment in order to construct a map
of this environment is integral to mobile robotics [10] [37] [22]. Most tasks that a mobile
robot might have to perform, such as taking samples of rocks on Mars, locating ocean
mines, performing urban search and rescue, or simply traveling from one location to
another, require the robot to be able to navigate accurately. Yet in many environments,
including indoors, underwater, or on Mars, GPS is not available to help. In addition, the
odometry error for many robots is unacceptable and accumulates over time. As a result,

the best way for a robot to navigate is often to use its sensors to localize itself within a
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map of the surroundings. A map also functions as a model of the environment that the
robot can use for path planning.

The main issue with relying on maps is that we often do not have an a priori map
of the environment to give to the robot. Fortunately, algorithms now exist [38] [8] that
enable a robot to use its sensors to build a map of its environment and at the same time
localize itself within this map, all in real time. These algorithms are known as
simultaneous localization and mapping (SLAM) algorithms. We discuss approaches to
SLAM in Section 2.2.

SLAM algorithms, however, only solve part of the problem of building a map of
an environment. A SLAM algorithm passively takes what the robot’s sensors see and
builds the best map possible from this data; it does not direct the robot to sense new areas
of the environment. A robot can attempt to build its map as it moves around performing
its other tasks, yet often this type of haphazard exploration of the robot’s surroundings
leads to an inadequate model of the environment. Therefore, we would like the robot to
be able to drive itself around an environment before it performs its other tasks in order to
build a good map of that environment. We call driving about for the purpose of building

a map autonomous exploration.

2.1.1 Definition of the Problem of Autonomous Exploration

In order to be clear about what autonomous exploration algorithms do, we define
the problem of autonomous exploration more formally. Given a partially completed map
that is constantly updated to reflect the robot’s sensor readings and the robot’s estimated
position, the problem of autonomous exploration is to have the robot control itself in
order to improve this map. We explain the terms in this definition below.

By a “partially completed map,” we simply mean a map that does not model
every object in the robot’s environment with one hundred percent accuracy. All map
building algorithms output partially completed maps.

There are a number of ways that a robot can “control itself” while exploring.
Some sensors allow the robot to control where and when they sense. For example,
scanning sonar sensors can be told to take readings at certain angles and certain times

[14]. Selecting when and where the robot’s sensors take readings can decrease the
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computational burden of processing this data on the robot. Yet in many robot setups, the
sensors constantly scan the environment at all possible angles, and therefore the only
thing the robot can control is where the robot drives to. Thus, most of the exploration
algorithms we examine in this chapter only consider how to drive the robot during
exploration.

Finally, there are two main ways a robot can “improve” its map of the
environment: by decreasing the uncertainty in the map and by increasing the coverage of
the map. A robot’s sensors are inevitably noisy; therefore, SLAM algorithms represent
the locations of objects in their maps with joint probability density functions. In order to
decrease the uncertainty in its SLAM map, a robot must re-observe the objects in the
environment that it has already mapped in such a way as to narrow the joint pdf over the
locations of these objects in the map. The more focused the joint pdf is, the more certain
the robot is about where the objects are located.

Conversely, in order to increase the coverage of its map, a robot must map objects
and regions that it has never seen before. Therefore, these two aspects of improving a
map compete. We examine methods of exploring to decrease map uncertainty and
methods of exploring to increase map coverage in separate sections. Nevertheless, many
exploration algorithms try to find an acceptable balance between these two ways of
improving a map.

Now that we understand the requirements of the problem of exploration, we can

make some general statements about how algorithms approach this problem.

2.1.2 General Features of Exploration Methods

As we have already noted, most approaches to autonomous exploration assume
that the robot’s sensors are constantly scanning their full range; therefore, the robot can
only control how it drives around its environment. Most exploration methods deal with
controlling the robot’s driving by breaking down the problem into two sub-problems.
The first sub-problem is to plan a path for the robot to execute that will improve the map,
and the second sub-problem is to send the commands to the hardware to cause the robot
to execute this path. The first sub-problem is where most of the interesting variation

between exploration methods occurs, and we call it the exploration path planning
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problem. More precisely, given a partially completed map and the robot’s estimated
position within the map, the exploration path planning problem is to output a path that
the robot can use to effectively control its motion in order improve the map.

The simplest way for the robot to explore using this approach is to fully solve the
exploration path planning problem and then execute the resulting path completely. Once
the robot has executed the path to completion, it begins the loop over and solves the
exploration path planning problem again. The pseudo-code in Figure 2.1 depicts this
exploration method. The function Mission_Completed() on line 1 of Figure 2.1
returns true if the exploration mission has finished. The mission might be set to last
either until the robot travels a set distance, until a certain amount of time passes, or until
the user sends a command to halt the exploration. The function
Get_Most_Recent_Map(constantly updating map) takes a dynamic map,
which a map building algorithm is constantly updating, and returns a static map that
reflects the most recent state of the dynamic map. Because SLAM algorithms include the
robot as part of the map, the function Get_Current_Robot Pose(map) can take

this static map and return the location of the robot.

Explore(constantly updating map)
returns nothing

1. whille Mission_Completed() is false

2. let map = Get_Most_Recent_Map(constantly
updating map)

3. let robot pose = Get_Current_Robot_Pose(map)
4. let path = Plan_Exploration_Path(map, robot
pose)

5. Execute_Path(path)
6. endwhile

Figure 2.1 Pseudo-code for Exploration using Basic Exploration Path Planning

The problem with this method of exploration is that the map is very likely to
change as the robot executes the path it has planned. And if the map changes, the path
might become sub-optimal or even impossible to execute. Therefore, another possible

method of exploration is to periodically halt the execution of the path and solve the
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exploration path planning problem again. If the path changes, then the robot begins to
execute this new path. Figure 2.2 shows pseudo-code for this method of exploration.
Line 5 is the only line that is different in Figures 2.1 and 2.2. We call this method of
constantly solving the exploration path planning problem continuous exploration path
planning. Sometimes in actual implementations of exploration algorithms, such as the
implementation we used for testing, the exploration path planning code and the path
execution code run in separate threads. In the path planning thread, the exploration path
planning code constantly recalculates the best exploration path and notifies the execution
thread when the path changes. In the execution thread, the path execution code
constantly executes its current path and updates this path when it receives a notification

from the path planning thread.

Explore_Continuous(constantly updating map)
returns nothing

1. while Mission_Completed() i1s false

2. let map = Get_Most_Recent_Map(constantly
updating map)

3. let robot pose = Get_Current_Robot_Pose(map)
4. let path = Plan_Exploration_Path(map, robot

pose)
5. Execute_Segment_of Path(path)
6. endwhile

Figure 2.2 Pseudo-code for Exploration using Continuous Exploration Path Planning

All of the exploration methods that we examine in Sections 2.3 and 2.4 have a
structure similar to what is depicted in either Figure 2.1 or 2.2. Therefore, our
descriptions of these methods will focus on the unique ways they solve the exploration
path planning problem. Before we delve into these specific exploration methods,

however, we review the salient features of the SLAM algorithms that they use.

2.2 SLAM Methods

The map representation used by an exploration algorithm has a major affect on
how the algorithm solves the exploration path planning problem. As a result, in this

section we describe the map representations used by the exploration algorithms that we
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present in Sections 2.3 and 2.4. The exploration framework we tested in our experiments

uses the feature-based approach described in Section 2.2.3.

2.2.1 Scan-Matched Maps

In its basic form, scan matching is one of the most straightforward ways of
building a map [18] [49] [21]. In basic scan matching, as the robot moves, it records full
scans of the environment from a range-finding sensor (such as a laser scanner or scanning
sonar), so that each newly recorded full scan overlaps with the previously recorded full
scan. Figure 2.3a depicts two such consecutive scans for a sensor which scans 180
degrees in front of the robot. The scan-matching approach builds a map directly out of
these scans. The first recorded scan forms the robot’s initial map. When the second scan
is recorded, the robot finds the part of the second scan and the part of the first scan that
match the best. The robot translates and rotates the second scan such that the best
matching parts of the first and second scan overlap. These two scans then form the new
map. Figure 2.3c shows how this process would combine the scan in Figure 2.3a with the
scan in Figure 2.3b. When the third scan is recorded, the robot finds the best overlap
between this third scan and the whole map, since it is possible that the third scan
overlapped with the first scan even more than it overlapped with the second scan. The
robot then translates and rotates this third scan such that the overlapping regions line up,
and these three scans form the new map. This map building process then repeats until the

robot’s mission ends.
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Figure 2.3 Matching Sensor Scans

It is important to note that this basic form of scan matching does not directly take
into account noise in sensor scans. As a result, there is no measure of uncertainty in the
map that the robot builds. In addition, once the robot has translated and rotated a new
scan, this scan is stuck in that position. Therefore, the algorithm can never alter its
matches to find the globally best arrangement of scans. More sophisticated versions of
the scan matching approach exist which begin to address these issues [8]. However, the
approach to exploration that Section 2.3.2 describes uses this basic version of scan
matching.

The strength of scan matching is that the maps contain a lot of detailed
information about the environment while requiring relatively little processing to create.
The maps are detailed in that scan matching does not abstract or simplify what the sensor
sees; scan matching builds a map directly out of the scan points. Scan matching (or at
least the basic version) requires less processing than other SLAM methods because it

does not perform global optimization, as we noted in the preceding paragraph.
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2.2.2 Occupancy Grid Maps

Occupancy grid maps represent the environment as a collection of cells [13]. A
SLAM algorithm assigns each cell in the map the probability that the location in the
environment corresponding to the cell is occupied by an obstacle. There are a number of
different SLAM algorithms for occupancy grid maps [47] [48], however, we do not need
to cover how they work in order to understand the grid-based exploration algorithms we
present in Section 2.3.3. Figure 2.4a shows the occupancy grid map corresponding to the
environment in Figure 2.4b. The darker a cell is in Figure 2.4a, the more likely it is that

the location in the environment that the cell represents is occupied by an obstacle.

L

a) b)

Figure 2.4 A Simple Occupancy Grid Map

Like scan-matched maps, occupancy grid maps provide a lot of detailed
information about the environment they represent. If the cells are small enough,
occupancy grid maps can have the same resolution as scan-matched maps. Unlike scan-

matched maps, however, occupancy grid maps explicitly keep track of the areas that the
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robot knows do not contain obstacles, by assigning the corresponding cells a low
probability of being occupied. As we discuss in Section 2.3, keeping track of free space
in this way can be useful in exploration for expanding map coverage.

The main drawback of occupancy grid maps is that it is very computationally
intensive for SLAM algorithms to estimate the state of so many cells. The number of
grid cells scales with the area (or volume) of the region covered by the map. Such
scaling makes it computationally difficult to map large environments using the
occupancy grid approach. Furthermore, for the purpose of navigation, it may be possible
to get away with modeling the environment in much less detail. This reasoning is the

motivation behind the feature-based approach to SLAM.

2.2.3 Feature-based Maps

The idea behind feature-based maps is to represent the environment with its
salient landmarks instead of keeping track of every point that the robot’s sensors have
seen, as is done in the occupancy grid or scan matching approaches [44]. Feature-based
SLAM picks out specific features, such as lines, circles, corners, or any other well-
defined shape, from the sensor data. We used line feature SLAM in our experiments.

The state of the world at any given moment is estimated using a vector of the position

and orientation of the robot and each feature that the robot has picked out. In addition,
the map represents the uncertainty in the pose of the robot and these features, by
approximating the joint pdf over the state vector with a covariance matrix. A feature-
based map therefore consists of this state vector and covariance matrix. Given a model of
the sensor uncertainty and the vehicle dynamics, we can update the map using state
estimation techniques (usually an extended Kalman filter). Figure 2.5 shows what a
typical line feature SLAM map looks like. The thin line winding through the figure is the

robot’s estimated path through the environment.
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Figure 2.5 A Line Feature SLAM Map

Because they only keep track of salient landmarks, feature-based techniques are
able to handle much larger environments than other approaches to SLAM. The SLAM
code that we used in our experiments [5] has been used to map a complicated indoor
environment that is 2.2 km in length, an order of magnitude larger than any previously
published SLAM result. The code was able to autonomously close large nested loops
within this environment. Feature-based SLAM also performs well with lower precision
sensors, including sonar, which is important for underwater exploration.

A drawback to feature-based maps, however, is that even if the robot’s sensor
detects an obstacle, this obstacle may not show up in the map. Feature-based SLAM only
records the parts of the scan data that look like features. Paths planned using a feature-
based map are therefore not guaranteed to avoid all obstacles in the real world. In
addition, it is difficult to determine what regions the robot’s sensors have seen from a

feature-based map, if not all of the sensor data appears in the map. This difficulty limits
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the ways that we can perform exploration for increasing map coverage with feature-based

maps, as we explain in Section 2.3.4.

2.3 Exploration for Increasing Map Coverage

In Section 2.1 we said that the goal of exploration for increasing map coverage is
to map parts of the environment that the robot has never seen before. In other words,
instead of improving the position estimates for obstacles that already exist in the map,
exploration for increasing map coverage aims to add entirely new obstacles (and, in the
case of occupancy grid approaches, free space areas) to the map. This goal is very
general, however, and there are many different possible sub-goals that the robot can have
in achieving it.

The most common sub-goal is that the robot should try to map as much new area
as possible using a path with the least cost possible. Path cost can be measured in terms
of distance traveled, time taken, or energy expended. In many applications of mobile
robotics, including Mars rovers and AUV’s [4] resources such as energy and time are
very limited. Limited energy in particular is an issue with almost all mobile robots, for
mobile robots rely on batteries with a finite supply of energy to perform the tough work
of moving the robot. Therefore, having an exploration method that is efficient with
respect to these resources is highly desirable.

As it has been stated, the robot must try to both maximize the amount of new area
mapped and minimize the cost of the path. It is not obvious what it means to optimize
these two competing quantities simultaneously, however. One approach is to try to
optimize some combined measure of the new area mapped and path cost. The algorithm
that Section 2.3.2 describes uses such a combined measure. Another approach is to have
the robot try to maximize or minimize one quantity given an upper bound constraint on
the other quantity. For instance, we might have the robot try to map the most new area
possible without traveling more than 50 meters. This approach has the advantage that it
does not rely on an arbitrary function to combine the path cost and area mapped into one
quantity. In addition, the duration of many actual exploration missions is set by capping
either the total path cost or the area mapped. For instance, if the robot is exploring an

indoor environment, a number of exploration methods [18] [10] [22] have the robot
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explore until it has seen the entire interior of the building. In Mars missions, the robot
often has a set schedule to stay on; therefore, the robot might allot only a specific amount
of time to exploring the environment. In missions like these where one quantity is
limited, it is natural to define efficient exploration as exploration that optimizes the other
quantity.

There are many other sub-goals that a robot can have when it is exploring, in
order to increase map coverage. One such sub-goal is to explore the environment
thoroughly. The term “thorough” is a difficult term to define, however. The way we
define thorough when evaluating the results of our experiments in Chapter 6 is, after the
robot has finished exploring, to draw a border surrounding the parts of the environment
that the robot visited. We then evaluate how much of the environment inside of this
border does not appear in the robot’s final map. Fewer parts of the environment missing
from the map means a more thorough exploration of the environment. If we can break
down the environment into discrete regions (a room could be a region, for example), we
might alternatively interpret thorough exploration to mean that the robot does not move
on to a new region until it has mapped everything in its current region. Thorough
exploration is important if the robot plans on using the map for path planning, because in
path planning it is better if the robot knows where all the obstacles are along its path
before it executes that path.

Another possible sub-goal that a robot might have, while exploring to increase
map coverage, is to first build a rough global map that captures the large scale features in
the environment, and then incrementally improve the resolution of the map. This sub-
goal is therefore the opposite of the sub-goal of exploring thoroughly. The idea behind
this sub-goal is that in some cases, it is much more valuable to have a map that
completely covers the robot’s environment, even if the map has very low resolution, than
to have a high resolution map that only covers the robot’s local region. In fact, the
approach to planning observations that this thesis explores performs best when it starts
out with a rough global map of the environment. If we do not know beforehand when the
robot’s mission will end, or if we want to have a global map to use as quickly as possible,
then it makes sense to build a quick low resolution map and then slowly increase the

resolution, even if doing so is not the most efficient way of getting to the final version of
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the map. Note that in order to build a rough global map of the environment, we must
have some way of limiting how far out “global” extends. Therefore, the sub-goal makes
the most sense in enclosed indoor environments.

It is difficult to quantify how well an exploration method achieves this sub-goal.
One important measure is how quickly the robot is able to build a map of any resolution
that covers the whole global environment. Yet it is unclear where the boundary lies
between a map not covering the entire environment and the map covering the
environment, but being very low resolution. In addition, we usually want low resolution
maps to pick out the important large-scale features of the environment, however, what the
important large-scale features are in an environment is often difficult to define.

Another possible sub-goal that a robot might have is to get from one location to
another. For example, if a robot was placed in a maze and wanted to get out, it would
need to explore the maze and grow its map in order to find the exit. We can measure how
well an exploration strategy works in terms of this sub-goal by evaluating the cost of the
path that the robot executes in getting to its destination. Exploration strategies for getting
to a destination in an unknown environment should probably direct exploration towards
this destination somehow.

There are a large number of other possible sub-goals. For example, the robot
might only be interested in mapping certain types of obstacles, might be looking for a
particular obstacle, or might only be interested in mapping certain regions of the
environment. These sub-goals are less general than the previous four we mentioned,

however. We therefore will not look at approaches for achieving these sub-goals.

2.3.1 General Features of Methods of Exploration for Increasing Map
Coverage

Before we examine specific methods of exploring to achieve the first four sub-
goals that we mentioned, we analyze some of the general features of these methods. We
begin by considering what an ideal approach to exploration for increasing map coverage
would entail, and then explain how actual approaches approximate this ideal approach.

We assume that the overall exploration strategy is to use continuous exploration

path planning; therefore, we consider what the ideal way of solving the exploration path
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planning problem would entail. In Section 2.1.1 we noted that in many setups, the
robot’s sensors are constantly scanning the environment. In other words, the robot is not
limited to driving to a location, taking a scan of the surroundings, and then driving to
another location. Therefore, the robot’s position and heading at each instant is potentially
important, and the ideal exploration method for increasing map coverage would plan each
infinitesimally small step of the robot’s path in order to take into account the robot’s pose
at each instant.

In addition, no matter what sub-goal guides the robot’s exploration, it is almost
always desirable that the path that the robot executes in achieving this sub-goal have the
least cost possible. Planning an efficient path in exploration for increasing map coverage
is very difficult because every time the robot sees a new region, the map that the robot is
planning an exploration path for changes. Therefore, if the robot was able to predict with
one hundred percent accuracy what it would see everywhere it went, then it would
generally be able to plan and execute a much more efficient path than the path it would
execute if it did not make any predictions. An ideal approach to exploring to increase
map coverage, therefore, would make probabilistic predictions as to what the robot will
see at each new region it visits. The robot could make these predictions by using
statistical learning techniques to learn regularities in the structure of the environment, or
by having some a priori knowledge about these regularities.

Existing methods of exploring to increase map coverage only approximate these
features of an ideal approach. As in exploration for decreasing map uncertainty, it is too
computationally challenging to plan each infinitesimally small step in a robot’s path
when exploring for increasing map coverage. Therefore, existing exploration methods
drastically reduce the number of possible paths that they consider, by placing a finite
number of candidate observation points at the border separating the parts of the
environment that the robot has and has not explored [18] [53] [10]. The robot then only
needs to choose some subset of these candidate observation points to visit and an order to
visit them. The final output path of the exploration path planner is the least-cost path that
takes the robot to these candidate observation points in the chosen order, stays within the
part of the environment that the robot has already explored, and avoids all obstacles. The

justification for this simplification of the ideal approach to exploration path planning is
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that even if the robot makes probabilistic predictions about what the unexplored regions
of the map look like, it is still probably inefficient for the robot to try to plan a path
through these unexplored regions. Therefore, when exploring to increase map coverage,
the robot should try to plan exploration paths that stay within the region of the
environment that the robot has explored already. In order to observe unexplored regions
of the environment, the robot must travel to the edge of the explored region of the
environment. Exploration methods therefore place candidates at the edge of the explored
region, and the robot plans its exploration path to visit these candidates. The robot does
not need to worry about what it will observe on the way to these candidates because the
robot will be traveling through the part of the environment it has already explored.
Therefore, these exploration methods might as well return paths that are composed of
shortest paths between the candidates as the solutions to the exploration path planning
problem.

Exploration methods also approximate making predictions about what the robot
will see in unexplored regions in order to plan efficient paths. Although using statistical
learning techniques or a priori knowledge to predict what the robot will see at unexplored
locations may be computationally feasible, no published exploration method utilizes
either approach to prediction. The closest that existing exploration algorithms come to
predicting what the robot will see at unexplored locations, is to give a score to each
candidate observation point, estimating how much new area the robot will see from that
point. These scores enable the robot to greedily choose a candidate to visit next that
should add a lot of new area to the robot’s map. However, in order to be able to plan
more globally efficient paths, the robot needs to be able to predict what the environment
will look like at each unexplored location in detail, or at least be able to predict how the
set of candidate observation points will change when it visits an unexplored location.
Therefore, giving each candidate observation point a score is not the ideal method of
improving the efficiency of the robot’s exploration. Much work remains to be done in
incorporating more sophisticated methods of prediction into exploration algorithms. In
Chapter 7 we discuss ways in which future research could use probabilistic predictions as
to what the robot will see in unexplored regions, in order to plan more efficient paths on

average.
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Nevertheless, placing candidate observation points near the boundary between
explored and unexplored areas of the map and scoring these candidates is the basic
approach that all of the following exploration methods take. The major differences
between these exploration methods are in the particular ways these methods place and
score their candidates. In the following three sections, we examine existing approaches
to exploration for scan-matched maps, occupancy grid maps, and feature-based maps

respectively.

2.3.2 The Gonzalez-Banos and Latombe Method

The Gonzalez-Banos and Latombe exploration method is one of the only existing
methods that uses scan-matched maps as its sole map representation [18]. This method
is, perhaps, the one that most closely follows the general characterization in Section
2.3.1; thus, it can be thought of as the prototypical exploration method. The key
contribution of the Gonzalez-Banos and Latombe method is how it scores candidates.
The method assigns a utility to a candidate that is an optimistic estimate of the amount of
unexplored area the robot will see from the candidate. Figure 2.6 depicts such an
optimistic estimate for two candidates in a partially completed map. The small circles in
the figure are the candidates. The large circle around each candidate has a radius equal to
the range of the robot’s rangefinder. Therefore, the maximum amount of unexplored area
a robot’s sensor could see in a 360 degree scan from a candidate is given by the striped
part of the surrounding large circle. The area of this striped part is the utility of the

corresponding candidate.
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Figure 2.6 Candidate Scoring for the Gonzalez-Banos and Latombe Method

In order to estimate the maximum amount of unexplored area the robot will see
from a candidate, Gonzalez-Banos and Latombe developed a method for estimating what
regions of a scan-matched map the robot’s sensors have definitely seen. Estimating these
regions is difficult because, unlike occupancy grid maps, scan-matched maps do not keep
track of areas that the robot’s rangefinder scanned but did not detect any objects in. To
address this difficulty, the method constantly calculates the “safe region,” which is the
region of the environment that the robot has sensed and did not see any objects in. In
order to construct the safe region, at each candidate observation point (and the robot’s
initial position) the robot takes a 360 degree scan of its environment, constructs a safe
region for that scan, and then adds this new safe region to the combined safe regions of

all previous scans.
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In order to construct a safe region for a scan, the method fits curves to the scan
points that result from the scan. In other words, each scan of the robot’s sensor results in
a set of curves that can be described as a discontinuous function of the scan angle. This
radial function is defined for all angles except those in which the nearest object was
beyond the sensor’s maximum range. The data points that result from a given scan
represent detected obstacles; therefore, the curves that are extracted from these points are
called “solid curves.” Construction of the safe region for a scan continues by connecting
adjacent solid curves with new curves called “free curves.” Gonzalez-Banos and
Latombe give a deterministic method of calculating free curves from a set of solid curves
such that the interior of the region formed is guaranteed to have no obstacles in it. The
method then adds the safe region for a given scan to the combined safe regions of all
previous scans by matching the two safe regions, just like scans are matched in basic scan
matching. Only solid curves are used in matching safe regions, however.

Once the safe region for a scan has been calculated and integrated into the
combined safe region, the method places candidate observation points inside the
combined safe region. More specifically, the method randomly places a set number of
candidates in the combined safe region, subject to the constraint that each one is within
sensor range of a free curve. We should only care about points that are near free curves
because there is no chance that the robot could see through solid curves to a new location.
The method does not keep all of these candidates, however. The lower the amount of
known solid curve that is visible from a candidate, the harder it will be to match the
resulting safe region to the combined safe region. Therefore, if the length of known solid
curve that is visible from a given candidate is less than a set threshold value, then the
candidate is removed. In addition, the robot removes all candidates to which it has no
free path that stays inside of the safe region.

The method is then ready to assign each remaining candidate observation point a
utility that is an optimistic estimate of the amount of new area the robot will see from the
candidate. In order to calculate this utility, the robot assumes that every free curve in the
combined safe region is entirely transparent. In Figure 2.6, the free curves are the dashed
lines. The robot also assumes that there are no objects in the environment that are not in

the map. The robot then measures how much area outside of the combined safe region its
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rangefinder would be able to cover from the candidate if the robot took a 360 degree scan
there. If there were no solid curves in the map, then in Figure 2.6, this area would be the
area encompassed by the large circles that is not inside of the combined safe region. The
combined safe region is shaded gray in Figure 2.6. However, the robot must take into
account the fact that its sensors cannot penetrate solid curves when measuring the area
outside of the combined safe region that its sensors will see from a candidate. Therefore,
in Figure 2.6, the striped region inside of the large circles is the correct area. The utility
of a candidate is equal to this area, as Figure 2.6 shows. Thus, the amount of area the
robot actually sees from the candidate will be less than or equal to the utility of the
candidate.

Finally, the method selects as the point to visit next the candidate that maximizes
the function g(candidate) = utility(candidate) * exp(-c * L(candidate)), where c is a
constant and L(candidate) is the length of the shortest path from the robot to the
candidate that avoids all obstacles and stays inside of the safe region. The method
outputs this shortest path from the robot to the next candidate to visit as the solution to
the exploration path planning problem. The robot will then execute this path, take a new
360 degree scan at the end of this path, calculate a safe region from the scan, and so on.

An additional interesting feature of the Gonzalez-Banos and Latombe method is
that the method tries to allow the user to have some choice over which of the exploration
sub-goals from Section 2.3 the method should have. Specifically, the parameter c is
meant to allow a user to tailor the exploration method for the sub-goal of thoroughness or
the sub-goal of building a rough global map before filling in details. Note that setting the
constant ¢ in g(candidate) to be a large number causes the method to favor candidates that
are close to the robot and to not pay much attention to the candidate’s score. Therefore,
increasing the size of ¢ should cause the robot to explore more thoroughly. Conversely,
setting c to be a small number causes the robot to favor candidates that have a high score
and to not pay much attention to how far away the candidate is from the robot. Gonzalez-
Banos and Latombe argue that because a candidate’s score measures roughly how much
new area the robot will add to the map by going to that candidate, setting ¢ to a low value
will cause the robot to at first explore its environment roughly by mapping only the most

unexplored areas. As time passes, the robot will fill in its map in more and more detail.
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2.3.3 Methods for Occupancy Grid Maps

There is a wide range of exploration methods that use occupancy grids as the
main map representation [53] [10] [2] [22]. The exploration methods for occupancy grids
that most resemble the general characterization of methods of exploration in Section 2.3.1
are those that use “frontiers” to guide exploration [53] [10]. We therefore focus on
describing the way frontier-based exploration methods work in this section. Most
methods that use frontiers aim to map as much new area as possible while executing a
path with the lowest possible cost. In particular, the method that Burgard et al developed
aims to explore the entire environment in the least amount of time possible. Frontier-
based methods use the exploration path planning framework; therefore, we examine how
these methods solve the exploration path planning problem.

The important feature to note about frontier-based methods of exploration is how
they choose where to place candidates. The main idea is that, like the Gonzalez-Banos
and Latombe method, frontier-based methods place candidates at segments of the
boundary of explored territory where there is a clear view of unexplored territory. These
segments of the boundary of explored territory are called frontiers. In order to identify
frontiers, frontier-based methods classify each cell in the map as either unknown,
occupied, or open. An unknown cell is a cell whose probability of being occupied is
equal to the a priori probability that a cell is occupied. An occupied cell is a cell whose
probability of being occupied is greater than this a priori probability, and an open cell is a
cell whose probability of being occupied is less than the a priori probability. A frontier
cell is an open cell that is next to an unknown cell. Because open cells correspond to
areas of the environment that the robot has sensed and has reason to believe do not
contain any obstacles, and because unknown cells usually correspond to areas of the
environment that the robot has not sensed, placing candidates in frontier cells is
analogous to placing candidates near free curves in the Gonzalez-Banos and Latombe
method. Therefore, the robot should be able to see into unexplored territory from a
frontier cell. A frontier is a group of adjacent frontier cells longer than a given length.
Frontier-based exploration methods can place one candidate in every frontier cell [10] or

place a candidate in the middle of each frontier [53].
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Existing frontier-based exploration methods do not assign a utility to each
candidate that directly estimates how much new area the robot should see from that
candidate. Instead, these exploration methods simply choose the candidate that the robot
has the least-cost path to as the next candidate to visit. The output of the exploration path
planner is, therefore, the best path to this next candidate. However, there is no reason
why these methods could not assign utilities to candidates in a way similar to the way the
Gonzales-Banos and Latombe method assigns utilities.

The method of Burgard et al does assign utilities to candidates, but it does so only
to take into account candidate interactions. The Burgard et al method plans paths for
multiple robots exploring the same environment simultaneously. In the method, the
utility of each candidate starts off at one. The method then finds the robot and candidate
that are closest together and assigns the robot to visit that candidate. When the robot gets
to this candidate, however, the new area the robot maps might overlap with the new area
a robot would see from other candidates; in other words the candidates might interact.
This candidate interaction means that once the robot gets to the candidate it was assigned
to, the candidates that overlap with this candidate will be less desirable to visit than they
were before. Therefore, before the method assigns a second robot to visit a candidate, the
method decrements the utility of each candidate according to the estimated probability
that the candidate is visible from the candidate that the first robot was just assigned to
visit. The more probable it is that the candidate is visible from the candidate that the first
robot was just assigned to visit, the more the candidate’s utility is decremented. Once the
exploration method has decremented the utility of every candidate, it finds the robot and
the candidate that maximizes the value of the utility of the candidate minus the cost of the
shortest path from the robot to the candidate and assigns the robot to visit the candidate.
The method then decrements the utility of the remaining candidates, and the process
repeats.

In order to estimate the probability that one candidate is visible from another
candidate, the method of Burgard et al keeps a record of the distances that the robots
measure with their sensors while exploring. The method then measures the straight line
distance between the two candidates in question and assigns a probability that is equal to

the fraction of the time that the robots have measured similar distances in the past. This
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method of assigning utilities to the candidates is interesting because it introduces a new
way of making a simple prediction about what the robot will see from a given candidate.
Even though the method only uses these predictions to mitigate the effects of candidate
interactions, these predictions could also be used to assign a utility to each candidate that
reflects how much new area the robot should see from a candidate. In addition, candidate
interactions are also a problem when a single robot tries to plan a path more than one
candidate long. Therefore, future work could use this method of mitigating the effects of
candidate interactions to improve the paths planned for single robot exploration.

There are many other approaches to exploration with occupancy grids besides the
frontier approach. Some of these methods store information for each cell, in addition to
the probability that the cell is occupied, such as number of times a sensor has scanned the
part of the world corresponding to the cell [2], or how many times the robot has visited
the part of the world corresponding to the cell [2] [22]. These methods also address other
sub-goals, such as thoroughly exploring the environment [22]. One method can even
mediate between many different sub-goals simultaneously, including the sub-goals of
getting from one point to another and decreasing map uncertainty [2]. There are many
interesting possibilities for methods of exploration for increasing map coverage using

occupancy grids, and there is much room for more work in this field.

2.3.4 The Newman, Bosse, and Leonard Method

The Newman, Bosse, and Leonard exploration method is the basis of the approach
to exploration that we implemented and tested in this thesis [37]. Chapter 6 presents and
analyzes the results of these experiments. While a few exploration methods use feature-
based SLAM maps in conjunction with occupancy grid maps [2] [9], the Newman, Bosse,
and Leonard method is the only exploration method we know of that uses a feature-based
SLAM map as the sole map representation. The Newman, Bosse, and Leonard method
aims to achieve two sub-goals: to map as much new area with the least-cost path possible
and to map the environment thoroughly. The method uses the continuous exploration
path planning framework; therefore we focus on explaining how the method solves the

exploration path planning problem.
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Identifying locations to place candidates and evaluating how much new area the
robot will see at these candidates is more difficult with feature-based maps than it is with
occupancy grid or scan matched maps. This difficulty arises from the fact that it is not
straightforward to identify areas of the environment that the robot has not explored with a
feature map. One of feature-based SLAM’s important properties is that it does not keep
track of every point a robot’s sensors have seen. This property makes it hard to
determine whether an empty region on a feature map has never been explored, has been
explored and is empty, or has been explored and is not empty, but the robot has not
extracted any features there. Therefore, instead of trying to keep track exhaustively of
regions of the environment that the robot’s sensors have seen, the Newman, Bosse, and
Leonard approach identifies features in the map that look like they have not been fully
extracted and sends the robot to explore them further.

More specifically, each feature in the map generates candidate observation points
near itself. The idea is that each feature should have its own theory about how to explore
its surrounding area, in order to completely fill itself in or to discover new features
nearby. Therefore, different types of features may have different strategies for placing
candidate observation points. For example, line features place candidate observation
points at either endpoint, in order to encourage the robot to discover the full spatial extent
of the line. Figure 2.7 shows how candidate observation points can guide a robot in order
to fill in a map of a room. Figure 2.7a gives the actual layout of the hypothetical room,
and Figure 2.7b shows the candidate observation points (the circles) for a partial map.

Note that the candidates encourage the robot to fill in the remaining details of the room.
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Figure 2.7 Candidate Observation Points for a Partial Map
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The exploration method assigns each candidate a utility that estimates how much
new area the robot will see from the candidate by estimating the amount of area in the
immediate vicinity of the candidate the robot has not explored. The method estimates
how unexplored the area around a candidate is in two ways. First, the method examines
the robot’s past trajectory and evaluates whether or not the robot’s sensors should already
have scanned the area around the candidate. The method keeps track of the robot’s
trajectory by dropping a “pebble” at the robot’s estimated position whenever the robot
moves a specified fixed distance. The method also places a specified fixed number of
“sample points” in a circle of a given radius around the candidate in question. This circle
of sample points delineates the boundary of the immediate vicinity of the candidate. In
order to measure whether or not the robot should already have sensed the area in the
immediate vicinity of candidate somewhere along its trajectory, the method tests whether
or not there is a clear line of sight between any of the sample points surrounding the
candidate and any pebble within sensor range of the sample points. The method
invalidates each sample point that is within sight of a pebble. After the second step of the
candidate evaluation has finished, the utility of the candidate will be the number of
sample points around the candidate that are still valid divided by the original number of
sample points.

Figure 2.8 depicts the evaluation of the two candidates G1 and G2. The
pentagons in the figure are the pebbles that mark the robot’s trajectory. The small
unlabeled circles around the candidates are the sample points. Four of G1’s sample
points have a clear line of sight to pebbles, and these pebbles are within sensor range of
the sample points. These four sample points are therefore invalidated. In contrast, none
of G2’s sample points are within sensor range of any of the pebbles. Therefore, even
though there is a clear line of sight between some of G2’s sample points and some

pebbles, none of G2’s sample points are invalidated.
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Figure 2.8 Evaluating Candidate Observation Points

The second way the method evaluates how much of the area around a candidate
the robot has not yet explored is by counting how many features there are in the
candidate’s immediate vicinity. If a candidate is surrounded by many features, then it is
given a lower utility because the robot has definitely already sensed the region. In
addition, the robot will have a hard time moving through these surrounding features when
it is trying to determine the spatial extent of the candidate’s parent feature. More
precisely, the method calculates how densely packed with features the area around a
candidate is by seeing how many of the candidate’s sample points have a clear line of
sight to the candidate. If a sample point does not have a clear line of sight to the
candidate, then there must be a feature between the sample point and the candidate.
Because the sample points delineate the immediate vicinity of the candidate, this
blocking feature must be in the immediate vicinity of the candidate. Therefore, each
sample point that does not have a clear line of sight to the candidate is invalidated. This
invalidation decreases the utility of the candidate because the utility of the candidate is
the number of valid sample points of the candidate divided by the candidate’s initial
number of the sample points.

In Figure 2.8, two of candidate G1’s sample points do not have a clear line of

sight to G1. Therefore, these two sample points are invalidated. In addition, one of

54



candidate G2’s sample points does not have a clear line of sight to G2. As a result, this
sample point is invalidated. It makes sense that more of G1’s sample points are
invalidated in this way than G2’s because G1 is more surrounded by features than G2 is.
In the end, G1 is left with two valid candidates; therefore, the method assigns G1 the
utility of 2/8 = 0.25. G2 is left with seven valid candidates; therefore, the method assigns
G2 the utility of 7/8 = 0.875.

We have now seen how the Newman, Bosse, and Leonard method
identifies and scores candidate observation points. After identifying and scoring
the candidates, the method picks a candidate to visit roughly by choosing the
candidate with the highest utility. The output of the exploration path planning is
therefore a path to this candidate. The exact details of how the method chooses
this candidate and calculates a path to it are slightly complicated, and we do not
present them here. In the implementation we tested, we only used the candidate
identification and scoring part of the method. In Chapter 5 we explain how our
implementation computes a path for the robot to execute from the set of

candidates.

2.4 Exploration for Decreasing Map Uncertainty

Almost all exploration methods take into account how the path the method plans
affects the uncertainty of the robot’s map. Even methods of exploration for increasing
map coverage try to make sure the robot does not get lost. For instance, the Newman,
Bosse, and Leonard method places candidates near features in part to encourage the robot
to stay localized by keeping within sight of features it knows about. Yet there is a class
of exploration methods whose sole goal is to decrease the map’s uncertainty in the
positions of the objects already in the map and the position of the robot. These methods
do not aim to add new objects to the map at all (although most of the methods can handle
adding new objects to the map if they are sensed). Most of these methods aim to explore
efficiently by decreasing the overall uncertainty of the map as much as possible in the
least amount of time possible.

In order to decrease the overall map uncertainty, all of these exploration methods

face a tradeoff 0. The way the robot decreases its uncertainty in the location of an object
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is to sense that object again. Yet in order to sense an object, the robot needs to move to
the object. Moving increases the robot’s localization error because all robots have noisy
odometry to some degree. This increase in localization error increases the overall map
uncertainty by increasing the uncertainty in the position of the robot. In addition, the
more uncertain the robot is about its own position, the less certain the robot will be about
the position of an object that it re-observes. The amount of information the robot gains
by re-observing an object therefore depends strongly on the path that the robot takes to
the object. So unlike exploration methods for increasing map coverage, methods for
decreasing map uncertainty cannot simply pick out a set of candidate observation points
and assign to each candidate a utility that estimates how much information the robot will
gain by visiting the candidate independent of how the robot gets there. As we explain in
Chapter 3, this fact means that we cannot really apply the approach to improving the
efficiency of exploration that this thesis investigates to the case of exploration for
decreasing map uncertainty.

Nevertheless, we briefly examine how methods for decreasing map uncertainty
that use feature-based SLAM work in order to have a concrete example of exploring to
decrease map uncertainty. We look at methods for decreasing map uncertainty that use
feature-based SLAM because many of the methods for decreasing map uncertainty that

have been developed are this kind.

2.4.1 Feature-based Methods

The goal of most feature-based methods is to decrease the overall map uncertainty
as much as possible in the least amount of time possible [14] [9] 0. By map uncertainty
we mean the feature-based SLAM map’s uncertainty in its estimate of the position and
orientation of the features it knows about and the robot. Feature-based SLAM’s extended
Kalman filter keeps track of this uncertainty in the state covariance matrix. Therefore,
feature-based methods aim to decrease some overall measure calculated from this
covariance matrix as much as possible and as quickly as possible. The overall measure
that is calculated from the covariance matrix depends on the exploration method. Some
possible measures are the determinant of the covariance matrix 0, the sum of

determinants of individual feature and robot covariance matrices 0, or the trace of the
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covariance matrix 0. Trying to decrease the determinant of the covariance matrix as
much as possible corresponds to trying to decrease the entropy of the probability
distribution of the state vector 0. The other measures calculated from the covariance
matrix are also motivated by information theory.

Most methods of exploration for decreasing map uncertainty follow the
exploration path planning framework. These methods attempt to find the sequence of
actions for the robot take that will result in the largest drop in the overall map
uncertainty, and output this sequence as the result of the exploration path planner. In
order to find such a sequence of actions, these methods estimate how taking an action
will cause the state covariance matrix to change. These methods perform this estimation
by using the state update equations of the extended Kalman filter to find the expected
value of the position of the robot after taking the action. The methods then use the sensor
model and the estimated position of the features in the map to find the expected value of
the measurements that the robot will make after taking the action. Finally, the methods
use this expected value of the measurements to see how the state covariance matrix will
update as a result of taking the action.

Most exploration methods use this ability to predict the result of taking an action
to greedily choose the best next action for the robot to take [14]. More precisely, these
methods discretize the set of actions the robot can take and then choose the action that
should cause the overall measure of the uncertainty of the covariance matrix to decrease
the most. This action is the output of the exploration path planner. Recently, however,
Sim and Roy have developed a method to find a sequence of actions for the robot to take
that is expected to decrease the overall map uncertainty by the maximum amount possible
0. Specifically, Sim and Roy’s method places a grid over the feature map and determines
the best path to each grid cell from the robot’s initial position. A path is a sequence of
grid cells, and so the possible actions that a robot can take are to move to one of the grid
cells adjacent to the robot’s current position. The best path to a grid cell is the path that
results in the largest decrease in the overall map uncertainty. The method then looks at
all of the best paths to all of the cells in the map and returns the path that results in the
largest decrease in the overall map uncertainty. Sim and Roy’s method is similar to the

approach to exploration that this thesis investigates in it that plans such a globally

57



optimized path for the robot. However, their method is targeted towards exploration for
decreasing map uncertainty, whereas the approach investigated by this thesis is targeted
towards exploration for increasing map coverage. These two methods are the only
methods we know of that plan globally optimized paths.

We now understand the characteristics of the general problem of
exploration. We have seen that there are two major categories of exploration:
exploration for increasing map coverage and exploration for decreasing map
uncertainty. We also have a sense now of a number of different methods for
performing these two types of exploration. The next chapter builds upon this
knowledge and proposes a new way of computing a path from a set of candidates

that should improve the efficiency of many of these methods.
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3 The Finite Horizon Approach to Continuous
Observation Planning

The main claim of this thesis is that performing observation planning over a finite
horizon will, on average, improve the efficiency of many exploration methods for
increasing map coverage (see Chapter 2). In this chapter we formally introduce the finite
horizon approach to selecting candidates and predict those situations for which the
approach should work well, based on its general properties. Then, in Chapter 6, we
present the results of experiments comparing the finite horizon approach to observation
planning with other approaches to observation planning using a specific candidate
identification and scoring method (the Bosse, Newman, and Leonard method described in
Chapter 2).

Section 3.1.1 defines the observation planning problem more precisely, and
Section 3.1.2 gives our requirements for solutions to this problem. Section 3.2 motivates
and presents informally the finite horizon approach to observation planning. Section
3.2.3.1 shows how we can formulate the finite horizon approach as solving the Selective
Traveling Salesman Problem (S-TSP) and formally defines the S-TSP. Section 3.2.3.2
presents the finite horizon approach to continuous observation planning, and Section
3.2.3.3 defines this approach more formally. Finally, Section 3.3 provides a general
analysis of how well we expect the finite horizon approach to continuous observation

planning to perform across all exploration methods and all environments.

3.1 Observation Planning

All of the exploration methods that Chapter 2 describes have the robot solve the
exploration path planning problem. Recall that an exploration path planner takes the
robot’s current position and a partially completed map as input and computes a path for
the robot to execute that is meant to add information to the map. Furthermore, it is
important to note that in all methods of exploration for increasing map coverage that we
described in Chapter 2, the exploration path planner can be broken down into two

components. The first component decides where to place candidate observation points,
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and assigns to each of these candidates a utility that reflects how much information the
robot would add to its current map, by making an observation at that point. The second
component takes these candidate observation points and their utilities as input, and
computes a path that will take the robot to some subset of the candidates. Each of the
methods of exploration for increasing map coverage in Chapter 2 has a very different
strategy for implementing the first component. We call these strategies candidate
identification and scoring strategies. Similarly, we call strategies for implementing the
second component observation planning strategies. The reason we break down
exploration path planners into these two components is that it is a claim of this thesis that
a particular observation planning strategy, the finite horizon continuous observation
planning strategy, is ideal for many different candidate identification and scoring
strategies, and many different environments.

Note that in the case of exploration for decreasing map uncertainty, we cannot
break down exploration path planners into these two components. As we point out in
Chapter 2, the problem is that, when exploring in order to decrease map uncertainty, the
amount of information that the robot gains, by going to a given point and making an
observation depends, on the path that the robot takes to get to that point. The reason for
this dependency is that the robot’s localization uncertainty depends strongly on the path
that the robot executes, and the robot’s localization uncertainty is part of the overall map
uncertainty. Therefore, the amount that visiting an observation point decreases the
overall map uncertainty can be thought of as the sum of the amount that the map
uncertainty decreases from making the observation, and the amount that the map
uncertainty increases, by driving to the observation point.

From the above reasoning, one might think that we could use the amount the map
uncertainty decreases, by making an observation at a point, as the utility of that
observation point. We would then use the amount that the map uncertainty increases,
from going to the observation point, as the path cost in observation planning. The
problem with this idea is that we cannot separate the amount that the map uncertainty
decreases, from making an observation at a point, from the amount that the map
uncertainty increases, over the path that the robot takes to get there. The amount that the

map uncertainty decreases from making an observation at the point depends on the
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localization uncertainty of the robot. In turn, the localization uncertainty of the robot
depends on the path that the robot takes to the observation point. Therefore, there is no
way to assign a utility to an observation point that does not depend on the path that the
robot takes to the point, during the task of exploration for decreasing map uncertainty.
As a result, we will not consider what it means to perform observation planning

for this type of exploration.

3.1.1 Definition of Observation Planning

For the sake of clarity, we will define our terms more precisely. In Chapter 2 we
defined the problem of exploration path planning as follows. Given the robot’s current
pose, and a partial map that is being constantly updated, based on the robot sensor
readings, the exploration path planning problem is to output a path that the robot can use
to effectively control its motion, in order to improve the map. Recall that improving the
map can mean increasing the coverage of the map, decreasing the pose uncertainty of the
objects already in the map, or some combination of the two.

When improving the map means increasing map coverage, we break the
exploration path planning problem down into two sub-problems. Given a partially
completed map of the environment, the candidate identification and scoring problem is
to produce a set of candidates, C = {c;}, for this partially completed map. Each candidate
ci has associated with it a position vector, x;, and a real-number utility, u;. The
candidate’s position vector gives the location of the candidate in the map. The
candidate’s utility provides an estimate of how much information the robot will add to its
map if it makes an observation from the candidate’s location. Larger utilities correspond
to larger amounts of information. Candidate identification and scoring strategies are
strategies for solving the candidate identification and scoring problem.

The observation planning problem is to take a partially completed map, a set of
candidates C, and a vector x; giving the robot’s current pose, and output a path for the
robot to follow that will cause the robot to make observations at some subset of the set of
candidates C. We call methods for solving the observation planning problem observation

planning methods.
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In Chapter 2 we gave the name continuous exploration path planning to
approaches to controlling the robot that constantly re-solved the exploration path
planning problem, in order to keep the path optimal with respect to changes in the map.
When the robot constantly re-solves the exploration path planning problem, the robot
must constantly re-solve the candidate identification and scoring problem and the
observation planning problem. We therefore give constantly re-solving the candidate
identification and scoring problem the name continuous candidate identification and
scoring, and constantly re-solving the observation planning problem the name continuous

observation planning.

3.1.2 Goals of Observation Planning Methods

Now that we have defined the two main components of most exploration path
planning methods, candidate identification and scoring and observation planning, we can
discuss what makes a good observation planning method. We focus on the observation
planning problem because, while researchers have studied many different approaches to
candidate identification and scoring, they have not put much effort into developing a
good observation planning method.

The goals of an observation planning method are inherited from the goals of the
exploration method. For example, if the goal of the exploration method is to expand the
map in all directions as efficiently as possible, then the goal of the observation planning
method is also to expand the map in all directions as efficiently as possible. Similarly, if
the goal of exploration is to thoroughly map the local region before moving on to a new
region, then this goal is the goal of the observation planning method.

Most exploration methods aim to expand map coverage in all directions as
efficiently as possible. We can roughly evaluate how well an observation planning
method achieves this goal by looking at the utilities of the candidates that the robot visits.
We can focus on utilities because the utility of a candidate should estimate how much the
robot will expand its map by visiting the candidate. By looking only at utilities, we make
our evaluation of the efficiency of an observation planning method independent of the

particular map representation the robot uses.
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We will evaluate the efficiency of an observation planning method in a given
exploration mission by looking at the total utility of the candidates that the robot reached
before the cost of the robot’s path exceeded a given maximum value. This maximum
cost might be a maximum distance that the robot can travel, a maximum time, or a
maximum amount of energy that the robot can expend. The higher the total utility of the
candidates that the robot visited before reaching this maximum cost, the more efficient
we consider the observation planning method to have been. Chapter 6 refines this

concept of efficiency.

3.2 Finite Horizon Methods for Observation Planning

In this section we motivate and introduce the finite horizon observation planning
method. In order to motivate the finite horizon method, we first describe the greedy
observation planning method that existing exploration methods use. The greedy method
selects a locally optimized path; therefore, the greedy method is suited for when planning
a globally optimized path is futile, because the set of candidates changes constantly
during exploration. We then introduce the full horizon observation planning method.

The full horizon method selects a path that is globally optimal over the entire set of
candidates; therefore, the full horizon method is suited for when the robot is certain that
the set of candidates will not change as the robot explores. Finally we introduce the finite
horizon observation planning method. The finite method plans a path that is optimal over
a given finite distance; therefore, the finite horizon method is suited for when the set of
candidates changes anywhere between frequently and never. In other words, the
motivation for the finite horizon method is to cover the middle ground between the

greedy and full horizon methods.

3.2.1 The Greedy Method for Observation Planning

Recall that, currently, virtually all exploration strategies that have the goal of
exploring efficiently use a greedy continuous observation planning method. In a greedy
continuous observation planning method, the robot constantly plans a path to visit one
observation point. This path is a feasible least-cost path between the robot’s current

position and the observation point. The greedy method chooses this observation point by
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finding the candidate that minimizes some function of the robot’s current location and the
candidate. This function can simply return the length of the least-cost path from the robot
to the candidate, in which case the strategy amounts to the robot always going to the
closest candidate to it [53]. The function can also somehow increase with increasing
shortest path length and decrease as the candidate’s utility increases [18] [10] in order to
favor choosing candidates with a high utility. However, the way that the function
combines distance and utility into a single score tends to be somewhat arbitrary.

Figure 3.1 shows the path planned by two different greedy functions at a certain
point during exploration. In the figure, the circles are candidates, the two rectangles are
obstacles, and the lines connecting the candidates represent possible paths between the
candidates. The figure depicts the shortest path between a pair of candidates with a solid
line. The figure also shows two sub-optimal paths between candidates as dotted lines.
The robot should never choose travel along a sub-optimal path. In Figure 3.1a, the
greedy function simply returns the distance between the robot and the given candidate.
The function position(V;) returns the location of the candidate vi. Because
candidate v, is the closest candidate to the robot, the chosen path in Figure 3.1a, denoted
by the line with the arrow at the end, goes from the robot to v;. The greedy function in
Figure 3.1b is the negative of the function that Gonalez-Banos and Latombe’s exploration
method [18] uses, because we are looking for the candidate which minimizes the greedy
function. The function ut® I (v;) returns the utility of the candidate v;. Candidate v
minimizes the greedy function in Figure 3.1b, for F(X,, v3)=-0.8exp(-
10/100)=-0.72, T(Xr, v1)=-0.48, and F(X;, V2)=-0.19. Therefore the

path in Figure 3.1b leads the robot to candidate vs.
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Figure 3.1 Possible Greedy Functions

Intuitively, the general problem with greedy approaches is that they do not
consider how well the robot will be able to explore after it gets to the candidate it has
chosen to visit next. The danger, therefore, is that the robot will go to the greedily-best
next candidate, and then find itself forced to do something horribly inefficient to get to
the greedily-best candidate after that. For example, Figure 3.2 depicts a situation in

which, if the robot blindly continues to pick the next closest candidate to it, it will get
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dragged down a long hallway that eventually dead-ends. The robot then is forced to
back-track all the way back down this hallway in order to reach the next set of
candidates. Figure 3.2a shows this greedy path, and Figure 3.2b shows a much more
efficient path that goes down the hallway last. Candidates in the figures are the circles,

and paths are depicted as a line with an arrow at the end.
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Figure 3.2 The Inefficiency of Greedy Paths

3.2.2 The Full Horizon Method for Observation Planning

The obvious solution to this problem with the greedy approach is to plan ahead.
Given the current set of candidates, it is possible for the robot to find a minimum-cost
path through the map that visits every candidate. We call the observation planning
method that outputs a minimum-cost path visiting every candidate the full horizon
observation planning method. We call the paths that the full horizon method outputs full
horizon paths. Finding a full horizon path corresponds to solving the Traveling Salesman
Problem (TSP) over the set of candidates. Recall that the Traveling Salesman Problem is
to find a least-cost cycle in a graph that visits every vertex in the graph. Therefore, the
only difference between a path that is a solution to the TSP over the set of candidates and

a full horizon path is that a TSP solution path requires the robot to return to its start point,
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while a full horizon path does not. Chapter 4 describes a method for altering any graph
so that the solution to the TSP on the altered graph yields a full horizon path on the
original graph. This mapping between the TSP and calculating full horizon paths is
important because the TSP has been studied in depth, and many good algorithms for
solving the TSP already exist [39].

By definition, a full horizon path must have a total cost that is less than or equal to
the total cost of any other path visiting every candidate, including any path generated by
the greedy approach. In other words, at the moment the full horizon method plans a path
for the set of candidates, this path is globally optimal. Furthermore, if the robot executes
this path in its entirety without the set of candidates ever changing (except for when
candidates disappear once the robot reaches them), then the path that the robot executes
using the full horizon method is also guaranteed to be globally optimal.

Unfortunately, as the robot explores an environment the set of candidates almost
always changes. During the course of exploration, candidates appear, disappear, change
location, and change utility. In order to immediately adjust the path to account for these
changes, the robot could constantly recalculate the full horizon path over the candidates,
thus performing continuous observation planning. However, if the set of candidates ever
changes and the robot must recalculate the full horizon path, then there is no longer any
guarantee that the path that the robot executes will be at least as efficient as the path the
robot would have executed with a greedy method. In fact, no matter what observation
planning method the robot uses to plan its paths, there are ways the set of candidates can
change that make the path the robot actually executes very inefficient. Figure 3.3 shows
an example of a case when the set of candidates changes in such a way so as to make the
path that the robot executes with the full horizon observation planning method less
efficient than the path the robot executes with the greedy method. Figure 3.3a depicts the
robot’s partially completed map midway through the robot’s exploration of its
environment. The circles in Figure 3.3a are candidates, the triangle is the robot, and the
line connecting the candidates is a least-cost path that visits every candidate in the map.
This least-cost path is what we refer to as the full horizon path through the candidates.
Figure 3.3b depicts the greedy path for the same moment in the robot’s exploration as in

Figure 3.3a. The greedy path is significantly longer than the full horizon path shown in
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Figure 3.3a. Figure 3.3c, however, shows what the environment actually looks like and
what will happen if the robot tries to execute the full horizon path. The robot finds that
there is a wall blocking its path to the first candidate in the full horizon path. This
blockage has the same effect as if the first candidate in the path had suddenly become
much farther away from the robot. The line connecting the candidates in Figure 3.3c is
the new full horizon path for this situation. Note the path basically does what the greedy
path in Figure 3.3b does. Therefore, the path the robot actually executes using the full
horizon observation planning method is longer than the path the robot executes using the

greedy observation planning method.
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Figure 3.3 When the Full Horizon Path Performs Worse than Greedy: a) Initially calculated full
horizon path. b) Initially calculated greedy path. c) Full horizon path recalculated part way through the
robot’s execution of the initial full horizon path.

The set of candidates can also change in such a way as to make the new path that
the robot executes more efficient than it would have been. For example, Figure 3.4
shows a situation in which the change in the set of candidates allows a robot using the
full horizon method to visit a subset of the candidates with a higher total utility before the
mission ends, than the robot would have visited if the candidates had not changed.
Figure 3.4a shows the initial full horizon path. There is 15m left in the robot’s mission at

this point; therefore, if the candidates did not change, the robot would be able to execute
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its 14m full horizon path to completion before the end of its mission. Figure 3.4b shows
the updated map after the robot gets to the first candidate (candidate a) and the full
horizon path for this updated map. In this figure, the robot sees a room it has not seen
before; therefore, the set of candidates changes to include four new candidates with high
utilities. The robot will then visit all four of these new candidates (but not candidate b),
before it travels the final 13m in its mission. As a result, instead of visiting a subset of
candidates with a total utility of 0.4 in these 15m, the robot visits a subset of candidates
with a total utility of 3.2 in 15m.

15m left in mission

| 12m | 2m |
\ \ \
®
0.2 0.2
a)

13m left in mission

14m

0.2

Figure 3.4 When a Change in the Set of Candidates Helps the Full Horizon Method

While the effect of candidates changing can be positive or negative, on average
we do not expect a robot using the full horizon method to perform well when the set of
candidates changes. To understand where this expectation comes from, first note that
there are currently no good methods of predicting when or how the set of candidates will
change during exploration. We do know, however, that the set of candidates usually

changes because the robot sees new objects. And generally, the further the robot travels,
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the more likely it is to see new objects that will cause the set of candidates to change.
Therefore, no matter what exploration method the robot is using, we can model the way
the candidates change as an arrival-type stochastic process (for example, a Poisson
process)’. The arrivals in this model are instants when the set of candidates changes.
And instead of using time as the measure of the length between arrivals, this model uses
the distance that the robot travels.

We thus view an exploration trial as a sequence of intervals in which the set of
candidates does not change and the robot executes its plan without disruption. Each
interval is separated from the intervals before and after it by instants when the set of
candidates does change. As we have seen, when the set of candidates changes, the effect
that this change has on the path that the robot executes during the next interval is
randomly good or bad. We say the effect is random because we assume that the robot
cannot predict how the set of candidates will change and therefore what the effect of the
change will be. As a result, the best that the robot can do is to try to plan an optimal path
for each interval over which the candidates do not change. Yet the full horizon method
does not plan an optimal path over each interval separately; the full horizon observation
planning method plans a path that is optimal over all of the candidates in the map. This
full horizon path is likely to be much longer than the length of the average interval. Asa
result, the robot will usually only get to execute part of a full horizon path, and there is no
guarantee that this part of the path will be very efficient. However, as long as the robot is
able to make it to one candidate before the set of candidates changes, a robot using the
greedy method should at least execute locally efficient paths. Therefore, because a robot
using the full horizon method is not guaranteed to do anything efficient during the
intervals in which candidates remain constant, and because the result of the set of
candidates changing does not consistently favor the full horizon over the greedy method,
we do not expect the full horizon method to perform better than the greedy method on

average when the set of candidates changes during exploration.

’ One might object to modeling the way the set of candidates changes as a random process by saying that
in fact we can be pretty certain that the set of candidates will change every time the robot visits a candidate.
In exploration for increasing map coverage, the candidates are intentionally placed in areas that will cause
the robot to map new area, and mapping new area usually causes the set of candidates to change. One
response is that the set of candidates changes at other times as well, and these other times are much more
difficult to predict. Another response is that the set of candidates does not always change when the robot
visits a candidate. We discuss how the set of candidates changes in more detail in Section 3.3.2.
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3.2.3 The Finite Horizon Method for Observation Planning

The finite horizon observation planning method is meant to plan the most efficient
path possible when the robot cannot predict how or when the candidates will change. As
we have seen, the best that the robot can do when the candidates change unpredictably is
to plan a path that is optimally efficient only over the distance of the average interval in
which the candidates do not change. Specifically, we would like to calculate a path that
has a length that is less than or equal to a set threshold distance and that visits a subset of
the candidates that has the maximum possible total utility. This threshold distance should
be set to the length of the average distance that the robot can travel before the set of
candidates changes®. Using a threshold distance to find a path in this manner is similar to
using a finite horizon to evaluate the optimality of policies for Markov Decision
Problems (MDP’s) [27]°. Therefore, we refer to this method of calculating paths as the
finite horizon observation planning method.

Figure 3.5 shows two paths that the finite horizon observation planning method
produces for the situation from Figure 3.1. In Figure 3.5a, the threshold cost (L) is Sm.
The robot can only reach one candidate, candidate v;, within 5Sm. Therefore, the best
path with cost less than or equal to 5m is the path that goes straight to candidate v;. The
total utility of the candidates the robot visits along this path is 0.5. Note that this path is
the same as the greedy path in Figure 3.1a. If we set the threshold cost very low, the
finite horizon observation planning method is similar to the greedy method that always
chooses the closest candidate.

In Figure 3.5b, the threshold cost is 11m; therefore, the finite horizon observation
planning method must consider many possible paths. For example, the solution path
from Figure 3.5a has a cost less than 11 and a total utility of 0.5. The shortest path that
visits candidates v; and v,, which we denote <v;, v,>, has a cost of 5m + 4m = 9m and a

total utility of 0.7. The shortest path that visits candidates v, and v3, <v,, v3>, has a cost

* We discuss what we mean by the “average distance the robot can travel before the set of candidates
changes” in more detail in Section 3.2.3.2.

> Another common method of evaluating the optimality of policies for MDP’s is to use a discounted reward
over an infinite horizon [27]. We could use a discounted reward instead of an additive reward in the
observation planning methods we develop in this thesis in order to take into account our uncertainty about
when the set of candidates will change. We discuss this possibility and why we do not pursue it in this
thesis in Section 3.2.3.2.
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of 3m + 3m + 5m = 11m and a total utility of 1.0. Table 3.1 enumerates all of the least-
cost paths that have a cost less than or equal to 11m and gives the cost and total utility of
each of these paths. The path that visits the candidates with the highest total utility is the
path <vj, v3>, and therefore this path is the output of the finite horizon observation

planning method.
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Figure 3.5 Finite Horizon Paths for L=5 and L=11
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Path Path Cost Total Utility
<vp> Sm 0.5
<vy> 6m 0.2
<v3> 10m 0.8

<vi, Vo> 9m 0.7

<vy, V3> I11m 1.3

<vy, V3> I1lm 1.0

Table 3.1 Least-Cost Paths Between Candidates with Path Cost <11m

We can view the finite horizon observation planning method as a balance between
greedy and full horizon observation planning methods. Therefore, our rough intuition is
that if the set of candidates does not change at all during exploration (no candidates are
added, removed, change score, or move), then the robot should use the full horizon
observation planning method. If the set of candidates changes a medium amount during
exploration, then the robot should use the finite horizon observation planning method.
And if the set of candidates constantly changes, then it should not attempt to plan ahead
at all, but use a greedy observation planning method. The reasoning behind this last rule
is, that if the set of candidates changes a lot, even a path chosen with the finite horizon
observation planning method can get caught, sacrificing in the short term for a reward
that will never come to fruition. For instance, if the set of candidates changes drastically,
every time the robot arrives at an observation point in its path, then if the robot ever goes
to a point that is a sacrifice, the robot will probably not be able to capitalize on this
sacrifice, because the candidates will change. Therefore, in this situation, we postulate
that it is most efficient on average to always choose the greedily-best candidate.

One desirable feature of the finite horizon observation planning method is that it
combines the goal of keeping path cost to a minimum with the goal of maximizing the
total utility of the candidates that the robot visits in a principled manner. As we
discussed above, the greedy method must use some arbitrary function in order to combine
the utility of a candidate with the cost of the best path from the robot to the candidate.
Researchers will probably choose this function empirically, and choosing the function

based on past experience may mean that the function is tuned for the environments for
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which the researchers ran tests and may not perform well in new environments. In
addition, the full horizon approach to observation planning does not take into account the
utilities of candidates at all. The approach finds a least-cost path that visits all of the
candidates, regardless of their utilities.

A final nice feature of the finite horizon observation planning method is that we
can adjust the planning horizon, L, to reflect how often we expect the set of candidates to
change during exploration. In other words, if the robot starts off knowing a lot about its
environment, perhaps because it can see a lot of its environment from its initial position,
then the set of candidates should not drastically change very frequently during
exploration and the robot can set its planning horizon to be very long. However, if the set
of candidates is constantly changing, we can set the planning horizon to be very short so
that the robot still has a chance of executing its path to completion. Recall that the only
time we know for sure that the robot is going to do something efficient if it is able to
execute its path to completion. The shorter we set the planning horizon, the closer the
finite horizon method becomes to the greedy method. And if we set the planning horizon
to be longer than the length of a full horizon path over the set of candidates, then the
finite horizon method and the full horizon method are equivalent. Therefore, the finite
horizon observation planning method is very adaptable.

Just as calculating a full horizon path corresponds to solving the TSP over the set
of candidates, calculating a finite horizon path corresponds to solving the Selective
Traveling Salesman Problem [15] over the set of candidates. We can state the S-TSP
informally as follows: given a cost L and a directed graph with utilities for each vertex
and costs for each edge, find an ordered subset of vertices, denoting a cycle, such that the
total utility of the subset is maximized, and the cost along the cycle does not exceed L.
The S-TSP has been studied in some depth, and efficient algorithms exist for solving it
[15]. Therefore, if we show how to formulate the finite horizon approach to observation
planning in terms of the S-TSP, it will be possible to make use of these efficient
algorithms. In the next section, we examine the S-TSP and its relation to the finite

horizon method in more detail.

75



3.2.3.1 Formal Definition of the Selective Traveling Salesman Problem

For the purposes of this thesis we use the following definition of the Selective
Traveling Salesman Problem [15]. Take a complete directed graph G = (V, E), where V
= {vo, V1, ..., vn.1} 1S the set of vertices, and E = {(vo,v1), (Vo, v2)...} is the set of edges.
Vertex vy is called the depot (the start vertex). The edge cost function c(v;, v;) maps each
edge to a real number. This cost function must satisfy the triangle inequality. In other
words, the cost function must satisfy the following constraint: for all 1, j, and k such that
(i, Vi), (vj, Vi), and (vi, vi) are members of E, C(vi, vi) < C(vi, vj) + C(vj, vk). In addition,
define a vertex utility function u(v;) mapping each vertex to a real number. Then given
some real number L, the Selective Traveling Salesman Problem is to find a maximum
utility Hamiltonian cycle over some sub-graph of G that includes v, and that has a total
cost less than or equal to L. Recall that a path in a graph is a sequence of vertices <uy,
uy,.., w> such that for i = 0 to k, u; is a vertex in the graph, and fori=1 to k, (u;.;, u;) is a
member of E. A cycle is a path that starts and ends with the same vertex and contains at
least one edge. A Hamiltonian cycle is a cycle that includes the start vertex exactly twice
and every other vertex in the graph exactly once. The utility of a cycle is defined to be
the sum of the utilities of the vertices in the cycle.

It is important to note that even though the Selective Traveling Salesman Problem
finds an optimum cycle through the graph, we do not actually want the robot to return to
its start point. Therefore, what we want to find is a maximum utility Hamiltonian path
through some sub-graph of G that starts at vy and that has a total cost less than or equal to
L (a Hamiltonian path is a path that includes every vertex in the graph exactly once).
Nevertheless, it is still important to formulate the fixed horizon method as solving the S-
TSP. Many good algorithms for solving the S-TSP have been developed [16] [15] [17]
[22] [50] [42], and we would like to be able to use these algorithms in implementations of
finite horizon observation planners. Although we do not make use of existing S-TSP
algorithms in this thesis, we still perform finite horizon observation planning by solving
the S-TSP, in order to make it easy to swap in a more efficient S-TSP algorithm if we
find one. In addition, we formulate the finite horizon method as solving the S-TSP even
though we do not want to find cyclical paths because there are many very good

algorithms for solving the TSP. In order to use these TSP solvers as black boxes in the
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finite horizon algorithm we present in Chapter 4, we must be able to handle finding
cycles instead of paths through our graphs.

Chapter 4 shows how to transform an undirected graph U into a directed graph D
such that the solution to the S-TSP on D maps to a finite horizon path through U. This
transformation is the reason why we define the S-TSP on directed graphs, for otherwise
most real world graphs are undirected. On undirected graphs, the S-TSP is NP-hard [30].
Chapter 4 also explains a method for transforming a directed graph into an undirected
graph by at most doubling the number of vertices. Therefore the S-TSP is also NP-hard
for directed graphs. Furthermore, it turns out that for the graphs we are interested in, the
transformation in Chapter 4 only adds one vertex to the undirected graph. Thus defining
the S-TSP on directed as opposed to undirected graphs does not make the problem
significantly harder for us.

The S-TSP is also known as the Orienteering Problem (OP) [16], for the goal in
orienteering is to collect prizes at various locations on a map within a set amount of time.
The S-TSP has been studied by a number of authors [16] [17] [22] [50] [42] [15] [30].
The most common approach to solving the problem is through branch-and-cut
algorithms. In Chapter 4 we describe a novel method for solving the S-TSP by framing it

as an optimal constraint satisfaction problem [50].

3.2.3.2 Finite Horizon Continuous Observation Planning

In order to immediately adjust the path for any changes in the set of candidates,
we would like to perform continuous observation planning with the finite horizon
method. However, if we continuously recalculate a finite horizon path for the set of
candidates, then we need to decide how to set the horizon length, L, for each
recalculation. For both non-continuous and continuous observation planning, the most
obvious guideline for how to select L is as follows: whenever the robot plans a finite
horizon path for the set of candidates, set the horizon length, L, to the expected distance
that the robot will travel before the set of candidates changes. This guideline has
different implications for different models of how the set of candidates changes.

A simple model is to say that the set of candidates changes at regular intervals

during the robot’s exploration, or in other words to say that the set of candidates changes
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every time the robot travels exactly k meters, where K is a constant. Using this model, we
find that, if the robot has traveled d meters since the last time the set of candidates
changed, then we expect that the robot will only be able to travel k — d meters before the
set of candidates changes again. In order to perform continuous observation planning
using this model, therefore, our guideline tells us to set L equal to k — d meters, every
time that the robot calculates a finite horizon path. We call this method of continuous
observation planning the fixed horizon method.

In Section 3.2.2, however, we said that a more appropriate way to model when the
set of candidates changes is as an arrival-type stochastic process. Using such a model, at
any instant we can calculate the expected value of the distance that the robot will travel
before the set of candidates next changes. This expected distance is the value our
guideline tells us to set L to whenever we compute a finite horizon path. Unfortunately,
the expected value of the distance that the robot will travel before the set of candidates
changes usually depends on how the set of candidates have changed in the past (in other
words, the process is not independent). For example, if recently the set of candidates has
been changing frequently, one possible reason is that the robot is in an area for which it
has mapped very little. In such an area, everywhere the robot turns it maps new objects,
and these changes in the map cause the candidates to change. If recently the set of
candidates has been changing frequently, therefore, then we have some reason to believe
that the set of candidates will change frequently in the near future, because the robot may
not leave the area for which it has mapped very little. Thus, in order to perform
continuous observation planning, we would have to construct a filter to estimate the
expected distance that the robot will travel before the set of candidates changes, based on
studies of the patterns in how the candidates change.

In this thesis, we do not pursue this method of continuous observation planning.
Instead, we see how far we can get by making the simplification that the expected value
of the distance that the robot will travel before the set of candidates changes is
independent of how the set of candidates has changed in the past (in other words, we
assume the process is independent). We also assume that at each instant, the probability
that the set of candidates will change is the same as the probability that the set of

candidates will change at any other instant (in other words, we assume the process is
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identically distributed). In this simplified model, the expected value of the distance that
the robot will travel before the set of candidates changes is some constant p; it does not
depend at all on how far the robot has traveled since the set of candidates last changed.
Therefore, in order to perform continuous observation planning using this model, we
always calculate the finite horizon path with L set to p. We call this method of
continuous observation planning the receding horizon method.

It is worthwhile to note that modeling the way the candidates change as an arrival
type stochastic process also suggests a method of continuous observation planning that
this thesis does not pursue: using discounted rewards [27]. In other words, when
calculating the total utility of a potential plan, we could decrease the utility of candidates
that come later in the plan. The later a candidate occurs in the plan, the more we would
decrease the utility of the candidate. We would then sum the modified utilities of the
candidates that a plan visits and choose the plan that has the highest total utility over
either a finite or full horizon. Decreasing the utilities of candidates in this way should
cause the robot to favor visiting high utility candidates immediately, before the set of
candidates changes, while still allowing the robot to take the future into account in its
plan.

In MDP’s, discounting is usually performed using a discount factor, y, where
0 <y <1. The discount factor can be thought of as the probability that the robot’s “life”
will last at least one more discrete step [27]. If the robot receives a reward of rj at step 1
in a sequence of actions, then the total utility of this sequence is ro + yr; + y’r> + ... + ¥"rn,
where n is the length of the sequence. In other words, the reward at each step is
multiplied by the probability that the robot will live to that step. In our case, we would
like to multiply the utility of each candidate in a plan by the probability that the set of
candidates will not change before the robot gets to that candidate. We can calculate this
probability using the stochastic process that we use to model the way that the candidates
change.

Using discounted utilities in calculating the total utility of a plan is a promising
approach that should be investigated. However, if the utility of each candidate depends
on the path that the robot takes to the candidate, then the problem of finding an optimal

path over a finite or full horizon becomes much harder. Because none of the algorithms
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that this thesis develops can be easily adapted to handle discounted utilities, we leave the
investigation of discounting to future work. Therefore, when we refer to the fixed
horizon, receding horizon, or full horizon methods, one may assume that these methods
use simple, additive utilities.

Despite the fact that the fixed horizon method is justified by a simplistic model of
the candidate dynamics, neither the fixed horizon method nor the receding horizon
method is clearly better than the other. The main advantage that the fixed horizon
method has over the receding horizon method is that, as long as the set of candidates does
not change over the length of the horizon, a robot using the fixed horizon method is
guaranteed to execute the path it planned to completion. As we saw with the full horizon
method, we can only guarantee that the path the robot executes using a given observation
planning method will be efficient if the robot is able to execute the path that it has
planned to completion without the set of candidates changing enough to change the path.
Therefore, if the set of candidates does not change over the horizon length, we can
guarantee that a robot using the fixed horizon method will execute an efficient path. In
the receding horizon method, however, the path that the robot plans constantly gets
longer as the horizon recedes. Therefore, if the set of candidates ever changes enough to
change the planned path, we cannot guarantee that a robot using the receding horizon
path will do anything efficient.

For example, it is possible for a robot using the receding horizon method to
constantly plan a path that makes sacrifices initially, and only reaps the reward of these
sacrifices at the very end. In other words, it is possible for a robot using the receding
horizon method to constantly put off doing something efficient until later. In this
situation, if the set of candidates ever changes, then the robot may not get to capitalize on
the sacrifices it has made. Figure 3.6 depicts an example of such a situation. In both
diagrams, once the robot travels 30m the set of candidates changes enough to completely
alter the robot’s planned path. Therefore, we only look at the efficiency of the path that
the robot executes in 30m. In Figure 3.6a, the robot explores using the receding horizon
method with a 12m horizon. The initial path visits candidate a, then b, then c, since these
are the only candidates within 12m of the robot. As the robot moves towards candidate a,

it continues to recalculate its path over a 12m horizon, but the optimal route does not
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change. As soon as it reaches candidate a, however, the robot finds that if it just
sacrifices going to the relatively highly valued candidates b and c, it can reach the even
more highly valued candidates e and f. Thus the robot travels the long distance to
candidate d. When the robot reaches candidate d, however, it finds itself in the same
situation as before. If the robot takes the immediately unattractive option of traveling a
long distance to get to the low-utility candidate g, it can reach candidates h and i which
have the highest utility in the map. Yet once the robot reaches candidate g, the set of
candidates changes because the robot has traveled 30m. Therefore, the robot is not able
to reap the reward of visiting candidates h and i, and the robot ends up visiting candidates

whose total utility is 0.3 before the set of candidates changes.
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Figure 3.6 Receding Horizon (a) versus Fixed Horizon (b)
The problem with the receding horizon path in this case is that the robot
constantly makes the sacrifice of traveling 10m to a candidate with a utility of only 0.1

and never gets to capitalize on this sacrifice by going to the highly valued points nearby.

The fixed horizon method avoids this problem, since the robot gets to execute two of the

81



paths that it plans to completion®. Figure 3.6b depicts the same set of candidates, but
with the robot using the fixed horizon method with a 12m horizon to select its route.
Initially the path is the same, visiting candidates a, b and c. Once the robot reaches
candidate a, however, it finds that it only has L-10m=2m left to plan for. Thus the best
route still takes the robot to candidates b and c. Upon reaching candidate c, the robot
starts planning for the next 12m path. The best path from c takes the robot back to
candidates b and a, and then to candidate d. Once the robot reaches d, it has traveled a
total distance of 24m. The robot then plans for a new 12m horizon and finds that the best
path visits candidates g, h, and i. After the robot has traveled 6m towards candidate g,
however, the set of candidates changes, because the robot has traveled a total of 30m.

Therefore, using the fixed horizon method, the robot visits candidates with a total
utility of 21.2 before the set of candidates changes, while using the receding horizon
approach, the robot visits candidates with a total utility of only 0.3. In addition, note that
we could have simply lengthened this example by adding more groups of three
candidates 10m apart and made the path that the robot executes using the fixed horizon
approach an arbitrary amount better than the path that the robot executes using the
receding horizon approach.

Nevertheless, the receding horizon method has the major advantage of always
planning as far ahead into the future as we are willing to. In contrast, the fixed horizon
method seems to unnecessarily become more and more near-sighted in its planning as the
robot moves. Thus the danger in the fixed horizon case is that the robot will constantly
ignore the fact that there is a very good set of candidates just beyond the fixed horizon
that is within L meters of the robot’s current position. For example, if we change the
distance that the robot travels before the set of candidates changes to 22m in the previous
example and get rid of candidates g, h, and 1, then using the receding horizon approach
suddenly becomes better than using the fixed horizon approach. In this altered example,
the fixed horizon approach does not realize when the robot is at candidate a that
candidates d, e, and f are better to go to than candidates b and c. Therefore, from

candidate a, the robot goes to candidates b and c. Once the robot reaches candidate c, it

® Note that using discounted rewards is another way of avoiding situations like these in which the robot
constantly sacrifices and never gets to reap any reward. However, investigating discounted rewards is
outside of the scope of this thesis.
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plans to go back to candidates b and a, and then to candidate d. However, the robot only
makes it back to candidates b and a before the set of candidates changes. Therefore, the
robot collects a total utility of 21.1 over the mission. In the receding horizon approach,
however, the robot realizes at candidate a that visiting candidates d, e and f is better than
visiting candidates b and c¢. Therefore, the robot visits candidates a, d, e, and f for a total
utility of 25.2.

In summary, the major disadvantage of the receding horizon approach is that,
unless the set of candidates never changes enough to alter the planned path, a robot using
the receding horizon method is never guaranteed to execute an efficient path. The major
disadvantage of the fixed horizon approach is that if the robot travels farther than the
horizon length without the set of candidates changing, then the robot will usually plan
less efficient paths using the fixed horizon approach that it will using the receding
horizon approach. Therefore, neither approach is clearly better than the other. The only
real way to decide on which method to use is to test and see how well each performs in
the specific scenarios the user is interested in. In Chapter 6, we present the results of
experiments testing the performance of a specific candidate identification and scoring
method with both approaches.

One final point to make is that in the case of finite horizon continuous observation
planning methods, there is one situation in which the set of candidates changing will
probably not hurt the efficiency of the path that the robot executes. If no candidates ever
disappear, move, or change their utility, then even if new candidates appear as the robot
moves, a robot using either the fixed or receding horizon method will on average execute
a path that is at least as efficient as it would have if nothing had changed at all. In order
to see why the efficiency of the path that the robot executes should not decrease in the
fixed horizon case, we look at the robot’s exploration over one horizon. If new
candidates are added to the map before the robot has reached the end of its horizon, then
the path that the robot executes over the interrupted horizon is guaranteed to be at least as
efficient as the path that the robot would have executed otherwise. The robot will only
change the path it has planned if the new path is more efficient over the remaining
distance to the horizon than the old path was. The new path would have to be more

efficient because none of the old candidates changed; therefore, the robot could still
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execute its old path if it was better. As long as the candidates do not change again, a
robot using the fixed horizon method will execute to completion whatever path it decides
on. Therefore, what we say about the path that the robot plans is also true about the path
that the robot executes. However, if the new candidates caused the robot to change its
path, then the robot will end up in a different location than it would have if new
candidates had not appeared. This location might be much worse for exploration than the
location the robot would have ended up in otherwise. Therefore, we cannot guarantee
that the path the robot executes over the entire mission will be at least as efficient as the
path the robot would have executed if no new candidates had appeared.

In order to see why the efficiency of the path that the robot executes should not
decrease in the receding horizon case, we examine the path that the robot plans the instant
after new candidates appear. This path will only be different from the path that the robot
would have planned if the new path is more efficient than the old path. Yet because a
robot using the receding horizon method constantly recalculates its path for a whole new
horizon, even if the set of candidates does not change again, we cannot guarantee that the
robot will execute to completion whichever path it decides on. However, if the set of
candidates does not change again, the robot will usually execute a path that is at least as
efficient as the path that the robot decided on after new candidates were added to the
map. Therefore, even if new candidates are added to the map, a robot using the receding
horizon method will on average execute a path that is at least as efficient as it would have
if the set of candidates had not changed.

Yet if candidates disappear, move, or change their utility as the robot moves, then
a robot using either the fixed horizon or the receding horizon may no longer be able to
use the path that it initially planned. Therefore in this scenario, we have no reason to
believe that a robot using either the fixed horizon or the receding horizon method will
execute a path that is at least as efficient as the path it would have executed otherwise.
And in many candidate identification and scoring methods, candidates are very likely to
at least move and change score as the robot moves. Therefore, we usually will assume
that we cannot predict whether the set of candidates changing will be good or bad for the

efficiency of the path the robot executes.

84



Now that we understand the basic motivation behind the receding horizon and
fixed horizon continuous observation planning methods, we are ready to define these

methods more precisely.

3.2.3.3 Definition of Finite Horizon Observation Planning Methods

In order to define the receding horizon and fixed horizon continuous observation
planning methods, we first define the basic finite horizon observation planning method.
The finite horizon observation planning method takes as input a partially completed map
of the environment, a set of candidates C, a vector giving the robot’s current pose x;, and
a real-valued threshold cost L. The method must then output a least-cost feasible path
starting at the robot’s current position and going to a subset of the candidates (the chosen
points) such that the total utility of the subset of candidates is the maximum possible and
the path cost is less than L.

We can break the finite horizon observation planning method down into solving
two sub-problems. First, given a partially completed map, the set C, and the vector x;, the
robot must find and store a least-cost path between each pair of candidates that avoids
obstacles. Figure 3.7a depicts an example of a partially completed map. The candidates
are labeled v;-v4, and the least-cost path between each pair of candidates is drawn with a
solid line. The robot then must extract from these pair-wise paths a complete graph G of
candidate observation points in which the edge cost between any two candidates is the
least-cost path length between them. Figure 3.7b shows what the graph for Figure 3.7a
would look like. Note that the robot’s current location must also be included in the
graph. Second, given the graph of candidates G, the candidate utilities, and a threshold
cost L, the robot must solve the S-TSP. The output of the S-TSP solver will be the
chosen points and a sequence to visit them in. The robot can then use its stored least-cost

path for each consecutive pair of chosen points and execute the plan.

" If there are no candidates such that the least-cost path from the robot to the candidate has a cost less than
L, then by this definition the finite horizon method outputs a path that has the robot not move anywhere.
Yet in most implementations of the finite horizon method we do not want the robot to ever stop exploring if
there are still candidates in the map. Therefore, in the implementation that we test in Chapter 6, the finite
horizon method outputs the least-cost path to the greedily best candidate in this situation.
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Figure 3.7 Extracting a Graph for the S-TSP

We refer to the first sub-problem as the candidate graph extraction problem. The
second sub-problem is simply the Selective Traveling Salesman Problem. The benefit of
dividing the problem into these two sub-problems is that the first sub-problem captures
all of the interesting variations that a particular situation might require, while the second
sub-problem captures the underlying combinatorial optimization problem. In the
candidate graph extraction problem, the robot is free to use any map representation it
wants (e.g. grid-based, feature-based, scan-matched) as long as there is some method for
finding a feasible least-cost path between candidate pairs. In addition, the cost of a path
does not have to be its distance, it could also be the time or even the energy required to
traverse the path. No matter what options we choose in solving the candidate graph
extraction problem, however, the input and output of the S-TSP remains the same.

Figure 3.8 gives pseudo-code for performing finite horizon observation planning
by breaking the problem down into these two sub-problems. In particular, the function
Extract_Candidate_Graph() on line 1 solves the candidate graph extraction
problem, and the function Solve_S-TSP() on line 2 solves the S-TSP. The function
Fill_In_Path() on line 3 takes an ordered subset of the set of candidates, the
partially completed map, and the robot’s position, and returns a shortest path avoiding all
obstacles that takes the robot from its position to each of the candidates in the subset in

order.
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Plan_Observations_Finite_Horizon(partially completed map, candidate
set, robot pose, threshold cost)
returns exploration path starting at robot pose

1. let graph = Extract_Candidate_Graph(partially completed map,
candidate set, robot pose)

2. let candidate list = Solve_S-TSP(graph, threshold cost)

3. let path = Fill_In_Path(candidate list, partially completed map,
robot pose)

4. return path

Figure 3.8 Pseudo-code for the Finite Horizon Observation Planning Method

Reviewing the big picture of our definitions, most exploration methods perform
exploration path planning. We break the exploration path planning problem down into
two sub-problems: the candidate identification and scoring problem and the observation
planning problem. A specific approach to solving the observation planning problem is
the finite horizon observation planning method. We break the finite horizon observation
planning method into two more sub-problems: the candidate graph extraction problem
and the S-TSP. In Chapters 4, and 5, we describe a specific implementation of an
exploration method using the finite horizon observation planning method. The
implementation uses the candidate identification and scoring approach of the Newman,
Bosse, and Leonard exploration method that we described in Chapter 2. In Chapter 4 we
present a novel method for solving the S-TSP. In Chapter 5 we describe the
implementation’s candidate graph extraction method. Finally, in Chapter 6 we present
the results of testing the performance of this implementation in real world and simulated
environments.

Now that we have defined the basic finite horizon observation planning method,
we can build upon this definition to define the finite horizon continuous observation
planning methods. In the receding horizon continuous observation planning method the
robot constantly recalculates the path using the finite horizon observation planning
method with the most recently updated partial map, the most recently computed set of
candidates C, the robot’s current pose vector x,, and the threshold cost L. In the fixed
horizon continuous observation planning method the robot constantly recalculates the

path using the finite horizon observation planning method with the most recently updated
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partial map, the most recently computed set of candidates C, the robot’s current pose
vector X;, and the threshold cost L minus d, where d is the cost of the path the robot has
executed since the last horizon. Initially d is set to zero. Whenever L-d is less than or
equal to zero, d is reset to zero and we say that the method has started a new horizon®.
Figure 3.9 shows pseudo-code for a generic exploration method using the
receding and fixed horizon continuous observation planning methods. Figure 3.9a shows
the top level exploration pseudo-code. This pseudo-code is almost identical to the
exploration pseudo-code depicted in Figure 2.2. The main difference is that the user must
pass in the planning horizon (threshold cost) as a parameter to the exploration method.
Figure 3.9b shows an implementation of the Plan_Exploration_Path() function
that performs receding horizon continuous observation path planning. The function
Identify_and_Score_Candidates() on line 1 solves the candidate
identification and scoring problem. We gave the pseudo-code for the function
Plan_Observations_Finite_Horizon in Figure 3.8. Figure 3.9¢c shows an
implementation of the Plan_Exploration_Path() function that performs fixed

horizon continuous observation path planning.

¥ When L-d gets to be small, it becomes likely that there are no candidates with a least-cost path between
the robot and the candidate that is less than L-d. Therefore the robot often gets stuck without a path to
execute in the fixed horizon method. In the implementation of the fixed horizon method that we test in
Chapter 6, we fix this problem by returning the greedily-best path in this situation.
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Explore_Continuous_Finite_Horizon(threshold cost, constantly updating map)
returns nothing

while Mission_Completed() is false
let map = Get_Most_Recent_Map(constantly updating map)
let robot pose = Get_Current_Robot_ Pose(map)
let path = Plan_Exploration_Path(map, robot pose, threshold cost)
Execute_Segment_of_Path(path)
endwhile

DU WNEPER

a)

Plan_Exploration_Path(current robot pose, partially completed map,
threshold cost)
returns exploration path starting at current robot pose

1. 1let C = ldentify_and_Score_Candidates(partially completed map)
2. let path = Plan_Observations_Finite_Horizon(partially completed
map, C, current robot pose, threshold cost)

3. return path

b)

Plan_Exploration_Path(current robot pose, partially completed map,
threshold cost)
returns exploration path starting at current robot pose

1 let C = Identify_and_Score_Candidates(partially completed map)
2 let d Get_Total _Executed_Path_Cost()

3. let new threshold = threshold cost - d

4. let path = Plan_Observations_Finite_Horizon(partially

c

5.

ompleted map, C, current robot pose, new threshold)
return path

c)

Figure 3.9 Pseudo-code for Receding and Fixed Horizon Approaches to Exploration

3.3 General Analysis of Finite Horizon Observation Planning
Methods

Even though we only had time in this thesis to test how well finite horizon
observation planning methods work with one particular candidate identification and
scoring algorithm, we can still gain some understanding of how well finite horizon
methods should work for most other candidate identification and scoring algorithms
through general analysis. In order to evaluate the performance of finite horizon
observation planning methods, we look at how well finite horizon methods work relative
to greedy and full horizon methods. In particular we look at the continuous observation

planning version of each of these methods, for when the set of candidates changes, non-
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continuous observation planning only performs well out of luck. We focus on
exploration in order to expand the map in all directions as efficiently as possible because
this is the most common sub-goal of methods of exploration for increasing map coverage.
We discuss the possible sub-goals of methods of exploration for increasing map coverage

in Chapter 2.

3.3.1 Strengths and Weaknesses of Observation Planning Methods

Section 3.2 gave us the basic intuition that greedy observation planning
approaches should perform most efficiently when the set of candidates changes
frequently during exploration, finite horizon approaches should perform most efficiently
when the set of candidates changes moderately often, and the full horizon approach
should perform most efficiently when the set of candidates barely ever changes at all.
We now refine this intuition.

In Section 3.2 we saw that the general motivation for considering the full horizon
method was that planning ahead should allow the robot to compute more efficient paths
than the greedy method. More precisely, the efficiency of the full horizon path for a set
of candidates is guaranteed to be greater than or equal to the efficiency of any other path
that visits every candidate in the set. Therefore, if the robot explores until it has visited
every candidate in the map, and if the set of candidates does not change during
exploration, then the efficiency of the path that the robot executes using the full horizon
method is guaranteed to be greater than or equal to the efficiency of the path the robot
executes using a greedy method or any other method. The reason that we did not then
conclude that the full horizon method is the final word in observation planning was that,
as the robot executes its planned path, it is likely that the set of candidates will change
enough to cause the robot to significantly alter its path if it is performing continuous
observation planning. Ifthe robot is not able to execute the entire path that the full
horizon method has planned, then there is no guarantee that the robot will do anything
efficient at all. The first portion of a full horizon path is not guaranteed to be efficient;
only the whole path is planned to be efficient.

Our solution to this problem with the full horizon observation planning method

was to say that, if major changes in the set of candidates occur at somewhat regular
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intervals, then the robot can use the finite horizon approach to plan a path that is optimal
only over the period of time that we expect the candidates to stay constant. Because the
robot should be able to execute these finite horizon paths completely, we expect that the
robot will explore more efficiently on average using the finite horizon approach, than it
would using a greedy approach. We can only say that we expect the exploration to be
more efficient on average because a finite horizon path is only calculated to be optimally
efficient over the planning horizon. If the robot’s mission lasts longer than one planning
horizon, then the robot must string multiple finite horizon paths together. These
concatenated finite horizon paths are not guaranteed to be optimally efficient over their
combined length. Therefore, it is possible that a robot using the greedy approach could
get lucky and execute a path that is more efficient over the length of the mission than
these concatenated finite horizon paths. Yet because the efficiency of a finite horizon
path is guaranteed to be greater than or equal to the efficiency of any other path
(including greedy paths) over the length of the horizon for the same set of candidates and
initial robot position, it is more likely that the concatenated finite horizon paths will be
more efficient over the length of the mission than a greedy path.

Unfortunately, we cannot predict when the set of candidates will change enough
to alter the path that the robot has planned. As a result, we cannot choose horizon lengths
for the robot to plan its paths over that will guarantee that the robot will be able to
execute all of the paths it plans to completion before the set of candidates changes. And
if the execution of a path that the robot has planned is interrupted by the set of candidates
changing, we cannot guarantee that the part of the path the robot executes before the
interruption will be efficient. Therefore, it is important to determine how often the robot
not being able to execute some of its finite horizon paths to completion will significantly
hurt the efficiency of the robot’s exploration. The finite horizon paths that the robot can
execute to completion should be more efficient than corresponding greedy paths of the
same length. Therefore, in order to determine how efficiently a robot using the finite
horizon approach should explore on average (as compared to the greedy approach), we
must weigh how much the finite horizon paths that the robot completes should improve
efficiency against how much the finite horizon paths that get interrupted should hurt

efficiency.
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Having the execution of an finite horizon path interrupted will hurt the efficiency
of the robot’s exploration if the part of the finite horizon path that a robot executes before
the path changes is significantly worse than the path the robot would have executed using
a greedy method. In other words, if the finite horizon path makes big sacrifices early on
and the execution of the path gets interrupted before the robot is able to reap the reward
of these sacrifices, then getting interrupted will hurt efficiency. Figure 3.10 shows an
example of the robot getting caught making a sacrifice in this way. In Figure 3.10a, the
robot passes up visiting the nearby candidates a and b and makes the sacrifice of going all
the way to candidate c in order to next reap the reward of visiting candidates d through i.
Figure 3.10b shows what the environment actually looks like. Once the robot reaches
candidate c, it finds that a wall it had not seen before blocks the rest of the path it had
planned. Ifthe robot had followed a greedy strategy by initially going to candidates a
and b, it would have succeeded in visiting candidates with a higher total utility in a
shorter distance. Therefore in this situation, the greedy method performs more efficiently
than the finite horizon method. In addition, had the robot gone to candidates a and b it
would have discovered an entirely new room off to the right with many high utility
candidates. Using the greedy method, the robot would have been drawn off into this new

room and may have never had to visit the distant candidate c.
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Figure 3.10 Getting Interrupted after Making a Sacrifice

Of course, there is no reason why the part of a finite horizon path that the robot
executes before being interrupted must be less efficient than a corresponding greedy path.
If the robot did not make any big unrewarded sacrifices in this part of the path, then the
efficiency of this part of the path could have been greater than or equal to the efficiency
of a corresponding greedy path. In the end, therefore, we cannot say on face whether the
finite horizon approach will be more or less efficient than the greedy and full horizon
approaches. The efficiency of the path the robot executes using the finite horizon method
strongly depends upon the arrangement of the candidate observation points and the way
they change. The arrangement of the candidates and the way they change in turn depends

on the shape of the environment and the exploration and SLAM algorithms the robot is

93



using. Some questions we need to answer in order evaluate the relative efficiency of the
finite horizon approach for a particular situation are:

e Does the set of candidates ever change enough to cause the robot to drastically
alter its planned path?

e Do these changes occur regularly enough for the robot to be able to minimize the
number of times its finite horizon path gets interrupted by choosing a proper
horizon length?

e How often does the robot make big sacrifices, and how often does it get caught
not having collected the reward for these sacrifices?

e When the robot is able to execute its finite horizon path to completion, how much
more efficient is this path than a corresponding greedy path?

We now examine what we can say about the answers to these questions for the general

case of exploration to increase map coverage in all directions.

3.3.2 Analysis of the Finite Horizon Approach in Exploration to
Increase Map Coverage

The major problem with using the finite horizon approach when exploring to
increase map coverage is that the robot’s map, and, therefore, the set of candidates,
changes substantially every time the robot visits an unexplored region. It might seem
then that the robot needs to be able to predict what it will see at these unexplored regions
in order for it to be able to effectively plan ahead. Nevertheless, no current exploration
method can make such predictions. Therefore, we examine how well the finite horizon
approach should perform without the robot making predictions about what it will see in
unexplored regions. Our claim is that as long as the robot’s planned paths getting
interrupted does not significantly hurt the efficiency of the exploration, then if the robot
is able to execute any of its finite horizon paths to completion, on average the finite
horizon method should perform better than all other methods.

In order to estimate how frequently the robot’s execution of its finite horizon path
will get interrupted and what effect this interruption will have on the efficiency of
exploration, we must understand how the set of candidates will change during exploration

for increasing map coverage. Unfortunately, the dynamics of the set of candidates is
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noticeably different for different methods of exploration for increasing map coverage, as
a result of the wide variety of these methods. These differences limit the general analysis
that we can perform; therefore it is important to perform experiments to truly evaluate
how efficient finite horizon methods are. Nevertheless, we can find many significant
similarities between the ways candidates change in most methods of exploration for
increasing map coverage. In particular, mapping previously unexplored areas, the utility
of candidates changing as the robot passes by them, and small adjustments by the SLAM
algorithm to the location of objects already in the map cause the set of candidates to
change in most exploration methods. We examine all but the last cause, for the changes
to the set of candidates that result from SLAM updates to objects in the map are usually

minor.

3.3.2.1 Mapping Previously Unexplored Areas

The source of change in the set of candidates that we must worry about most is
mapping previously unexplored areas. If mapping previously unexplored areas only
added new candidates to the set of candidates, then as we saw in Section 3.2.3.2, we still
would expect a robot using a finite horizon continuous observation planning method to
execute an efficient path on average. When a robot visits an unseen area, however, it
pushes back the frontier of the part of the environment that it has seen. Most exploration
methods place candidates along this frontier; therefore, when the frontier moves so do the
candidates. In addition, a robot usually maps new objects when it visits previously
unexplored areas. These new objects can block the robot’s path to an existing candidate
and thereby increase the cost of the least-cost path to the candidate. Unfortunately, the
entire point of exploring to increase map coverage is to map previously unexplored areas.
In fact, if the candidate identification and scoring algorithm is doing its job, then every
time the robot visits a candidate it should see a previously unexplored area. It is a
problem for the finite horizon observation planning method if the set of candidates
changes significantly each time the robot reaches a candidate. If the robot’s execution of
its planned path is interrupted at every candidate, then there cannot be any benefit to

planning ahead farther than the next candidate, and the robot should use a greedy method.
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Planning ahead with the finite horizon approach is not doomed, however, as long
as there are cases when the set of candidates does not change drastically at every
candidate the robot visits. In these cases, the robot should still be able to execute a finite
horizon path with an appropriate horizon length to completion and be more efficient than
a greedy method would be for this one horizon. Figure 3.11 depicts one possible
situation in which the set of candidates does not change at all as the robot explores. In
the figure, the triangle is the robot and the circles are candidates. The solid lines in the
figure are lines in the robot’s map, and the dotted lines correspond to lines in the real
world which are not yet in the robot’s map. Figure 3.11a depicts the initial path and map
of the robot. In Figure 3.11b, the robot has reached candidate b and mapped the wall
there. The robot does not push back the frontier of the explored region at all, however,
because the new wall blocks the view beyond the candidate. Therefore, the robot does
not add any new candidate to its map and continues to execute its original path. The set
of candidates does not change at candidates c, d, or a either for the same reason. Figure
3.11c shows the robot at candidate e. The robot pushes back the frontier a short distance,
yet the newly explored region (the small office in the figure) is enclosed entirely by
walls. The robot cannot see through any of these walls to push this frontier out further,
and therefore the robot does not add any new candidates at point e either. Over the entire

path depicted in Figure 3.11, therefore, the set of candidates never changes.
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Figure 3.11 Exploration Without Changing the Set of Candidates

There are also cases when the set of candidates changes over the robot’s path, but
not enough to alter that path significantly. One such case is when the robot has deduced
the basic structure of the environment with its map, but small gaps in the map still need to
be filled in. The finite horizon approach should calculate an efficient path that takes the
robot between these gaps in the map. What the robot sees at each gap may add a few
more candidates for the robot to visit in order to fully fill in the gap, but relative to the
length of the whole path, the distance to these new candidates will be insignificant. As a
result, the order that the path visits the gaps in will not change and the large-scale
structure of the finite horizon path will remain the same. There are a number of
situations in which the robot’s map might capture the basic structure of the environment

but still have gaps that need to be filled in. In Mars exploration, satellite images can give
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a rover a rough sense of the structure of the environment it is in, however, these images
are not very high resolution. Therefore, finite horizon approaches might be ideal for
filling in maps of Mars at resolutions useful to a rover.

Another case in which the robot could start out knowing the overall structure of
its environment is if the environment is open enough for the robot to see most of the
large-scale features from its initial position. For example, outdoor environments are
usually very open in this manner. Large scale features might correspond to spread-out
clusters of rocks, trees, or other objects. The robot would see some of the objects in these
clusters and therefore place candidates at each cluster in order to fill in the details there.
If the horizon that the robot plans over is long enough for the finite horizon path to go to
multiple clusters, then candidates appearing, disappearing, and moving within the clusters
should not significantly change the path the robot plans. The finite horizon path might
only change the order in which the robot visits the clusters if whole clusters move or if all
candidates within a cluster drastically decrease or increase in utility. Because there are
no walls to block paths between clusters outdoors, it is unlikely that the shortest distance
between clusters will change much in these environments. In cases such as these, when
visiting candidates changes the set of candidates a relatively small amount, the robot
should be able to execute a finite horizon path to completion without the efficient large-
scale structure of the path changing.

One concern is that if the set of candidates never changes enough to cause the
robot to significantly alter its path, then we might think that the full horizon approach
should perform better than the finite horizon approach. The full horizon approach plans a
globally optimal path, while the finite horizon approach only plans a path that is optimal
over the length of the horizon. One observation is that, as we mentioned in Section 3.2, if
we set the S-TSP horizon to be greater than or equal to the cost of a TSP path over the
candidates, then the S-TSP is equivalent to the TSP. Thus we can always mimic the full
horizon approach to selecting waypoints with a finite horizon approach, and as a result
the finite horizon approach can work well even when the set of candidates does not
change enough to significantly alter the robot’s path.

Another observation is that even if the set of candidates never changes drastically

enough to cause the robot to significantly alter its planned path, it is possible that the
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combined effect of many small changes to the set of candidates will be enough to alter
the robot’s path. The longer the path the robot plans, the more the robot exposes itself to
this possibility. Therefore, even if the set of candidates never changes drastically, it still
may not be a good idea to plan a path to visit every candidate in the map by using the full
horizon approach.

Finally, one important difference between the full horizon and finite horizon
approaches to selecting waypoints is that the full horizon approach does not consider the
utilities of the candidates at all in calculating a path. As a result, the full horizon
approach does not prioritize visiting candidates with a high utility. On the other hand, the
finite horizon approach chooses a subset of candidates to visit that has maximal total
utility. Therefore, if the exploration mission ends before the robot has visited every
candidate (as is often the case), it is just as likely that that robot will have visited low
utility candidates as it is that the robot will have visited high utility candidates using the
full horizon approach. Using the finite horizon approach, however, the robot is likely to
visit candidates with a high total utility as long as it has gotten to execute at least one full
finite horizon path before its mission ends. In addition, even if we ignore the utilities of
the candidates, if the mission ends before the robot visits every candidate, then the part of
the full horizon path that the robot gets to execute is not guaranteed to be efficient in
terms of length either. Therefore, if the effect of small changes to the set of candidates
accumulates as the robot explores, or if the mission ends before the robot gets to visit
every candidate, then it is better to use the finite horizon approach and plan over a limited

horizon than to use the full horizon approach.

3.3.2.2 Candidate Interactions

The second common cause of the set of candidates changing is candidate
interactions. Candidate interactions happen when the robot’s path to one candidate goes
by other candidates, causing the utilities of those other candidates to change. In
exploration for increasing map coverage, candidate interactions usually occur when the
robot arrives at one candidate and maps part of a region covered by other candidates.
Figure 3.12 gives an example candidate interactions for the case of the Gonzalez-Banos

and Latombe exploration algorithm described in Chapter 2. Figure 3.12a shows what the
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environment actually looks like, and Figure 3.12b shows the map that the robot starts off
with. The semicircle near each candidate shows the predicted amount of area that the
robot’s sensor will see from the candidate. The fact that these semicircles overlap means
that it is possible that the robot will see from one candidate part of the region covered by
another candidate. Figure 3.12c shows what happens if the robot visits candidate b. The
office that the robot sees from candidate b cuts off part of the area that the robot could see
from candidates a or c. Therefore, going to candidate b causes the utilities of candidates
a and c to drop. Candidate interactions also occur in the Newman, Bosse, and Leonard
exploration algorithm and the grid-based approaches to exploration described in Chapter

2.

0.6 0.6

Figure 3.12 Candidate Interactions

Changes in the set of candidates caused by candidate interactions are not usually
as drastic as changes caused by mapping new regions. In many environments, candidate
interactions can occur frequently, however. Indoor environments that are densely
populated with objects will cause candidates to interact frequently because the candidates
will be close together and highly overlapping. In such environments we therefore must

worry about the robot’s finite horizon path getting interrupted because of candidate
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interactions, as well as new regions being mapped. So once again we see that the finite
horizon approach is suited for open environments.

When the regions visible from various candidates overlap with each other, this
overlap causes another problem besides candidate interactions: finite horizon paths will
favor visiting regions that the robot has explored moderately well over regions the robot
has barely explored at all. When there are many candidates close together, it is usually
because they are marking the small gaps in the map in an area that has been explored
moderately well. Even though the regions visible from these candidates probably
overlap, the utility of each candidate will be as large as it would be if there were no other
candidates nearby in most exploration approaches. A finite horizon path will sacrifice to
get to such a cluster of candidates because the candidates are close together and have a
higher total value than the total amount of new area visible from them warrants. In
contrast, largely unexplored regions usually only have a few frontiers or features to place
candidates near. Therefore there will be relatively few candidates in largely unexplored
regions, and their total utility will be much lower than the total utility of all of the
candidates in moderately explored regions. A finite horizon path will therefore choose to
visit a moderately explored region over an unexplored region. Figure 3.13 gives an
example of such a situation. If the robot’s planning horizon is not long enough to go to
visit both ends of the hallway, then the finite horizon path will choose to visit the mostly
explored room on the left rather than explore the entirely unmapped right side of the
hallway.

(os ‘
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Figure 3.13 Going to Explored Regions over Unexplored Regions
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If the robot’s goal is to try to map as much new area as quickly as possible,
however, then going to moderately explored regions over unexplored regions is exactly
the opposite kind of behavior that we want. If the robot can plan a path that takes into
account the fact that after the robot visits one candidate, the score of the other candidates
will drop, then the robot can avoid this problem somewhat. We do not explore planning
to take into account candidate interactions in this thesis, however. Yet visiting
moderately explored areas over unexplored areas is desirable if the robot’s goal is to map
thoroughly. Therefore, the finite horizon method might be good for exploration for

thoroughness.

3.3.2.3 Frequency of Unrewarded Sacrifices

We have seen so far that the set of candidates will change frequently in
exploration for increasing map coverage, and that finite horizon paths will sometimes
cause the robot to go to moderately explored regions over unexplored regions. We also
have seen that when the environment is open, or in other situations in which the robot
knows the large-scale structure of its environment early on, the robot should be able to
execute many of its finite horizon paths to completion. In these situations, there should
also not be too many highly unexplored regions; therefore choosing moderately explored
regions over unexplored regions will not be an issue. Finite horizon observation planning
methods should, therefore, perform better in these situations than greedy or full horizon
methods, as long as the execution of these finite horizon paths does not often get
interrupted in a way that has the robot make many unrewarded sacrifices. Therefore, we
would like to characterize how likely it is that the robot will make unrewarded sacrifices
while exploring to increase map coverage.

In estimating how often the robot will get caught making unrewarded sacrifices,
we need to estimate how often a finite horizon path makes large sacrifices and how likely
it is that the execution of the path gets interrupted after such sacrifices but before the
robot can gather any reward. The first point to note is that in most environments, finite
horizon paths do not often make many large sacrifices. Usually there are plenty of good
candidates nearby for the robot to explore. In addition, a finite horizon path cannot make

sacrifices larger than the length of the planning horizon. In exploration for increasing
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map coverage, the planning horizon is not usually very long because the set of candidates
change so often. However, even if the finite horizon path does not make any large
sacrifices, occasionally it is still possible for the finite horizon path to improve upon
greedy paths by making small sacrifices that have big payoffs.

If the robot does make a large sacrifice, however, we would like to know how
likely it is that the robot will get caught not being able to capitalize on this sacrifice.
Unfortunately, in exploration for increasing map coverage, the most likely time for the
set of candidates to change enough to significantly alter the robot’s path is when the robot
is trying to reap some reward. Often making a big sacrifice equates to the robot driving a
long distance to the next point, and the reward equates to exploring a relatively
unexplored area. Yet the robot is usually very uncertain about the structure of
unexplored areas (that is the point of exploring). Therefore once it gets to its destination,
the robot may find that it is impossible to gain the reward that it thought it would. Figure
3.10 shows an example of this type of situation. The robot passes up the greedy solution
of visiting the nearby candidates and instead travels a long distance to get to an open and
largely unexplored region. Upon arriving at the distant region, however, the robot finds
out that a wall blocks the path it had planned to explore the new territory. The robot is
therefore unable to capitalize on its sacrifice of driving far away from its initial position.

Hence it is not very likely that the robot will make many large sacrifices when
exploring. But when the robot does make a big sacrifice, it is somewhat likely that the
robot will not be able to capitalize on this sacrifice. Whether or not the finite horizon
approach performs better than the full horizon or greedy approaches depends on the
particular environment, exploration method, and SLAM algorithm. In some situations
the robot may be able to make up for the few times it gets caught making unrewarded
large sacrifices by the efficiency of the finite horizon paths the robot is able to execute to
completion. In other situations, the robot might get caught making unrewarded sacrifices
too often, or the finite horizon paths that the robot executes to completion may not be
much more efficient than greedy. However, if the robot knows the large-scale structure
of its environment at the beginning of its exploration, then it should be able to execute
many of its finite horizon paths to completion. In addition, we have seen that when the

robot knows the large-scale structure of its environment, it is less likely that the set of

103



candidates will change so much that the robot’s planned path will change significantly
during exploration. Therefore, even if the robot makes large sacrifices, it should be less
likely that the robot gets caught not having capitalized on the sacrifice when the robot
knows the structure of the environment. Our hypothesis therefore is that the finite
horizon approach should excel when the robot knows the large-scale structure of its
environment early on in its exploration.

We now understand the properties of the finite horizon observation planning
approach of planning an optimally efficient path over a given horizon. We have seen that
finite horizon continuous observation planning methods should be ideal for exploration
for exploration for increasing map coverage when the robot knows the large scale
structure of its environment early on in its mission. In the following chapters we examine
a specific implementation of an exploration framework that uses the finite horizon
approach. We also present the results of experiments comparing the finite horizon, full
horizon, and greedy approaches to observation planning in simulated and real

environments using this exploration framework.
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4 Optimal Constraint Satisfaction Problem Methods for
the S-TSP

In this chapter we present a novel algorithm for solving the S-TSP by casting the
problem as an Optimal Constraint Satisfaction Problem (OCSP) [50]. Chapter 3
introduces and formally defines the S-TSP. In an OCSP, as in a Constraint Satisfaction
Problem (CSP), the goal is to find an assignment to the variables that satisfies a given set
of constraints over possible assignments. However, the solution to an OCSP has the
additional requirement that this satisfying assignment must maximize a given utility
function over the variables. In the OCSP formulation of the S-TSP, a particular
assignment to the variables corresponds to a particular subset of the vertices in the graph.
The goal of the Selective Traveling Salesman Problem is, therefore, to find the subset of
vertices with the maximum total utility, subject to the constraint that the least-cost path
visiting all vertices in the subset must have a cost less than the given threshold cost. The
algorithm described in this chapter searches through the possible subsets of vertices in
best-first order and checks the constraint on each subset.

Recall that, currently, the most popular methods for solving the S-TSP are branch-
and-cut algorithms [16] [15]. Until now, no one has attempted to use OCSP solution
methods to solve the S-TSP. Yet powerful methods of solving OCSP’s [50] have
recently been developed that have proven to be very effective on difficult problems in the
domain of Model-based Programming. These methods may also prove to perform better
than existing branch-and-cut algorithms at solving the S-TSP for the instances we are
interested in. While it is not within the scope of this thesis to perform in depth research
into solving the S-TSP as an OCSP, in this chapter we explain how to formulate the S-
TSP as an OCSP, and we describe the basic algorithm for solving the S-TSP as an OCSP.
Chapter 7 discusses ideas for future research into improving the performance of OCSP-
based algorithms for the S-TSP.

The structure of this chapter is as follows. Section 4.1 details how to formulate
the S-TSP as an OCSP. Section 4.2 reviews the constraint-based A* search strategy [50]

and explains how it can efficiently search through the space of possible subsets of
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vertices in best-first order. Section 4.3 goes over methods of checking the cost constraint
for each subset of vertices produced by constraint-based A*. In particular, the section
shows how to deal with the issue that solving the TSP finds a shortest cycle through a

graph, while we are not interested in returning to the start point.

4.1 The S-TSP Viewed as an Optimal Constraint Satisfaction
Problem

An OCSP is a special type of CSP. In a CSP we have a set of variables, each of
which has a finite domain, and a set of constraints that maps each assignment to the
variables to true or false. In an OCSP we also have a set of variables with finite domains
and a set of constraints over these variables [50]. In addition, however, we have a utility
function that maps all assignments of a special subset of the variables, called the decision
variables, to a real number. A solution to an OCSP is an assignment to the decision
variables that maximizes utility and for which there exists some assignment to the non-
decision variables such that the constraints are satisfied.

It is straight-forward to formulate the S-TSP as an OCSP. For each vertex v; in
the graph, other than the start vertex vy, we create a corresponding variable X; in the
OCSP. These vertex variables have a domain of {0,1}. An assignment of x; = 1
corresponds to vertex v; being included in the sub-graph that the least-cost Hamiltonian
cycle is calculated over. Conversely, an assignment of x; = 0 corresponds to vertex v;
being excluded from the sub-graph. Since the utility function is defined for each vertex
in the graph, every variable in the OCSP is a decision variable. The utility function for a
single decision variable (called an attribute utility function) maps x; = 1 to u(v;) and x; = 0
to 0. The utility function for any assignment to a set of decision variables is the sum of
the attribute utilities of the variables in the set. In order to check the cost constraint,
given an assignment to the variables, we take the variables assigned 1, find the
corresponding vertices in the graph, and check if the least-cost Hamiltonian cycle through
the sub-graph consisting of these vertices and vertex v has a cost less than or equal to L.
If the least-cost Hamiltonian cycle has a cost that is less than or equal to L, the constraint
is satisfied; otherwise, it is violated. Thus a solution to the OCSP will identify the sub-

graph that the solution to the S-TSP is calculated over. Figure 4.1 demonstrates how the
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simple S-TSP instance from Figure 3.7 is formulated as an OCSP. Recall from Chapter
3, however, that we will not actually solve the S-TSP on the graph in Figure 4.1a, but
first convert the graph to a directed graph. We describe this procedure in Section 4.3.
The function TSP(x;=1) in the figure returns the cost of a solution to the TSP (the least-
cost Hamiltonian cycle) for the sub-graph of this directed graph that contains the vertices

corresponding to the variables that are assigned 1.

B B * Decision Variables: x4, X5, X3
Utility=0.5 Utility=0.8

* Domain for all variables: {0,1}

« Attribute Utility Functions:
91(x,=0)=0, g4(x,=1)=0.2
92(X2=0)=0, g5(x,=1)=0.5
93(3=0)=0, g3(x3=1)=0.8

+ Constraint: TSP(x;= 1) <L

Utility=0.2 * Highlighted Sub-graph
X1=1, X,=0, X3=1

a) b)

Figure 4.1 OCSP Formulation of an S-TSP Instance

There are a number of reasons to formulate the S-TSP as an OCSP. First, an
OCSP is a novel way of formulating an S-TSP, which has not been explored in the
literature. Powerful methods for solving OCSP’s have recently emerged; therefore, it is
worth exploring how well OCSP algorithms perform on our instances of the S-TSP. It
may turn out that for the types of graphs we are interested in, OCSP solutions perform
better than branch-and-cut methods. In addition, past work has unified branch-and-bound
methods with OCSP solution methods [31]; therefore, it may be possible to unify OCSP
methods with branch-and-cut methods for S-TSP’s.

Another advantage of using OCSP solution methods is that OCSP’s are very
general. We can incorporate additional constraints over the variables without changing
the underlying solution algorithm. For instance, if we want to add the constraint that
certain vertices have to be included in the solution, we can do so without making any
change to the way in which the algorithm enumerates assignments to the variables to test

the consistency of in best-first order (Section 4.2 explains this best-first enumeration
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method). We also would not have to change any of the improvements to our algorithm
that Chapter 7 proposes that allow the best-first enumeration method to skip over
assignments that we know must be inconsistent. We would only have to change the way
we check the feasibility of each candidate assignment against the constraints. Finally, the
algorithm can handle any utility function which is mutually preferential independent (this
term is explained in the Section 4.2). Thus if for some reason we needed to calculate the
utility of a set of vertices by taking the product of the individual vertex utilities instead of
the sum, we could.

The main algorithm we use for solving the S-TSP as an OCSP is called constraint-
based A* [50]. Constraint-based A* is an efficient method based on A* search for
searching the space of variable assignments in best-first order. For each assignment, the
algorithm checks the constraint by computing the solution to the TSP over the sub-graph
corresponding to the assignment (line 8 in Figure 4.2a). Because the algorithm considers
all assignments from the highest possible utility on down and returns the first one that
satisfies the constraints, the algorithm is guaranteed to return an optimal solution if one
exists (the algorithm is complete). In addition, the algorithm will not return an
assignment unless it satisfies the constraint; hence, if the algorithm returns an assignment
the assignment must satisfy the constraint and must be an optimal solution (the algorithm
is sound). The next section describes constraint-based A*. Section 2.4 explains the

details of how the algorithm checks the constraint.

4.2 Constraint-based A*

Figure 4.2 provides pseudo-code for constraint-based A*’. We explain this

pseudo-code throughout this section.

? This pseudo-code and the pseudo-code in Figure 4.4 are a simplified version of the pseudo-code provided
in the original paper [52]. We have achieved this simplification by specializing the code for solving the S-
TSP, which is why we call the top-level function Constraint-based A* S-TSP().

