
Continuous Observation Planning

for Autonomous Exploration

by

Bradley R. Hasegawa

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August 17, 2004

Copyright 2004 Bradley R. Hasegawa. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author___
Department of Electrical Engineering and Computer Science

August 17, 2004

Certified by___

John J. Leonard
Thesis Supervisor

Certified by___

Brian C. Williams
Thesis Supervisor

Accepted by__

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

 2

 3

Continuous Observation Planning for Autonomous Exploration
by

Bradley R. Hasegawa

Submitted to the
Department of Electrical Engineering and Computer Science

August 17, 2004

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Many applications of autonomous robots depend on the robot being able to navigate in
real world environments. In order to navigate or path plan, the robot often needs to
consult a map of its surroundings. A truly autonomous robot must, therefore, be able to
drive about its environment and use its sensors to build a map before performing any
tasks that require this map. Algorithms that control a robot’s motion for the purpose of
building a map of an environment are called autonomous exploration algorithms.
Because resources such as time and energy are highly constrained in many mobile robot
missions, a key requirement of autonomous exploration algorithms is that they cause the
robot to explore efficiently. Planning paths to candidate observation points that will lead
to efficient exploration is challenging, however, because the set of candidates, and,
therefore, the robot’s plan, change frequently as the robot adds information to the map.
The main claim of this thesis is that, in situations in which the robot discerns the large
scale structure of the environment early on during its exploration, the robot can produce
paths that cause it to explore efficiently by planning observations to make over a finite
horizon. Planning over a finite horizon entails finding a path that visits candidates with
the maximum possible total utility, subject to the constraint that the path cost is less than
a given threshold value. Finding such a path corresponds to solving the Selective
Traveling Salesman Problem (S-TSP) over the set of candidates. In this thesis, we
evaluate our claim by implementing full horizon, finite horizon, and greedy approaches to
planning observations, and comparing the efficiency of these approaches in both real and
simulated environments. In addition, we develop a new approach for solving the S-TSP
by framing it as an Optimal Constraint Satisfaction Problem (OCSP).

Thesis Supervisor: John J. Leonard
Title: Associate Professor of Ocean Engineering
Thesis Supervisor: Brian C. Williams

Title: Associate Professor of Aeronautics and Astronautics

 4

 5

Table of Contents

1 Introduction... 11
1.1 SLAM and Autonomous Exploration.. 13
1.2 Approaches to Observation Planning .. 16
1.3 Problem Statement .. 22
1.4 Technical Challenges .. 23
1.5 Technical Approach .. 23

1.5.1 Overall Architecture of Implementation... 25
1.5.2 The Solver Module ... 27

1.6 Thesis Claims .. 29
1.7 Thesis Layout .. 29

2 Autonomous Exploration ... 30
2.1 The Problem of Exploration .. 30

2.1.1 Definition of the Problem of Autonomous Exploration.. 31
2.1.2 General Features of Exploration Methods .. 32

2.2 SLAM Methods... 34
2.2.1 Scan-Matched Maps ... 35
2.2.2 Occupancy Grid Maps .. 37
2.2.3 Feature-based Maps.. 38

2.3 Exploration for Increasing Map Coverage .. 40
2.3.1 General Features of Methods of Exploration for Increasing Map Coverage 42
2.3.2 The Gonzalez-Banos and Latombe Method ... 45
2.3.3 Methods for Occupancy Grid Maps.. 49
2.3.4 The Newman, Bosse, and Leonard Method.. 51

2.4 Exploration for Decreasing Map Uncertainty.. 55
2.4.1 Feature-based Methods... 56

3 The Finite Horizon Approach to Continuous Observation Planning... 59
3.1 Observation Planning .. 59

3.1.1 Definition of Observation Planning.. 61
3.1.2 Goals of Observation Planning Methods .. 62

3.2 Finite Horizon Methods for Observation Planning.. 63
3.2.1 The Greedy Method for Observation Planning... 63
3.2.2 The Full Horizon Method for Observation Planning .. 66
3.2.3 The Finite Horizon Method for Observation Planning ... 72

3.2.3.1 Formal Definition of the Selective Traveling Salesman Problem............................... 76
3.2.3.2 Finite Horizon Continuous Observation Planning .. 77
3.2.3.3 Definition of Finite Horizon Observation Planning Methods 85

3.3 General Analysis of Finite Horizon Observation Planning Methods .. 89
3.3.1 Strengths and Weaknesses of Observation Planning Methods ... 90
3.3.2 Analysis of the Finite Horizon Approach in Exploration to Increase Map Coverage........... 94

3.3.2.1 Mapping Previously Unexplored Areas .. 95
3.3.2.2 Candidate Interactions... 99
3.3.2.3 Frequency of Unrewarded Sacrifices .. 102

 6

4 Optimal Constraint Satisfaction Problem Methods for the S-TSP... 105
4.1 The S-TSP Viewed as an Optimal Constraint Satisfaction Problem 106
4.2 Constraint-based A* .. 108

4.2.1 Full Example of Constraint-Based A* on a S-TSP... 115
4.3 Constraint Checking .. 118

5 Autonomous Exploration Using Fixed Horizon Observation Planning 123
5.1 Overall Architecture of Implementation.. 124
5.2 Candidate Graph Extraction .. 128

5.2.1 Obstacle Extraction... 132
5.3 Executing a Path.. 134
5.4 Example... 136

6 Testing and Evaluation... 148
6.1 Overview of Experiments.. 149
6.2 Metrics for Evaluating the Quality of Exploration .. 150
6.3 Methods... 155
6.4 Results and Analysis ... 158

6.4.1 Overall Analysis of Experiments.. 161
6.4.2 Real Buildings 34 and 36 Trials ... 186
6.4.3 15by15Room Trials .. 191
6.4.4 25by45Room Trials .. 195
6.4.5 NE43Floor8 Trials .. 199
6.4.6 Building10Floor1 Trials ... 200

6.5 RandomRocks Trials ... 200
6.6 Summary ... 201

7 Future Work.. 203
7.1 Further Testing .. 203
7.2 Improved Methods for Solving the S-TSP as an OCSP .. 204

7.2.1 Utilizing Bounds... 205
7.2.2 Utilizing Conflict-directed A*.. 206

7.3 Predicting the Outcomes of Observations ... 209

Appendix A: Environments Used for Testing .. 213

Appendix B: Line Extraction Histograms.. 217

References ... 233

 7

List of Figures

Figure 1.1 Example of a Line Feature Map .. 13
Figure 1.2 Candidate Identification and Scoring with Newman, Bosse, and Leonard

Method .. 15
Figure 1.3 Example of Knowing Large Scale Structure Beforehand 21
Figure 1.4 Architecture of Experimental System ... 25
Figure 2.1 Pseudo-code for Exploration using Basic Exploration Path Planning 33
Figure 2.2 Pseudo-code for Exploration using Continuous Exploration Path Planning... 34
Figure 2.3 Matching Sensor Scans.. 36
Figure 2.4 A Simple Occupancy Grid Map .. 37
Figure 2.5 A Line Feature SLAM Map .. 39
Figure 2.6 Candidate Scoring for the Gonzalez-Banos and Latombe Method 46
Figure 2.7 Candidate Observation Points for a Partial Map ... 52
Figure 2.8 Evaluating Candidate Observation Points ... 54
Figure 3.1 Possible Greedy Functions .. 65
Figure 3.2 The Inefficiency of Greedy Paths.. 66
Figure 3.3 When the Full Horizon Path Performs Worse than Greedy. 69
Figure 3.4 When a Change in the Set of Candidates Helps the Full Horizon Method 70
Figure 3.5 Finite Horizon Paths for L=5 and L=11 .. 73
Figure 3.6 Receding Horizon (a) versus Fixed Horizon (b) ... 81
Figure 3.7 Extracting a Graph for the S-TSP.. 86
Figure 3.8 Pseudo-code for the Finite Horizon Observation Planning Method 87
Figure 3.9 Pseudo-code for Receding and Fixed Horizon Approaches to Exploration.... 89
Figure 3.10 Getting Interrupted after Making a Sacrifice... 93
Figure 3.11 Exploration Without Changing the Set of Candidates 97
Figure 3.12 Candidate Interactions ... 100
Figure 3.13 Going to Explored Regions over Unexplored Regions 101
Figure 4.1 OCSP Formulation of an S-TSP Instance ... 107
Figure 4.2 Pseudo-code for Constraint-based A*... 109
Figure 4.3 Partial Search Tree for Constraint-based A*... 112
Figure 4.4 Search Node Expansion Functions.. 113
Figure 4.5 Node Expansion in Constraint-based A* .. 115
Figure 4.6 Solving an S-TSP with Constraint-based A* .. 117
Figure 4.7 Converting an Undirected Graph into a Directed Graph............................... 119
Figure 4.8 Converting a Directed Graph into an Undirected Graph............................... 121
Figure 4.9 Graph Transformations for S-TSP Example ... 121
Figure 5.1 Architecture of Experimental System ... 124
Figure 5.2 Pseudo-code for SLAM Process and Exploration Method Process 125
Figure 5.3 Candidate Graph Extraction Pseudo-code... 131
Figure 5.4 Methods of Extracting Obstacles from a Line Map 133
Figure 5.5 Maps from the First Moment (a) and Second Moment (b) 137
Figure 5.6 Candidate Identification and Scoring for the First Moment.......................... 138
Figure 5.7 Obstacles (a) and the Visibility Graph (b) for the First Moment 139
Figure 5.8 Extracting the Candidate Graph from D* Instances...................................... 140
Figure 5.9 Exploration Path for First Moment.. 142

 8

Figure 5.10 Candidate Identification and Scoring for the Second Moment 143
Figure 5.11 Visibility Graph for the Second Moment .. 143
Figure 5.12 Searching the Visibility Graph Incrementally... 145
Figure 5.13 Candidate Graph for the Second Moment ... 146
Figure 5.14 Final Exploration Path for the Second Moment .. 147
Figure 6.1 Explored Region for the Final Map of the First Greedy Trial in NE43Floor8

... 152
Figure 6.2 Candidates Disappearing and Appearing Because of Line Movement 164
Figure 6.3 Beginning of the Second NE43Floor8 15m Receding Horizon Trial 166
Figure 6.4 Beginning of the Second NE43Floor8 15m Receding Horizon Trial Continued

... 168
Figure 6.5 Visiting Explored Regions Over Unexplored Regions 170
Figure 6.6 Screenshots of Exploration of Building10Floor1 with a 15m Fixed Horizon172
Figure 6.7 Final Maps of Short Horizon and Greedy Trials in Building10Floor1 and

NE43Floor8... 174
Figure 6.8 Candidates in a New Room While Exploring NE43Floor8 175
Figure 6.9 Initial Exploration Paths through the StructuredRocks Environment 179
Figure 6.10 First Third of Building10Floor1 30m Receding Horizon Trial................... 180
Figure 6.11 Second Third of Building10Floor1 30m Receding Horizon Trial 181
Figure 6.12 Final Third of Building10Floor1 30m Receding Horizon Trial.................. 183
Figure 6.13 Final Maps for the Building10Floor1 Greedy and 30m Receding Horizon

Trials ... 184
Figure 6.14 Final Maps for the Building10Floor1 15m and 30m Receding Horizon Trials

... 185
Figure 6.15 Final Maps for Real Buildings 34 and 36 Trials ... 188
Figure 6.16 Why the Greedy Trial Got to the Elevator Lobby....................................... 190
Figure 6.17 Middle of the 30m Receding Horizon Trial .. 191
Figure 6.18 Final Maps of Trials in 15by15Room ... 193
Figure 6.19 Part of the 15m Fixed Horizon Trial ... 196
Figure 6.20 Moments in the 25by45Room Full Horizon Trial....................................... 198
Figure 6.21 Difficulties Exploring around Squares in RandomRocks 8m Fixed Horizon

Trial... 201

 9

List of Tables

Table 3.1 Least-Cost Paths Between Candidates with Path Cost ≤ 11m.......................... 74
Table 6.1 Performance of Observation Planning Methods in NE43Floor8.................... 159
Table 6.2 Performance of Observation Planning Methods in Building10Floor1 159
Table 6.3 Performance of Observation Planning Methods in 15by15Room.................. 160
Table 6.4 Performance of Observation Planning Methods in 25by45Room.................. 160
Table 6.5 Performance of Observation Planning Methods in RandomRocks 160
Table 6.6 Performance of Observation Planning Methods in Real Buildings 34 and 36161
Table 6.7 Results of Visiting Every Candidate in 15by15Room.................................... 194

 10

Acknowledgements

 First and foremost, I would like to thank my advisors, Professor Brian Williams
and Professor John Leonard for believing in me and for giving me the opportunity to be a
part of their groups. I am especially grateful for all of the time and effort both of my
advisors have put into helping me and thinking through problems with me. In my mind,
Professor Williams and Professor Leonard have gone above and beyond the call of duty
in order to advise me, and I have learned more from my interactions with them than from
anything else over this past year.
 I am also very grateful to Paul Robertson, Seung Chung, Lars Blackmore, Paul
Elliott, John Stedl, Ed Olson, and Jonathan Kennel for their extremely helpful feedback
and thoughts on this thesis. In addition, I would like to thank Margaret Yoon, the former
administrative assistant to Professor Williams’ group, for all of her help in getting this
research completed.
 I have also received invaluable support and knowledge from I-hsiang Shu,
Andrew Patrikalakis, Stanislav Funiak, Oliver Martin, Matt Walter, Mike Bosse, Sung
Joon Kim, Raj Krishnan, Tazeen Mahtab, Martin Sachenbacher, Thomas Leaute, Bobby
Effinger, Greg Sullivan, Aisha Walcott, Jillian Redfern, Andreas Hoffman, Steve Block,
Tsoline Mikaelian, Judy Chen, Hui Li, Mike Benjamin, and all of the other members of
Professor Williams and Professor Leonard’s research groups. I feel very fortunate to
have had not one but two amazing groups of people to work with.
 I could not have made it through the year without my friends and family. In
particular, I would like to thank T. D. Luckett and Michael Ogrydziak for putting up with
me when most other people probably would not have.
 Finally, I owe very special thanks to my parents for all of their sacrifices, for all
of the opportunities that they have given me, for their support and advice, and for always
being there for me. I am incredibly lucky to have gotten the parents that I have.
 This research was supported by the NASA Ames Cross Enterprise Technology
Development Program (CETDP), contract NAG2-1466ONR, and by the Office of Naval
Research, awards N00014-03-1-0879 and N00014-02-C-0210.

 11

1 Introduction

 There are a vast number of potential applications for autonomous robots that can

move about and act on the physical world. Some of the most important uses of these

robots are situations in which it is too dangerous, costly, or technologically difficult to

send humans to perform a task. These situations are challenging because they require the

robot to operate in the noisy and unpredictable real world, as opposed to carefully

controlled factory floors. Recent advances, however, have put robots for many of these

applications within reach. Specifically, researchers have worked on rovers for exploring

Mars [25], autonomous underwater vehicles (AUVs) for detecting ocean mines [46] and

conducting oceanographic surveys [3], unmanned air vehicles (UAVs) for surveillance

[27], and urban robots for performing building search and rescue [11] or assisting the

growing elderly population [39].

 A fundamental problem for all autonomous mobile robots is being able to

navigate and reason about the surrounding environment. In many cases, the only way for

a robot to solve this problem is to consult an internal model (map) of its environment.

For example, a very simple navigation task for an AUV could be to travel forward 50

meters, make a 90 degree turn, and then travel straight for 25 more meters. The AUV

could try to traverse paths like this one using dead-reckoning, yet eventually it would find

itself unacceptably far off course. The problem is that in all methods of dead-reckoning,

including inertial guidance systems and odometry for wheeled robots, the navigation

error accumulates over time. Furthermore, in space, underwater, and indoors, GPS is not

available to help a robot to navigate. Therefore, the robot must use its sensors to

recognize landmarks and localize itself within a map of the environment, in order to

bound its navigation error. More sophisticated spatial reasoning, such as planning a path

between two points that avoids obstacles, also requires a mobile robot to have a map of

the surroundings.

The main problem with a robot relying on maps is that, for many environments,

such maps do not exist. Fortunately, researchers have developed algorithms that allow a

robot to use its sensors to build a map of its environment and at the same time localize

 12

itself within this map. In other words, these algorithms allow a robot to perform

simultaneous localization and mapping (SLAM) [12] [34] [32]. SLAM algorithms

passively process sensor and dead-reckoning data in order to build the best map possible

of the part of the environment that the robot has seen. However, these algorithms do not

actively move the robot in order to add information to the map. Often, a robot cannot

construct an adequate map as it performs its mission; therefore, it must drive about its

environment and build a map before it performs actions requiring this map. Algorithms

for actively controlling a robot’s actions for the purpose of adding information to the

robot’s map are called autonomous exploration algorithms.

Unfortunately, resources such as time or energy are highly constrained in many

autonomous robotics missions [4]. For a robot to spend a lot of time or energy driving

around and building a map before it even begins performing its intended mission is

highly undesirable. As a result, a key requirement for methods of autonomous

exploration is that they cause the robot to build the best map possible, while using

resources as efficiently as possible. The larger the environment is, the bigger the

potential exists for a robot to waste significant resources mapping that environment, and

hence the more important it is for the robot’s exploration strategy to be efficient.

Although a number of methods of autonomous exploration have been developed,

little work has been done on optimizing the efficiency of these methods. Therefore, this

thesis develops and evaluates general methods of planning observations during

exploration in order to improve efficiency. A major contribution of this thesis is the

development of a family of methods for planning observations over a finite horizon

called finite horizon methods. In order to facilitate evaluation, we implemented and

tested a variety of observation planning methods on a real and simulated robot.

In the next section we explain in more detail how SLAM algorithms and

autonomous exploration algorithms work. Then, building on this explanation, we explain

what it means to plan observations for autonomous exploration. We then provide a

precise problem statement for the thesis, and explain the technical challenges that this

problem statement presents. We next outline the architecture of the autonomous

exploration system that we implemented and tested. Finally, we enumerate the claims of

this thesis.

 13

1.1 SLAM and Autonomous Exploration
 SLAM algorithms take data from a robot’s sensors and dead-reckoning system,

and produce a map of the environment and an estimate of the robot’s position within this

map. These algorithms usually use state estimation techniques to keep track of the

robot’s estimate of the position of objects in the environment, as well as its uncertainty in

these positions. There are a number of different map representations that SLAM

algorithms use, including occupancy grid maps [13], scan-matched maps [18] [49] [21],

and feature maps [44]. The autonomous exploration implementation that we test in this

thesis uses line feature maps. Line feature-based SLAM only adds objects to its map that

can be reasonably represented as a line. Selectively adding objects to the map avoids the

computational burden of estimating the position of every point that the robot’s sensors

have ever seen. Figure 1.1 shows a typical line feature map. The thin line winding

through the map is the robot’s estimated path through the environment.

Figure 1.1 Example of a Line Feature Map

 14

 Because SLAM algorithms keep track of both the estimated positions of objects in

the environment and the uncertainty in these position estimates, there are two categories

of approaches to autonomous exploration. Exploration algorithms in the first category

aim to decrease the map’s uncertainty about the positions of objects, by having the robot

re-observe these objects. Exploration algorithms in the second category aim to increase

the map’s coverage by having the robot observe areas it has never seen before. Less

work has been done on improving the efficiency of exploration algorithms in the second

category; therefore, this thesis focuses on exploration for increasing map coverage.

 Most methods of exploration for increasing map coverage guide a robot’s motion

by placing candidate observation points on the border that separates regions of the

environment that the robot has and has not sensed. These exploration methods also

assign each candidate a utility that estimates how much new area the robot should see by

visiting that candidate. We call approaches to placing candidates and assigning utilities

to them candidate identification and scoring methods. In order to explore its

environment, a robot plans a path to visit some subset of these candidate observation

points. As the robot traverses this path, it continuously recalculates where to place the

candidates and what utility to assign to them, in order to reflect updates to the map.

 These methods of exploration for increasing map coverage, therefore, consist of

two components: candidate identification and scoring, and planning a path to visit a

subset of the candidates. We call planning a path to visit a subset of the candidates

observation planning. If the robot constantly recalculates this path, in order to keep up to

date with the changes to the continuously recalculated set of candidates, then we say that

the robot is performing continuous observation planning. A number of different

approaches to candidate identification and scoring exist, largely in order to handle

different map representations [18] [53] [37]. However, given that most of these

candidate identification and scoring methods try to place candidates on the border

between explored and unexplored areas and assign a utility to each candidate estimating

the amount of information the robot will gain by visiting the candidate, it is possible that

one approach to observation planning will work well for all methods of candidate

identification and scoring. This thesis looks for such an approach to observation

planning.

 15

In order to evaluate how various approaches to observation planning improve the

efficiency of exploration, we implemented and tested these approaches for one particular

candidate identification and scoring method. Specifically, we used the Newman, Bosse,

and Leonard candidate identification and scoring method, because it is the only method

that can handle line feature maps. This candidate identification and scoring method

places candidates at either end of a line feature, in order to encourage the robot to

discover the full extent of the line. The method then estimates how much new area a

robot will see from each candidate, by measuring the density of features around the

candidate and seeing how closely the robot has passed by the candidate in the past. If

there are many line features in the map around the candidate, then the robot must have

seen the area around that candidate before. In addition, if the robot’s path ever passed

within sensor range of the area around the candidate, then it is also likely that the robot

has seen that area before. The Newman, Bosse, and Leonard method summarize these

measures of how much unexplored area a robot will see from a candidate into a utility

and assigns this utility to the candidate. Figure 1.2 illustrates how the method places and

scores candidates for a partially completed map. The triangle in the figure represents the

robot’s estimated position and heading. The line coming out of the back of the robot is

the robot’s estimated path through the environment. The circles represent candidates, and

each candidate is labeled with its utility. The straight lines in the figure are the line

features of the map.

0.3

0.4

0.4

0.2 0.5 0.7

0.7

0.80.0 0.0 0.0 0.0 0.4

0.9

Three line features nearby, robot has
been within sensor range = low utility

One line feature nearby,
robot has not been within
sensor range = high utility

Figure 1.2 Candidate Identification and Scoring with Newman, Bosse, and Leonard Method

 16

1.2 Approaches to Observation Planning
 In order to evaluate how efficiently approaches to observation planning cause a

robot to explore its environment, we must have some measure of the efficiency of the

path that the robot executes during exploration. For now, we can measure the efficiency

of a robot’s exploration by taking the sum of the utilities of the candidates that the robot

visits before the robot’s path exceeds a given maximum cost. The cost of a path may be

the length of a path, the amount of time that it takes the robot to traverse the path, the

amount of energy that the robot expends along the path, and so on. Because the utility of

a candidate estimates how much new area the robot will see from that candidate, this

measure quantifies the tradeoff between the desire to maximize the amount of new area

that the robot maps, with the desire to minimize the cost of the robot’s path.

 Currently, all methods of exploring in order to increase map coverage take the

greedy approach to observation planning. The greedy approach selects one candidate for

the robot to visit, and outputs the least cost path to this candidate. The candidate that the

greedy approach selects is the candidate that minimizes some function f(ci), where ci is a

candidate1. One possible function is to return the cost of the least cost path to ci, in which

case the greedy approach selects the candidate that the robot has the lowest least cost path

to. Another possible function is to return the negative of the utility of ci, in which case

the greedy approach selects the candidate that has the highest utility. Some

implementations combine the previous two functions by using a function that increases as

the least cost path to ci increases and decreases as the utility of ci increases.

 The problem with the greedy approach is that it only plans paths to be locally

efficient. A series of locally efficient paths, however, is not guaranteed to be globally

efficient. An obvious alternative to the greedy method, then, is to plan a globally optimal

path. A globally optimal path is a path that takes the robot to every candidate in the map

1 In the way it is described here, the greedy approach would more appropriately be named the myopic
approach. Myopic decision making methods produce a one-step plan in which the agent takes the action
that would be optimal if the agent’s life were to end immediately afterwards. Greedy methods use the same
criteria to choose actions to take as myopic methods, but greedy methods produce multiple step plans.
Note, however, that a robot performing continuous observation planning with a myopic method would
execute the exact same path as a robot performing continuous observation planning with a greedy method.
In this thesis, therefore, we do not distinguish between these two methods. Instead, we use the term
“greedy method” to refer both to methods that produce paths to only one candidate and to methods that
produce paths to every candidate in the map greedily.

 17

such that no other path taking the robot to every candidate has a lower total path cost.

We call the observation planning method that outputs a globally optimal path for the set

of candidates the full horizon method. We refer to paths planned by the full horizon

approach as full horizon paths. Finding a globally optimal path for a given set of

candidates maps to solving the Traveling Salesman Problem (TSP) over the set of

candidates.2

 If the robot is able to execute a full horizon path to completion without the set of

candidates changing at all, then the full horizon approach to observation planning is

guaranteed to cause the robot to explore its environment at least as efficiently as any

other observation planning method (as long as the maximum path cost, over which we

measure efficiency, is not less than the cost of the full horizon path). Unfortunately, the

set of candidates almost always changes as the robot explores its environment.

Candidates appear, disappear, move, and change utility as the robot finds out more about

the environment, largely because most exploration methods place candidates on the

border between the explored and unexplored parts of the map. As the robot increases the

coverage of its map, this border moves outward, along with all of the candidates on the

border. A robot performing continuous observation planning with the full horizon

approach will recalculate the full horizon path to adjust for the set of candidates

changing. However, if the robot does not get to execute its full horizon paths to

completion, then there is no guarantee that the parts of the full horizon paths that it does

execute will be efficient at all.

 In order to develop methods of planning efficient exploration paths when the set

of candidates changes, we need to characterize the way in which the set of candidates

changes. Unfortunately, there are currently no methods of predicting precisely how or

when the set of candidates will change during exploration. However, we do know that

the farther the robot travels, the more likely that the robot is to map previously unseen

areas, and the more likely it is that the set of candidates will change. We, therefore, can

model the times that the candidates change as an arrival-type stochastic process. Recall

2 Burgard et al [10] first pointed out that planning a globally optimal path to explore an environment maps
to solving the Traveling Salesman Problem. As far as we know, however, no one has ever implemented or
evaluated a method of exploration for increasing map coverage that plans its paths by solving the TSP. The
implementation and evaluation of the TSP approach for a particular candidate identification and scoring
method is therefore one of the contributions of this thesis.

 18

that we can think of a stochastic process X[t] as a sequence of random variables, such

that for any value of t = ti, X[ti] is a random variable. In an arrival-type stochastic

process, each random variable X[ti] has two possible values: X[ti] = 1 (an arrival) or X[ti]

= 0 (no arrival). For our purposes, the variable t corresponds to the distance that the

robot has traveled, and an arrival corresponds to an instant when the set of candidates

changes. We do not attempt to model how the set of candidates changes when it changes,

since how the set of candidates changes depends strongly on the particular candidate

identification and scoring method.

 We can, therefore, think of an exploration mission as a series of intervals over

which the candidates do not change. Each interval is separated from the interval before

and after it by instants when the candidates change in an unpredictable way. With this

model of how the candidates change, the best that an observation planning method can do

is to plan paths that are optimally efficient over some distance in which the candidates are

not likely to change. This distance could be any distance shorter than the longest interval

over which the candidates do not change. A logical choice is the expected value of the

distance between arrivals. To be precise, then, we would like the robot to plan a path that

is not longer than a given distance (the horizon length) and that visits a subset of the

candidates with the maximum possible total utility. We refer to this method of

observation planning as the finite horizon method. Finding such a path corresponds to

solving the Selective Traveling Salesman Problem (S-TSP) over the set of candidates.

The development and characterization of the finite horizon approach to observation

planning is one of the main contributions of this thesis.

 There are two reasonable choices for how to perform continuous observation

planning using the finite horizon approach. First, every time we recalculate the finite

horizon path, we can plan over the same horizon length, L. We call this method the

receding horizon method. Alternatively, each time the robot recalculates the finite

horizon path, the robot can subtract from the horizon length, L, the distance it has

traveled since the initial path computation and recalculate the path over this adjusted

horizon. When L minus the distance traveled falls to zero, the robot resets its distance

traveled to zero and starts planning a path over a distance of L again. We refer to this

method of re-computation as the fixed horizon method.

 19

Neither finite horizon continuous observation planning method is clearly better

than the other. A robot using the fixed horizon method is more likely to execute the paths

it plans to completion without the set of candidates changing than a robot using the

receding horizon method, for the length of the robot’s plan constantly grows longer in the

receding horizon method. Only when the robot executes its plan to completion without

the set of candidates changing, can we guarantee that the robot will execute an efficient

path. In other words, it is possible that the robot will constantly put off doing something

efficient when using the receding horizon method, and eventually the set of candidates

will change so that the robot will never get to do the efficient thing it was planning on.

Even though this situation is possible, however, it may not be likely. In addition, the

fixed horizon method has the weakness that the planning horizon constantly gets shorter

and shorter, thereby making the method more and more like the greedy approach. The

receding horizon method, therefore, has the potential to plan much more efficient paths

than the fixed horizon method.

Note that neither finite horizon continuous observation planning method plans

globally optimal paths. Therefore, it is possible for a robot using the greedy or full

horizon approach to execute a path that is more efficient than the path that a robot would

execute using the finite horizon approach in the same situation. However, because the

finite horizon approach plans a path that is optimally efficient over the expected distance

that the robot will travel before the candidates change, we expect that the finite horizon

approach will cause the robot to execute the most efficient paths on average. When the

greedy or full horizon approaches cause the robot to explore more efficiently than the

finite horizon approach, they must do so by getting lucky.

One legitimate concern about the finite horizon approach is that the robot might

never be able to visit more than one candidate in its path before the set of candidates

changes. In this case, there should not be any advantage on average to planning a path to

multiple candidates, and the best the robot can do is use the greedy approach. This

concern is legitimate because candidate identification and scoring methods intentionally

place candidates in locations from which the robot is likely to map a lot of new area.

And when the robot maps a new area, the set of candidates usually changes. Therefore, if

 20

the candidate identification and scoring method is doing its job well, the set of candidates

should change every time the robot makes an observation at a candidate.

This concern may mean that the finite horizon approach is not always the best

approach to observation planning, yet there are situations in which the finite horizon

approach should still perform better than the greedy (or full horizon) approach. For

example, the first candidate in the robot’s finite horizon path may usually not be much

worse in terms of the greedy function than the greedily best candidate, depending on the

environment. In these cases, if the robot is able to execute even just one of its finite

horizon paths to completion, the robot still might explore its environment more

efficiently using the finite horizon approach than the greedy approach. In addition, we

can shorten the length of the robot’s horizon in order to make it more likely that the robot

will be able to execute its finite horizon paths completely.

More importantly, there are situations in which the changes to the set of

candidates do not usually affect the overall efficiency of a finite horizon path. These

situations occur when the robot starts off knowing the large scale structure of the

environment and is mapping in order to fill in the details. If the robot knows where most

of the large groups of obstacles and interesting areas to map are, then the robot can plan

an efficient large scale path between these interesting areas. When the robot arrives at

these areas, the robot will map new objects and the set of candidates will change, but

these changes will usually only be local. The changes to the set of candidates will,

therefore, not significantly affect the large scale shape and efficiency of the robot’s

planned path.

Figure 1.3 shows a simple example of such a situation. Figure 1.3a shows what

the robot’s environment actually looks like. The environment is a fictional Mars terrain,

and the squares represent rocks. The rocks are grouped into clusters, and the arrangement

of these clusters is what we call the large scale structure of the environment. Figure 1.3b

shows the robot’s initial map. This map captures the overall structure of the

environment, in that we can discern the approximate location of each of the rock clusters.

Figure 1.3c shows a path that the robot might plan using the finite horizon approach with

a long horizon. Note that even though the robot will discover new rocks and new

candidates will appear that will change the robot’s path at each cluster, the overall

 21

structure of the robot’s path will remain the same. Figure 1.3d shows the approximate

path a robot might take to explore this environment using the greedy approach. Note that

the finite horizon path fills in the map in a much shorter distance than the greedy path.

c)

d)

a)

b)

Figure 1.3 Example of Knowing Large Scale Structure Beforehand

There are a number of ways in which the robot could start off knowing the overall

structure of the environment. In some situations, it is easy for us to build large scale

maps of an environment using low resolution sensors. We can then provide the robot

with such a map a priori. For example, overhead satellite images can produce large scale

maps of an environment in the case of Mars exploration. Such large scale maps do not

 22

contain enough detail for the robot to use for navigation or path planning, however;

therefore, the robot must explore in order to flesh out its map.

Another situation in which the robot starts off knowing some of the overall

structure of the environment occurs when the environment is open. An open environment

is an environment in which the density of obstacles is low enough that, from most

positions, the robot can see most of its surroundings, out to the radius of its sensors.

Although the robot will not start off knowing the structure of the entire environment, for

open environments, the robot will know the structure of the environment out to the radius

of its sensors. Then, if the robot plans its finite horizon paths over a horizon that is on the

order of the length of this sensor radius, the robot should end up filling in the details of its

map in parts of the environment for which it knows the basic structure. Therefore, we

expect that changes to the set of candidates will not hurt the efficiency of a robot’s finite

horizon path in open environments.

Ultimately, however, in order to determine for certain in which situations the

finite horizon approach outperforms the greedy and full horizon approaches, we must

implement and test these approaches with particular candidate identification and scoring

methods. Therefore, this thesis presents the results of testing these approaches with the

Newman, Bosse, and Leonard candidate identification and scoring method.

1.3 Problem Statement
 The problem that this thesis addresses is to design the greedy, full horizon, and

finite horizon approaches to continuous observation planning, and evaluate their

efficiency with respect to how efficiently a robot explores typical environments. Our

approach to solving this problem breaks down into solving three sub-problems. First, we

must implement these three approaches to continuous observation planning for a

particular candidate identification and scoring method, and test this implementation on

typical environments. In order to solve this sub-problem, we also must address the

problem of finding an efficient method of solving the S-TSP. Second, we must identify

objective and quantifiable measures of how well a robot explores its environment. And

third, we must evaluate how well these three approaches work for all candidate

 23

identification and scoring methods, based on the features that candidate identification and

scoring methods have in common.

1.4 Technical Challenges
 Solving the sub-problem of implementing and testing the three approaches to

continuous observation planning for a particular candidate identification and scoring

method presents a number of technical challenges. First, performing continuous

observation planning using the full horizon or finite horizon approach is computationally

difficult. In order to perform continuous observation planning with either of these two

approaches, the robot must constantly find the least cost path that avoids obstacles

between each pair of candidates, and then solve the TSP or S-TSP over the set of

candidates using these least cost paths. Because the autonomous exploration

implementation must control a robot in real time, the duration of the path planning and

TSP or S-TSP solving stages must be on the order of seconds at most.

 The fact that our implementation uses line feature maps as the map representation

presents another challenge. As far as we know, there are no existing methods of planning

least cost paths that avoid obstacles using a line feature map. Therefore, we must

develop a principled, effective, and efficient method of path planning for line feature

maps. Another challenge in implementing these observation planning methods is that the

S-TSP is an NP-hard problem [30]. Therefore, finding a fast method of solving the

instances of the S-TSP we are likely to encounter has the potential to be very difficult.

 One final challenge that we face is that few if any researchers have attempted to

measure quantitatively how well a robot explores its environment in order to increase the

coverage of its map. Therefore, must develop reasonable and objective methods to

quantify the quality of a robot’s exploration.

1.5 Technical Approach
Recall that, in order to evaluate the performance of the greedy, full horizon, and

finite horizon approaches to observation planning, we implemented these three

approaches for the Newman, Bosse, and Leonard candidate identification and scoring

method described in Section 1.1. We then used the implementation of these observation

 24

planning approaches to control a robot’s exploration of indoor and outdoor environments

in simulation and in the real world. This implementation and the experiments we

performed with it are important contributions of this thesis.

 Specifically, we put together an experimental system that continuously takes as

input, real or simulated sensor data, builds a line feature map from this data, and outputs

commands to a real or simulated robot that causes the robot to explore its environment

using a specific observation planning method. The continuous observation planning

methods we implemented were a greedy method, the full horizon method, the receding

horizon method, and the fixed horizon method. Our implemented greedy method selects

to visit the candidate to which the robot has the lowest least-cost path.

Figure 1.4 shows the architecture of the experimental system. The system is

structured so that the only module that changes when we switch to using a different

observation planning method is the module labeled “solver.” The solver module takes as

input a graph with one vertex for each candidate, one vertex for the robot, and edges with

weights equal to the cost of the least cost path through the robot’s map between the

endpoints of the edge. We refer to such a graph as a candidate graph. The solver module

outputs a sequence of candidates for the robot to visit. The system then turns this

sequence into a path for the robot to execute. We first describe all of the modules except

the solver module. We then explain how we constructed the full horizon and finite

horizon versions of the solver module.

 25

Candidate Identification and Scoring

Solver

Controller

Obstacle
Extraction

Feature-based
SLAM

ordered subset
of candidates

ca
nd

id
at

es
,

ro
bo

t p
os

e

map

map

current robot
pose

Sensors
(Odometry and
Rangefinder)

Motors translational velocity, angular
velocity

real time
data

pa
th

obstacles Visibility
Graph

Constructor

D* Search

visiblity graph

candidate
graph

range finder data

Figure 1.4 Architecture of Experimental System

1.5.1 Overall Architecture of Implementation

 We examine the modules of the architecture depicted in Figure 1.4 from input to

output. The feature-based SLAM module continuously takes data from the robot’s

odometer and rangefinder. The module uses this data to update a line feature map of the

environment and to estimate the robot’s position in the map. Figure 1.1 shows a typical

line feature map. The SLAM module continuously passes the most recently updated map

to the candidate identification and scoring module.

The candidate identification and scoring module uses the Newman, Bosse, and

Leonard method described in Section 1.1 to generate a set of candidate observation points

from a line feature map. These candidates are placed and scored to encourage a robot to

expand its map. The module passes the set of candidates to the part of the system that

performs path planning.

The part of the system that performs path planning finds a least cost path that

avoids obstacles between each pair of candidates, in order to build the candidate graph.

To find these least cost paths, the system builds a visibility graph over the current map

and the set of candidates [51]. The module labeled “visibility graph constructor” in

 26

Figure 1.4 builds the visibility graph from a set of polygonal obstacles and a set of

waypoints. The corners of the obstacles and the waypoints make up the vertices of the

visibility graph. The visibility graph constructor places edges between every pair of

vertices such that the edge does not pass through an obstacle. The cost of the edge is the

straight line distance between the two vertices. Therefore, any path formed by traversing

edges in the graph from one vertex to another is guaranteed to avoid all known obstacles.

In order to find the least cost path through the map between any two candidates, the

system searches the visibility graph for the least cost path between the corresponding

vertices.

The system uses the information in the line feature map to provide the visibility

graph constructor with a set of polygonal obstacles. This thesis presents a novel method

of extracting a set of obstacles from a line feature map, by turning each line in the map

into a rectangle. The module labeled “obstacle extraction” in Figure 1.4 builds these

rectangles from the feature map.

The system uses the D* algorithm [45] in order to search the visibility graph for

the least cost path between every pair of candidates. As we note in Section 1.4, it is

computationally challenging to constantly search the visibility graph for these shortest

paths. D* addresses this challenge by incrementally searching graphs. In other words,

D* saves its last calculated set of least cost paths. Then, when the map updates and a

new visibility graph is built, the system tells D* what edges changed in the visibility

graph. D* then searches the visibility graph only as much as it needs, in order to update

its saved set of least cost paths, to accurately reflect the least cost paths through the

visibility graph between every pair of candidates. The module labeled “D* search” in

Figure 1.4 performs this incremental search and creates the candidate graph. The D*

search module then passes the candidate graph to the solver module. The solver module

returns an ordered subset of candidates to visit. The D* search module uses its stored set

of least cost paths to fill in the path between these candidates. The D* search module

then passes this path to the module labeled “controller” in Figure 1.4.

The controller module takes a path as input and outputs commands that cause the

robot to follow this path. The controller module also performs low level obstacle

avoidance to make sure the robot does not run into any obstacles that are not in the map.

 27

In order to perform this obstacle avoidance, the controller module continuously reads the

rangefinder sensor data.

1.5.2 The Solver Module

 The solver module takes a candidate graph as input and outputs an ordered subset

of candidates to visit. There are four versions of the solver module: the greedy version,

the full horizon version, the receding horizon version, and the fixed horizon version. The

greedy version simply searches through all of the edges leading out of the vertex

representing the robot for the edge with the lowest weight and returns the candidate at the

other end of this edge. The full horizon version solves the TSP on the candidate graph

and returns the resulting sequence of candidates. The receding horizon version solves the

S-TSP on the candidate graph for the constant horizon length L and returns the resulting

ordered subset of candidates. The fixed horizon version solves the S-TSP on the

candidate graph for a horizon length of L-d, where L is a constant and d is the distance

the robot has traveled since the last horizon, and returns the resulting ordered subset of

candidates.

 We use the Concorde TSP code [54] directly to solve the TSP. Concorde

implements an efficient branch-and-cut algorithm [1] for solving the TSP on undirected

graphs. Instead of using existing algorithms to solve the S-TSP, however, we developed

and implemented a new approach. In order to solve the S-TSP, we formulate the problem

as an Optimal Constraint Satisfaction Problem (OCSP) [50]. An OCSP consists of a set

of variables with finite domains, a set of constraints which map each assignment to the

variables to true or false, and a utility function that maps each assignment to the variables

to a real number. A solution to an OCSP is an assignment to the variables that maximizes

the utility function such that the constraints are satisfied. A major reason that we

developed an approach to solving the S-TSP by formulating it as an OCSP is that this

formulation has not been previously explained. Powerful methods of solving OCSP’s

have recently emerged [50]; therefore, it is worthwhile to see how well these methods

work for the instances of the S-TSP we are interested in.

 In order to formulate the S-TSP as an OCSP, we create one variable for each

candidate. Each variable can take the value of either 1 or 0. The candidate

 28

corresponding to a variable that is assigned to 1 is included in the ordered subset of

candidates that is the solution to the S-TSP, while the candidate corresponding to a

variable assigned to 0 is not included. Each variable also has its own utility function,

which we call an attribute utility function. This function maps a variable assigned to 1 to

the utility of the corresponding candidate and a variable assigned to 0 to zero. The utility

of an assignment to the entire set of variables is equal to the sum of the values of the

attribute utility functions of the individual variables. In order to describe the constraint,

let us consider the sub-graph formed by removing every vertex corresponding to a

candidate whose variable is assigned to 0 (and every edge including such a vertex) from

the candidate graph. The constraint over the OCSP variables is that the solution to the

TSP on this sub-graph must have a length that is less than or equal to the horizon length

L.

 We solve the S-TSP formulated as an OCSP with the constraint-based A*

algorithm [50]. Constraint-based A* is an efficient method based on A* search of

enumerating the possible assignments to the variables from highest to lowest value of the

utility function. Note that in order to maximize the utility function for a partial

assignment to the variables, it is sufficient to assign each of the unassigned variables to a

value that maximizes its attribute utility function. Constraint-based A* takes advantage

of this fact in order to efficiently find the next best full assignment to the variables, and in

order to efficiently calculate an admissible heuristic during the search.

In order to solve the S-TSP, constraint-based A* enumerates full assignments to

the variables one at a time and checks the constraint for each assignment. Our approach

checks the constraint on an assignment by running the Concorde TSP solver on the sub-

graph corresponding to the assignment. The first full assignment that constraint-based

A* finds is consistent must correspond to the subset of candidates in the solution to the S-

TSP, since these assignments are generated in best first order. In order to turn this subset

of candidates into an ordered subset, our approach orders the candidates in the subset in

the same order that the TSP solver outputted.

 29

1.6 Thesis Claims
1. When a robot knows the large scale structure of its environment early on

during exploration for increasing map coverage, the finite horizon approach to

observation planning will cause the robot to explore this environment more efficiently on

average than either the greedy or the full horizon approach.

2. It is possible to solve the S-TSP as an OCSP using the constraint-based A*

algorithm.

1.7 Thesis Layout
 The rest of this thesis is laid out as follows. Chapter 2 characterizes the problem

of autonomous exploration and provides background on map representations, existing

approaches to exploration for decreasing map uncertainty, and existing approaches to

exploration for increasing map coverage. In particular, the chapter describes in detail the

Newman, Bosse, and Leonard candidate identification and scoring method that the

implementation we tested uses. Next, Chapter 3 characterizes the general features of

observation planning and motivates and defines the finite horizon approach. Chapter 3

also speculates about how well the greedy, full horizon, and finite horizon approaches

should perform for all candidate identification and scoring methods in general by looking

at the features that all candidate identification and scoring methods share. Chapter 4

describes in detail our approach to solving the S-TSP as an OCSP with constraint-based

A*. Then, Chapter 5 explains the architecture of the system that we implemented to test

the greedy, full horizon, and finite horizon approaches to observation planning. Chapter

6 presents and analyzes the results of testing the system we implemented in real and

simulated environments. Finally, Chapter 7 discusses ideas for future work in areas

touched upon by this thesis.

 30

2 Autonomous Exploration

 In this chapter we formulate the problem of autonomous exploration and give an

overview of some of the methods for solving the problem that researchers have pursued.

Finally, we describe in detail the method of exploration that the system we tested in our

experiments is based on.

 Specifically, in Section 2.1 we define the problem of exploration and introduce

the two major variations of the problem: exploration for increasing map coverage and

exploration for decreasing map uncertainty. In Section 2.1.2 we describe the general

structure of an exploration algorithm that virtually all algorithms use. In Section 2.2 we

review a number of the common approaches to building maps that exploration algorithms

use, including the feature-based SLAM approach that the exploration algorithm we tested

uses. Then, in Section 2.3, we characterize the problem of exploring in order to increase

map coverage and describe a few important approaches to this type of exploration out of

the many that exist. In Section 2.3.4 we describe the feature-based exploration strategy

that we based the system that we tested on. Finally, in Section 2.4, we characterize

exploration for decreasing map uncertainty and go over a few approaches to this type of

exploration.

2.1 The Problem of Exploration
 Being able to autonomously explore an environment in order to construct a map

of this environment is integral to mobile robotics [10] [37] [22]. Most tasks that a mobile

robot might have to perform, such as taking samples of rocks on Mars, locating ocean

mines, performing urban search and rescue, or simply traveling from one location to

another, require the robot to be able to navigate accurately. Yet in many environments,

including indoors, underwater, or on Mars, GPS is not available to help. In addition, the

odometry error for many robots is unacceptable and accumulates over time. As a result,

the best way for a robot to navigate is often to use its sensors to localize itself within a

 31

map of the surroundings. A map also functions as a model of the environment that the

robot can use for path planning.

 The main issue with relying on maps is that we often do not have an a priori map

of the environment to give to the robot. Fortunately, algorithms now exist [38] [8] that

enable a robot to use its sensors to build a map of its environment and at the same time

localize itself within this map, all in real time. These algorithms are known as

simultaneous localization and mapping (SLAM) algorithms. We discuss approaches to

SLAM in Section 2.2.

 SLAM algorithms, however, only solve part of the problem of building a map of

an environment. A SLAM algorithm passively takes what the robot’s sensors see and

builds the best map possible from this data; it does not direct the robot to sense new areas

of the environment. A robot can attempt to build its map as it moves around performing

its other tasks, yet often this type of haphazard exploration of the robot’s surroundings

leads to an inadequate model of the environment. Therefore, we would like the robot to

be able to drive itself around an environment before it performs its other tasks in order to

build a good map of that environment. We call driving about for the purpose of building

a map autonomous exploration.

2.1.1 Definition of the Problem of Autonomous Exploration

 In order to be clear about what autonomous exploration algorithms do, we define

the problem of autonomous exploration more formally. Given a partially completed map

that is constantly updated to reflect the robot’s sensor readings and the robot’s estimated

position, the problem of autonomous exploration is to have the robot control itself in

order to improve this map. We explain the terms in this definition below.

 By a “partially completed map,” we simply mean a map that does not model

every object in the robot’s environment with one hundred percent accuracy. All map

building algorithms output partially completed maps.

 There are a number of ways that a robot can “control itself” while exploring.

Some sensors allow the robot to control where and when they sense. For example,

scanning sonar sensors can be told to take readings at certain angles and certain times

[14]. Selecting when and where the robot’s sensors take readings can decrease the

 32

computational burden of processing this data on the robot. Yet in many robot setups, the

sensors constantly scan the environment at all possible angles, and therefore the only

thing the robot can control is where the robot drives to. Thus, most of the exploration

algorithms we examine in this chapter only consider how to drive the robot during

exploration.

 Finally, there are two main ways a robot can “improve” its map of the

environment: by decreasing the uncertainty in the map and by increasing the coverage of

the map. A robot’s sensors are inevitably noisy; therefore, SLAM algorithms represent

the locations of objects in their maps with joint probability density functions. In order to

decrease the uncertainty in its SLAM map, a robot must re-observe the objects in the

environment that it has already mapped in such a way as to narrow the joint pdf over the

locations of these objects in the map. The more focused the joint pdf is, the more certain

the robot is about where the objects are located.

Conversely, in order to increase the coverage of its map, a robot must map objects

and regions that it has never seen before. Therefore, these two aspects of improving a

map compete. We examine methods of exploring to decrease map uncertainty and

methods of exploring to increase map coverage in separate sections. Nevertheless, many

exploration algorithms try to find an acceptable balance between these two ways of

improving a map.

 Now that we understand the requirements of the problem of exploration, we can

make some general statements about how algorithms approach this problem.

2.1.2 General Features of Exploration Methods

 As we have already noted, most approaches to autonomous exploration assume

that the robot’s sensors are constantly scanning their full range; therefore, the robot can

only control how it drives around its environment. Most exploration methods deal with

controlling the robot’s driving by breaking down the problem into two sub-problems.

The first sub-problem is to plan a path for the robot to execute that will improve the map,

and the second sub-problem is to send the commands to the hardware to cause the robot

to execute this path. The first sub-problem is where most of the interesting variation

between exploration methods occurs, and we call it the exploration path planning

 33

problem. More precisely, given a partially completed map and the robot’s estimated

position within the map, the exploration path planning problem is to output a path that

the robot can use to effectively control its motion in order improve the map.

 The simplest way for the robot to explore using this approach is to fully solve the

exploration path planning problem and then execute the resulting path completely. Once

the robot has executed the path to completion, it begins the loop over and solves the

exploration path planning problem again. The pseudo-code in Figure 2.1 depicts this

exploration method. The function Mission_Completed() on line 1 of Figure 2.1

returns true if the exploration mission has finished. The mission might be set to last

either until the robot travels a set distance, until a certain amount of time passes, or until

the user sends a command to halt the exploration. The function

Get_Most_Recent_Map(constantly updating map) takes a dynamic map,

which a map building algorithm is constantly updating, and returns a static map that

reflects the most recent state of the dynamic map. Because SLAM algorithms include the

robot as part of the map, the function Get_Current_Robot_Pose(map) can take

this static map and return the location of the robot.

Explore(constantly updating map)
returns nothing

1. while Mission_Completed() is false
2. let map = Get_Most_Recent_Map(constantly
updating map)
3. let robot pose = Get_Current_Robot_Pose(map)
4. let path = Plan_Exploration_Path(map, robot
pose)
5. Execute_Path(path)
6. endwhile

Figure 2.1 Pseudo-code for Exploration using Basic Exploration Path Planning

 The problem with this method of exploration is that the map is very likely to

change as the robot executes the path it has planned. And if the map changes, the path

might become sub-optimal or even impossible to execute. Therefore, another possible

method of exploration is to periodically halt the execution of the path and solve the

 34

exploration path planning problem again. If the path changes, then the robot begins to

execute this new path. Figure 2.2 shows pseudo-code for this method of exploration.

Line 5 is the only line that is different in Figures 2.1 and 2.2. We call this method of

constantly solving the exploration path planning problem continuous exploration path

planning. Sometimes in actual implementations of exploration algorithms, such as the

implementation we used for testing, the exploration path planning code and the path

execution code run in separate threads. In the path planning thread, the exploration path

planning code constantly recalculates the best exploration path and notifies the execution

thread when the path changes. In the execution thread, the path execution code

constantly executes its current path and updates this path when it receives a notification

from the path planning thread.

Explore_Continuous(constantly updating map)
returns nothing

1. while Mission_Completed() is false
2. let map = Get_Most_Recent_Map(constantly
updating map)
3. let robot pose = Get_Current_Robot_Pose(map)
4. let path = Plan_Exploration_Path(map, robot
pose)
5. Execute_Segment_of_Path(path)
6. endwhile

Figure 2.2 Pseudo-code for Exploration using Continuous Exploration Path Planning

 All of the exploration methods that we examine in Sections 2.3 and 2.4 have a

structure similar to what is depicted in either Figure 2.1 or 2.2. Therefore, our

descriptions of these methods will focus on the unique ways they solve the exploration

path planning problem. Before we delve into these specific exploration methods,

however, we review the salient features of the SLAM algorithms that they use.

2.2 SLAM Methods
The map representation used by an exploration algorithm has a major affect on

how the algorithm solves the exploration path planning problem. As a result, in this

section we describe the map representations used by the exploration algorithms that we

 35

present in Sections 2.3 and 2.4. The exploration framework we tested in our experiments

uses the feature-based approach described in Section 2.2.3.

2.2.1 Scan-Matched Maps

 In its basic form, scan matching is one of the most straightforward ways of

building a map [18] [49] [21]. In basic scan matching, as the robot moves, it records full

scans of the environment from a range-finding sensor (such as a laser scanner or scanning

sonar), so that each newly recorded full scan overlaps with the previously recorded full

scan. Figure 2.3a depicts two such consecutive scans for a sensor which scans 180

degrees in front of the robot. The scan-matching approach builds a map directly out of

these scans. The first recorded scan forms the robot’s initial map. When the second scan

is recorded, the robot finds the part of the second scan and the part of the first scan that

match the best. The robot translates and rotates the second scan such that the best

matching parts of the first and second scan overlap. These two scans then form the new

map. Figure 2.3c shows how this process would combine the scan in Figure 2.3a with the

scan in Figure 2.3b. When the third scan is recorded, the robot finds the best overlap

between this third scan and the whole map, since it is possible that the third scan

overlapped with the first scan even more than it overlapped with the second scan. The

robot then translates and rotates this third scan such that the overlapping regions line up,

and these three scans form the new map. This map building process then repeats until the

robot’s mission ends.

 36

Overlap

a) b) c)

Figure 2.3 Matching Sensor Scans

It is important to note that this basic form of scan matching does not directly take

into account noise in sensor scans. As a result, there is no measure of uncertainty in the

map that the robot builds. In addition, once the robot has translated and rotated a new

scan, this scan is stuck in that position. Therefore, the algorithm can never alter its

matches to find the globally best arrangement of scans. More sophisticated versions of

the scan matching approach exist which begin to address these issues [8]. However, the

approach to exploration that Section 2.3.2 describes uses this basic version of scan

matching.

 The strength of scan matching is that the maps contain a lot of detailed

information about the environment while requiring relatively little processing to create.

The maps are detailed in that scan matching does not abstract or simplify what the sensor

sees; scan matching builds a map directly out of the scan points. Scan matching (or at

least the basic version) requires less processing than other SLAM methods because it

does not perform global optimization, as we noted in the preceding paragraph.

 37

2.2.2 Occupancy Grid Maps

 Occupancy grid maps represent the environment as a collection of cells [13]. A

SLAM algorithm assigns each cell in the map the probability that the location in the

environment corresponding to the cell is occupied by an obstacle. There are a number of

different SLAM algorithms for occupancy grid maps [47] [48], however, we do not need

to cover how they work in order to understand the grid-based exploration algorithms we

present in Section 2.3.3. Figure 2.4a shows the occupancy grid map corresponding to the

environment in Figure 2.4b. The darker a cell is in Figure 2.4a, the more likely it is that

the location in the environment that the cell represents is occupied by an obstacle.

Figure 2.4 A Simple Occupancy Grid Map

 Like scan-matched maps, occupancy grid maps provide a lot of detailed

information about the environment they represent. If the cells are small enough,

occupancy grid maps can have the same resolution as scan-matched maps. Unlike scan-

matched maps, however, occupancy grid maps explicitly keep track of the areas that the

 38

robot knows do not contain obstacles, by assigning the corresponding cells a low

probability of being occupied. As we discuss in Section 2.3, keeping track of free space

in this way can be useful in exploration for expanding map coverage.

 The main drawback of occupancy grid maps is that it is very computationally

intensive for SLAM algorithms to estimate the state of so many cells. The number of

grid cells scales with the area (or volume) of the region covered by the map. Such

scaling makes it computationally difficult to map large environments using the

occupancy grid approach. Furthermore, for the purpose of navigation, it may be possible

to get away with modeling the environment in much less detail. This reasoning is the

motivation behind the feature-based approach to SLAM.

2.2.3 Feature-based Maps

 The idea behind feature-based maps is to represent the environment with its

salient landmarks instead of keeping track of every point that the robot’s sensors have

seen, as is done in the occupancy grid or scan matching approaches [44]. Feature-based

SLAM picks out specific features, such as lines, circles, corners, or any other well-

defined shape, from the sensor data. We used line feature SLAM in our experiments.

The state of the world at any given moment is estimated using a vector of the position

and orientation of the robot and each feature that the robot has picked out. In addition,

the map represents the uncertainty in the pose of the robot and these features, by

approximating the joint pdf over the state vector with a covariance matrix. A feature-

based map therefore consists of this state vector and covariance matrix. Given a model of

the sensor uncertainty and the vehicle dynamics, we can update the map using state

estimation techniques (usually an extended Kalman filter). Figure 2.5 shows what a

typical line feature SLAM map looks like. The thin line winding through the figure is the

robot’s estimated path through the environment.

 39

Figure 2.5 A Line Feature SLAM Map

Because they only keep track of salient landmarks, feature-based techniques are

able to handle much larger environments than other approaches to SLAM. The SLAM

code that we used in our experiments [5] has been used to map a complicated indoor

environment that is 2.2 km in length, an order of magnitude larger than any previously

published SLAM result. The code was able to autonomously close large nested loops

within this environment. Feature-based SLAM also performs well with lower precision

sensors, including sonar, which is important for underwater exploration.

 A drawback to feature-based maps, however, is that even if the robot’s sensor

detects an obstacle, this obstacle may not show up in the map. Feature-based SLAM only

records the parts of the scan data that look like features. Paths planned using a feature-

based map are therefore not guaranteed to avoid all obstacles in the real world. In

addition, it is difficult to determine what regions the robot’s sensors have seen from a

feature-based map, if not all of the sensor data appears in the map. This difficulty limits

 40

the ways that we can perform exploration for increasing map coverage with feature-based

maps, as we explain in Section 2.3.4.

2.3 Exploration for Increasing Map Coverage
 In Section 2.1 we said that the goal of exploration for increasing map coverage is

to map parts of the environment that the robot has never seen before. In other words,

instead of improving the position estimates for obstacles that already exist in the map,

exploration for increasing map coverage aims to add entirely new obstacles (and, in the

case of occupancy grid approaches, free space areas) to the map. This goal is very

general, however, and there are many different possible sub-goals that the robot can have

in achieving it.

 The most common sub-goal is that the robot should try to map as much new area

as possible using a path with the least cost possible. Path cost can be measured in terms

of distance traveled, time taken, or energy expended. In many applications of mobile

robotics, including Mars rovers and AUV’s [4] resources such as energy and time are

very limited. Limited energy in particular is an issue with almost all mobile robots, for

mobile robots rely on batteries with a finite supply of energy to perform the tough work

of moving the robot. Therefore, having an exploration method that is efficient with

respect to these resources is highly desirable.

As it has been stated, the robot must try to both maximize the amount of new area

mapped and minimize the cost of the path. It is not obvious what it means to optimize

these two competing quantities simultaneously, however. One approach is to try to

optimize some combined measure of the new area mapped and path cost. The algorithm

that Section 2.3.2 describes uses such a combined measure. Another approach is to have

the robot try to maximize or minimize one quantity given an upper bound constraint on

the other quantity. For instance, we might have the robot try to map the most new area

possible without traveling more than 50 meters. This approach has the advantage that it

does not rely on an arbitrary function to combine the path cost and area mapped into one

quantity. In addition, the duration of many actual exploration missions is set by capping

either the total path cost or the area mapped. For instance, if the robot is exploring an

indoor environment, a number of exploration methods [18] [10] [22] have the robot

 41

explore until it has seen the entire interior of the building. In Mars missions, the robot

often has a set schedule to stay on; therefore, the robot might allot only a specific amount

of time to exploring the environment. In missions like these where one quantity is

limited, it is natural to define efficient exploration as exploration that optimizes the other

quantity.

 There are many other sub-goals that a robot can have when it is exploring, in

order to increase map coverage. One such sub-goal is to explore the environment

thoroughly. The term “thorough” is a difficult term to define, however. The way we

define thorough when evaluating the results of our experiments in Chapter 6 is, after the

robot has finished exploring, to draw a border surrounding the parts of the environment

that the robot visited. We then evaluate how much of the environment inside of this

border does not appear in the robot’s final map. Fewer parts of the environment missing

from the map means a more thorough exploration of the environment. If we can break

down the environment into discrete regions (a room could be a region, for example), we

might alternatively interpret thorough exploration to mean that the robot does not move

on to a new region until it has mapped everything in its current region. Thorough

exploration is important if the robot plans on using the map for path planning, because in

path planning it is better if the robot knows where all the obstacles are along its path

before it executes that path.

 Another possible sub-goal that a robot might have, while exploring to increase

map coverage, is to first build a rough global map that captures the large scale features in

the environment, and then incrementally improve the resolution of the map. This sub-

goal is therefore the opposite of the sub-goal of exploring thoroughly. The idea behind

this sub-goal is that in some cases, it is much more valuable to have a map that

completely covers the robot’s environment, even if the map has very low resolution, than

to have a high resolution map that only covers the robot’s local region. In fact, the

approach to planning observations that this thesis explores performs best when it starts

out with a rough global map of the environment. If we do not know beforehand when the

robot’s mission will end, or if we want to have a global map to use as quickly as possible,

then it makes sense to build a quick low resolution map and then slowly increase the

resolution, even if doing so is not the most efficient way of getting to the final version of

 42

the map. Note that in order to build a rough global map of the environment, we must

have some way of limiting how far out “global” extends. Therefore, the sub-goal makes

the most sense in enclosed indoor environments.

 It is difficult to quantify how well an exploration method achieves this sub-goal.

One important measure is how quickly the robot is able to build a map of any resolution

that covers the whole global environment. Yet it is unclear where the boundary lies

between a map not covering the entire environment and the map covering the

environment, but being very low resolution. In addition, we usually want low resolution

maps to pick out the important large-scale features of the environment, however, what the

important large-scale features are in an environment is often difficult to define.

 Another possible sub-goal that a robot might have is to get from one location to

another. For example, if a robot was placed in a maze and wanted to get out, it would

need to explore the maze and grow its map in order to find the exit. We can measure how

well an exploration strategy works in terms of this sub-goal by evaluating the cost of the

path that the robot executes in getting to its destination. Exploration strategies for getting

to a destination in an unknown environment should probably direct exploration towards

this destination somehow.

 There are a large number of other possible sub-goals. For example, the robot

might only be interested in mapping certain types of obstacles, might be looking for a

particular obstacle, or might only be interested in mapping certain regions of the

environment. These sub-goals are less general than the previous four we mentioned,

however. We therefore will not look at approaches for achieving these sub-goals.

2.3.1 General Features of Methods of Exploration for Increasing Map
Coverage

 Before we examine specific methods of exploring to achieve the first four sub-

goals that we mentioned, we analyze some of the general features of these methods. We

begin by considering what an ideal approach to exploration for increasing map coverage

would entail, and then explain how actual approaches approximate this ideal approach.

We assume that the overall exploration strategy is to use continuous exploration

path planning; therefore, we consider what the ideal way of solving the exploration path

 43

planning problem would entail. In Section 2.1.1 we noted that in many setups, the

robot’s sensors are constantly scanning the environment. In other words, the robot is not

limited to driving to a location, taking a scan of the surroundings, and then driving to

another location. Therefore, the robot’s position and heading at each instant is potentially

important, and the ideal exploration method for increasing map coverage would plan each

infinitesimally small step of the robot’s path in order to take into account the robot’s pose

at each instant.

In addition, no matter what sub-goal guides the robot’s exploration, it is almost

always desirable that the path that the robot executes in achieving this sub-goal have the

least cost possible. Planning an efficient path in exploration for increasing map coverage

is very difficult because every time the robot sees a new region, the map that the robot is

planning an exploration path for changes. Therefore, if the robot was able to predict with

one hundred percent accuracy what it would see everywhere it went, then it would

generally be able to plan and execute a much more efficient path than the path it would

execute if it did not make any predictions. An ideal approach to exploring to increase

map coverage, therefore, would make probabilistic predictions as to what the robot will

see at each new region it visits. The robot could make these predictions by using

statistical learning techniques to learn regularities in the structure of the environment, or

by having some a priori knowledge about these regularities.

 Existing methods of exploring to increase map coverage only approximate these

features of an ideal approach. As in exploration for decreasing map uncertainty, it is too

computationally challenging to plan each infinitesimally small step in a robot’s path

when exploring for increasing map coverage. Therefore, existing exploration methods

drastically reduce the number of possible paths that they consider, by placing a finite

number of candidate observation points at the border separating the parts of the

environment that the robot has and has not explored [18] [53] [10]. The robot then only

needs to choose some subset of these candidate observation points to visit and an order to

visit them. The final output path of the exploration path planner is the least-cost path that

takes the robot to these candidate observation points in the chosen order, stays within the

part of the environment that the robot has already explored, and avoids all obstacles. The

justification for this simplification of the ideal approach to exploration path planning is

 44

that even if the robot makes probabilistic predictions about what the unexplored regions

of the map look like, it is still probably inefficient for the robot to try to plan a path

through these unexplored regions. Therefore, when exploring to increase map coverage,

the robot should try to plan exploration paths that stay within the region of the

environment that the robot has explored already. In order to observe unexplored regions

of the environment, the robot must travel to the edge of the explored region of the

environment. Exploration methods therefore place candidates at the edge of the explored

region, and the robot plans its exploration path to visit these candidates. The robot does

not need to worry about what it will observe on the way to these candidates because the

robot will be traveling through the part of the environment it has already explored.

Therefore, these exploration methods might as well return paths that are composed of

shortest paths between the candidates as the solutions to the exploration path planning

problem.

Exploration methods also approximate making predictions about what the robot

will see in unexplored regions in order to plan efficient paths. Although using statistical

learning techniques or a priori knowledge to predict what the robot will see at unexplored

locations may be computationally feasible, no published exploration method utilizes

either approach to prediction. The closest that existing exploration algorithms come to

predicting what the robot will see at unexplored locations, is to give a score to each

candidate observation point, estimating how much new area the robot will see from that

point. These scores enable the robot to greedily choose a candidate to visit next that

should add a lot of new area to the robot’s map. However, in order to be able to plan

more globally efficient paths, the robot needs to be able to predict what the environment

will look like at each unexplored location in detail, or at least be able to predict how the

set of candidate observation points will change when it visits an unexplored location.

Therefore, giving each candidate observation point a score is not the ideal method of

improving the efficiency of the robot’s exploration. Much work remains to be done in

incorporating more sophisticated methods of prediction into exploration algorithms. In

Chapter 7 we discuss ways in which future research could use probabilistic predictions as

to what the robot will see in unexplored regions, in order to plan more efficient paths on

average.

 45

 Nevertheless, placing candidate observation points near the boundary between

explored and unexplored areas of the map and scoring these candidates is the basic

approach that all of the following exploration methods take. The major differences

between these exploration methods are in the particular ways these methods place and

score their candidates. In the following three sections, we examine existing approaches

to exploration for scan-matched maps, occupancy grid maps, and feature-based maps

respectively.

2.3.2 The Gonzalez-Banos and Latombe Method

The Gonzalez-Banos and Latombe exploration method is one of the only existing

methods that uses scan-matched maps as its sole map representation [18]. This method

is, perhaps, the one that most closely follows the general characterization in Section

2.3.1; thus, it can be thought of as the prototypical exploration method. The key

contribution of the Gonzalez-Banos and Latombe method is how it scores candidates.

The method assigns a utility to a candidate that is an optimistic estimate of the amount of

unexplored area the robot will see from the candidate. Figure 2.6 depicts such an

optimistic estimate for two candidates in a partially completed map. The small circles in

the figure are the candidates. The large circle around each candidate has a radius equal to

the range of the robot’s rangefinder. Therefore, the maximum amount of unexplored area

a robot’s sensor could see in a 360 degree scan from a candidate is given by the striped

part of the surrounding large circle. The area of this striped part is the utility of the

corresponding candidate.

 46

40m2

21m2

utilty = 21

utilty = 40

Figure 2.6 Candidate Scoring for the Gonzalez-Banos and Latombe Method

In order to estimate the maximum amount of unexplored area the robot will see

from a candidate, Gonzalez-Banos and Latombe developed a method for estimating what

regions of a scan-matched map the robot’s sensors have definitely seen. Estimating these

regions is difficult because, unlike occupancy grid maps, scan-matched maps do not keep

track of areas that the robot’s rangefinder scanned but did not detect any objects in. To

address this difficulty, the method constantly calculates the “safe region,” which is the

region of the environment that the robot has sensed and did not see any objects in. In

order to construct the safe region, at each candidate observation point (and the robot’s

initial position) the robot takes a 360 degree scan of its environment, constructs a safe

region for that scan, and then adds this new safe region to the combined safe regions of

all previous scans.

 47

In order to construct a safe region for a scan, the method fits curves to the scan

points that result from the scan. In other words, each scan of the robot’s sensor results in

a set of curves that can be described as a discontinuous function of the scan angle. This

radial function is defined for all angles except those in which the nearest object was

beyond the sensor’s maximum range. The data points that result from a given scan

represent detected obstacles; therefore, the curves that are extracted from these points are

called “solid curves.” Construction of the safe region for a scan continues by connecting

adjacent solid curves with new curves called “free curves.” Gonzalez-Banos and

Latombe give a deterministic method of calculating free curves from a set of solid curves

such that the interior of the region formed is guaranteed to have no obstacles in it. The

method then adds the safe region for a given scan to the combined safe regions of all

previous scans by matching the two safe regions, just like scans are matched in basic scan

matching. Only solid curves are used in matching safe regions, however.

Once the safe region for a scan has been calculated and integrated into the

combined safe region, the method places candidate observation points inside the

combined safe region. More specifically, the method randomly places a set number of

candidates in the combined safe region, subject to the constraint that each one is within

sensor range of a free curve. We should only care about points that are near free curves

because there is no chance that the robot could see through solid curves to a new location.

The method does not keep all of these candidates, however. The lower the amount of

known solid curve that is visible from a candidate, the harder it will be to match the

resulting safe region to the combined safe region. Therefore, if the length of known solid

curve that is visible from a given candidate is less than a set threshold value, then the

candidate is removed. In addition, the robot removes all candidates to which it has no

free path that stays inside of the safe region.

The method is then ready to assign each remaining candidate observation point a

utility that is an optimistic estimate of the amount of new area the robot will see from the

candidate. In order to calculate this utility, the robot assumes that every free curve in the

combined safe region is entirely transparent. In Figure 2.6, the free curves are the dashed

lines. The robot also assumes that there are no objects in the environment that are not in

the map. The robot then measures how much area outside of the combined safe region its

 48

rangefinder would be able to cover from the candidate if the robot took a 360 degree scan

there. If there were no solid curves in the map, then in Figure 2.6, this area would be the

area encompassed by the large circles that is not inside of the combined safe region. The

combined safe region is shaded gray in Figure 2.6. However, the robot must take into

account the fact that its sensors cannot penetrate solid curves when measuring the area

outside of the combined safe region that its sensors will see from a candidate. Therefore,

in Figure 2.6, the striped region inside of the large circles is the correct area. The utility

of a candidate is equal to this area, as Figure 2.6 shows. Thus, the amount of area the

robot actually sees from the candidate will be less than or equal to the utility of the

candidate.

Finally, the method selects as the point to visit next the candidate that maximizes

the function g(candidate) = utility(candidate) * exp(-c * L(candidate)), where c is a

constant and L(candidate) is the length of the shortest path from the robot to the

candidate that avoids all obstacles and stays inside of the safe region. The method

outputs this shortest path from the robot to the next candidate to visit as the solution to

the exploration path planning problem. The robot will then execute this path, take a new

360 degree scan at the end of this path, calculate a safe region from the scan, and so on.

An additional interesting feature of the Gonzalez-Banos and Latombe method is

that the method tries to allow the user to have some choice over which of the exploration

sub-goals from Section 2.3 the method should have. Specifically, the parameter c is

meant to allow a user to tailor the exploration method for the sub-goal of thoroughness or

the sub-goal of building a rough global map before filling in details. Note that setting the

constant c in g(candidate) to be a large number causes the method to favor candidates that

are close to the robot and to not pay much attention to the candidate’s score. Therefore,

increasing the size of c should cause the robot to explore more thoroughly. Conversely,

setting c to be a small number causes the robot to favor candidates that have a high score

and to not pay much attention to how far away the candidate is from the robot. Gonzalez-

Banos and Latombe argue that because a candidate’s score measures roughly how much

new area the robot will add to the map by going to that candidate, setting c to a low value

will cause the robot to at first explore its environment roughly by mapping only the most

unexplored areas. As time passes, the robot will fill in its map in more and more detail.

 49

2.3.3 Methods for Occupancy Grid Maps

There is a wide range of exploration methods that use occupancy grids as the

main map representation [53] [10] [2] [22]. The exploration methods for occupancy grids

that most resemble the general characterization of methods of exploration in Section 2.3.1

are those that use “frontiers” to guide exploration [53] [10]. We therefore focus on

describing the way frontier-based exploration methods work in this section. Most

methods that use frontiers aim to map as much new area as possible while executing a

path with the lowest possible cost. In particular, the method that Burgard et al developed

aims to explore the entire environment in the least amount of time possible. Frontier-

based methods use the exploration path planning framework; therefore, we examine how

these methods solve the exploration path planning problem.

The important feature to note about frontier-based methods of exploration is how

they choose where to place candidates. The main idea is that, like the Gonzalez-Banos

and Latombe method, frontier-based methods place candidates at segments of the

boundary of explored territory where there is a clear view of unexplored territory. These

segments of the boundary of explored territory are called frontiers. In order to identify

frontiers, frontier-based methods classify each cell in the map as either unknown,

occupied, or open. An unknown cell is a cell whose probability of being occupied is

equal to the a priori probability that a cell is occupied. An occupied cell is a cell whose

probability of being occupied is greater than this a priori probability, and an open cell is a

cell whose probability of being occupied is less than the a priori probability. A frontier

cell is an open cell that is next to an unknown cell. Because open cells correspond to

areas of the environment that the robot has sensed and has reason to believe do not

contain any obstacles, and because unknown cells usually correspond to areas of the

environment that the robot has not sensed, placing candidates in frontier cells is

analogous to placing candidates near free curves in the Gonzalez-Banos and Latombe

method. Therefore, the robot should be able to see into unexplored territory from a

frontier cell. A frontier is a group of adjacent frontier cells longer than a given length.

Frontier-based exploration methods can place one candidate in every frontier cell [10] or

place a candidate in the middle of each frontier [53].

 50

Existing frontier-based exploration methods do not assign a utility to each

candidate that directly estimates how much new area the robot should see from that

candidate. Instead, these exploration methods simply choose the candidate that the robot

has the least-cost path to as the next candidate to visit. The output of the exploration path

planner is, therefore, the best path to this next candidate. However, there is no reason

why these methods could not assign utilities to candidates in a way similar to the way the

Gonzales-Banos and Latombe method assigns utilities.

The method of Burgard et al does assign utilities to candidates, but it does so only

to take into account candidate interactions. The Burgard et al method plans paths for

multiple robots exploring the same environment simultaneously. In the method, the

utility of each candidate starts off at one. The method then finds the robot and candidate

that are closest together and assigns the robot to visit that candidate. When the robot gets

to this candidate, however, the new area the robot maps might overlap with the new area

a robot would see from other candidates; in other words the candidates might interact.

This candidate interaction means that once the robot gets to the candidate it was assigned

to, the candidates that overlap with this candidate will be less desirable to visit than they

were before. Therefore, before the method assigns a second robot to visit a candidate, the

method decrements the utility of each candidate according to the estimated probability

that the candidate is visible from the candidate that the first robot was just assigned to

visit. The more probable it is that the candidate is visible from the candidate that the first

robot was just assigned to visit, the more the candidate’s utility is decremented. Once the

exploration method has decremented the utility of every candidate, it finds the robot and

the candidate that maximizes the value of the utility of the candidate minus the cost of the

shortest path from the robot to the candidate and assigns the robot to visit the candidate.

The method then decrements the utility of the remaining candidates, and the process

repeats.

In order to estimate the probability that one candidate is visible from another

candidate, the method of Burgard et al keeps a record of the distances that the robots

measure with their sensors while exploring. The method then measures the straight line

distance between the two candidates in question and assigns a probability that is equal to

the fraction of the time that the robots have measured similar distances in the past. This

 51

method of assigning utilities to the candidates is interesting because it introduces a new

way of making a simple prediction about what the robot will see from a given candidate.

Even though the method only uses these predictions to mitigate the effects of candidate

interactions, these predictions could also be used to assign a utility to each candidate that

reflects how much new area the robot should see from a candidate. In addition, candidate

interactions are also a problem when a single robot tries to plan a path more than one

candidate long. Therefore, future work could use this method of mitigating the effects of

candidate interactions to improve the paths planned for single robot exploration.

There are many other approaches to exploration with occupancy grids besides the

frontier approach. Some of these methods store information for each cell, in addition to

the probability that the cell is occupied, such as number of times a sensor has scanned the

part of the world corresponding to the cell [2], or how many times the robot has visited

the part of the world corresponding to the cell [2] [22]. These methods also address other

sub-goals, such as thoroughly exploring the environment [22]. One method can even

mediate between many different sub-goals simultaneously, including the sub-goals of

getting from one point to another and decreasing map uncertainty [2]. There are many

interesting possibilities for methods of exploration for increasing map coverage using

occupancy grids, and there is much room for more work in this field.

2.3.4 The Newman, Bosse, and Leonard Method

The Newman, Bosse, and Leonard exploration method is the basis of the approach

to exploration that we implemented and tested in this thesis [37]. Chapter 6 presents and

analyzes the results of these experiments. While a few exploration methods use feature-

based SLAM maps in conjunction with occupancy grid maps [2] [9], the Newman, Bosse,

and Leonard method is the only exploration method we know of that uses a feature-based

SLAM map as the sole map representation. The Newman, Bosse, and Leonard method

aims to achieve two sub-goals: to map as much new area with the least-cost path possible

and to map the environment thoroughly. The method uses the continuous exploration

path planning framework; therefore we focus on explaining how the method solves the

exploration path planning problem.

 52

Identifying locations to place candidates and evaluating how much new area the

robot will see at these candidates is more difficult with feature-based maps than it is with

occupancy grid or scan matched maps. This difficulty arises from the fact that it is not

straightforward to identify areas of the environment that the robot has not explored with a

feature map. One of feature-based SLAM’s important properties is that it does not keep

track of every point a robot’s sensors have seen. This property makes it hard to

determine whether an empty region on a feature map has never been explored, has been

explored and is empty, or has been explored and is not empty, but the robot has not

extracted any features there. Therefore, instead of trying to keep track exhaustively of

regions of the environment that the robot’s sensors have seen, the Newman, Bosse, and

Leonard approach identifies features in the map that look like they have not been fully

extracted and sends the robot to explore them further.

 More specifically, each feature in the map generates candidate observation points

near itself. The idea is that each feature should have its own theory about how to explore

its surrounding area, in order to completely fill itself in or to discover new features

nearby. Therefore, different types of features may have different strategies for placing

candidate observation points. For example, line features place candidate observation

points at either endpoint, in order to encourage the robot to discover the full spatial extent

of the line. Figure 2.7 shows how candidate observation points can guide a robot in order

to fill in a map of a room. Figure 2.7a gives the actual layout of the hypothetical room,

and Figure 2.7b shows the candidate observation points (the circles) for a partial map.

Note that the candidates encourage the robot to fill in the remaining details of the room.

a) b)

Figure 2.7 Candidate Observation Points for a Partial Map

 53

The exploration method assigns each candidate a utility that estimates how much

new area the robot will see from the candidate by estimating the amount of area in the

immediate vicinity of the candidate the robot has not explored. The method estimates

how unexplored the area around a candidate is in two ways. First, the method examines

the robot’s past trajectory and evaluates whether or not the robot’s sensors should already

have scanned the area around the candidate. The method keeps track of the robot’s

trajectory by dropping a “pebble” at the robot’s estimated position whenever the robot

moves a specified fixed distance. The method also places a specified fixed number of

“sample points” in a circle of a given radius around the candidate in question. This circle

of sample points delineates the boundary of the immediate vicinity of the candidate. In

order to measure whether or not the robot should already have sensed the area in the

immediate vicinity of candidate somewhere along its trajectory, the method tests whether

or not there is a clear line of sight between any of the sample points surrounding the

candidate and any pebble within sensor range of the sample points. The method

invalidates each sample point that is within sight of a pebble. After the second step of the

candidate evaluation has finished, the utility of the candidate will be the number of

sample points around the candidate that are still valid divided by the original number of

sample points.

 Figure 2.8 depicts the evaluation of the two candidates G1 and G2. The

pentagons in the figure are the pebbles that mark the robot’s trajectory. The small

unlabeled circles around the candidates are the sample points. Four of G1’s sample

points have a clear line of sight to pebbles, and these pebbles are within sensor range of

the sample points. These four sample points are therefore invalidated. In contrast, none

of G2’s sample points are within sensor range of any of the pebbles. Therefore, even

though there is a clear line of sight between some of G2’s sample points and some

pebbles, none of G2’s sample points are invalidated.

 54

Utility=2/8 Utility=7/8

G1
G2

Figure 2.8 Evaluating Candidate Observation Points

The second way the method evaluates how much of the area around a candidate

the robot has not yet explored is by counting how many features there are in the

candidate’s immediate vicinity. If a candidate is surrounded by many features, then it is

given a lower utility because the robot has definitely already sensed the region. In

addition, the robot will have a hard time moving through these surrounding features when

it is trying to determine the spatial extent of the candidate’s parent feature. More

precisely, the method calculates how densely packed with features the area around a

candidate is by seeing how many of the candidate’s sample points have a clear line of

sight to the candidate. If a sample point does not have a clear line of sight to the

candidate, then there must be a feature between the sample point and the candidate.

Because the sample points delineate the immediate vicinity of the candidate, this

blocking feature must be in the immediate vicinity of the candidate. Therefore, each

sample point that does not have a clear line of sight to the candidate is invalidated. This

invalidation decreases the utility of the candidate because the utility of the candidate is

the number of valid sample points of the candidate divided by the candidate’s initial

number of the sample points.

 In Figure 2.8, two of candidate G1’s sample points do not have a clear line of

sight to G1. Therefore, these two sample points are invalidated. In addition, one of

 55

candidate G2’s sample points does not have a clear line of sight to G2. As a result, this

sample point is invalidated. It makes sense that more of G1’s sample points are

invalidated in this way than G2’s because G1 is more surrounded by features than G2 is.

In the end, G1 is left with two valid candidates; therefore, the method assigns G1 the

utility of 2/8 = 0.25. G2 is left with seven valid candidates; therefore, the method assigns

G2 the utility of 7/8 = 0.875.

We have now seen how the Newman, Bosse, and Leonard method

identifies and scores candidate observation points. After identifying and scoring

the candidates, the method picks a candidate to visit roughly by choosing the

candidate with the highest utility. The output of the exploration path planning is

therefore a path to this candidate. The exact details of how the method chooses

this candidate and calculates a path to it are slightly complicated, and we do not

present them here. In the implementation we tested, we only used the candidate

identification and scoring part of the method. In Chapter 5 we explain how our

implementation computes a path for the robot to execute from the set of

candidates.

2.4 Exploration for Decreasing Map Uncertainty
Almost all exploration methods take into account how the path the method plans

affects the uncertainty of the robot’s map. Even methods of exploration for increasing

map coverage try to make sure the robot does not get lost. For instance, the Newman,

Bosse, and Leonard method places candidates near features in part to encourage the robot

to stay localized by keeping within sight of features it knows about. Yet there is a class

of exploration methods whose sole goal is to decrease the map’s uncertainty in the

positions of the objects already in the map and the position of the robot. These methods

do not aim to add new objects to the map at all (although most of the methods can handle

adding new objects to the map if they are sensed). Most of these methods aim to explore

efficiently by decreasing the overall uncertainty of the map as much as possible in the

least amount of time possible.

In order to decrease the overall map uncertainty, all of these exploration methods

face a tradeoff 0. The way the robot decreases its uncertainty in the location of an object

 56

is to sense that object again. Yet in order to sense an object, the robot needs to move to

the object. Moving increases the robot’s localization error because all robots have noisy

odometry to some degree. This increase in localization error increases the overall map

uncertainty by increasing the uncertainty in the position of the robot. In addition, the

more uncertain the robot is about its own position, the less certain the robot will be about

the position of an object that it re-observes. The amount of information the robot gains

by re-observing an object therefore depends strongly on the path that the robot takes to

the object. So unlike exploration methods for increasing map coverage, methods for

decreasing map uncertainty cannot simply pick out a set of candidate observation points

and assign to each candidate a utility that estimates how much information the robot will

gain by visiting the candidate independent of how the robot gets there. As we explain in

Chapter 3, this fact means that we cannot really apply the approach to improving the

efficiency of exploration that this thesis investigates to the case of exploration for

decreasing map uncertainty.

 Nevertheless, we briefly examine how methods for decreasing map uncertainty

that use feature-based SLAM work in order to have a concrete example of exploring to

decrease map uncertainty. We look at methods for decreasing map uncertainty that use

feature-based SLAM because many of the methods for decreasing map uncertainty that

have been developed are this kind.

2.4.1 Feature-based Methods

The goal of most feature-based methods is to decrease the overall map uncertainty

as much as possible in the least amount of time possible [14] [9] 0. By map uncertainty

we mean the feature-based SLAM map’s uncertainty in its estimate of the position and

orientation of the features it knows about and the robot. Feature-based SLAM’s extended

Kalman filter keeps track of this uncertainty in the state covariance matrix. Therefore,

feature-based methods aim to decrease some overall measure calculated from this

covariance matrix as much as possible and as quickly as possible. The overall measure

that is calculated from the covariance matrix depends on the exploration method. Some

possible measures are the determinant of the covariance matrix 0, the sum of

determinants of individual feature and robot covariance matrices 0, or the trace of the

 57

covariance matrix 0. Trying to decrease the determinant of the covariance matrix as

much as possible corresponds to trying to decrease the entropy of the probability

distribution of the state vector 0. The other measures calculated from the covariance

matrix are also motivated by information theory.

Most methods of exploration for decreasing map uncertainty follow the

exploration path planning framework. These methods attempt to find the sequence of

actions for the robot take that will result in the largest drop in the overall map

uncertainty, and output this sequence as the result of the exploration path planner. In

order to find such a sequence of actions, these methods estimate how taking an action

will cause the state covariance matrix to change. These methods perform this estimation

by using the state update equations of the extended Kalman filter to find the expected

value of the position of the robot after taking the action. The methods then use the sensor

model and the estimated position of the features in the map to find the expected value of

the measurements that the robot will make after taking the action. Finally, the methods

use this expected value of the measurements to see how the state covariance matrix will

update as a result of taking the action.

Most exploration methods use this ability to predict the result of taking an action

to greedily choose the best next action for the robot to take [14]. More precisely, these

methods discretize the set of actions the robot can take and then choose the action that

should cause the overall measure of the uncertainty of the covariance matrix to decrease

the most. This action is the output of the exploration path planner. Recently, however,

Sim and Roy have developed a method to find a sequence of actions for the robot to take

that is expected to decrease the overall map uncertainty by the maximum amount possible

0. Specifically, Sim and Roy’s method places a grid over the feature map and determines

the best path to each grid cell from the robot’s initial position. A path is a sequence of

grid cells, and so the possible actions that a robot can take are to move to one of the grid

cells adjacent to the robot’s current position. The best path to a grid cell is the path that

results in the largest decrease in the overall map uncertainty. The method then looks at

all of the best paths to all of the cells in the map and returns the path that results in the

largest decrease in the overall map uncertainty. Sim and Roy’s method is similar to the

approach to exploration that this thesis investigates in it that plans such a globally

 58

optimized path for the robot. However, their method is targeted towards exploration for

decreasing map uncertainty, whereas the approach investigated by this thesis is targeted

towards exploration for increasing map coverage. These two methods are the only

methods we know of that plan globally optimized paths.

We now understand the characteristics of the general problem of

exploration. We have seen that there are two major categories of exploration:

exploration for increasing map coverage and exploration for decreasing map

uncertainty. We also have a sense now of a number of different methods for

performing these two types of exploration. The next chapter builds upon this

knowledge and proposes a new way of computing a path from a set of candidates

that should improve the efficiency of many of these methods.

 59

3 The Finite Horizon Approach to Continuous
Observation Planning

The main claim of this thesis is that performing observation planning over a finite

horizon will, on average, improve the efficiency of many exploration methods for

increasing map coverage (see Chapter 2). In this chapter we formally introduce the finite

horizon approach to selecting candidates and predict those situations for which the

approach should work well, based on its general properties. Then, in Chapter 6, we

present the results of experiments comparing the finite horizon approach to observation

planning with other approaches to observation planning using a specific candidate

identification and scoring method (the Bosse, Newman, and Leonard method described in

Chapter 2).

 Section 3.1.1 defines the observation planning problem more precisely, and

Section 3.1.2 gives our requirements for solutions to this problem. Section 3.2 motivates

and presents informally the finite horizon approach to observation planning. Section

3.2.3.1 shows how we can formulate the finite horizon approach as solving the Selective

Traveling Salesman Problem (S-TSP) and formally defines the S-TSP. Section 3.2.3.2

presents the finite horizon approach to continuous observation planning, and Section

3.2.3.3 defines this approach more formally. Finally, Section 3.3 provides a general

analysis of how well we expect the finite horizon approach to continuous observation

planning to perform across all exploration methods and all environments.

3.1 Observation Planning
All of the exploration methods that Chapter 2 describes have the robot solve the

exploration path planning problem. Recall that an exploration path planner takes the

robot’s current position and a partially completed map as input and computes a path for

the robot to execute that is meant to add information to the map. Furthermore, it is

important to note that in all methods of exploration for increasing map coverage that we

described in Chapter 2, the exploration path planner can be broken down into two

components. The first component decides where to place candidate observation points,

 60

and assigns to each of these candidates a utility that reflects how much information the

robot would add to its current map, by making an observation at that point. The second

component takes these candidate observation points and their utilities as input, and

computes a path that will take the robot to some subset of the candidates. Each of the

methods of exploration for increasing map coverage in Chapter 2 has a very different

strategy for implementing the first component. We call these strategies candidate

identification and scoring strategies. Similarly, we call strategies for implementing the

second component observation planning strategies. The reason we break down

exploration path planners into these two components is that it is a claim of this thesis that

a particular observation planning strategy, the finite horizon continuous observation

planning strategy, is ideal for many different candidate identification and scoring

strategies, and many different environments.

Note that in the case of exploration for decreasing map uncertainty, we cannot

break down exploration path planners into these two components. As we point out in

Chapter 2, the problem is that, when exploring in order to decrease map uncertainty, the

amount of information that the robot gains, by going to a given point and making an

observation depends, on the path that the robot takes to get to that point. The reason for

this dependency is that the robot’s localization uncertainty depends strongly on the path

that the robot executes, and the robot’s localization uncertainty is part of the overall map

uncertainty. Therefore, the amount that visiting an observation point decreases the

overall map uncertainty can be thought of as the sum of the amount that the map

uncertainty decreases from making the observation, and the amount that the map

uncertainty increases, by driving to the observation point.

From the above reasoning, one might think that we could use the amount the map

uncertainty decreases, by making an observation at a point, as the utility of that

observation point. We would then use the amount that the map uncertainty increases,

from going to the observation point, as the path cost in observation planning. The

problem with this idea is that we cannot separate the amount that the map uncertainty

decreases, from making an observation at a point, from the amount that the map

uncertainty increases, over the path that the robot takes to get there. The amount that the

map uncertainty decreases from making an observation at the point depends on the

 61

localization uncertainty of the robot. In turn, the localization uncertainty of the robot

depends on the path that the robot takes to the observation point. Therefore, there is no

way to assign a utility to an observation point that does not depend on the path that the

robot takes to the point, during the task of exploration for decreasing map uncertainty.

As a result, we will not consider what it means to perform observation planning

for this type of exploration.

3.1.1 Definition of Observation Planning

 For the sake of clarity, we will define our terms more precisely. In Chapter 2 we

defined the problem of exploration path planning as follows. Given the robot’s current

pose, and a partial map that is being constantly updated, based on the robot sensor

readings, the exploration path planning problem is to output a path that the robot can use

to effectively control its motion, in order to improve the map. Recall that improving the

map can mean increasing the coverage of the map, decreasing the pose uncertainty of the

objects already in the map, or some combination of the two.

When improving the map means increasing map coverage, we break the

exploration path planning problem down into two sub-problems. Given a partially

completed map of the environment, the candidate identification and scoring problem is

to produce a set of candidates, C = {ci}, for this partially completed map. Each candidate

ci has associated with it a position vector, xi, and a real-number utility, ui. The

candidate’s position vector gives the location of the candidate in the map. The

candidate’s utility provides an estimate of how much information the robot will add to its

map if it makes an observation from the candidate’s location. Larger utilities correspond

to larger amounts of information. Candidate identification and scoring strategies are

strategies for solving the candidate identification and scoring problem.

 The observation planning problem is to take a partially completed map, a set of

candidates C, and a vector xr giving the robot’s current pose, and output a path for the

robot to follow that will cause the robot to make observations at some subset of the set of

candidates C. We call methods for solving the observation planning problem observation

planning methods.

 62

In Chapter 2 we gave the name continuous exploration path planning to

approaches to controlling the robot that constantly re-solved the exploration path

planning problem, in order to keep the path optimal with respect to changes in the map.

When the robot constantly re-solves the exploration path planning problem, the robot

must constantly re-solve the candidate identification and scoring problem and the

observation planning problem. We therefore give constantly re-solving the candidate

identification and scoring problem the name continuous candidate identification and

scoring, and constantly re-solving the observation planning problem the name continuous

observation planning.

3.1.2 Goals of Observation Planning Methods

 Now that we have defined the two main components of most exploration path

planning methods, candidate identification and scoring and observation planning, we can

discuss what makes a good observation planning method. We focus on the observation

planning problem because, while researchers have studied many different approaches to

candidate identification and scoring, they have not put much effort into developing a

good observation planning method.

 The goals of an observation planning method are inherited from the goals of the

exploration method. For example, if the goal of the exploration method is to expand the

map in all directions as efficiently as possible, then the goal of the observation planning

method is also to expand the map in all directions as efficiently as possible. Similarly, if

the goal of exploration is to thoroughly map the local region before moving on to a new

region, then this goal is the goal of the observation planning method.

 Most exploration methods aim to expand map coverage in all directions as

efficiently as possible. We can roughly evaluate how well an observation planning

method achieves this goal by looking at the utilities of the candidates that the robot visits.

We can focus on utilities because the utility of a candidate should estimate how much the

robot will expand its map by visiting the candidate. By looking only at utilities, we make

our evaluation of the efficiency of an observation planning method independent of the

particular map representation the robot uses.

 63

We will evaluate the efficiency of an observation planning method in a given

exploration mission by looking at the total utility of the candidates that the robot reached

before the cost of the robot’s path exceeded a given maximum value. This maximum

cost might be a maximum distance that the robot can travel, a maximum time, or a

maximum amount of energy that the robot can expend. The higher the total utility of the

candidates that the robot visited before reaching this maximum cost, the more efficient

we consider the observation planning method to have been. Chapter 6 refines this

concept of efficiency.

3.2 Finite Horizon Methods for Observation Planning
 In this section we motivate and introduce the finite horizon observation planning

method. In order to motivate the finite horizon method, we first describe the greedy

observation planning method that existing exploration methods use. The greedy method

selects a locally optimized path; therefore, the greedy method is suited for when planning

a globally optimized path is futile, because the set of candidates changes constantly

during exploration. We then introduce the full horizon observation planning method.

The full horizon method selects a path that is globally optimal over the entire set of

candidates; therefore, the full horizon method is suited for when the robot is certain that

the set of candidates will not change as the robot explores. Finally we introduce the finite

horizon observation planning method. The finite method plans a path that is optimal over

a given finite distance; therefore, the finite horizon method is suited for when the set of

candidates changes anywhere between frequently and never. In other words, the

motivation for the finite horizon method is to cover the middle ground between the

greedy and full horizon methods.

3.2.1 The Greedy Method for Observation Planning

 Recall that, currently, virtually all exploration strategies that have the goal of

exploring efficiently use a greedy continuous observation planning method. In a greedy

continuous observation planning method, the robot constantly plans a path to visit one

observation point. This path is a feasible least-cost path between the robot’s current

position and the observation point. The greedy method chooses this observation point by

 64

finding the candidate that minimizes some function of the robot’s current location and the

candidate. This function can simply return the length of the least-cost path from the robot

to the candidate, in which case the strategy amounts to the robot always going to the

closest candidate to it [53]. The function can also somehow increase with increasing

shortest path length and decrease as the candidate’s utility increases [18] [10] in order to

favor choosing candidates with a high utility. However, the way that the function

combines distance and utility into a single score tends to be somewhat arbitrary.

 Figure 3.1 shows the path planned by two different greedy functions at a certain

point during exploration. In the figure, the circles are candidates, the two rectangles are

obstacles, and the lines connecting the candidates represent possible paths between the

candidates. The figure depicts the shortest path between a pair of candidates with a solid

line. The figure also shows two sub-optimal paths between candidates as dotted lines.

The robot should never choose travel along a sub-optimal path. In Figure 3.1a, the

greedy function simply returns the distance between the robot and the given candidate.

The function position(vi) returns the location of the candidate vi. Because

candidate v1 is the closest candidate to the robot, the chosen path in Figure 3.1a, denoted

by the line with the arrow at the end, goes from the robot to v1. The greedy function in

Figure 3.1b is the negative of the function that Gonalez-Banos and Latombe’s exploration

method [18] uses, because we are looking for the candidate which minimizes the greedy

function. The function util(vi) returns the utility of the candidate vi. Candidate v3

minimizes the greedy function in Figure 3.1b, for f(xr, v3)=-0.8exp(-

10/100)=-0.72, f(xr, v1)=-0.48, and f(xr, v2)=-0.19. Therefore the

path in Figure 3.1b leads the robot to candidate v3.

 65

v2

v3

5m
3m

3m

5m

4m

3m

3m 4m

5m

7m

3m

3m

utiltity=0.2

utility=0.8

utility=0.5

v1

v2

v3

5m
3m

3m

5m

4m

3m

3m 4m

5m

7m

3m

3m

utiltity=0.2

utility=0.8

utility=0.5

v1

f(xr, vi)=-util(vi)e
(-1/100*dist(xr, position(vi))

Greedily best candidate is argminvif(xr,vi)=v3

b)

f(xr, vi)=dist(xr, position(vi)

v2

v3

5m
3m

3m

5m

4m

3m

3m 4m

5m

7m

3m

3m

utiltity=0.2

utility=0.8

utility=0.5

v1

v2

v3

5m
3m

3m

5m

4m

3m

3m 4m

5m

7m

3m

3m

utiltity=0.2

utility=0.8

utility=0.5

v1

Greedily best candidate is argminvif(xr,vi)=v1

a)

Figure 3.1 Possible Greedy Functions

 Intuitively, the general problem with greedy approaches is that they do not

consider how well the robot will be able to explore after it gets to the candidate it has

chosen to visit next. The danger, therefore, is that the robot will go to the greedily-best

next candidate, and then find itself forced to do something horribly inefficient to get to

the greedily-best candidate after that. For example, Figure 3.2 depicts a situation in

which, if the robot blindly continues to pick the next closest candidate to it, it will get

 66

dragged down a long hallway that eventually dead-ends. The robot then is forced to

back-track all the way back down this hallway in order to reach the next set of

candidates. Figure 3.2a shows this greedy path, and Figure 3.2b shows a much more

efficient path that goes down the hallway last. Candidates in the figures are the circles,

and paths are depicted as a line with an arrow at the end.

Robot Robot

a) b)

Figure 3.2 The Inefficiency of Greedy Paths

3.2.2 The Full Horizon Method for Observation Planning

The obvious solution to this problem with the greedy approach is to plan ahead.

Given the current set of candidates, it is possible for the robot to find a minimum-cost

path through the map that visits every candidate. We call the observation planning

method that outputs a minimum-cost path visiting every candidate the full horizon

observation planning method. We call the paths that the full horizon method outputs full

horizon paths. Finding a full horizon path corresponds to solving the Traveling Salesman

Problem (TSP) over the set of candidates. Recall that the Traveling Salesman Problem is

to find a least-cost cycle in a graph that visits every vertex in the graph. Therefore, the

only difference between a path that is a solution to the TSP over the set of candidates and

a full horizon path is that a TSP solution path requires the robot to return to its start point,

 67

while a full horizon path does not. Chapter 4 describes a method for altering any graph

so that the solution to the TSP on the altered graph yields a full horizon path on the

original graph. This mapping between the TSP and calculating full horizon paths is

important because the TSP has been studied in depth, and many good algorithms for

solving the TSP already exist [39].

By definition, a full horizon path must have a total cost that is less than or equal to

the total cost of any other path visiting every candidate, including any path generated by

the greedy approach. In other words, at the moment the full horizon method plans a path

for the set of candidates, this path is globally optimal. Furthermore, if the robot executes

this path in its entirety without the set of candidates ever changing (except for when

candidates disappear once the robot reaches them), then the path that the robot executes

using the full horizon method is also guaranteed to be globally optimal.

 Unfortunately, as the robot explores an environment the set of candidates almost

always changes. During the course of exploration, candidates appear, disappear, change

location, and change utility. In order to immediately adjust the path to account for these

changes, the robot could constantly recalculate the full horizon path over the candidates,

thus performing continuous observation planning. However, if the set of candidates ever

changes and the robot must recalculate the full horizon path, then there is no longer any

guarantee that the path that the robot executes will be at least as efficient as the path the

robot would have executed with a greedy method. In fact, no matter what observation

planning method the robot uses to plan its paths, there are ways the set of candidates can

change that make the path the robot actually executes very inefficient. Figure 3.3 shows

an example of a case when the set of candidates changes in such a way so as to make the

path that the robot executes with the full horizon observation planning method less

efficient than the path the robot executes with the greedy method. Figure 3.3a depicts the

robot’s partially completed map midway through the robot’s exploration of its

environment. The circles in Figure 3.3a are candidates, the triangle is the robot, and the

line connecting the candidates is a least-cost path that visits every candidate in the map.

This least-cost path is what we refer to as the full horizon path through the candidates.

Figure 3.3b depicts the greedy path for the same moment in the robot’s exploration as in

Figure 3.3a. The greedy path is significantly longer than the full horizon path shown in

 68

Figure 3.3a. Figure 3.3c, however, shows what the environment actually looks like and

what will happen if the robot tries to execute the full horizon path. The robot finds that

there is a wall blocking its path to the first candidate in the full horizon path. This

blockage has the same effect as if the first candidate in the path had suddenly become

much farther away from the robot. The line connecting the candidates in Figure 3.3c is

the new full horizon path for this situation. Note the path basically does what the greedy

path in Figure 3.3b does. Therefore, the path the robot actually executes using the full

horizon observation planning method is longer than the path the robot executes using the

greedy observation planning method.

 69

a)

b)

c)

Figure 3.3 When the Full Horizon Path Performs Worse than Greedy: a) Initially calculated full
horizon path. b) Initially calculated greedy path. c) Full horizon path recalculated part way through the

robot’s execution of the initial full horizon path.

The set of candidates can also change in such a way as to make the new path that

the robot executes more efficient than it would have been. For example, Figure 3.4

shows a situation in which the change in the set of candidates allows a robot using the

full horizon method to visit a subset of the candidates with a higher total utility before the

mission ends, than the robot would have visited if the candidates had not changed.

Figure 3.4a shows the initial full horizon path. There is 15m left in the robot’s mission at

this point; therefore, if the candidates did not change, the robot would be able to execute

 70

its 14m full horizon path to completion before the end of its mission. Figure 3.4b shows

the updated map after the robot gets to the first candidate (candidate a) and the full

horizon path for this updated map. In this figure, the robot sees a room it has not seen

before; therefore, the set of candidates changes to include four new candidates with high

utilities. The robot will then visit all four of these new candidates (but not candidate b),

before it travels the final 13m in its mission. As a result, instead of visiting a subset of

candidates with a total utility of 0.4 in these 15m, the robot visits a subset of candidates

with a total utility of 3.2 in 15m.

b

12m 2m

a

b
14m

5m

0.20.2

0.9
0.7

0.7

0.95m

3m

3m

c

d

e

f

13m left in mission

15m left in mission

a)

b)

0.2

2m

Figure 3.4 When a Change in the Set of Candidates Helps the Full Horizon Method

While the effect of candidates changing can be positive or negative, on average

we do not expect a robot using the full horizon method to perform well when the set of

candidates changes. To understand where this expectation comes from, first note that

there are currently no good methods of predicting when or how the set of candidates will

change during exploration. We do know, however, that the set of candidates usually

changes because the robot sees new objects. And generally, the further the robot travels,

 71

the more likely it is to see new objects that will cause the set of candidates to change.

Therefore, no matter what exploration method the robot is using, we can model the way

the candidates change as an arrival-type stochastic process (for example, a Poisson

process)3. The arrivals in this model are instants when the set of candidates changes.

And instead of using time as the measure of the length between arrivals, this model uses

the distance that the robot travels.

We thus view an exploration trial as a sequence of intervals in which the set of

candidates does not change and the robot executes its plan without disruption. Each

interval is separated from the intervals before and after it by instants when the set of

candidates does change. As we have seen, when the set of candidates changes, the effect

that this change has on the path that the robot executes during the next interval is

randomly good or bad. We say the effect is random because we assume that the robot

cannot predict how the set of candidates will change and therefore what the effect of the

change will be. As a result, the best that the robot can do is to try to plan an optimal path

for each interval over which the candidates do not change. Yet the full horizon method

does not plan an optimal path over each interval separately; the full horizon observation

planning method plans a path that is optimal over all of the candidates in the map. This

full horizon path is likely to be much longer than the length of the average interval. As a

result, the robot will usually only get to execute part of a full horizon path, and there is no

guarantee that this part of the path will be very efficient. However, as long as the robot is

able to make it to one candidate before the set of candidates changes, a robot using the

greedy method should at least execute locally efficient paths. Therefore, because a robot

using the full horizon method is not guaranteed to do anything efficient during the

intervals in which candidates remain constant, and because the result of the set of

candidates changing does not consistently favor the full horizon over the greedy method,

we do not expect the full horizon method to perform better than the greedy method on

average when the set of candidates changes during exploration.

3 One might object to modeling the way the set of candidates changes as a random process by saying that
in fact we can be pretty certain that the set of candidates will change every time the robot visits a candidate.
In exploration for increasing map coverage, the candidates are intentionally placed in areas that will cause
the robot to map new area, and mapping new area usually causes the set of candidates to change. One
response is that the set of candidates changes at other times as well, and these other times are much more
difficult to predict. Another response is that the set of candidates does not always change when the robot
visits a candidate. We discuss how the set of candidates changes in more detail in Section 3.3.2.

 72

3.2.3 The Finite Horizon Method for Observation Planning

The finite horizon observation planning method is meant to plan the most efficient

path possible when the robot cannot predict how or when the candidates will change. As

we have seen, the best that the robot can do when the candidates change unpredictably is

to plan a path that is optimally efficient only over the distance of the average interval in

which the candidates do not change. Specifically, we would like to calculate a path that

has a length that is less than or equal to a set threshold distance and that visits a subset of

the candidates that has the maximum possible total utility. This threshold distance should

be set to the length of the average distance that the robot can travel before the set of

candidates changes4. Using a threshold distance to find a path in this manner is similar to

using a finite horizon to evaluate the optimality of policies for Markov Decision

Problems (MDP’s) [27]5. Therefore, we refer to this method of calculating paths as the

finite horizon observation planning method.

 Figure 3.5 shows two paths that the finite horizon observation planning method

produces for the situation from Figure 3.1. In Figure 3.5a, the threshold cost (L) is 5m.

The robot can only reach one candidate, candidate v1, within 5m. Therefore, the best

path with cost less than or equal to 5m is the path that goes straight to candidate v1. The

total utility of the candidates the robot visits along this path is 0.5. Note that this path is

the same as the greedy path in Figure 3.1a. If we set the threshold cost very low, the

finite horizon observation planning method is similar to the greedy method that always

chooses the closest candidate.

 In Figure 3.5b, the threshold cost is 11m; therefore, the finite horizon observation

planning method must consider many possible paths. For example, the solution path

from Figure 3.5a has a cost less than 11 and a total utility of 0.5. The shortest path that

visits candidates v1 and v2, which we denote <v1, v2>, has a cost of 5m + 4m = 9m and a

total utility of 0.7. The shortest path that visits candidates v2 and v3, <v2, v3>, has a cost

4 We discuss what we mean by the “average distance the robot can travel before the set of candidates
changes” in more detail in Section 3.2.3.2.
5 Another common method of evaluating the optimality of policies for MDP’s is to use a discounted reward
over an infinite horizon [27]. We could use a discounted reward instead of an additive reward in the
observation planning methods we develop in this thesis in order to take into account our uncertainty about
when the set of candidates will change. We discuss this possibility and why we do not pursue it in this
thesis in Section 3.2.3.2.

 73

of 3m + 3m + 5m = 11m and a total utility of 1.0. Table 3.1 enumerates all of the least-

cost paths that have a cost less than or equal to 11m and gives the cost and total utility of

each of these paths. The path that visits the candidates with the highest total utility is the

path <v1, v3>, and therefore this path is the output of the finite horizon observation

planning method.

v1

v2

v3

5m
3m

3m

5m

4m

3m

3m 4m

5m

7m

3m

3m

utiltity=0.2

utility=0.8

utility=0.5

4m

L = 5

L = 11

v1

v2

v3

5m
3m

3m

5m

4m

3m

3m 4m

5m

7m

3m

3m

utiltity=0.2

utility=0.8

utility=0.5

4m

a)

b)

v1

v2

v3

5m
3m

3m

5m

4m

3m

3m 4m

5m

7m

3m

3m

utiltity=0.2

utility=0.8

utility=0.5

4m

L = 5

L = 11

v1

v2

v3

5m
3m

3m

5m

4m

3m

3m 4m

5m

7m

3m

3m

utiltity=0.2

utility=0.8

utility=0.5

4m

a)

b)

Figure 3.5 Finite Horizon Paths for L=5 and L=11

 74

Path Path Cost Total Utility

< v1> 5m 0.5

< v2> 6m 0.2

< v3> 10m 0.8

<v1, v2> 9m 0.7

<v1, v3> 11m 1.3

<v2, v3> 11m 1.0

Table 3.1 Least-Cost Paths Between Candidates with Path Cost ≤ 11m

We can view the finite horizon observation planning method as a balance between

greedy and full horizon observation planning methods. Therefore, our rough intuition is

that if the set of candidates does not change at all during exploration (no candidates are

added, removed, change score, or move), then the robot should use the full horizon

observation planning method. If the set of candidates changes a medium amount during

exploration, then the robot should use the finite horizon observation planning method.

And if the set of candidates constantly changes, then it should not attempt to plan ahead

at all, but use a greedy observation planning method. The reasoning behind this last rule

is, that if the set of candidates changes a lot, even a path chosen with the finite horizon

observation planning method can get caught, sacrificing in the short term for a reward

that will never come to fruition. For instance, if the set of candidates changes drastically,

every time the robot arrives at an observation point in its path, then if the robot ever goes

to a point that is a sacrifice, the robot will probably not be able to capitalize on this

sacrifice, because the candidates will change. Therefore, in this situation, we postulate

that it is most efficient on average to always choose the greedily-best candidate.

One desirable feature of the finite horizon observation planning method is that it

combines the goal of keeping path cost to a minimum with the goal of maximizing the

total utility of the candidates that the robot visits in a principled manner. As we

discussed above, the greedy method must use some arbitrary function in order to combine

the utility of a candidate with the cost of the best path from the robot to the candidate.

Researchers will probably choose this function empirically, and choosing the function

based on past experience may mean that the function is tuned for the environments for

 75

which the researchers ran tests and may not perform well in new environments. In

addition, the full horizon approach to observation planning does not take into account the

utilities of candidates at all. The approach finds a least-cost path that visits all of the

candidates, regardless of their utilities.

A final nice feature of the finite horizon observation planning method is that we

can adjust the planning horizon, L, to reflect how often we expect the set of candidates to

change during exploration. In other words, if the robot starts off knowing a lot about its

environment, perhaps because it can see a lot of its environment from its initial position,

then the set of candidates should not drastically change very frequently during

exploration and the robot can set its planning horizon to be very long. However, if the set

of candidates is constantly changing, we can set the planning horizon to be very short so

that the robot still has a chance of executing its path to completion. Recall that the only

time we know for sure that the robot is going to do something efficient if it is able to

execute its path to completion. The shorter we set the planning horizon, the closer the

finite horizon method becomes to the greedy method. And if we set the planning horizon

to be longer than the length of a full horizon path over the set of candidates, then the

finite horizon method and the full horizon method are equivalent. Therefore, the finite

horizon observation planning method is very adaptable.

Just as calculating a full horizon path corresponds to solving the TSP over the set

of candidates, calculating a finite horizon path corresponds to solving the Selective

Traveling Salesman Problem [15] over the set of candidates. We can state the S-TSP

informally as follows: given a cost L and a directed graph with utilities for each vertex

and costs for each edge, find an ordered subset of vertices, denoting a cycle, such that the

total utility of the subset is maximized, and the cost along the cycle does not exceed L.

The S-TSP has been studied in some depth, and efficient algorithms exist for solving it

[15]. Therefore, if we show how to formulate the finite horizon approach to observation

planning in terms of the S-TSP, it will be possible to make use of these efficient

algorithms. In the next section, we examine the S-TSP and its relation to the finite

horizon method in more detail.

 76

3.2.3.1 Formal Definition of the Selective Traveling Salesman Problem

 For the purposes of this thesis we use the following definition of the Selective

Traveling Salesman Problem [15]. Take a complete directed graph G = (V, E), where V

= {v0, v1, …, vn-1} is the set of vertices, and E = {(v0,v1), (v0, v2)…} is the set of edges.

Vertex v0 is called the depot (the start vertex). The edge cost function c(vi, vj) maps each

edge to a real number. This cost function must satisfy the triangle inequality. In other

words, the cost function must satisfy the following constraint: for all i, j, and k such that

(vi, vj), (vj, vk), and (vi, vk) are members of E, c(vi, vk) ≤ c(vi, vj) + c(vj, vk). In addition,

define a vertex utility function u(vi) mapping each vertex to a real number. Then given

some real number L, the Selective Traveling Salesman Problem is to find a maximum

utility Hamiltonian cycle over some sub-graph of G that includes v0 and that has a total

cost less than or equal to L. Recall that a path in a graph is a sequence of vertices <u0,

u1,.., uk> such that for i = 0 to k, ui is a vertex in the graph, and for i = 1 to k, (ui-1, ui) is a

member of E. A cycle is a path that starts and ends with the same vertex and contains at

least one edge. A Hamiltonian cycle is a cycle that includes the start vertex exactly twice

and every other vertex in the graph exactly once. The utility of a cycle is defined to be

the sum of the utilities of the vertices in the cycle.

It is important to note that even though the Selective Traveling Salesman Problem

finds an optimum cycle through the graph, we do not actually want the robot to return to

its start point. Therefore, what we want to find is a maximum utility Hamiltonian path

through some sub-graph of G that starts at v0 and that has a total cost less than or equal to

L (a Hamiltonian path is a path that includes every vertex in the graph exactly once).

Nevertheless, it is still important to formulate the fixed horizon method as solving the S-

TSP. Many good algorithms for solving the S-TSP have been developed [16] [15] [17]

[22] [50] [42], and we would like to be able to use these algorithms in implementations of

finite horizon observation planners. Although we do not make use of existing S-TSP

algorithms in this thesis, we still perform finite horizon observation planning by solving

the S-TSP, in order to make it easy to swap in a more efficient S-TSP algorithm if we

find one. In addition, we formulate the finite horizon method as solving the S-TSP even

though we do not want to find cyclical paths because there are many very good

algorithms for solving the TSP. In order to use these TSP solvers as black boxes in the

 77

finite horizon algorithm we present in Chapter 4, we must be able to handle finding

cycles instead of paths through our graphs.

Chapter 4 shows how to transform an undirected graph U into a directed graph D

such that the solution to the S-TSP on D maps to a finite horizon path through U. This

transformation is the reason why we define the S-TSP on directed graphs, for otherwise

most real world graphs are undirected. On undirected graphs, the S-TSP is NP-hard [30].

Chapter 4 also explains a method for transforming a directed graph into an undirected

graph by at most doubling the number of vertices. Therefore the S-TSP is also NP-hard

for directed graphs. Furthermore, it turns out that for the graphs we are interested in, the

transformation in Chapter 4 only adds one vertex to the undirected graph. Thus defining

the S-TSP on directed as opposed to undirected graphs does not make the problem

significantly harder for us.

The S-TSP is also known as the Orienteering Problem (OP) [16], for the goal in

orienteering is to collect prizes at various locations on a map within a set amount of time.

The S-TSP has been studied by a number of authors [16] [17] [22] [50] [42] [15] [30].

The most common approach to solving the problem is through branch-and-cut

algorithms. In Chapter 4 we describe a novel method for solving the S-TSP by framing it

as an optimal constraint satisfaction problem [50].

3.2.3.2 Finite Horizon Continuous Observation Planning

In order to immediately adjust the path for any changes in the set of candidates,

we would like to perform continuous observation planning with the finite horizon

method. However, if we continuously recalculate a finite horizon path for the set of

candidates, then we need to decide how to set the horizon length, L, for each

recalculation. For both non-continuous and continuous observation planning, the most

obvious guideline for how to select L is as follows: whenever the robot plans a finite

horizon path for the set of candidates, set the horizon length, L, to the expected distance

that the robot will travel before the set of candidates changes. This guideline has

different implications for different models of how the set of candidates changes.

A simple model is to say that the set of candidates changes at regular intervals

during the robot’s exploration, or in other words to say that the set of candidates changes

 78

every time the robot travels exactly k meters, where k is a constant. Using this model, we

find that, if the robot has traveled d meters since the last time the set of candidates

changed, then we expect that the robot will only be able to travel k – d meters before the

set of candidates changes again. In order to perform continuous observation planning

using this model, therefore, our guideline tells us to set L equal to k – d meters, every

time that the robot calculates a finite horizon path. We call this method of continuous

observation planning the fixed horizon method.

In Section 3.2.2, however, we said that a more appropriate way to model when the

set of candidates changes is as an arrival-type stochastic process. Using such a model, at

any instant we can calculate the expected value of the distance that the robot will travel

before the set of candidates next changes. This expected distance is the value our

guideline tells us to set L to whenever we compute a finite horizon path. Unfortunately,

the expected value of the distance that the robot will travel before the set of candidates

changes usually depends on how the set of candidates have changed in the past (in other

words, the process is not independent). For example, if recently the set of candidates has

been changing frequently, one possible reason is that the robot is in an area for which it

has mapped very little. In such an area, everywhere the robot turns it maps new objects,

and these changes in the map cause the candidates to change. If recently the set of

candidates has been changing frequently, therefore, then we have some reason to believe

that the set of candidates will change frequently in the near future, because the robot may

not leave the area for which it has mapped very little. Thus, in order to perform

continuous observation planning, we would have to construct a filter to estimate the

expected distance that the robot will travel before the set of candidates changes, based on

studies of the patterns in how the candidates change.

In this thesis, we do not pursue this method of continuous observation planning.

Instead, we see how far we can get by making the simplification that the expected value

of the distance that the robot will travel before the set of candidates changes is

independent of how the set of candidates has changed in the past (in other words, we

assume the process is independent). We also assume that at each instant, the probability

that the set of candidates will change is the same as the probability that the set of

candidates will change at any other instant (in other words, we assume the process is

 79

identically distributed). In this simplified model, the expected value of the distance that

the robot will travel before the set of candidates changes is some constant p; it does not

depend at all on how far the robot has traveled since the set of candidates last changed.

Therefore, in order to perform continuous observation planning using this model, we

always calculate the finite horizon path with L set to p. We call this method of

continuous observation planning the receding horizon method.

It is worthwhile to note that modeling the way the candidates change as an arrival

type stochastic process also suggests a method of continuous observation planning that

this thesis does not pursue: using discounted rewards [27]. In other words, when

calculating the total utility of a potential plan, we could decrease the utility of candidates

that come later in the plan. The later a candidate occurs in the plan, the more we would

decrease the utility of the candidate. We would then sum the modified utilities of the

candidates that a plan visits and choose the plan that has the highest total utility over

either a finite or full horizon. Decreasing the utilities of candidates in this way should

cause the robot to favor visiting high utility candidates immediately, before the set of

candidates changes, while still allowing the robot to take the future into account in its

plan.

In MDP’s, discounting is usually performed using a discount factor, γ, where

0 < γ < 1. The discount factor can be thought of as the probability that the robot’s “life”

will last at least one more discrete step [27]. If the robot receives a reward of ri at step i

in a sequence of actions, then the total utility of this sequence is r0 + γr1 + γ2r2 + … + γnrn,

where n is the length of the sequence. In other words, the reward at each step is

multiplied by the probability that the robot will live to that step. In our case, we would

like to multiply the utility of each candidate in a plan by the probability that the set of

candidates will not change before the robot gets to that candidate. We can calculate this

probability using the stochastic process that we use to model the way that the candidates

change.

Using discounted utilities in calculating the total utility of a plan is a promising

approach that should be investigated. However, if the utility of each candidate depends

on the path that the robot takes to the candidate, then the problem of finding an optimal

path over a finite or full horizon becomes much harder. Because none of the algorithms

 80

that this thesis develops can be easily adapted to handle discounted utilities, we leave the

investigation of discounting to future work. Therefore, when we refer to the fixed

horizon, receding horizon, or full horizon methods, one may assume that these methods

use simple, additive utilities.

 Despite the fact that the fixed horizon method is justified by a simplistic model of

the candidate dynamics, neither the fixed horizon method nor the receding horizon

method is clearly better than the other. The main advantage that the fixed horizon

method has over the receding horizon method is that, as long as the set of candidates does

not change over the length of the horizon, a robot using the fixed horizon method is

guaranteed to execute the path it planned to completion. As we saw with the full horizon

method, we can only guarantee that the path the robot executes using a given observation

planning method will be efficient if the robot is able to execute the path that it has

planned to completion without the set of candidates changing enough to change the path.

Therefore, if the set of candidates does not change over the horizon length, we can

guarantee that a robot using the fixed horizon method will execute an efficient path. In

the receding horizon method, however, the path that the robot plans constantly gets

longer as the horizon recedes. Therefore, if the set of candidates ever changes enough to

change the planned path, we cannot guarantee that a robot using the receding horizon

path will do anything efficient.

For example, it is possible for a robot using the receding horizon method to

constantly plan a path that makes sacrifices initially, and only reaps the reward of these

sacrifices at the very end. In other words, it is possible for a robot using the receding

horizon method to constantly put off doing something efficient until later. In this

situation, if the set of candidates ever changes, then the robot may not get to capitalize on

the sacrifices it has made. Figure 3.6 depicts an example of such a situation. In both

diagrams, once the robot travels 30m the set of candidates changes enough to completely

alter the robot’s planned path. Therefore, we only look at the efficiency of the path that

the robot executes in 30m. In Figure 3.6a, the robot explores using the receding horizon

method with a 12m horizon. The initial path visits candidate a, then b, then c, since these

are the only candidates within 12m of the robot. As the robot moves towards candidate a,

it continues to recalculate its path over a 12m horizon, but the optimal route does not

 81

change. As soon as it reaches candidate a, however, the robot finds that if it just

sacrifices going to the relatively highly valued candidates b and c, it can reach the even

more highly valued candidates e and f. Thus the robot travels the long distance to

candidate d. When the robot reaches candidate d, however, it finds itself in the same

situation as before. If the robot takes the immediately unattractive option of traveling a

long distance to get to the low-utility candidate g, it can reach candidates h and i which

have the highest utility in the map. Yet once the robot reaches candidate g, the set of

candidates changes because the robot has traveled 30m. Therefore, the robot is not able

to reap the reward of visiting candidates h and i, and the robot ends up visiting candidates

whose total utility is 0.3 before the set of candidates changes.

c

b

f

e

ic

1m
1m 1m

1m1m
1m

10m 10m10m

11

10

13

12

0.10.1

i

h

gd

1m
1m 1m

1m1m
1m

10m 10m10m

11

10

13

12

0.10.1

h

g

e

f

a

b

a)

b)

15

14

0.1

15

14

0.1

a d

Figure 3.6 Receding Horizon (a) versus Fixed Horizon (b)

 The problem with the receding horizon path in this case is that the robot

constantly makes the sacrifice of traveling 10m to a candidate with a utility of only 0.1

and never gets to capitalize on this sacrifice by going to the highly valued points nearby.

The fixed horizon method avoids this problem, since the robot gets to execute two of the

 82

paths that it plans to completion6. Figure 3.6b depicts the same set of candidates, but

with the robot using the fixed horizon method with a 12m horizon to select its route.

Initially the path is the same, visiting candidates a, b and c. Once the robot reaches

candidate a, however, it finds that it only has L–10m=2m left to plan for. Thus the best

route still takes the robot to candidates b and c. Upon reaching candidate c, the robot

starts planning for the next 12m path. The best path from c takes the robot back to

candidates b and a, and then to candidate d. Once the robot reaches d, it has traveled a

total distance of 24m. The robot then plans for a new 12m horizon and finds that the best

path visits candidates g, h, and i. After the robot has traveled 6m towards candidate g,

however, the set of candidates changes, because the robot has traveled a total of 30m.

Therefore, using the fixed horizon method, the robot visits candidates with a total

utility of 21.2 before the set of candidates changes, while using the receding horizon

approach, the robot visits candidates with a total utility of only 0.3. In addition, note that

we could have simply lengthened this example by adding more groups of three

candidates 10m apart and made the path that the robot executes using the fixed horizon

approach an arbitrary amount better than the path that the robot executes using the

receding horizon approach.

 Nevertheless, the receding horizon method has the major advantage of always

planning as far ahead into the future as we are willing to. In contrast, the fixed horizon

method seems to unnecessarily become more and more near-sighted in its planning as the

robot moves. Thus the danger in the fixed horizon case is that the robot will constantly

ignore the fact that there is a very good set of candidates just beyond the fixed horizon

that is within L meters of the robot’s current position. For example, if we change the

distance that the robot travels before the set of candidates changes to 22m in the previous

example and get rid of candidates g, h, and i, then using the receding horizon approach

suddenly becomes better than using the fixed horizon approach. In this altered example,

the fixed horizon approach does not realize when the robot is at candidate a that

candidates d, e, and f are better to go to than candidates b and c. Therefore, from

candidate a, the robot goes to candidates b and c. Once the robot reaches candidate c, it

6 Note that using discounted rewards is another way of avoiding situations like these in which the robot
constantly sacrifices and never gets to reap any reward. However, investigating discounted rewards is
outside of the scope of this thesis.

 83

plans to go back to candidates b and a, and then to candidate d. However, the robot only

makes it back to candidates b and a before the set of candidates changes. Therefore, the

robot collects a total utility of 21.1 over the mission. In the receding horizon approach,

however, the robot realizes at candidate a that visiting candidates d, e and f is better than

visiting candidates b and c. Therefore, the robot visits candidates a, d, e, and f for a total

utility of 25.2.

In summary, the major disadvantage of the receding horizon approach is that,

unless the set of candidates never changes enough to alter the planned path, a robot using

the receding horizon method is never guaranteed to execute an efficient path. The major

disadvantage of the fixed horizon approach is that if the robot travels farther than the

horizon length without the set of candidates changing, then the robot will usually plan

less efficient paths using the fixed horizon approach that it will using the receding

horizon approach. Therefore, neither approach is clearly better than the other. The only

real way to decide on which method to use is to test and see how well each performs in

the specific scenarios the user is interested in. In Chapter 6, we present the results of

experiments testing the performance of a specific candidate identification and scoring

method with both approaches.

One final point to make is that in the case of finite horizon continuous observation

planning methods, there is one situation in which the set of candidates changing will

probably not hurt the efficiency of the path that the robot executes. If no candidates ever

disappear, move, or change their utility, then even if new candidates appear as the robot

moves, a robot using either the fixed or receding horizon method will on average execute

a path that is at least as efficient as it would have if nothing had changed at all. In order

to see why the efficiency of the path that the robot executes should not decrease in the

fixed horizon case, we look at the robot’s exploration over one horizon. If new

candidates are added to the map before the robot has reached the end of its horizon, then

the path that the robot executes over the interrupted horizon is guaranteed to be at least as

efficient as the path that the robot would have executed otherwise. The robot will only

change the path it has planned if the new path is more efficient over the remaining

distance to the horizon than the old path was. The new path would have to be more

efficient because none of the old candidates changed; therefore, the robot could still

 84

execute its old path if it was better. As long as the candidates do not change again, a

robot using the fixed horizon method will execute to completion whatever path it decides

on. Therefore, what we say about the path that the robot plans is also true about the path

that the robot executes. However, if the new candidates caused the robot to change its

path, then the robot will end up in a different location than it would have if new

candidates had not appeared. This location might be much worse for exploration than the

location the robot would have ended up in otherwise. Therefore, we cannot guarantee

that the path the robot executes over the entire mission will be at least as efficient as the

path the robot would have executed if no new candidates had appeared.

In order to see why the efficiency of the path that the robot executes should not

decrease in the receding horizon case, we examine the path that the robot plans the instant

after new candidates appear. This path will only be different from the path that the robot

would have planned if the new path is more efficient than the old path. Yet because a

robot using the receding horizon method constantly recalculates its path for a whole new

horizon, even if the set of candidates does not change again, we cannot guarantee that the

robot will execute to completion whichever path it decides on. However, if the set of

candidates does not change again, the robot will usually execute a path that is at least as

efficient as the path that the robot decided on after new candidates were added to the

map. Therefore, even if new candidates are added to the map, a robot using the receding

horizon method will on average execute a path that is at least as efficient as it would have

if the set of candidates had not changed.

 Yet if candidates disappear, move, or change their utility as the robot moves, then

a robot using either the fixed horizon or the receding horizon may no longer be able to

use the path that it initially planned. Therefore in this scenario, we have no reason to

believe that a robot using either the fixed horizon or the receding horizon method will

execute a path that is at least as efficient as the path it would have executed otherwise.

And in many candidate identification and scoring methods, candidates are very likely to

at least move and change score as the robot moves. Therefore, we usually will assume

that we cannot predict whether the set of candidates changing will be good or bad for the

efficiency of the path the robot executes.

 85

Now that we understand the basic motivation behind the receding horizon and

fixed horizon continuous observation planning methods, we are ready to define these

methods more precisely.

3.2.3.3 Definition of Finite Horizon Observation Planning Methods

 In order to define the receding horizon and fixed horizon continuous observation

planning methods, we first define the basic finite horizon observation planning method.

The finite horizon observation planning method takes as input a partially completed map

of the environment, a set of candidates C, a vector giving the robot’s current pose xr, and

a real-valued threshold cost L. The method must then output a least-cost feasible path

starting at the robot’s current position and going to a subset of the candidates (the chosen

points) such that the total utility of the subset of candidates is the maximum possible and

the path cost is less than L7.

We can break the finite horizon observation planning method down into solving

two sub-problems. First, given a partially completed map, the set C, and the vector xr, the

robot must find and store a least-cost path between each pair of candidates that avoids

obstacles. Figure 3.7a depicts an example of a partially completed map. The candidates

are labeled v1-v4, and the least-cost path between each pair of candidates is drawn with a

solid line. The robot then must extract from these pair-wise paths a complete graph G of

candidate observation points in which the edge cost between any two candidates is the

least-cost path length between them. Figure 3.7b shows what the graph for Figure 3.7a

would look like. Note that the robot’s current location must also be included in the

graph. Second, given the graph of candidates G, the candidate utilities, and a threshold

cost L, the robot must solve the S-TSP. The output of the S-TSP solver will be the

chosen points and a sequence to visit them in. The robot can then use its stored least-cost

path for each consecutive pair of chosen points and execute the plan.

7 If there are no candidates such that the least-cost path from the robot to the candidate has a cost less than
L, then by this definition the finite horizon method outputs a path that has the robot not move anywhere.
Yet in most implementations of the finite horizon method we do not want the robot to ever stop exploring if
there are still candidates in the map. Therefore, in the implementation that we test in Chapter 6, the finite
horizon method outputs the least-cost path to the greedily best candidate in this situation.

 86

Figure 3.7 Extracting a Graph for the S-TSP

We refer to the first sub-problem as the candidate graph extraction problem. The

second sub-problem is simply the Selective Traveling Salesman Problem. The benefit of

dividing the problem into these two sub-problems is that the first sub-problem captures

all of the interesting variations that a particular situation might require, while the second

sub-problem captures the underlying combinatorial optimization problem. In the

candidate graph extraction problem, the robot is free to use any map representation it

wants (e.g. grid-based, feature-based, scan-matched) as long as there is some method for

finding a feasible least-cost path between candidate pairs. In addition, the cost of a path

does not have to be its distance, it could also be the time or even the energy required to

traverse the path. No matter what options we choose in solving the candidate graph

extraction problem, however, the input and output of the S-TSP remains the same.

Figure 3.8 gives pseudo-code for performing finite horizon observation planning

by breaking the problem down into these two sub-problems. In particular, the function

Extract_Candidate_Graph() on line 1 solves the candidate graph extraction

problem, and the function Solve_S-TSP() on line 2 solves the S-TSP. The function

Fill_In_Path() on line 3 takes an ordered subset of the set of candidates, the

partially completed map, and the robot’s position, and returns a shortest path avoiding all

obstacles that takes the robot from its position to each of the candidates in the subset in

order.

 87

Plan_Observations_Finite_Horizon(partially completed map, candidate
set, robot pose, threshold cost)
returns exploration path starting at robot pose

1. let graph = Extract_Candidate_Graph(partially completed map,
candidate set, robot pose)
2. let candidate list = Solve_S-TSP(graph, threshold cost)
3. let path = Fill_In_Path(candidate list, partially completed map,
robot pose)
4. return path

Figure 3.8 Pseudo-code for the Finite Horizon Observation Planning Method

 Reviewing the big picture of our definitions, most exploration methods perform

exploration path planning. We break the exploration path planning problem down into

two sub-problems: the candidate identification and scoring problem and the observation

planning problem. A specific approach to solving the observation planning problem is

the finite horizon observation planning method. We break the finite horizon observation

planning method into two more sub-problems: the candidate graph extraction problem

and the S-TSP. In Chapters 4, and 5, we describe a specific implementation of an

exploration method using the finite horizon observation planning method. The

implementation uses the candidate identification and scoring approach of the Newman,

Bosse, and Leonard exploration method that we described in Chapter 2. In Chapter 4 we

present a novel method for solving the S-TSP. In Chapter 5 we describe the

implementation’s candidate graph extraction method. Finally, in Chapter 6 we present

the results of testing the performance of this implementation in real world and simulated

environments.

 Now that we have defined the basic finite horizon observation planning method,

we can build upon this definition to define the finite horizon continuous observation

planning methods. In the receding horizon continuous observation planning method the

robot constantly recalculates the path using the finite horizon observation planning

method with the most recently updated partial map, the most recently computed set of

candidates C, the robot’s current pose vector xr, and the threshold cost L. In the fixed

horizon continuous observation planning method the robot constantly recalculates the

path using the finite horizon observation planning method with the most recently updated

 88

partial map, the most recently computed set of candidates C, the robot’s current pose

vector xr, and the threshold cost L minus d, where d is the cost of the path the robot has

executed since the last horizon. Initially d is set to zero. Whenever L-d is less than or

equal to zero, d is reset to zero and we say that the method has started a new horizon8.

 Figure 3.9 shows pseudo-code for a generic exploration method using the

receding and fixed horizon continuous observation planning methods. Figure 3.9a shows

the top level exploration pseudo-code. This pseudo-code is almost identical to the

exploration pseudo-code depicted in Figure 2.2. The main difference is that the user must

pass in the planning horizon (threshold cost) as a parameter to the exploration method.

Figure 3.9b shows an implementation of the Plan_Exploration_Path() function

that performs receding horizon continuous observation path planning. The function

Identify_and_Score_Candidates() on line 1 solves the candidate

identification and scoring problem. We gave the pseudo-code for the function

Plan_Observations_Finite_Horizon in Figure 3.8. Figure 3.9c shows an

implementation of the Plan_Exploration_Path() function that performs fixed

horizon continuous observation path planning.

8 When L-d gets to be small, it becomes likely that there are no candidates with a least-cost path between
the robot and the candidate that is less than L-d. Therefore the robot often gets stuck without a path to
execute in the fixed horizon method. In the implementation of the fixed horizon method that we test in
Chapter 6, we fix this problem by returning the greedily-best path in this situation.

 89

Explore_Continuous_Finite_Horizon(threshold cost, constantly updating map)
returns nothing

1. while Mission_Completed() is false
2. let map = Get_Most_Recent_Map(constantly updating map)
3. let robot pose = Get_Current_Robot_Pose(map)
4. let path = Plan_Exploration_Path(map, robot pose, threshold cost)
5. Execute_Segment_of_Path(path)
6. endwhile

Plan_Exploration_Path(current robot pose, partially completed map,
threshold cost)
returns exploration path starting at current robot pose

1. let C = Identify_and_Score_Candidates(partially completed map)
2. let path = Plan_Observations_Finite_Horizon(partially completed
map, C, current robot pose, threshold cost)
3. return path

Plan_Exploration_Path(current robot pose, partially completed map,
threshold cost)
returns exploration path starting at current robot pose

1. let C = Identify_and_Score_Candidates(partially completed map)
2. let d = Get_Total_Executed_Path_Cost()
3. let new threshold = threshold cost - d
4. let path = Plan_Observations_Finite_Horizon(partially
completed map, C, current robot pose, new threshold)
5. return path

a)

b)

c)

Figure 3.9 Pseudo-code for Receding and Fixed Horizon Approaches to Exploration

3.3 General Analysis of Finite Horizon Observation Planning
Methods

 Even though we only had time in this thesis to test how well finite horizon

observation planning methods work with one particular candidate identification and

scoring algorithm, we can still gain some understanding of how well finite horizon

methods should work for most other candidate identification and scoring algorithms

through general analysis. In order to evaluate the performance of finite horizon

observation planning methods, we look at how well finite horizon methods work relative

to greedy and full horizon methods. In particular we look at the continuous observation

planning version of each of these methods, for when the set of candidates changes, non-

 90

continuous observation planning only performs well out of luck. We focus on

exploration in order to expand the map in all directions as efficiently as possible because

this is the most common sub-goal of methods of exploration for increasing map coverage.

We discuss the possible sub-goals of methods of exploration for increasing map coverage

in Chapter 2.

3.3.1 Strengths and Weaknesses of Observation Planning Methods

Section 3.2 gave us the basic intuition that greedy observation planning

approaches should perform most efficiently when the set of candidates changes

frequently during exploration, finite horizon approaches should perform most efficiently

when the set of candidates changes moderately often, and the full horizon approach

should perform most efficiently when the set of candidates barely ever changes at all.

We now refine this intuition.

In Section 3.2 we saw that the general motivation for considering the full horizon

method was that planning ahead should allow the robot to compute more efficient paths

than the greedy method. More precisely, the efficiency of the full horizon path for a set

of candidates is guaranteed to be greater than or equal to the efficiency of any other path

that visits every candidate in the set. Therefore, if the robot explores until it has visited

every candidate in the map, and if the set of candidates does not change during

exploration, then the efficiency of the path that the robot executes using the full horizon

method is guaranteed to be greater than or equal to the efficiency of the path the robot

executes using a greedy method or any other method. The reason that we did not then

conclude that the full horizon method is the final word in observation planning was that,

as the robot executes its planned path, it is likely that the set of candidates will change

enough to cause the robot to significantly alter its path if it is performing continuous

observation planning. If the robot is not able to execute the entire path that the full

horizon method has planned, then there is no guarantee that the robot will do anything

efficient at all. The first portion of a full horizon path is not guaranteed to be efficient;

only the whole path is planned to be efficient.

Our solution to this problem with the full horizon observation planning method

was to say that, if major changes in the set of candidates occur at somewhat regular

 91

intervals, then the robot can use the finite horizon approach to plan a path that is optimal

only over the period of time that we expect the candidates to stay constant. Because the

robot should be able to execute these finite horizon paths completely, we expect that the

robot will explore more efficiently on average using the finite horizon approach, than it

would using a greedy approach. We can only say that we expect the exploration to be

more efficient on average because a finite horizon path is only calculated to be optimally

efficient over the planning horizon. If the robot’s mission lasts longer than one planning

horizon, then the robot must string multiple finite horizon paths together. These

concatenated finite horizon paths are not guaranteed to be optimally efficient over their

combined length. Therefore, it is possible that a robot using the greedy approach could

get lucky and execute a path that is more efficient over the length of the mission than

these concatenated finite horizon paths. Yet because the efficiency of a finite horizon

path is guaranteed to be greater than or equal to the efficiency of any other path

(including greedy paths) over the length of the horizon for the same set of candidates and

initial robot position, it is more likely that the concatenated finite horizon paths will be

more efficient over the length of the mission than a greedy path.

Unfortunately, we cannot predict when the set of candidates will change enough

to alter the path that the robot has planned. As a result, we cannot choose horizon lengths

for the robot to plan its paths over that will guarantee that the robot will be able to

execute all of the paths it plans to completion before the set of candidates changes. And

if the execution of a path that the robot has planned is interrupted by the set of candidates

changing, we cannot guarantee that the part of the path the robot executes before the

interruption will be efficient. Therefore, it is important to determine how often the robot

not being able to execute some of its finite horizon paths to completion will significantly

hurt the efficiency of the robot’s exploration. The finite horizon paths that the robot can

execute to completion should be more efficient than corresponding greedy paths of the

same length. Therefore, in order to determine how efficiently a robot using the finite

horizon approach should explore on average (as compared to the greedy approach), we

must weigh how much the finite horizon paths that the robot completes should improve

efficiency against how much the finite horizon paths that get interrupted should hurt

efficiency.

 92

Having the execution of an finite horizon path interrupted will hurt the efficiency

of the robot’s exploration if the part of the finite horizon path that a robot executes before

the path changes is significantly worse than the path the robot would have executed using

a greedy method. In other words, if the finite horizon path makes big sacrifices early on

and the execution of the path gets interrupted before the robot is able to reap the reward

of these sacrifices, then getting interrupted will hurt efficiency. Figure 3.10 shows an

example of the robot getting caught making a sacrifice in this way. In Figure 3.10a, the

robot passes up visiting the nearby candidates a and b and makes the sacrifice of going all

the way to candidate c in order to next reap the reward of visiting candidates d through i.

Figure 3.10b shows what the environment actually looks like. Once the robot reaches

candidate c, it finds that a wall it had not seen before blocks the rest of the path it had

planned. If the robot had followed a greedy strategy by initially going to candidates a

and b, it would have succeeded in visiting candidates with a higher total utility in a

shorter distance. Therefore in this situation, the greedy method performs more efficiently

than the finite horizon method. In addition, had the robot gone to candidates a and b it

would have discovered an entirely new room off to the right with many high utility

candidates. Using the greedy method, the robot would have been drawn off into this new

room and may have never had to visit the distant candidate c.

 93

0.5

i
b

a

d

f

e

g h

i
b

a

0.7

0.9

0.8 0.9 0.5

0.7
0.5

0.4

0.7

0.9

0.8 0.9 0.5

0.7
0.5

0.4

0.8

0.9

0.5

0.6

0.4 0.4

0.9

a)

b)

hg
f

e

d

c

Figure 3.10 Getting Interrupted after Making a Sacrifice

Of course, there is no reason why the part of a finite horizon path that the robot

executes before being interrupted must be less efficient than a corresponding greedy path.

If the robot did not make any big unrewarded sacrifices in this part of the path, then the

efficiency of this part of the path could have been greater than or equal to the efficiency

of a corresponding greedy path. In the end, therefore, we cannot say on face whether the

finite horizon approach will be more or less efficient than the greedy and full horizon

approaches. The efficiency of the path the robot executes using the finite horizon method

strongly depends upon the arrangement of the candidate observation points and the way

they change. The arrangement of the candidates and the way they change in turn depends

on the shape of the environment and the exploration and SLAM algorithms the robot is

 94

using. Some questions we need to answer in order evaluate the relative efficiency of the

finite horizon approach for a particular situation are:

• Does the set of candidates ever change enough to cause the robot to drastically

alter its planned path?

• Do these changes occur regularly enough for the robot to be able to minimize the

number of times its finite horizon path gets interrupted by choosing a proper

horizon length?

• How often does the robot make big sacrifices, and how often does it get caught

not having collected the reward for these sacrifices?

• When the robot is able to execute its finite horizon path to completion, how much

more efficient is this path than a corresponding greedy path?

We now examine what we can say about the answers to these questions for the general

case of exploration to increase map coverage in all directions.

3.3.2 Analysis of the Finite Horizon Approach in Exploration to
Increase Map Coverage

The major problem with using the finite horizon approach when exploring to

increase map coverage is that the robot’s map, and, therefore, the set of candidates,

changes substantially every time the robot visits an unexplored region. It might seem

then that the robot needs to be able to predict what it will see at these unexplored regions

in order for it to be able to effectively plan ahead. Nevertheless, no current exploration

method can make such predictions. Therefore, we examine how well the finite horizon

approach should perform without the robot making predictions about what it will see in

unexplored regions. Our claim is that as long as the robot’s planned paths getting

interrupted does not significantly hurt the efficiency of the exploration, then if the robot

is able to execute any of its finite horizon paths to completion, on average the finite

horizon method should perform better than all other methods.

In order to estimate how frequently the robot’s execution of its finite horizon path

will get interrupted and what effect this interruption will have on the efficiency of

exploration, we must understand how the set of candidates will change during exploration

for increasing map coverage. Unfortunately, the dynamics of the set of candidates is

 95

noticeably different for different methods of exploration for increasing map coverage, as

a result of the wide variety of these methods. These differences limit the general analysis

that we can perform; therefore it is important to perform experiments to truly evaluate

how efficient finite horizon methods are. Nevertheless, we can find many significant

similarities between the ways candidates change in most methods of exploration for

increasing map coverage. In particular, mapping previously unexplored areas, the utility

of candidates changing as the robot passes by them, and small adjustments by the SLAM

algorithm to the location of objects already in the map cause the set of candidates to

change in most exploration methods. We examine all but the last cause, for the changes

to the set of candidates that result from SLAM updates to objects in the map are usually

minor.

3.3.2.1 Mapping Previously Unexplored Areas

The source of change in the set of candidates that we must worry about most is

mapping previously unexplored areas. If mapping previously unexplored areas only

added new candidates to the set of candidates, then as we saw in Section 3.2.3.2, we still

would expect a robot using a finite horizon continuous observation planning method to

execute an efficient path on average. When a robot visits an unseen area, however, it

pushes back the frontier of the part of the environment that it has seen. Most exploration

methods place candidates along this frontier; therefore, when the frontier moves so do the

candidates. In addition, a robot usually maps new objects when it visits previously

unexplored areas. These new objects can block the robot’s path to an existing candidate

and thereby increase the cost of the least-cost path to the candidate. Unfortunately, the

entire point of exploring to increase map coverage is to map previously unexplored areas.

In fact, if the candidate identification and scoring algorithm is doing its job, then every

time the robot visits a candidate it should see a previously unexplored area. It is a

problem for the finite horizon observation planning method if the set of candidates

changes significantly each time the robot reaches a candidate. If the robot’s execution of

its planned path is interrupted at every candidate, then there cannot be any benefit to

planning ahead farther than the next candidate, and the robot should use a greedy method.

 96

Planning ahead with the finite horizon approach is not doomed, however, as long

as there are cases when the set of candidates does not change drastically at every

candidate the robot visits. In these cases, the robot should still be able to execute a finite

horizon path with an appropriate horizon length to completion and be more efficient than

a greedy method would be for this one horizon. Figure 3.11 depicts one possible

situation in which the set of candidates does not change at all as the robot explores. In

the figure, the triangle is the robot and the circles are candidates. The solid lines in the

figure are lines in the robot’s map, and the dotted lines correspond to lines in the real

world which are not yet in the robot’s map. Figure 3.11a depicts the initial path and map

of the robot. In Figure 3.11b, the robot has reached candidate b and mapped the wall

there. The robot does not push back the frontier of the explored region at all, however,

because the new wall blocks the view beyond the candidate. Therefore, the robot does

not add any new candidate to its map and continues to execute its original path. The set

of candidates does not change at candidates c, d, or a either for the same reason. Figure

3.11c shows the robot at candidate e. The robot pushes back the frontier a short distance,

yet the newly explored region (the small office in the figure) is enclosed entirely by

walls. The robot cannot see through any of these walls to push this frontier out further,

and therefore the robot does not add any new candidates at point e either. Over the entire

path depicted in Figure 3.11, therefore, the set of candidates never changes.

 97

a a

a

a) b)

c)

c

b

e

d c d

e

Figure 3.11 Exploration Without Changing the Set of Candidates

There are also cases when the set of candidates changes over the robot’s path, but

not enough to alter that path significantly. One such case is when the robot has deduced

the basic structure of the environment with its map, but small gaps in the map still need to

be filled in. The finite horizon approach should calculate an efficient path that takes the

robot between these gaps in the map. What the robot sees at each gap may add a few

more candidates for the robot to visit in order to fully fill in the gap, but relative to the

length of the whole path, the distance to these new candidates will be insignificant. As a

result, the order that the path visits the gaps in will not change and the large-scale

structure of the finite horizon path will remain the same. There are a number of

situations in which the robot’s map might capture the basic structure of the environment

but still have gaps that need to be filled in. In Mars exploration, satellite images can give

 98

a rover a rough sense of the structure of the environment it is in, however, these images

are not very high resolution. Therefore, finite horizon approaches might be ideal for

filling in maps of Mars at resolutions useful to a rover.

Another case in which the robot could start out knowing the overall structure of

its environment is if the environment is open enough for the robot to see most of the

large-scale features from its initial position. For example, outdoor environments are

usually very open in this manner. Large scale features might correspond to spread-out

clusters of rocks, trees, or other objects. The robot would see some of the objects in these

clusters and therefore place candidates at each cluster in order to fill in the details there.

If the horizon that the robot plans over is long enough for the finite horizon path to go to

multiple clusters, then candidates appearing, disappearing, and moving within the clusters

should not significantly change the path the robot plans. The finite horizon path might

only change the order in which the robot visits the clusters if whole clusters move or if all

candidates within a cluster drastically decrease or increase in utility. Because there are

no walls to block paths between clusters outdoors, it is unlikely that the shortest distance

between clusters will change much in these environments. In cases such as these, when

visiting candidates changes the set of candidates a relatively small amount, the robot

should be able to execute a finite horizon path to completion without the efficient large-

scale structure of the path changing.

One concern is that if the set of candidates never changes enough to cause the

robot to significantly alter its path, then we might think that the full horizon approach

should perform better than the finite horizon approach. The full horizon approach plans a

globally optimal path, while the finite horizon approach only plans a path that is optimal

over the length of the horizon. One observation is that, as we mentioned in Section 3.2, if

we set the S-TSP horizon to be greater than or equal to the cost of a TSP path over the

candidates, then the S-TSP is equivalent to the TSP. Thus we can always mimic the full

horizon approach to selecting waypoints with a finite horizon approach, and as a result

the finite horizon approach can work well even when the set of candidates does not

change enough to significantly alter the robot’s path.

Another observation is that even if the set of candidates never changes drastically

enough to cause the robot to significantly alter its planned path, it is possible that the

 99

combined effect of many small changes to the set of candidates will be enough to alter

the robot’s path. The longer the path the robot plans, the more the robot exposes itself to

this possibility. Therefore, even if the set of candidates never changes drastically, it still

may not be a good idea to plan a path to visit every candidate in the map by using the full

horizon approach.

Finally, one important difference between the full horizon and finite horizon

approaches to selecting waypoints is that the full horizon approach does not consider the

utilities of the candidates at all in calculating a path. As a result, the full horizon

approach does not prioritize visiting candidates with a high utility. On the other hand, the

finite horizon approach chooses a subset of candidates to visit that has maximal total

utility. Therefore, if the exploration mission ends before the robot has visited every

candidate (as is often the case), it is just as likely that that robot will have visited low

utility candidates as it is that the robot will have visited high utility candidates using the

full horizon approach. Using the finite horizon approach, however, the robot is likely to

visit candidates with a high total utility as long as it has gotten to execute at least one full

finite horizon path before its mission ends. In addition, even if we ignore the utilities of

the candidates, if the mission ends before the robot visits every candidate, then the part of

the full horizon path that the robot gets to execute is not guaranteed to be efficient in

terms of length either. Therefore, if the effect of small changes to the set of candidates

accumulates as the robot explores, or if the mission ends before the robot gets to visit

every candidate, then it is better to use the finite horizon approach and plan over a limited

horizon than to use the full horizon approach.

3.3.2.2 Candidate Interactions

The second common cause of the set of candidates changing is candidate

interactions. Candidate interactions happen when the robot’s path to one candidate goes

by other candidates, causing the utilities of those other candidates to change. In

exploration for increasing map coverage, candidate interactions usually occur when the

robot arrives at one candidate and maps part of a region covered by other candidates.

Figure 3.12 gives an example candidate interactions for the case of the Gonzalez-Banos

and Latombe exploration algorithm described in Chapter 2. Figure 3.12a shows what the

 100

environment actually looks like, and Figure 3.12b shows the map that the robot starts off

with. The semicircle near each candidate shows the predicted amount of area that the

robot’s sensor will see from the candidate. The fact that these semicircles overlap means

that it is possible that the robot will see from one candidate part of the region covered by

another candidate. Figure 3.12c shows what happens if the robot visits candidate b. The

office that the robot sees from candidate b cuts off part of the area that the robot could see

from candidates a or c. Therefore, going to candidate b causes the utilities of candidates

a and c to drop. Candidate interactions also occur in the Newman, Bosse, and Leonard

exploration algorithm and the grid-based approaches to exploration described in Chapter

2.

a b c a c
0.9 0.9 0.9 0.6 0.6

a)

b) c)

Figure 3.12 Candidate Interactions

Changes in the set of candidates caused by candidate interactions are not usually

as drastic as changes caused by mapping new regions. In many environments, candidate

interactions can occur frequently, however. Indoor environments that are densely

populated with objects will cause candidates to interact frequently because the candidates

will be close together and highly overlapping. In such environments we therefore must

worry about the robot’s finite horizon path getting interrupted because of candidate

 101

interactions, as well as new regions being mapped. So once again we see that the finite

horizon approach is suited for open environments.

When the regions visible from various candidates overlap with each other, this

overlap causes another problem besides candidate interactions: finite horizon paths will

favor visiting regions that the robot has explored moderately well over regions the robot

has barely explored at all. When there are many candidates close together, it is usually

because they are marking the small gaps in the map in an area that has been explored

moderately well. Even though the regions visible from these candidates probably

overlap, the utility of each candidate will be as large as it would be if there were no other

candidates nearby in most exploration approaches. A finite horizon path will sacrifice to

get to such a cluster of candidates because the candidates are close together and have a

higher total value than the total amount of new area visible from them warrants. In

contrast, largely unexplored regions usually only have a few frontiers or features to place

candidates near. Therefore there will be relatively few candidates in largely unexplored

regions, and their total utility will be much lower than the total utility of all of the

candidates in moderately explored regions. A finite horizon path will therefore choose to

visit a moderately explored region over an unexplored region. Figure 3.13 gives an

example of such a situation. If the robot’s planning horizon is not long enough to go to

visit both ends of the hallway, then the finite horizon path will choose to visit the mostly

explored room on the left rather than explore the entirely unmapped right side of the

hallway.

x

0.8

0.8

0.8

0.85

0.95

Figure 3.13 Going to Explored Regions over Unexplored Regions

 102

If the robot’s goal is to try to map as much new area as quickly as possible,

however, then going to moderately explored regions over unexplored regions is exactly

the opposite kind of behavior that we want. If the robot can plan a path that takes into

account the fact that after the robot visits one candidate, the score of the other candidates

will drop, then the robot can avoid this problem somewhat. We do not explore planning

to take into account candidate interactions in this thesis, however. Yet visiting

moderately explored areas over unexplored areas is desirable if the robot’s goal is to map

thoroughly. Therefore, the finite horizon method might be good for exploration for

thoroughness.

3.3.2.3 Frequency of Unrewarded Sacrifices

 We have seen so far that the set of candidates will change frequently in

exploration for increasing map coverage, and that finite horizon paths will sometimes

cause the robot to go to moderately explored regions over unexplored regions. We also

have seen that when the environment is open, or in other situations in which the robot

knows the large-scale structure of its environment early on, the robot should be able to

execute many of its finite horizon paths to completion. In these situations, there should

also not be too many highly unexplored regions; therefore choosing moderately explored

regions over unexplored regions will not be an issue. Finite horizon observation planning

methods should, therefore, perform better in these situations than greedy or full horizon

methods, as long as the execution of these finite horizon paths does not often get

interrupted in a way that has the robot make many unrewarded sacrifices. Therefore, we

would like to characterize how likely it is that the robot will make unrewarded sacrifices

while exploring to increase map coverage.

In estimating how often the robot will get caught making unrewarded sacrifices,

we need to estimate how often a finite horizon path makes large sacrifices and how likely

it is that the execution of the path gets interrupted after such sacrifices but before the

robot can gather any reward. The first point to note is that in most environments, finite

horizon paths do not often make many large sacrifices. Usually there are plenty of good

candidates nearby for the robot to explore. In addition, a finite horizon path cannot make

sacrifices larger than the length of the planning horizon. In exploration for increasing

 103

map coverage, the planning horizon is not usually very long because the set of candidates

change so often. However, even if the finite horizon path does not make any large

sacrifices, occasionally it is still possible for the finite horizon path to improve upon

greedy paths by making small sacrifices that have big payoffs.

If the robot does make a large sacrifice, however, we would like to know how

likely it is that the robot will get caught not being able to capitalize on this sacrifice.

Unfortunately, in exploration for increasing map coverage, the most likely time for the

set of candidates to change enough to significantly alter the robot’s path is when the robot

is trying to reap some reward. Often making a big sacrifice equates to the robot driving a

long distance to the next point, and the reward equates to exploring a relatively

unexplored area. Yet the robot is usually very uncertain about the structure of

unexplored areas (that is the point of exploring). Therefore once it gets to its destination,

the robot may find that it is impossible to gain the reward that it thought it would. Figure

3.10 shows an example of this type of situation. The robot passes up the greedy solution

of visiting the nearby candidates and instead travels a long distance to get to an open and

largely unexplored region. Upon arriving at the distant region, however, the robot finds

out that a wall blocks the path it had planned to explore the new territory. The robot is

therefore unable to capitalize on its sacrifice of driving far away from its initial position.

Hence it is not very likely that the robot will make many large sacrifices when

exploring. But when the robot does make a big sacrifice, it is somewhat likely that the

robot will not be able to capitalize on this sacrifice. Whether or not the finite horizon

approach performs better than the full horizon or greedy approaches depends on the

particular environment, exploration method, and SLAM algorithm. In some situations

the robot may be able to make up for the few times it gets caught making unrewarded

large sacrifices by the efficiency of the finite horizon paths the robot is able to execute to

completion. In other situations, the robot might get caught making unrewarded sacrifices

too often, or the finite horizon paths that the robot executes to completion may not be

much more efficient than greedy. However, if the robot knows the large-scale structure

of its environment at the beginning of its exploration, then it should be able to execute

many of its finite horizon paths to completion. In addition, we have seen that when the

robot knows the large-scale structure of its environment, it is less likely that the set of

 104

candidates will change so much that the robot’s planned path will change significantly

during exploration. Therefore, even if the robot makes large sacrifices, it should be less

likely that the robot gets caught not having capitalized on the sacrifice when the robot

knows the structure of the environment. Our hypothesis therefore is that the finite

horizon approach should excel when the robot knows the large-scale structure of its

environment early on in its exploration.

 We now understand the properties of the finite horizon observation planning

approach of planning an optimally efficient path over a given horizon. We have seen that

finite horizon continuous observation planning methods should be ideal for exploration

for exploration for increasing map coverage when the robot knows the large scale

structure of its environment early on in its mission. In the following chapters we examine

a specific implementation of an exploration framework that uses the finite horizon

approach. We also present the results of experiments comparing the finite horizon, full

horizon, and greedy approaches to observation planning in simulated and real

environments using this exploration framework.

 105

4 Optimal Constraint Satisfaction Problem Methods for
the S-TSP

In this chapter we present a novel algorithm for solving the S-TSP by casting the

problem as an Optimal Constraint Satisfaction Problem (OCSP) [50]. Chapter 3

introduces and formally defines the S-TSP. In an OCSP, as in a Constraint Satisfaction

Problem (CSP), the goal is to find an assignment to the variables that satisfies a given set

of constraints over possible assignments. However, the solution to an OCSP has the

additional requirement that this satisfying assignment must maximize a given utility

function over the variables. In the OCSP formulation of the S-TSP, a particular

assignment to the variables corresponds to a particular subset of the vertices in the graph.

The goal of the Selective Traveling Salesman Problem is, therefore, to find the subset of

vertices with the maximum total utility, subject to the constraint that the least-cost path

visiting all vertices in the subset must have a cost less than the given threshold cost. The

algorithm described in this chapter searches through the possible subsets of vertices in

best-first order and checks the constraint on each subset.

Recall that, currently, the most popular methods for solving the S-TSP are branch-

and-cut algorithms [16] [15]. Until now, no one has attempted to use OCSP solution

methods to solve the S-TSP. Yet powerful methods of solving OCSP’s [50] have

recently been developed that have proven to be very effective on difficult problems in the

domain of Model-based Programming. These methods may also prove to perform better

than existing branch-and-cut algorithms at solving the S-TSP for the instances we are

interested in. While it is not within the scope of this thesis to perform in depth research

into solving the S-TSP as an OCSP, in this chapter we explain how to formulate the S-

TSP as an OCSP, and we describe the basic algorithm for solving the S-TSP as an OCSP.

Chapter 7 discusses ideas for future research into improving the performance of OCSP-

based algorithms for the S-TSP.

The structure of this chapter is as follows. Section 4.1 details how to formulate

the S-TSP as an OCSP. Section 4.2 reviews the constraint-based A* search strategy [50]

and explains how it can efficiently search through the space of possible subsets of

 106

vertices in best-first order. Section 4.3 goes over methods of checking the cost constraint

for each subset of vertices produced by constraint-based A*. In particular, the section

shows how to deal with the issue that solving the TSP finds a shortest cycle through a

graph, while we are not interested in returning to the start point.

4.1 The S-TSP Viewed as an Optimal Constraint Satisfaction
Problem

An OCSP is a special type of CSP. In a CSP we have a set of variables, each of

which has a finite domain, and a set of constraints that maps each assignment to the

variables to true or false. In an OCSP we also have a set of variables with finite domains

and a set of constraints over these variables [50]. In addition, however, we have a utility

function that maps all assignments of a special subset of the variables, called the decision

variables, to a real number. A solution to an OCSP is an assignment to the decision

variables that maximizes utility and for which there exists some assignment to the non-

decision variables such that the constraints are satisfied.

 It is straight-forward to formulate the S-TSP as an OCSP. For each vertex vi in

the graph, other than the start vertex v0, we create a corresponding variable xi in the

OCSP. These vertex variables have a domain of {0,1}. An assignment of xi = 1

corresponds to vertex vi being included in the sub-graph that the least-cost Hamiltonian

cycle is calculated over. Conversely, an assignment of xi = 0 corresponds to vertex vi

being excluded from the sub-graph. Since the utility function is defined for each vertex

in the graph, every variable in the OCSP is a decision variable. The utility function for a

single decision variable (called an attribute utility function) maps xi = 1 to u(vi) and xi = 0

to 0. The utility function for any assignment to a set of decision variables is the sum of

the attribute utilities of the variables in the set. In order to check the cost constraint,

given an assignment to the variables, we take the variables assigned 1, find the

corresponding vertices in the graph, and check if the least-cost Hamiltonian cycle through

the sub-graph consisting of these vertices and vertex v0 has a cost less than or equal to L.

If the least-cost Hamiltonian cycle has a cost that is less than or equal to L, the constraint

is satisfied; otherwise, it is violated. Thus a solution to the OCSP will identify the sub-

graph that the solution to the S-TSP is calculated over. Figure 4.1 demonstrates how the

 107

simple S-TSP instance from Figure 3.7 is formulated as an OCSP. Recall from Chapter

3, however, that we will not actually solve the S-TSP on the graph in Figure 4.1a, but

first convert the graph to a directed graph. We describe this procedure in Section 4.3.

The function TSP(xi=1) in the figure returns the cost of a solution to the TSP (the least-

cost Hamiltonian cycle) for the sub-graph of this directed graph that contains the vertices

corresponding to the variables that are assigned 1.

• Decision Variables: x1, x2, x3

• Domain for all variables: {0,1}

• Attribute Utility Functions:
g1(x1=0)=0, g1(x1=1)=0.2
g2(x2=0)=0, g2(x2=1)=0.5
g3(x3=0)=0, g3(x3=1)=0.8

• Constraint: TSP(xi = 1) ≤ L

• Highlighted Sub-graph
x1=1, x2=0, x3=1

v2

v1

5

6

6

5

v3

Utility=0.2

Utility=0.5 Utility=0.8

10

4

a) b)

L=10

• Decision Variables: x1, x2, x3

• Domain for all variables: {0,1}

• Attribute Utility Functions:
g1(x1=0)=0, g1(x1=1)=0.2
g2(x2=0)=0, g2(x2=1)=0.5
g3(x3=0)=0, g3(x3=1)=0.8

• Constraint: TSP(xi = 1) ≤ L

• Highlighted Sub-graph
x1=1, x2=0, x3=1

v2

v1

5

6

6

5

v3

Utility=0.2

Utility=0.5 Utility=0.8

10

4

a) b)

L=10

Figure 4.1 OCSP Formulation of an S-TSP Instance

There are a number of reasons to formulate the S-TSP as an OCSP. First, an

OCSP is a novel way of formulating an S-TSP, which has not been explored in the

literature. Powerful methods for solving OCSP’s have recently emerged; therefore, it is

worth exploring how well OCSP algorithms perform on our instances of the S-TSP. It

may turn out that for the types of graphs we are interested in, OCSP solutions perform

better than branch-and-cut methods. In addition, past work has unified branch-and-bound

methods with OCSP solution methods [31]; therefore, it may be possible to unify OCSP

methods with branch-and-cut methods for S-TSP’s.

Another advantage of using OCSP solution methods is that OCSP’s are very

general. We can incorporate additional constraints over the variables without changing

the underlying solution algorithm. For instance, if we want to add the constraint that

certain vertices have to be included in the solution, we can do so without making any

change to the way in which the algorithm enumerates assignments to the variables to test

the consistency of in best-first order (Section 4.2 explains this best-first enumeration

 108

method). We also would not have to change any of the improvements to our algorithm

that Chapter 7 proposes that allow the best-first enumeration method to skip over

assignments that we know must be inconsistent. We would only have to change the way

we check the feasibility of each candidate assignment against the constraints. Finally, the

algorithm can handle any utility function which is mutually preferential independent (this

term is explained in the Section 4.2). Thus if for some reason we needed to calculate the

utility of a set of vertices by taking the product of the individual vertex utilities instead of

the sum, we could.

The main algorithm we use for solving the S-TSP as an OCSP is called constraint-

based A* [50]. Constraint-based A* is an efficient method based on A* search for

searching the space of variable assignments in best-first order. For each assignment, the

algorithm checks the constraint by computing the solution to the TSP over the sub-graph

corresponding to the assignment (line 8 in Figure 4.2a). Because the algorithm considers

all assignments from the highest possible utility on down and returns the first one that

satisfies the constraints, the algorithm is guaranteed to return an optimal solution if one

exists (the algorithm is complete). In addition, the algorithm will not return an

assignment unless it satisfies the constraint; hence, if the algorithm returns an assignment

the assignment must satisfy the constraint and must be an optimal solution (the algorithm

is sound). The next section describes constraint-based A*. Section 2.4 explains the

details of how the algorithm checks the constraint.

4.2 Constraint-based A*
 Figure 4.2 provides pseudo-code for constraint-based A*9. We explain this

pseudo-code throughout this section.

9 This pseudo-code and the pseudo-code in Figure 4.4 are a simplified version of the pseudo-code provided
in the original paper [52]. We have achieved this simplification by specializing the code for solving the S-
TSP, which is why we call the top-level function Constraint-based_A*_S-TSP().

 109

Constraint-based_A*_S-TSP(attribute utility functions, undirected graph, L)
returns an optimal consistent full assignment to the variables, if one exists

1. let queue = Make_Queue(Make_Search_Tree_Node({}, no parent))
2. loop do
3. if queue is empty
4. no consistent assignment so return empty assignment
5. else
6. let node = Remove_Best(queue, attribute utility functions)
7. let state = Get_State(node)
8. if Goal_Test(state, undirected graph, L) is true
9. return state
10. else
11 let child node = Expand_Variable(node, attribute utility
functions)
12. let queue = Enqueue(queue, child node)
13. endif
14. endif
15. end loop

Goal_Test (state, undirected graph)
returns true iff state is a consistent full assignment to the variables

1. if state is a full assignment to the variables
2. return Consistent(state, undirected graph, L)
3. else
4. return false
5. endif

Consistent(state, undirected graph, L)
returns true iff the sub-graph of the undirected graph corresponding to
state has a Hamiltonian path with a cost <= L

1. let directed graph = Convert_to_Directed(undirected graph)
2. let sub-graph = Get_Sub-graph(state, directed graph)
3. let path = Solve_TSP(sub-graph)
4. if Cost(path) <= L
5. return true
6. else
7. return false
8. endif

a)

b)

c)

Figure 4.2 Pseudo-code for Constraint-based A*

Constraint-based A* uses a form of state-space search to enumerate the variable

assignments of an OCSP in best-first order. Constraint-based A* improves upon the

efficiency of A* by exploiting a requirement that the utility function of an OCSP be

mutually preferential independent (MPI). If each decision variable xi has an attribute

utility function gi(xi) defined for it, and if the utility function for full assignments to the

decision variables is a function of the values of the attribute utility functions, that is the

utility function is of the form G(g1(x1), g2(x2), …, gn(xn)), then the utility function for full

 110

assignments is a multi-attribute utility function. An MPI utility function is a multi-

attribute utility function which can be maximized by maximizing the attribute utility of

each decision variable independent of all of the other decision variables. For example, an

additive utility function G(g1(x1), g2(x2), …, gn(xn)) = g1(x1)+g2(x2)+...+gn(xn) is MPI

because we can find the assignment that maximizes G by finding the value for x1 that

maximizes g1(x1), the value for x2 that maximizes g2(x2), and so on. Constraint-based A*

takes advantage of MPI utility functions in order to limit the expansion of each search

tree node to only its best child, and to efficiently calculate an admissible heuristic at each

node.

In the constraint-based A* framework, search states are partial or full assignments

to the decision variables. For example, in the OCSP in Figure 4.1, {x1=0} is a state, as is

{x1=0, x2=1, x3=1}. In order to move from one state to the next, constraint-based A*

finds a variable that has not been assigned in the current state and assigns it one of its

possible values. Given state {x1=0}, if we choose the next variable to be x2, then {x1=0}

can transition to {x1=0, x2=0} or {x1=0, x2=1}. The initial state of the search tree is the

state in which no decision variables have been assigned a value, and leaves of the search

tree are states in which all of the decision variables have been assigned a value. The

search proceeds by expanding the search node with the best estimated utility until it

reaches a leaf. The do loop in Figure 4.2a performs this expansion. The constraint

checker then checks the full assignment represented by the leaf node (line 2 of Figure

4.2b), and if the assignment is consistent it is returned as the solution to the OCSP10. If

the assignment is inconsistent the search continues to expand other search nodes until the

search reaches another leaf. Figure 4.5 shows progression of the search on the simple

example from Figure 4.1.

 At each partial assignment in the search tree, constraint-based A* calculates a

heuristic estimate of the utility of the best full assignment containing the partial

assignment. Because the utility function is MPI, the best full assignment to the remaining

variables does not depend on the partial assignment. The best possible assignment

10 Alternatively, the constraint checker can check the resulting assignment every time the search node with
the best estimated utility is expanded, regardless of whether the assignment is full or partial. This frequent
constraint checking allows constraint-based A* to prune branches of the search tree before reaching the
leaves.

 111

assigns each of the remaining variables to the value that maximizes its attribute utility.

This estimate of the utility of the best full assignment given the partial assignment is

admissible, meaning that it never underestimates the actual utility of the best consistent

assignment containing the given partial assignment. Because the heuristic is admissible,

the A* search is guaranteed to find an optimal solution.

 Figure 4.3 shows a fragment of the search tree for the example from Figure 4.1.

Each node is labeled with the assignment that created it. The nodes list the utility of the

partial assignment of the state at that node (the g value), and the heuristic estimate of the

utility of the best consistent assignment to the remaining variables (the h value). For

example, at the node for state {x1 = 1} (node n2 in Figure 4.3), the utility of this partial

assignment is 0.5 and so g = 0.5. Because the utility function is MPI, the best possible

assignment to the remaining variables must be x2=1 and x3=1. The utility of {x2=1,

x3=1} is 0.2+0.8=1.0, and therefore the h value for node {x1=1} is 1.0. Looking at the

leaves under node {x1=1}, we see that the leaf with the best possible utility reachable

from the node is n4, which indeed corresponds to full assignment {x1=1, x2=1, x3=1}.

The fact that this best leaf has a utility that is greater than that of all the other leaves

illustrates that the node’s estimate is optimistic. This leaf node is inconsistent, however,

illustrating that the leaf is only an estimate of the best consistent full assignment11. The

best consistent full assignment is the leaf {x1=1, x2=0, x3=1}. The score of a given

search node is the sum of its g and h values, and nodes are expanded in order of best to

worst score by A* search.

11 Recall that the algorithm first transforms the undirected graph in Figure 2.3 into a directed graph before
checking for consistency. As a result, a set of vertices in the undirected graph is consistent iff there is a
maximum utility Hamiltonian path through their corresponding sub-graph with distance less than or equal
to L.

 112

Figure 4.3 Partial Search Tree for Constraint-based A*

 A key insight of constraint-based A* is that a given node in the search tree does

not have to be expanded to all of its possible children, as in normal A* search.

Remember that expanding a node entails choosing some unassigned variable in the state

of the node and assigning it one of its possible values. Because the utility function is

MPI, we know that the best possible full assignment (leaf) extending from a given node

must assign to the next variable in the search the value that maximizes its attribute utility.

Therefore the algorithm expands each node only to the node’s best child. The function

Expand_Variable_Best_Child() in Figure 4.4b shows how constraint-based A*

expands a node only to the node’s best child for the specific case of S-TSP OCSP’s.

Figure 4.5a shows the search tree for the example from Figure 4.1 after the first four node

expansions.

 113

Expand_Variable(node, attribute utility functions)
returns the best nodes expanded from node

1. if Leaf_Node(node)
2. let nodes = Expand_Next_Best_Sibling_of_Ancestors(node, attribute
utility functions)
3. else
4. let nodes = Expand_Variable_Best_Child(node, attribute utility
functions)
5. endif
6. return nodes

Expand_Next_Best_Sibling_of_Ancestors(node, attribute utility functions)
returns siblings of node and its ancestors with the next best assignment

1. if Root(node)
2. return {}
3. else
4. return Expand_Next_Best_Sibling(node, attribute utility functions) U
Expand_Next_Best_Sibling_of_Ancestors(Get_Parent(node), attribute utility functions)
5. endif

Expand_Next_Best_Sibling(node, attribute utility functions)
returns node's sibling with the next best assignment

1. if Root(node)
2. return {}
3. else
4. let assignment = Get_Assignment(node)
5. let value = Get_Value(assignment)
6. if value = 0
7. return {}
8. else
9. variable = Get_Variable(assignment)
9. return {Make_Node({variable = 0}, Get_Parent(node))}
10. endif
11. endif

a)

c)

d)

Expand_Variable_Best_Child(node, attribute utility functions)
returns a child node of node with a best utility assignment

1. let state = Get_State(node)
2. if all variables are assigned in state
3. return {}
4. else
5. let yi = some unassigned variable in state
6. return {Make_Node({yi = 1}, node)}
7. endif

b)

Figure 4.4 Search Node Expansion Functions

 114

Once constraint-based A* has expanded nodes down to a leaf (as in Figure 4.5a),

the algorithm checks the full assignment of the leaf for consistency. Recall that in our

case, a full assignment is consistent if and only if the corresponding sub-graph has a

Hamiltonian cycle through it with a cost less than or equal to L (see Figure 4.2c for

pseudo-code). Because A* will only check a leaf if it has the highest score of all the

nodes in the queue, and because constraint-based A*’s heuristic is admissible, if the

constraint checker determines that a leaf is consistent, then that leaf must be a solution to

the OCSP. If the constraint checker determines that a leaf is inconsistent, then the search

must find the next best leaf node to test. Because the utility function is MPI, we know

that the next best leaf node must assign the best possible value to each variable while still

being different from the last leaf node. Thus, the next best leaf node will be the same as

the last leaf node, except that exactly one of the variables will change its value to its next

best value. Therefore, when constraint-based A* determines that a leaf is inconsistent,

the search will expand every ancestor node of the leaf to the ancestor’s next best value

and place these next best nodes on the queue. The functions in Figure 4.4 summarize

how constraint-based A* expands nodes. Expand_Variable() is the top level node

expansion function that the Constraint-based_A*_S-TSP() function in Figure

4.2a calls. The function Expand_Next_Best_Sibling_of_Ancestors() in

Figure 4.4c shows how constraint-based A* expands every ancestor of a leaf to the

ancestor’s next best value for the specific case of S-TSP OCSP’s.

Figure 4.5b depicts an expansion of every ancestor node, which is performed right

after the leaf in Figure 4.5a is found to be inconsistent. The full assignments that will

result from expanding each of these new nodes in the queue down to its best leaf is

shown in Figure 4.5c. These leaf nodes represent the next possible full assignments that

the search could find. These full assignments are the same as the full assignment in

Figure 4.5a, except that each candidate has exactly one of its variables assigned to its

next best value. Thus, these next possible full assignments reflect that we know that the

next best assignment must change exactly one variable to its next best value.

 115

(-0.7 n5) (-1.3 n6) (-1.0 n7)

(-1.5 n4)

(-1.5 n3)

(-1.5 n2)

(-1.5 n1)

()

Queue

6

5

4

3

2

1

(-0.7 n5) (-1.3 n6) (-1.0 n7)

(-1.5 n4)

(-1.5 n3)

(-1.5 n2)

(-1.5 n1)

()

Queue

6

5

4

3

2

1

v2

v1

5

6

6

5

v3v2

v1

5

6

6

5

v3

Utility=0.2

Utility=0.5 Utility=0.8

10
4

a)

(-1.5 n4)

(-1.5 n3)

(-1.5 n2)

(-1.5 n1)

()

Queue

5

4

3

2

1

(-1.5 n4)

(-1.5 n3)

(-1.5 n2)

(-1.5 n1)

()

Queue

5

4

3

2

1

n7

n3

g=0.0
h=1.5

X1=1
g=.5
h=1

X2=1
g=.7
h =.8

X3=1
g=1.5

n1

n2

n4

n3

g=0.0
h=1.5

X1=1
g=.5
h=1

X2=1
g=.7
h =.8

X2=0
g= .5
h=.8

X3=1
g=1.5

X3=0
g=.7

X1=0
g = 0
h=1

n1

n2

n5

n6

n7

n4

n3

g=0.0
h=1.5

X1=1
g=.5
h=1

X2=1
g=.7
h =.8

X2=0
g= .5
h=.8

X3=1
g=1.5

X3=0
g=.7

X3=1
g=1.3

X3=1
g=1.0

X2=1
g=.2
h =.8

X1=0
g = 0
h=1

n1

n2

n5

n6

n8

n7

n10

n11

c)

b)

Figure 4.5 Node Expansion in Constraint-based A*

4.2.1 Full Example of Constraint-Based A* on a S-TSP

 Figure 4.6 shows how constraint-based A* searches through all possible variable

assignments, in best-first order, for the S-TSP example in Figure 4.1. For every step of

the search shown, the figure also illustrates the queue at that point. The queue is a list of

search tree nodes, and is created on line 1 of the top level pseudo-code in Figure 4.2a.

For each node in the queue, the figure depicts the score and the name of the node.

Therefore, the queue entry (1.5 n4) indicates that node n4 has a score of 1.5, which is the

utility of the partial assignment plus the estimated utility of the rest of the assignment. At

each step, constraint-based A* removes the node with the highest score from the queue

(line 6 in Figure 4.2a) and expands it to its best child (line 11 in Figure 4.2a). The search

then places this child node into the queue. If a node cannot be expanded because it is a

leaf, the node’s full assignment is checked for consistency (line 8 in Figure 4.2a). If the

 116

node is inconsistent, the best child node of each ancestor of the leaf is put onto the queue

(line 11 in Figure 4.2a). It is important to remember that the algorithm converts the

undirected graph in the figure into a directed graph before checking consistency (line 1 of

Figure 4.2c). Therefore, a subset of vertices of the undirected graph is consistent iff there

exists a maximum utility Hamiltonian path of length less than or equal to L, through the

sub-graph corresponding to the subset. Section 4.3 discusses how consistency is checked

in more detail.

 117

b)

c) d)

e) f)

(0.7 n5) (0.5 n9) (0.2 n12) (0.8 n14)

Queue

(0.7 n5) (0.5 n9) (0.2 n12) (0.8 n14)

Queue

(0.7 n5) (0.5 n9) (1.0 n11)

Queue

(0.7 n5) (0.5 n9) (1.0 n11)

Queue

v2

v1

5

6

6

5

v3v2

v1

5

6

6

5

v3

Utility=0.2

Utility=0.5 Utility=0.8

10
4

v2

v1

5

6

6

5

v3v2

v1

5

6

6

5

v3

Utility=0.2

Utility=0.5 Utility=0.8

10
4

L=10

g=0.0
h=1.5

n1

(1.5 n1)

Queue

(1.5 n1)

Queue

(1.5 n4)

Queue

(1.5 n4)

Queue

(0.7 n5) (1.0 n7) (1.3 n8)

Queue

(0.7 n5) (1.0 n7) (1.3 n8)

Queue

n4

n3

g=0.0
h=1.5

X1=1
g=.5
h=1

X2=1
g=.7
h =.8

X2=0
g= .5
h=.8

X3=1
g=1.5

X3=0
g=.7

X3=1
g=1.3

X1=0
g = 0
h=1

n1

n2

n5

n6

n8

n7

Cost=11 > 10

(0.7 n5) (1.3 n6) (1.0 n7)

Queue

(0.7 n5) (1.3 n6) (1.0 n7)

Queue

n4

n3

g=0.0
h=1.5X1=1

g=.5
h=1X2=1

g=.7
h =.8

X2=0
g= .5
h=.8

X3=1
g=1.5

X3=0
g=.7

X3=1
g=1.3

X3=0
g=.5

X3=1
g=1.0

X2=1
g=.2
h =.8

X1=0
g = 0
h=1

n1

n2

n5

n6

n8 n9

n7

n10

n11

Cost=11 > 10

n4

n3

g=0.0
h=1.5X1=1

g=.5
h=1X2=1

g=.7
h =.8

X2=0
g= .5
h=.8

X3=1
g=1.5

X3=0
g=.7

X3=1
g=1.3

X3=0
g=.5

X3=1
g=1.0

X3=0
g=.2

X3=1
g=.8

X2=1
g=.2
h =.8

X2=0
g=0
h=.8

X1=0
g = 0
h=1

n1

n2

n5

n6

n8 n9

n7

n10

n12n11 n14

n13

Solution: Cost=10

Cost=14 > 10

n4

n3

g=0.0
h=1.5

X1=1
g=.5
h=1

X2=1
g=.7
h =.8

X3=1
g=1.5

n1

n2

v2

v1

5

6

6

5

v3v2

v1

5

6

6

5

v3

Utility=0.2

Utility=0.5 Utility=0.8

10
4

v2

v1

5

6

6

5

v3v2

v1

5

6

6

5

v3

Utility=0.2

Utility=0.5 Utility=0.8

10
4

v2

v1

5

6

6

5

v3v2

v1

5

6

6

5

v3

Utility=0.2

Utility=0.5 Utility=0.8

10
4

a)

n4

n3

g=0.0
h=1.5

X1=1
g=.5
h=1X2=1

g=.7
h =.8

X2=0
g= .5
h=.8

X3=1
g=1.5

X3=0
g=.7

X1=0
g = 0
h=1

n1

n2

n5

n6

n7

Figure 4.6 Solving an S-TSP with Constraint-based A*

 The search starts with no variables assigned, as Figure 4.6a depicts. The search

proceeds by removing one node from the queue and replacing it with the best child, thus

keeping the queue at length one. Once node n4 is found to be inconsistent (Figure 4.6b),

the queue length jumps to three elements - one for each possible variable that the search

can change (Figure 4.6c). Since node n6 has the next highest score, at 1.3, it must

 118

contain the next best full assignment. Indeed, node n8 is the next best leaf, but n8 is also

inconsistent (Figure 4.6d). Node n6 can expand to another child, node n9, and thus node

n9 is added to the queue. The next best full assignment is node n11’s assignment,

however. After n11 is found inconsistent, the next best full assignment found by the

search is n14. Node n14 is consistent, and therefore its assignment, {x1=0, x2=0, x3=1} is

the solution. The maximum utility Hamiltonian path through the sub-graph

corresponding to this assignment goes from the start vertex v0 straight to v3.

4.3 Constraint Checking
 The final remaining piece of the algorithm for solving the S-TSP as an OCSP is

the method for checking the constraint for a given full assignment to the variables. The

basic idea is that a full assignment to the variables is consistent iff the solution to the TSP

on the sub-graph corresponding to the assignment has a length that is less than or equal to

L. However, there is one problem with this basic approach. TSP solvers by definition

find least-cost cycles through graphs; however, we do not want the robot to plan for

returning to its starting point. Instead, we would like the robot to find is the least-cost

Hamiltonian path through the sub-graph. Nevertheless, very efficient TSP solvers such

as Concorde [54] are readily available, and we would like our algorithm to be able to use

these programs. As a result, we need a method of reducing the problem of finding a

least-cost Hamiltonian path through a graph to the TSP. This section describes one such

reduction method. Our reduction method is derived from an existing reduction from the

TSP to the problem of finding the least-cost Hamiltonian path through the graph starting

at any vertex [39].

Given an undirected graph that we want to find a least-cost Hamiltonian path

through, our approach constructs a directed graph and solves the TSP on it. The TSP on

directed graphs is called the Asymmetric TSP (ATSP), and the TSP on undirected graphs

is called the Symmetric TSP (STSP). The directed graph is the same as the undirected

graph, except that it adds an edge of cost zero from each vertex to the start vertex. In

other words, to construct the directed graph, we start with a directed graph that is

equivalent to the undirected graph. Then, for each vertex in the directed graph, we set the

edge cost from that vertex to the start vertex to 0. A least-cost Hamiltonian cycle in the

 119

directed graph then yields a least-cost Hamiltonian path beginning at the start point in the

undirected graph. In order to find this Hamiltonian path in the undirected graph, we

simply follow the sequence of vertices in the Hamiltonian cycle, beginning at the start

point, until every node has been visited.

Figure 4.7 depicts a simple example of converting an undirected graph into a

directed graph in order to find a least-cost Hamiltonian path through the undirected

graph. Figure 4.7a shows the undirected graph, and Figure 4.7b shows the corresponding

directed graph. In these figures, vertex 1 is the start vertex. Note that the directed graph

is equivalent to the undirected graph, except that the edge from 2 to 1 and the edge from

3 to 1 have a cost of 0.

1

2

3
8

0

0
3

5
5

b)a)

1

2

3

3 5

8

Figure 4.7 Converting an Undirected Graph into a Directed Graph

There are only two possible Hamiltonian paths through the undirected graph

starting at vertex 1: path <1, 2, 3> and path <1, 3, 2>. Therefore, we can see directly that

the least-cost Hamiltonian path is the path <1, 2, 3>, without running a TSP solver on the

directed graph. Solving the TSP on the directed graph anyways, we see that there are

only two possible Hamiltonian cycles: cycle <1, 2, 3, 1> and cycle <1, 3, 2, 1>. The

cycle <1, 2, 3, 1> has the lower cost of 8; therefore this cycle is the solution to the TSP

on the directed graph. And indeed, this TSP solution yields the least-cost Hamiltonian

path through the undirected graph, <1, 2, 3>.

We can show how this mapping works informally, through a proof by

contradiction. We want to show that any least-cost Hamiltonian cycle in the directed

graph is a least cost Hamiltonian path in the undirected graph. First, we note that the cost

 120

of any path in the undirected graph that never has the start node as a destination is equal

to the cost of the equivalent path in the directed graph. Now take some least-cost

Hamiltonian cycle through the directed graph. Assume (for contradiction) that the

corresponding path in the undirected graph is not a least-cost Hamiltonian path,

beginning at the start point. Then either the path must not be Hamiltonian (it must not

visit every node exactly once), it must not begin at the start point, or it must not be least-

cost. Yet the path must visit every node exactly once if the cycle in the undirected graph

did, and the path is defined to begin at the start point. Therefore, the path must not be

least-cost. However, if the path is not least-cost, then there must be some other

Hamiltonian path beginning at the start point in the undirected graph that has a lower

cost. By our first observation, if such a lower cost path existed in the undirected graph,

then a corresponding path in the directed graph must exist with the same cost. Yet in

order to make this path in the directed graph a cycle, all we have to do is add the start

vertex to the end of the path. Traversing this final edge must have a cost of 0, and,

therefore, the cost of the cycle must still be lower than the cost of the cycle that we

initially said was a least-cost cycle. Thus, we have a contradiction.

Even though there are methods for solving the ATSP, we would still like to

convert the directed graph back into an undirected graph before finding the optimal tour.

Methods for solving the ATSP take advantage of the asymmetric nature of the distance

matrix representing an input directed graph, and methods for solving the STSP take

advantage of the symmetric nature of the distance matrix representing an input undirected

graph. Because the directed graph produced by this mapping has an almost symmetric

distance matrix, STSP algorithms should be better able to handle the graph [26].

In order to convert a directed graph produced by this mapping into an equivalent

(in the eyes of the TSP) undirected graph [26], we first note that all of the directed edges

involve the start vertex. Therefore, to create the undirected graph we copy each vertex in

the directed graph and make two copies of the start vertex. One copy of the start vertex

handles all of the edges that come into the start vertex in the directed graph, and the other

copy of the start vertex handles all of the edges that come out of the start vertex in the

directed graph. An edge with a very large negative cost –M connects the two start

vertices. The rest of the edges in the directed graph are collapsed with their equivalent

 121

dual edge into a single edge in the undirected graph. This transformation always makes

the out start vertex occur immediately after the in start vertex in the optimal tour, thus

mimicking the behavior of the directed graph. The length of the optimal tour on this

undirected graph is equal to the length of the optimal tour on the directed graph minus M.

Figure 4.8 shows an example of this conversion for the simple graph from Figure 4.7b.

1

2

3
8

0

0
3

5
5

1
Out

1 In

3

2

8

0

3

0

-M

a) b)

5

Figure 4.8 Converting a Directed Graph into an Undirected Graph

Thus, given some undirected sub-graph to check the constraint on, the algorithm

maps the sub-graph to a directed graph, and then converts the directed graph back into an

equivalent undirected graph. This final undirected graph is the input to a TSP solver.

The length of the optimal tour calculated by the TSP solver must be less than or equal to

L-M in order for the variable assignment to be consistent. Figure 4.9 shows these graph

transformations for the full graph from Figure 4.1.

v0 v1

v3v2

4
4

6

5

5

6

0

6

0

5

10

0

-M
6

5

6

v2 v0 in

v1v3

10

5

0

0

4

a) b)

v0 out

Figure 4.9 Graph Transformations for S-TSP Example

 122

 We now know how to formulate the S-TSP as an OCSP. In addition, we

understand how to solve the S-TSP as an OCSP by using constraint-based A* to

enumerate all possible full assignments to the variables in best first order, and checking

each of these assignments for consistency. Our method for checking the consistency of

an assignment finds the sub-graph corresponding to the assignment, converts this sub-

graph into a directed graph, converts this directed graph into a new undirected graph, and

solves the TSP on this new undirected graph. The assignment is consistent iff the path

cost of the solution to the TSP is less than or equal to L.

In the following chapter, we describe the architecture of our experimental system

and explain how we use this approach to solving the S-TSP to perform continuous

observation planning.

 123

5 Autonomous Exploration Using Fixed Horizon
Observation Planning

 In this chapter we describe the implementation of autonomous exploration with

which we performed our experiments. Specifically, we give the architecture of the

complete experimental system, which takes as input the sensor readings of a real or

simulated robot and outputs commands to the robot’s motors that will cause the robot to

explore its environment. The experimental system also builds and updates a feature-

based map of its environment using these sensor readings. The goal of the system’s

exploration method is to increase the coverage of this feature-based map as efficiently as

possible. We discussed feature-based maps and exploration for increasing map coverage

in Chapter 2.

 The purpose of our implementation was to test the main claim of this thesis, that

continuous observation planning using the finite horizon approach will increase the

efficiency of many exploration methods in certain environments, for a particular

candidate identification and scoring algorithm. In order to test this claim, we would like

to compare how efficiently the robot explores using each of the continuous observation

planning methods that we discussed in Chapter 3: the greedy method, the full horizon

method, the fixed horizon method, and the receding horizon method. Our experimental

system, therefore, needed to be able to swap in and out any of these four methods of

continuous observation planning.

 In summary, the specification of our experimental system was that the system

must work on a real or simulated robot, cause the robot to explore to increase the

coverage of a feature-based map as efficiently as possible, and be able to use any of the

four methods for continuous observation planning above. In Section 5.1 we describe the

overall architecture for this experimental system. Then, in Section 5.2 and Section 5.3

we explain how the components of the system that we have not covered already in this

thesis work. Finally, in Section 5.4 we go over a simple example of the execution of the

entire experimental system.

 124

5.1 Overall Architecture of Implementation

Candidate Identification and Scoring

Greedy, TSP,
or S-TSP

Solver

Controller

Candidate
Graph

Extraction

Feature-based
SLAM

candidate
graph

ordered subset
of candidates

ca
nd

id
at

es

Observation Planning

Exploration Path Planning

Exploration Method

map

map

current robot
pose

Sensors
(Odometry and
Rangefinder)

Motors
translational velocity, angular velocity

real time
data

pa
th

Figure 5.1 Architecture of Experimental System

 Figure 5.1 shows the overall architecture for the system we used in our

experiments. Looking at the flow of information through the components, the feature-

based SLAM component constantly reads the robot’s sensors and outputs the most

recently updated feature map of the environment. In our experiments, the sensors that we

used were the odometer and the laser scanner. Chapter 2 described how the feature-based

SLAM component builds a map from such sensor data. In order for the SLAM

component to produce the best estimate of the state of the world possible, it is important

that the component read the robot’s sensors and update the map as often as possible.

Therefore, the SLAM component and the exploration method component run as separate

processes in our implementation. An inter-process communication (IPC) framework

allows the SLAM component to notify the exploration method component of the most

 125

recent map. Figure 5.2 gives pseudo-code for these two processes12. We have altered

line 2 of the pseudo-code for the exploration method process in Figure 5.2b from the

pseudo-code in Figure 2.2 to reflect how the IPC framework works. Instead of the

exploration method taking a “constantly updating map” as a one time input, the SLAM

algorithm sends the exploration method a message describing the most recent map by

calling the function Send_Messege_To_Exploration_Method() every time the

map is updated. The IPC framework places this message in the exploration method’s

inbox. Then, when the exploration method reaches line 2 in its pseudo-code, it reads this

message and reconstructs the most recent map by calling the function

Get_Most_Recent_Map().

Explore_Continuous()
returns nothing

1. while Mission_Completed() is false
2. let map = Get_Most_Recent_Map()
3. let robot pose = Get_Current_Robot_Pose(map)
4. let path = Plan_Exploration_Path(map, robot pose)
5. Execute_Segment_of_Path(path)
6. endwhile

SLAM()
returns nothing

1. while Mission_Completed() is false
2. let data = Read_Sensors()
3. let current map = Update_Map(data)
4. Send_Messege_To_Exploration_Method(current map)
5. endwhile

b)

a)

Figure 5.2 Pseudo-code for SLAM Process and Exploration Method Process

12 As a matter of fact, the S-TSP solver component and the controller component also run as independent
processes in our implementation. By putting these components of the exploration method in separate
processes, we pipeline the computation of the exploration method and thereby decrease the length of time
that any component of the exploration method has to wait to perform its processing. For the sake of
simplicity, however, we will not change our pseudo-code from Chapter 2 and Chapter 3 to reflect these two
additional processes.

 126

Once the block labeled “Exploration Method” in Figure 5.1 has the most recently

updated map, the exploration method computes the controls to send to the robot’s motors.

We covered the structure of a generic exploration method in detail in Chapter 2 and

Chapter 3. Besides the one change to line 2 of the pseudo-code for the function

Explore_Continuous in Figure 2.2, the experimental system follows this generic

exploration method structure exactly. We now provide a brief review of this structure.

 An exploration method constantly reads the SLAM algorithm’s most recently

updated map and constantly outputs controls that cause a robot to explore its

environment. As Figure 5.2 shows, we break an exploration method down into

exploration path planning and executing paths. Exploration path planning entails taking a

map and a robot position and computing a path for the robot to execute that should add

information to the map. In particular, our implementation always performs continuous

exploration path planning (see Chapter 2 for a discussion of continuous exploration path

planning). Executing paths entails taking a path and the current robot position and

outputting controls (in our case the desired translational and rotational velocities of the

robot) that will cause the robot to move along this path. In Figure 5.1, the block labeled

“Controller” handles the execution of paths.

 As we saw in Chapter 3, most methods of exploration for increasing map

coverage break down exploration path planning into candidate identification and scoring

and observation planning (see Figures 3.9b and 3.9c for example pseudo-code). In

candidate identification and scoring, the robot takes a map and the robot’s position and

outputs a set of candidate observation points. In observation planning, the robot takes

this set of candidates, a map, and the robot’s position, and outputs a path that takes a

robot to some subset of the set of candidates. This path is the output of the exploration

path planner as well as the observation planner.

 When we looked at the finite horizon approach to observation planning in Chapter

3, we found it useful to break down the approach into candidate graph extraction and

solving the S-TSP (see Figure 3.8 for pseudo-code). Candidate graph extraction involves

taking a map, a robot position, and a set of candidates and computing a graph. There is

one vertex in the graph for each candidate and one vertex for the robot’s position, and the

 127

cost of each edge (i, j) is the cost of the least-cost path through the map that avoids

obstacles between the two candidates (or the candidate and the robot’s position) i and j.

The S-TSP solver then takes this graph as input and outputs an ordered subset of the

candidates to visit. Finally, the observation planner uses the least-cost paths between

each pair of candidates that it found in building the candidate graph to turn this ordered

subset of candidates into a path the robot can execute.

Notice that we could substitute a TSP solver for the S-TSP solver in the above

description of the finite horizon observation planning approach, and the observation

planner would output a full horizon path for the robot to execute instead of a finite

horizon path. It would also be easy to make a “greedy problem solver” that would take a

candidate graph as input and output the candidate that minimizes a given greedy function

(see Chapter 3 for an explanation of greedy functions). Therefore, in order to satisfy our

requirement that the experimental system be able to use the full horizon, greedy, fixed

horizon, and receding horizon continuous observation planning methods, we break

observation planning down into candidate graph extraction and running a TSP solver, an

S-TSP solver with an appropriate horizon, or a “greedy problem solver” on the candidate

graph. We refer to the part of the experimental system that includes all components

except the “solver” as the exploration framework. In all of our experiments, the

exploration framework never changed. In order to perform an experiment using, say, the

full horizon continuous observation planning method, we simply plugged a TSP solver

into the exploration framework.

We now understand how all of the modules in our experimental system fit

together. Furthermore, we have already covered how many of the modules in our

implementation work in previous chapters. We described the feature-based SLAM

algorithm that our system uses in Chapter 2. We used feature-base SLAM in our

experiments largely because we already had an implementation of our feature-based

SLAM algorithm available, but also partially because exploration using a feature map as

the sole map representation has not been researched extensively. In order to perform

candidate identification and scoring, we use the candidate identification and scoring part

of the Newman, Bosse, and Leonard exploration method. Chapter 2 described the

Newman, Bosse, and Leonard exploration method in detail. We base our candidate

 128

identification and scoring component on this particular exploration method because it is

the only exploration method that we know of made for exploration using a feature map as

the sole map representation. Finally, in order to solve the S-TSP, we implemented the

algorithm that Chapter 4 described. And in order to solve the TSP, both to plug directly

into the exploration framework and in our implementation of the S-TSP solver, we used

the free Concorde TSP solver [54].

The only components of our experimental system that we have not yet described,

therefore, are the candidate graph extraction module and the controller module.

Therefore, in Section 5.2 we describe the way our implementation performs candidate

graph extraction. Then, in Section 5.3, we briefly describe the salient features of our

controller. In Section 5.4 we provide an example of all of the components of our

experimental system working together during exploration.

5.2 Candidate Graph Extraction
In order to perform continuous observation planning, our implementation

continuously performs candidate graph extraction. Recall that in order to extract a

candidate graph, the robot takes as input the current robot position, the most recently

updated map, and a set of candidates, and returns a graph that contains one vertex for

each candidate and one vertex for the robot. For a given edge (i, j), where i and j are

vertices, the cost of the edge is equal to the least-cost path that avoids obstacles between

the positions of i and j in the map. In our implementation, we use the physical length of a

path as its cost because it makes the most sense when using the finite horizon method to

compute a path over a set distance. As we discussed in Chapter 3, we would like the

robot to be able to execute its finite horizon path to completion without the set of

candidates changing significantly, and the farther the robot travels, the more likely the set

of candidates is to change at some point along the path. We, therefore, limit the physical

length of the finite horizon path by making the horizon, and thus the path cost, a distance.

We now explain how our implementation performs candidate graph extraction.

Most of the work in extracting a candidate graph is in computing the least-cost path

between every pair of candidates that avoids all obstacles. We usually call a method for

computing a path between two points that avoids all obstacles a path planner. Many good

 129

methods for path planning exist [6] [28] [33]. Because our exploration implementation

performs continuous observation planning, we must constantly plan a least-cost path

between every pair of candidates in the map. Therefore, the path planning algorithm we

use must be very efficient. We choose to use a visibility graph path planner [51] because

it is very simple and because it outputs approximately the shortest path between any two

points that avoids all obstacles.

A visibility graph path planner takes as input a set of obstacles, a set of

waypoints, and the current robot position. In our implementation, obstacles are polygons.

The path planner can then output an approximately least-cost path between the robot’s

position and a waypoint or between any two waypoints. In order to calculate paths, the

path planner constructs a visibility graph using the corners of the polygonal obstacles, the

current robot position, and the waypoints as vertices. A visibility graph is a graph that

contains an edge between every pair of vertices, as long as that edge does not pass

through an obstacle. Thus, any path consisting of edges of the visibility graph will never

run into an obstacle. The cost of each edge in a visibility graph is the straight line

distance between the edge’s endpoints. If the robot were a zero dimensional point, then

the shortest path for the robot to take between any two waypoints that avoids all obstacles

could be found by searching the visibility graph for the shortest path between the

corresponding vertices. Even if the robot is not a zero dimensional point, however, we

can still compute a path between any two waypoints that avoids all obstacles by growing

each polygonal obstacle by a distance equal to the radius of a circle that circumscribes the

robot. The path that we find between two vertices by searching a visibility graph with

enlarged obstacles is not guaranteed to be the shortest path between the corresponding

waypoints; however, the path will be very close to the shortest path.

In order to construct a candidate graph using a visibility graph path planner, we

use the candidate observation points as the waypoints in the input. We also need to

provide a set of obstacles in the input. In our system, the line feature SLAM map

contains the robot’s best information about the location of objects in the robot’s

environment. Therefore, in Section 5.2.1 we describe a novel method of taking the line

feature SLAM map and producing from it a set of rectangular obstacles. Once the

visibility graph path planner has built a visibility graph over the obstacles, the candidates,

 130

and the current robot position, we construct the candidate graph by searching the

visibility graph for the shortest path between every pair of candidates and the shortest

path between every candidate and the robot position. We then set the cost of each edge in

the candidate graph to the length of the corresponding shortest path in the visibility

graph, and the candidate graph is complete.

The method for extracting the candidate graph as we have described it is not very

efficient, however. Because our implementation performs continuous observation

planning, the robot constantly extracts a candidate graph from the most recently updated

map. And every time the robot extracts a candidate graph, the robot must extract

obstacles from the map, build a visibility graph, and search the visibility graph for the

shortest path between every pair of candidates and between every candidate and the

robot’s current position. Yet often, many of the features in the map are not changed by

map updates. As a result, many of the obstacles are the same each time we build the

visibility graph, and many of the edges in the visibility graph are the same each time we

search the visibility graph. Instead of building and searching the visibility graph from

scratch each time we extract the candidate graph, therefore, we would like to only have to

update the visibility graph and shortest paths from the last time we extracted the

candidate graph to take into account what has changed. Although there are currently no

algorithms for incrementally updating visibility graphs, there are algorithms for

incrementally updating searches over graphs. Our implementation uses the D* search

algorithm to incrementally search the visibility graph [45].

D* is an all-source single-destination shortest path search algorithm. Therefore,

the robot must run one D* instance for each candidate observation point. On its first

iteration, D* computes these shortest paths from scratch. Then, if a map update causes

the visibility graph to change (for example, by changing an edge cost or adding a vertex),

D* recalculates only those shortest paths that were affected by the change. Therefore, we

expect that using D* will significantly reduce the cost of calculating the all-candidate-

pairs shortest paths.

Figure 5.3 shows more precisely how our implementation extracts candidate

graphs. The robot keeps track of the last visibility graph it built in order to see what has

changed when it constructs a new visibility graph. The robot also maintains a hash map

 131

of D* instances. Each candidate observation point has one D* instance, and a candidate’s

D* instance keeps track of the shortest path from each vertex in the visibility graph to

that candidate. The hash map’s key for a given D* instance is the candidate that the D*

instance computes shortest paths to (the D* instance’s goal). We discuss how the

function Extract_Obstacles() on line 1 works in Section 5.2.1. The function

Get_Last_Visigraph() on line 3 returns the visibility graph that was stored on the

last call to Extract_Candidate_Graph() by the function

Set_Last_Visigraph() on line 9. The function

Remove_Extra_D*_Graphs() on line 4 iterates through the hash map of D*

instances and removes any D* instance from the hash map that has a goal that is no

longer in the set of candidates. Therefore, whenever a candidate is removed from the

map, Remove_Extra_D*_Graphs() will remove the corresponding D* instances.

Extract_Candidate_Graph(partially completed map, candidate set, robot
pose)
returns candidate graph

1. let obstacle list = Extract_Obstacles(partially completed map)
2. let current visibility graph = Build_Visibility_Graph(robot pose,
candidate set, obstacle list)
3. let last visibility graph = Get_Last_Visigraph()
4. Remove_Extra_D*_Graphs(candidate set)
5. Update_D*_Graphs(last visibility graph, current visibility graph)
6. Add_New_D*_Graphs(candidate set, current visibility graph)
7. Search_All_D*_Graphs()
8. let graph = Build_Candidate_Graph_From_D*_Graphs()
9. Set_Last_Visigraph(current visibility graph)
10. return graph

Figure 5.3 Candidate Graph Extraction Pseudo-code

The function Update_D*_Graphs() on line 5 compares the last visibility

graph to the current visibility graph and makes a list of all of the nodes that were added or

removed and all of the edges that changed their costs or were removed. The function

then notifies each D* instance in the hash map which nodes and edges were added,

removed, or changed. The function Add_New_D*_Graphs() iterates through the set

of candidates and sees if there are any candidates that do not have a D* instance in the

 132

hash map. The function then creates one new D* instance for each of these candidates,

tells each new D* instance about all of the nodes and edges in the current visibility graph,

sets the goal of each new D* instance to its corresponding candidate, and adds each new

D* instance to the hash map. The function Search_All_D*_Graphs() on line 7

has each D* instance in the hash map recalculate those shortest paths that need to be

updated. Finally, the function Build_Candidate_Graph_From_D*_Graphs()

on line 8 iterates through the hash map of D* instances and records the length of the

shortest path from each candidate in the graph to the goal candidate of the current D*

instance.

One final point to note is that when whatever “solver” our implementation is

currently using returns an ordered set of candidates to visit, we can use the hash map of

D* instances to fill in a path that visits these candidates in order. Each D* instance keeps

track of the most recently calculated shortest path to its goal candidate. Therefore, to find

the shortest path from one candidate to a second candidate in the ordered set, we simply

need to take the D* instance whose goal is the second candidate and read off the path

from the first candidate to the second candidate. Our implementation of the function

Fill_In_Path() in Figure 3.8 uses this method of filling in a path.

Now that we understand our implementation’s overall approach to extracting

candidate graphs, we are ready to see how our implementation produces the set of

obstacles for the path planner.

5.2.1 Obstacle Extraction

This thesis introduces a new method for extracting obstacles from line feature

SLAM maps. Many path planners require as input a list of obstacles that are specified as

polygons or, in the most restrictive cases, rectangles. Our method of extracting obstacles

builds a separate rectangle around each line in the map. Figure 5.4c shows what these

rectangles would look like for the map in Figure 5.4a. The “padding distance” for a line

feature is either calculated as a function of the line’s uncertainty (covariance) or is set to a

fixed distance in order to speed up obstacle extraction.

 133

a) b) c)

Figure 5.4 Methods of Extracting Obstacles from a Line Map

In order to see why this method of extracting obstacles is correct, it is helpful to

consider a second method of extracting obstacles that is obvious but ultimately makes

less sense. This second method tries to fit polygons to the line features in the map in

order to extract obstacles. Figure 5.4b shows the obstacle that this method produces for

the map in Figure 5.4a. The motivation for this approach is that the positions of the lines

in the map are uncertain, and the robot may not have seen the full extent of these lines

yet. As a result, the robot should try to use some a priori notion of what typical objects in

the environment look like to guess what lines come together to form impenetrable

polygons, in order to avoid planning a path through the center of an obstacle.

The reason why this second method is worse than the method we use in our

implementation is that this second method reads extra information into the map. The

robot’s environment might look exactly like the map in Figure 5.4a. In fact, the map in

Figure 5.4a is what the SLAM algorithm has determined is the most likely layout of the

environment. And the SLAM algorithm should be responsible for estimating what the

environment looks like. If we want to take into account a priori knowledge about what a

typical environment looks like, this knowledge should be placed in the SLAM algorithm,

not the obstacle extraction method. While it is true that the SLAM algorithm is not

certain of the positions of the map lines, the algorithm keeps track of its uncertainty in the

covariance matrix. Therefore in the obstacle extraction method advocated by this thesis,

we scale the size of each line’s rectangle so that it bounds that line’s uncertainty. As a

result, any lines that intersect in the real world and form an impenetrable corner should

have intersecting rectangles. The path planner then should not consider any paths that

pass through spaces that are corners in the real world, because the rectangular obstacles

 134

should overlap at these corners. For example, in Figure 5.4c, all of the gaps between the

map lines have been closed by the rectangles except for the gap in the upper right. This

gap might correspond to a gap in the real world, such as a doorway.

In the end, therefore, the method of extracting obstacles that is most faithful to the

map’s estimate of the location of line features is to build a rectangle around each line

feature. This method is the method our implementation uses. However, a more

fundamental issue with extracting obstacles from a feature map is that, as we mentioned

in Chapter 2, such maps do not exhaustively keep track of every point a robot’s sensors

have seen. For example, if a robot is building a line feature map and it senses a curved

obstacle, the robot may not extract any line features where the curved obstacle is. In this

case, the curved obstacle would not show up in the map; therefore, the path planner might

end up choosing a path that goes through the obstacle. As we discuss in Section 5.3, our

implementation prevents the robot from colliding with obstacles by running a low level

obstacle avoidance process while the robot is moving. Yet even though the robot does

not run into obstacles, the path planner is still not guaranteed to plan shortest paths

through the environment that avoid all obstacles using a feature map. In our experiments,

most of the environments had flat walls as obstacles; therefore, the SLAM algorithm

mapped the majority of the obstacles. However, in general when path planning, it may

make more sense to use a map representation that guarantees that any objects that a robot

senses will appear in the map. Some examples of these types of map representations are

occupancy grid maps and scan-matched maps. A number of exploration methods build

occupancy grid maps and feature maps simultaneously [2] [9]. The robot uses the

occupancy grid map for path planning and the feature map for localization. Using an

occupancy grid map for path planning in this way might be a better solution than

extracting rectangular obstacles from a feature map. Unfortunately, we did not have time

in this thesis to try building both a feature map and an occupancy grid map

simultaneously.

5.3 Executing a Path
 The final component of our implementation left to explain is the component that

commands the robot to follow the path that the exploration path planner computes. This

 135

component continuously takes as input the robot’s current position and the path outputted

by the exploration path planner, and it continuously outputs commands that will make the

robot move. In Figure 5.1, the component is the module labeled “Controller.” In the

pseudo-code in Figure 5.2, the component implements the function

Execute_Segment_of_Path().

 We implement this component as a waypoint controller. In other words, the path

that the exploration path planner outputs is an ordered set of waypoints. If the robot

knew about all of the obstacles in its vicinity when it planned this path, then the robot

should be able to drive in a straight line between any two consecutive waypoints in this

path without running into any objects. A waypoint controller constantly takes the robot’s

current position and the next waypoint in the ordered set of waypoints and outputs

commands that will cause the robot to move towards this next waypoint. Once the robot

arrives in the vicinity of the waypoint, the waypoint controller removes the waypoint

from the ordered set and drives towards the next waypoint in the ordered set. The

waypoint controller that our implementation uses outputs commands in the form of

desired translational and rotational velocities for the robot. The low level software on the

robot then causes the robot to move at these desired velocities. The waypoint controller

in our implementation computes these velocities so that when the robot turns, the robot

follows a smooth curve. Turning by following a smooth curve is desirable because doing

so cuts down on the robot’s odometry error. The waypoint controller in our

implementation also constantly reads the robot’s sensor data and steers the robot away

from any obstacles that the sensors detect. Having the waypoint controller perform

obstacle avoidance is important, for as we discussed in Section 5.2.1, the exploration path

planner in our implementation is not guaranteed to plan paths that do not run into

obstacles.

 Although our implementation has a waypoint controller, we drove the robot by

hand in the experiments whose results we present in Chapter 6. The main reason for

driving the robot by hand instead of using the waypoint controller was that the visibility

graph path planner plans paths that are composed of straight lines. And in order to test

how efficient the paths that various observation planning methods compute are, we need

the robot to follow these paths exactly. However, the waypoint controller in our

 136

implementation has the robot turn by following smooth curves. Because we did not have

time to change this feature of the waypoint controller, we drove the robot by hand in our

experiments in order to make the robot follow straight line paths.

5.4 Example
 Now that we have explained how all of the modules of our experimental system

work, we walk through a simple example that shows all of the modules working together.

In this example, we focus on what the inputs and outputs of each module look like. We

also give a rough sketch of the calculations the candidate identification and scoring

module and the candidate graph extraction module perform. We do not focus on the

internal workings of the SLAM module or the “solver” module because the calculations

these two modules perform are somewhat involved. In Chapter 4 we went over examples

that illustrate the internal workings of the S-TSP solver our implementation uses.

 In this example, we examine two moments in the robot’s exploration of an

environment using the finite horizon continuous observation planning approach with a six

meter receding horizon13. Figure 5.5 depicts the map the SLAM algorithm outputs at

these two moments. In the figure, the triangle represents the map’s estimate of the

robot’s position and heading. The lines are line features in the map. In Figure 5.5a, the

robot is just about to move around a wall and see what is on the other side. In Figure

5.5b, the robot has gotten around this wall and has mapped the doorway of an office to

the left. We first examine how the experimental system computes an exploration path

from scratch for the situation in Figure 5.5a. We then examine how the experimental

system computes an exploration path for the situation in Figure 5.5b by making use of

results from the previous path computation.

13 The maps in this example are simplified versions of maps the robot built while exploring the NE43Floor8
environment in simulation. Appendix A shows what this environment really looks like.

 137

a)

b)

Figure 5.5 Maps from the First Moment (a) and Second Moment (b)

 Once the experimental system has computed the map in Figure 5.5a, the first step

the system takes in computing an exploration path from scratch is to identify and score

candidate observation points in the map. Recall from the description of the Newman,

Bosse, and Leonard exploration method in Chapter 2 that each line feature produces a

candidate at both of its ends. Figure 5.6 depicts the candidates for the map in Figure

5.5a. The candidates are labeled with “cN,” where N is a number. Because candidates c3

and c4 have a score of zero, we do not draw these two candidates in subsequent figures.

Figure 5.6 depicts how the candidate identification and scoring module scores

candidate c2. The eight small unlabeled circles in the figure are candidate c2’s sample

points. The final score of a candidate is the number of the candidate’s sample points that

are valid divided by the total number of the candidate’s sample points. A sample point is

invalid if line features block the line of sight between the sample point and the candidate.

The three sample points at the top of the figure are invalid for this reason. A sample

 138

point is also invalid if there is a pebble within a given threshold distance of the sample

point that has a clear line of sight to the sample point. The candidate identification and

scoring algorithm keeps track of pebbles to mark where the robot has been. Figure 5.6

represents pebbles as pentagons. In the figure, the two sample points that are connected

to pebbles by solid lines are invalid for this reason. The three sample points that are

connected to pebbles by dashed lines are beyond the threshold distance of all pebbles;

therefore, these three sample points are still valid. Because there are three valid sample

points and eight total sample points for candidate c2, the utility of candidate c2 is 3/8.

The utility of each candidate is shown to the upper left of the candidate in Figure 5.6.

3/8

c1

5/8

c2

c3 c4
0/8 0/8

Figure 5.6 Candidate Identification and Scoring for the First Moment

Once the experimental system has identified and scored the candidates, the system

passes the name, position, and utility of each candidate to the module that extracts the

candidate graph. In addition, the system passes this module the map depicted in Figure

5.5a. The first thing the candidate graph extraction module does is extract obstacles from

this map (line 1 of the pseudo-code in Figure 5.3). Figure 5.7a shows the two obstacles

that the module extracts from the map. The module then builds a visibility graph over

these two obstacles, the candidate positions, and the current robot position (line 2 in

Figure 5.3). Figure 5.7b shows the visibility graph laid on top of the obstacles, the

candidates, and the robot’s current position. Note that because there is an edge between

 139

every pair of vertices in the visibility graph as long as the edge does not pass through an

obstacle, the edges of each obstacle are included as edges in the visibility graph.

a)

c2c1

b)

Figure 5.7 Obstacles (a) and the Visibility Graph (b) for the First Moment

Because we are assuming that we are computing the exploration path from

scratch, we do not have any visibility graphs from prior path computations. As a result,

line 3 of the pseudo-code in Figure 5.3 returns an empty graph. In addition, there are no

D* instances in the hash map; therefore, lines 4 and 5 of the pseudo-code in Figure 5.3 do

nothing. Therefore, the next thing the module does is create two instances of the D*

search for the visibility graph (line 6 of Figure 5.3). One D* instance has candidate c1 as

its search goal, and the other D* instance has candidate c2 as its search goal. The module

then runs both D* instances (line 7 in Figure 5.3). Each D* instance searches for the

shortest path from each vertex in the visibility graph to that instance’s goal. Figure 5.8a

shows these shortest paths for the D* instance whose goal is candidate c1, and Figure

5.8b shows the shortest paths for the D* instance whose goal is candidate c2. These

shortest paths are the bold lines with the arrows at the ends in the figure; the dotted lines

are the edges of the visibility graph.

 140

c2c1
4m

1m

3m

c2c1

2.5m

4m

a)

b) c)

c1 c2

R

4m

4m 2.5m

3/85/8

Figure 5.8 Extracting the Candidate Graph from D* Instances

Next the module builds the candidate graph using the shortest paths computed by

the two D* instances (line 8 of Figure 5.3). Figure 5.8c shows this candidate graph. The

node labeled “R” in Figure 5.8c represents the robot. Notice that the utility of each

candidate also appears in the graph. In order to find the cost for the edge from R to c1 in

the candidate graph, the module picks out the D* instance that has c1 as its goal from the

hash map. This D* instance has already calculated shortest path from the robot to

candidate c1; therefore, the module can just read off the length of this path and use it as

the cost of the edge. In Figure 5.8a, we see that the shortest path from the robot to

candidate c1 is made up of a one meter leg and a three meter leg. Therefore, the edge

from R to c1 in the candidate graph is four meters. Similarly, because the shortest path

from candidate c2 to candidate c1 in Figure 5.8a is four meters, the edge from c1 to c2 in

the candidate graph is also four meters (we do not show the lengths of any other paths in

Figure 5.8a because we do not need those lengths to build the candidate graph; the D*

instance knows those lengths, however). In order to find the cost of the edge in the

candidate graph from R to c2, the module must examine the other D* instance. Looking

 141

at Figure 5.8b, we see that the shortest path from the robot to candidate c2 is 2.5 meters.

Therefore, the cost of the corresponding edge in the candidate graph is 2.5 meters.

 Once the candidate graph extraction module has built the candidate graph, the

module stores the visibility graph (line 9 in Figure 5.3) and passes the candidate graph to

the “solver” module14. In this case the “solver” module is an S-TSP solver, because the

robot is using finite horizon continuous observation planning with a six meter receding

horizon. The “solver” module then runs the S-TSP solver on the candidate graph and

passes the resulting path back to the candidate graph extraction module. For this

example, the S-TSP solver returns the path <c1>. The finite horizon path has the robot

visit c1 because within six meters, the robot can only make it to one candidate and

candidate c1 has the higher utility of the two candidates.

When the candidate graph extraction module receives this path, it uses the D*

instances to fill in the details between consecutive candidates in the path (the function

Fill_In_Path() on line 3 of the pseudo-code in Figure 3.8). To fill in the details of

the path <c1>, the module must fill in the details of the shortest path between the current

robot position and c1. The module therefore finds the D* instance that has candidate c1

as its goal and examines the saved shortest path from the robot to candidate c1. Figure

5.9 shows this shortest path by itself. As we can see in the figure, the shortest path goes

from the robot to a corner that we label v1 of the lower obstacle, and then to candidate c1.

The filled in path is therefore <v1, c1>. The candidate graph extraction module then

passes this filled in path to the controller module. In other words, the filled in path is the

exploration path that our system computes for the map in Figure 5.5.

14 When it is using an S-TSP or TSP solver, the “solver” module must first convert the undirected candidate
graph to a directed graph in order to find a path that does not have the robot return to its start point. We
described how to perform this conversion in Chapter 2.

 142

c2c1

1m

3m
v1

Figure 5.9 Exploration Path for First Moment

We do not go over how the controller computes commands to drive the robot

along the exploration path here because the calculations are somewhat involved, and in

our experiments we drove the robot by hand. However, we will assume that the robot

drives straight towards v1, turns at v1, and then drives straight towards c1. Figure 5.5b

shows the robot’s map right after the robot makes its turn. We now describe how the

robot calculates the exploration path for the situation that Figure 5.5b depicts.

The SLAM module passes the map in Figure 5.5b to the candidate identification

scoring module. Figure 5.10 shows the candidates and utilities that this module generates

for the map. As we mentioned earlier, the figure does not show the two candidates for

the lower horizontal line because they both have a utility of zero. In addition, the figure

only shows one of the lower vertical line’s candidates, candidate c5, because the other

candidate has a utility of zero. Figure 5.10 also shows how the module scores candidate

c2 for this situation. Candidate scoring proceeds the same as before. The figure displays

the utility the module calculates for each candidate to the upper left of the candidate.

 143

c5

c3

c4c1 c2
2/8

3/8

1/8

2/8

5/8

Figure 5.10 Candidate Identification and Scoring for the Second Moment

The candidate graph extraction module takes the names, positions, and utilities of

these candidates as input along with the map in Figure 5.5b. The module then extracts

obstacles from this map and builds the visibility graph depicted in Figure 5.11. Note that

module builds this visibility graph from scratch once again, since there are currently no

incremental approaches to building visibility graphs. No candidates were removed since

the last time the exploration path was calculated; therefore, the module does not need to

remove any D* instances from the hash map. The next thing the module does then is

update the two existing D* instances.

c2

c5

c1

c3

c4

Figure 5.11 Visibility Graph for the Second Moment

In order to update the existing D* instances, the module compares the last

visibility graph with the current visibility graph. The two D* instances are told about

every edge that has been added, removed, or has changed its cost and every vertex that

 144

has been added or removed from the last visibility graph. The module is then finished

updating the existing D* instances. Next, because there are no D* instances with

candidate c3, c4, or c5 as its goal, the module creates three new D* instances to search

the most recently built visibility graph. The module sets each of these three D* instances

to have as a goal candidates c3, c4, and c5 respectively. Then, the module runs all of the

D* instances. The three new D* instances compute the shortest paths to their goal from

scratch. The two existing D* instances, however, use the information about what has

changed in the visibility graph to detect which of their previously computed shortest

paths might possibly have been affected. The two existing D* instances then only

recalculate these paths. Figure 5.12a once again shows the shortest paths to candidate c1

that the corresponding D* instance found the first time the robot calculated the

exploration path. Figure 5.12b shows the new shortest paths to candidate c1 that the D*

instance finds this time. Figure 5.12c shows which shortest paths are the same between

Figures 5.12a and 5.12b. Although we do not cover the details of what the D* instance

must and must not recalculate in order to produce the paths in Figure 5.12b, we can intuit

from the fact that almost half of the paths do not change between Figure 5.12a and Figure

5.12b that it requires much less work to incrementally update the paths in Figure 5.12a

than it does to find the shortest paths in Figure 5.12b from scratch.

 145

c2c1

c2

c5

c1

c3

c4

c2

c5

c1

c3

c4

a) b)

c)

Figure 5.12 Searching the Visibility Graph Incrementally

The module next builds the candidate graph shown in Figure 5.13. In order to

find the cost of an edge from ci to cj in the candidate graph, the module finds the D*

instance that has cj as its goal. The module then gets the shortest path from ci to cj from

the D* instance and uses the length of this path as the edge in the candidate graph, just as

before. In Figure 5.13 we only show the costs of the edges that were in the previous

candidate graph because the graph would be unreadable if we included every edge cost.

Once the module computes this candidate graph, it saves the current visibility graph and

passes the candidate graph to the “solver” module. Because the experimental system is

using the receding horizon continuous observation planning method, the “solver” module

once again runs the S-TSP solver on the candidate graph with a six meter horizon. The

path visiting candidates with the highest total utility that is under six meters is <c5, c4,

c3, c1>; therefore, this path is the output of the S-TSP solver. The “solver” module then

passes this path to the candidate graph extraction module.

 146

4.5m

3.5m 2m

3/8

c3c2

c4

c5R

c15/8

2/8

1/8

2/8

Figure 5.13 Candidate Graph for the Second Moment

The candidate graph extraction module fills in the path <c5, c4, c3, c1> by first

finding the D* instance that has c5 as its goal. The module then examines the shortest

path between the robot’s current position and c5. As we can see from the visibility graph

in Figure 5.11, the shortest path from the robot’s current position to c5 goes directly from

the robot to c5. Therefore, we do not add any thing to the front of the finite horizon path.

The module next needs to fill in the finite horizon path between c5 and c4. Taking the

D* instance that has c4 as its goal, the module finds that the shortest path from c5 to c4

goes directly to c4. Therefore, the module once again does nothing to the finite horizon

path. The module next fills in the finite horizon path between c4 and c3 and finds that

the shortest path from c4 to c3 goes directly to c3. Finally, the module fills in the finite

horizon path from c3 to c1. Looking at the D* instance that has c1 as its goal, the module

finds that the shortest path between c3 and c1 first visits two vertices of an obstacle. In

Figure 5.13, we label these vertices v2 and v3. The final exploration path therefore is

<c5, c4, c3, v2, v3, c1>. Figure 5.14 shows this path. The candidate graph extraction

module then passes this exploration path to the controller module, and the robot begins to

execute the path.

 147

c2

c5

c1

c3

c4

v2v3

Figure 5.14 Final Exploration Path for the Second Moment

We have now seen how the modules in the experimental system work together to

calculate an exploration path from a SLAM map for two moments in a robot’s

exploration mission. However, it remains to be seen how well these exploration paths

guide a robot to build a map of its environment. In Chapter 6, we present the results of

the experiments we performed to test the system that this chapter has described.

 148

6 Testing and Evaluation

The main claim of this thesis is that for many different exploration frameworks

(for example, the Gonzalez-Banos and Latombe framework, frontier-based frameworks,

and the Leonard, Bosse, Newman framework, all of which were explained in Chapter 2)

and in many different environments, using the finite horizon approach to perform

continuous observation planning will significantly improve the efficiency of autonomous

exploration. Finite horizon observation planning methods should especially improve the

efficiency of exploration when the robot knows the large scale structure of the

environment early on in the exploration.

Our analysis in Chapter 3 of how well the finite horizon approach should perform

for all exploration frameworks in general provides some support for this claim.

However, in this analysis we found that the exploration frameworks studied are not

similar enough for us to come to definite conclusions that are applicable to all

frameworks, by reasoning about their common properties. Therefore, the only way for us

to convincingly support the main claim of this thesis is to perform experiments and see

how well the finite horizon approach works for each individual exploration framework.

In this chapter we present the results of experiments that tested how well the finite

horizon observation planning approach performs with the Newman, Bosse, and Leonard

feature-based exploration method, described in Chapter 2. In addition, we analyze these

results and show that they support our above claim.

We only had time in this thesis to implement and test the finite horizon approach

with this particular exploration method. Unfortunately, it is probably not possible to

generalize the results of experiments that use a particular exploration method to all

exploration methods. From the general analysis of the finite horizon approach that we

performed in Chapter 3 we know that, how well the finite horizon approach performs in a

particular situation, depends on how often the robot gets caught making large unrewarded

sacrifices, versus how often the robot is able to execute its finite horizon path far enough

to do something more efficient than a greedy method would. How well the robot is able

 149

to execute its planned path depends on how the candidates are arranged and how they

change as the robot explores. Furthermore, the candidate dynamics can be substantially

different for different exploration frameworks and environments. Therefore, while these

experiments support our claim for the particular case of the Newman, Bosse, and Leonard

exploration method, we can only make a few speculations as to how the results might

apply to other exploration methods. In the future, more experiments should be performed

to verify that the finite horizon approach performs well with other exploration methods.

 We explain what exactly we mean by the efficiency of exploration in Section 6.2.

Then, in Section 6.3 we describe the details of the experimental method. In Section 6.4

we present the results of the experiments and discuss what we can learn from these

results. Finally, in Section 6.5, we briefly summarize our conclusions from these

experiments.

6.1 Overview of Experiments
In these experiments, we had a robot explore and map one environment in the real

world and six environments in simulation. These environments were chosen to be

representative of areas we are likely to explore. In each environment we compared using

the receding horizon, fixed horizon, full horizon, and greedy methods to select waypoints

for the robot. For the finite horizon trials, we also experimented with using two or three

different horizon lengths.

 These tests suggest that in the Newman, Bosse, and Leonard strategy, the

candidates change so much that using the finite horizon approach with a long horizon or

the full horizon approach to select waypoints performs similar to using the greedy

method in many environments. However, if the robot starts off knowing the large-scale

structure of its environment, then the robot can greatly improve the efficiency of the

paths it executes by using the finite horizon approach with a long horizon. This

improvement occurs because, if the robot knows where all of the large obstacles and

interesting regions to explore are, then the robot can plan a rough path that is globally

efficient. While the small-scale details of this path will change as the robot fills in the

holes in its map, the overall shape (and therefore the efficiency) of the path will remain

the same. In addition, these experiments suggest that if we were to make some changes

 150

to the Newman, Bosse, and Leonard strategy, then using the finite horizon approach with

a short horizon may allow the robot to explore its environment much more thoroughly

than with other observation planning methods. These changes would need to make the

way the Newman, Bosse, and Leonard method places candidates less conservative by not

placing candidates in areas that the robot is almost certain have been explored.

6.2 Metrics for Evaluating the Quality of Exploration
 In order to compare how well greedy, full horizon, and finite horizon methods

selected candidates in our experiments, we must develop somewhat objective measures of

how well the robot explored its environment. In our general analysis of the strengths and

weaknesses of various observation planning methods in Chapter 3, we equate how well

the robot explores to how efficiently it explores. In particular, we measure how

efficiently a robot explores by calculating the total utility of the candidates that the robot

visits within a given distance. Yet ultimately we do not care about the utilities of the

candidates that the robot visited; we care only about how well the robot added

information to its map during exploration. The only reasons to look at the candidates and

their utilities at all is to understand why the robot executed the path it did and to try to

generalize the results to other exploration frameworks. Later in this section, however, we

see that it is unclear what we even mean by the total utility of the visited candidates.

Instead, it makes sense to establish metrics that more directly measure how well the robot

added information to its map.

 The goals of the exploration framework we used for testing determine what it

means to explore an environment “well.” In Chapter 2 we describe this exploration

framework, and our explanation of the reasoning behind the Newman, Bosse, and

Leonard candidate identification and scoring strategy tells us what these goals are. The

first and most explicit goal of our exploration framework is to extract as many new

features as possible and thereby expand the coverage of the map. A second and less

apparent goal of the framework is to try to ensure that all features that could have been

extracted in the area explored were extracted, and extracted fully. We can see that

extracting features fully is an objective of the Newman, Bosse, and Leonard strategy in

the fact that each feature produces its own candidate observation points in places that

 151

enable the robot to observe the full extent of the feature. We can see that trying to extract

every feature that can be extracted in regions the robot has visited is a goal in the fact that

the strategy keeps track of how well the robot has explored the region near a feature, by

measuring the density of surrounding features and how close the robot has been to the

feature before.

 The final goal of the framework is to make sure that the robot stays well localized

by preventing the robot from leaving sight of features it has seen before. The fact that

known features produce candidates near themselves provides evidence for this final goal,

in addition to the second goal. Finally, the additional goal of this thesis is to perform this

exploration efficiently. Recall that because we can use any quantity as the cost of a path

between two candidates, an efficient path might be a path that is short in distance or time,

or a path that requires little energy to follow. In this exploration framework, we measure

efficiency by the distance that the robot travels.

 We would like to measure objectively how well the path that the robot executes

during exploration fulfills each of these goals. In order to score how well the robot

achieves the first goal of extracting as many features as possible, we measure the

combined length of all the line features the robot extracts. We do not simply count the

number of line features that the robot extracts, for extracting a long line feature expands

the map’s coverage more than extracting a short line.

In order to measure how well the robot achieves the second goal, for each line

feature in the robot’s final map we calculate the ratio of the length of the line in the map

to the actual length of the line in the environment. If a line is longer in the map than it

really is in the environment, then the line is treated as having been mapped fully and the

ratio is one. If part of the line was outside of the area that the robot explored, then we

consider the actual length of the line to be the length of the line that was within the area

the robot explored. We roughly define the area the robot explored to be the part of the

environment that the robot’s sensors have scanned well enough to extract features. In

practice we delineate the region the robot has explored by forming a closed region that

surrounds all of the features in the map and that is created by connecting the endpoints of

line features. When faced with a choice on how to connect these endpoints, we attempt

to connect the endpoints so that regions that the robot’s sensor should have seen are

 152

included, and regions that the robot’s sensor should not have seen are excluded. The

dotted lines in Figure 6.1 show this region for the final map of the first greedy trial in

NE43Floor8. Additionally, we keep track of all lines in the area that the robot explored

that were not extracted. These lines have a ratio of zero. For each map we then compute

a histogram for these line feature ratios. Appendix B contains these histograms.

Figure 6.1 Explored Region for the Final Map of the First Greedy Trial in NE43Floor8

To measure the third goal of the exploration framework, we count the number of

times the robot strays out of sight of all line features it knows about in a given

exploration run. However, since most of the environments we used in our experiments

were indoors and had a relatively dense distribution of features, the robot almost never

left sight of known line features during these trials. This measure is therefore zero or

close to zero in all of the trials, and we do not use it in our analysis.

Finally, we measure the efficiency of the robot’s path indirectly by running each

trial in a given environment until the robot has traveled some set distance. Then, by

calculating any of the three measures just described for a set of trials, we can compare

how efficient the robot was at achieving the corresponding goal in each trial in the set.

We now have three different dimensions along which to measure how well the

robot achieved its goals for exploration. Yet at times, we might want to combine these

 153

three separate values into an overall score of how effective the robot’s exploration was in

a particular trial. However, there is no obvious way to combine our three measures into a

single measure. One option is to note that the way the Newman, Bosse, and Leonard

strategy identifies and scores candidates takes into account all of the goals of the

exploration framework. Therefore, one additional reason to look at the total utility of the

candidates that the robot visits in a trial is to use this total as an overall score of how well

the robot achieved the goals of exploration. Obviously this is a very rough overall score,

however; therefore, it should not be taken too seriously.

A big problem with using the total utility of the visited candidates for an overall

measure is that, as we will see shortly, it is difficult to define what we really mean by the

total utility. Therefore, instead of using the total utility of the visited candidates, in

environments where it is feasible we explore until there are no more candidates left in the

map. We then use the distance the robot traveled as the overall score. This score is still

based on the fact that the candidates identify places that need to be explored in order to

fulfill the goals of the exploration framework. However, this score does not require us to

use the concept of the total utility of the visited candidates. Once again, however, we do

not give this measure too much weight. We only use the score in order to get a rough

overall idea of how well a waypoint selection strategy worked in a given trial.

It is tempting to look only at the candidate observation points and their utilities

when evaluating how well the robot selected waypoints during exploration, yet it makes

more sense to focus on methods that explicitly measure how much information the robot

added to its map. The temptation is that by looking solely at the sequence of candidates

the robot decides to visit in its path and how many of those candidates the robot actually

gets to, we can abstract away from our evaluation messy details such as whether or not

the SLAM algorithm was able to extract all of the features it should have at those

candidate points, or whether or not the candidate identification and scoring method

placed the candidates in the most informative places. We would therefore be looking at

the observation planning method in isolation, and we could then generalize the results of

our experiments to say how well finite horizon methods work for any SLAM algorithm

and candidate identification and scoring method.

 154

Yet is not easy to isolate the performance of the observation planning method

from the details of the exploration framework used for testing. The performance of the

observation planning methods depends solely on how the candidate observation points

appear, disappear, move, and change score during exploration. Yet for a given

environment, these candidate dynamics vary greatly given different SLAM algorithms

and candidate identification and scoring strategies. For example, in the Gonzalez-Banos

and Latombe method for identifying and scoring candidates [18] described in Chapter 2,

it is not possible for the robot to plan a path and then later find out that an obstacle blocks

part of that path. In the Newman, Bosse, and Leonard method this situation happens

frequently, however. In addition, while the Newman, Bosse, and Leonard method places

candidates only near known features, most grid-based methods [10] [53] place candidates

at the edge of the area that the robot’s sensors have seen, regardless of whether or not

there are any obstacles nearby. Perhaps the only major similarity between candidate

identification and scoring methods is that when the robot sees a new room, all methods

create new candidates somewhere in the vicinity of this new room. And even if we made

small adjustments to the Newman, Bosse, and Leonard method, we probably could not

apply our results from the original method to the adjusted version, because small

alterations in how the candidates change eventually cause large differences in the paths

taken.

Another problem is that, as we have noted, it is unclear what we really mean by

the total utility of the visited candidates. Exploration does not quite proceed in the

abstracted manner that we assumed in the general analysis in Chapter 3. An important

difference is that the utility of a candidate often drops to or near zero as the robot

approaches that candidate. The reason that the utility drops is that the robot makes

observations all the time, not just at the candidate observation points. Therefore, the

robot sees most of the area it is supposed to see from a candidate before it ever gets there.

This drop in utility means that most of the candidates that the robot ever reaches will

have a low utility. In addition, the robot will not get to some candidates at all because if

a candidate’s utility drops as the robot heads towards the candidate, then the next time the

robot computes its path it will often find that it is no longer worth it to visit that

candidate.

 155

Therefore, simply keeping track of the utility of the candidates that the robot

actually visited does not provide much information about how well the observation

planning method is working. The problem is that the robot’s choosing and driving

towards a candidate caused the candidate’s utility to drop and therefore added

information to the map. However, the total utility of the candidates the robot has visited

does not reflect this success of the observation planning method. Instead of adding the

utility of the candidate when the robot reaches the candidate to the total utility, we could

add the utility of the candidate as soon as the robot starts heading towards it. Yet it is

also possible for the utility of a candidate to change for reasons that have little to do with

the robot heading towards it. For example, even in the absence of new observations the

SLAM algorithm might perform additional processing and update the map. This change

in the position of features in the map might then change the utility of the candidate.

If we are trying to gauge how much information heading towards a candidate

added to the map, we would be better off looking at direct measures of the information

that exploration adds to the map. Therefore, our primary metrics for evaluating an

exploration run are the three measures we introduced initially.

6.3 Methods
 The experiments we performed tested how well various observation planning

strategies performed in one real world environment and six simulated environments.

Specifically we tested the receding horizon, fixed horizon, full horizon, and greedy

strategies. The greedy strategy simply drove to the closest candidate to the robot. The

strategy therefore did not take into account candidate utilities.

 In the experiments we performed in the real world, we used an iRobot B21 robot

equipped with a SICK LMS laser scanner to explore the environment. We did not use the

B21’s sonar array in the experiments at all. We controlled and monitored the robot with

a laptop over a wireless Ethernet connection.

In the trials we performed in simulation, the only code that was different than

what we used in the real world trials was the code that handles sending commands to the

robot and receiving sensor readings. The SLAM code, candidate identification and

scoring code, observation planning code, and user interface code were all the same as

 156

what we used in the real environment. The code that handles robot input and output

simulates a robot equipped with a laser scanner and an odometer driving on land. The

error in the laser range values simulates the error of a typical SICK laser scanner. The

odometry error simulates that of the B21 robot.

 An important detail is that in all trials we drove the robot by hand; we did not use

a waypoint controller to automatically drive the robot. The main reason for this decision

was that sometimes it took awhile to compute a path by solving the S-TSP or TSP. In

these cases, when the path was finally output, it was no longer up to date with the map or

the set of candidates. Therefore, we would have to stop the robot and let the observation

planner catch up with the current state of exploration. In the future we hope that we will

have algorithms for solving the S-TSP and TSP that a waypoint controller can use to

control a robot in real time. However, finding such algorithms is outside the scope of this

thesis.

 When driving the robot, we tried to follow the path output by the path planner as

best as possible. Our simple path planner used a visibility graph [51]; therefore, these

paths always consisted of straight lines connecting candidates and the corners of

obstacles. Our driving procedure was to turn the robot at its current waypoint to face its

next waypoint and then drive the robot in a straight line to that next waypoint. Whenever

the path changed while the robot was driving, we would stop the robot, turn the robot to

face its new waypoint, and continue driving in a straight line. After selecting waypoints

and computing a path to visit those waypoints, the robot waited four seconds before

selecting waypoints again. This pause allowed the program performing the observation

planning to bring its internal map and set of candidates up to date. The pause also

allowed us to drive the robot a short distance along its path.

 Unfortunately, turning in place results in more odometry error than turning in an

arced path. Worse odometry error results in worse localization and mapping, and as a

result, our driving method affected the quality of the maps we built. Yet there is nothing

that prevents these observation planning strategies from using more sophisticated path

planners that plan paths that keep odometry error to a minimum [28] [33]. We simply did

not have such path planners available. As a result, it is possible that some of the apparent

failures of various observation planning strategies in these experiments were not due to a

 157

weakness of the strategy but the quality of the planned path. However, it is likely that the

path planner affected all observation planning methods roughly equally and, therefore,

does not skew our evaluation of the relative performance of these methods.

 Appendix A shows the floor plan of the building that we explored in our real

world experiments and the six environments that we explored in simulation. The grid

cells in the images of the simulated environments are one meter by one meter. We tried

to make these environments typical of the types of environment a robot is likely to

explore. The environment that we explored in the real world experiments is the fourth

floor of two connected buildings, Building 34 and Building 36, on MIT campus. The part

of these buildings that we explored consists of the elevator lobby and the hallway outside

of a conference room. The simulated environments NE43Floor8 and Building10Floor1

are based on the floor plans of other real buildings on MIT campus. NE43Floor8 is a

floor of a typical office building, and Building10Floor1 is a floor of a large building with

big hallways and lobbies. The simulated environments 15by15Room and 25by45Room

are fictional rooms. They were created to test the theory that finite horizon methods

should perform better in buildings that have large rooms from which it is easy to see the

other rooms. RandomRocks and StructuredRocks are fictional outdoor environments.

The one by one meter squares are meant to represent rocks. We used a random number

generator to place the rocks in RandomRocks, but not in StructuredRocks.

 In each environment we usually tried two or three different horizon distances for

the finite horizon observation planning methods. The first horizon distance we tried was

always the distance we thought would perform best in the environment. We determined

this distance by estimating the horizon length the robot could plan a path for such that on

average this path would not go outside of the room the robot was currently in. We then

would try double this horizon distance and half this horizon distance.

 In each environment we also chose some set distance for the robot to explore,

before we stopped the robot and tallied the three measures of performance described in

Section 6.2. We chose this distance by having a robot explore the environment use the

receding horizon approach with a horizon length that we thought would perform well.

The distance it takes the robot to explore roughly two-thirds of the environments is the

 158

distance that we used. We use the SLAM estimate of the robot’s pose in order to keep

track of how far the robot has traveled.

 In calculating the first two measures of exploration performance, we measure the

length of line features in the robot’s final map by hand. If the SLAM algorithm has

extracted any line features that are longer than the corresponding line in the actual

environment, we use the length of the actual line for the length of the line in the map. In

addition, when the SLAM algorithm creates multiple lines that correspond to a single line

in the actual environment, we only measure the longest of these redundant lines.

 Finally, out of interest we also keep track of the number of candidates that the

robot actually reaches and the total utility of the candidates the robot “visits.” We

calculate this total utility by adding the utility of the candidate that the robot is currently

headed towards to the total when the robot is within a meter of the candidate.

6.4 Results and Analysis
 The following tables quantify how well the four observation planning methods

performed in our simulated environments15. In addition, Appendix B contains histograms

showing the distribution of what fraction of each line feature was extracted in each trial.

15 There are no measures of performance for the StructuredRocks environment because we were unable to
explore the environment using the finite horizon or full horizon methods. The problem is that the TSP
solver gets stuck after a short period of time in the environment for some reason. We therefore are able to
plan an initial path using the finite horizon or the full horizon methods, but not much else. Nevertheless,
these initial paths provide important evidence for the claim that if the robot knows the structure of its initial
environment, then it will be possible to plan a much more efficient path using the finite horizon or full
horizon methods than using the greedy method. We will elaborate on this issue later in this section.

 159

Method Horizon Distance
Traveled

Total
Length of
Line
Features
Mapped

Average
Fraction of
Line
Extracted

Waypoints
Reached

Total
Utility
Collected

RH 15m 113m
Greedy 111.835m 140.59m 0.6643 84 ≈14.3
RH 30m 110.455m 106.13m 0.8527 32 7.4444370
RH 7.5m 112.546m 122.83m 0.9016 38 8.4444390
RH 15m

(trial 2)
105.373 147.04m 0.7929 42 9.1111050

FH 15m 110.203m 127.77m 0.7601 58 9.7777700
FH 8m 110.526m 122.4m 0.7092 80 13.9999910
Greedy
(trial 2)

 110.267m 138.33m 0.8618 79 17.4444

RH = Receding Horizon, FH = Fixed Horizon

Table 6.1 Performance of Observation Planning Methods in NE43Floor8

 We were unable to test using TSP methods in NE43Floor8 because for some

reason the TSP solver crashed midway through the exploration every time.

Method Horizon Distance

Traveled
Total
Length of
Line
Features
Mapped

Average
Fraction of
Line
Extracted

Waypoints
Reached

Total
Utility
Collected

RH 15m 162.502m 144.66m 0.6783 34 11.1111060
Greedy 163.215m 147.72m 0.8047 52 8.1111
Full
Horizon

 165.828m 154.77m 0.8431 46 9.33333

FH 15m 163.022m 134.697m 0.6710 63 12.3333220
RH 30m 164.627m 174.6m 0.7373 63 13.9999910
RH = Receding Horizon, FH = Fixed Horizon

Table 6.2 Performance of Observation Planning Methods in Building10Floor1

 160

Method Horizon Distance
Traveled

Total
Length of
Line
Features
Mapped

Average
Fraction of
Line
Extracted

Waypoints
Reached

Total
Utility
Collected

Greedy 32.6346m 71.92m 0.8580
RH 15m 32.4045m 73.24m 0.8810
FH 15m 33.9783m 71.38m 0.8900
FH 8m 32.5902m 66.69m 0.8460 10 1.7777760
RH = Receding Horizon, FH = Fixed Horizon

Table 6.3 Performance of Observation Planning Methods in 15by15Room

Method Horizon Distance

Traveled
Total
Length of
Line
Features
Mapped

Average
Fraction of
Line
Extracted

Waypoints
Reached

Total
Utility
Collected

RH 15m 91.3566m
Greedy 97.4837m
FH 15m 92.7731m 143.76m 0.8654
RH 15m

(trial 2)
92.7213m 117.54m 0.6403 30 10.5555530

Greedy
(trial 2)

 96.5831m 135.7m 0.7736 38 6.22222

FH 15m
(trial 2)

93.1311m 144.93m 0.6297

Full
Horizon

 92.6588m 102.68m 0.8425 37 5.11111

RH = Receding Horizon, FH = Fixed Horizon

Table 6.4 Performance of Observation Planning Methods in 25by45Room

Method Horizon Distance

Traveled
Total
Length of
Line
Features
Mapped

Average
Fraction of
Line
Extracted

Waypoints
Reached

Total
Utility
Collected

RH 20m 50.3775m 33.361m 0.9019
Greedy 52.4176m 35.54m 0.9353
FH 8m 51.7187m 33.265m 0.9784 71 27.1111050
RH = Receding Horizon, FH = Fixed Horizon

Table 6.5 Performance of Observation Planning Methods in RandomRocks

 161

Method Horizon Distance
Traveled

Total
Length of
Line
Features
Mapped

Average
Fraction of
Line
Extracted

Waypoints
Reached

Total
Utility
Collected

Greedy 56.5687m 42.91m 0.9524
RH 15m 45.6891m 17.51m 0.9714
RH 30m 50.7897m 26.03m 0.9408
RH = Receding Horizon, FH = Fixed Horizon

Table 6.6 Performance of Observation Planning Methods in Real Buildings 34 and 36

 Our conclusion from these experiments is that in many environments, the set of

candidate observation points changes too much with our particular exploration

framework for the robot to plan ahead effectively using finite horizon or full horizon

methods. Yet if the environment is open enough that the robot can quickly discern the

overall structure of its surroundings (or if the robot starts out knowing this overall

structure somehow), then finite horizon methods perform much more efficiently than

greedy methods at filling in the remaining holes in the map. In addition, in all

environments it may be possible to plan ahead using the finite horizon approach with a

very short horizon in order to improve the thoroughness of the exploration. In order to

achieve this improvement, however, we would also need to make a few improvements to

the Newman, Bosse, and Leonard strategy for identifying and scoring candidates.

 Section 6.4.1 describes how the experiments suggest these conclusions and

examines the details of some important trials. The remaining sections are devoted to the

individual environments, and discuss interesting or unusual trials in these environments.

6.4.1 Overall Analysis of Experiments

 Examining these results, we find that no observation planning methods stand out

as being consistently dominant in any measure of performance for all environments.

Furthermore, the greedy method performs reasonably well in all trials. It appears, then,

that we cannot conclude from these experiments that finite horizon methods for planning

observations offer large improvements over greedy methods in all environments. In

order to understand why it is not always useful for the robot to plan ahead and in what

situations the finite horizon approach should perform efficiently, we must analyze the set

 162

of candidates that determine the robot’s path and how the candidates change during

exploration.

 The most obvious reason that none of the observation planning methods were able

to consistently outperform the greedy approach is that often the candidates changed too

much during exploration to allow planning ahead to be useful. In all environments, it

was rare for the robot to reach more than one observation point in its plan before the set

of candidates changed enough to cause the plan to change. As a result, the robot usually

ended up executing a path that was the concatenation of the first steps of paths planned to

be efficient. This executed path itself is not guaranteed to be efficient at all, however.

Because the robot never did what it was planning on doing, even if the executed path had

ended up being extremely good, this success would have been largely due to luck. And

on average, most executed paths ended up performing about as well as the greedy path.

That the robot’s path changes frequently was somewhat expected. In Chapter 3

we predicted that visiting previously unexplored areas, candidate interactions, and SLAM

updates to the estimated state of the world will cause the set of candidates to change as

the robot explores. In particular, we predict that visiting previously unexplored areas

might cause the set of candidates to change enough to cause the robot’s planned path to

change every time the robot reaches a candidate. Therefore, we worry most about the

effects of visiting previously unexplored areas.

Indeed, the set of candidates does change significantly each time the robot reaches

a candidate. What is surprising is that in the Newman, Bosse, and Leonard exploration

method, SLAM updates and candidate interactions tend to cause changes to the set of

candidates that is just as drastic as visiting unexplored areas. Because SLAM updates

and candidate interactions can occur even more frequently than every time the robot

reaches a candidate, the robot’s planned path often changes even before the robot reaches

the next candidate in its path. Some specific reasons that the set of candidates changes in

the Newman, Bosse, and Leonard method are:

1. New lines are extracted. These new lines produce new candidates.

2. Existing lines lengthen or new lines appear at a position which blocks the line

of sight between two candidates. Such a blockage drastically increases the

 163

length of the shortest path between the two candidates and is basically

equivalent to the candidates suddenly jumping apart.

3. The map changes its estimate of the location of lines, causing candidates to

disappear, reappear, or change score. Because the SLAM algorithm

continuously updates its position estimates of all line features, this type of

change causes the most frequent fluctuation. Figure 6.2 gives two examples

of such situations. In the figure, large circles are candidates, small circles are

sample points, and pentagons are pebbles which mark where the robot has

been. Recall from Chapter 2 that the utility of a candidate is the fraction of

the sample points that have a clear line of sight to the goal and that are not

within a set range of a pebble with a clear line of sight. Figure 6.2b depicts a

common situation in which two lines come together to form a corner, and their

corresponding candidates overlap. The Newman, Bosse, and Leonard method

considers these candidates redundant and removes one of them. If the lines

ever separate slightly, however, their respective candidates no longer overlap

and what was one candidate becomes two.

 164

Candidate Disappearing

a)

Candidate Appearing

b)

Utility = 2/10 Utility = 0/10
So candidate disappears

Figure 6.2 Candidates Disappearing and Appearing Because of Line Movement

4. As the robot approaches a candidate, the candidate’s utility drops. As we

mentioned in Section 6.2, this utility drop happens almost every time the robot

heads towards a candidate. As the robot approaches a candidate, the robot

sees more features in the surrounding area and places pebbles near the

candidate. Both of these actions can cause the candidate’s utility to decrease.

5. Visiting one candidate can cause another candidate’s utility to decrease if the

candidates are close together or if the robot’s path passes by the other

candidate. This type of candidate interaction also happens frequently.

6. Even if the robot is stationary, the SLAM algorithm can update the robot’s

estimated location and, therefore, make it look like the robot has moved.

Although this motion does not cause the candidates to change, it can cause the

 165

robot’s plan to change. If the robot makes motions that are not along the path

it has planned, then even if nothing else in the map changes, the best path

might still change16.

The screenshots in Figure 6.3 and Figure 6.4 show how the set of candidates

typically changes during exploration. The robot is in environment NE43Floor8 and is

selecting its waypoints using the receding horizon approach with a 15m horizon. In the

screenshots, the robot is the triangle, the green lines are the line features in the robot’s

current map, and the blue boxes around the green lines are the obstacles that the path

planner uses. The candidates are the circles, and each candidate’s utility is displayed to

the upper-right of the candidate. The candidates in the robot’s current path are connected

in order by a red line. In addition, the waypoint that the robot is currently headed

towards is marked by a very small black square with a thin line sticking out of it (the

direction of the line gives the desired heading at the waypoint). The current waypoint is

not necessarily a candidate, for in addition to candidates, the robot’s path contains

corners of obstacles that the robot needs to drive to in order to avoid the obstacles.

Finally, the small yellow pentagons are the pebbles that mark where the robot has been.

16 In fact, as Figure 3.6 shows, the best path can change even if the robot follows its plan exactly if it is
using the S-TSP with a receding horizon to plan.

 166

Figure 6.3 Beginning of the Second NE43Floor8 15m Receding Horizon Trial

In Figure 6.3a, the best path of 15m takes the robot out of the office it is currently

in and into the elevator lobby below. Note that the horizontal line at the top of the map is

actually four separate line features, as a result of the SLAM algorithm. Therefore there

are four candidates along this line. The line on the far left produces only one candidate

because it is too short to require two candidates. The long line in the middle produces the

 167

middle two candidates. The line which ends immediately to the right of this middle line

does not produce any candidates, for these candidates would be redundant with the

middle line’s candidates. Finally, the line furthest to the right produces one candidate.

 In Figure 6.3b, the robot has turned clockwise to head down into the elevator

lobby. As the robot turned, however, the line whose candidates were redundant with the

long line grew enough to make one of its candidates no longer redundant. Therefore, in

this screenshot, the highest utility 15m path now takes the robot back into the offices.

Yet Figure 6.3c shows that after the robot gets to the first candidate in this path, the next

candidate in the path drops in utility, because the robot has placed a pebble near this next

candidate. In addition, the long line above the robot has lengthened slightly. As a result,

the candidate that appeared in the last figure has once again become redundant. These

changes make the best path switch back to being down in the elevator lobby.

 Figure 6.3d shows the robot entering the elevator lobby. The robot sees a new

horizontal line in front of it; therefore, the path changes slightly to observe this line. In

Figure 6.4a the robot has reached the candidate it was heading to in Figure 6.3d and has

seen a line at the bottom right of the map. Therefore, the best path changes once again to

visit this line and also an isolated line on the right side of the map that was not previously

in the path. The robot makes it to this point in Figure 6.4b, and since it plans for the best

15m path from this location, the robot changes its path slightly to include three new

candidates that it can now reach. The robot then finally gets to visit three waypoints

without changing its path, and in Figure 6.4c has planned a new 15m path. Upon getting

to the first point in this new path, however, the robot finds itself out in the hallway again.

Therefore in Figure 6.4d, the robot has planned a new 15m path, because it can once

again reach the points in the offices it had passed up earlier.

 168

Figure 6.4 Beginning of the Second NE43Floor8 15m Receding Horizon Trial Continued

 In this fragment of a trial, only once does the robot get to more than one candidate

in its path without the path changing. This example is fairly representative of how

exploration proceeded in most trials. In actuality, this example is a relatively good case

because most of the path changes do not drastically alter the overall direction of the path.

 Planning multiple candidates ahead is not entirely hopeless in our exploration

framework, however. Two possible methods for combating the effects of the set of

candidates changing frequently are to plan over a very short horizon using the finite

 169

horizon approach, and to know the overall structure of the environment at the beginning

of exploration. By using the finite horizon approach with a very short horizon, the

robot’s plans will not often extend beyond the room that the robot is in. As a result, the

robot’s path will not change as often from the robot entering an unexplored room and

extracting a lot of new line features or from the robot finding out a wall blocks part of its

path. By knowing the large-scale structure of the environment, the robot can plan paths

that are much less likely to change drastically in overall shape.

 We first examine how well planning over a short horizon performs. In indoor

environments or environments with a high density of features, a robot should be able to

execute many of its paths to completion, if it plans these paths using a short horizon. By

“short” we mean on the order of the length of a room. The reason a robot should be able

to execute more of these short-horizon paths is that in indoor environments, the walls of

the room that the robot is in prevent the robot from seeing too much unexplored territory.

Therefore, if a robot’s planned path does not go outside of the room that the robot is in,

then the robot will not extract new far away features that will drastically alter the robot’s

path unless the robot sees another room through a doorway. Setting the horizon at about

the average room length makes it less likely that the robot’s path will go outside of the

current room. Using the fixed horizon method makes it even less likely that the robot

will re-plan its path to be outside of the current room; therefore, paths calculated with

short fixed horizons should be executed to completion even more often. In addition,

planning paths on the order of a room length makes it less likely that these paths will be

unexpectedly blocked by unmapped walls. Therefore, the first two reasons listed above

for the set of candidates changing are less likely to occur when using a short horizon.

 These short horizon paths that the robot executes should lead the robot to explore

its local environment thoroughly before moving on to a new area. In fact, we noted in

Chapter 3 that it is a general feature of using the finite horizon approach with any length

horizon that the planned paths will tend to visit regions that have already been somewhat

explored over visiting isolated and largely unexplored regions. This bias of finite horizon

paths is bad for the goal of mapping as many new features as possible, but is good for the

goals of mapping regions thoroughly and staying near known features. The reason for

this bias is that areas that have not been explored much do not contain many features and,

 170

therefore, candidates. On the other hand, areas that have been explored a moderate

amount should be filled with features, and these features should produce many

candidates. Therefore, even though the candidates in unexplored regions will probably

have a higher utility then the candidates in explored regions, the sheer number of

candidates in explored regions will make it more profitable for the robot to go to the

explored region. Figure 6.5 is a screenshot of such a situation occurring, while the robot

explores NE43Floor8,using the fixed horizon method with a 15m horizon. Instead of

going to the less explored features on the right side of the map, the robot’s path goes

inside the more explored office above, because this area has more candidates that the

robot can visit.

Figure 6.5 Visiting Explored Regions Over Unexplored Regions

 When the robot plans a path over a short horizon, this bias ensures that the robot

will finish exploring a local, partially explored area before moving on to a less explored

area. The bias will cause the robot to choose a path that stays in an already explored

region, and since the horizon is short, the robot will probably execute this path to

completion. Therefore, even if the robot sees a new room through a doorway, the robot

will stick to exploring the room it is in until most of the candidates in the room are gone.

The result should be that the robot performs well in terms of the goal of thorough

exploration.

 171

 The series of screenshots in Figure 6.6 provide an example of the robot being able

to execute paths planned with a short horizon. The robot is exploring the environment

Building10Floor1 using the fixed horizon method with a 15m horizon. In Figure 6.6a,

the robot plans a path that actually visits two different rooms. The first room is very

small and has been somewhat well explored. Therefore, it is not surprising that the

robot’s plan explores an additional room. In Figure 6.6b the robot has executed this path

successfully and has reached the end of its 15m fixed horizon. In Figure 6.6c, the new

15m horizon has started and the robot’s new path takes it into a room it has already

explored a decent amount, as opposed to the less explored area on the right side of the

map. All of the candidates in this new path are in the same room, and, therefore, the

robot is able to execute this path, as shown in Figure 6.6d. Figure 6.6e shows the robot’s

path for the next horizon. The robot has chosen to explore the next most explored area in

the map. All of the candidates in this path also are in the same room. In Figure 6.6f, the

robot has reached most of these candidates. The robot took a slightly less efficient path

than it initially planned to and was, therefore, unable to make it to the last candidate

before reaching the end of the horizon.

 172

Figure 6.6 Screenshots of Exploration of Building10Floor1 with a 15m Fixed Horizon

Even though the robot executed its plans to completion and visited most of the

waypoints in the rooms it explored as we expected, the results do not show this trial

outperforming the other trials in Building10Floor1 in terms of thoroughness. In fact, the

average fraction of line extracted in this trial is lowest of all Building10Floor1 trials. In

 173

addition, in environment NE43Floor8, the trial using the fixed horizon method with a

short horizon of 8m is the second worst in terms of fraction of line extracted (although

the trial using a receding horizon of 7.5m in this environment performs the best in terms

of fraction of line extracted). In actuality, the robot’s exploration of its environment was

fairly thoroughly in these two trials; it just did not get to visit one partially seen area.

Figure 6.7a shows the map after the robot has finished exploring Building10Floor1 using

the fixed horizon method with a 15m horizon. The robot filled in the regions it visited

very well, but never got to explore the hallway at the bottom right of the map. The final

map in Figure 6.7b shows a similar situation from the robot’s exploration of NE43Floor8

using the S-TSP with a fixed horizon of 8m. The robot explored the places it got to

thoroughly, but never visited the area in the bottom left corner of the map. Therefore it is

misleading to say that the robot explored its environment less thoroughly in these two

trials than the other trials in these environments.

 174

Figure 6.7 Final Maps of Short Horizon and Greedy Trials in Building10Floor1 and NE43Floor8

Nevertheless, even if we disregard the areas that the robot did not get to in these

two trials, the robot did not explore its environment more thoroughly using a short

horizon than it did using other methods in the same environments. For example, Figure

6.7c shows the final map after Building10Floor1 greedy trial, and Figure 6.7d shows the

final map after the second NE43Floor8 greedy trial. The areas that the robot visited in

these two trials are just as thoroughly explored as the areas the robot visited in the trials

depicted in Figure 6.7a and Figure 6.7b. Therefore, it seems that a robot planning over a

 175

short horizon does not explore its environment more thoroughly than a robot planning

with other methods.

The main problem is that a robot often does not need to explore all of the

candidates in its local area in order to explore that area thoroughly. In other words, even

though planning over a short horizon produces paths that go to small clusters of

candidates and visits every candidate in the cluster, visiting every candidate in a cluster is

not necessary for the robot to explore the cluster’s area thoroughly. Often all a robot

needs to do to see every line feature in a room is to drive to some point inside the room

and turn in a few different directions. For example, Figure 6.8 shows the robot traveling

from one room into another room in NE43Floor8 during the second greedy trial. In

Figure 6.8b the robot has just entered the new room and has already fully extracted each

line in that room, with the exception of the line right above the robot. Nevertheless, there

are still four candidates in the room for the robot to visit.

Figure 6.8 Candidates in a New Room While Exploring NE43Floor8

The reason that the robot often does not need to visit every observation point in an

area is that the way the Newman, Bosse, and Leonard candidate identification and

scoring method produces candidates is very conservative. The method places candidates

right next to the ends of map lines so that it is almost guaranteed that the robot will see

more of the line if the line extends further in reality. Yet in most cases the robot can see

the full extent of a line from points much further away than these candidates. The only

times the robot should need to go right up to the end of a map line is if the view of the

 176

real world line is blocked from most angles by obstacles, or if the robot is in a narrow

hallway. In a narrow hallway, the laser cannot extract the walls of the hallway beyond a

certain distance in front of the robot, because the angle of incidence of the laser beam on

the wall is too large. Therefore, the robot must move further along the map line in order

to see parts of the corresponding wall beyond this distance.

In order to make it useful to plan over a short horizon and visit every candidate in

a local region, we would need to make the candidate identification and scoring method

less conservative. One way to make the method less conservative is to somehow keep

track of what areas the robot’s laser has and has not seen. The robot then would know

whether or not an obstacle was blocking its view of the rest of the part of a line feature.

Making such an improvement to the candidate identification and scoring method is

beyond the scope of this thesis, however.

The second method of dealing with the fact that the set of candidates changes

frequently is to learn the large scale structure of the environment early on during

exploration. If the robot knows where most of the big obstacles and interesting places to

map are, then the robot can plan an efficient path to visit all of these interesting places.

This path will change slightly as the robot maps small details of the environment.

However, the path should not change drastically, for the robot is not likely to find large

obstacles blocking legs of its path or new regions of the map that it must divert the path

to visit. In an extreme instance of this approach, the robot would have a perfect map of

its environment except for a few small holes. The robot could then use the finite horizon

or full horizon methods to plan an optimally efficient path through the environment to fill

in these holes, and none of the map changes that resulted from visiting these unseen areas

would alter the path.

The path that the robot executes when it knows the overall structure of its

environment and plans a path with a long horizon should be much more efficient than the

path the robot executes when the robot selects candidates to visit greedily. Here what we

mean by efficient is mapping a greater length of line feature in a given distance. In fact,

the only time we can feel certain that a path planned using the finite horizon or full

horizon methods will be more efficient than the greedy path is when the robot knows the

overall structure of its environment. The reason is that if the robot does not know the

 177

large scale structure of its environment, then the robot can only take into account local

concerns when choosing its path. Therefore, at best the path that the robot executes will

be a sequence of locally efficient paths that meander randomly through the overall

structure of the environment. Yet the large scale shape of the path will likely have the

largest effect on the path’s efficiency, and in this situation, the greedy method has just as

good of a chance of selecting an efficient large scale path as the finite horizon or full

horizon methods have.

 The largest problem with this approach is finding a way for the robot to learn the

overall structure of its environment. One solution to this problem is to know this

structure before the robot begins exploring. The robot’s map would be initialized to

reflect this a priori knowledge. We might know the large-scale structure of the

environment from overhead satellite images or other wide-area, low resolution mapping

methods. Or perhaps the robot could explore the environment twice, the first time using

an algorithm which tries to quickly build a rough, large-scale map, and the second time

using a finite horizon method. In this second scenario, however, in order to evaluate how

efficiently the robot explored its environment, we would have to look at the combined

path that the robot took for both explorations.

 A second way the robot could learn the overall shape of its environment quickly is

if the environment is structured properly. The environment is structured properly if it is

possible for the robot to see most of the large groups of features in the environment from

the vicinity of the robot’s initial location. We refer to this type of environment as an

open environment. The most open environments are outdoor locations that are not

densely packed with obstacles. Using the finite horizon method with a long horizon

should cause the robot to explore these environments very efficiently. Indoor

environments are usually not as open as outdoor environments, unless the robot is

confined to mapping obstacles inside one large room. Yet planning over a long horizon

might still perform well indoors if the building has large rooms with a lot of wide

doorways. Having large rooms and wide doorways minimizes the density of the walls in

indoor environments, and walls block the robot’s view.

 Another issue with these situations in which the robot starts out knowing the

structure of its environment is that it is not obvious that finite horizon methods for

 178

planning observations offer any benefit over the full horizon method. One advantage that

finite horizon methods have is that they take into account the utility of candidates.

Therefore, paths planned using finite horizon methods tend to avoid going to low utility

candidates that will not add much to the map. If the robot’s mission ends before the robot

visits all of the candidates in the environment, maps built using finite horizon methods

will probably have mapped a greater length of line than full horizon methods. In

addition, often times these low utility candidates disappear when the robot steers near

them. In these cases, the robot is better off if it does not explicitly plan to visit these

candidates.

 The StructuredRocks environment is a fairly open outdoor environment.

However, the environment is too large and the rocks are too small for the robot to see the

overall structure of the environment without moving. Therefore, before we let the robot

explore, we quickly drove the robot through the environment so that it knew the general

location of each cluster of rocks. Figure 6.9a shows the robot’s map after this initial tour

of the environment. The line of small yellow pentagons at the top of the map marks the

path of the initial tour. Figure 6.9b shows the path planned using the full horizon method

after the initial drive through of the environment. Figure 6.9c shows the greedy path for

the exact same situation. On the global scale, the greedy path is much less efficient than

the full horizon path. In fact, from these figures it looks as if the greedy path has to be

about 25 percent longer than the full horizon path to visit all of the candidates. As the

robot begins to explore, small-scale twists and turns of these two paths will change.

However, we expect the overall order in which the paths visit the clusters of rocks to

remain the same throughout the mission. Therefore, in the StructuredRocks environment,

planning over a long horizon should drastically improve the efficiency of exploration.

Unfortunately, we were unable to complete the exploration of this environment using the

full horizon method because for the TSP solver always crashed midway through the

mission for some reason.

 179

b)

a)

c)

Figure 6.9 Initial Exploration Paths through the StructuredRocks Environment

 Examining our results for indoor environments, we see that in the trial with the

longest planning horizon (30 meters) in NE43Floor1, the robot performed very poorly in

terms of total length of line mapped. However, in the trial with the longest planning

horizon (30 meters) in Building10Floor1, the robot vastly outperformed all other

methods. In keeping with our analysis, the rooms in are larger and the environment is

generally more open in Building10Floor1 than in NE43Floor1. In order to see whether or

not planning over a long horizon was responsible for the robot’s exceptional performance

in Building10Floor1, however, we must look at the paths that the robot planned during

exploration in this trial.

 180

a) b)

c) d)

Figure 6.10 First Third of Building10Floor1 30m Receding Horizon Trial

 The screenshots in Figure 6.10 show the first third of the Building10Floor1 trial

using the receding horizon method with a horizon of 30m. Figure 6.10a shows the plan

before the robot had driven anywhere. Note that from its initial position, the robot cannot

map the large scale structure of its environment as we would like. In Figure 6.10b, the

robot has executed the first segment of its plan, and on the way it has seen into the room

above it and the end of the hallway to the right. As a result, the path has changed to visit

this new room. The robot still has not seen most of the environment, however, and so

this path has not been planned to be globally efficient. After moving just a little bit

farther, the robot picks out a line at the bottom right of the map; therefore, the path

changes again. As Figure 6.10c shows, this new path heads down the hallway to the

right, visits one point above the hallway, and then goes back to the robot’s initial room in

order to finish exploring there. Figure 6.10d shows that the robot was able to execute the

first part of this path. Because the robot is using a receding horizon, the robot can now

 181

reach two more points with its path than it could before. However, these additional

points do not change the path’s overall direction.

Figure 6.11 Second Third of Building10Floor1 30m Receding Horizon Trial

 182

 A very long wall blocks the path in Figure 6.10d, and in Figure 6.11a the robot

has journeyed upwards to find a way around it17. In Figure 6.11b, the robot decides it is

not worth it to continue to go upwards to try to get around the wall, and instead goes

around the bottom of the wall. The path has changed slightly in Figure 6.11c to visit two

additional candidates, but the overall direction of the path stays the same. The robot

finally gets to execute most of this last portion of its plan. Yet in Figure 6.11d the robot

has just seen the end of the hallway on the left side of the map; therefore, the robot delays

visiting the last room in the path to go visit this hallway.

17 The screenshots in Figure 6.11 and 6.12 are actually from a different trial than the screenshots in Figure
6.10. Nevertheless, this second trial still used the receding horizon method with a horizon of 30m, and the
first part of the trial was almost exactly identical to the steps depicted in Figure 6.10.

 183

Figure 6.12 Final Third of Building10Floor1 30m Receding Horizon Trial

 New rooms and hallways continue to distract the robot from exploring the final

room in its path, as Figure 6.12a and Figure 6.12b show. In Figure 6.12c, the robot has

found a large unexplored area and gives up on visiting this final room. In Figure 6.12d,

however, the robot has explored the new area a bit more and once again plans to visit the

old final room. The robot never gets to execute this plan to completion, however,

because the mission ends. Figure 6.13b shows the final map.

 In this trial, the robot did not even find out about the upper part of the

environment until the very end. Therefore, the robot never truly planned globally

 184

efficient paths using knowledge of the overall structure of the environment. It was

mostly out of luck that the robot’s path in this trial was more efficient than its path in the

greedy trial in Building10Floor1 (the greedy trial had the second most efficient path in

this environment). Figure 6.13a shows the robot’s map after exploring Building10Floor1

using the greedy method. Figure 6.13b shows the final map of the 30m receding horizon

trial with the most significant line features that were not mapped during the greedy trial

circled. In the greedy trial, the robot never got to map the short hallways on the lower

left and lower right of the environment, because it immediately headed up to the top of

the map and spent most of its time exploring this part of the map in detail. In the

receding horizon of 30m trial, however, the robot could not have actually known that it

was better to map these hallways before heading up to the top of the environment, for the

robot did not even know there was anything at the top of the environment until the end of

its mission. The robot therefore only mapped these hallways out of luck in the 30m

receding horizon trial. In addition, the longest line that the robot did not map in the

greedy trial was mapped largely by accident when the robot was trying to find some way

out of the enclosed corridor that this line forms the right wall of. In other words, much of

the 30m receding horizon trial’s success was due to luck.

a) b)

Figure 6.13 Final Maps for the Building10Floor1 Greedy and 30m Receding Horizon Trials

 185

 Yet the robot was able to plan paths over an intermediate size distance and

execute these plans without them changing entirely. For example, the last segment of the

robot’s plan stayed constant throughout almost the entire trial. And in the hallway to the

right, the big room on the left, and the area at the top of the map, the robot was able to

execute most of its plan. This successful intermediate length planning caused the robot to

execute a more efficient path than in the other finite horizon trials. For example, in the

portion of the 15m fixed horizon trial shown in Figure 6.6, the robot inefficiently bounces

back and forth between its initial room and the rooms directly above, because the robot’s

horizon is too short. In addition, Figure 6.14a shows the final map for the 15m receding

horizon trial. The thin multicolored line winding through the map shows the path the

robot executed. This path also bounced around between the initial room and the

surrounding rooms. Figure 6.14b once again shows the final map for the 30m receding

horizon trial. The executed path in this final map does not show these signs of inefficient

bouncing, which reaffirms that planning over the longer 30m horizon improved the

efficiency of the robot’s executed path.

a) b)

Figure 6.14 Final Maps for the Building10Floor1 15m and 30m Receding Horizon Trials

 186

 In the end, therefore, the Building10Floor1 environment was not open enough for

the robot to be able to plan globally efficient paths. Nevertheless, the environment was

open enough for the robot to be able to plan over an intermediate length horizon and not

have these plans change too drastically. This intermediate length planning improved the

efficiency of the robot’s executed path. We conclude that as long as the environment is

open enough for the robot to discern the overall structure of the environment to some

radius, the robot can execute finite horizon paths planned over a horizon scaled to this

radius well enough to improve the efficiency of exploration. Furthermore, the longer this

horizon is, the more efficient the robot’s path will be.

 Out of all of our experiments, the trials in Building10Floor1 that we just presented

and the StructuredRocks trials provide the only real positive evidence for this conclusion.

The trials in the other environments did not contradict the conclusion, however. In

addition, there are a number of questions about observation planning that we have not

examined. For example, we would like to find out from these experiments how the fixed

horizon and receding horizon approaches to continuous observation planning compare to

each other. Therefore, in the following sections we examine what interesting things the

trials in each environment have to teach us. We also argue that, despite how it sometimes

appears, the trials in other environment do not contradict the conclusions drawn in this

section.

6.4.2 Real Buildings 34 and 36 Trials

 We performed these trials on a real iRobot B21 robot on the fourth floor of two

connected buildings. The part of the environment the robot explored in these trials

consisted of a large elevator lobby and a hallway that dead ended in closed doors at one

end and led to the elevator lobby at the other end. The main point of these experiments

was to validate that the results we got from the experiments that we performed in

simulation were similar to the results we would have gotten in a real environment.

Overall, while there were some differences in these real world experiments, none of these

differences made the results drastically different from the results we would have gotten in

simulation.

 187

 One difference between the real world experiments and what we would have seen

in simulation is that in the real world, the robot mapped many small details that we would

not have included in a simulated environment. For example, three of the walls in the real

environment were filled with windows. These windows were set back very deep into the

wall (probably about a foot deep). The robot, therefore, mapped a few window frame

edges as short vertical lines sticking out of the wall. There were also a few chairs and

door frames that added small details to the robot’s map that we would not have modeled

in a simulated environment from the floor plans of the building. These small details

added a few more candidates for the robot to visit; however, there were not enough of

them to significantly alter the robot’s exploration path.

 Another difference between the real environment and simulated environments

was that the robot extracted many redundant lines in these trials. Figure 6.15 shows the

final map from each trial in this environment. In the greedy trial and 30 meter receding

horizon trial, we see that the robot has mapped many close together lines for each wall.

Most likely, these redundant lines were caused by the glass windows and the mirror-like

metal of the elevator doors in the environment. The robot’s laser scanner does not

receive good data from surfaces that are somewhat transparent or that are mirror-like.

Therefore, the robot probably had trouble localizing and thought it was seeing new walls

when it was actually seeing walls it had mapped already. In our simulations, we would

not have experienced this problem of the robot mapping redundant lines, because we

would have made all walls act like normal opaque walls.

 188

Greedy 30m Receding Horizon 15m Receding Horizon

a) b) c)

Figure 6.15 Final Maps for Real Buildings 34 and 36 Trials

 At times these redundant lines caused there to be more candidates in the map than

there should have been. However, none of these trials lasted long enough for the number

of extra candidates to get to a size that drastically altered the relative performance of the

observation planning method. Although in longer missions these types of environments

may be problematic, the problem of extracting redundant lines should be addressed by

improving the SLAM algorithms and laser scanners, not the exploration algorithm. A

map with many extra lines is not desirable, even if we can find a way to explore well

using such a map.

 Table 6.6 shows that the all of the robot performed similarly in terms of average

fraction of line extracted for all observation planning methods we tested. This

environment is very simple in that there are not a lot of blocked off, hard to see features.

Therefore, it was very easy for the robot to explore the environment thoroughly. What

jumps out most from Table 6.6 is that in the greedy trial, the robot extracted a much

larger total length of line than in the finite horizon trials. Looking at Figure 6.15, we see

that the greedy trial was the only trial in which the robot mapped the big elevator lobby.

 189

Mapping this lobby is what allowed the robot to extract a much larger total length of line

than in the other methods.

 The robot made it to the elevator lobby by chance in the greedy trial. In all trials,

the exploration began with the robot in the middle of the hallway leading to the elevator

lobby. In the two finite horizon trials, the robot never made it into the elevator lobby,

because it went down and explored the other end of the hallway first. It was a matter of

chance that the robot made it up into the elevator lobby in the greedy trial. Unlike in the

finite horizon trials, for some reason the robot did not see much of the end of the hallway

away from the elevator lobby in the greedy trial until the robot was close to the lobby.

Figure 6.16 shows the beginning of the exploration in each trial. Figure 6.16a shows the

robot’s path early on in the greedy trial. The end of the hallway at the top of the picture

is where the elevator lobby is. Note that the robot has not mapped any of the hallway

below the robot’s position. Furthermore, the robot will never turn towards this end of the

hallway on its current path. Figure 6.16b shows the robot’s path early on in the 15 meter

receding horizon finite horizon trial, and Figure 6.16c shows the robot’s path early on in

the 30 meter receding horizon trial. In both of these figures, the robot has mapped some

of the hallway below its current position, and its path takes it down to see more of that

end of the hallway.

 190

Figure 6.16 Why the Greedy Trial Got to the Elevator Lobby

 There were a number of times before the robot made it to the elevator lobby in

which if the set of candidates had been slightly different, the robot would have been

pulled away from the elevator lobby in the greedy trial. It is important to note, however,

that globally it is more efficient for the robot to explore the end of the hallway away from

the elevator lobby before exploring the elevator lobby itself. In addition, the robot plans

to do exactly that in the 30m receding horizon trial. In Figure 6.17a, the three candidates

at the very top of the map are in the elevator lobby. The robot has planned to travel down

to the bottom of the map before traveling up to the slightly further away elevator lobby.

In Figure 6.17b, we see that the robot has gotten pulled down even farther towards the

bottom of the map, but eventually plans on going up to explore the elevator lobby.

Unfortunately, the mission ends before the robot ever makes it up to the elevator lobby.

However, the path the robot would have executed in this trial probably would have been

more efficient than the path the robot would have executed in the greedy trial, had we

allowed the robot to explore until the entire environment had been mapped.

 191

Figure 6.17 Middle of the 30m Receding Horizon Trial

6.4.3 15by15Room Trials

 The 15by15Room is a fictional environment. We designed the 15by15Room to

be a very small and simple environment that tested the theory that the finite horizon

approach would perform well in buildings with big rooms and wide doorways. Looking

at the results in Table 6.3, however, we see that all of the observation planning methods

that we tested performed almost identically.

 The reason none of the finite horizon trials significantly outperformed the greedy

trial in any metric of exploration was that the environment was too small and simple. We

expect that finite horizon methods will do well in buildings with big rooms and wide

 192

doorways because the robot should be able to see the overall structure of the environment

early on. However, in the 15by15Room, once the robot knew where all the large

obstacles and interesting places to map were, the robot had basically mapped the whole

environment. Therefore, the finite horizon methods never got to capitalize much on

knowing the overall structure of the environment.

 Figure 6.18 shows the final map of each trial listed in Table 6.3. In particular,

Figures 6.18a, 6.18b, 6.18c, and 6.18d show the greedy, 15m receding horizon, 15m fixed

horizon, and 8m fixed horizon trials respectively. For all observation planning methods,

the robot was able to explore about two rooms over the 33 meter mission. Within these

two rooms, all methods saw about the same amount of the walls in the environment.

 193

a)

c) d)

b)

Greedy 15m Receding Horizon

15m Fixed Horizon 8m Fixed Horzion

Figure 6.18 Final Maps of Trials in 15by15Room

In the 15by15Room environment, we also performed four trials in which the robot

explored until there were no candidates left. This environment and the RandomRocks

environment were the only two that were small enough for exploring until there were no

more candidates to be feasible. In all other environments, the set of candidates would

eventually become so large that the candidate identification and scoring code and the

observation planning code would run too slowly to be usable.

 194

 Table 6.7 shows the distance the robot had to travel in order to visit all of the

candidates in each trial. The robot traveled significantly farther in the two finite horizon

trials than it did in the greedy or full horizon trials. The reason the robot’s exploration

was so much less efficient in the finite horizon trials was that the finite horizon paths

often skipped visiting the low utility candidates in its current room to go to high utility

candidates in other rooms. Unfortunately, the robot would eventually have to come back

to the candidates that it had skipped, in order to visit all of the candidates in the map. In

addition, the robot was susceptible to planning paths through walls that it had not mapped

yet when it was using a finite horizon method, because the robot kept switching rooms.

Often these paths caused the robot to make a very inefficient maneuver to get around

these unmapped walls when the robot finally saw them.

Observation Planning Method Horizon Distance Traveled

Greedy 79.5689m

Receding Horizon 15m 107.428m

Fixed Horizon 8m 108.099m

Full Horizon 86.4245m

Table 6.7 Results of Visiting Every Candidate in 15by15Room

 The greedy and full horizon methods, on the other hand, do not take the utility of

the candidates into account. Therefore, these methods tended to have the robot explore

the room it was in thoroughly, before moving to the next room. The greedy and full

horizon methods, therefore, performed much more efficiently by the measure of visiting

all of the candidates. As we see from these trials, however, analyzing how far the robot

must travel to visit every candidate is not so much an overall measure of how efficiently

the robot explored, as it is a measure of how efficient the robot was at exploring

thoroughly. It is still a useful measure, however, because the other measure of

thoroughness, the average fraction of line feature extracted, did not show any difference

between these observation planning methods.

 195

6.4.4 25by45Room Trials

 The 25by45Room is another fictional room that we designed in order to test the

theory that buildings with big rooms and wide doorways will allow finite horizon

methods to perform more efficiently than other methods. The 25by45Room environment

is bigger and more complex than the 15by15Room. This increase in size is promising,

since the 15by15Room is too small for the finite horizon approach to have a chance to

perform well. In general, we found that the robot is able to discern much of the structure

of the environment early on and to execute many of its paths to completion in the

25by45Room environment. Therefore, we expect that finite horizon methods should

perform very efficiently in this environment.

 Looking at Table 6.4 we see that the two trials that used the fixed horizon method

with a horizon of 15 meters performed the best in terms of total length of line feature

mapped. In terms of average fraction of line extracted, one of the 15m fixed horizon

trials performed the best out of all trials and the other performed the worst. It is unusual

that trials using the fixed horizon method performed the best in terms of length of line

mapped, for our experiments in other environments show that using a fixed horizon

usually causes the robot to explore thoroughly.

 Figure 6.19 shows most of the second trial that used the fixed horizon method

with a 15 meter horizon. The robot was able to execute all of the paths it plans with little

or no change in this trial. In Figure 6.19a, the robot has traveled down the column of

rooms to the left of the room the robot started out in. The path in Figure 6.19a ignores

the lower utility points in the lower left corner of the robot’s room and takes the robot to

slightly higher utility points in the less explored right side of the map. In Figure 6.19b

we see that the robot was able to execute this path to completion. Figure 6.3c shows the

15 meter path for the new horizon, and Figure 6.3d shows that the path changes after the

robot executes the first part of it. In Figure 6.3e the robot has planned another 15 meter

path for a new horizon that heads farther to the right into unexplored territory, since this

is where the candidates with the highest utility are. Finally, Figure 6.3f shows that the

robot was able to execute this path.

 196

Figure 6.19 Part of the 15m Fixed Horizon Trial

 197

As we see from these figures, the robot’s 15 meter paths were only planned to be

locally efficient. A 15 meter horizon is not long enough for the robot to plan a path that

is globally efficient in this environment. It was, therefore, partially due to luck that the

overall path that the robot executed explored new areas of the map efficiently. However,

the fact that unexplored regions of the environment contained high utility candidates

helped somewhat to guide the robot’s paths towards the most unexplored regions in the

map. Nevertheless, the 25by45Room environment is open enough where it seems like

the robot would benefit from planning paths over a longer horizon.

We tried using the receding horizon method with a horizon of 40 meters, yet

midway through exploration the S-TSP solver began taking a very long time to find a

solution. We eventually had to halt the trial. The closest we got, therefore, to performing

a trial with a horizon longer than 15 meters was to perform a trial using the full horizon

method. Figure 6.20 shows a few snapshots from this full horizon trial. The robot was

able to execute its full horizon path without the path ever drastically changing direction.

However, small changes in the path did cause the robot to explore somewhat

inefficiently. Figure 6.20a shows the full horizon path early on in the mission. In Figure

6.20b we see that the robot has executed almost half of the path to completion with the

path only changing slightly. In Figure 6.20c, however, mapping errors have caused two

redundant lines to appear to the left and above the robot. These redundant lines have

created candidates back in regions of the map that the robot has already explored. The

full horizon path has, therefore, changed slightly to revisit this area, which hurts the

efficiency of the path that the robot executes. Indeed, looking at Table 6.4 we see that the

robot performs the least efficient in terms of total length of line mapped in the full

horizon trial. Another factor that contributes to the robot not mapping many of the line

features in the full horizon trial is that the full horizon method does not take into account

candidate utilities when planning its path. Therefore, the full horizon method does not

prioritize heading into unexplored regions like the finite horizon method does.

 198

Figure 6.20 Moments in the 25by45Room Full Horizon Trial

A final point to note about the 25by45Room trials is that, while the 15 meter fixed

horizon trials performed the best out of all trials, the 15 meter receding horizon trial

performed second worst in both total length of line feature mapped and average fraction

of line extracted. Part of the reason that the receding horizon trial did worse than the

fixed horizon trials is that the robot is less likely to finish executing its path when it uses

the receding horizon method, as we noted in Chapter 3. In general, the robot executed its

 199

path to completion more often using the fixed horizon method than the receding horizon

method in all environments. However, a lot of the receding horizon’s inefficiency in the

25by45Room environment was due to getting unlucky, since a 15 meter horizon was not

long enough for the robot to compute globally optimal paths.

6.4.5 NE43Floor8 Trials

 Looking at Table 6.1, we see that no trials stand out as being unusually efficient

or inefficient in any metric of exploration. The main lesson we learn from the trials in

this environment is that it is very unlikely for the robot to get to execute much of its

planned path without the path changing drastically in such a closed environment.

Furthermore, we also learn that when the robot’s path changes this frequently, most

observation planning methods end up performing about as well as or slightly worse than

greedy methods. In other words, the robot did not get caught making large unrewarded

sacrifices too often in this environment, even though the robot’s planned path changed

constantly.

 Figure 6.3 shows an example of the robot’s path changing frequently in this

environment. The only trial in which the robot often got to execute its planned paths to

completion with little alteration was the eight meter fixed horizon trial. This fact

confirms our reasoning in Section 6.4.1 that when the set of candidates changes

frequently, the robot will have a better chance of executing paths planned over a short

horizon. Eight meters was often short enough to keep the robot’s planned path within the

robot’s current room. The fact that the robot executed many of its eight meter fixed

horizon trials to completion also confirms that the robot is more likely to complete paths

planned over a fixed horizon than paths planned over a receding horizon. Nevertheless,

the robot did not perform efficiently in any metric of exploration in this trial. The fact

that the robot did not explore its environment particularly thoroughly confirms that in

order for planning over a short horizon to allow the robot to explore its environment

thoroughly, changes must be made to the Newman, Bosse, and Leonard candidate

identification and scoring method.

 200

6.4.6 Building10Floor1 Trials

We discuss the two most interesting trials in the Building10Floor1 environment,

namely the 30 meter receding horizon trial and the 15 meter fixed horizon trial, in Section

6.4.1. We noted in Section 6.4.1 that it is only out of luck that the robot performed better

using a 30m receding horizon than it did using the greedy method. One additional point

is that the robot executed a very similar path when it used the full horizon method to the

path that it did when it used the greedy method. These two executed paths were similar

because both got drawn up the long corridor to the top of the environment early on and,

therefore, did not have time to fully explore the lower part of the environment.

Therefore, it was also only out of luck that the robot performed better using the receding

horizon method with a 30 meter horizon than it did using the full horizon method.

6.5 RandomRocks Trials
 The RandomRocks environment is a fictional outdoor environment. Looking at

Table 6.5, we see that all of the observation planning methods we tested performed

similarly in all metrics in this environment. That no method stood out in terms of length

of line feature mapped in this environment was largely due to the fact that the

environment has no large scale obstacles in it, and the objects are fairly regularly

dispersed throughout the environment. Therefore, no matter what direction the robot

headed in, it mapped about the same amount of new features in this environment.

Another problem was that the Newman, Bosse, and Leonard method does not encourage

the robot to explore around the corners of squares very well. Figure 6.21 shows part of

the eight meter fixed horizon trial. Figure 6.21a shows the path the robot has planned to

explore what is actually a square rock in the environment. In Figure 6.21b, the robot has

visited most of the candidates around this rock. Nevertheless, the robot still has not seen

the other two sides of the square. Therefore, executing this path did not add any new line

features to the robot’s map. This scenario of the robot not seeing all the sides of a rock

was very common. In addition, this environment was not conducive to the robot

extracting many new line features because the lines in the environment were all only one

meter long. Therefore, the robot only mapped lines that were very close to it, because

 201

lines that were far away appeared too small for the SLAM algorithm to be certain enough

about them to extract them.

Figure 6.21 Difficulties Exploring around Squares in RandomRocks 8m Fixed Horizon Trial

The environment not being conducive to the robot extracting new line features

also caused all of the observation planning methods to explore the environment

thoroughly. At about the same point in all trials, the robot stopped mapping parts of new

rocks to explore despite the fact that there were still unmapped rocks. From this point on,

the robot simply explored the rocks that it knew about until it had mapped these rocks

thoroughly and had nothing else to do.

6.6 Summary
 The most important conclusion from these experiments is that in open

environments, such as the Building10Floor1 and 25by45Building environments, the robot

can sense the overall structure of the surroundings up to a certain radius. The robot can

then plan an efficient path within this radius using the finite horizon approach and

execute the path without much change. Trials in the Building10Floor1, StructuredRocks,

and 25by45Building environments show that planning and executing these paths should

allow the robot to explore its environment more efficiently than when it uses the greedy

 202

method, on average. In particular, a robot using the finite horizon approach appears to

have the potential to explore up to 25 percent more efficiently than a robot using the

greedy approach in terms of total length of line feature extracted, the

 We have also seen from these experiments that even when the environment is not

open enough for the robot to discern the overall structure of the environment early on in

the mission, the robot should still be able to plan and execute paths over a short horizon.

Executing these paths causes the robot to visit most of the candidates in its local area

before moving on to a new area. Therefore, if improvements are made to the way

candidates are identified and scored in the Newman, Bosse, and Leonard exploration

method, planning over a short horizon might enable the robot to explore its environment

thoroughly.

 From the trials in the NE43Floor8 and Building10Floor1 environments, we have

drawn the conclusion that using the fixed horizon method allows the robot to execute

more of its paths to completion than using the receding horizon method. The robot does

not necessarily explore more efficiently when it uses the fixed horizon method than when

it uses the receding horizon method, however.

Finally, the real world trials showed us that the results of the trials we ran in

simulated environments are probably similar to the results we would have gotten if the

trials had been in corresponding real environments.

 203

7 Future Work

 A lot of work remains to be done on the general problem of exploration. The

ideal exploration system would take as input any combination of exploration goals and

sub-goals, and would then control the robot to efficiently achieve these goals. For

example, one might specify that the robot should try to get to a specific point A, but,

along the way, the robot should explore to expand the coverage of its map and make sure

the map uncertainty does not exceed a given upper bound.

 Unfortunately, we do not have room in this chapter to survey directions for future

work in the entire field of autonomous exploration. Therefore, we focus on future work

for observation planning, in the context of exploring to increase map coverage. In

particular, we discuss three important research topics that this thesis has suggested:

testing approaches to observation planning with other candidate identification and scoring

methods, improving the algorithm for solving the S-TSP as an OCSP, and predicting

what the robot will see at candidates, in order to improve the effectiveness of planning

multiple observations ahead.

7.1 Further Testing
 In this thesis we only had time to test the greedy, finite horizon, and full horizon

approaches to observation planning with the Newman, Bosse, and Leonard candidate

identification and scoring method. Therefore, we do not know anything definite about

how these approaches to observation planning will perform for the Gonzalez-Banos and

Latombe or frontier-based candidate identification and scoring methods. As we

discussed in Chapter 6, the candidates change unusually frequently in the Newman,

Bosse and Leonard method, and these frequent changes makes it harder to plan efficient

paths. With other candidate identification and scoring methods, therefore, we might

expect that the finite horizon approach will be effective in more environments than just

open ones. As a result, implementing and testing these three approaches to observation

 204

planning with other candidate identification and scoring methods is a worthwhile

endeavor.

 There is also important work to be done on the testing procedure itself. Because

we are interested in the average case efficiency of the various approaches to observation

planning, it is important to be able to perform and evaluate many experiments in many

different environments. Therefore, we would like to automate all aspects of running an

exploration experiment, including generating a random simulated environment, driving

the robot during exploration, and processing of the results. Although random indoor

environment generators might be difficult to design, random outdoor generators should

be straight-forward to implement, as long as the obstacles are small separate entities such

as rocks or trees. In order to drive the robot automatically, all one needs is a controller

that can execute the paths that the exploration path planner outputs. The most difficult

task to automate is processing the results of experiments, because often these results

require some interpretation. However, the running and processing hundreds of

exploration trials would provide very valuable statistical verification of our initial

impressions about the efficiency of the observation planning methods and would likely

lead to new insights. Therefore, automating testing is an important problem to address.

7.2 Improved Methods for Solving the S-TSP as an OCSP
The constraint-based A* approach to solving the S-TSP as an OCSP that we

presented in Chapter 4 is a very basic approach. One inefficiency that we can improve

upon is that every time constraint-based A* checks the consistency of an assignment, the

approach solves the TSP on the sub-graph corresponding to the assignment.

Furthermore, constraint-based A* enumerates every full assignment in best-first order;

thus, the approach has to solve the TSP on all possible sub-graphs in order of largest sub-

graph to smallest, until it finds a consistent sub-graph. Yet solving the TSP on a graph

becomes time consuming as the number of vertices in the graph increases. Thus, the

constraint-based A* approach always starts out by solving the TSP on the most time-

consuming sub-graphs. If the number of vertices in the input graph is very large, and if

the horizon length is such that the solution path only visits a small number of vertices,

then the approach will have to solve the TSP on a large number of very large sub-graphs.

 205

In this section we discuss two methods of addressing this inefficiency. First,

future approaches can avoid having to solve the TSP every time they check the constraint

by finding bounds on the length of the solution to the TSP. If a lower bound on the

length of a TSP path is longer than the horizon length, then the TSP path must be longer

than the horizon length. Conversely, if an upper bound on the length of a TSP path is

shorter than the horizon length, then the TSP path must be shorter than the horizon

length. Second, future approaches can avoid explicitly considering every sub-graph with

more vertices than the solution sub-graph by using conflict-directed A* [52] to perform

the best first enumeration, instead of constraint-based A*. Conflict-directed A* is a

sound and complete method of solving an OCSP that avoids enumerating assignments to

the variables that it knows must be inconsistent.

7.2.1 Utilizing Bounds

Solving a TSP every time the approach needs to check a constraint is very

inefficient. While it is feasible to check the TSP on graphs with 10 or 30 vertices, for

graphs with a few hundred vertices, finding a solution to the TSP can take an

unacceptably long amount of time [19]. Fortunately, since often we only care whether or

not the length of the solution to the TSP is above or below L, we can improve the

constraint-based A* approach to sometimes avoid solving the TSP by computing upper or

lower bounds on the length of the optimal tour.

In particular, when checking the constraint on a sub-graph with a large number of

vertices, the approach could first compute a lower bound on the length of the optimal

tour. If the lower bound is greater than L, then the constraint must be violated. Only if

the lower bound is less than L must the algorithm calculate the actual solution to the TSP.

This lower bounding prevents the algorithm from wasting time finding the solution to

large sub-graphs that obviously do not satisfy the constraint. Note that calculating an

upper bound could not help the approach in this situation, for if the upper bound is

shorter than L, then the assignment corresponding to the sub-graph must be the solution

to the OCSP, and the approach will need to return the TSP path as the solution to the S-

TSP. If the upper bound is longer than L, then we do not know whether the TSP path is

longer or shorter than L, and the approach still needs to solve the TSP.

 206

There are many methods for finding a lower bound on the length of the solution to

the TSP [19]. The tighter the bound is and the faster it can be calculated, the better the

bound computation. A simple lower bound on the length of a solution to the TSP on a

graph is the cost of a minimum spanning tree for the graph. Using Prim’s algorithm [40]

it is possible to calculate a minimum spanning tree in time O(E + VlgV), where E is the

number of edges in the graph and V is the number of vertices.

Upper bounds on the length of the solution of the TSP are useful for extracting

conflicts, as we explain in the next section. Any approximation algorithm for the TSP

can serve as an upper bound. The Concorde TSP solver comes with an implementation

of the Chained Lin-Kernighan approximation algorithm [35]. If an upper bound is less

than L, then the TSP path must have a length less than L. If an upper bound is greater

than L, then we still do not know whether the TSP path has a length that is greater or less

than L.

7.2.2 Utilizing Conflict-directed A*

Like constraint-based A*, conflict-directed A* is a method for enumerating the

possible assignments to the decision variables of an OCSP in best-first order. The

interesting feature of conflict-directed A* is that it takes advantage of information about

the substructure of the constraints in the OCSP to avoid enumerating assignments during

the best-first search that it knows cannot be consistent. Conflict-directed A* also uses the

fact that the utility function is MPI in order to speed up search in a way that is similar to

what constraint-based A* does. Given an admissible heuristic, conflict-directed A* is an

optimal and complete search strategy for OCSP’s.

Conflicts are central to conflict-directed A*. A conflict is any partial assignment

to the decision variables of an OCSP that is inconsistent with the constraints. In an

OCSP, any partial assignment that contains a conflict as a subset of its assignments must

be inconsistent. Conflict-directed A* can be thought of as a method of returning the next

best assignment that resolves all known conflicts. An assignment resolves a conflict if

the conflict is not a subset of the assignment. Thus, conflict-directed A* bypasses all

states that it knows must be inconsistent. Conflict-directed A* can incorporate new

conflicts into its search strategy at any time.

 207

We can use conflict-directed A* instead of constraint-based A* to perform the

best first enumeration of assignments when solving the S-TSP. In terms of our OCSP

formulation of the S-TSP, any sub-graph that has an optimal tour that is longer than L

corresponds to an inconsistent partial assignment; therefore, any such sub-graph

corresponds to a conflict. Furthermore, if the length of an optimal tour through a given

sub-graph is greater than L, then the length of an optimal tour on any sub-graph that

contains this initial sub-graph must also be greater than L. Therefore, our OCSP

formulation of the S-TSP satisfies the requirement that any partial assignment that

contains a conflict must be inconsistent. As a result, if we ever find any sub-graphs that

have optimal tours longer than L, we can call this sub-graph a conflict and use conflict-

directed A* to avoid explicitly enumerating any sub-graph containing the conflict sub-

graph.

In order to use conflict-directed A* to solve the S-TSP, however, we need a

method of finding conflicts. There are two main objectives for a method of finding

conflicts. The first objective is that the method should find conflicts quickly. If it takes

longer for a method to find a conflict than the amount of time it would have taken to

check all of the assignments the conflict rules out, then it is not worth it to find conflicts.

The second objective is that the method should try to find conflicts that are as

small as possible. In general, the fewer assignments there are in a conflict, the more full

assignments the conflict will rule out. This rule is true because the smaller the partial

assignment is, the larger the set of supersets (assignments containing the partial

assignment) will be. In other words, the fewer the number of vertices there are in a sub-

graph, the larger the set of sub-graphs that contain this sub-graph is. The only caveat is

that some of the full assignments that a conflict rules out might already have been ruled

out by other conflicts. Therefore, in addition to being small, we would also like the

conflicts found to overlap as little as possible.

 The usual approach to finding conflicts is as follows. We start out not knowing

about any conflicts. Conflict-directed A* then produces the assignment to the variables

that has the best utility, and the constraint checker checks this assignment for

consistency. If the assignment is found to be inconsistent, then conflict-directed A*

looks for partial assignments contained by this assignment that are inconsistent. Conflict

 208

directed A* then uses these partial assignments as conflicts as it continues its search.

Every time conflict-directed A* produces an assignment and the constraint checker finds

the assignment to be inconsistent, conflicts are extracted from this assignment.

The advantage of this approach to finding conflicts is that the approach uses the

assignments that are already known to be inconsistent and only searches through subsets

of these assignments to find conflicts. The difficulty in implementing this approach is

that we need to develop a quick method of finding small conflicts from an assignment

that we know is inconsistent. In other words, we need to develop a quick method of

taking a graph that has an optimal tour of length greater than L and finding small sub-

graphs of this graph that also have optimal tours of length greater than L. Ideally, this

method would take O(n) time, where n is the number of vertices included by the

assignment. Finding a conflict extraction method that meets these requirements is an

interesting area for future research.

There is another possible approach to finding conflicts, however. Instead of

waiting to use the assignments that conflict-directed A* determines are inconsistent in

order to find conflicts, a method of finding conflicts could search for certain conflicts

before running conflict-directed A*. In particular, the method would search for all

conflicts that correspond to sub-graphs that have less than or equal to a given number of

vertices. For example, if the maximum number of vertices were four, then the method

would check all possible sub-graphs of the input graph of two, three and four vertices for

consistency. The approach would then use any inconsistent sub-graphs it found as

conflicts when we run conflict-directed A* on the input graph. The motivation for this

approach is that small conflicts are much more useful than large conflicts. For example,

if the OCSP has j variables and we have a conflict of k variables, then there are 2j-k full

assignments that contain of this conflict, since the size of the domain of the variables in

our case is two. If we decrease the size of the conflict by one variable, then there are

2j-(k-1) full assignments that contain this conflict; in other words, the number of full

assignments ruled out by a conflict increases by a factor of two for every variable we

remove from the conflict. Furthermore, small sub-graphs are very easy for a TSP solver

to solve. Therefore, it is feasible to search through all small sub-graphs for inconsistent

 209

partial assignments before beginning conflict-directed A*’s best-first enumeration of

assignments.

A final point to note is that any method of finding conflicts can make use of both

upper and lower bounds on the length of the solution to the TSP in order to speed up

constraint checking. The reason we can use upper bounds for finding conflicts is that if

we find that a partial assignment corresponds to a sub-graph whose upper bound is less

than L when we are searching for conflicts, we do not then need to find the TSP tour

through the sub-graph, as in constraint-based A*. Instead, we simply do not use the sub-

graph as a conflict.

There is a good chance that approaches to solving the S-TSP that use conflict-

directed A* would perform drastically better than approaches using constraint-based A*.

Conflict-directed A* approaches to solving the S-TSP may even end up outperforming

existing branch-and-cut algorithms for solving the S-TSP. Therefore, future work in

conflict-directed A* approaches to the S-TSP holds a lot of promise.

7.3 Predicting the Outcomes of Observations
 In Chapter 3 we noted a major concern about the finite and full horizon

observation planning methods. Specifically, if a candidate identification and scoring

algorithm is doing its job, then every time a robot visits a candidate, the robot should add

previously unexplored area to its map, and the set of candidates should change.

Furthermore, if the set of candidates changes every time the robot visits a candidate, then

we expect that the robot will not be able to effectively plan ahead, and thus the greedy

observation planning method will probably perform similar to or better than either the

full or finite horizon method. We often saw the candidates changing this frequently in

the experiments discussed in Chapter 6, and indeed, the greedy method was almost

always one of the most efficient methods. In order to know for sure if the candidates

change this frequently with other candidate identification and scoring methods, we need

to perform more experiments.

 If the set of candidates changes frequently, then the only way a robot can

effectively plan for the future is to predict how the set of candidates will change. There

are two ways the robot could make such predictions. Either the robot could start out with

 210

a model of the candidate dynamics a priori, or, if the environment is somewhat regular,

the robot could learn a model of the candidate dynamics from past experience. The

exploration method of Burgard et al. [10] explained in Chapter 2 learns a very simple

model of how the candidates will interact every time a robot visits a candidate. However,

there are currently no other methods, that we know of, of predicting how the candidates

will change as a robot explores. Therefore, we can only speculate about what good

approaches to prediction might entail.

 The first question to address is how we would model the way the set of candidates

changes. We would like to know how the set of candidates will change for each possible

action the robot could take. In order to cut down on the number of actions to keep track

of, we could consider only actions that drive the robot directly to a candidate, and have

one action for each candidate. We cannot know the result of an action for certain in our

model, since otherwise there would be no reason to explore the environment. Therefore,

our model should have multiple possible outcomes for each action, and it should assign

probabilities to each outcome.

 We might, therefore, decide to represent our model as a Markov Decision Process

[5]. Recall that an MDP consists of a set of states {S}, an initial state S0, a transition

model T(s1, a, s2) that gives the probability that taking action a in state s1 will put the

agent in state s2, and a reward function R(s1, a, s2) that assigns a real number to the

situation in which taking action a in state s1 results in the agent being in state s2. Because

the transition function of MDP’s depends on the current state and no previous states, the

state must capture all of the information that is important in determining what the next

state will be. It is tempting to make the current set of candidates the state, however, the

set of candidates does not capture all of the information that is relevant in determining the

next state. In general, it helps to know the entire current map, in addition to the current

set of candidates, in order to predict how the set of candidates will change as the result of

some action. After all, exploration methods use the current map to identify and score

candidates. If we can predict how the map changes as the result of an action, then we can

predict how the candidates will change. Therefore, we represent the state of any given

moment during exploration by the entire current map and the current set of candidates.

 211

Because we define the reward function to depend on the action that the robot

takes, we can factor into the reward the distance that the robot travels in taking an action.

In addition, we define the reward function to depend on both the current and next state.

By comparing the next state to the current state, we can see how much information the

action adds to the map. Therefore, the amount of information the robot adds to its map is

also a factor in the reward. The reward function must then combine the distance the

robot travels and the amount of information the robot adds to its map into one number. If

we wanted to avoid combining these two values, we could redefine what we consider to

be an action so that all actions have the robot travel the same distance.

Given a fully specified MDP model of how the set of candidates changes as the

robot explores, we could, in theory, calculate an optimal infinite horizon discounted

policy for the robot. The optimal policy is the policy that has the highest expected total

discounted reward. If we were not completely confident in our model, however, we

might not want to plan a policy all the way out to the end of the robot’s mission. Instead,

we could generalize the finite horizon approach to observation planning to plan a policy

N actions into the future, where N is a constant. This approach to planning policies is

also referred to as the finite horizon approach. A form of the finite horizon approach to

finding policies has been used successfully in fault diagnosis [27]. Comparing the

performance of infinite horizon discounted policies to the performance of finite horizon

policies is an interesting area of future research.

One major concern with our MDP model of the way the map changes as the robot

explores is that the state space will have to be very large. There must be a state for every

possible map the robot could ever build by executing a sequence of actions. In addition,

this state representation is somewhat wasteful. The robot will almost never return to a

previously visited state because the robot’s current map does not usually regress to be

identical to earlier maps. Therefore, another important area of future research is to find

representations for these models that are more compact than the simple MDP

representation that we have outlined.

The final question to address is how a robot could learn a probabilistic model of

how the map changes as the robot explores. It is much more desirable for a robot to be

able to learn a model of its environment then for us to supply it with such a model a

 212

priori, because usually we have no good source of such models. The field of statistical

learning [23] deals with learning probabilistic models from past experience. Therefore, a

study of how well various statistical learning techniques work to learn regularities while

mapping environments is another interesting area of future research.

 213

Appendix A: Environments Used for Testing

 The figures below depict the floor plans of the simulated environments that we
used. The grid cells in these figures are one meter by one meter.

NE43Floor8

 214

Building10Floor1

 215

15by15Room

25by45Room

 216

RandomRocks

StructuredRocks

 217

Appendix B: Line Extraction Histograms

 These histograms depict how thoroughly the robot explored its environment in the
experiments described in Chapter 6. Specifically, in each trial, we defined the region of
the environment that the robot explored (see Chapter 6 for an explanation of how we
define this region). For each line within this region, we then calculated the fraction of the
line that the robot extracted. The histograms below show the distribution of these
fractions for each trial.

NE43Floor8 Trials

 218

 219

 220

 221

Building10Floor1 Trials

 222

 223

 224

15by15Room Trials

 225

 226

25by45Room Trials

 227

 228

 229

RandomRocks Trials

 230

 231

Real Buildings 34 and 36 Trials

 232

 233

References

[1] D. Applegate, R. E. Bixby, V. Chvátal, and W. Cook, “On the solution of

traveling salesman problems,” Documenta Mathematica, extra volume ICM III,

pp. 645-656, 1998.

[2] R. Bauer and W. D. Rencken, “Sonar feature based exploration,” in Proc.

IEEE/RSJ International Conference on Intelligent Robots and Systems, 1995, vol.

1, pp. 148-153.

[3] J. G. Bellingham, C. A. Goudey, T. R. Consi, J. W. Bales, D. K. Atwood, J. J.

Leonard and C. Chryssostomidis, “A second generation survey AUV,” in Proc.

IEEE Conference on Autonomous Underwater Vehicles, pp. 148-155, 1994.

[4] J. G. Bellingham and J. S. Willcox, “Optimizing AUV oceanographic surveys,” in

Proc. IEEE Symposium on Autonomous Underwater Vehicle Technology, 1996,

pp. 391–398.

[5] R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton University

Press, 1957.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational

Geomtetry. Berlin; New York: Springer-Verlag, 2000.

[7] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller, “An Atlas

framework for scalable mapping,” in Proc. IEEE International Conference on

Robotics and Automation, 2003, pp. 1899–1906.

 234

[8] M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller, “SLAM in large-scale

cyclic environments using the Atlas framework.” To appear in the International

Journal of Robotics Research.

[9] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and H. F.

Durrant-Whyte, “Information based adaptive robotic exploration,” in Proc.

IEEE/RSJ International Conference on Intelligent Robots and System, 2002, vol.

1, pp. 540–545.

[10] W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun, “Collaborative multi-

robot exploration,” in Proc. IEEE International Conference on Robotics and

Automation, 2000, pp. 476-481.

[11] J. Casper and R. R. Murphy, “Human-robot interactions during the robot-assisted

urban search and rescue response at the World Trade Center,” IEEE Transactions

on Systems, Man and Cybernetics, Part B, vol. 33, no. 3, June, pp. 367–385,

2003.

[12] M. W. M. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M.

Csorba, “A solution to the simultaneous localization and map building (SLAM)

problem,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3, June,

pp. 229-241, 2001.

[13] A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE Journal of

Robotics and Automation, vol. 3, no. 3, June, pp. 249-265, 1987.

[14] H. J. S. Feder, J. J. Leonard and C. M. Smith. “Adaptive mobile robot navigation

and mapping,” International Journal of Robotics Research, Special Issue on Field

and Service Robotics, vol. 18, no. 7, July, pp. 650-668, 1999.

 235

[15] M. Fischetti, J. J. Salazar-Gonzalez, and P. Toth, “Solving the orienteering

problem through branch-and-cut,” INFORMS Journal on Computing, vol. 10, no.

2, pp. 133-148, 1998.

[16] M. Gendreau, G. Laporte, and F. Semet, “A branch-and-cut algorithm for the

undirected selective traveling salesman problem,” Networks, vol. 32, pp. 263-273,

1998.

[17] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval Res.

Log., vol. 34, pp. 307-318, 1987.

[18] H. Gonzalez-Banos and J. Latombe, “Navigation Strategies for Exploring Indoor

Environments,” The International Journal of Robotics Research, vol. 21, no. 10-

11, October-November, pp. 829-848, 2002.

[19] G. Gutin and P. Punnen, Eds., The traveling salesman problem and its variations.

Dordrecht; Boston: Kluwer Academic Publishers, 2002.

[20] J-S. Gutmann and K. Konolige, “Incremental mapping of large cyclic

environments,” in International Symposium on Computational Intelligenc in

Robotics and Automation, 1999.

[21] D. Hahnel, D. Schulz, and W. Burgard, “Map building with mobile robots in

populated environments,” in Proc. IEEE International Conference on Intelligent

Robots and Systems, 2002, vol. 1, pp. 496-501

[22] M. Hayes and J. M. Norman, “Dynamic programming in orienteering: Route

choice and siting of controls,” J. Oper. Res. Soc., vol. 35, pp. 791-796, 1984.

[23] D. Heckerman, “A Tutorial on Learning with Bayesian Networks,” in Learning in

Graphical Models, M. I. Jordan, Ed. Dordrecht, Netherlands: Kluwer, 1998.

 236

[24] J. Hsu and L. Hwang, “A graph-based exploration strategy of indoor

environments by an autonomous mobile robot,” in Proc. IEEE International

Conference on Robotics and Automation, 1998, pp. 1262–1268.

[25] T. Huntsberger, H. Aghazarian, Y. Cheng, E. T. Baumgartner, E. Tunstel, C.

Leger, A. Trebi-Ollennu, and P.S. Schenker, "Rover autonomy for long range

navigation and science data acquisition on planetary surfaces," in Proc. IEEE

International Conference on Robotics and Automation, 2002, vol. 3, pp. 3161–

3168.

[26] R. Jonker and T. Volgenant, “Transforming asymmetric into symmetric traveling

salesman problems,” Operations Research Letters, vol. 2, no. 4, November, pp.

161-163, 1983.

[27] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ``Reinforcement learning: a

survey,'' Journal of Artificial Intelligence Research, vol. 4, pp. 237-285, 1996.

[28] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic roadmaps

for path planning in high-dimensional configuration spaces,” IEEE Transactions

on Robotics and Automation, vol. 12, no. 4, pp. 566-580, 1996.

[29] J. de Kleer and B. C. Williams, “Diagnosing multiple faults,” Artificial

Intelligence, vol. 32, pp. 100-117, 1987.

[30] M. Kontitsis, K. P. Valavanis, and N. Tsoureloudis, “A UAV vision system for

airborne surveillance,” in Proc. IEEE International Conference on Robotics and

Automation, 2004, vol. 1, pp. 77 – 83.

[31] R. Krishnan, “Solving hybrid decision-control problems through conflict-directed

branch & bound,” Masters thesis, Massachusetts Institute of Technology, 2004.

 237

[32] G. Laporte and S. Martello, “The selective traveling salesman problem,” Discrete

Applied Mathematics, vol. 26, no. 2-3, March, pp. 193-207, 1990.

[33] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”

International Journal of Robotics Research, vol. 20, no. 5, May, pp. 378-400,

2001.

[34] J. J. Leonard and P. M. Newman, “Consistent, convergent, and constant-time

SLAM,” International Joint Conference on Artificial Intelligence Acapulco,

Mexico, 2003.

[35] O. Martin, S. W. Otto, and E. W. Felten, “Large-step markov chains for the tsp

incorporating local search heuristics,” Operations Research Letters, vol. 11, pp.

219-224, 1992.

[36] P. Moutarlier and R. Chatila, “Stochastic mulisensory data fusion for mobile robot

location and environment modeling,” in Robotics Research: 5th International

Symposium, H. Miura and S. Arimoto, eds. Cambridge, MA: MIT Press, 1989,

pp. 85-94.

[37] P. Newman, M. Bosse, and J. Leonard, “Autonomous feature-based exploration,”

in Proc. IEEE International Conference on Robotics and Automation, 2003, pp.

1234 – 1240.

[38] P. Newman, J. Leonard, J. D. Tardos, and J. Neira, “Explore and return:

experimental validation of real-time concurrent mapping and localization,” in

Proc. IEEE International Conference on Robotics and Automation, 2002, pp.

1802-1809.

 238

[39] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. “Towards robotic

assistants in nursing homes: challenges and results,” Robotics and Autonomous

Systems, vol. 42, no. 3-4, March, pp. 271-281, 2003.

[40] R. C. Prim, “Shortest connection networks and some generalizations,” Bell System

Technical Journal, vol. 36, pp. 1389-1401, 1957.

[41] A. P. Punnen, “The Traveling Salesman Problem: Applications, Formulations and

Variations,” in The Traveling Salesman Problem and its Variations, G. Gutin and

P. Punen, Eds. Dordrecht; Boston: Kluwer Academic Publishers, 2002.

[42] R. Ramesh, Y. Yong-Seok, and M. H. Karwan, “An optimal algorithm for the

orienteering tour problem,” ORSA Journal on Computing, vol. 4, pp. 155-165,

1992.

[43] R. Sim and N. Roy, “Global A-optimal robot exploration in SLAM.” In

submission.

[44] R. Smith, M. Self, and P. Cheesemen, “Estimating uncertain spatial relationships

in robotics,” in Autonomous Robot Vehicles, L. Cox and G. Wilfong, Eds.

Springer-Verlag, 1990, pp. 167-193.

[45] A. Stentz, “Optimal and efficient path planning for partially-known

environments,” in Proc. IEEE International Conference on Robotics and

Automation, 1994, pp. 3310-3317.

[46] R. Stokey, T. Austin, B. Allen, N. Forrester, E. Gifford, R. Goldsborough, G.

Packard, M. Purcell, and C. von Alt, “Very shallow water mine countermeasures

using the REMUS AUV: a practical approach yielding accurate results,” in Proc.

MTS/IEEE Conference and Exhibition OCEANS, 2001, vol. 1, pp. 149-156.

 239

[47] S. Thrun, “Exploration and model building in mobile robot domains,” in Proc.

IEEE International Conference on Neural Networks, 1993, pp. 175-180.

[48] S. Thrun, “Learning metric-topological maps for indoor mobile robot navigation,”

Artificial Intelligence, vol. 99, no. 1, pp. 21-71, 1998.

[49] S. Thrun, “A probabilistic online mapping algorithm for teams of mobile robots,”

International Journal of Robotics Research, vol. 20, no. 5, May, pp. 335-363,

2001.

[50] T. Tsiligirides, “Heuristic methods applied to orienteering,” J. Oper. Res. Soc.,

vol 35, pp. 797-809, 1984.

[51] M. A. Wesley and T. Lozano-Perez, “An algorithm for planning collision-free

paths among polyhedral objects,” Communications of the ACM, vol. 22, no. 10,

pp. 560-570, 1979.

[52] B. C. Williams, and R. Ragno, January 2003, “Conflict-directed A* and its role in

model-based embedded systems," to appear in the Journal of Discrete Applied

Math Special Issue on Theory and Applications of Satisfiability Testing.

[53] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proc.

IEEE International Symposium on Computational Intelligence in Robotics and

Automation, 1997, pp. 146-151.

[54] Concorde is a TSP solver that is free for academic research. It can be downloaded

at http://www.tsp.gatech.edu//concorde.html

