
1

Model-based Programming:
Controlling Embedded Systems by

Reasoning about Hidden State
Brian C. Williams

And Michel Ingham
Artificial Intelligence and Space Systems Labs

Massachusetts Institute of Technology

Programming Long-lived Embedded Systems
With Complex Autonomic Processes

Large collections of devices must work in concert to achieve goals
• Devices indirectly observed and controlled
• Need quick, robust response to anomalies throughout life
• Must manage large levels of redundancy

Outline

• Model-based Programming
• An Example
• Plant Model as Constraint-based POMDP
• Model-based Executive
• Mode Estimation Objective: Support programmers

with embedded languages that
avoid these mistakes, by
reasoning about hidden state
automatically.

Polar Lander Leading Diagnosis:

• Legs deployed during descent.

• Noise spike on leg sensors
latched by software monitors.

• Laser altimeter registers 40m.

• Begins polling leg monitors to
determine touch down.

• Latched noise spike read as
touchdown.

• Engine shutdown at ~40m.

Reactive Model-based
Programming Language (RMPL)

Why Model-based Programming?

Programmers often make
commonsense mistakes when
reasoning about hidden state.

Model-based Programs
Interact Directly with State

Embedded programs interact with
plant sensors and actuators:

• Read sensors

• Set actuators

Embedded Program

S
Plant

Obs Cntrl

Model-based programs
interact with plant state:

• Read state

• Write state

Model-based
Embedded Program

S
Plant

Programmer must map between
state and sensors/actuators.

Model-based executive maps
between state and sensors/actuators.

S’
Model-based Executive

Obs Cntrl

Control Sequencer

Deductive Controller

System Model

CommandsObservations

Control Program

Plant

Titan Model-based ExecutiveRMPL Model-based Program

State goalsState estimates

Generates target goal states
conditioned on state estimates

Mode
Estimation

Mode
Reconfiguration

Tracks
likely

plant states

Tracks least
cost goal states

Executes concurrently
Preempts
Queries (hidden) states
Asserts (hidden) state

ClosedClosed

ValveValve
OpenOpen StuckStuck

openopen

StuckStuck
closedclosed

OpenOpen CloseClose

0. 010. 01

0. 010. 01

0.010.01

0.010.01

inflow = outflow = 0

2

Outline

• Model-based Programming
• An Example
• Plant Model as constraint-based POMDP
• Model-based Executive
• Mode Estimation

Orbital Insertion Example

EngineA EngineB

Science Camera

Turn camera off and engine on

EngineA EngineB

Science Camera

Model-based Program
Control program specifies
state trajectories:

• fires one of two engines

• sets both engines to ‘standby’

• prior to firing engine, camera must be
turned off to avoid plume contamination

• in case of primary engine failure, fire
backup engine instead

OrbitInsert()::

(do-watching ((EngineA = Firing) OR
(EngineB = Firing))

(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

Plant Model describes
behavior of each component:
– Nominal and Off nominal
– qualitative constraints
– likelihoods and costs

Plant Model

StandbyStandby

Engine ModelEngine Model

OffOff

FailedFailed

FiringFiring

component modes…

(thrust = full) AND
(power_in = nominal)

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

described by finite domain constraints on variables…

deterministic and probabilistic transitions

offoff--
cmdcmd

standbystandby--
cmdcmd

0.010.01

0.010.01
standbystandby--

cmdcmd
firefire--
cmdcmd

cost/reward

0 v

0 v

2 kv

2 kv

one per component … operating concurrently

OnOn

Camera ModelCamera Model

OffOff

turnoffturnoff--
cmdcmd

turnonturnon--
cmdcmd

(power_in = zero) AND
(shutter = closed)

(power_in = nominal) AND
(shutter = open)

0 v

20 v

0.010.01

0.010.01

0 v

Given observations…
and command history…
Mode estimation infers
“hidden state”

Executive Manipulates Hidden State
• States like (EngineA = Standby), (ValveA = Open)

are not DIRECTLY observable or controllable…
(thrust = zero) AND (power_in = nominal)

last command issued = last command issued = ““standbystandby--cmdcmd””

⇒ (EngineA = Standby)

Given state goals …
and estimated state …
Mode reconfiguration
infers “commands”

⇒ [Turn on DriverA]; [Open ValveA]

• Thinking in terms of “hidden states” abstracts away
complexity of robustly observing and controlling state.

• Model-based executive raises assurance of software by
correctly inferring and controlling states.

(ValveA = Open)

(DriverA = off) AND (ValveA = closed)

Example: The model-based program sets engine = thrusting, and the
deductive controller

Determines valves
on backup engine that
will achieve thrust, and
plans needed actions.

Deduces that a valve
failed - stuck closed

Selects valve
configuration;
plans actions

to open
six valves

Fuel tankFuel tankOxidizer tankOxidizer tank

Deduces that
thrust is off, and

the engine is healthy

Mode Estimation Mode Reconfiguration

Mode Reconfiguration Mode Estimation

3

Outline

• Model-based Programming
• An Example
• Plant Model as Constraint-based POMDP
• Model-based Executive
• Mode Estimation

• S, A, :
Finite States, Actions & Observations

Ω

Plant as a Partially Observable
Markov Decision Process

T : S × A → Π S()
• T(s,a,s’): Probabilistic state transition function

O : S × A → Π Ω()
• O(s’,a,o): Probabilistic observation function

ℜ→SR :
• R(s): Reward function

Plant Model as Probabilistic
Concurrent, Constraint Automata

StandbyStandby

Engine ModelEngine Model
OffOff

FailedFailed

offoff--
cmdcmd

standbystandby--
cmdcmd

0.010.01

(thrust = full) AND
(power_in = nominal)

FiringFiring

0.010.01

standbystandby--
cmdcmd

firefire--
cmdcmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

OnOn

Camera ModelCamera Model
OffOff

turnoffturnoff--
cmdcmd

turnonturnon--
cmdcmd

(power_in = zero)
AND

(shutter = closed)

(power_in = nominal)
AND

(shutter = open)

– Compact Encoding:

– Concurrent transitions

– State constraints between variables

–Transitions are conditionally independent on previous state.

– Rewards form a multi-attribute decision problem
that satisfies preferential independence

0 v

2 kv

2 kv

0 v

0 v

20 v

0.010.01

0.010.01

0 v

Typical Example (DS1 spacecraft):

– 80 Automata, 5 modes on average

– 3000 propositional variables, 12,000 propositional clauses

Possible Behaviors
Visualized by a Trellis Diagram

S T

X0 X1 XN-1 XN

•Assigns a value to each
variable.
•Consistent with all state
constraints.

•A set of concurrent
transitions, one per automata.
•Previous & Next states
consistent with source &
target of transitions

Outline

• Model-based Programming
• An Example
• Plant Model as constraint-based POMDP
• Model-based Executive
• Mode Estimation

Control Sequencer

Deductive Controller

System Model

Commands
Observations

Control Program

Plant

Titan Model-based ExecutiveRMPL Model-based Program

State goalsState estimates

Control Sequencer:
Generates goal states

conditioned on state estimates

Mode
Estimation:

Tracks likely
States

Mode
Reconfiguration:
Tracks least-cost

state goals

Executes concurrently
Preempts
Asserts and queries states
Chooses based on reward

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

MAINTAIN (EAR OR EBR)

EBS

CO

LEGEND:
EAS (EngineA = Standby)
EAF (EngineA = Failed)
EAR (EngineA = Firing)
EBS (EngineB = Standby)
EBF (EngineB = Failed)
EBR (EngineB = Firing)
CO (Camera = Off)

MAINTAIN (EAF)

EAS

(EAS AND CO)

EAR
EAS AND CO

(EAF AND EBS AND CO)

EBR
EAF AND EBS

AND CO

hierarchical constraint
automata on state s

4

Control Sequencer

Deductive Controller

System Model

Commands
Observations

Control Program

Plant

Titan Model-based ExecutiveRMPL Model-based Program

State goalsState estimates

Control Sequencer:
Generates goal states

conditioned on state estimates

Mode
Estimation:

Tracks likely
States

Mode
Reconfiguration:
Tracks least-cost

state goals

Executes concurrently
Preempts
Asserts and queries states
Chooses based on reward

Fire backup
engine

Valve fails
stuck closed

S T

X0 X1 XN-1 XN

S T

X0 X1 XN-1 XN

least cost reachable
goal stateFirst ActionCurrent Belief State

Deductive Controller

Commands
Observations

Plant

State goalsState estimates

Mode
Estimation:

Tracks likely
States

Mode
Reconfiguration:
Tracks least-cost

state goals

Fire backup
engine

Valve fails
stuck closed

S T

X0 X1 XN-1 XN

S T

X0 X1 XN-1 XN

least cost reachable
goal stateFirst ActionCurrent Belief State

OpSat:

arg min f(x)

s.t. C(x) is satisfiable

D(x) is unsatisfiable

arg max PT(m’)

s.t. M(m’) ^ O(m’) is satisfiable

arg min RT*(m’)

s.t. M(m’) entails G(m’)

s.t. M(m’) is satisfiable

Outline

• Model-based Programming
• An Example
• Plant Model as constraint-based POMDP
• Model-based Executive
• Mode Estimation

Standard Belief Update and
Mode Estimation

• b(s) belief distribution over S.
b' (s') = Pr(s' | o,a,b)

=
O(s' ,a,o) T(s,a,s')b(s)

s∈S∑
Pr(o | a,b)

Mode Estimation:
• Distribution on mode assignments, rather than states.
• T(s,a,s’) selects one transition from each automata.
• O(s’,a,o) computed from state constraints using

consistency and entailment.

Performing Mode Estimation

• Frame as a constrained combinatorial optimization problem.
• satisfies the propositional schema:

ρSi+1
≡ ∨

τ j

∧
ρSi ∧ ρSµ i

entails Φ jk
Ψ jk

⎛
⎝
⎜

⎞
⎠
⎟ ∧ ρΣ ∧ρΟ i+1

where transition τ j is specified by a conjunction of formulas Φ jk ⇒ next (Ψ jk)

generate
best

implicants

generate
best

implicants

BestBest--first Agendafirst Agenda Check ConstraintsCheck Constraints
OptimalOptimal
feasiblefeasible
modesmodes

ConflictsConflicts
(infeasible(infeasible

modes)modes)

CheckedChecked
modesmodes

DPLL SAT
With ITMS

DPLL SAT
With ITMS

conflict
database

conflict
database

• Search using conflict-directed A* (OPSAT)

When you have eliminated the
impossible, whatever remains,
however improbable [costly],
must be the truth.

- Sherlock Holmes.
The Sign of the Four.

Model-based Programming
of Systems Hidden State

• Long-lived systems achieve robustness by coordinating a complex
network of internal devices.

• Programmers make a myriad of mistakes when programming
these autonomic processes.

• Model-based programming simplifies this task by:
– Making hidden states directly accessible to the programmer.
– Automatically mapping between states, observables and control variables.

• A Model-based Executive is an approximation of a partially
observable Markov decision process (POMDPs).
– POMDPs are compactly encoded using constraints and concurrency.
– POMDPs are approximately solved with the aid of fast

optimal satisfiability algorithms (OPSAT).

5

Future Directions

Model-based Programming
of Cooperative Systems

• Control programs with:
– Timing constraints
– Decision theoretic choice

• Plant models include vehicle
dynamics and obstacles.

• Executive performs distributed
activity & path planning.

Model-based Programming
of Hybrid Systems

• Control programs refer to
hybrid discrete-continuous
states

• Plant models include ODEs as
constraints.

• Executive extends to classical
estimation and control.

Mars entry,
descent &
landing

Outline

• Model-based Programming
• An Example
• Plant Model
• Model-based Executive
• Mode Estimation
• OpSat (optional)

OPSAT

GenerateGenerate

BestBest
FeasibleFeasible
OptionsOptions

ConflictingConflicting
ElementsElements

CheckedChecked
optionoption

(Un)Sat Tests(Un)Sat Tests

Generate Best Options:
•

Test Against Constraints:
•

OPSAT

GenerateGenerate

BestBest
FeasibleFeasible
OptionsOptions

ConflictingConflicting
ElementsElements

CheckedChecked
optionoption

(Un)Sat Tests(Un)Sat Tests

Generate Best Options:
• Conflicts generalize test to leap over leading infeasible options

Test Against Constraints:
• Directed towards satisfying most constraints

Increasing
Cost

Feasible

Infeasible

A*

Increasing
Cost

Feasible

Infeasible

Conflict-directed A*

6

Increasing
Cost

Feasible

Infeasible
Conflict 1

Conflict-directed A*

Increasing
Cost

Feasible

Infeasible
Conflict 1

Conflict-directed A*

Increasing
Cost

Feasible

Infeasible

C
onflict 3

Conflict 2

Conflict 1

Conflict-directed A*

• Feasible regions are described
by the implicants of the conflicts
(Kernel Assignments)

•Want kernel assignment
containing the best cost state.

U(A1), U(A2),
U(M1), U(M3)

U(A1), U(M1) , U(M2)

• Kernel assignments are generated
from conflicts by minimal set covering.

Conflicts

Conflict-directed A*:
• To find best kernel, expand tree in best first order,

exploiting preferential independence, preserve systematicity
• Explore subspace of kernel in best first order.
• Test with Incremental Sat algorithm (DPLL + TMS)

U(A1) U(M1) U(M1) & U(A2) U(M2) & U(M3)

U(A2) U(M1)

U(M3)U(A1)

U(A1) U(M1) U(M2)

• View minimal set covering as tree
search.

U(A1), U(A2),
U(M1), U(M3)

U(A1), U(M1) , U(M2)

How do we unify Generate and Test phases?

Clauses

Clause-directed A*:
• Search in best first order, exploiting preferential independence.
• All else equal, direct towards assignments covering most clauses.
• Perform incremental unit propagation after each assignment.

Produces best cost prime implicants.

U(A1) U(M1) U(M1) & U(A2) U(M2) & U(M3)

U(A2) U(M1)

U(M3)U(A1)

U(A1) U(M1) U(M2)

• Treat all clauses as conflicts.
• Direct towards covering clauses.

Recent Publications:
Optimal CSPs & OpSat

Using conflicts to optimally direct the selection of decision
variables.

• Williams, B.C. and R. Ragno, “Conflict-directed A* and
its Role in Model-based Embedded Systems," to appear
Special Issue on Theory and Applications of
Satisfiability Testing, Journal of Discrete Applied Math.

Unifying Generation and SAT Testing through
Clause-direction

• Ragno, R. “Clause-directed A*," Master’s Thesis, MIT
EECS

7

Model-based Programming
of Systems Hidden State

• Long-lived systems achieve robustness by coordinating a complex
network of internal devices.

• Programmers make a myriad of mistakes when programming
these autonomic processes.

• Model-based programming simplifies this task by:
– Making hidden states directly accessible to the programmer.
– Automatically mapping between states, observables and control variables.

• A Model-based Executive is an approximation of a partially
observable Markov decision process (POMDPs).
– POMDPs are compactly encoded using constraints and concurrency.
– POMDPs are approximately solved with the aid of fast

optimal satisfiability algorithms (OPSAT).

