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• Flexible Execution Times

• Incremental Reasoning

• Conflict Extraction

• Redundant Methods

• Conflict-directed Plan Repair

Flexible Execution Times  

Simple Temporal Network (STN):

Equivalent Distance Graph Representation:

(Dechter, Meiri, Pearl 91)
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Flexible Execution Times  
(Dechter, Meiri, Pearl 91)
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A Simple STN:

d = 0 d = 5

Consistent !

Determine STN consistency:  

- Calculate the Single Source Shortest Path   (polynomial-time algorithm)

Flexible Execution Times  

Determine STN consistency:  

- Calculate the Single Source Shortest Path   (polynomial-time algorithm)

- A continually looping negative cycle indicates an inconsistency in STN

(Dechter, Meiri, Pearl 91)

d = 0 d = 1d = - 4 d = - 3d = - 8

Inconsistent STN !

Two methods to detect a continually looping negative cycle
1.)  Check for any d-value to drop below –nC.
2.)  Keep an acyclic spanning tree of support, and terminate  

when a self-loop is formed. (Cesta, Oddi 96)

(most space efficient)

(most time efficient)

A Simple STN:
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ITC Algorithm

• Basic Idea:

1.) Keep dependency information for each shortest-path value in 
the distance graph  (Cesta, Oddi 96)

2.) Use incremental update rules to localize necessary changes to the  
distance graph.      

a.) 3 Update Rules to change a consistent distance graph.
b.) 3 Update Rules to repair an inconsistent distance graph.

• ITC’s Novel Claims:

1.)  A conflict extraction mechanism to guide plan repair
2.)  Allow multiple arc-changes
3.)  Can repair inconsistent distance graphs incrementally

• Given a consistent STN, changing Arc(i,j)’s cost can 
have three possible effects on the shortest path.

1. Arc(i,j) change does not affect the shortest path to node j.
2. Arc(i,j) change improves the shortest path to node j.
3. Arc(i,j) change invalidates the shortest path to node j.

3 Update Rules to Change a Consistent 
Distance Graph
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d = shortest path value
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• Keep track of the support for each shortest path value
(Cesta & Oddi 96)
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1.)  Arc(i,j) change does not affect shortest path

• The cost from node i to node j increases from 2 to 3.

E10d = 7 d = 17
p = g p = j

d = shortest path value
p = supporting node

• No changes are needed.
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Distance graph

• The cost from node i to node j decreases from 3 to 0.

• Propagate the improved shortest path.
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2.)  Arc(i,j) change improves shortest path to j

d=6

2

3
d=5

d=5

10d = 7 d = 17
p = g p = j

16

p = s

p = s

p = s

∞
?

40

CASE 3
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Distance graph

• Increasing Arc(i,j) now invalidates node j’s shortest path.

E

• Reset node j
• Recursively reset nodes dependent upon node j. 
• Insert node j’s parents into the queue so that a new path to node j can be 

found for node j and all other invalidated nodes.

3.) Arc(i,j) change invalidates shortest path to j
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3 Update Rules to repair an Inconsistent 
distance graph

• ITC discovers an inconsistency (a negative cycle) by 
detecting cyclically dependent backpointers.
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3 Update Rules to repair an Inconsistent 
distance graph

• Now ITC must incrementally repair the inconsistency.
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• Three repair steps:
1.)  Reset all nodes in negative cycle.
2.) Recursively reset all nodes that depend on the negative cycle nodes.
3.) Put any parent of a reset node that was not also reset on the Q.

Negative cycle:
(A,B,D,C,A)
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3 Update Rules to repair an Inconsistent 
distance graph

• Now ITC must incrementally repair the inconsistency.

D

B

2 3
-1

3 8

-2

-2

-8

d= ∞
p = ?

d= ∞
p= ?

d=-10
p=D

S
2d=0

p=none
-1

d= ∞
p= ?

A

C

• Change arc cost CD to 10.

• Propagate the new shortest path values

Consistent !
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Temporal Plan Network  ( Kim, Williams, Abrahmson 01 )
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Temporal Plan Network  ( Kim, Williams, Abrahmson 01 )
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Conflict-Directed Plan Repair
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Performance Improvements
UAV Scenarios

Randomly Generated Plans

Water UAVNF
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NF
Z2

WaterA
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Fire2
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No-Fly Zone

Legend:

Fire
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UAV Base

UAV 
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Plan Goal:   Extinguish All Fires
Vehicles:     Two Seeker UAVs

One Water UAV    
Resources:  Fuel & Water
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Conclusions

• ITC is an incremental shortest path algorithm that can repair 
distance graphs incrementally as the plan changes

• ITC’s Novel Claims:
1.)  A conflict extraction mechanism
2.)  Allow multiple arc-changes at once
3.)  Can incrementally repair inconsistent distance graphs

• Shows an order of magnitude improvement over non -
incremental planning 

• Applicable to any plan representation that uses disjunctions of 
simple temporal constraints.
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Any Questions?
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