Diagnosis as Semiring-based **Constraint Optimization** Martin Sachenbacher, MIT CSAIL Brian C. Williams, MIT CSAIL

Overview

- Diagnosis traditionally viewed as logical reasoning (de Kleer and Williams 87), (Reiter 87), .
- But more naturally viewed as constraint optimization Minimal set of faulty components, most likely fault, ...
- Framework that unifies qualitative and quantitative notions of diagnosis using semiring-based CSP

 - Choose appropriate semiring and construct constraints
- Diagnosis algorithms based on optimization methods
 - Dynamic programming with focus on leading solutions

Classical Formulation of Diagnosis

- Component Models (CSP)

 - Variables $X = x_1, x_2, ..., x_n$ Constraints $F = f_1, f_2, ..., f_m$
 - Constraints are functions $\text{var}(f_i) \to \{\perp, \top\}$
 - Solution is assignment to $Z \subseteq X$ satisfying constraints
- Preference Model
 - Cover faults minimally (Subset-Minimal Diagnosis)
 - Fewest faults (Cardinality-Minimal Diagnosis)
 - Most likely faults (Probabilistic Diagnosis)

Semiring-based CSPs (Bistarelli 95) Operator × to combine a,b ∈ A (defines ⊗) Operator + to compare a,b ∈ A (defines ↓) a ≤_A b iff a + b = b (b "better" than a) (A, +, ×, 0, 1) forms a c-semiring + is commutative, associative, a + 0 = a × is associative, a × 0 = 0 × distributes over + + is idempotent × is commutative a + 1 = 1

Focussing on Leading Diagnoses Interested in a few best diagnoses, not all diagnoses Extensiveness property of c-semirings: a × b ≤_A a Allows cutting off solutions worse than threshold


```
Example

-CG100001 3
GG100011 1
GG100101 2
GB100111 1
GB100011 2
GB100101 3
-BG100101 4
BG100101 3
-BB100011 3
-BB100011 3
-BB100011 3
-BB100011 3
-BB100010 3
-BB100010 4
-BB100100 4
-BB100100 4
-BB100100 4
-BB100100 5
-BB100000 5
-BB100000 5
```


SAB and TREE*

- SAB (Fattah Dechter 95)
 - Cardinality-Minimal Diagnosis
 - No threshold
- TREE* (Stumptner Wotawa 01)
 - Cardinality-Minimal Diagnosis
 - Combines bottom-up and top-down phases
 - Threshold
- Both are special instances of our framework

Conclusion

- Shift from logic view to optimization view of diagnosis
- Unifying framework for qualitative and quantitative diagnosis using semiring-based CSPs
- Solution methods based on decomposition and dynamic programming