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Example: Full Adder DiagnosisExample: Full Adder Diagnosis
Variables

describe modes of gates
Gates are either in good (     ) or broken (     ) mode

Valued CSPValued CSP
A constraint network

set of variables
set of domains
set of constraints
valuation structure

A constraint            is a function
mapping assignments over      to valuations in     .

The complete valuation of an assignment     is
.

Example: Full Adder DiagnosisExample: Full Adder Diagnosis
AND-gates broken with 1% probability
OR-, XOR-gates broken with 5% probability
Probabilistic valuation structure
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Example: Full Adder DiagnosisExample: Full Adder Diagnosis
Model gates                                     as soft constraints

Gate is 
good

Gate is 
broken

Inferring SolutionsInferring Solutions
Constraint network
Value of optimal solution obtained by combining the
constraints:

Time: O(exp(n))
Space: O(exp(n))

BranchBranch--andand--Bound SearchBound Search

Lower Bound (lb):
Optimistic estimate of
best solution in subtree

Each search node is a soft 
constraint subproblem

Upper Bound (ub):
Best solution found so far

Prune, if lb ≥ ub.

Time: O(exp(n))
Space: O(n)

OverviewOverview
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Characterizing Structure in Soft Constraints
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Structure in Soft ConstraintsStructure in Soft Constraints
Structure can be characterized as independence 
properties of functions    .
“Strong” independence: Function     independent of 
all assignments to some variables             .
“Weak” independence: Function     independent of 
some assignments to some variables             .

Strong

Weak

Strong IndependenceStrong Independence
Support  

Subset of variables that 
function depends upon.
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Strong IndependenceStrong Independence Strong IndependenceStrong Independence

Hypergraph

Weak IndependenceWeak Independence
E.g. for constraint      : if              , then value is 
regardless of     and         

Sharing of common 
subassignments.

Weak IndependenceWeak Independence

Weak IndependenceWeak Independence

Algebraic Decision 
Diagram
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Exploiting Strong IndependenceExploiting Strong Independence
Principle: Strong independence allows to 
decompose the problem into subproblems with 
smaller sets of variables.

Tree DecompositionTree Decomposition

Subproblems

Tree DecompositionTree Decomposition

Constraints
λ

Variables
χ

BnB with Tree DecompositionBnB with Tree Decomposition
Algorithm BTD (Terrioux and Jégou CP-03)
Record solutions for subproblems (“structural goods”)

BnB with Tree DecompositionBnB with Tree Decomposition
Algorithm BTD (Terrioux and Jégou CP-03)
Record solutions for subproblems (“structural goods”)

Time: O(exp(maxi|χi|))
Space: O(exp(maxi,j|χi-χj|))

EOEO--1 Model: Constraint Graph1 Model: Constraint Graph
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EOEO--1 Model: Tree Decomposition1 Model: Tree Decomposition Ssa2670Ssa2670--141 Circuit: Graph141 Circuit: Graph

Ssa2670Ssa2670--130 Circuit: Tree130 Circuit: Tree OverviewOverview
Soft Constraints Framework
Characterizing Structure in Soft Constraints
Exploiting Structure in Soft Constraints
– Decomposition-based Search
– Set-based Search
– Hybrids

Exploiting Weak IndependenceExploiting Weak Independence
Principle: Weak independence allows to consider
sets of assignments at once instead of individual 
assignments.

SetSet--based Branchbased Branch--andand--BoundBound

Lower Bound Function
(flb): Optimistic estimates
of best solutions in subtree

Each search node is a set of
soft constraint subproblems

Upper Bound (ub):
Best solution found so far

Prune, if flb ≥ ub.

Encode e.g. 
using ADD
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Domain SplittingDomain Splitting
Generalize to search over sets:

Partition domains into sets
Choose subset for unassigned variable

Example: 4Example: 4--QueensQueens
Variables: Rows
Domains: Columns
Constraints:

Q

Q

Q

Q

ExampleExample
Search Tree

Solution

ExampleExample
Domain splitting with partitions

Solution

ExampleExample
Domain splitting with partitions

Solution

ResultsResults
C++ Implementation of SBBTD on Pentium 4 with 1 
GB RAM, using ADD library from CUDD package
Weighted version of 16-Queens-Problem (16 
variables, 136 constraints, domain size 16)
Using partition {{0,...,15}}: out of memory (> 1 GB)
Using partition {{0},{1},…, {15}}: out of time (>10 min)
Using partition {{0,...,7},{8,...,15}}: 104.8 sec
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OverviewOverview
Soft Constraints Framework
Characterizing Structure in Soft Constraints
Exploiting Structure in Soft Constraints
– Set-based Search
– Decomposition-based Search
– Hybrids

Hybrid Algorithm SBBTDHybrid Algorithm SBBTD
Exploits both strong independence using tree 
decomposition, and weak independence using set-
based search.

SBBTD applied to Full Adder SBBTD applied to Full Adder 
Partition                                        , all else 

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree Upper bound = 0

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

Upper bound = 0

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950

Upper bound = .044
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SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950

Upper bound = .044

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950

Upper bound = .044

Exploiting goods 
recorded at v2 
(“forward jump”)

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950
<v=0, w=1> .050

Upper bound = .044

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950
<v=0, w=1> .050

Upper bound = .044

Cut by bound

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

Cut by bound

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

Cut by bound
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SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

Cut by bound

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

Cut by bound

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

Cut by bound
Finished.

Best solution = .044
# Nodes = 45

ResultsResults
C++ Implementation of SBBTD on Pentium 4 with 1 
GB RAM, using ADD library from CUDD package
Weighted version of ssa0432-003 circuit (435 
variables, 1027 constraints, domain size 2)
Time to compute tree decomposition: 5 sec.
Using partition {{0},{1}}: out of time (>10 min)
Using partition {{0,1}}: 3 sec.

Future WorkFuture Work
Determine optimal granularity of domain partitions?
Combination with local filtering techniques?

MaterialMaterial

Material
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Main IdeaMain Idea
Diagnosis as soft constraint solving (DX-2004)
Efficient techniques for solving soft constraints?
Branch-and-Bound Search: memory efficient, but 
time exponential (backtracking)
Inference: no backtracking, but memory exponential
Techniques to exploit structure: Decision diagrams, 
Tree Decompositions
Still memory exponential.
Idea: hybrid of branch-and-bound search, symbolic 
encoding and tree decomposition.

Soft Soft CSPsCSPs
Unified framework for constraints and preferences.
For each constraint/tuple, a valuation that reflects 
preference (e.g. cost, weight, priority, probability, …).
The valuation of an assignment is the combination 
of the valuations for each constraint, using a binary 
operator (with special axioms).
Assignments are compared using a total order on 
valuations.
The problem is to produce an assignment of 
minimum valuation.

Formally: Valuation StructureFormally: Valuation Structure

= set of valuations, used to assess assignments
= minimum element of    , corresponds to totally 

consistent assignments
= maximum element of    , corresponds to totally 

inconsistent assignments
= total order on E, used to compare two valuations
= operator used to combine two valuations 

(commutative, associative, monotonic,
neutral element     , annihilator     )

Decision DiagramsDecision Diagrams
Example

Binary Decision TreesBinary Decision Trees
Recursive Shannon expansion

x
0 1

y
10

z
10

10 0 0

0 1 0 1

z z y y

0 0 1 1

0 1 10

Variable OrderingVariable Ordering
Impose arbitrary total ordering on variables
Variables must obey ordering along all paths
Property: No conflicting assignments along path

x

y

z

x

y

z

y

x

x

x
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Ordered Binary Decision TreeOrdered Binary Decision Tree
Order

x

y y

0 1

110 0

10 0 0

z z z z

0 1 0 1

0 1 0 1 0 1 10

Ordered Binary Decision TreeOrdered Binary Decision Tree

x

y y

0 1

110 0

10 0 0

z z z z

0 1 0 1

0 1 0 1 0 1 10

Rule 1: Collapse Leaf NodesRule 1: Collapse Leaf Nodes

x

y y

0 1

110 0

0

z z z z

1

1
0

1 0 1

1

0

0

No longer 
a tree. 

Rule 2: Remove Redundant TestsRule 2: Remove Redundant Tests

x

y y

0 1

11 0

0

z z z

1

0
1 0 1

1

0

0

z
1

0

Rule 2: Remove Redundant TestsRule 2: Remove Redundant Tests

x

y y

0 1

11 0

0

z z z

1

0
1 0 1

1

0

0

Rule 3: Isomorphic Rule 3: Isomorphic SubgraphsSubgraphs

x

y y

0 1

11 0

0

z

1

0
1 z z0 1

1

0

0
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Rule 3: Isomorphic Rule 3: Isomorphic SubgraphsSubgraphs

x

y y

0 1

1
1

0

0

z

1

0
1

0

Rule may become applicable againRule may become applicable again

x

y

0 1

1
y

1

0

0

z

1

0
1

0

Final RepresentationFinal Representation

x

y

0

1
1

0

z

1

0
1

0
Reduced, Ordered
Binary Decision Diagram 
(ROBDD)

ROBDDsROBDDs
Contains only variables from support
Time and space complexity of operations depends 
on ROBDD size rather than number of assignments
Can be extended to functions with non-binary values 
and non-binary variables
– Algebraic Decision Diagrams (ADDs) [Bahar et al. 93]
– Multi-valued Decision Diagram (MDDs) [Kam 90]

Significant compaction in many practical cases.

ExampleExample
Full Adder

Tree DecompositionTree Decomposition
Every variable of the original problem must appear in 
at least one subproblem.
Every constraint of the original problem must appear 
in a subproblem, along with all variables in its scope 
(covering condition).
If a variable occurs in two subproblems, it must 
appear in every subproblem along the path that 
connects the two (connectedness condition).
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Example: Full AdderExample: Full Adder

ConstraintsVariables

Tree DecompositionTree Decomposition
Principle: Solve each subproblem, then combine 
solutions using dynamic programming.
Time O(exp(tw)), where tree width tw is maximum 
number of variables in a subproblem minus one.
Space O(exp(sw)), where separator width sw is 
maximum number of variables shared between 
subproblems.
Finding decompositions with minimal width is NP-
hard, but good heuristics exist.
The width is often small in practice.

BTD (BTD (TerriouxTerrioux and and JJéégougou CPCP--03)03)
Assign variables in subproblem, beginning with root 
of the tree decomposition.
Inside a subproblem, use classical branch-and-
bound, considering only the constraints of the 
subproblem.
Once all variables in the subproblem have been 
assigned, consider its children (if any).
Given a child, check if the current assignment, 
restricted to variables shared with the child, has been 
previously recorded as a good.

BTD (BTD (TerriouxTerrioux and and JJéégougou CPCP--03)03)
If it is not previously recorded, compute solution for 
the subproblem given the current assignment and 
upper bound, and record it as new good.
Add recorded value to value of current assignment.
If resulting value is below the upper bound, proceed 
with the next child, else backtrack.

ProjectionProjection
,

CombinationCombination
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CombinationCombination Soft Soft CSPsCSPs
For each constraint/tuple: a valuation that reflects 
preference (e.g. cost, weight, probability, …).
Valuations are combined using a binary operator
(with special axioms).
Assignments are compared using a total order on 
valuations.
The problem is to produce an assignment of 
minimum valuation.

Sinking OperationSinking Operation
is a new constraint where all values of 

tuples have been replaced by
Generalizes the test               to functions

Constraint sink(fe2,0.05)Constraint

SetSet--based Branchbased Branch--andand--BoundBound
Function (   : assignments,     : value): value

if             then
if                     then return
let  be an unassigned variable
for each             do

return
return Time: O(exp(n))

Space: O(exp(n))

BranchBranch--andand--Bound SearchBound Search
Function (   : assignment,     : value): value

if             then
if             then return
let  be an unassigned variable
for each           do

return
return Time: O(exp(n))

Space: O(n)


