Diagnosis using Bounded Search
and Symbolic Inference

Martin Sachenbacher and Brian C. Williams
MIT CSAIL

Overview

= Soft Constraints Framework

= Characterizing Structure in Soft Constraints

= Exploiting Structure in Soft Constraints
Set-based Search

Decomposition-based Search
Hybrids

Overview

= Soft Constraints Framework
= Characterizing Structure in Soft Constraints

= Exploiting Structure in Soft Constraints
Set-based Search
Decomposition-based Search

Example: Full Adder Diagnosis

= Variables {u, v, w,y,a1,a2,€1,€2,01}
« {a1,a2,¢e1,€2,01} describe modes of gates
= Gates are either in good (G') or broken (B) mode

1 _®_ U

1
Yy
1 “ I €2

Hybrids
Valued CSP
A constraint network (X, D, F, S)
» setofvariables X = {z1,...,2,}
« setofdomains D ={dy,...,d,}
= setof constraints F = {f1,..., fm}

= valuation structure S=(E,®,=<,L,T)
A constraint f € Flisafunction f:dy x ... xd, = F
mapping assignments over X to valuations in £ .

The complete valuation of an assignment ¢ is

Deec).

Example: Full Adder Diagnosis

= AND-gates broken with 1% probability
= OR-, XOR-gates broken with 5% probability
= Probabilistic valuation structure {[0,1],-,>,1,0)

1__D_‘ U
FE —1
Y
(5] €
1

ai

Example: Full Adder Diagnosis

= Model gates fa1, fa2, fe1, fe2: for as soft constraints
y
w
Yy
a1

Gate is
good

Gate is
broken

Inferring Solutions

= Constraint network (X, D, F, S)
= Value of optimal solution obtained by combining the
constraints:

ming P c(t)

Time: O(exp(n))
Space: O(exp(n))

Branch-and-Bound Search

Time: O(exp(n)) = Each search node is a soft
Space: O(n) constraint subproblem

= Lower Bound (Ib):
Optimistic estimate of
best solution in subtree

= Upper Bound (ub):
Best solution found so far

= Prune, if Ib > ub.

Overview

= Soft Constraints Framework
= Characterizing Structure in Soft Constraints
= Exploiting Structure in Soft Constraints
Set-based Search
Decomposition-based Search
Hybrids

Structure in Soft Constraints

= Structure can be characterized as independence
properties of functions f;.

= “Strong” independence: Function f; independent of
all assignments to some variables 7 C X.

= “Weak” independence: Function f; independent of
some assignments to some variables 7 C X.

Weak

Strong Independence

Support sup(f) := {z; € X | Jvy,vs € d; s.t.
(f@®(zi —v1) Ix\(zn# F D (@ —) Ix\{=i} }

; :D— w Jar

ay a1y w ... |
G 0O0f... |.99

sup(fa1) = {a1,y, w}

G11 .99
Subset of variables that B0O|.. |.01
function depends upon. BoO1).. |.01
B10 .01
B1l1 .01

Strong Independence

1 — U
y ® 1
1 o e

Strong Independence

1 — U
y ®" 1
1 ° e

Hypergraph

Weak Independence

s E.g. for constraint f.1: if a; = B, then value is .01
regardless of y and w

Sharing of common
subassignments.

fal :

Weak Independence

Weak Independence

Algebraic Decision
Diagram

Overview

= Soft Constraints Framework
= Characterizing Structure in Soft Constraints
= Exploiting Structure in Soft Constraints
Decomposition-based Search
Set-based Search
Hybrids

Exploiting Strong Independence

= Principle: Strong independence allows to
decompose the problem into subproblems with
smaller sets of variables.

Tree Decomposition

Subproblems

Tree Decomposition

Variables Constraints
Xz A
f_% I_H
‘{u,v,w,y,al,aZ} {fal,fag}‘

u,y
{uyel e} {fn, foa}]| |7

{v,w,01} {fo1}

BnB with Tree Decomposition

= Algorithm BTD (Terrioux and Jégou CP-03)
= Record solutions for subproblems (“structural goods™)

‘ fu, v, w.y, a1, a2} {fa1, faz}‘

u,y
{u.y,el e2} {fu, fu}| |©

{v,w,01} {fo1}

BnB with Tree Decomposition

= Algorithm BTD (Terrioux and Jégou CP-03)
= Record solutions for subproblems (“structural goods”)

‘ fu, v, w.y, a1, a2} {fa1, faz}‘
/.

u, Yy
|{u,y,el‘,62} {fer, f&'Q}l

Time: O(exp(max|x;]))

{v,w,01} {for}
Space: O(exp(max; j|xi-x;)) :

EO-1 Model: Constraint Graph

T bn e e (s et

EETE CODCICEEEE L

EO-1 Model: Tree Decomposition

T Le iges g e e
R 117 (RSl b

L

Ssa2670-141 Circuit: Graph

Ssa2670-130 Circuit: Tree

Overview

= Soft Constraints Framework
= Characterizing Structure in Soft Constraints
= Exploiting Structure in Soft Constraints
Decomposition-based Search
Set-based Search
Hybrids

Exploiting Weak Independence

= Principle: Weak independence allows to consider
sets of assignments at once instead of individual
assignments.

Set-based Branch-and-Bound

Encode e.g.

using ADD = Each search node is a set of

soft constraint subproblems

= Lower Bound Function
(f),): Optimistic estimates
of best solutions in subtree

= Upper Bound (ub):
Best solution found so far

= Prune, if f,, > ub.

Domain Splitting

Generalize to search over sets:
= Partition domains into sets P;, Upep, = d;
= Choose subset p € P; for unassigned variable z;

Example: 4-Queens

= Variables: Rows i, %a, T3, %4

= Domains: Columns 1,2,3, 4

» Constraints: J12(1, z2), f13(x1,x3), f1a{wr,xa),
faz(xa,z3), faal(®e,24), faa(za, z4)

Example

= Search Tree

Solution

, 1 2 3 4
flziﬂhﬂﬁz

13 e Q

14 To Q

24

31 r3 | Q

41

42 “ Q
Example

= Domain splitting with partitions P, = {{1,2},{3,4}}

Solution

Example

= Domain splitting with partitions P, = {{1.2}, {3,4}}

Solution

Results

= C++ Implementation of SBBTD on Pentium 4 with 1
GB RAM, using ADD library from CUDD package

= Weighted version of 16-Queens-Problem (16
variables, 136 constraints, domain size 16)

= Using partition {{0,...,15}}: out of memory (> 1 GB)
= Using partition {{0},{1},..., {15}}: out of time (>10 min)
= Using partition {{0,...,7},{8,...,15}}: 104.8 sec

Qverview

= Soft Constraints Framework
= Characterizing Structure in Soft Constraints
= Exploiting Structure in Soft Constraints
Set-based Search
Decomposition-based Search
Hybrids

Hybrid Algorithm SBBTD

= Exploits both strong independence using tree
decomposition, and weak independence using set-
based search.

SBBTD applied to Full Adder

» Partition P,, P,, P, = {{0}, {1}}, allelse P; = {d;}

U1

(w0 w.y,1,02) (Jar, Jo2)]

‘{u,y,el,eQ} {fer, feﬂ}‘

v

{’Uv w, 01} {fol}

SBBTD applied to Full Adder

= Search Tree . Upper bound =0

vi[{u, v, w,9,01,02} (far: fao}|

‘ {u,y,€1,e2} {fe1, f&'Q}‘

v

{’Uv w, 01} {fol}

SBBTD applied to Full Adder

= Search Tree Upper bound =0

e [{u, v, w.y, al,a2} {far, faz}]
<u=0, y=0> .047
<u=0, y=1>.902

Y [furg,c1,e2) (for, fea)|

* g

a2

€1 {v,w,01} {fo1}
es

SBBTD applied to Full Adder

= Search Tree Upper bound =.044

1 [{u, v, w.y, al,a2} {far, faz}]
<u=0, y=0>.047
<u=0, y=1>.902

| {u,y,cl,e2} {fer, feo} |

1

? <v=0, w=0>/.950
{’Uv W, 01} {fol}

SBBTD applied to Full Adder

= Search Tree Upper bound = .044

e [{u, v, w.y, al,a2} {far, faz}]
<u=0, y=0>.047
<u=0, y=1>.902

‘ {u,y,€1,e2} {fe1, feﬂ}‘

U2
<v=0, w=0>/.950
{’Uv w, 01} {fol}

SBBTD applied to Full Adder

= Search Tree Upper bound = .044

1 [{u, v, w.y, al,a2} {far, faz}]
<u=0, y=0>.047
<u=0, y=1>.902

‘ {u,y,€1,e2} {fe1, f&'Q}‘

U2
<v=0, w=0>/.950

Exploiting goods {v,w, 01} {fo1}
recorded at v2
(“forward jump”)

SBBTD applied to Full Adder

= Search Tree Upper bound = .044

vi[{u, v, w,9,01,02} (a1 fao}|
<u=0, y=0>.047
<u=0, y=1>.902

‘ {u,y,€1,e2} {fe1, feﬂ}‘

g <v=0, w=0> /950
<v=0, w=1¥.050
{’Uv w, 01} {fol}

SBBTD applied to Full Adder

= Search ree Upper bound = .044

vi[{u, v, w,9,01,02} (a1 fao}|
<u=0, y=0>.047
<u=0, y=1>.902
[{u.y,el, €2} {for, fen}]
v2 <v=0, w=0> /950
<v=0, w=1%.050
Cut by bound {v,w,01} {fo1}

SBBTD applied to Full Adder

= Search Tree

SBBTD applied to Full Adder

= Search Tree

SBBTD applied to Full Adder

= Search Tree

Cut by bound

SBBTD applied to Full Adder

= Search Tree

v

w

ay
az
€1
€2

01 Cut by bound

SBBTD applied to Full Adder

= Search ree Best solution = .044
Nodes = 45

B Cut by bound
Finished.

Results

= C++ Implementation of SBBTD on Pentium 4 with 1
GB RAM, using ADD library from CUDD package

= Weighted version of ssa0432-003 circuit (435
variables, 1027 constraints, domain size 2)

= Time to compute tree decomposition: 5 sec.
= Using partition {{0},{1}}: out of time (>10 min)
= Using partition {{0,1}}: 3 sec.

Future Work

= Determine optimal granularity of domain partitions?
= Combination with local filtering techniques?

Material

Material

Main ldea

= Diagnosis as soft constraint solving (DX-2004)
= Efficient techniques for solving soft constraints?

= Branch-and-Bound Search: memory efficient, but
time exponential (backtracking)

= Inference: no backtracking, but memory exponential

= Techniques to exploit structure: Decision diagrams,
Tree Decompositions

= Still memory exponential.

= Idea: hybrid of branch-and-bound search, symbolic
encoding and tree decomposition.

Soft CSPs

= Unified framework for constraints and preferences.
= For each constraint/tuple, a valuation that reflects

preference (e.g. cost, weight, priority, probability, ...).

= The valuation of an assignment is the combination
of the valuations for each constraint, using a binary
operator (with special axioms).

= Assignments are compared using a total order on
valuations.

= The problem is to produce an assignment of
minimum valuation.

Formally: Valuation Structure

S=(B,0,%LT)

» I/ =set of valuations, used to assess assignments

= | =minimum element of E, corresponds to totally
consistent assignments

= T =maximum element of E, corresponds to totally
inconsistent assignments

= < =total order on E, used to compare two valuations

= @ = operator used to combine two valuations
(commutative, associative, monotonic,
neutral element L , annihilator T)

Decision Diagrams

= Example

<

HER RO OO O(R
= O =R ORFO|n
»—A»—\OO»—\OOO|

H PR, OO R~ OO

Binary Decision Trees

= Recursive Shannon expansion

Variable Ordering

= Impose arbitrary total ordering on variables
= Variables must obey ordering along all paths
= Property: No conflicting assignments along path

10

Ordered Binary Decision Tree

= Order z <y <z

Ordered Binary Decision Tree

Rule 1: Collapse Leaf Nodes

No longer
atree. 0

Rule 2: Remove Redundant Tests

Rule 2: Remove Redundant Tests

Rule 3: Isomorphic Subgraphs

11

Rule 3: Isomorphic Subgraphs

Rule may become applicable again

Final Representation

Reduced, Ordered
Binary Decision Diagram
(ROBDD)

ROBDDs

= Contains only variables from support
= Time and space complexity of operations depends
on ROBDD size rather than number of assignments
= Can be extended to functions with non-binary values
and non-binary variables
Algebraic Decision Diagrams (ADDs) [Bahar et al. 93]
Multi-valued Decision Diagram (MDDs) [Kam 90]
= Significant compaction in many practical cases.

Example

= Full Adder

ful :

Tree Decomposition

= Every variable of the original problem must appear in
at least one subproblem.

= Every constraint of the original problem must appear
in a subproblem, along with all variables in its scope
(covering condition).

= If a variable occurs in two subproblems, it must
appear in every subproblem along the path that
connects the two (connectedness condition).

12

Example: Full Adder

Variables Constraints

/_A I__\
1 |{u7 v, w,y,al, a2} {fal,fag}l

u,y

v [{u,y.el,2} {fur, fu}]) Y

{’Uv w, 01} {fol}

Tree Decomposition

= Principle: Solve each subproblem, then combine
solutions using dynamic programming.

= Time O(exp(tw)), where tree width tw is maximum
number of variables in a subproblem minus one.

= Space O(exp(sw)), where separator width sw is
maximum number of variables shared between
subproblems.

= Finding decompositions with minimal width is NP-
hard, but good heuristics exist.

= The width is often small in practice.

BTD (Terrioux and Jégou CP-03)

= Assign variables in subproblem, beginning with root
of the tree decomposition.

= Inside a subproblem, use classical branch-and-
bound, considering only the constraints of the
subproblem.

= Once all variables in the subproblem have been

assigned, consider its children (if any).

Given a child, check if the current assignment,

restricted to variables shared with the child, has been

previously recorded as a good.

BTD (Terrioux and Jégou CP-03)

= [fitis not previously recorded, compute solution for
the subproblem given the current assignment and
upper bound, and record it as new good.

= Add recorded value to value of current assignment.

= If resulting value is below the upper bound, proceed
with the next child, else backtrack.

Projection

s (fly)) =mingy)— fE), Y C X

; :D— w fal : f/ﬂ ‘U{y,w}:

Combination

= (18 o)1) = fi(t) & fo(t)

i :i>_u fal : fel :
€1

ay w ... e1y u ... |
G00...]199 GO1...

G11. 99 G 10...

w BOO..|01 BoO..
Bo1.. 01 BO1...

a1 B10.. .01 B10...
B1l1.. 01 B11...

.95
.95
.05
.05
.05
.05

13

Combination

= (1®) = L) & f2(8)

:1y :i>—u fal®fel :
€1

ap €1y U w ...
GGO0O0O0... [.9405
GG101 .9405
w GBOO0OO... |.0495
GBO10... [.0495
a1 GB101 .0495
GB111 0495

Soft CSPs

For each constraint/tuple: a valuation that reflects
preference (e.g. cost, weight, probability, ...).
Valuations are combined using a binary operator
(with special axioms).

Assignments are compared using a total order on
valuations.

The problem is to produce an assignment of
minimum valuation.

Sinking Operation

= sink(c;, @) is a new constraint where all values of
tuples > « have been replaced by T
= Generalizes the test [< ub to functions

Constraint Constraint sink(f,,,0.05)

fe? :

€ U
G 0].95

Set-based Branch-and-Bound

= Function SDEBB(f;: assignments, b : value): value

Jiw < Wb(f2)
Ji — sink(/i, ub)
if f Z T then
if var(f;) = nthen return f; |y
let x; be an unassigned variable
for each p € P, do
|_ub — min(ub, SDFBB(/; O (z; € p),ubd))
return ub
L_return T

Time: O(exp(n))
Space: O(exp(n))

Branch-and-Bound Search

= Function DFBB (¢ : assignment, «b: value): value
v« Ib(t)
if v <ubthen
if |t| = n then return
let x; be an unassigned variable
for eacha € d;do
| ub— min{ub, DFBB(¢ U {(i,a)}, ub))
return yb
|_return T Time: O(exp(n))
Space: O(n)

14

