
1

Diagnosis using Bounded Search Diagnosis using Bounded Search
and Symbolic Inferenceand Symbolic Inference

Martin Sachenbacher and Brian C. Williams
MIT CSAIL

OverviewOverview
Soft Constraints Framework
Characterizing Structure in Soft Constraints
Exploiting Structure in Soft Constraints
– Set-based Search
– Decomposition-based Search
– Hybrids

OverviewOverview
Soft Constraints Framework
Characterizing Structure in Soft Constraints
Exploiting Structure in Soft Constraints
– Set-based Search
– Decomposition-based Search
– Hybrids

Example: Full Adder DiagnosisExample: Full Adder Diagnosis
Variables

describe modes of gates
Gates are either in good () or broken () mode

Valued CSPValued CSP
A constraint network

set of variables
set of domains
set of constraints
valuation structure

A constraint is a function
mapping assignments over to valuations in .

The complete valuation of an assignment is
.

Example: Full Adder DiagnosisExample: Full Adder Diagnosis
AND-gates broken with 1% probability
OR-, XOR-gates broken with 5% probability
Probabilistic valuation structure

2

Example: Full Adder DiagnosisExample: Full Adder Diagnosis
Model gates as soft constraints

Gate is
good

Gate is
broken

Inferring SolutionsInferring Solutions
Constraint network
Value of optimal solution obtained by combining the
constraints:

Time: O(exp(n))
Space: O(exp(n))

BranchBranch--andand--Bound SearchBound Search

Lower Bound (lb):
Optimistic estimate of
best solution in subtree

Each search node is a soft
constraint subproblem

Upper Bound (ub):
Best solution found so far

Prune, if lb ≥ ub.

Time: O(exp(n))
Space: O(n)

OverviewOverview
Soft Constraints Framework
Characterizing Structure in Soft Constraints
Exploiting Structure in Soft Constraints
– Set-based Search
– Decomposition-based Search
– Hybrids

Structure in Soft ConstraintsStructure in Soft Constraints
Structure can be characterized as independence
properties of functions .
“Strong” independence: Function independent of
all assignments to some variables .
“Weak” independence: Function independent of
some assignments to some variables .

Strong

Weak

Strong IndependenceStrong Independence
Support

Subset of variables that
function depends upon.

3

Strong IndependenceStrong Independence Strong IndependenceStrong Independence

Hypergraph

Weak IndependenceWeak Independence
E.g. for constraint : if , then value is
regardless of and

Sharing of common
subassignments.

Weak IndependenceWeak Independence

Weak IndependenceWeak Independence

Algebraic Decision
Diagram

OverviewOverview
Soft Constraints Framework
Characterizing Structure in Soft Constraints
Exploiting Structure in Soft Constraints
– Decomposition-based Search
– Set-based Search
– Hybrids

4

Exploiting Strong IndependenceExploiting Strong Independence
Principle: Strong independence allows to
decompose the problem into subproblems with
smaller sets of variables.

Tree DecompositionTree Decomposition

Subproblems

Tree DecompositionTree Decomposition

Constraints
λ

Variables
χ

BnB with Tree DecompositionBnB with Tree Decomposition
Algorithm BTD (Terrioux and Jégou CP-03)
Record solutions for subproblems (“structural goods”)

BnB with Tree DecompositionBnB with Tree Decomposition
Algorithm BTD (Terrioux and Jégou CP-03)
Record solutions for subproblems (“structural goods”)

Time: O(exp(maxi|χi|))
Space: O(exp(maxi,j|χi-χj|))

EOEO--1 Model: Constraint Graph1 Model: Constraint Graph

5

EOEO--1 Model: Tree Decomposition1 Model: Tree Decomposition Ssa2670Ssa2670--141 Circuit: Graph141 Circuit: Graph

Ssa2670Ssa2670--130 Circuit: Tree130 Circuit: Tree OverviewOverview
Soft Constraints Framework
Characterizing Structure in Soft Constraints
Exploiting Structure in Soft Constraints
– Decomposition-based Search
– Set-based Search
– Hybrids

Exploiting Weak IndependenceExploiting Weak Independence
Principle: Weak independence allows to consider
sets of assignments at once instead of individual
assignments.

SetSet--based Branchbased Branch--andand--BoundBound

Lower Bound Function
(flb): Optimistic estimates
of best solutions in subtree

Each search node is a set of
soft constraint subproblems

Upper Bound (ub):
Best solution found so far

Prune, if flb ≥ ub.

Encode e.g.
using ADD

6

Domain SplittingDomain Splitting
Generalize to search over sets:

Partition domains into sets
Choose subset for unassigned variable

Example: 4Example: 4--QueensQueens
Variables: Rows
Domains: Columns
Constraints:

Q

Q

Q

Q

ExampleExample
Search Tree

Solution

ExampleExample
Domain splitting with partitions

Solution

ExampleExample
Domain splitting with partitions

Solution

ResultsResults
C++ Implementation of SBBTD on Pentium 4 with 1
GB RAM, using ADD library from CUDD package
Weighted version of 16-Queens-Problem (16
variables, 136 constraints, domain size 16)
Using partition {{0,...,15}}: out of memory (> 1 GB)
Using partition {{0},{1},…, {15}}: out of time (>10 min)
Using partition {{0,...,7},{8,...,15}}: 104.8 sec

7

OverviewOverview
Soft Constraints Framework
Characterizing Structure in Soft Constraints
Exploiting Structure in Soft Constraints
– Set-based Search
– Decomposition-based Search
– Hybrids

Hybrid Algorithm SBBTDHybrid Algorithm SBBTD
Exploits both strong independence using tree
decomposition, and weak independence using set-
based search.

SBBTD applied to Full Adder SBBTD applied to Full Adder
Partition , all else

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree Upper bound = 0

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

Upper bound = 0

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950

Upper bound = .044

8

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950

Upper bound = .044

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950

Upper bound = .044

Exploiting goods
recorded at v2
(“forward jump”)

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950
<v=0, w=1> .050

Upper bound = .044

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950
<v=0, w=1> .050

Upper bound = .044

Cut by bound

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

Cut by bound

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

Cut by bound

9

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

Cut by bound

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

Cut by bound

SBBTD applied to Full AdderSBBTD applied to Full Adder
Search Tree

Cut by bound
Finished.

Best solution = .044
Nodes = 45

ResultsResults
C++ Implementation of SBBTD on Pentium 4 with 1
GB RAM, using ADD library from CUDD package
Weighted version of ssa0432-003 circuit (435
variables, 1027 constraints, domain size 2)
Time to compute tree decomposition: 5 sec.
Using partition {{0},{1}}: out of time (>10 min)
Using partition {{0,1}}: 3 sec.

Future WorkFuture Work
Determine optimal granularity of domain partitions?
Combination with local filtering techniques?

MaterialMaterial

Material

10

Main IdeaMain Idea
Diagnosis as soft constraint solving (DX-2004)
Efficient techniques for solving soft constraints?
Branch-and-Bound Search: memory efficient, but
time exponential (backtracking)
Inference: no backtracking, but memory exponential
Techniques to exploit structure: Decision diagrams,
Tree Decompositions
Still memory exponential.
Idea: hybrid of branch-and-bound search, symbolic
encoding and tree decomposition.

Soft Soft CSPsCSPs
Unified framework for constraints and preferences.
For each constraint/tuple, a valuation that reflects
preference (e.g. cost, weight, priority, probability, …).
The valuation of an assignment is the combination
of the valuations for each constraint, using a binary
operator (with special axioms).
Assignments are compared using a total order on
valuations.
The problem is to produce an assignment of
minimum valuation.

Formally: Valuation StructureFormally: Valuation Structure

= set of valuations, used to assess assignments
= minimum element of , corresponds to totally

consistent assignments
= maximum element of , corresponds to totally

inconsistent assignments
= total order on E, used to compare two valuations
= operator used to combine two valuations

(commutative, associative, monotonic,
neutral element , annihilator)

Decision DiagramsDecision Diagrams
Example

Binary Decision TreesBinary Decision Trees
Recursive Shannon expansion

x
0 1

y
10

z
10

10 0 0

0 1 0 1

z z y y

0 0 1 1

0 1 10

Variable OrderingVariable Ordering
Impose arbitrary total ordering on variables
Variables must obey ordering along all paths
Property: No conflicting assignments along path

x

y

z

x

y

z

y

x

x

x

11

Ordered Binary Decision TreeOrdered Binary Decision Tree
Order

x

y y

0 1

110 0

10 0 0

z z z z

0 1 0 1

0 1 0 1 0 1 10

Ordered Binary Decision TreeOrdered Binary Decision Tree

x

y y

0 1

110 0

10 0 0

z z z z

0 1 0 1

0 1 0 1 0 1 10

Rule 1: Collapse Leaf NodesRule 1: Collapse Leaf Nodes

x

y y

0 1

110 0

0

z z z z

1

1
0

1 0 1

1

0

0

No longer
a tree.

Rule 2: Remove Redundant TestsRule 2: Remove Redundant Tests

x

y y

0 1

11 0

0

z z z

1

0
1 0 1

1

0

0

z
1

0

Rule 2: Remove Redundant TestsRule 2: Remove Redundant Tests

x

y y

0 1

11 0

0

z z z

1

0
1 0 1

1

0

0

Rule 3: Isomorphic Rule 3: Isomorphic SubgraphsSubgraphs

x

y y

0 1

11 0

0

z

1

0
1 z z0 1

1

0

0

12

Rule 3: Isomorphic Rule 3: Isomorphic SubgraphsSubgraphs

x

y y

0 1

1
1

0

0

z

1

0
1

0

Rule may become applicable againRule may become applicable again

x

y

0 1

1
y

1

0

0

z

1

0
1

0

Final RepresentationFinal Representation

x

y

0

1
1

0

z

1

0
1

0
Reduced, Ordered
Binary Decision Diagram
(ROBDD)

ROBDDsROBDDs
Contains only variables from support
Time and space complexity of operations depends
on ROBDD size rather than number of assignments
Can be extended to functions with non-binary values
and non-binary variables
– Algebraic Decision Diagrams (ADDs) [Bahar et al. 93]
– Multi-valued Decision Diagram (MDDs) [Kam 90]

Significant compaction in many practical cases.

ExampleExample
Full Adder

Tree DecompositionTree Decomposition
Every variable of the original problem must appear in
at least one subproblem.
Every constraint of the original problem must appear
in a subproblem, along with all variables in its scope
(covering condition).
If a variable occurs in two subproblems, it must
appear in every subproblem along the path that
connects the two (connectedness condition).

13

Example: Full AdderExample: Full Adder

ConstraintsVariables

Tree DecompositionTree Decomposition
Principle: Solve each subproblem, then combine
solutions using dynamic programming.
Time O(exp(tw)), where tree width tw is maximum
number of variables in a subproblem minus one.
Space O(exp(sw)), where separator width sw is
maximum number of variables shared between
subproblems.
Finding decompositions with minimal width is NP-
hard, but good heuristics exist.
The width is often small in practice.

BTD (BTD (TerriouxTerrioux and and JJéégougou CPCP--03)03)
Assign variables in subproblem, beginning with root
of the tree decomposition.
Inside a subproblem, use classical branch-and-
bound, considering only the constraints of the
subproblem.
Once all variables in the subproblem have been
assigned, consider its children (if any).
Given a child, check if the current assignment,
restricted to variables shared with the child, has been
previously recorded as a good.

BTD (BTD (TerriouxTerrioux and and JJéégougou CPCP--03)03)
If it is not previously recorded, compute solution for
the subproblem given the current assignment and
upper bound, and record it as new good.
Add recorded value to value of current assignment.
If resulting value is below the upper bound, proceed
with the next child, else backtrack.

ProjectionProjection
,

CombinationCombination

14

CombinationCombination Soft Soft CSPsCSPs
For each constraint/tuple: a valuation that reflects
preference (e.g. cost, weight, probability, …).
Valuations are combined using a binary operator
(with special axioms).
Assignments are compared using a total order on
valuations.
The problem is to produce an assignment of
minimum valuation.

Sinking OperationSinking Operation
is a new constraint where all values of

tuples have been replaced by
Generalizes the test to functions

Constraint sink(fe2,0.05)Constraint

SetSet--based Branchbased Branch--andand--BoundBound
Function (: assignments, : value): value

if then
if then return
let be an unassigned variable
for each do

return
return Time: O(exp(n))

Space: O(exp(n))

BranchBranch--andand--Bound SearchBound Search
Function (: assignment, : value): value

if then
if then return
let be an unassigned variable
for each do

return
return Time: O(exp(n))

Space: O(n)

