Diagnosis using Bounded Search and Symbolic Inference

Martin Sachenbacher and Brian C. Williams MIT CSAIL

Overview

- Soft Constraints Framework
- Characterizing Structure in Soft Constraints
- Exploiting Structure in Soft Constraints

Set-based Search
Decomposition-based Search
Hybrids

Overview

- Soft Constraints Framework
- Characterizing Structure in Soft Constraints
- Exploiting Structure in Soft Constraints Set-based Search
Decomposition-based Search
Hybrids

Example: Full Adder Diagnosis

- Variables $\left\{u, v, w, y, a_{1}, a_{2}, e_{1}, e_{2}, o_{1}\right\}$
- $\left\{a_{1}, a_{2}, e_{1}, e_{2}, o_{1}\right\}$ describe modes of gates
- Gates are either in good (G) or broken (B) mode

Example: Full Adder Diagnosis

- AND-gates broken with 1% probability
- OR-, XOR-gates broken with 5% probability
- Probabilistic valuation structure $\langle[0,1], \cdot, \geq, 1,0\rangle$

Example: Full Adder Diagnosis

- Model gates $f_{a 1}, f_{a 2}, f_{e 1}, f_{e 2}, f_{o 1}$ as soft constraints
 $-w$
$f_{a 1}$:
$\left\{\begin{array}{llll|l}a_{1} & y & w & \ldots & \\ \hline \mathrm{G} & 0 & 0 & \ldots & .99 \\ \mathrm{G} & 1 & 1 & \ldots & .99\end{array}\right.$
$\left\{\begin{array}{lllll}\mathrm{B} & 0 & 0 & \ldots & .01 \\ \mathrm{~B} & 0 & 1 & \ldots & .01 \\ \mathrm{~B} & 1 & 0 & \ldots & .01 \\ \mathrm{~B} & 1 & 1 & \ldots & .01\end{array}\right.$

	$\begin{aligned} & f_{a 1}: \\ & a_{1} y w \end{aligned}$	
Gate is good	$\{\mathrm{G} 00$. 99
	$\{\mathrm{G} 11$. 99
	(B00	. 01
Gate is broken	B 01	. 01
	B 10	. 01
	B 11	. 01

Inferring Solutions

- Constraint network $\langle X, D, F, S\rangle$
- Value of optimal solution obtained by combining the constraints:

$$
\min _{t} \oplus_{c \in C} c(t)
$$

Time: O(exp(n))
Space: $O(\exp (n))$

Overview

- Soft Constraints Framework
- Characterizing Structure in Soft Constraints
- Exploiting Structure in Soft Constraints Set-based Search
Decomposition-based Search
Hybrids

Strong Independence

- Support $\sup (f):=\left\{x_{i} \in X \mid \exists v_{1}, v_{2} \in d_{i}\right.$ s.t. $\left.\left.\left(f \oplus\left(x_{i} \leftarrow v_{1}\right)\right) \Downarrow_{X \backslash\left\{x_{i}\right\}} \neq f \oplus\left(x_{i} \leftarrow v_{2}\right)\right) \Downarrow_{X \backslash\left\{x_{i}\right\}}\right\}$

$\sup \left(f_{a 1}\right)=\left\{a_{1}, y, w\right\}$
Subset of variables that function depends upon.
$f f_{a 1}:$

a_{1}	y	w	\ldots	
G	0	0	\ldots	.99
G	1	1	\ldots	.99
B	0	0	\ldots	.01
B	0	1	\ldots	.01
B	1	0	\ldots	.01
B	1	1	\ldots	.01

Weak Independence

- E.g. for constraint $f_{a 1}$: if $a_{1}=B$, then value is .01 regardless of y and w
$f_{a 1}$:

Sharing of common subassignments.

Overview

- Soft Constraints Framework
- Characterizing Structure in Soft Constraints
- Exploiting Structure in Soft Constraints Decomposition-based Search
Set-based Search
Hybrids

Exploiting Strong Independence

- Principle: Strong independence allows to decompose the problem into subproblems with smaller sets of variables.

BnB with Tree Decomposition

- Algorithm BTD (Terrioux and Jégou CP-03)
- Record solutions for subproblems ("structural goods")

BnB with Tree Decomposition

- Algorithm BTD (Terrioux and Jégou CP-03)
- Record solutions for subproblems ("structural goods")

EO-1 Model: Constraint Graph

EO-1 Model: Tree Decomposition

Ssa2670-141 Circuit: Graph

Ssa2670-130 Circuit: Tree

Overview

- Soft Constraints Framework
- Characterizing Structure in Soft Constraints
- Exploiting Structure in Soft Constraints Decomposition-based Search
Set-based Search
Hybrids

Exploiting Weak Independence

- Principle: Weak independence allows to consider sets of assignments at once instead of individual assignments.

Set-based Branch-and-Bound

Domain Splitting

Generalize to search over sets:

- Partition domains into sets $P_{i}, \cup_{p \in P_{i}}=d_{i}$
- Choose subset $p \in P_{i}$ for unassigned variable x_{i}

Example: 4-Queens

- Variables: Rows $x_{1}, x_{2}, x_{3}, x_{4}$
- Domains: Columns 1, 2, 3, 4
- Constraints: $f_{12}\left(x_{1}, x_{2}\right), f_{13}\left(x_{1}, x_{3}\right), f_{14}\left(x_{1}, x_{4}\right)$, $f_{23}\left(x_{2}, x_{3}\right), f_{24}\left(x_{2}, x_{4}\right), f_{34}\left(x_{3}, x_{4}\right)$

> | $f_{12}:$ | $\frac{x_{1}}{} x_{2}$ |
| ---: | :--- |
| 1 | 3 |
| 1 | 4 |
| 2 | 4 |
| 3 | 1 |
| 4 | 1 |
| 4 | 2 |

Example

- Domain splitting with partitions $P_{i}=\{\{1,2\},\{3,4\}\}$

Results

- C++ Implementation of SBBTD on Pentium 4 with 1 GB RAM, using ADD library from CUDD package
- Weighted version of $16-$ Queens-Problem (16 variables, 136 constraints, domain size 16)
- Using partition $\{\{0, \ldots, 15\}\}$: out of memory (> 1 GB)
- Using partition $\{\{0\},\{1\}, \ldots,\{15\}\}$: out of time (>10 min)
- Using partition $\{\{0, \ldots, 7\},\{8, \ldots, 15\}\}: 104.8 \mathrm{sec}$

Overview

- Soft Constraints Framework
- Characterizing Structure in Soft Constraints
- Exploiting Structure in Soft Constraints

Set-based Search
Decomposition-based Search
Hybrids

Hybrid Algorithm SBBTD

- Exploits both strong independence using tree decomposition, and weak independence using setbased search.

SBBTD applied to Full Adder

- Partition $P_{u}, P_{v}, P_{w}=\{\{0\},\{1\}\}$, all else $P_{i}=\left\{d_{i}\right\}$

SBBTD applied to Full Adder

- Search Tree

SBBTD applied to Full Adder

- Search Tree

Upper bound $=.044$
$\begin{array}{cc} & \\ u & 0 \\ v & 0 \\ w & 0 \\ y & 0,1 \\ a_{1} & \mathrm{G}, \mathrm{B} \\ a_{2} & \mathrm{G}, \mathrm{B} \\ e_{1} & \mathrm{C}, \mathrm{B} \\ e_{2} & \mathrm{C}, \mathrm{B} \\ o_{1} & \mathrm{G}, \mathrm{B}\end{array}$

SBBTD applied to Full Adder

- Search Tree - Upper bound = 0

u (0)	$v_{1}\{u, v, w, y, a 1, a 2\}\left\{f_{a 1}, f_{a 2}\right\}$
v (0)	$<u=0, y=0>.047$
w (0)	$<u=0, y=1>.902$
y 0,1	\{u,y, $\left.\frac{1}{}, e 2\right\}\left\{f_{e 1}, f_{e 2}\right\}$
a_{1} G,B	v_{2}
a_{2} G,B	
e_{1} G, B	$\{v, w, o 1\}\left\{f_{o 1}\right\}$
e_{2} G,B)	v_{3}

SBBTD applied to Full Adder

SBBTD applied to Full Adder

SBBTD applied to Full Adder

SBBTD applied to Full Adder

- Search Tree

Upper bound = . 044
u

(0)
w
y
a_{1} G,B G,
a_{2} G,B G,B
e_{1} G,B Exploiting goods
e_{2} G,B recorded at v2
o_{1} G,B ("forward jump")

\qquad

SBBTD applied to Full Adder

SBBTD applied to Full Adder

- Search Tree

SBBTD applied to Full Adder

- Search Tree
u
v
v
$0,1)(0,1)(0,1)(0,1)(0,1)$
$a_{1} \mathrm{C}, \mathrm{B}$ ($\mathrm{CB} \mathrm{B}, \mathrm{B}(\mathrm{G}, \mathrm{B}(\mathrm{C}, \mathrm{B}(\mathrm{C}, \mathrm{B}$
a_{2}
e_{1}
© $G, B, B(G, B, B(G, B$
e_{2} (C,B)
o_{1} C,B © \mathbb{C}, B
,
, Cut by bound
o_{1} C,B © C, B

SBBTD applied to Full Adder

- Search Tree

SBBTD applied to Full Adder

Future Work

Material

- Determine optimal granularity of domain partitions?
- Combination with local filtering techniques?

Results

- C++ Implementation of SBBTD on Pentium 4 with 1 GB RAM, using ADD library from CUDD package
- Weighted version of ssa0432-003 circuit (435 variables, 1027 constraints, domain size 2)
- Time to compute tree decomposition: 5 sec .
- Using partition $\{\{0\},\{1\}\}$: out of time (>10 min)
- Using partition $\{\{0,1\}\}$: 3 sec .

Future Work
- Determine optimal granularity of domain partitions?
- Combination with local filtering techniques?

Main Idea

- Diagnosis as soft constraint solving (DX-2004)
- Efficient techniques for solving soft constraints?
- Branch-and-Bound Search: memory efficient, but time exponential (backtracking)
- Inference: no backtracking, but memory exponential
- Techniques to exploit structure: Decision diagrams Tree Decompositions
- Still memory exponential.
- Idea: hybrid of branch-and-bound search, symbolic encoding and tree decomposition.

Soft CSPs

- Unified framework for constraints and preferences.
- For each constraint/tuple, a valuation that reflects preference (e.g. cost, weight, priority, probability, ...).
- The valuation of an assignment is the combination of the valuations for each constraint, using a binary operator (with special axioms).
- Assignments are compared using a total order on valuations.
- The problem is to produce an assignment of minimum valuation.

Formally: Valuation Structure

$S=\langle E, \mathbb{D}, \preceq, \perp, \top\rangle$

- $E=$ set of valuations, used to assess assignments
- \perp = minimum element of E, corresponds to totally consistent assignments
- T = maximum element of E, corresponds to totally inconsistent assignments
- $\preceq=$ total order on E, used to compare two valuations
- $\oplus=$ operator used to combine two valuations (commutative, associative, monotonic, neutral element \perp, annihilator T)

Decision Diagrams

- Example

\[

\]

Ordered Binary Decision Tree

Ordered Binary Decision Tree

Rule 1: Collapse Leaf Nodes

Rule 2: Remove Redundant Tests
Rule 3: Isomorphic Subgraphs

Rule 3: Isomorphic Subgraphs

Rule may become applicable again

ROBDDs

- Contains only variables from support
- Time and space complexity of operations depends on ROBDD size rather than number of assignments
- Can be extended to functions with non-binary values and non-binary variables

Algebraic Decision Diagrams (ADDs) [Bahar et al. 93]
Multi-valued Decision Diagram (MDDs) [Kam 90]

- Significant compaction in many practical cases.

Tree Decomposition

- Every variable of the original problem must appear in at least one subproblem.
- Every constraint of the original problem must appear in a subproblem, along with all variables in its scope (covering condition).
- If a variable occurs in two subproblems, it must appear in every subproblem along the path that connects the two (connectedness condition).

Example: Full Adder

BTD (Terrioux and Jégou CP-03)

- Assign variables in subproblem, beginning with root of the tree decomposition.
- Inside a subproblem, use classical branch-andbound, considering only the constraints of the subproblem.
- Once all variables in the subproblem have been assigned, consider its children (if any).
- Given a child, check if the current assignment, restricted to variables shared with the child, has been previously recorded as a good.

Tree Decomposition

- Principle: Solve each subproblem, then combine solutions using dynamic programming.
- Time O(exp(tw)), where tree width tw is maximum number of variables in a subproblem minus one.
- Space O(exp(sw)), where separator width sw is maximum number of variables shared between subproblems.
- Finding decompositions with minimal width is NPhard, but good heuristics exist.
- The width is often small in practice.

BTD (Terrioux and Jégou CP-03)

- If it is not previously recorded, compute solution for the subproblem given the current assignment and upper bound, and record it as new good.
- Add recorded value to value of current assignment.
- If resulting value is below the upper bound, proceed with the next child, else backtrack.

Projection

- $\left(f \Downarrow_{Y}\right)(t):=\min _{t^{\prime}[Y]=t} f\left(t^{\prime}\right), Y \subseteq X$

Combination

- $\left(f_{1} \otimes f_{2}\right)(t):=f_{1}(t) \oplus f_{2}(t)$

$f_{a 1}$				$:$
a_{1}	y	w	\ldots	
G	0	0	\ldots	.99
G	1	1	\ldots	.99
B	0	0	\ldots	.01
B	0	1	\ldots	.01
B	1	0	\ldots	.01
B	1	1	\ldots	.01

$f_{e 1}$:

e_{1}	y	u	\ldots	
G	0	1	\ldots	.95
G	1	0	\ldots	.95
B	0	0	\ldots	.05
B	0	1	\ldots	.05
B	1	0	\ldots	.05
B	1	1	\ldots	.05

Combination

- $\left(f_{1} \otimes f_{2}\right)(t):=f_{1}(t) \oplus f_{2}(t)$

$f_{a 1} \otimes f_{e 1}:$

| $a_{1} e_{1}$ | y | u | w | \ldots | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| G G | 0 | 0 | 0 | \ldots | .9405 |

G G $1 \quad 0 \quad 1 \ldots$. 9405
G B 0000 0495
G B $010 \ldots$. 0495

G	B	1	0	1	\ldots	.0495
G	B	1	1	1	1	\ldots
\ldots	.0495					
\ldots					\ldots	

Soft CSPs

- For each constraint/tuple: a valuation that reflects preference (e.g. cost, weight, probability, ...).
- Valuations are combined using a binary operator (with special axioms)
- Assignments are compared using a total order on valuations.
- The problem is to produce an assignment of minimum valuation.

Sinking Operation

- $\operatorname{sink}\left(c_{j}, \alpha\right)$ is a new constraint where all values of tuples $\succeq \alpha$ have been replaced by \top
- Generalizes the test $l b<u b$ to functions

Constraint \quad Constraint $\operatorname{sink}\left(\mathrm{f}_{\mathrm{e} 2}, 0.05\right)$

$$
\begin{array}{rl|l}
f_{e 2}: & e_{2} u & \\
\hline \mathrm{G} & 0 & .95 \\
\mathrm{~B} & 0 & .05 \\
\mathrm{~B} & 1 & .05
\end{array} \quad \begin{array}{cc|c}
e_{2} u & \\
\hline \mathrm{G} & 0 & .95 \\
& & \\
\end{array}
$$

Set-based Branch-and-Bound

- Function $\operatorname{SDFBB}\left(f_{t}\right.$: assignments, $u b$: value): value
$f_{l b} \leftarrow l b\left(f_{t}\right)$
$f_{t} \leftarrow \operatorname{sink}\left(f_{l b}, u b\right)$
if $f_{t} \not \equiv 丁$ then
if $\operatorname{var}\left(f_{t}\right)=n$ then return $f_{t} \|^{\infty}$
let x_{i} be an unassigned variable
for each $p \in P_{i}$ do
$\left\lfloor u b \leftarrow \min \left(u b, \operatorname{SDFBB}\left(f_{t} \oplus\left(x_{i} \in p\right), u b\right)\right)\right.$
return $u b$
return $T \quad$ Time: $O(\exp (n))$
Space: $O(\exp (n))$

Branch-and-Bound Search

- Function DFBB (t : assignment, $u b$: value): value
$v \leftarrow l b(t)$
if $v \prec u b$ then
if $|t|=n$ then return v
let x_{i} be an unassigned variable
for each $a \in d_{i}$ do
$u b \leftarrow \min (u b, \operatorname{DFBB}(t \cup\{(i, a)\}, u b))$
return $u b$
return \top
Time: $O(\exp (n))$
Space: $O(n)$

