Soft Constraint Processing

16.412J/6.834J Cognitive Robotics

Martin Sachenbacher (Using material from Thomas Schiex)

Overview

- Soft Constraints Framework
- Algorithms: Search (Branch-and-Bound)
- Algorithms: Inference (Dynamic Programming)
- Applications: Frequency Assignment Problems

From Optimal CSP to Soft CSP

• Optimal CSP: Minimize function f(y), s.t. constraints C(x) are satisfiable.

	Utility Function	Constraint
x = z	$f: a_1 \to [0,1]$	$c: \underline{a_1 \ x \ y \ z}$
a_1	f(G) = .99 f(U) = .01	$\begin{array}{ccccc} G & 0 & 0 & 0 \\ G & 0 & 1 & 0 \\ G & 1 & 0 & 0 \\ G & 1 & 1 & 1 \\ U & 0 & 0 & 0 \end{array}$

From Optimal CSP to Soft CSP Soft CSP: Extend the notion of constraints to include preferences. Soft Constraint $c: a_1 x y z$ $G \ 0 \ 0 \ 0$.99 G 0 1 0 .99 G 1 0 0 .99 $G \ 1 \ 1 \ 1$.99U 0 0 0 .01 . . .

Notation

- A k-tuple is a sequence of k objects $\langle v_1, \ldots, v_k
 angle$
- The *i*-th component of a tuple *t* is denoted *t*[*i*].
- The projection of a tuple t on a subset S of its components is denoted t[S].
- The cartesian product of sets A_1, \ldots, A_k , denoted $\prod_{i=1}^k A_i$, is the set of all k-tuples such that $t[i] \in A_i$.

Classical CSP

A constraint network $\langle X, D, C \rangle$

- set of variables $X = \{x_1, \ldots, x_n\}$
- set of domains $D = \{d_1, \ldots, d_n\}$
- set of constraints $C = \{c_1, \ldots, c_m\}$

A constraint $c \in C$ is a relation $c \subseteq \prod_{x_j \in var(c)} d_j$ on variables var(c) with arity |var(c)|.

A complete assignment t is allowed if $\forall c \in C, t[\operatorname{var}(c)] \in c$.

Valued CSP

- For each constraint/tuple: a valuation that reflects preference (e.g. cost, weight, priority, probability, ...).
- The valuation of an assignment is the combination of the valuations expressed by each constraint using a binary operator (with special axioms).
- Assignments can be compared using a total order on valuations.
- The problem is to produce an assignment of minimum valuation.

Formally: Valuation Structure

 $S=\langle E,\oplus,\preceq,\bot,\top\rangle$

- E = set of valuations, used to assess assignments
- \perp = minimum element of *E*, corresponds to totally consistent assignments
- T = maximum element of *E*, corresponds to totally inconsistent assignments
- \leq = total order on E, used to compare two valuations
- \oplus = **operator** used to **combine** two valuations

Valued CSP

A constraint network $\langle X, D, C, S \rangle$

- set of variables $X = \{x_1, \ldots, x_n\}$
- set of domains $D = \{d_1, \ldots, d_n\}$
- set of constraints $C = \{c_1, \ldots, c_m\}$
- valuation structure $S = \langle E, \oplus, \preceq, \bot, \top \rangle$

A constraint $c \in C$ is a function $c : \prod_{x_j \in var(c)} d_j \to E$ mapping tuples over var(c) to valuations.

The valuation of a complete assignment t is $\bigoplus_{c \in C} c(t[var(c)]).$

Required Properties

- $\forall \alpha, \beta \in E, (\alpha \oplus \beta) = (\beta \oplus \alpha)$. (Commutativity)
- $\forall \alpha, \beta, \gamma \in E, (\alpha \oplus (\beta \oplus \gamma)) = ((\alpha \oplus \beta) \oplus \gamma).$ (Associativity)
- $\forall \alpha, \beta, \gamma \in E, (\alpha \preceq \beta) \Rightarrow ((\alpha \oplus \gamma) \preceq (\beta \oplus \gamma)).$ (Monotonicity)
- $\forall \alpha \in E, (\alpha \oplus \bot) = \alpha$. (Neutral element)
- $\forall \alpha \in E, (\alpha \oplus \top) = \top$. (Annihilator)

Exercise: Justify properties.

Instances of the Framework

	E	Ľ	T	Т	\oplus
Classical	$\{t,f\}$	$\mathbf{t}\prec\mathbf{f}$	t	f	Λ
Weighted	$N_0^+\cup\infty$	\leq	0	∞	+
Probabilistic	[0,1]	\geq	1	0	*
Fuzzy	[0, 1]	\geq	1	0	\min

Many others in the literature.

From Valued CSP to Optimal CSP

- Introduce decision variable for each constraint
- Its values correspond to different valuations

Lower Bound Procedure

Must be:

- Strong: the closest to the real value, the better.
- Efficient: as easy to compute as possible.

Creates a **trade-off**. Choice is often a matter of compromises and experimental evaluation.

Distance Lower Bound

- At each node, let $AC \subseteq C$ be the set of constraints all of whose variables have been assigned.
- Use the bound

 $lb(t) = \bigoplus_{c \in AC} c(t[var(c)])$

 Problem: often weak, as it takes into account only past variables.

Improvement: Russian Doll Search

- Idea: we can add the value of the optimal solution to the subproblem over future variables to distance lower bound, and get a stronger lower bound.
- Must solve subproblem over future variables beforehand.
- Yields recursive procedure that solves increasingly large subproblems.

Russian Doll Search

- [Lemaitre Verfaillie Schiex 96]: Experiments with Earth Observation Satellite Scheduling Problems (maximization problem).
- Example: 105 variables, 403 constraints.
- Branch-and-Bound with distance lower bound: Aborted after 30 min, best solution so far = 8095.
- Russian Doll Search: Optimal solution = 9096 found in 2.5 sec.

Overview

- Soft Constraints Framework
- Algorithms: Search (Branch-and-Bound)
- Algorithms: Inference (Dynamic Programming)
- Applications: Frequency Assignment Problems

Inference Inference produces new constraints that are implied by the problem. Makes problem more explicit, easier to solve. Operations on constraints: combination and projection.

VCSP ------ VCSP'

Equivalent, simpler to solve

Bucket Elimination: Complexity

Let **width** be the maximum number of successors in the induced graph. Then:

- Time dominated by computation of largest c_K:
 O(exp(width+1))
- Space dominated by storage of largest c'_K:
 O(exp(width))

• Function MF (G: Graph with edges E and nodes $V = \{v_1, \dots, v_n\}$): Order for j = 1 to n let v be a node in V with minimal number of edges required to connect its neighbors put v in position j of order $E \leftarrow E \cup \{(v_i, v_j) : (v_i, v) \in E, (v_j, v) \in E\}$ $V \leftarrow V \setminus \{v\}$ Often finds good orderings in practice.

- AND-gates broken with 1% probabilityOR, XOR-gates broken with 5% probability
- Probabilistic valuation structure $([0, 1], \ge, \cdot, 1, 0)$

Example		
$f_{a1} : \underline{a_1 \ w \ y}$	$f_{a2} : \underline{a_2 \ u \ v}$	$f_{e1} : \underline{e_1 \ u \ y}$
G 0 0 .99	G 0 0 .99	G 1 0 .95
G 1 1 .99	G 1 1 .99	$G \ 0 \ 1 \ .95$
B 0 0 .01	B 0 0 .01	B 0 0 .05
B 0 1 .01	B 0 1 .01	B 0 1 .05
B 1 0 .01	B 1 0 .01	B 1 0 .05
B 1 1 .01	B 1 1 .01	B 1 1 .05
$f_{o1}: o_1 v w$	$f_{e2}: e_2 u$	
G 0 0 .95	G 0 .95	
B 0 0 .05	B 0 .05	
B 0 1 .05	B 1 .05	
B 1 0 .05		
B 1 1 .05		

From VCSPs to OCSPs

- Introduce decision variable for each constraint
- Introduce domain value for each different value of a tuple's constraint

Basic Operations on Constraints

- Assignment (Conditioning)
- Combination (Join)
- Projection (Elimination)

• $F(X) = \oplus c_i(X) \downarrow_{\varnothing}$

Probabilist	ic CSP Exam	ple
$\begin{array}{c ccccc} f_{a1} & : & \underline{a_1} & w & y \\ \hline G & 0 & 0 & .99 \\ G & 1 & 1 & .99 \\ B & 0 & 0 & .01 \\ B & 0 & 1 & .01 \\ B & 1 & 0 & .01 \\ B & 1 & 1 & .01 \end{array}$	$\begin{array}{c c} f_{a2} : \underbrace{a_2 \ u \ v} \\ \hline G \ 0 \ 0 \ 0 \ .99 \\ G \ 1 \ 1 \ .99 \\ B \ 0 \ 0 \ .01 \\ B \ 0 \ 1 \ .01 \\ B \ 1 \ 0 \ .01 \\ B \ 1 \ 1 \ .01 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Application: Resource Allocation

- Given a telecommunication network
- Find frequency for each communication link...
- ... such that total interference is minimized

Overview

- Introduction and Definitions
- Solving soft constraints
 - By Search
 - By Inference

Depth-First Search

 $\begin{array}{l} \mathsf{BT}(X,D,C) \\ \underbrace{\text{if}} (X=\varnothing) \underbrace{\text{then}} \mathsf{Top} := c_{\varnothing} \\ \underbrace{\text{else}} \\ x_j := \operatorname{selectVar}(X) \\ \underbrace{\text{forall } a \in D_j \operatorname{do}} \\ \forall_{c \in C \text{ s.t. } x_j \in \operatorname{var}(c)} c := \operatorname{Assign}(c, x_j, a) \\ c_{\varnothing} := \sum_{c \in C \text{ s.t. } \operatorname{var}(c) = \varnothing} c \\ \underbrace{\text{if}} (LB < \mathsf{Top}) \underbrace{\text{then}} \mathsf{BT}(X - \{x_j\}, D - \{D_j\}, C) \end{array}$

Overview

- Introduction and Definitions
- Solving soft constraints
 - By Search
 - By Inference

Synthesis

- Join all constraints
- Project
- Limitations: very costly (Time: exp(n), Space: exp(n))

Min-Fill Heuristics

- Input: A graph $G = (V,E), V = \{v_1, ..., v_n\}$
- Output: An ordering of the nodes
- For j = 1 to n do
- $-\ r \leftarrow$ a node in V with smallest number of fill edges
- Put r in position jConnect r's neighbors
- Remove r from resulting graph

Tree-structured Problems

• ...

BnB with Variable Elimination

- Hybrid Method
- At each node
 - $-\,$ Select an unassigned variable \mathbf{X}_{i}
 - If deg_i ≤ k then eliminate X_i
 - Else branch on the values of X_i
- Properties
 - BE-VE(-1) is BB
 - BE-VE(w*) is VE
 - BE-VE(1) is like cycle-cutset

BnB with VE: Results

- Example: Still-life (academic problem)
 Instance: n=14
 - Instance: n=14
 #var:196 , #val:2
 - Branch-and-Bound → 5 days
 - Variable Elimination → 1 day
 - BB-VE(18) → 2 seconds

Background

- Domain Splitting (e.g. Hentenryck's book)
- Bucket Elimination (and extension to super-bucket elimination/tree decomposition) (Dechter's book)
- Backtracking combined with tree decompositions (algorithm BTD, Jégou and Terrioux 03)
- Dynamic programming on tree decompositions (algorithm CTE, Dechter's book)
- Decision Diagrams (Bryant 86, Bahar 93)
- Soft constraints
- [A* search]

CSPs

- Domains $D = \{d_1, \ldots, d_n\}$
- Variables $X = \{x_1, \ldots, x_n\}$
- Constraints $C = \{c_1, \ldots, c_m\}$
- $c_j \in C$: Scope $\operatorname{var}(c_j)$, Function $\operatorname{var}(c_j) \to \{0, 1\}$

c_1 :	$x_1 x_2 x_3$	c_2 :	$x_2 x_4$
	a a c		a b
	a b c		a c
	b b c		bс

- Partition $P_i = \{\{1, 2\}, \{3, 4\}\}, i = 1, 2, 3, 4$
- E.g., check assignment $x_1 \in \{1, 2\}, x_2 \in \{3, 4\}$:

Cases

- Partition | P_i |= | d_i |: Limiting case of backtrack search (single assignments are tested, as before)
- Partition $|P_i| = 1$: Limiting case of constraint synthesis (single constraint is inferred): $c_1 \bowtie \ldots \bowtie c_m$
- Partition $1 < |P_i| < |d_i|$: Hybrid of search and
- inference (search on subsets of tuples)

Example • Synthesis			
$\begin{array}{c} c_{12}:\\ x_1 x_2\\ \hline 1 & 3\\ 1 & 4\\ 2 & 4\\ 3 & 1\\ 4 & 1\\ 4 & 2 \end{array}$	$\begin{array}{c} c_{13}:\\ x_1 x_3\\ \hline 1 & 2\\ 1 & 4\\ 2 & 1\\ 2 & 3\\ 3 & 2\\ 3 & 4\\ 4 & 1\\ 4 & 3 \end{array} \bowtie \dots \bowtie$	$\begin{array}{c} c_{34}:\\ \hline x_3 x_4\\ \hline 1 & 3\\ 1 & 4\\ 2 & 4\\ 3 & 1\\ 4 & 1\\ 4 & 2 \end{array} = \begin{array}{c} x_1 x_2 x_3 x\\ \hline x_1 x_2 x_3 x\\ \hline 2 & 4 & 1 & 3\\ \hline \vdots\\ $	-

Bucket Elimination

- Define variable order $x_1\prec\ldots\prec x_n$
- Eliminate the variables one-by-one
 - Combine constraints mentioning $x_i \mathrm{in}$ their scope ("bucket") Project out x_i from result
- That is, variables disappear as soon as they no longer influence (cannot constrain) the result
- E.g., instead of $c_{12} \bowtie c_{13} \bowtie c_{23} \bowtie c_{14} \bowtie c_{24} \bowtie c_{34}$ bucket elimination needs to compute only $(((c_{14} \bowtie c_{24} \bowtie c_{34}) \Downarrow_{-x_4} \bowtie c_{13} \bowtie c_{23}) \Downarrow_{-x_3} \bowtie c_{12}) \Downarrow_{-x_2}$

Combination with Search

- To exploit decomposition in search, the order in which variables are assigned must be "compatible" with the order in which variables are eliminated
- More precisely, if variables are assigned in order $x_1 \prec \ldots \prec x_n$, variables have to be eliminated in reverse (partial) order: $\{x_n, \ldots, x_{n-k_1}\} \prec \{x_{n-k_1-1}, \ldots, x_{n-k_1-k_2}\} \prec \ldots$
- $\ldots \prec \{x_{n-k_1-\ldots-k_j-1},\ldots,x_1\}$
- Construct (super-)buckets (tree decomposition scheme) from this reverse order

Combination with Search (Cont'd)

- A tree decomposition with compatible elimination order can be exploited during search as follows:
 - Let separator(vj) denote the separator of tree node vj (the set of variables that vj shares with its parent, vi)
 - Once a complete assignment has been found for a subtree, record it as a good at the separator (same for nogoods) By checking the goods/nogoods during search, we can then
 - avoid descending into the same subtree again and again
- This algorithm is called BTD (backtracking with tree decompositions) (Jégou Terrioux AIJ03)

BTD (Jégou Terrioux AlJ03)

- Input: (Partial) assignment A, tree node v_i , set of variables $X_{v_i} \subseteq \operatorname{var}(v_i)$ to be assigned
- Output: "True" if assignment is consistent with all constraints C in subtree of v_i , "false" otherwise
- Initial call: BTD(\emptyset , v_1 , vars(v_1))

BTD Pseudocode

m Consistent nued on next slide)

Function BTD(A,vi,Xvi) $\begin{array}{l} f Xvi = \varnothing \ \ free \\ Consistent \leftarrow True \\ F \leftarrow children(vi) \\ \hline While \ F \neq \oslash \ And \ Consistent \ Do \end{array}$ $\label{eq:hose_states} \begin{array}{l} \mbox{Mhile } F \neq \varnothing \mbox{ And Consistent Do} \\ \mbox{Choose } v_j \in F \\ \mbox{F} \leftarrow F \setminus \{v_j\} \\ \mbox{if } A \downarrow \mbox{separator}(vi) \mbox{ is a good of } vi/vj \mbox{ Then Consistent} \leftarrow \mbox{True} \\ \mbox{True} \end{array}$ If A ↓ separator(vj) is a nogood of vi/vj Then Consistent ← False Consistent ← BTD(A,vj,vars(vj) \ separator(vj)) ff Consistent Then Record the good A ↓ separator(vj) for vi/vj Record the nogood (A ↓ separator(vj)) for vi/vj

BTD Pseudocode (Cont'd)

- (Continued)
 - Choose $x \in Xvi$ dom $\leftarrow Dx$ Consistent \leftarrow False While dom $\neq \emptyset$ And Not Consistent Do Choose up a dom
 - $\begin{array}{l} \text{Choose val} \in \mathcal{G} \\ \text{Choose val} \in \text{dom} \\ \text{dom} \leftarrow \text{dom} \setminus \{\text{val}\} \\ \text{If } (A \land \{x \leftarrow \text{val}\}) \text{ semijoin } \{c: c \in C \land \text{var}(c) \subseteq (\text{var}(A) \cup \{x\})\} \neq \varnothing \end{array}$
 - Then Consistent \leftarrow BTD(A \land {x \leftarrow val}, vi, Xvi \land {x}) End If nd While

Note: Computes a full assignment, but

- returns only
- true/false.

Generalization to Domain Splitting

- Incorporate domain splitting into BTD, that is, search over sets of assignments A
- Yields new algorithm BTDS (backtracking with tree decompositions and domain splitting)
- Like BTD, BTDS records set of good tuples and nogood tuples for each separator
- Unlike BTD, BTDS maintains only assignments to v_i (instead of full assignment)
- Unlike BTD, BTDS returns assignments to separator of v_i (instead of only true/false)

BTDS

- Input: Set of (partial) assignments (constraint) A, tree node v_i , set of variables $X_{v_i} \subseteq var(v_i)$
- Output: Assignments to separator of v_i that are consistent with all constraints C in subtree of v_i
- Initial call: BTDS(Ø, v1, vars(v1))

BTDS Pseudocode

BTDS Pseudocode (Cont'd)

(Continued)
 Else

 Choose x ∈ Xvi
 PartitionElements ← Px
 Aextended ← A
 While PartitionElements ≠ Ø And Aextended = Ø Do
 Choose p ∈ PartitionElements
 PartitionElements ← PartitionElements \{p}
 Aextended ← (A ∧ (x ← p)) semijoin {c: c ∈ C ∧ var(c) ⊆ (var(A) ∪ (x))})
 If Aextended ← BTDS(Aextended, vi, Xvi \ {x}))
 End If

 Return Aextended
 End If

Generalization to Optimization • Domains $D = \{d_1, \dots, d_n\}$ • Variables $X = \{x_1, \dots, x_n\}$ • Constraints $C = \{c_1, \dots, c_m\}$ • $c_j \in C$: Scope $var(c_j)$, Function $var(c_j) \rightarrow E$

• Valuation structure $(E, \preceq, \oplus, \bot, \top) \perp \text{best, } \mathsf{T} \text{ worst}$

c_1 :	$x_1 \ x_2 \ x_3$	c_2 :	$x_2 x_4$	
	a a c a b c b b c	.5 .5 .5	a b .4 a c .4 b c .4	Soft Constraints

- Variables $\{u, v, w, y, a_1, a_2, e_1, e_2, o_1\}$
- $\{a_1, a_2, e_1, e_2, o_1\}$ describe modes of gates
- Gates are either in good (${\cal G}$) or broken (${\cal B}$) mode

Example: S	oft Constrai	nts
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} f_{e2} : e_2 \ u \\ \hline G \ 0 & .95 \\ B \ 0 & .05 \\ B \ 1 & .05 \end{array}$	For details, see ECAI'04 paper.

Depth-First Branch and Bound

- Recursive algorithm BTDval (Terrioux Jégou CP03) (back-tracking with tree decompositions for valued constraints) that extends BTD to soft constraints
- Records tuples and their values for each separator ("valued goods" instead of goods and nogoods)

BTDval (Terrioux Jégou CP03)

- Input: (Partial) assignment A, tree node v_i , set of variables $X_{v_i} \subseteq vars(v_i)$ lower bound l_{v_i} (value of assignment so far), upper bound u_{v_i} (value of best solution found so far)
- Output: Value of best extension to subtree of v_i with value < u_{v_i} , or some value $\ge u_{v_i}$, if that does not exist
- Initial call: BTDval($\emptyset, v_1, var(v_1), \bot, \top$)

BTDval Pseudocode

BTDval Pseudocode (Cont'd) ■ (Continued) Else Choose x ∈ Xvi dom ← Dx While dom ≠ Ø And Ivi < uvi Do

Choose val \in dom dom \leftarrow dom \ (val} |val \leftarrow ((A \land (x \leftarrow val}) semijoin {c: c \in C \land var(c) \leq (var(A) \cup {x}))}) $\downarrow \oslash$ |f |vi \in lval < uvi Then uvi \leftarrow min(uvi, BTDval(A \land {x \leftarrow val}, vi, Xvi \ {x}, lvi \oplus lval, uvi) End If End While

Return uvi End If Note: Computes a full assignment, but

returns only

a value.

Generalization to Domain Splitting

- Incorporate domain splitting into BTDval, that is, search over a whole set of valued assignments
- Yields BTDSval (backtracking with tree decompositions and domain splitting for valued constraints)
- Like BTDval, BTDSval records valued goods
- Unlike BTDval, BTDSval maintains only assignments to v_i , and returns assignments to separator of v_i

Generalized Sinking Operation • Generalized sinking operation $sink(c_i, c_j)$ returns a new constraint where all values of tuples of c_i that are \succeq values of tuples of c_j have been replaced by \top • Generalizes the check $l_{v_i} < u_{v_i}$ to soft constraints Constraints Constraint sink(f_{e2},f) $f:\underline{e_2 \ u}$ $f_{e2}: \underline{e_2} u$ $e_2 u$ G 0 .45 G 0 .95 G 0 .95 B 0 05 B 0 .05 B 0 0 B 1 .05 B 1 | .01 B 1 .5

BTDSval

- Input: Set of (partial) assignments (constraint) *f*_A, tree node v_i, variables X_{vi} ⊆ vars(v_i), upper bound *f*_u
 No explicit lower bound (contained in valued assignments)
 Note that the bounds (lower and upper) are now functions
- Output: Best assignments to separator of v_i with values $\prec f_u$, or values $\succeq f_u$, if not existent
- Notation: f_{\perp} : constraint with value \perp for all tuples, f_{\top} : constraint with value \top for all tuples
- Initial call: BTDSval($f_{\perp}, v_1, var(v_1), f_{\top}$)

BTDSval Pseudocode

- $\label{eq:static-state} \begin{array}{ll} \mbox{Function BTDSval(fa,vi,Xvi,fu}) \\ \mbox{If } Xvi = \varnothing \mbox{ Then } \\ \mbox{F} \leftarrow children(vi) \\ \mbox{fa} \leftarrow sink(fa,fu) \\ \mbox{While } F \neq \varnothing \mbox{ And } fa \neq f \top \mbox{ Do } \\ \mbox{Choose } vj \in F \end{array}$
- $\begin{array}{l} \textbf{Choose } v_i \in F \\ F \leftarrow F \setminus \{v_i\} \\ \text{fasep} \leftarrow fa \mathrel{\Downarrow} \text{separator}(v_i) \\ \text{faseprest} \leftarrow \text{tuples of fasep that are not goods of vi/v_j} \\ \text{if faseprest} \leftarrow T_T \mathrel{\text{Then}} \\ \text{farestval} \leftarrow B \text{TDS}(faseprest, v_i, \chi(v_i) \setminus \text{separator}(v_i), fu) \\ \text{Record tuples in farestval as goods of vi/v_j} \\ \hline \textbf{End If} \\ fa \leftarrow fa semijoin goods(v_j) \\ fa \leftarrow \text{sink}(fa,fu) \end{array}$
- Return fa U separator(vi) (continued on next slide)

BTDSval Pseudocode (Cont'd)

(Continued) Else

Cases

- Partition | P_i |=| d_i |: Yields backtracking algorithm BTDval (Jégou Terrioux CP03)
- Partition | P_i |= 1: Yields dynamic programming algorithm CTE with soft constraints (Dechter 03)
- Partition $1 < \mid P_i \mid < \mid d_i \mid$: Hybrid of BTDval and CTE

Note: for case |Pi|>1, algorithm has higher space complexity than CTE (exp(width) instead of exp(sep)). But, it should be possible to reduce the space complexity to exp(sep).

B	TDSval applied to Full Adder
	Search Tree
u u	
v^{u}	
$w \\ y$	$ \begin{array}{c} (0) & (1) & (0) & (1) & (0) \\ (0,1) & (0,1) & (0,1) & (0,1) \\ \end{array} $
a_1	Ġŀ ĠŀĠŀġĠŀġ
a_2 e_1	(G,B) (G,B) (G,B) (G,B) Cut by bound
e_2	
01	G,B G,B

Best-First Search

- Replace depth-first branch-and-bound search in BTDval by best-first (A*) search
- Yields algorithm ATDval (A* search with tree decompositions for valued constraints)
- One search queue per each tree node v_i
- Search queues have entries $\langle A, v, v_i, X_{v_i}, F \rangle$
- A: assignment
- v: value
- vi: tree node
- Xvi: set of variables
- F: set of children of vi

Best-First Search

- Problem: Search to be performed given a particular assignment *A*; values depend on this assignment
- Therefore, would have to maintain different search queues for each different assignment!
- Possible solution: Switch to dual problem (unary soft constraints, n-ary hard equality constraints)
 See SOFT-04 paper

Related Work

Set-based search (Jörg Denzinger, U Calgary)

Tree Decomposition:

$$v_{1} \begin{array}{|} \hline \{x_{1}, x_{2}\} \ \{c_{12}\} \\ x_{2} \\ \hline x_{2} \\ \hline x_{1}, x_{2} \\ \hline x_{1}, x_{2} \\ \hline x_{2} \\ \hline x_{1}, x_{2} \\ \hline x_{1}, x_{2} \\ \hline x_{2} \\ \hline x_{1}, x_{2} \\ \hline x_{2} \\ \hline x_{2} \\ \hline x_{1}, x_{2} \\ \hline x_{2} \\ x_{2} \\ \hline x_{$$

- Partitions: $\{\{b,g\},\{r,y\}\}$ for x_1,x_2,x_3 , $\{\{b,g\}\}$ for x_4