Soft Constraint Processing

16.412J/6.834J Cognitive Robotics

Martin Sachenbacher
(Using material from Thomas Schiex)

Example: Bioinformatics

- RNA is single-strand molecule, composed of A, U, G, C
- Function of RNA depends on structure (3-D folding)
- Structure induced by base pairing: Watson-Crick (A-U, G-C) and Wobble (G-U).
- Problem: Find RNA structure that maximizes base pairings.
- Cumbersome to frame as Optimal CSP!

Overview

- Soft Constraints Framework
- Algorithms: Search (Branch-and-Bound)
- Algorithms: Inference (Dynamic Programming)
- Applications: Frequency Assignment Problems

From Optimal CSP to Soft CSP

- Soft CSP: Extend the notion of constraints to include preferences.

Soft Constraint

$y=\square a_{1}-z$

$c:$| $a_{1} x y z$ | |
| :--- | :--- |
| 0_{0} | |

G	0	0	0	.99
G	0	1	0	.99
G	1	0	0	.99
G	1	1	1	.99
U	0	0	0	.01

From Optimal CSP to Soft CSP

- Optimal CSP: Minimize function f(y), s.t. constraints $C(x)$ are satisfiable.

	Utility Function	Constraint
$x=\square$	$f: a_{1} \rightarrow[0,1]$	$c: \underline{a_{1} x y z}$
	$f(\mathrm{G})=.99$	G 000
	$f(\mathrm{U})=.01$	G 010
		G 100
		G 111
		U 000

$a_{1} x y z$
G 000
G 10
G 111
U 000

Notation

- A k-tuple is a sequence of k objects $\left\langle v_{1}, \ldots, v_{k}\right\rangle$
- The i-th component of a tuple t is denoted $t[i]$.
- The projection of a tuple t on a subset S of its components is denoted $t[S]$.
- The cartesian product of sets A_{1}, \ldots, A_{k}, denoted $\Pi_{i=1}^{k} A_{i}$, is the set of all k-tuples such that $t[i] \in A_{i}$.

Classical CSP

A constraint network $\langle X, D, C\rangle$

- set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- set of domains $D=\left\{d_{1}, \ldots, d_{n}\right\}$
- set of constraints $C=\left\{c_{1}, \ldots, c_{m}\right\}$

A constraint $c \in C$ is a relation $c \subseteq \Pi_{x_{j} \in \operatorname{var}(c)} d_{j}$ on variables $\operatorname{var}(c)$ with arity $|\operatorname{var}(c)|$.

A complete assignment t is allowed if $\forall c \in C, t[\operatorname{var}(c)] \in c$.

Valued CSP

- For each constraint/tuple: a valuation that reflects preference (e.g. cost, weight, priority, probability, ...).
- The valuation of an assignment is the combination of the valuations expressed by each constraint using a binary operator (with special axioms)
- Assignments can be compared using a total order on valuations
- The problem is to produce an assignment of minimum valuation.

Formally: Valuation Structure

$S=\langle E, \oplus, \preceq, \perp, \top\rangle$

- $E=$ set of valuations, used to assess assignments
- \perp = minimum element of E, corresponds to totally consistent assignments
- T = maximum element of E, corresponds to totally inconsistent assignments
- $\preceq=$ total order on E, used to compare two valuations
- \oplus = operator used to combine two valuations

Valued CSP

A constraint network $\langle X, D, C, S\rangle$

- set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- set of domains $D=\left\{d_{1}, \ldots, d_{n}\right\}$
- set of constraints $C=\left\{c_{1}, \ldots, c_{m}\right\}$
- valuation structure $S=\langle E, \mathbb{O}, \preceq, \perp, \top\rangle$

A constraint $c \in C$ is a function $c: \Pi_{x_{j} \in \operatorname{var}(c)} d_{j} \rightarrow E$ mapping tuples over $\operatorname{var}(c)$ to valuations.

The valuation of a complete assignment t is $\bigoplus_{c \in C} c(t[\operatorname{var}(c)])$.

Required Properties

- $\forall \alpha, \beta \in E,(\alpha \oplus \beta)=(\beta \oplus \alpha)$. (Commutativity)
- $\forall \alpha, \beta, \gamma \in E,(\alpha \oplus(\beta \oplus \gamma))=((\alpha \oplus \beta) \oplus \gamma)$. (Associativity)
- $\forall \alpha, \beta, \gamma \in E,(\alpha \preceq \beta) \Rightarrow((\alpha \oplus \gamma) \preceq(\beta \oplus \gamma))$. (Monotonicity)
- $\forall \alpha \in E,(\alpha \oplus \perp)=\alpha$. (Neutral element)
- $\forall \alpha \in E,(\alpha \oplus T)=T$. (Annihilator)

Exercise: Justify properties.

Instances of the Framework

	E	\preceq	\perp	T	\oplus
Classical	$\{\mathrm{t}, \mathrm{f}\}$	$\mathrm{t} \prec \mathrm{f}$	t	f	\wedge
Weighted	$N_{0}^{+} \cup \infty$	\leq	0	∞	+
Probabilistic	$[0,1]$	\geq	1	0	$*$
Fuzzy	$[0,1]$	\geq	1	0	min

Many others in the literature.

From Valued CSP to Optimal CSP

- Introduce decision variable for each constraint
- Its values correspond to different valuations

$$
\left.c: \begin{array}{ll|l}
x & y & z
\end{array}\right] \quad S=\left\langle N_{0}^{+} \cup \infty,+, \leq, 0, \infty\right\rangle
$$

From Valued CSP to Optimal CSP

- Introduce decision variable for each constraint
- Its values correspond to different valuations

$c:$| d | x | y | z | |
| :--- | :--- | :--- | :--- | :--- |
| v_{1} | a a a a | 0 | | |
| v_{1} | a b b a | 0 | | |
| v_{2} | b a a | 1 | | |
| v_{2} | b b b b | 1 | | |$\quad S=\left\langle N_{0}^{+} \cup \infty,+, \leq, 0, \infty\right\rangle$

From Valued CSP to Optimal CSP

- Introduce decision variable for each constraint
- Its values correspond to different valuations
- Utility function maps values to valuations
- Constraints become relations

$$
\begin{array}{ccc}
c: \begin{array}{cc}
d x y z \\
\mathrm{v}_{1} \mathrm{a} \text { a a } \\
\mathrm{v}_{1} \mathrm{a} \text { b a } & f: d \rightarrow N_{0}^{+} \cup \infty \\
\mathrm{v}_{1} \mathrm{~b} \text { a a } & f\left(\mathrm{v}_{1}\right)=0 \\
\mathrm{v}_{2} \mathrm{~b} \text { b b } & f\left(\mathrm{v}_{2}\right)=1 \\
&
\end{array} \begin{array}{l}
\text { Multiattribute } \\
\text { utility function }=+
\end{array}
\end{array}
$$

Overview

- Soft Constraints Framework
- Algorithms: Search (Branch-and-Bound)
- Algorithms: Inference (Dynamic Programming)
- Applications: Frequency Assignment Problems

Branch-and-Bound Algorithm

- Function DFBB (t : assignment, $u b$: value): value
$v \leftarrow l b(t)$
if $v \prec u b$ then
if $|t|=n$ then return v
let x_{i} be an unassigned variable
for each $a \in d_{i}$ do
$u b \leftarrow \min (u b, \operatorname{DFBB}(t \cup\{(i, a)\}, u b))$
return $u b$
return \rceil Time: $O(\exp (n))$
Space: O(n)

Lower Bound Procedure

Must be:

- Strong: the closest to the real value, the better.
- Efficient: as easy to compute as possible.

Creates a trade-off. Choice is often a matter of compromises and experimental evaluation.

Distance Lower Bound

- At each node, let $A C \subseteq C$ be the set of constraints all of whose variables have been assigned.
- Use the bound

$$
l b(t)=\bigoplus_{c \in A C} c(t[\operatorname{var}(c)])
$$

- Problem: often weak, as it takes into account only past variables.

Improvement: Russian Doll Search

- Idea: we can add the value of the optimal solution to the subproblem over future variables to distance lower bound, and get a stronger lower bound.
- Must solve subproblem over future variables beforehand.
- Yields recursive procedure that solves increasingly large subproblems.

Russian Doll Search

- [Lemaitre Verfaillie Schiex 96]: Experiments with Earth Observation Satellite Scheduling Problems (maximization problem).
- Example: 105 variables, 403 constraints.
- Branch-and-Bound with distance lower bound: Aborted after 30 min , best solution so far $=8095$.
- Russian Doll Search: Optimal solution = 9096 found in 2.5 sec .

Inference

- Inference produces new constraints that are implied by the problem.
- Makes problem more explicit, easier to solve.
- Operations on constraints: combination and projection.
 simpler to solve

Combination

- $c_{1} \bowtie c_{2}$ is constraint on $\operatorname{var}\left(c_{1}\right) \cup \operatorname{var}\left(c_{2}\right)$ s.t.
$\left(c_{1} \bowtie c_{2}\right)(t)=c_{1}\left(t\left[\operatorname{var}\left(c_{1}\right)\right]\right) \oplus c_{2}\left(t\left[\operatorname{var}\left(c_{2}\right)\right]\right)$

Projection

- $c \Downarrow_{Y}, Y \subseteq X$ is a constraint on $\operatorname{var}\left(c_{1}\right) \cap Y$ s.t.

$$
\left(c \Downarrow_{Y}\right)(t)=\min _{t^{\prime}[Y]=t} c\left(t^{\prime}\right)
$$

$c:$

a_{1}	x	y	z	
G	0	0	0	.99
G	0	1	0	.99
G	1	0	0	.99
G	1	1	1	.99
U	0	0	0	.01
\ldots				\ldots

$x z=$

10

| 1 | .99 |
| :--- | :--- | :--- |

0	1	.01

Combination

- $c_{1} \bowtie c_{2}$ is constraint on $\operatorname{var}\left(c_{1}\right) \cup \operatorname{var}\left(c_{2}\right)$ s.t.
$\left(c_{1} \bowtie c_{2}\right)(t)=c_{1}\left(t\left[\operatorname{var}\left(c_{1}\right)\right]\right) \oplus c_{2}\left(t\left[\operatorname{var}\left(c_{2}\right)\right]\right)$

$c_{1} \bowtie c_{2}:$

a_{1}	o_{1}	x	y	z	w	s	
G	G	0	0	0	0	0	.9405

G G 0000111.9405
$\begin{array}{llllllll}\mathrm{G} & \mathrm{U} & 0 & 0 & 0 & 0 & 1 & .0495\end{array}$
U G 1110000

U						
U	0	0	0	0	0	.0005

Inferring Solutions

- Constraint network $\langle X, D, C, S\rangle$
- Value of optimal solution obtained by combining al constraints C and eliminating all variables X :

$$
\left(c_{1} \bowtie c_{2} \bowtie \ldots \bowtie c_{m n}\right) \downarrow_{\emptyset}
$$

- Problem: Very costly: Time O(exp(n)), Space O(exp(n).

Improvement: Bucket Elimination

Idea: Eliminate variable as soon as it no longer occurs in remaining set of constraints.

- For variable $x_{i} \in X$, let $K_{x_{i}}=\left\{c \in C: x_{i} \in \operatorname{var}(c)\right\}$
- Compute combination c_{K} of all constraints in $K_{x_{i}}$
- Now eliminate x_{i} from $c_{K}: c_{K}^{\prime}=c_{K} \Downarrow_{X \backslash\left\{x_{i}\right\}}$
- Remove $K_{x_{i}}$ from C and add c_{K}^{\prime} to C.

Induced Graph

- When processing a node (variable), connect all neighboring nodes not yet processed.

Bucket Elimination: Complexity

Let width be the maximum number of successors in the induced graph. Then:

- Time dominated by computation of largest c_{K} : O(exp(width+1))
- Space dominated by storage of largest c_{K}^{\prime} : O(exp(width))

Min-Fill Ordering Heuristic

- Function MF (G : Graph with edges E and
for $j=1$ nodes $V=\left\{v_{1}, \ldots, v_{n}\right\}$): Order for $j=1$ to n
let v be a node in V with minimal number of edges required to connect its neighbors put v in position j of order
$E \leftarrow E \cup\left\{\left(v_{i}, v_{j}\right):\left(v_{i}, v\right) \in E,\left(v_{j}, v\right) \in E\right\}$ $-V \leftarrow V \backslash\{v\}$

Often finds good orderings in practice.

Impact of Variable Ordering

Width: 4 Width: 2 Width: 2

Finding ordering with minimal width is NP-hard.

Tree Decomposition

A tree decomposition for a problem $\langle X, D, C, S\rangle$ is a triple (T, χ, λ), where $T=(V, E)$ is a rooted tree, and χ, λ are labeling functions associating with each node $v_{i} \in V$ two sets $\chi\left(v_{i}\right) \subseteq X, \lambda\left(v_{i}\right) \subseteq C$ such that:

- For each $c \in C$, there is exactly one v_{i} such that $c \in \lambda\left(v_{i}\right)$. For this $v_{i}, \operatorname{var}(c) \subseteq \lambda\left(v_{i}\right)$ (covering condition);
- For each $x \in X$, the set $\left\{v_{j} \in V: x \in \chi\left(v_{j}\right)\right\}$ of vertices labeled with x induces a connected subtree of T (connectedness condition).

Frequency Assignment
Frequency Assignment

Frequency Assignment

- Several instances available from CELAR (200 to 916 variables, 1200 to 5000 constraints, domain size >30)
- These are very hard instances of valued CSPs.
- Good results reported for dynamic programming.

Tree Decomposition Example

Dynamic Programming

- Inference on the tree: dynamic programming

Example

- AND-gates broken with 1% probability
- OR, XOR-gates broken with 5% probability
- Probabilistic valuation structure $([0,1], \geq, \cdot, 1,0)$

Example

$f_{a 1}:$| $a_{1} w$ | y |
| :--- | :--- |
| G 0 | 0 |
| G | .99 |

G	1	1	.99

B 000.01
B 01 . 01
B $1 \begin{array}{lll}\text { B } & 0 & .01\end{array}$
B 111.01

$f_{01}:$| o_{1} | v | w | |
| :--- | :--- | :--- | :--- |
| G | 0 | 0 | 95 |

G	0	0	.95
B	0	0	.05
B	0		.05

B 011.05
B 10.05
B 11.05

$f_{a 2}:$	$a_{2} u v$	
G 00	.99	

$f_{e 1}:$| $\epsilon_{1} u y$ | | |
| :--- | :--- | :--- |
| G 10 | 0 | .95 |

| G | 1 | 1 | .99 |
| :--- | :--- | :--- | :--- | :--- |

B 000

B 0 | 0 | 1 | .01 |
| :--- | :--- | :--- |

B	1	0	.01

B 11.01

$f_{e 2}:$| e_{2} | u | |
| :--- | :--- | :--- |
| G | 0 | .95 |
| B | 0 | .05 |
| B | 1 | .05 |

B 11.05

G	0	1	.95

B	0	0	.05

B	0	1	.05

B	1	0	.05

B	1	1	.05

Soft Constraint Framework

- (X, D, C)
$-\mathrm{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ variables
$D=\left\{D_{1}, \ldots, D_{n}\right\}$ finite domains
$C=\left\{c_{1}, \ldots, c_{e}\right\}$ cost functions annihilator
$=\operatorname{var}\left(c_{i}\right) \quad$ scope $\quad \uparrow$ identity
= $c_{i}(t): \rightarrow \mathrm{E}$ (ordered cost domain, T, \perp)
- Obj. Function: $F(X)=\oplus c_{i}(X) \longrightarrow\left\{\begin{array}{l}\bullet \text { commutativ } \\ \bullet \text { associative }\end{array}\right.$
- Solution: $F(t) \neq \mathrm{T} \quad$ monotonic
- Soft CN: find minimal cost solution

Specific Frameworks

- $\mathrm{E}=\{\mathrm{t}, \mathrm{f}\} \quad \oplus=$ and \quad Classical CSP
- $\mathrm{E}=\mathrm{N} \cup\{\infty\} \quad \oplus=+\quad$ Weighted CSP
- $\mathrm{E}=[0,1] \quad \oplus=$ * \quad Probabilistic CSP

Lexicographic CSP, probabilistic CSP...

From VCSPs to OCSPs

- Introduce decision variable for each constraint
- Introduce domain value for each different value of a tuple's constraint

Basic Operations on Constraints

- Assignment (Conditioning)
- Combination (Join)
- Projection (Elimination)

Assignment (Conditioning)

Combination (Join)

Solutions

- $F(X)=\oplus c_{i}(X) \Downarrow_{\varnothing}$

Weighted CSP Example

$F(X)$: number of non blue vertices

Probabilistic CSP Example

$f_{a 1}: a_{1} w y$		$f_{a 2}: a_{2} u v$		$f_{e 1}: \epsilon_{1} u y$	
G 00	. 99	G 00	. 99	G 10	. 95
G 11	. 99	G 11	. 99	G 01	. 95
B 00	. 01	B 00	. 01	B 00	. 05
B 01	. 01	B 01	. 01	B 01	. 05
B 10	. 01	B 10	. 01	B 10	. 05
B 11	. 01	B 11	. 01	B 11	. 05
$f_{01}: O_{1} v w$		$f_{e 2}: \epsilon_{2} u$			
G 00	. 95	G 0	. 95		
B 00	. 05	B 0	. 05		
B 01	. 05	B 1	. 05		
B 10	. 05				
B 11	. 05				

Application: Resource Allocation

- Given a telecommunication network
- Find frequency for each communication link...
- ... such that total interference is minimized

Probabilistic CSP Example

- AND-gates broken with 1\% probability
- OR, XOR-gates broken with 5% probability
- Probabilistic valuation structure $([0,1], \geq, \cdot, 1,0)$

Application: Bioinformatics

- Multiple sequence alignment (DNA)
- Given k homologous sequences... AATAATGTTATTGGTGGATCGATGA ATGTTGTTCGCGAAGGATCGATAA
- ... find the best alignment (sum)

AATAATGTTATTGGTG---GATCGATGATTA
----ATGTTGTTCGCGAAGGATCGATAA---

Application: Resource Allocation
- Given a telecommunication network
- Find frequency for each communication link...
- ... such that total interference is minimized

Depth-First Search

BT (X, D, C)
if $(X=\varnothing)$ then Top : $=c_{\varnothing}$ else
$x_{j}:=$ select $\operatorname{Var}(X)$
forall $a \in D_{j}$ do
$\forall_{c \in C \text { s.t. } \mathrm{xj} \in \operatorname{varc}(c)} c:=\operatorname{Assign}\left(c, x_{j}, a\right)$
$c_{\varnothing}:=\Sigma_{c \in C \text { s.t. }}$ var $(c)=\varnothing^{C}$
if $(L B<T o p)$ then $\mathrm{BT}\left(X-\left\{x_{j}\right\}, D-\left\{D_{j}\right\}, C\right)$

Importance of Bounds

- Example: Frequency assignment problem Instance: CELAR6-sub4
. \#var: 22, \#val: 44 , Optimum: 3230
Depth-first branch-and-bound search UB initialized to $100000 \rightarrow 3$ hours
UB initialized to $3230 \rightarrow 1$ hour
- Stochastic local search (SLS) can find UB=3230 in a few minutes

Overview

- Introduction and Definitions
- Solving soft constraints

By Search
By Inference

Synthesis

- Join all constraints
- Project
- Limitations: very costly (Time: $\exp (n)$, Space: $\exp (n)$)

Bucket Elimination

- Select a variable \mathbf{X}_{i}
- Compute the set K_{i} of constraints that involves this variable
- Add Elim $\left(\oplus c, X_{1}\right)$
- Remove v̌ヒ̌ŕriable and K_{i}
- Time: $\Theta\left(\exp \left(\mathrm{deg}_{\mathrm{i}}+1\right)\right)$
- Space: $\Theta\left(\exp \left(\mathrm{deg}_{\mathrm{i}}\right)\right)$

Tree Decomposition

Tree Decomposition

Min-Fill Heuristics

Induced Graph

(a)

(b)

(d)

Tree-structured Problems

- ..

BnB with Variable Elimination

- Hybrid Method
- At each node

Select an unassigned variable X_{i}
If $\operatorname{deg}_{i} \leq k$ then eliminate X_{i}
Else branch on the values of X_{i}

- Properties
$B E-V E(-1)$ is $B B$
$\operatorname{BE}-V E\left(w^{*}\right)$ is VE
$B E-V E(1)$ is like cycle-cutset

BnB with VE: Results

- Example: Still-life (academic problem)

Instance: $\mathrm{n}=14$
. \#var:196, \#val:2
Branch-and-Bound $\rightarrow 5$ days
Variable Elimination $\rightarrow 1$ day
BB-VE(18) $\rightarrow 2$ seconds

Background

- Domain Splitting (e.g. Hentenryck's book)
- Bucket Elimination (and extension to super-bucket elimination/tree decomposition) (Dechter's book)
- Backtracking combined with tree decompositions (algorithm BTD, Jégou and Terrioux 03)
- Dynamic programming on tree decompositions (algorithm CTE, Dechter's book)
- Decision Diagrams (Bryant 86, Bahar 93)
- Soft constraints
- [A* search]

CSPs

- Domains $D=\left\{d_{1}, \ldots, d_{n}\right\}$
- Variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- Constraints $C=\left\{c_{1}, \ldots, c_{m}\right\}$
- $c_{j} \in C$: Scope $\operatorname{var}\left(c_{j}\right)$, Function $\operatorname{var}\left(c_{j}\right) \rightarrow\{0,1\}$

$$
\begin{aligned}
& c_{1}: x_{1} x_{2} x_{3} \\
& c_{2}: \quad \underline{x_{2} x_{4}} \\
& \text { a. a c } \\
& \text { a b } \\
& \text { a b c } \\
& \text { b b c } \\
& \begin{array}{ll}
\mathrm{a} & \mathrm{c} \\
\mathrm{~b} & \mathrm{c}
\end{array}
\end{aligned}
$$

Example: 4-Queens

- Variables: Rows $x_{1}, x_{2}, x_{3}, x_{4}$
- Domains: Columns $1,2,3,4$
- Constraints: ${ }_{c 12}\left(x_{1}, x_{2}\right),{ }_{c 13}\left(x_{1}, x_{3}\right), c_{14}\left(x_{1}, x_{4}\right)$, $c_{23}\left(x_{2}, x_{3}\right), c_{24}\left(x_{2}, x_{4}\right), c_{34}\left(x_{3}, x_{4}\right)$

$$
c_{12}: \frac{x_{1} x_{2}}{13}+\begin{array}{r}
14 \\
24 \\
31 \\
41
\end{array}
$$

Backtracking Search

- Order on variables: $x_{1} \prec \ldots \prec x_{n}$
- Choose value val $\in d_{i}$ for unassigned variable x_{i}
- Check all completely assigned constraints If inconsistent, prune and backtrack
$X-x_{1}, D-d_{1}, C$

Example

- Partition $P_{i}=\{\{1,2\},\{3,4\}\}, i=1,2,3,4$
- E.g., check assignment $x_{1} \in\{1,2\}, x_{2} \in\{3,4\}$:
$c_{12}: x_{1} x_{2}$
$\left.\begin{array}{|c|c|c}\hline 1 & 3 \\ 1 & 4 \\ 2 & 4\end{array}\right) \begin{aligned} & \text { Constraint } \\ & \text { satisfied } \checkmark \\ & 3\end{aligned} 1$

Cases

- Partition $\left|P_{i}\right|=\mid d_{i}$: Limiting case of backtrack search (single assignments are tested, as before)
- Partition $\left|P_{i}\right|=1$: Limiting case of constraint synthesis (single constraint is inferred): $c_{1} \bowtie \ldots \bowtie c_{m}$
- Partition $1<\left|P_{i}\right|<\left|d_{i}\right|$: Hybrid of search and inference (search on subsets of tuples)

Example

- Synthesis

Bucket Elimination

- Define variable order $x_{1} \prec \ldots \prec x_{n}$
- Eliminate the variables one-by-one

Combine constraints mentioning x_{i} in their scope ("bucket") Project out x_{i} from result

- That is, variables disappear as soon as they no longer influence (cannot constrain) the result
- E.g., instead of $c_{12} \bowtie c_{13} \bowtie c_{23} \bowtie c_{14} \bowtie c_{24} \bowtie c_{34}$ bucket elimination needs to compute only $\left(\left(\left(c_{14} \bowtie \triangleleft c_{24} \bowtie c_{34}\right) \Downarrow_{-x_{4}} \bowtie c_{13} \bowtie c_{23}\right) \Downarrow_{-x_{3}} \bowtie c_{12}\right) \Downarrow_{-x_{2}}$

Exploiting Structure

- Problem: Search is uninformed about CSP structure $|\mathrm{Pi}|=\mid$ di|: leads to unnecessarily large search tree (thrashing) |Pi| = 1: leads to unnecessarily large constraints
- We can do better by considering structure of graph $|\mathrm{Pi}|=\mid$ dil: can be used to reduce size of search tree $|\mathrm{Pi}|=1$: can be used to reduce size of constraints

Super-bucket Elimination

- Generalization of Bucket Elimination
- Eliminate variables in groups (i.e., in partial order)
- E.g. eliminate in order $\left\{x_{1}\right\} \prec\left\{x_{3}\right\} \prec\left\{x_{1}, x_{2}\right\}$:

$$
\begin{gathered}
v_{1} \begin{array}{l}
\left\{x_{1}, x_{2}\right\}\left\{c_{12}\right\} \\
\text { Tree } \\
\text { Decomposition }
\end{array} \\
v_{2} \nmid\left\{x_{1}, x_{2}, x_{3}\right\}\left\{c_{13}, c_{23}\right\} \\
v_{3} \\
\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\left\{c_{14}, c_{24}, c_{34}\right\}
\end{gathered}
$$

Combination with Search

- To exploit decomposition in search, the order in which variables are assigned must be "compatible" with the order in which variables are eliminated
- More precisely, if variables are assigned in order $x_{1} \prec \ldots \prec x_{n}$, variables have to be eliminated in reverse (partial) order:
$\left\{x_{n}, \ldots, x_{n-k_{1}}\right\} \prec\left\{x_{n-k_{1}-1}, \ldots, x_{n-k_{1}-k_{2}}\right\} \prec \ldots$
$\ldots \prec\left\{x_{n-k_{1}-\ldots-k_{j}-1}, \ldots, x_{1}\right\}$
- Construct (super-)buckets (tree decomposition scheme) from this reverse order

Combination with Search (Cont'd)

- A tree decomposition with compatible elimination order can be exploited during search as follows: Let separator(vj) denote the separator of tree node vj (the set of variables that vj shares with its parent, vi)
Once a complete assignment has been found for a subtree, record it as a good at the separator (same for nogoods) By checking the goods/nogoods during search, we can then avoid descending into the same subtree again and again
- This algorithm is called BTD (backtracking with tree decompositions) (Jégou Terrioux AIJO3)

BTD (Jégou Terrioux AIJ03)

- Input: (Partial) assignment A, tree node v_{\imath}, set of variables $X_{v_{i}} \subseteq \operatorname{var}\left(v_{i}\right)$ to be assigned
- Output: "True" if assignment is consistent with all constraints C in subtree of v_{i}, "false" otherwise
- Initial call: $\operatorname{BTD}\left(\emptyset, v_{1}, \operatorname{vars}\left(v_{1}\right)\right)$

BTD Pseudocode (Cont'd)

- (Continued)
- (Continued)
Elise
Choose
dom $\in X v$
Elise
Choose
dom $\in X v$
$\mathrm{dom} \leftarrow \mathrm{DX}$
Consistent \leftarrow False
While dom
$\mathrm{dom} \leftarrow \mathrm{DX}$
Consistent \leftarrow False
While dom
While dom $\neq \varnothing$ And Not Consistent Do
While dom $\neq \varnothing$ And Not Consistent Do
Choose val \in dom
dom $\leftarrow \operatorname{dom} \backslash\{$ vall $\}$
Choose val \in dom
dom $\leftarrow \operatorname{dom} \backslash\{$ vall $\}$
$\underset{\text { If }}{\operatorname{dom}(A \wedge\{x \leftarrow \operatorname{val})\} \text { semijoin }\{c: c \in C \wedge \operatorname{var}(\mathrm{c}) \subseteq(\operatorname{var}(\mathrm{A}) \cup\{(\mathrm{x})\}\} \neq \varnothing}$
$\underset{\text { If }}{\operatorname{dom}(A \wedge\{x \leftarrow \operatorname{val})\} \text { semijoin }\{c: c \in C \wedge \operatorname{var}(\mathrm{c}) \subseteq(\operatorname{var}(\mathrm{A}) \cup\{(\mathrm{x})\}\} \neq \varnothing}$
Consistent $\leftarrow B \operatorname{TD}(A \wedge\{x \leftarrow v a l\}$, vi, $X v i \backslash\{x\})$
Consistent $\leftarrow B \operatorname{TD}(A \wedge\{x \leftarrow v a l\}$, vi, $X v i \backslash\{x\})$
End if
End if
Return Consistent
Return Consistent
End If
End If
Note: Computes a full assignment, but returns only true/false.

BTD Pseudocode

- Function BTD(A,vi,Xvi)

If XVi $=\varnothing$ Then
Consistent $\leftarrow T$
$F \leftarrow$ children(vi)
While $F \neq \varnothing$ And Consistent D
$\mathrm{F} \leftarrow \mathrm{F} \backslash\{\mathrm{V}\}\}$
If A \downarrow separator(vi) is a good of vilvj Then Consistent \leftarrow True
${ }_{\text {If }}^{\text {EIse }} \downarrow$. separator(vi) is a nogood of vilvj Then Consistent \leftarrow False
Else
Consistent $\leftarrow B T D(A, v i, v a r s(v i) ~ \ s e p a r a t o r(v i)) ~$ Record the good $A \downarrow$ separator(vi) for vivj Record the nogood ($\mathrm{A} \downarrow$ separator(vi)) for vi/vi Record
End If
End If
End if
End if
Return Consistent
Return Consistent
(continued on next slide)

Generalization to Domain Splitting

- Incorporate domain splitting into BTD, that is, search over sets of assignments A
- Yields new algorithm BTDS (backtracking with tree decompositions and domain splitting)
- Like BTD, BTDS records set of good tuples and nogood tuples for each separator
- Unlike BTD, BTDS maintains only assignments to v_{i} (instead of full assignment)
- Unlike BTD, BTDS returns assignments to separator of v_{i} (instead of only true/false)

BTDS

- Input: Set of (partial) assignments (constraint) A, tree node v_{i}, set of variables $X_{v_{i}} \subseteq \operatorname{var}\left(v_{i}\right)$
- Output: Assignments to separator of v_{i} that are consistent with all constraints C in subtree of v_{i}
- Initial call: $\operatorname{BTDS}\left(\emptyset, v_{1}, \operatorname{vars}\left(v_{1}\right)\right)$

BTDS Pseudocode

- Function BTDS(A,vi,Xvi)

If $\mathrm{Xvi}=\varnothing$ Then
$\mathrm{F} \leftarrow$ children(vi)
While $F \neq \varnothing$ And $A \neq \varnothing$ Do
Choose vj $\in F$
$F \leftarrow F \backslash\{V]\}$
Asep $\leftarrow A \Downarrow$ separator(vi)
Aseprest \leftarrow Asep \backslash (goods(vi) \cup nogoods(vi))
Aseprestcons \leftarrow BT
oods(vi) \leftarrow gids(Aseprest, vi, χ (vi) \separator(vij))
gods $(v) \leftarrow$ goods $(v j) \cup$ Aseprestcons
nogoods $(\mathrm{vj}) \leftarrow$ nogoods(vj) \cup (Aseprest \backslash Aseprestcons)
A \leftarrow
semijoin goods(vj)
Ar While
A \downarrow separator(vi)
(continued on next slide)

BTDS Pseudocode (Cont'd)

- (Continued)

Else
$x \in X v i$
PartitionElements $\leftarrow \mathrm{Px}$
Aextended \leftarrow A
While PartitionElements $\neq \varnothing$ And Aextended $=\varnothing$ Do
Choose $\mathrm{p} \in$ PartitionElements
PartitionElements \leftarrow PartitionElements $\backslash\{p\}$
Aextended $\leftarrow(A \wedge\{x \leftarrow p\})$ semijoin $\{c: c \in C \wedge \operatorname{var}(c) \subseteq(\operatorname{var}(A) \cup\{x\}\}$
If Aextended $\neq \varnothing$ Then
Aextended $\leftarrow \operatorname{BTDS}($ Aextended, vi, Xvi $\backslash\{x\}$) End If
End While
Return Aextended
End

Cases

- Partition $\left|P_{i}\right|=\left|d_{i}\right|$: Yields backtracking algorithm BTD (Jégou Terrioux AIJO3))
- Partition $\left|P_{i}\right|=1$: Yields dynamic programming algorithm CTE (Dechter 03)
- Partition $1<\left|P_{i}\right|<\left|d_{i}\right|$: Hybrid of BTD and CTE

Note: for case |Pi|>1, algorithm has
higher space complexity than CTE
(\exp (width) instead of $\exp (\mathrm{sep})$).
But, it should be possible to reduce
the space complexity to $\exp (\mathrm{sep})$.

BTDS applied to 4-Queens

- Variable order $x_{1} \prec x_{2} \prec x_{3} \prec x_{4}$
- Partition $P_{i}=\{\{1,2\},\{3,4\}\}, i=1,2,3,4$

BTDS applied to 4-Queens

- Search Tree

BTDS applied to 4-Queens

- Search Tree

BTDS applied to 4-Queens

BTDS applied to 4-Queens

BTDS applied to 4-Queens

- Search Tree

x_{4}

- Search Tree

Granularity of Domain Splitting

- Empirical observation and theoretical considerations (Jégou Terrioux AIJ03): BTD outperforms CTE (cluster tree elimination, i.e. dynamic programming on tree decomposition)

BTD is a "lazy" variant of CTE (dynamic programming)

- Therefore, $\left|P_{i}\right|=\left|d_{i}\right|$ (finest granularity) is optimal granularity of partitions in BTDS

Best to perform dynamic programming as lazily as possible

- But: This assumes that tuples are handled explicitly More efficient, implicit datastructures are possible when manipulating whole sets of tuples

Symbolic Encoding

- Decision diagrams (Bryant 86): graph-based, canonical representation of (boolean) functions
- Time and space complexity depends on graph size rather than number of tuples of function represented
$x \quad y \quad z$

0	1

$\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1\end{array}$
Function

Decision Diagram (ROBDD)

BTDS with Symbolic Encoding

- In many practical cases, decision diagrams much more compact than representing tuples explicitly
\rightarrow Can make operations on sets of tuples (inference) more efficient
\rightarrow But won't make operations on single tuples (search) more efficient
- Therefore, in BTDS, larger partition elements become more advantageous (shifts optimal granularity towards $\left|P_{i}\right|=1$)
\rightarrow In many practical cases, optimal granularity for partitions in BTDS becomes $1<|\mathrm{Pi}|<\mid \mathrm{di}]$
\rightarrow Exploit both structure in graph and structure in tuples

Generalization to Optimization

- Domains $D=\left\{d_{1}, \ldots, d_{n}\right\}$
- Variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$
- Constraints $C=\left\{c_{1}, \ldots, c_{m}\right\}$
- $c_{j} \in C$: Scope $\operatorname{var}\left(c_{j}\right)$, Function $\operatorname{var}\left(c_{j}\right) \rightarrow E$
- Valuation structure $(E, \preceq, \mathbb{D}, \perp, \top) \perp$ best, T worst

$$
\begin{aligned}
& c_{1}: \begin{array}{ccc|c}
x_{1} & x_{2} & x_{3} & \\
\hline \begin{array}{ccc}
\mathrm{a} & \mathrm{a} & \mathrm{c} \\
& .5 \\
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~b} & \mathrm{~b} & \mathrm{c} \\
& .5
\end{array}
\end{array} \\
& \left.c_{2}: \begin{array}{ll|l}
x_{2} & x_{4} & \\
\hline & & \\
& \mathrm{a} & \mathrm{~b} \\
\mathrm{a} & \mathrm{c} & .4 \\
& \mathrm{~b} & \mathrm{c}
\end{array}\right) .4 \\
& \text { Soft } \\
& \text { Constraints }
\end{aligned}
$$

Example: Full Adder Diagnosis

- Variables $\left\{u, v, w, y, a_{1}, a_{2}, e_{1}, e_{2}, o_{1}\right\}$
- $\left\{a_{1}, a_{2}, e_{1}, e_{2}, o_{1}\right\}$ describe modes of gates
- Gates are either in good (G) or broken (B) mode

Example: Soft Constraints

Example: Full Adder Diagnosis

- AND-gates broken with 1% probability
- OR, XOR-gates broken with 5% probability
- Probabilistic valuation structure $([0,1], \geq, \cdot, 1,0)$

$f_{a 1}: a_{1} w y$	$f_{a 2}: \underline{a_{2} u v}$	$f_{e 1}: e_{1} u y$
G 000	G 000	
G 1G 1 .99	G $1 \begin{array}{llll}1 & .99\end{array}$	G 0011.95
B 000.01	B 000.01	B 000
B 011.01	B 011.01	$\begin{array}{llll}\text { B } & 0 & 1\end{array} .05$
B 100.01	B 100.01	B 100.05
B 111.01	B 111.01	B 111.05
$f_{o 1}: o_{1} v w$	$f_{e 2}: e_{2} u$	
G 000.95	G 0.95	For details, see ECAl’04 paper.
B 00.05	B 00.05	
B 011.05	B 11.05	
B 100.05		
B 111.05		

Example: Tree Decomposition

- Eliminination order $\left\{o_{1}\right\} \prec\left\{e_{1}, e_{2}\right\} \prec\left\{u, v, w, y, a_{1}, a_{2}\right\}$

BTDval (Terrioux Jégou CP03)

- Input: (Partial) assignment A, tree node v_{\imath}, set of variables $X_{v_{i}} \subseteq \operatorname{vars}\left(v_{i}\right)$, lower bound $l_{v_{i}}$ (value of assignment so far), upper bound $u_{v_{i}}$ (value of best solution found so far)
- Output: Value of best extension to subtree of v_{i} with value $<u_{v_{i}}$, or some value $\geq u_{v_{i}}$, if that does not exist
- Initial call: $\operatorname{BTDval}\left(\emptyset, v_{1}, \operatorname{var}\left(v_{1}\right), \perp, \top\right)$

BTDval Pseudocode (Cont'd)

- (Continued)

Else
Choose $\mathrm{x} \in \mathrm{Xvi}$
dom \leftarrow Dx
While $\operatorname{dom} \neq \varnothing$ And Ivi < uvi Do
Choose val \in dom
$\operatorname{dom} \leftarrow \operatorname{dom} \backslash\{$ val $\}$
\mid val $\leftarrow((A \wedge\{x \leftarrow$ val $\})$ semijoin $\{c: c \in C \wedge \operatorname{var}(c) \subseteq(\operatorname{var}(A) \cup\{x\})\}) \downarrow \varnothing$ If lvi \oplus Ival < uvi Then
$\underset{\text { End lf }}{\text { uvi }} \leftarrow \min (u v i, B T D v a l(A \wedge\{x \leftarrow$ val $\}$, vi, $X v i \backslash\{x\}$, lvi $\oplus \mid$ Ival, uvi) End If
End While
Return uvi End If

Note: Computes a full assignment, but returns only a value.

Depth-First Branch and Bound

- Recursive algorithm BTDval (Terrioux Jégou CP03) (back-tracking with tree decompositions for valued constraints) that extends BTD to soft constraints
- Records tuples and their values for each separator ("valued goods" instead of goods and nogoods)

BTDval Pseudocode

- Function BTDval(A,vi,Xvi,Ivi,uvi)

If Xvi $=\varnothing$ Then
$\mathrm{F} \leftarrow$ children(vi)
While $\mathrm{F} \neq \varnothing$ And Ici < uvi Do
Choose vj $\in F$
$F \leftarrow F \backslash\{v j\}$
If $\langle\mathrm{A} \downarrow$ separator(vj), v\rangle is a good of $\mathrm{vi} / \mathrm{vj}$ Then $\mathrm{Ici} \leftarrow \mathrm{Ici} \oplus \mathrm{v}$
Else
$v \leftarrow \operatorname{BTDval}(A, v j, v a r s(v j) \backslash$ separator(vj), \perp, uvi) $\mathrm{Ici} \leftarrow \mathrm{Ici} \oplus \mathrm{v}$ Record the goods $\langle\mathrm{A} \downarrow$ separator(vj), v \rangle for vi/vj End If
End While
Return Ic
(continued on next slide)

Generalization to Domain Splitting

- Incorporate domain splitting into BTDval, that is, search over a whole set of valued assignments
- Yields BTDSval (backtracking with tree decompositions and domain splitting for valued constraints)
- Like BTDval, BTDSval records valued goods
- Unlike BTDval, BTDSval maintains only assignments to v_{i}, and returns assignments to separator of v_{i}

Sinking Operation

- Sinking operation (Bistarelli et al. SOFT03, Morris AAAI93): $\operatorname{sink}\left(c_{j}, \alpha\right)$ returns a new constraint where all values of tuples $\succeq \alpha$ have been replaced by \top

Constraint Constraint $\operatorname{sink}\left(\mathrm{f}_{\mathrm{e} 2}, \mathbf{0 . 0 5}\right)$

$f_{e 2}: \epsilon_{2} u$		$\epsilon_{2} u$	
G 0	. 95	G 0	. 95
B 0	. 05	B 0	0
B 1	. 05	B 1	0

BTDSval

- Input: Set of (partial) assignments (constraint) f_{A}, tree node v_{i}, variables $X_{v_{i}} \subseteq \operatorname{vars}\left(v_{i}\right)$, upper bound f_{u} No explicit lower bound (contained in valued assignments) Note that the bounds (lower and upper) are now functions
- Output: Best assignments to separator of v_{i} with values $\prec f_{u}$, or values $\succeq f_{u}$, if not existent
- Notation: f_{\perp} : constraint with value \perp for all tuples, f_{\top} : constraint with value T for all tuples
- Initial call: BTDSval $\left(f_{\perp}, v_{1}, \operatorname{var}\left(v_{1}\right), f_{\top}\right)$

BTDSval Pseudocode

- Function BTDSval(fa,vi,Xvi,fu)

If Xvi $=\varnothing$ Then
$\mathrm{F} \leftarrow$ children(vi)
$\mathrm{fa} \leftarrow \operatorname{sink}(\mathrm{fa}, \mathrm{fu})$
While $F \neq \varnothing$ And $f a \neq f T$ Do
Choose vjeF
$F \leftarrow F \backslash\{v i\}$
fasep \leftarrow fa \Downarrow separator (vi)
faseprest \leftarrow tuples of fasep that are not goods of vi/vj
farestval $\leftarrow \mathrm{BTDS}$ (fa
Record
Record tuples in farestval as goods of vi/vj
End If
$\mathrm{a} \leftarrow$ fa semijoin goods(vi)
$\mathrm{fa} \leftarrow \operatorname{sink}(\mathrm{fa}, \mathrm{fu})$
End While
continued on next slide)

BTDSval Pseudocode (Cont'd)

```
- (Continued)
    Else
    Choose x X Xvi
    PartitionElements }\leftarrowP\textrm{Px
    fa }\leftarrow\operatorname{sink}(fa,fu
    Aextended }\leftarrowf
    While PartitionElements }\not=\varnothing\mathrm{ And Aextended }\not=f\textrm{f
        Choose p\in PartitionElements
        PartitionElements \leftarrowPartitionElements \{p}
        Aextended }\leftarrow(fa~{x\leftarrowp})\mathrm{ semijoin {c: c }\in\textrm{C}\wedge\operatorname{var}(\textrm{c})\subseteq(\operatorname{var}(\textrm{fa})\cup{x})
        Aextended }\leftarrow\operatorname{sink}(\mathrm{ Aextended,fu)
        M
        (Aextended, vi, Xvi \{x}, fu)
        fu}\leftarrow\operatorname{min}(fu,Aextended
        End
        Raturn fu
    Return fu
    End lf
    a}\leftarrow\operatorname{sink}(fa,fu
        End While
```


Cases

- Partition $\left|P_{i}\right|=\left|d_{i}\right|$ Yields backtracking algorithm BTDval (Jégou Terrioux CP03)
- Partition $\left|P_{i}\right|=1$: Yields dynamic programming algorithm CTE with soft constraints (Dechter 03)
- Partition $1<\left|P_{i}\right|<\left|d_{i}\right|$: Hybrid of BTDval and CTE

Note: for case $|\mathrm{Pi}|>1$, algorithm has higher space complexity than CTE
(exp(width) instead of exp(sep)).
But, it should be possible to reduce
the space complexity to exp(sep).

BTDSval applied to Full Adder

- Partition $P_{u}, P_{v}, P_{w}=\{\{0\},\{1\}\}$, all else $P_{i}=\left\{d_{i}\right\}$

Constraint Hypergraph

BTDSval applied to Full Adder

- Search Tree \qquad Upper bound $=0$

o_{1}

BTDSval applied to Full Adder

- Search Tree
$\begin{array}{lc} & \\ u & 0 \\ v & 0 \\ w & 0 \\ y & 0,1 \\ a_{1} & \mathrm{C}, \mathrm{B} \\ a_{2} & \mathrm{C}, \mathrm{B} \\ e_{1} & \mathrm{C}, \mathrm{B} \\ e_{2} & \mathrm{G}, \mathrm{B} \\ o_{1} & \mathrm{G}, \mathrm{B}\end{array}$
$\begin{array}{lc} & \\ u & 0 \\ v & 0 \\ w & 0 \\ y & 0,1 \\ a_{1} & \mathrm{C}, \mathrm{B} \\ a_{2} & \mathrm{C}, \mathrm{B} \\ e_{1} & \mathrm{C}, \mathrm{B} \\ e_{2} & \mathrm{G}, \mathrm{B} \\ o_{1} & \mathrm{G}, \mathrm{B}\end{array}$

BTDSval applied to Full Adder

- Search Tree

Upper bound = 0
1 (0)
0
w
$y \quad 0,1$
a_{1} G,B
a_{2} G,B
e_{1}
e_{2}
O_{1}
1
\qquad
\qquad

- Search

BTDSval applied to Full Adder

BTDSval applied to Full Adder

- Search Tree

BTDSval applied to Full Adder

BTDSval applied to Full Adder

u
v

```
- Search Tree
\(v\) (
Search Trea
0,1 0,1)
0,1 0,1)0,1
a
a}\mp@code{(G,B)G,B G,B G,B
e
e}\mp@subsup{e}{2}{G,B
ol G,B G,B
```


BTDSval applied to Full Adder

BTDSval applied to Full Adder

BTDSval applied to Full Adder

- Search Tree

BTDSval applied to Full Adder

BTDSval with Symbolic Encoding

- Algebraic Decision Diagrams (ADDs, Bahar 93): graph-based, canonical representation of functions with non-binary values
- When encoding constraints as DDs in BTDSval, then like for BTDS, larger partition elements become more advantageous (shifts the optimal granularity towards $\left|P_{i}\right|=1$)
\rightarrow In many practical cases, optimal granularity for partitions in BTDSval becomes 1 < |Pi| < |di|

Best-First Search

- Problem: Search to be performed given a particular assignment A; values depend on this assignment
- Therefore, would have to maintain different search queues for each different assignment!
- Possible solution: Switch to dual problem (unary soft constraints, n -ary hard equality constraints) See SOFT-04 paper

Best-First Search

- Replace depth-first branch-and-bound search in BTDval by best-first (A^{*}) search
- Yields algorithm ATDval (A* search with tree decompositions for valued constraints)
- One search queue per each tree node v_{i}
- Search queues have entries $\left\langle A, v, v_{i}, X_{v_{i}}, F\right\rangle$

A: assignment
v: value
vi: tree node
Xvi: set of variables
F: set of children of vi

Related Work

- Set-based search (Jörg Denzinger, U Calgary)

BTD applied to 4-Queens

- Search Tree
x_{1}
x_{2}
x_{3}
(1)

x_{4}

BTD applied to 4-Queens

- Search Tree
x_{1}
x_{2}

x_{4}

BTD applied to 4-Queens

- Search Tree

BTD applied to 4-Queens

- Search Tree

x_{4}

BTD applied to 4-Queens

BTD applied to 4-Queens

BTD applied to 4-Queens

x_{4}

Example: "Soft" Graph Coloring

- Variables: $x_{1}, x_{2}, x_{3}, x_{4}$
- Domains: $\{b, g, r, y\}$ for $x_{1}, x_{2}, x_{3},\{b, g\}$ for x_{4}
- Constraints:
- Adjacent colors must be different
- Combinations red and blue, red and green have penalty

Example: "Soft" Graph Coloring

- Partitions: $\{\{b, g\},\{r, y\}\}$ for $x_{1}, x_{2}, x_{3},\{\{b, g\}\}$ for x_{4}

Example: "Soft" Graph Coloring

- Tree Decomposition:

