
1

Soft Constraint ProcessingSoft Constraint Processing

16.412J/6.834J Cognitive Robotics

Martin Sachenbacher
(Using material from Thomas Schiex)

Example: BioinformaticsExample: Bioinformatics
RNA is single-strand molecule,
composed of A,U,G,C
Function of RNA depends on
structure (3-D folding)
Structure induced by base
pairing: Watson-Crick (A-U,
G-C) and Wobble (G-U).
Problem: Find RNA structure
that maximizes base pairings.
Cumbersome to frame as
Optimal CSP!

OverviewOverview
Soft Constraints Framework
Algorithms: Search (Branch-and-Bound)
Algorithms: Inference (Dynamic Programming)
Applications: Frequency Assignment Problems

From Optimal CSP to Soft CSPFrom Optimal CSP to Soft CSP
Optimal CSP: Minimize function f(y), s.t. constraints
C(x) are satisfiable.

Utility Function Constraint

From Optimal CSP to Soft CSPFrom Optimal CSP to Soft CSP
Soft CSP: Extend the notion of constraints to
include preferences.

Soft Constraint

NotationNotation
A -tuple is a sequence of objects .
The -th component of a tuple is denoted .
The projection of a tuple on a subset of its
components is denoted .
The cartesian product of sets , denoted

, is the set of all -tuples such that .

2

Classical CSPClassical CSP
A constraint network

set of variables
set of domains
set of constraints

A constraint is a relation
on variables with arity .

A complete assignment is allowed if
.

Valued CSPValued CSP
For each constraint/tuple: a valuation that reflects
preference (e.g. cost, weight, priority, probability, …).
The valuation of an assignment is the combination
of the valuations expressed by each constraint using
a binary operator (with special axioms).
Assignments can be compared using a total order
on valuations.
The problem is to produce an assignment of
minimum valuation.

Formally: Valuation StructureFormally: Valuation Structure

= set of valuations, used to assess assignments
= minimum element of , corresponds to totally

consistent assignments
= maximum element of , corresponds to totally

inconsistent assignments
= total order on E, used to compare two valuations
= operator used to combine two valuations

Valued CSPValued CSP
A constraint network

set of variables
set of domains
set of constraints
valuation structure

A constraint is a function
mapping tuples over to valuations.

The valuation of a complete assignment is
.

Required PropertiesRequired Properties
(Commutativity)

(Associativity)

(Monotonicity)

(Neutral element)
(Annihilator)

Exercise: Justify properties.

Instances of the FrameworkInstances of the Framework

Fuzzy

Probabilistic

Weighted

Classical

Many others in the literature.

3

From Valued CSP to Optimal CSPFrom Valued CSP to Optimal CSP
Introduce decision variable for each constraint
Its values correspond to different valuations

From Valued CSP to Optimal CSPFrom Valued CSP to Optimal CSP
Introduce decision variable for each constraint
Its values correspond to different valuations

From Valued CSP to Optimal CSPFrom Valued CSP to Optimal CSP
Introduce decision variable for each constraint
Its values correspond to different valuations
Utility function maps values to valuations
Constraints become relations

Multiattribute
utility function

OverviewOverview
Soft Constraints Framework
Algorithms: Search (Branch-and-Bound)
Algorithms: Inference (Dynamic Programming)
Applications: Frequency Assignment Problems

BranchBranch--andand--Bound SearchBound Search

Lower Bound (lb):
Optimistic estimate of
best solution in subtree

Each search node is a soft
constraint subproblem

Upper Bound (ub):
Best solution found so far

Prune, if lb ≥ ub.

BranchBranch--andand--Bound AlgorithmBound Algorithm
Function (: assignment, : value): value

if then
if then return
let be an unassigned variable
for each do

return
return Time: O(exp(n))

Space: O(n)

4

Lower Bound ProcedureLower Bound Procedure
Must be:

Strong: the closest to the real value, the better.
Efficient: as easy to compute as possible.

Creates a trade-off. Choice is often a matter of
compromises and experimental evaluation.

Distance Lower BoundDistance Lower Bound
At each node, let be the set of constraints
all of whose variables have been assigned.
Use the bound

Problem: often weak, as it takes into account only
past variables.

Improvement: Russian Doll SearchImprovement: Russian Doll Search
Idea: we can add the value of
the optimal solution to the
subproblem over future
variables to distance lower
bound, and get a stronger
lower bound.
Must solve subproblem over
future variables beforehand.
Yields recursive procedure
that solves increasingly large
subproblems.

X1

X2

X3

X4

X5

Russian Doll SearchRussian Doll Search
[Lemaitre Verfaillie Schiex 96]: Experiments with
Earth Observation Satellite Scheduling Problems
(maximization problem).
Example: 105 variables, 403 constraints.
Branch-and-Bound with distance lower bound:
Aborted after 30 min, best solution so far = 8095.
Russian Doll Search: Optimal solution = 9096 found
in 2.5 sec.

OverviewOverview
Soft Constraints Framework
Algorithms: Search (Branch-and-Bound)
Algorithms: Inference (Dynamic Programming)
Applications: Frequency Assignment Problems

InferenceInference
Inference produces new constraints that are implied
by the problem.
Makes problem more explicit, easier to solve.
Operations on constraints: combination and
projection.

VCSP VCSP’

Equivalent,
simpler to solve

5

CombinationCombination
is constraint on s.t.

CombinationCombination
is constraint on s.t.

ProjectionProjection
is a constraint on s.t.

Inferring SolutionsInferring Solutions
Constraint network
Value of optimal solution obtained by combining all
constraints and eliminating all variables :

Problem: Very costly: Time O(exp(n)), Space
O(exp(n).

Improvement: Bucket EliminationImprovement: Bucket Elimination
Idea: Eliminate variable as soon as it no longer
occurs in remaining set of constraints.

For variable , let
Compute combination of all constraints in
Now eliminate from :
Remove from and add to .

Induced GraphInduced Graph
When processing a node (variable), connect all
neighboring nodes not yet processed.

Graph
Induced
Graph

6

Bucket Elimination: ComplexityBucket Elimination: Complexity
Let width be the maximum number of successors in the
induced graph. Then:

Time dominated by computation of largest :
O(exp(width+1))
Space dominated by storage of largest :
O(exp(width))

Impact of Variable OrderingImpact of Variable Ordering

Width: 4 Width: 2 Width: 2

Finding ordering with minimal width is NP-hard.

MinMin--Fill Ordering HeuristicFill Ordering Heuristic
Function (: Graph with edges and

nodes): Order
for to

let be a node in with minimal number of
edges required to connect its neighbors

put in position of order

Often finds good orderings in practice.

ExampleExample

Full Adder
Circuit Hyper-
Graph

Full Adder
Circuit

ExampleExample
MF

Order
Computational Scheme

(“Bucket Tree”)

Tree DecompositionTree Decomposition
A tree decomposition for a problem is a
triple , where is a rooted tree, and

are labeling functions associating with each node
two sets such that:

For each , there is exactly one such that
. For this , (covering

condition);
For each , the set of
vertices labeled with induces a connected subtree
of (connectedness condition).

7

ExampleExample

Time: O(exp(maxi|χi|))
Space: O(exp(maxi,j|χi-χj|))

λχ
Tree Decomposition

OverviewOverview
Soft Constraints Framework
Algorithms: Search (Branch-and-Bound)
Algorithms: Inference (Dynamic Programming)
Applications: Frequency Assignment Problems

Frequency AssignmentFrequency Assignment

Site A Site B

Frequency AssignmentFrequency Assignment

Site A Site B

Frequency AssignmentFrequency Assignment

Site A Site B

Link

Frequency AssignmentFrequency Assignment

Site A Site B

Link

8

Frequency AssignmentFrequency Assignment

Site A Site B

Link

Frequency AssignmentFrequency Assignment
Several instances available from CELAR (200 to 916
variables, 1200 to 5000 constraints, domain size >30)
These are very hard instances of valued CSPs.
Good results reported for dynamic programming.

RNA Structure ExampleRNA Structure Example ExampleExample

Bucket Tree

Tree Decomposition ExampleTree Decomposition Example

Hypergraph

Tree
Decomposition

Dynamic ProgrammingDynamic Programming
Inference on the tree: dynamic programming

Tree
Decomposition

9

ExampleExample
AND-gates broken with 1% probability
OR, XOR-gates broken with 5% probability
Probabilistic valuation structure

ExampleExample

Russian Doll SearchRussian Doll Search
static variable ordering
solves increasingly large
subproblems
uses previous LB recursively

May speedup search by
several orders of magnitude

X1

X2

X3

X4

X5

Soft Constraint FrameworkSoft Constraint Framework
(X,D,C)
– X={x1,..., xn} variables
– D={D1,..., Dn} finite domains
– C={c1,..., ce} cost functions

var(ci) scope
ci(t): → E (ordered cost domain, T, ⊥)

Obj. Function: F(X)= ⊕ci (X)
Solution: F(t) ≠ T
Soft CN: find minimal cost solution

identity
annihilator

• commutative
• associative
• monotonic

Valued Valued CSPsCSPs and and SemiringSemiring CSPsCSPs

Valued CSP
(total order)

Semiring-based CSP
(partial order)

Specific FrameworksSpecific Frameworks
E = {t,f} ⊕ = and Classical CSP
E = N ∪{∞} ⊕ = + Weighted CSP
E = [0,1] ⊕ = * Probabilistic CSP

Lexicographic CSP, probabilistic CSP…

10

From From VCSPsVCSPs to to OCSPsOCSPs
Introduce decision variable for each constraint
Introduce domain value for each different value of a
tuple’s constraint

Basic Operations on ConstraintsBasic Operations on Constraints
Assignment (Conditioning)
Combination (Join)
Projection (Elimination)

Assignment (Conditioning)Assignment (Conditioning)

T=6rr

0gr

0br

0rg

T=6gg

0bg

0rb

0gb

T=6bb

c(xi,xj)xjxi

Assign(c,xi,b)0r

0g

T=6b

xj

f(xj)
Assign(f,xj,g)

0
h∅

Combination (Join)Combination (Join)

6gg

0bg

0gb

6bb

c(xi,xj)xjxi

6gg

0bg

0gb

6bb

c(xj,xk)xkxj

12ggg

6bgg

0gbg

6bbg

6ggb

0bgb

6gbb

12bbb

f(xi,xj,xk)xkxjxi

⊕

= 0 ⊕ 6

Projection (Elimination)Projection (Elimination)

6rr

0gr

1br

3rg

6gg

2bg

0rb

6gb

4bb

c(xi,xj)xjxi

Elim(c,xj)

r

g

b

f(xi)xi

0

0

2

Elim(f,xi) h∅

0

Min

SolutionsSolutions
F(X)= ⊕ci (X) ⇓∅

11

Weighted CSP ExampleWeighted CSP Example

x3

x2

x5

x1 x4

F(X): number of non blue vertices

For each vertex

For each edge:

1r

1g

0b

c(xi)xi

Trr

0gr

0br

0rg

Tgg

0bg

0rb

0gb

Tbb

c(xi,xj)xjxi

Probabilistic CSP ExampleProbabilistic CSP Example
AND-gates broken with 1% probability
OR, XOR-gates broken with 5% probability
Probabilistic valuation structure

Probabilistic CSP ExampleProbabilistic CSP Example Application: BioinformaticsApplication: Bioinformatics
Multiple sequence alignment (DNA)
Given k homologous sequences…
– AATAATGTTATTGGTGGATCGATGA
– ATGTTGTTCGCGAAGGATCGATAA

… find the best alignment (sum)
– AATAATGTTATTGGTG---GATCGATGATTA
– ----ATGTTGTTCGCGAAGGATCGATAA---

Application: Resource AllocationApplication: Resource Allocation
Given a telecommunication network
Find frequency for each communication link…
… such that total interference is minimized

Application: Resource AllocationApplication: Resource Allocation

12

OverviewOverview
Introduction and Definitions
Solving soft constraints
– By Search
– By Inference

DepthDepth--First SearchFirst Search
BT(X,D,C)

if (X=∅) then Top :=c∅
else

xj := selectVar(X)
forall a∈Dj do

∀c∈C s.t. xj ∈var(c) c:=Assign(c, xj ,a)
c∅:= Σc∈C s.t. var(c)= ∅ c
if (LB<Top) then BT(X-{xj},D-{Dj},C)

Improving the LBImproving the LB
Assigned constraints (c∅)
Original constraints

Solve

Optimal cost ⊕ c∅

• Gives a stronger LB
• Can be solved beforehand

Importance of BoundsImportance of Bounds
Example: Frequency assignment problem
– Instance: CELAR6-sub4

#var: 22 , #val: 44 , Optimum: 3230
– Depth-first branch-and-bound search
– UB initialized to 100000 3 hours
– UB initialized to 3230 1 hour

Stochastic local search (SLS) can find UB=3230 in a few
minutes

OverviewOverview
Introduction and Definitions
Solving soft constraints
– By Search
– By Inference

SynthesisSynthesis
Join all constraints
Project
Limitations: very costly (Time: exp(n), Space: exp(n))

13

Bucket EliminationBucket Elimination

C∅

Select a variable Xi
Compute the set Ki of
constraints that involves this
variable
Add Elim()
Remove variable and Ki
Time: Θ(exp(degi+1))
Space: Θ(exp(degi))

X4

X3

X5

X2

X1

1, Xc
iKc∈

⊕

Tree DecompositionTree Decomposition

MinMin--Fill HeuristicsFill Heuristics
Input: A graph G = (V,E), V = {v1, …, vn}
Output: An ordering of the nodes
For j = 1 to n do
– r ← a node in V with smallest number of fill edges
– Put r in position j
– Connect r’s neighbors
– Remove r from resulting graph

Induced GraphInduced Graph

TreeTree--structured Problemsstructured Problems
…

BnBBnB with Variable Eliminationwith Variable Elimination
Hybrid Method
At each node
– Select an unassigned variable Xi

– If degi ≤ k then eliminate Xi

– Else branch on the values of Xi

Properties
– BE-VE(-1) is BB
– BE-VE(w*) is VE
– BE-VE(1) is like cycle-cutset

14

BnBBnB with Variable Eliminationwith Variable Elimination
Example: BB-VE(2)

Example BnBExample BnB--VE(2)VE(2)

c∅ c∅ c∅

BnBBnB with VE: Resultswith VE: Results
Example: Still-life (academic problem)
– Instance: n=14

#var:196 , #val:2
– Branch-and-Bound 5 days
– Variable Elimination 1 day
– BB-VE(18) 2 seconds

BackgroundBackground
Domain Splitting (e.g. Hentenryck’s book)
Bucket Elimination (and extension to super-bucket
elimination/tree decomposition) (Dechter’s book)
Backtracking combined with tree decompositions
(algorithm BTD, Jégou and Terrioux 03)
Dynamic programming on tree decompositions
(algorithm CTE, Dechter’s book)
Decision Diagrams (Bryant 86, Bahar 93)
Soft constraints
[A* search]

CSPsCSPs
Domains
Variables
Constraints

: Scope , Function

Example: 4Example: 4--QueensQueens
Variables: Rows
Domains: Columns
Constraints:

15

Backtracking SearchBacktracking Search
Order on variables:
Choose value for unassigned variable
Check all completely assigned constraints
– If inconsistent, prune and backtrack

ExampleExample
Search Tree

Solution

Constraints
involved

Generalization to Domain SplittingGeneralization to Domain Splitting
Partition domains into sets
Choose subset for unassigned variable
Check all completely assigned constraints
– Combine (join) relevant parts of the constraints
– If inconsistent, prune and backtrack

ExampleExample
Partition
E.g., check assignment :

Constraint
satisfied

ExampleExample
Search Tree

Solution

ExampleExample
Search Tree

Solution

Constraints
involved

16

CasesCases
Partition : Limiting case of backtrack
search (single assignments are tested, as before)
Partition : Limiting case of constraint
synthesis (single constraint is inferred):
Partition : Hybrid of search and
inference (search on subsets of tuples)

ExampleExample
Synthesis

Solution

Constraints
involved

ExampleExample
Synthesis

Exploiting StructureExploiting Structure
Problem: Search is uninformed about CSP structure
– |Pi| =|di|: leads to unnecessarily large search tree (thrashing)
– |Pi| = 1: leads to unnecessarily large constraints

We can do better by considering structure of graph
– |Pi| = |di|: can be used to reduce size of search tree
– |Pi| = 1: can be used to reduce size of constraints

Bucket EliminationBucket Elimination
Define variable order
Eliminate the variables one-by-one
– Combine constraints mentioning in their scope (“bucket”)
– Project out from result

That is, variables disappear as soon as they no
longer influence (cannot constrain) the result
E.g., instead of
bucket elimination needs to compute only

SuperSuper--bucket Eliminationbucket Elimination
Generalization of Bucket Elimination
Eliminate variables in groups (i.e., in partial order)
E.g. eliminate in order :

Tree
Decomposition

17

Combination with SearchCombination with Search
To exploit decomposition in search, the order in
which variables are assigned must be “compatible”
with the order in which variables are eliminated
More precisely, if variables are assigned in order

, variables have to be eliminated in
reverse (partial) order:

Construct (super-)buckets (tree decomposition
scheme) from this reverse order

Combination with Search (ContCombination with Search (Cont’’d)d)
A tree decomposition with compatible elimination
order can be exploited during search as follows:
– Let separator(vj) denote the separator of tree node vj (the

set of variables that vj shares with its parent, vi)
– Once a complete assignment has been found for a subtree,

record it as a good at the separator (same for nogoods)
– By checking the goods/nogoods during search, we can then

avoid descending into the same subtree again and again

This algorithm is called BTD (backtracking with tree
decompositions) (Jégou Terrioux AIJ03)

BTD (BTD (JJéégougou TerriouxTerrioux AIJ03)AIJ03)
Input: (Partial) assignment , tree node , set of
variables to be assigned
Output: “True” if assignment is consistent with all
constraints in subtree of , “false” otherwise
Initial call: BTD()

BTD BTD PseudocodePseudocode
Function BTD(A,vi,Xvi)

If Xvi = ∅ Then
Consistent ← True
F ← children(vi)
While F ≠ ∅ And Consistent Do
Choose vj ∈ F
F ← F \ {vj}
If A ↓ separator(vi) is a good of vi/vj Then Consistent ← True
Else

If A ↓ separator(vj) is a nogood of vi/vj Then Consistent ← False
Else

Consistent ← BTD(A,vj,vars(vj) \ separator(vj))
If Consistent Then
Record the good A ↓ separator(vj) for vi/vj

Else
Record the nogood (A ↓ separator(vj)) for vi/vj

End If
End If

End if
End While
Return Consistent

(continued on next slide)

BTD BTD PseudocodePseudocode (Cont(Cont’’d)d)
(Continued)

Else
Choose x ∈ Xvi
dom ← Dx
Consistent ← False
While dom ≠ ∅ And Not Consistent Do
Choose val ∈ dom
dom ← dom \ {val}
If (A ∧ {x ← val}) semijoin {c: c ∈ C ∧ var(c) ⊆ (var(A)∪{x})} ≠ ∅
Then

Consistent ← BTD(A ∧ {x ← val}, vi, Xvi \ {x})
End If

End While
Return Consistent

End If

Note: Computes a full
assignment, but

returns only
true/false.

Generalization to Domain SplittingGeneralization to Domain Splitting
Incorporate domain splitting into BTD, that is, search
over sets of assignments
Yields new algorithm BTDS (backtracking with tree
decompositions and domain splitting)
Like BTD, BTDS records set of good tuples and
nogood tuples for each separator
Unlike BTD, BTDS maintains only assignments to

(instead of full assignment)
Unlike BTD, BTDS returns assignments to
separator of (instead of only true/false)

18

BTDSBTDS
Input: Set of (partial) assignments (constraint) , tree
node , set of variables
Output: Assignments to separator of that are
consistent with all constraints in subtree of
Initial call: BTDS()

BTDS BTDS PseudocodePseudocode
Function BTDS(A,vi,Xvi)

If Xvi = ∅ Then
F ← children(vi)
While F ≠ ∅ And A ≠ ∅ Do

Choose vj ∈ F
F ← F \ {vj}
Asep ← A ⇓ separator(vj)
Aseprest ← Asep \ (goods(vj) ∪ nogoods(vj))
If Aseprest ≠ ∅ Then

Aseprestcons ← BTDS(Aseprest, vj, χ(vj) \ separator(vj))
goods(vj) ← goods(vj) ∪ Aseprestcons
nogoods(vj) ← nogoods(vj) ∪ (Aseprest \ Aseprestcons)

End If
A ← A semijoin goods(vj)
End While

Return A ⇓ separator(vi)
(continued on next slide)

BTDS BTDS PseudocodePseudocode (Cont(Cont’’d)d)
(Continued)

Else
Choose x ∈ Xvi
PartitionElements ← Px
Aextended ← A
While PartitionElements ≠ ∅ And Aextended = ∅ Do

Choose p ∈ PartitionElements
PartitionElements ← PartitionElements \ {p}
Aextended ← (A ∧ {x ← p}) semijoin {c: c ∈ C ∧ var(c) ⊆ (var(A)∪{x})}
If Aextended ≠ ∅ Then

Aextended ← BTDS(Aextended, vi, Xvi \ {x})
End If

End While
Return Aextended

End If

CasesCases
Partition : Yields backtracking algorithm
BTD (Jégou Terrioux AIJ03))
Partition : Yields dynamic programming
algorithm CTE (Dechter 03)
Partition : Hybrid of BTD and CTE

Note: for case |Pi|>1, algorithm has
higher space complexity than CTE
(exp(width) instead of exp(sep)).

But, it should be possible to reduce
the space complexity to exp(sep).

BTDS applied to 4BTDS applied to 4--QueensQueens
Variable order
Partition

Separators

Tree Decomposition

Constraint
Graph

BTDS applied to 4BTDS applied to 4--QueensQueens
Search Tree

19

BTDS applied to 4BTDS applied to 4--QueensQueens
Search Tree

BTDS applied to 4BTDS applied to 4--QueensQueens
Search Tree V1 traversed,

descend into v2

BTDS applied to 4BTDS applied to 4--QueensQueens
Search Tree V2 traversed,

descend into v3

BTDS applied to 4BTDS applied to 4--QueensQueens
Search Tree

BTDS applied to 4BTDS applied to 4--QueensQueens
Search Tree

Solution

Record nogood
for v2, v3

<x1=2,x2=4,x3=2>

Granularity of Domain SplittingGranularity of Domain Splitting
Empirical observation and theoretical considerations
(Jégou Terrioux AIJ03): BTD outperforms CTE
(cluster tree elimination, i.e. dynamic programming
on tree decomposition)
– BTD is a “lazy” variant of CTE (dynamic programming)

Therefore, (finest granularity) is optimal
granularity of partitions in BTDS
– Best to perform dynamic programming as lazily as possible

But: This assumes that tuples are handled explicitly
– More efficient, implicit datastructures are possible when

manipulating whole sets of tuples

20

Symbolic EncodingSymbolic Encoding
Decision diagrams (Bryant 86): graph-based,
canonical representation of (boolean) functions
Time and space complexity depends on graph size
rather than number of tuples of function represented

Decision
Diagram
(ROBDD)

Function

BTDS with Symbolic EncodingBTDS with Symbolic Encoding
In many practical cases, decision diagrams much
more compact than representing tuples explicitly

Can make operations on sets of tuples (inference) more
efficient
But won’t make operations on single tuples (search) more
efficient

Therefore, in BTDS, larger partition elements become
more advantageous (shifts optimal granularity
towards)

In many practical cases, optimal granularity for partitions in
BTDS becomes 1 < |Pi| < |di|
Exploit both structure in graph and structure in tuples

Generalization to OptimizationGeneralization to Optimization
Domains
Variables
Constraints

: Scope , Function
Valuation structure

Soft
Constraints

⊥
⊥ best, worst

Example: Full Adder DiagnosisExample: Full Adder Diagnosis
Variables

describe modes of gates
Gates are either in good () or broken () mode

Example: Full Adder DiagnosisExample: Full Adder Diagnosis
AND-gates broken with 1% probability
OR, XOR-gates broken with 5% probability
Probabilistic valuation structure

Example: Soft ConstraintsExample: Soft Constraints

For details,
see ECAI’04
paper.

21

Example: Tree DecompositionExample: Tree Decomposition
Eliminination order

DepthDepth--First Branch and BoundFirst Branch and Bound
Recursive algorithm BTDval (Terrioux Jégou CP03)
(back-tracking with tree decompositions for valued
constraints) that extends BTD to soft constraints
Records tuples and their values for each separator
(“valued goods” instead of goods and nogoods)

BTDvalBTDval ((TerriouxTerrioux JJéégougou CP03)CP03)
Input: (Partial) assignment , tree node , set of
variables , lower bound (value of
assignment so far), upper bound (value of best
solution found so far)
Output: Value of best extension to subtree of with
value < , or some value ≥ , if that does not exist
Initial call: BTDval()

BTDvalBTDval PseudocodePseudocode
Function BTDval(A,vi,Xvi,lvi,uvi)
If Xvi = ∅ Then

F ← children(vi)
While F ≠ ∅ And lci < uvi Do

Choose vj ∈ F
F ← F \ {vj}
If 〈A ↓ separator(vj), v〉 is a good of vi/vj Then lci ← lci ⊕ v
Else
v ← BTDval(A,vj,vars(vj) \ separator(vj), ⊥, uvi)
lci ← lci ⊕ v
Record the goods 〈A ↓ separator(vj), v〉 for vi/vj

End If
End While
Return lci

(continued on next slide)

BTDvalBTDval PseudocodePseudocode (Cont(Cont’’d)d)
(Continued)
Else

Choose x ∈ Xvi
dom ← Dx
While dom ≠ ∅ And lvi < uvi Do

Choose val ∈ dom
dom ← dom \ {val}
lval ← ((A ∧ {x ← val}) semijoin {c: c ∈ C ∧ var(c)⊆(var(A)∪{x})})↓∅
If lvi ⊕ lval < uvi Then

uvi ← min(uvi, BTDval(A ∧ {x ← val}, vi, Xvi \ {x}, lvi ⊕ lval, uvi)
End If

End While
Return uvi

End If
Note: Computes a full

assignment, but
returns only

a value.

Generalization to Domain SplittingGeneralization to Domain Splitting
Incorporate domain splitting into BTDval, that is,
search over a whole set of valued assignments
Yields BTDSval (backtracking with tree decompo-
sitions and domain splitting for valued constraints)
Like BTDval, BTDSval records valued goods
Unlike BTDval, BTDSval maintains only assignments
to , and returns assignments to separator of

22

Sinking OperationSinking Operation
Sinking operation (Bistarelli et al. SOFT03, Morris
AAAI93): returns a new constraint where
all values of tuples have been replaced by

Constraint sink(fe2,0.05)Constraint

Generalized Sinking OperationGeneralized Sinking Operation
Generalized sinking operation returns a
new constraint where all values of tuples of that
are values of tuples of have been replaced by
Generalizes the check to soft constraints

Constraint sink(fe2,f)Constraints

BTDSvalBTDSval
Input: Set of (partial) assignments (constraint) , tree
node , variables , upper bound
– No explicit lower bound (contained in valued assignments)
– Note that the bounds (lower and upper) are now functions

Output: Best assignments to separator of with
values , or values , if not existent
Notation: : constraint with value for all tuples,

: constraint with value for all tuples
Initial call: BTDSval()

BTDSvalBTDSval PseudocodePseudocode
Function BTDSval(fa,vi,Xvi,fu)

If Xvi = ∅ Then
F ← children(vi)
fa ← sink(fa,fu)
While F ≠ ∅ And fa ≠ f Do

Choose vj ∈ F
F ← F \ {vj}
fasep ← fa ⇓ separator(vj)
faseprest ← tuples of fasep that are not goods of vi/vj
If faseprest ≠ f Then

farestval ← BTDS(faseprest, vj, χ(vj) \ separator(vj), fu)
Record tuples in farestval as goods of vi/vj

End If
fa ← fa semijoin goods(vj)
fa ← sink(fa,fu)

End While
Return fa ⇓ separator(vi)
(continued on next slide)

⊥

⊥

BTDSvalBTDSval PseudocodePseudocode (Cont(Cont’’d)d)
(Continued)

Else
Choose x ∈ Xvi
PartitionElements ← Px
fa ← sink(fa,fu)
Aextended ← fa
While PartitionElements ≠ ∅ And Aextended ≠ f Do

Choose p ∈ PartitionElements
PartitionElements ← PartitionElements \ {p}
Aextended ← (fa ∧ {x ← p}) semijoin {c: c ∈ C ∧ var(c) ⊆ (var(fa)∪{x})}
Aextended ← sink(Aextended,fu)
If Aextended ≠ f Then

Aextended ← BTDS(Aextended, vi, Xvi \ {x}, fu)
fu ← min(fu,Aextended)

End If
End While
Return fu

End If

⊥

⊥

⊥

CasesCases
Partition : Yields backtracking algorithm
BTDval (Jégou Terrioux CP03)
Partition : Yields dynamic programming
algorithm CTE with soft constraints (Dechter 03)
Partition : Hybrid of BTDval and CTE

Note: for case |Pi|>1, algorithm has
higher space complexity than CTE
(exp(width) instead of exp(sep)).

But, it should be possible to reduce
the space complexity to exp(sep).

23

BTDSvalBTDSval applied to Full Adder applied to Full Adder
Partition , all else

Constraint
Hypergraph

Tree
Decomposition

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree Upper bound = 0

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

Upper bound = 0

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950

Upper bound = .044

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950

Upper bound = .044

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950

Upper bound = .044

Exploiting goods
recorded at v2
(“forward jump”)

24

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950
<v=0, w=1> .050

Upper bound = .044

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

<u=0, y=0> .047
<u=0, y=1> .902

<v=0, w=0> .950
<v=0, w=1> .050

Upper bound = .044

Cut by bound

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

Cut by bound

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

Cut by bound

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

Cut by bound

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

Cut by bound

25

BTDSvalBTDSval applied to Full Adderapplied to Full Adder
Search Tree

Cut by bound
Finished.

Best solution = .044
Nodes = 45

BTDSvalBTDSval with Symbolic Encodingwith Symbolic Encoding
Algebraic Decision Diagrams (ADDs, Bahar 93):
graph-based, canonical representation of functions
with non-binary values
When encoding constraints as DDs in BTDSval, then
like for BTDS, larger partition elements become more
advantageous (shifts the optimal granularity towards

)
In many practical cases, optimal granularity for partitions in
BTDSval becomes 1 < |Pi| < |di|

Experimental ResultsExperimental Results
…

BestBest--First SearchFirst Search
Replace depth-first branch-and-bound search in
BTDval by best-first (A*) search
Yields algorithm ATDval (A* search with tree
decompositions for valued constraints)
One search queue per each tree node
Search queues have entries
– A: assignment
– v: value
– vi: tree node
– Xvi: set of variables
– F: set of children of vi

BestBest--First SearchFirst Search
Problem: Search to be performed given a particular
assignment ; values depend on this assignment
Therefore, would have to maintain different search
queues for each different assignment!
Possible solution: Switch to dual problem (unary soft
constraints, n-ary hard equality constraints)
– See SOFT-04 paper

Related WorkRelated Work
Set-based search (Jörg Denzinger, U Calgary)

26

Material

BTD applied to 4BTD applied to 4--QueensQueens
Variable order

Separators

Tree Decomposition

Constraint
Graph

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree V1 traversed,

descend into v2

27

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree Record nogood

for v1, v2

<1,3>

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree

<1,3>

V1 traversed,
descend into v2

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree

<1,3>

V2 traversed,
descend into v3

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree

<1,3>

Record nogood
for v2, v3

<1,4,2>

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree

<1,3>, <1,4>

<1,4,2>

Record nogood
for v1, v2

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree

<1,3>, <1,4>

<1,4,2>

V1 traversed,
descend into v2

28

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree

<1,3>, <1,4>

<1,4,2>

V2 traversed,
descend into v3

BTD applied to 4BTD applied to 4--QueensQueens
Search Tree

<1,3>, <1,4>

<1,4,2>

Solution

Example: Example: ““SoftSoft”” Graph ColoringGraph Coloring
Variables:
Domains: for , for
Constraints:
– Adjacent colors must be different
– Combinations red and blue, red and green have penalty

Example: Example: ““SoftSoft”” Graph ColoringGraph Coloring
Tree Decomposition:

Example: Example: ““SoftSoft”” Graph ColoringGraph Coloring
Partitions: for , for

