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Example: Bioinformatics

= RNA is single-strand molecule, 2
composed of A,U,G,C s & Aceptor
= Function of RNA depends on gi
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structure (3-D folding) o !-E_: e

= Structure induced by base
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pairing: Watson-Crick (A-U, %H
G-C) and Wobble (G-U). f&bgdji b !-.'_': @
= Problem: Find RNA structure = ¢ 0

that maximizes base pairings. e
= Cumbersome to frame as i
Optimal CSP! =

Articodon loop

Varisble loop

Overview

= Soft Constraints Framework

= Algorithms: Search (Branch-and-Bound)

= Algorithms: Inference (Dynamic Programming)
= Applications: Frequency Assignment Problems

From Optimal CSP to Soft CSP

= Optimal CSP: Minimize function f(y), s.t. constraints
C(x) are satisfiable.

From Optimal CSP to Soft CSP

= Soft CSP: Extend the notion of constraints to
include preferences.

Soft Constraint
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Notation
= A k-tuple is a sequence of kobjects (vy,...,vx).

= The i-th component of a tuple ¢ is denoted ¢[3].

= The projection of a tuple ¢ on a subset S of its
components is denoted £[.S].

= The cartesian product of sets A;,..., Ay, denoted
ITE_, A;, is the set of all k-tuples such that t[i] € A;.




Classical CSP

A constraint network (X, D, C)

= setof variables X = {z1,...,2,}
« setof domains D = {di,...,d,}
= setof constraints C = {ci,...,cm}

A constraint ¢ € C'is arelation ¢ C Il cv.r(c) 45
on variables var{c) with arity |[var(c)

A complete assignment # is allowed if
Ve e C,tlvar(c)] € c.

Valued CSP

= For each constraint/tuple: a valuation that reflects
preference (e.g. cost, weight, priority, probability, ...).

= The valuation of an assignment is the combination
of the valuations expressed by each constraint using
a binary operator (with special axioms).

= Assignments can be compared using a total order
on valuations.

= The problem is to produce an assignment of
minimum valuation.

Formally: Valuation Structure

S=(B,0,%LT)

» I/ = set of valuations, used to assess assignments

= | = minimum element of E;, corresponds to totally
consistent assignments

= T = maximum element of E, corresponds to totally
inconsistent assignments

= =< = total order on E, used to compare two valuations
= @ = operator used to combine two valuations

Valued CSP

A constraint network (X, D, C, S)

= setof variables X = {x1,...,2,}
» setofdomains D = {d,...,d,}

= setof constraints C = {ci,...,¢n}

= valuation structure S = (F,0,<, L. T)
A constraint ¢ € C'is afunction ¢ : I, cvar() dj — E
mapping tuples over var(c) to valuations.

The valuation of a complete assignment ¢ is

Deco oltvar(c)]).

Required Properties

" Ya,f € FE,(a®f)=(3®a). (Commutativity)
= Vo, By € E (0@ (B®7) =((a®f) o)
(Associativity)

= Vo, 8,7 €E, (@=X8)= ((adv) 2 (B67).
(Monotonicity)

" Ya € E,(a® 1) =a. (Neutral element)
" Ya € E,(a® T)=T. (Annihilator)

Exercise: Justify properties.

Instances of the Framework

E = € T 2]
Classical {t,f} t<f t f A
Weighted NfUco| < 0 oc +
Probabilistic | [0, 1] > 1 0 *
Fuzzy [0,1] > 1 0 min

Many others in the literature.




From Valued CSP to Optimal CSP

= Introduce decision variable for each constraint
= Its values correspond to different valuations

S = (N§ Uoo, +,<,0,00)

From Valued CSP to Optimal CSP

= Introduce decision variable for each constraint
= Its values correspond to different valuations

S = (N§ Uoo, +,<,0,00)

From Valued CSP to Optimal CSP

= Introduce decision variable for each constraint
= Its values correspond to different valuations

= Utility function maps values to valuations

= Constraints become relations

¢:dzxyz=z fid— Nfuco
vy aaa f(Vl) =0
Vi a b a f(VZ) =1
vi baa
vo bbb Multiattribute

utility function = +

Overview

= Soft Constraints Framework

= Algorithms: Search (Branch-and-Bound)

= Algorithms: Inference (Dynamic Programming)
= Applications: Frequency Assignment Problems

Branch-and-Bound Search

= Each search node is a soft
constraint subproblem

= Lower Bound (Ib):
Optimistic estimate of
best solution in subtree

= Upper Bound (ub):
Best solution found so far

= Prune, if Ib > ub.

Branch-and-Bound Algorithm

= Function DFBB (¢ : assignment, b : value): value
v« Ib(t)
if v < ubthen
if |t/ = n then return y
let x; be an unassigned variable
for eacha € d; do
| ub— min{ub, DFBB(¢ U {(i,a)}, ub))
return yb
| _return T Time: O(exp(n))
Space: O(n)




Lower Bound Procedure

Must be:
= Strong: the closest to the real value, the better.
= Efficient: as easy to compute as possible.

Creates a trade-off. Choice is often a matter of
compromises and experimental evaluation.

Distance Lower Bound

= Ateach node, let AC' C C be the set of constraints
all of whose variables have been assigned.

= Use the bound
Ib(t) = Docac ctvar(c)])

= Problem: often weak, as it takes into account only
past variables.

Improvement: Russian Doll Search

= |dea: we can add the value of
the optimal solution to the
subproblem over future
variables to distance lower
bound, and get a stronger
lower bound.

= Must solve subproblem over
future variables beforehand.

= Yields recursive procedure
that solves increasingly large
subproblems.

Russian Doll Search

= [Lemaitre Verfaillie Schiex 96]: Experiments with
Earth Observation Satellite Scheduling Problems
(maximization problem).

= Example: 105 variables, 403 constraints.

= Branch-and-Bound with distance lower bound:
Aborted after 30 min, best solution so far = 8095.

= Russian Doll Search: Optimal solution = 9096 found
in 2.5 sec.

Overview

= Soft Constraints Framework

= Algorithms: Search (Branch-and-Bound)

= Algorithms: Inference (Dynamic Programming)
= Applications: Frequency Assignment Problems

Inference

= Inference produces new constraints that are implied
by the problem.

= Makes problem more explicit, easier to solve.

= Operations on constraints: combination and
projection.

VCSP ——— > VCSP’

Equivalent,
simpler to solve




Combination

= ¢ ¢y is constraint on var(cq) U var(es) s.t.
(c1 >aea)(t) = er(t[var(c1)]) @ ea(t[var(e2)])

Combination

= ¢ X ¢y is constraint on var(cq) U var(es) st
(c1 >aea)(t) = er(t[var(c1)]) @ ea(t[var(e2)])
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Inferring Solutions

= Constraint network (X, D, C, S)

= Value of optimal solution obtained by combining all
constraints C and eliminating all variables X :

(C] D(]CQM.4~[><]CHL) \U((J

= Problem: Very costly: Time O(exp(n)), Space

O(exp(n).

Improvement: Bucket Elimination

Idea: Eliminate variable as soon as it no longer

occurs in remaining set of constraints.

= For variable 7; € X, let K, = {c € C : x; € var(c)}
= Compute combination ¢k of all constraints in K,

= Now eliminate z;from cx : ¢ = cx dx\[z}

= Remove K, from C' and add ktoC.

=3

Induced Graph

= When processing a node (variable), connect all
neighboring nodes not yet processed.

z1

z2

T3

T4

z1
z2
T3
Tyq
Induced
s Graph




Bucket Elimination: Complexity

Let width be the maximum number of successors in the

induced graph. Then:

= Time dominated by computation of largest ¢y :
O(exp(width+1))

= Space dominated by storage of largest ¢ :
O(exp(width))

Impact of Variable Ordering

Width: 4 Width: 2 Width: 2

Finding ordering with minimal width is NP-hard.

Min-Fill Ordering Heuristic

= Function MF ( G: Graph with edges E and
nodesV = {vy,...,v,}): Order
forj=1 ton
let v be a node in V with minimal number of
edges required to connect its neighbors
put v in position j of order
E — EU{(vi,v;) : (v;,v) € E, (vj,v) € E}
V= V\{v}

Often finds good orderings in practice.

Example

1 — u
Full Adder
1
Circuit Y _)D-‘F[(?_

Full Adder
Circuit Hyper-
Graph

Example
MF Computational Scheme
Order (“Bucket Tree”)
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Tree Decomposition

A tree decomposition for a problem (X, D, C, S})is a
triple (T7 X, ,\), where T = (V./ E) is a rooted tree, and
X, A are labeling functions associating with each node
v; € V two sets x{v;) C X, A(v;) C C such that:
= Foreach ¢ € C, there is exactly one v; such that
¢ € A(vs). For this v;, var{c) C A(v;) (covering
condition);
= Foreach z € X, theset{v; € V : x € x(v;)} of
vertices labeled with = induces a connected subtree
of T (connectedness condition).




Example

Tree Decomposition
X A

/_A I+\
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Overview

= Soft Constraints Framework

= Algorithms: Search (Branch-and-Bound)

= Algorithms: Inference (Dynamic Programming)

= Applications: Frequency Assignment Problems

Frequency Assignment

Site A

Frequency Assignment
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Frequency Assignment
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Frequency Assignment

|fi = fil = 6i; |fiff{\ <&

Frequency Assignment

= Several instances available from CELAR (200 to 916
variables, 1200 to 5000 constraints, domain size >30)

= These are very hard instances of valued CSPs.
= Good results reported for dynamic programming.

RNA Structure Example

Example

Bucket Tree
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Tree Decomposition Example

v1 ({u, v, w, y,al,a2} {fal,fag}‘

Hypergraph

{’Uv w, 01} {fol}

Tree
Decomposition

Dynamic Programming

= Inference on the tree: dynamic programming

{u,v.w,y,al,02} {far, far}]

R
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{’Uv w, 01} {fol}

Tree
Decomposition




Example

= AND-gates broken with 1% probability
= OR, XOR-gates broken with 5% probability
= Probabilistic valuation structure ([0, 1],>,-,1,0)

1 __D_‘ U
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Y < -
1
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Example

Russian Doll Search

= static variable ordering

= solves increasingly large
subproblems

= uses previous LB recursively

_=| May speedup search by
several orders of magnitude

fu:awy fao t G2 U v| fa:euy]
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Soft Constraint Framework
= (X,D,C)
X={Xy,..., X,} variables
D={D,,..., D,} finite domains
- i annihilator
C={c,,..., c¢} cost functions identity
var(c;) scope

c(t): — E (ordered cost domain, T, 1)

« associative

= commutative
—
= monotonic

= Obj. Function: F(X)= @c; (X)
= Solution: F(t) # T
= Soft CN: find minimal cost solution

Valued CSPs and Semiring CSPs

Semiring-based CSP
(partial order)

Valued CSP
(total order)

Specific Frameworks

= E={tf} @ = and Classical CSP
s E =N U{w} @ =+ Weighted CSP
= E=[0,1] =% Probabilistic CSP

Lexicographic CSP, probabilistic CSP...




From VCSPs to OCSPs

= Introduce decision variable for each constraint

= Introduce domain value for each different value of a
tuple’s constraint

Basic Operations on Constraints

= Assignment (Conditioning)
= Combination (Join)
= Projection (Elimination)

Assignment (Conditioning)

x
=
o
e
X

o Assign(c,x;,b) 1(x;)

Assign(f,x;,9)
" | o) E :’> ho

~l=|=le|le|a|o|c|=

~la|s|~|a|c|~|e|=
o
i
&

Combination (Join)

Projection (Elimination)

x| x| clx,x)

b | b 4

b g 6 }Min

Ll I Blim(c,x) | X1 ™) ] glim(f,x,)
AT [ o [ ]
S| | > :>
glr 3 } r 0

r|hb 1

rlg 0

r r 6

x | x| etxx) x| x| elxx)
b |b 6 G_) b| b 6
b 3 0 b|g 0
g|b 0 g| b 0
o1 5 x| x| x| fxxx) = 5

b|{b|b 12

b|{b|g 6

b|g|b [

b g 6 =0®6

g|b b 6

g|blg 0

g g b 6

9|99 12

Solutions

s F(X)=a@c; (X) Uy
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Weighted CSP Example

For each vertex

X | e(x)

Probabilistic CSP Example

= AND-gates broken with 1% probability
= OR, XOR-gates broken with 5% probability
= Probabilistic valuation structure ([0, 1],>,-,1,0)

1 _____i[::>“ 2

1
y c F)§ 62>—
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ai

b| o x| x| clxix)
9 1 b|b T
r 1 blg 0
b|r 0
g|b 0
For each edge:[ 7,1+
g|r 0
r|b 0
AX): number of non blue vertices rlel o
r r T
Probabilistic CSP Example
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B11].05

Application: Bioinformatics

= Multiple sequence alignment (DNA)

= Given k homologous sequences...
AATAATGTTATTGGTGGATCGATGA
ATGTTGTTCGCGAAGGATCGATAA

= ... find the best alignment (sum)
AATAATGTTATTGGTG---GATCGATGATTA
--—-ATGTTGTTCGCGAAGGATCGATAA-——

Application: Resource Allocation

= Given a telecommunication network
= Find frequency for each communication link...
= ... such that total interference is minimized

Application: Resource Allocation

11



Overview

= Introduction and Definitions
= Solving soft constraints

By Search

By Inference

Depth-First Search
BT(X,D,C)
if (X=@) then Top :=c,,
else

X;:= selectvar(X)
forall aeD; do
vcsC s.t. xj evar(c) C:=Assign(c, Xj va)

Coi= ZCEC s.t.var(c)= @ c
if (LB<Top) then BT(X-{x},D-{D;},C)

Improving the LB

= Assigned constraints (c,

Original constraints

lSoIve

Optimal cost @ c

* Gives a stronger LB
« Can be solved beforehand

Importance of Bounds

= Example: Frequency assignment problem
Instance: CELARG-sub4
#var: 22 , #val: 44 , Optimum: 3230
Depth-first branch-and-bound search
UB initialized to 100000 = 3 hours
UB initialized to 3230 = 1 hour

Stochastic local search (SLS) can find UB=3230 in a few
minutes

Overview

= Introduction and Definitions
= Solving soft constraints

By Search

By Inference

Synthesis

= Join all constraints
= Project

= Limitations: very costly (Time: exp(n), Space: exp(n))

12



Bucket Elimination

= Select a variable X;

= Compute the set K; of
constraints that involves this

variable @ @
= Add Elim(e ¢, X,)
= Remove Vaiable and K, .

= Time: ©(exp(deg;+1))
= Space: O(exp(deg,)) & 2

Tree Decomposition

Min-Fill Heuristics

= Input: Agraph G = (V,E), V ={v,, ..., v}
= Output: An ordering of the nodes
= Forj=1tondo
r < a node in V with smallest number of fill edges
Put r in position j
Connect r's neighbors
Remove r from resulting graph

Induced Graph

F E
E A
D B
C (8
B n
A F

)y

Tree-structured Problems

BnB with Variable Elimination

= Hybrid Method

= At each node
Select an unassigned variable X;
If deg; < k then eliminate X;
Else branch on the values of X;

= Properties
BE-VE(-1) is BB
BE-VE(W*) is VE
BE-VE(1) is like cycle-cutset

13



BnB with Variable Elimination

= Example: BB-VE(2)

Example BnB-VE(2)

Co

RN

BnB with VE: Results

= Example: Still-life (academic problem)
Instance: n=14
#var:196 , #val:2
Branch-and-Bound = 5 days
Variable Elimination < 1 day
BB-VE(18) = 2 seconds

Background

= Domain Splitting (e.g. Hentenryck’s book)
= Bucket Elimination (and extension to super-bucket
elimination/tree decomposition) (Dechter’s book)

= Backtracking combined with tree decompositions
(algorithm BTD, Jégou and Terrioux 03)

= Dynamic programming on tree decompositions
(algorithm CTE, Dechter’s book)

= Decision Diagrams (Bryant 86, Bahar 93)
= Soft constraints
= [A* search]

CSPs

« Domains D ={di,...,d,}

= Variables X = {zy,...,2,}
= Constraints C = {c1,...,cm}

= ¢; C C': Scope var(c;), Function var(c;) > {0,1}

Ccp: X X Ty Co: Xy X4
a a ¢ a b
a b ¢ a c¢
b b ¢ b ¢

Example: 4-Queens

= Variables: Rows i, %2, T3, %4

= Domains: Columns 1,2, 3,4

= Constraints: c12(@1,%2), c13(1,3), c14(r1,4),
623(I2’I3), 624($2,I4)7 (734($37£L’4)

1 2 3 4

Cl2 0 X122

13 o

14 To

24

31 Zy

41 Z4

42

14



Backtracking Search

= Order on variables: x; <... <z,
= Choose value val € d; for unassigned variable z;

= Check all completely assigned constraints
If inconsistent, prune and backtrack

Generalization to Domain Splitting

= Partition domains into sets F;, Upep, = d;
= Choose subset p € P; for unassigned variable z;

= Check all completely assigned constraints
Combine (join) relevant parts of the constraints
If inconsistent, prune and backtrack

X,D,C

Example
= Search Tree Constraints
involved
Ty Q)
o €12
T3 €13, €23
T4 C14,C24,C34
Solution
Example

 Partition P, = {{1,2},{3,4}},i=1,2,3,4

= E.g, check assignment z; € {1,2}, o € {3,4}:

1o :

Ty T

Y Constraint
satisfied v/

=W
NI

Example

= Search Tree

Solution

Example

= Search Tree

Constraints
involved

0

€12

€13, C23

C14,C24,C34

Solution

15



Cases

= Partition| P; |=| d; |: Limiting case of backtrack
search (single assignments are tested, as before)

= Partition | p; [= 1: Limiting case of constraint
synthesis (single constraint is inferred): c; o< ... > ¢y,

= Partition 1 <| P; |<| d; |- Hybrid of search and
inference (search on subsets of tuples)

Example

= Synthesis Constraints
o involved

o d23D 0

T2 Q23D c12

T3 @; €13, €23
Ty @ €14, C24, C34

Solution

Example
= Synthesis
€12t €13 - C34 t
T Xo T Xy T3 Xy
1 3 1 2 13
1 4 1 4 1 4 Xy Ty X3 T4
2 4 21 2 4
> I L. X = 241 3
31 2 3 31
41 3 2 4 1
4 2 3 4 4 2
4 1
4 3

Exploiting Structure

= Problem: Search is uninformed about CSP structure
|Pi| =|di|: leads to unnecessarily large search tree (thrashing)
|Pi| = 1: leads to unnecessarily large constraints

= We can do better by considering structure of graph
|Pi| = |di|: can be used to reduce size of search tree
|Pi| = 1: can be used to reduce size of constraints

Bucket Elimination

= Define variable order zy < ... <z,
= Eliminate the variables one-by-one
Combine constraints mentioning ; in their scope (“bucket”)
Project out z; from result
= That s, variables disappear as soon as they no
longer influence (cannot constrain) the result
= E.g., instead of Ci12 D €13 DX Ca3 D C1q D Cog DX C3q
bucket elimination needs to compute only
(((craacog b cga) bopyacrg cag) bopydcrn) o,

Super-bucket Elimination

= Generalization of Bucket Elimination
= Eliminate variables in groups (i.e., in partial order)
= E.g. eliminate in order {z4} < {x3} < {z1,22}:

ACITE A CE; Deco;l-::sition

vz ‘ {21 22,23} {e13, con} ‘

U3 ‘ {21,200, 23, 24} {014-,0247034}‘

16



Combination with Search

To exploit decomposition in search, the order in
which variables are assigned must be “compatible”
with the order in which variables are eliminated

= More precisely, if variables are assigned in order
21 < ... < Iy, variables have to be eliminated in
reverse (partial) order:

{.Tn, I ,mn,kl} - {acn—kl—l-, ce 7'77n7k17k2} - ..
e {-/L'n~k1~...~k,ﬂ~l~,~“-,f£1}

Construct (super-)buckets (tree decomposition
scheme) from this reverse order

Combination with Search (Cont’d)

= A tree decomposition with compatible elimination
order can be exploited during search as follows:
Let separator(vj) denote the separator of tree node vj (the
set of variables that vj shares with its parent, vi)
Once a complete assignment has been found for a subtree,
record it as a good at the separator (same for nogoods)
By checking the goods/nogoods during search, we can then
avoid descending into the same subtree again and again
= This algorithm is called BTD (backtracking with tree
decompositions) (Jégou Terrioux AlJO3)

BTD (Jégou Terrioux AlJ03)

Input: (Partial) assignment A, tree node v;, set of
variables X,, C var(v;)to be assigned

= Output: “True” if assignment is consistent with all
constraints C in subtree of v, “false” otherwise
Initial call: BTD( @, v, vars(v1))

BTD Pseudocode

= Function BTD(Avi,Xvi)

Xvi=2
Consistent «
F « children(vi)
F# @ And Consistent
vieF
FF\{vj)
A L separator(vi) is a good of viivj Consistent «
A separator(vj) is a nogood of vilvj Consistent «

Consistent « BTD(A,vjvars(vj) \ separator(v}))
Consistent
Record the good A | separator(vj) for vilvj

Record the nogood (A 4 separator(vj)) for vifvj

Consistent
(continued on next slide)

BTD Pseudocode (Cont’d)

= (Continued)
X & Xvi
dom « Dx
Consistent «
dom # @ Consistent
val & dom
dom « dom \ {val}
(A A {x  val}) semijoin {c: ¢ € C A var(c)  (var(A){x))} &

Consistent « BTD(A  {x « val, vi, Xvi\ {x})

Consistent

Note: Computes a full
assignment, but
returns only
true/false.

Generalization to Domain Splitting

= Incorporate domain splitting into BTD, that is, search
over sets of assignments A

= Yields new algorithm BTDS (backtracking with tree
decompositions and domain splitting)

= Like BTD, BTDS records set of good tuples and
nogood tuples for each separator

= Unlike BTD, BTDS maintains only assignments to
v; (instead of full assignment)

= Unlike BTD, BTDS returns assignments to
separator of v; (instead of only true/false)

17



BTDS

= Input: Set of (partial) assignments (constraint) A, tree
node v;, set of variables X, C var(v;)

= Output: Assignments to separator of w; that are
consistent with all constraints C' in subtree of u;

= Initial call: BTDS(, vy, vars(v; )

BTDS Pseudocode

= Function BTDS(A,vi,Xvi)
Xvi=
F « children(vi)
Fz0 Az
vje F
F « F\{vj}
Asep « A U separator(vj)
Aseprest « Asep \ (goods(vj) U nogoods(vj))
Aseprest # &
Aseprestcons « BTDS(Aseprest, vj, y(vj) \ separator(vj))
goods(vj) < goods(vj) U Aseprestcons
nogoods(vj) - nogoods(vj) U (Aseprest \ Aseprestcons)

A « A semijoin goods(vj)

A U separator(vi)
(continued on next slide)

BTDS Pseudocode (Cont’d)

= (Continued)

X e Xvi
PartitionElements « Px
Aextended « A
PartitionElements = & Aextended = &
p e PartitionElements
PartitionElements « PartitionElements \ {p}
Aextended « (A A {x «<— p}) semijoin {c: ¢ € C A var(c) c (var(A)u{x})}
Aextended # &
Aextended « BTDS(Aextended, vi, Xvi\ {x})

Aextended

Cases

= Partition| P; |=| d; |: Yields backtracking algorithm
BTD (Jégou Terrioux AlJ03))

= Partition | p; [= 1: Yields dynamic programming
algorithm CTE (Dechter 03)

= Partition 1 <| P; |<| d; | : Hybrid of BTD and CTE

Note: for case |Pi|>1, algorithm has
higher space complexity than CTE
(exp(width) instead of exp(sep)).
But, it should be possible to reduce
the space complexity to exp(sep).

BTDS applied to 4-Queens

= Variable order x; < 22 < @3 < T4
= Partition P; = {{1,2},{3,4}},7=1,2,3,4

Separators
Constraint
Graph v [ {20} {ayy]
1 2
v2 ‘ {21, 22,23} {013.,02/a} ‘
v
L1, T2, T3
U3 ‘ {z1, 20,23, 24} {f714-,(¢24,(3:s4}‘
z3 T4

Tree Decomposition

BTDS applied to 4-Queens

= Search Tree

) @K} vy {11.1'2} {012}

Zy,Z2
T2
V2 ‘ {z1, 20,23} {13, con} ‘
Z3 . Ty, T2, T3
w3 ‘ {z1, 20,23, 24} {f714-,(¢24,(3:s4}‘
Ty
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BTDS applied to 4-Queens

= Search Tree

x1
m {11.1'2} {012}
L1, T2
)
Vg ‘ {z1, 20, 23} {c13, co3} ‘
o L1, X2, T3
v3 ‘ {z1, 20,23, 24} {f714-,(¢24,(3:s4}‘
Ty

BTDS applied to 4-Queens

= Search Tree V1 traversed,
o descend into v2

a1

v1 [ {z1. 22} {c12}

Ty, T2
w2 ‘K" @ v2 ‘ {21,209, 23) {c13,co3) ‘
zs T1, 2,23
U3 ‘ {z1, w2, 23,24} {“14-,6‘24,0:54}‘
Ty

BTDS applied to 4-Queens

= Search Tree V2 traversed,
o descend into v3

m {;l‘l..’l,'z} {012}

L1, T2

(D3
Ty >l’

& @ vz | {z1 22,23} {e13, con} |
2y @ ‘ Z1,T2,T3

U3 ‘ {z1, 20,23, 24} {f714-,(¢24,(3:s4}‘

Ty

BTDS applied to 4-Queens

= Search Tree

m {;l‘l..’l,'z} {012}

L1, T2

vz | {z1 2,23} {e13, coa} |
Z1,T2,T3

U3 ‘ {z1, 20,23, 24} {f714-,(¢24,(3:s4}‘

BTDS applied to 4-Queens

= Search Tree Record nogood
for v2, v3

vi [ {z1. 22} {c12}

Zy,Z2

> | {z1, 22,3} {13, Con} |
<x1=2,x2=4,x3=2> ‘ T1, T2, 23

V3 |{l‘1-,4172«,1‘3-,$4} {014-,0247034}|

Solution

Granularity of Domain Splitting

= Empirical observation and theoretical considerations
(Jégou Terrioux AlJ03): BTD outperforms CTE
(cluster tree elimination, i.e. dynamic programming
on tree decomposition)
BTD is a “lazy” variant of CTE (dynamic programming)
= Therefore, | P; |=| d; | (finest granularity) is optimal
granularity of partitions in BTDS
Best to perform dynamic programming as lazily as possible
= But: This assumes that tuples are handled explicitly

More efficient, implicit datastructures are possible when
manipulating whole sets of tuples
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Symbolic Encoding

= Decision diagrams (Bryant 86): graph-based,
canonical representation of (boolean) functions

= Time and space complexity depends on graph size
rather than number of tuples of function represented

0@
A Decision
Diagram

1
@
unction
’Q (ROBDD)
1
0]

53
=g
83

_ =0
—_ O =
[ S

BTDS with Symbolic Encoding

= In many practical cases, decision diagrams much
more compact than representing tuples explicitly
Can make operations on sets of tuples (inference) more
efficient
But won't make operations on single tuples (search) more
efficient
= Therefore, in BTDS, larger partition elements become
more advantageous (shifts optimal granularity
towards | P; |=1)
In many practical cases, optimal granularity for partitions in
BTDS becomes 1 < |Pi| < [di|
Exploit both structure in graph and structure in tuples

Generalization to Optimization

Domains D = {d1,...,d,}

Variables X = {z1,...,2,}

Constraints C = {¢1,....Cm}

= ¢; € C': Scope var(c;), Function var(c;) — E
Valuation structure (£, <,®, L, T) L best, T worst

c1: T Ta m;;l Cot Ty 974|
aacl|ls a bl4d soft
abcl|.s a ¢ |4 Constraints
b becl5 b cl.4

Example: Full Adder Diagnosis

= Variables {u, v, w,y,a1,a2,€1,€2,01}
« {a1,a2,¢e1,€2,01} describe modes of gates
= Gates are either in good ( ') or broken ( B') mode

1_®_ U

F)E > 1
Y 61 -
1

Example: Full Adder Diagnosis

= AND-gates broken with 1% probability
= OR, XOR-gates broken with 5% probability
= Probabilistic valuation structure ([0, 1],>,-,1,0)

1__D_‘ U

FE — 1
Y < =
1

ai

v
a2
0
w
ay o
Example: Soft Constraints
fariarwy fuz i 02| fareuy|
G00].99 G 00|99 G109
G11].99 G11]|.99 G019
B0oo0].01 B0o0|.01 B0o0|.05
B01].01 B01].01 B0O1]|.05
B10].01 B10].01 B10]|.05
B111.01 B111.01 B11/[.05
Jor: 01 vw fez 1 €2 u|
G 00|95 G 0.9 For details,
B 00|05 B 0 |.05 see ECAI'04
B01]|.05 B1].05 paper.
B10]|.05
B11].05

20



Example: Tree Decomposition

= Eliminination order {01} < {e1,ee} < {uw,v,w,y,a1,a2}

v [{u, v, w.y, al,02} {far, faz}]

> ‘{u,y,el‘,eQ} {fehfeg}‘

{’Uv w, 01} {fol}

Depth-First Branch and Bound

= Recursive algorithm BTDval (Terrioux Jégou CP03)
(back-tracking with tree decompositions for valued
constraints) that extends BTD to soft constraints

= Records tuples and their values for each separator
(“valued goods” instead of goods and nogoods)

BTDval (Terrioux Jégou CP03)

Input: (Partial) assignment A, tree node v;, set of
variables X, C vars(v;), lower bound [, (value of
assignment so far), upper bound ., (value of best
solution found so far)

= Output: Value of best extension to subtree of 4, with
value < Uy, OF some value > Uy if that does not exist

Initial call: BTDval( (), vy, var(vi), L, T )

BTDval Pseudocode

= Function BTDval(A,vi,Xvi,lvi,uvi)
Xvi=2
F « children(vi)
FzQ Ici < uvi
vje F
F« F\{vj}
(A | separator(vj), v) is a good of Vi/vj IciIci®v

Vv « BTDval(A,vj,vars(vj) \ separator(vj), L, uvi)
IciIci®v
Record the goods (A { separator(vj), v) for vi/vj

Ici
(continued on next slide)

BTDval Pseudocode (Cont’'d)

= (Continued)

X € Xvi
dom <« Dx
dom = & Ivi < uvi
val € dom

dom « dom \ {val}
Ival < ((A A {x « val}) semijoin {c: ¢ € C A var(c)c(var(A)U{xHI 2

Ivi @ Ival < uvi

uvi < min(uvi, BTDval(A A {x « val}, vi, Xvi\ {x}, Ivi @ Ival, uvi)

wi Note: Computes a full
assignment, but
returns only
a value.

Generalization to Domain Splitting

= Incorporate domain splitting into BTDval, that is,
search over a whole set of valued assignments

= Yields BTDSval (backtracking with tree decompo-
sitions and domain splitting for valued constraints)

= Like BTDval, BTDSval records valued goods

= Unlike BTDval, BTDSval maintains only assignments
to »;, and returns assignments to separator of ;

21



Sinking Operation

= Sinking operation (Bistarelli et al. SOFT03, Morris
AAAI93): sink(c;, ) returns a new constraint where
all values of tuples = « have been replaced by T

Constraint Constraint sink(f,,,0.05)

fe? :

Generalized Sinking Operation

= Generalized sinking operation sink(e;, ¢;) returns a
new constraint where all values of tuples of ¢; that
are > values of tuples of ¢; have been replaced by T

= Generalizes the check ., < u,, to soft constraints

Constraints Constraint sink(f,,,f)
fea: e2u| [ eau| e u |
G0].9 G 0|45 GO|.9
B 0|.05 B 0].05 BO|O
B 1/[.05 B1].01 B1].5

BTDSval

= Input: Set of (partial) assignments (constraint) f 4, tree
node v;, variables X, C vars(v;), upper bound f,

No explicit lower bound (contained in valued assignments)
Note that the bounds (lower and upper) are now functions

= Output: Best assignments to separator of »; with

values < f,,orvalues » f,, if not existent

Notation: f1 : constraint with value L for all tuples,

fr @ constraint with value T for all tuples

Initial call: BTDSval( /', v, var(v1), fT)

BTDSval Pseudocode

= Function BTDSval(fa,vi,Xvi,fu)
Xvi=
F « children(vi)
fa « sink(fa,fu)
Fz0 fa=fT
vje F
F« F\{vj}
fasep < fa U separator(vj)
faseprest « tuples of fasep that are not goods of vi/vj
faseprest = fT
farestval < BTDS(faseprest, vj, y(vj) \ separator(vj), fu)
Record tuples in farestval as goods of vi/vj

fa « fa semijoin goods(vj)
fa « sink(fa,fu)

fa | separator(vi)
(continued on next slide)

BTDSval Pseudocode (Cont’d)

= (Continued)

X € Xvi
PartitionElements « Px
fa « sink(fa,fu)
Aextended « fa
PartitionElements » & Aextended # f 1
p e PartitionElements
PartitionElements « PartitionElements \ {p}
Aextended « (fa A {x < p}) semijoin {c: ¢ € C A var(c) c (var(fa){x})}
Aextended « sink(Aextended,fu)
Aextended = f
Aextended « BTDS(Aextended, vi, Xvi\ {x}, fu)
fu < min(fu,Aextended)

fu

Cases

= Partition| P; |=| d; |: Yields backtracking algorithm
BTDval (Jégou Terrioux CP03)

= Partition | P, |= 1: Yields dynamic programming
algorithm CTE with soft constraints (Dechter 03)

= Partition 1 <| P; |<| d; | : Hybrid of BTDval and CTE

Note: for case |Pi|>1, algorithm has
higher space complexity than CTE
(exp(width) instead of exp(sep)).
But, it should be possible to reduce
the space complexity to exp(sep).
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BTDSval applied to Full Adder

= Partition P, Py, P, = {{0},{1}}, all else P; = {d;}

Constraint
Hypergraph

U1

{u,v,w,y,al, a2} {fa1, faz}‘

‘{u,y,el,eQ} {fe1, feﬂ}‘

v2

{’Uv w, 01} {fol}

Decomposition

Tree

BTDSval applied to Full Adder

= Search Tree i Upper bound = 0

1 [{u, v, w.y, al,a2} {far, faz}]

‘ {u,y,€1,e2} {fe1, f&'Q}‘

v2

{’Uv w, 01} {fol}

BTDSval applied to Full Adder

= Search Tree Upper bound =0

vi[fu v, w.y,al,a2) {far, faz) |
<u=0, y=0> .047

<u=0, y=1>.902

v @D [{ugoel,e2} (s, fua)]

v2

{’Uv w, 01} {fol}

BTDSval applied to Full Adder

= Search Tree Upper bound = .044

vi[{u, v, w,9,01,02} (a1 fao}|
<u=0, y=0> .047
<u=0, y=1>.902

|{u,y,fil‘,62} {fehfeg}l

v2
<v=0, w=0>/.950
{’Uv w, 01} {fol}

BTDSval applied to Full Adder

= Search Tree Upper bound = .044

e [{u, v, w.y, al,a2} {far, faz}]
<u=0, y=0> .047
<u=0, y=1>.902

‘ {u,y,cl,e2} {fer, feo} ‘

1

? <v=0, w=0>/.950
{’Uv W, 01} {fol}

BTDSval applied to Full Adder

= Search Tree Upper bound = .044

1 [{u, v, w.y, al,a2} {far, faz}]
<u=0, y=0> .047
<u=0, y=1>.902

‘ {u,y,cl,e2} {fer, feo} ‘

1

? <v=0, w=0>/.950

Exploiting goods {v,w, 01} {fo1}
recorded at v2
(“forward jump”)
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BTDSval applied to Full Adder

= Search Tree Upper bound = .044

e [{u, v, w.y, al,a2} {far, faz}]
<u=0, y=0> .047
<u=0, y=1>.902

‘ {u,y,€1,e2} {fe1, feﬂ}‘

vz <v=0, w=0> /950
<v=0, w=1¥.050
{’Uv w, 01} {fol}

BTDSval applied to Full Adder

= Search ree Upper bound = .044

1 [{u, v, w.y, al,a2} {far, faz}]
<u=0, y=0> .047
<u=0, y=1>.902
[{u,y.e1,€2} {for, fur}]
vz <v=0, w=0> /950
5 <v=0, w=1>.050
ut by bound {v,w,01} {fo1}

BTDSval applied to Full Adder

= Search Tree

BTDSval applied to Full Adder

= Search Tree

BTDSval applied to Full Adder

= Search Tree

BTDSval applied to Full Adder

= Search Tree

ut by bound
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BTDSval applied to Full Adder

= Search Tree Best solution =.044
# Nodes = 45

v

w

ay
az
€1
€ Cut by bound

o1 Finished.

BTDSval with Symbolic Encoding

= Algebraic Decision Diagrams (ADDs, Bahar 93):
graph-based, canonical representation of functions
with non-binary values

= When encoding constraints as DDs in BTDSval, then
like for BTDS, larger partition elements become more
advantageous (shifts the optimal granularity towards
| Pi|=1)

In many practical cases, optimal granularity for partitions in
BTDSval becomes 1 < |Pi| < [di|

Experimental Results

Best-First Search

= Replace depth-first branch-and-bound search in
BTDval by best-first (A*) search
= Yields algorithm ATDval (A* search with tree
decompositions for valued constraints)
= One search queue per each tree node v;
= Search queues have entries (A, v,v;, X,,, F)
A: assignment
v: value
vi: tree node
Xvi: set of variables
F: set of children of vi

Best-First Search

= Problem: Search to be performed given a particular
assignment A4; values depend on this assignment
= Therefore, would have to maintain different search
queues for each different assignment!
= Possible solution: Switch to dual problem (unary soft
constraints, n-ary hard equality constraints)
See SOFT-04 paper

Related Work

= Set-based search (J6rg Denzinger, U Calgary)
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Material

BTD applied to 4-Queens

= Variable order 1 < o < 23 < 24

Constraint Separators
Graph o [Toroaa] {Cl‘
X1 To
vz ‘ {21, 20,25} {01;a,02ﬁ} \
12
Z1.T2,23
V3 ‘ {21, 22,23, 24} {014-,0247034}‘
3 T4

Tree Decomposition

BTD applied to 4-Queens

= Search Tree

m {;l‘l..’l,'z} {012}

L1, T2
o
V2 ‘ {z1. 20, 23} {c13, con} ‘
T3 L1, T2,23
U3 ‘ {z1, 29, 23,24} {f714-,(¢24,(3:s4}‘
Ty

BTD applied to 4-Queens

= Search Tree

Eal
m {;l‘l..’l,'z} {012}
L1, T2
o
vz ‘ {21 22,23} {e13, con} ‘
3 . Z1,T2,T3
U3 ‘ {z1, 29, 23,24} {f714-,(¢24,(3:s4}‘
Ty

BTD applied to 4-Queens

= Search Tree

Ty
m {11.1'2} {012}
Zy,Z2
T2
V2 ‘ {z1. 20, 23} {c13, con} ‘
3 Ty, T2, T3
w3 ‘ {z1, 20,23, 24} {f714-,(¢24,(3:s4}‘
Ty

BTD applied to 4-Queens

= Search Tree V1 traversed,
descend into v2

Ty
m {11.1'2} {012}
Zy,Z2
T2
V2 ‘ {z1. 20, 23} {c13, con} ‘
3 . Ty, T2, T3
w3 ‘ {z1, 20,23, 24} {f714-,(¢24,(3:s4}‘
Ty
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BTD applied to 4-Queens

= Search Tree Record nogood

for v1, v2
x1
m {11.1'2} {012}
<1,3> | x1,22
)
Vg ‘ {z1, 20, 23} {c13, co3} ‘
o L1, X2, T3
V3 ‘ {z1, 29, 23,24} {f714-,(¢24,(3:s4}‘
Ty

BTD applied to 4-Queens

= Search Tree V1 traversed,

descend into v2

x1
vt [{z1. a2} {c1o}
<1,3> | z1,22
Z2
vz ‘ {21, 22,23} {c13, cos} ‘
o . L1, X2, T3
V3 ‘ {z1, 29, 23,24} {f714-,(¢24,(3:s4}‘
Ty

BTD applied to 4-Queens

= Search Tree V2 traversed,

descend into v3

Eal
m {;l‘l..’l,'z} {012}
<1,3> | 21,22
Z2
va | {z1. 22,23} {c13, o3} |
2y Z1,T2,T3
U3 ‘ {z1, 20,23, 24} {f714-,(¢24,(3:s4}‘
Ty

BTD applied to 4-Queens

= Search Tree

Record nogood
for v2, v3

m {;l‘l..’l,'z} {012}

<1,3> | 71,22

va | {z1. 22,23} {c13, o3} |
<1,4,2> l 1, 22,73

U3 ‘ {z1, 20,23, 24} {f714-,(¢24,(3:s4}‘

BTD applied to 4-Queens

= Search Tree

Record nogood
for v1, v2

m {11.1'2} {012}
<1,3>, <1,4> | z1,22

g

{z1, 20,23} {13, con} ‘
<1,4,2> | 71,%2,73

U3 ‘ {z1, w2, 23,24} {f714-,(¢24,(3:s4}‘

BTD applied to 4-Queens

= Search Tree V1 traversed,

descend into v2

T
vt [{z1. a2} {c1o}
<1,3>,<1,4> | z1,22
T2
v2 | {z1, we, 23} {13, cos} ‘
2 <1,4,2> . ©1. 72,73
U3 ‘ {z1, w2, 23,24} {f714-,(¢24,(3:s4}‘
T4
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T2

T3

Ty

BTD applied to 4-Queens

= Search Tree V2 traversed,

descend into v3

m {11.1'2} {012}
<1,3>,<1,4> | z1,22

V2 | {z1. 22,23} {13, e} |
<1,4,2>

L1, T2, T3

vs ‘ {x1, 2,23, 24} {f714-,(¢24,(3:s4}‘

T2

T3

Ty

BTD applied to 4-Queens

= Search Tree

m {11.1'2} {012}
<1,3>, <1,4> | 21,22

vz | {z1, 22,23} {13, con} |
<1,4,2> |

L1, T2, T3

vs |{z1,:r2,m3,:174} {f714-,(¢24,(3:s4}|

Solution

Example: “Soft” Graph Coloring

= Variables: i, x2, 23,74
« Domains: {b.g,7,y} for @, x0,z3, {b,g}for x4
= Constraints:

Adjacent colors must be different

Combinations red and blue, red and green have penalty

x1 2 3

{b.g,my}

71 {b.g}

Example: “Soft” Graph Coloring

= Tree Decomposition:

v | {z1, 22} {c12}

T2 T1,T2

v

{2, 23} {cas} | [ {21, 22,20) {c1a,020} | vs

Example: “Soft” Graph Coloring

= Partitions: {{b, g}, {r.y}} for x1, 22,23 ,{{b,g}} for x4
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